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ชื่อวิทยานิพนท์ แบบการวิเคราะห์ส าหรับพ้ืนที่ครอบคลุมทางความน่าจะเป็นของ
การตรวจจับและความสามารถในการเชื่อมต่อจุดรับข้อมูลใน
เครือข่ายเซนเซอร์ไร้สาย 

ผู้เขียน  นายภาคภูมิ หอยิ่งเจริญ 

สาขาวิชา วิศวกรรมไฟฟ้า 

ปีการศึกษา 2563 
 

บทคัดย่อ 
 

เพ่ือที่จะใช้งานเครือข่ายเซนเซอร์ไร้สายได้อย่างมีประสิทธิภาพ ไม่เพียงแต่การ
ปฎิบัติงานรายวันของเครือข่ายเซนเซอร์ไร้สาย ที่ควรได้รับการศึกษาและออกแบบทางด้านวิศวะที่
เหมาะสม การวางแผนและออกแบบก่อนการวางเครือข่ายก็ได้รับการศึกษาและควรได้รับการ
ค้นคว้าวิจัยด้วย วิทยานิพนธ์ฉบบันี้ได้หาสมการคณิตศาสตร์ 2 สมการ สมการที่หนึ่งส าหรับการหาค่า
การครอบคลุมทางความน่าจะเป็นของการตรวจจับโดยเฉลี่ย และอีกสมการนึงส าหรับจ านวนเส้นทาง
โดยเฉลี่ยที่เซนเซอร์ไร้สายใดๆที่ไม่สมารถการเชื่อมต่อจุดรับข้อมูลได้โดยตรง จะสามารถการเชื่อมต่อ
จุดรับข้อมูลได้ วิทยานิพนธ์ฉบบันี้อยู่บนสมมติฐานว่ารูปแบบของการตรวจจับและรูปแบบของการ
สื่อสารต่างกัน โดยรูปแบบของการตรวจจับจะคล้ายเกาเซี่ยน เป็นสมการของระยะทางระหว่าง
เซนเซอร์กับวัตถุที่จะตรวจจับ ในขณะที่รูปแบบของการสื่อสารเป็นวงกลมที่ภายในวงกลมสื่อสารได้
แน่นอน 100 เปอร์เซ็นต์ โดย 2 สมการที่หาออกมาในวิทยานิพนธ์ฉบบันี้พิจารณาสถานการณ์ทีมี
จ านวนเซนเซอร์จ ากัด เซนเซอร์ถูกวางแบบสุ่มด้วยความเป็นไปได้เท่ากันทุกจุด ในพ้ืนที่ 2 มิติขนาด
จ ากัด ที่เป็นสี่เหลี่ยมผืนผ้า โดยมีจุดรับข้อมูลตั้งอยู่ตรงกลางของพ้ืนที่  เนื่องด้วยการพิจารณาจากผล
ของเซนเซอร์ที่ตั้งอยู่ใกล้ขอบของพ้ืนที่การวางเครือข่ายเซนเซอร์ไร้สาย สมการทั้ง 2 แม่นย ามากเมื่อ
เทียบกับผลการจ าลองการวางเซนเซอร์ในโปรแกรมแมทแลปในสถานการณ์ต่างๆ โดยสมการส าหรับ
การหาค่าการครอบคลุมทางความน่าจะเป็นของการตรวจจับโดยเฉลี่ยมีผลต่างไม่เกินประมาณ 2.5 
เปอร์เซนต์จากผลการจ าลอง ในขณะที่สมการด้านการสื่อสารกับจุดรับข้อมูลแทบได้ผลตรงกับผลการ
จ าลองในกรณีที่เหมือนในการใช้งานจริง 

งานในวิทยานิพนธ์ฉบบันี้สามารถน าไปใช้ในการท านายระดับการครอบคลุมและการ
สื่อสารกับจุดรับข้อมูลที่เกิดจากการวางเซนเซอร์แบบสุ่มด้วยความเป็นไปได้เท่ากันทุกจุด ส าหรับ
จ านวนเซนเซอร์จ ากัด ในพ้ืนที่ 2 มิติขนาดจ ากัด สมการทั้ง 2 ยังสามารถหาค่าตัวแปรต่างๆที่ท าให้
เกิดระดับการครอบคลุมและการสื่อสารที่ต้องการได้โดยใช้ค่าจากกราฟ สมการทั้ง 2 เหมาะกับการใช้
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ในการขยายขนาดเครือข่ายไปเรื่อยๆจากการวางเซนเซอร์แบบเป็นกลุ่มในพ้ืนที่สี่เหลี่ยมจัตุรัส สมการ
ส าหรับการหาค่าการครอบคลุมทางความน่าจะเป็นของการตรวจจับโดยเฉลี่ยใช้ได้กับรูปแบบของการ
ตรวจจับอ่ืนๆที่เป็นสมการที่ขึ้นกับระยะทางระหว่างเซนเซอร์กับวัตถุที่จะตรวจจับ เมื่อพิจารณาการ
ครอบคลุมและการสื่อสารพร้อมกัน วิทยานิพนธ์ฉบบันี้แสดงผลออกมาว่าตวามสัมพันธ์ของทั้ง 2 ไม่
ตรงๆแบบ 1 ต่อ 1  สุดท้ายสมการทั้ง 2 สามารถน าไปใช้ในการวางแผนการนอนของเซนเซอร์แบบ
อิสระ น าไปใช้ในการวิเคราะห์ความสารถในการทนทานของเครือข่ายในกรณีที่เซนเซอร์ตายแบบ
อิสระปละสุ่ม ใช้ในการลดต้นทุนในการติดตั้งเครือข่ายให้มากที่สุดจากการพิจารณาการใช้เซนเซอร์
ชนิดต่างๆ ที่จะถูกวางแบบสุ่มด้วยความเป็นไปได้เท่ากันทุกจุด 

 

ค าส าคัญ การครอบคลุมของการตรวจจับโดยเฉลี่ย ค่าการสื่อสารไปยังจุดรับข้อมูลโดยเฉลี่ย พ้ืนที่
จ ากัด รูปแบบการตรวจจับแบบความน่าจะเปน็ สมการคณิตศาสตร์ เครือข่ายเซนเซอร์ไร้สาย 
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ABSTRACT 

To efficiently employ WSNs, not only should the day-to-day operations 

of WSNs be studied and properly engineered, pre-deployment planning and design for 

sensor placement have been and should be investigated as well.  This dissertation 

derives two mathematical formulae.  One mathematical expression is for the expected 

probabilistic detection coverage, and the other is for the expected degree of sink 

connectivity for any sensor node (SN) that cannot directly transmit to the sink.  This 

dissertation assumes that the sensing model and the connectivity models are different.  

The sensing model is Gaussian-like and a function of distance away from the sensor 

node, while the connectivity model is a binary disk.  The two mathematical models 

derived in this dissertation consider a scenario where a finite number of object-detecting 

sensors are independently and uniformly distributed at random in a finite 2-D 

rectangular plane of which a sink is located at the center.  With consideration of border 

effects, the striking accuracy of the formulae was demonstrated by comparing the 

numerical results from the proposed mathematical models with results from MATLAB 

simulations of random SN placement in uniform manner in various scenarios.  To be 

exact, the proposed model for the expected probabilistic detection coverage is accurate 

within about 2.5 percent of the simulation results, while the sink connectivity model, in 

pragmatic scenarios, is practically exactly the same as the simulation. 

The work in this dissertation can be used to predict the levels of coverage 

and sink connectivity of random SN placements in uniform manner for a given number 

of deployed SNs and a given dimension of the 2-D deployment area (DA).  It can 

determine values of related parameters for specific degrees of coverage and sink 

connectivity using graphs.  It is apt for scalability in clustered square WSNs.  The model 

for the expected probabilistic detection coverage is applicable for other sensing models 

which are functions of the distance between an SN and the object to be detected.  When 

examining both coverage and connectivity together, the dissertation shows that the 

relationship between coverage and connectivity is not straightforward.  Finally, the 

formulae can be utilized in planning uncoordinated node scheduling schemes, 

analyzing the fault tolerance of networks in which the sensor nodes independently and 

randomly die, and optimizing the deployment cost from different sets of a finite number 

of homogeneous SNs that are uniformly and randomly deployed. 
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CHAPTER 1 

 

Introduction 

 

For a random placement of a finite number of SNs in a finite rectangular 

2-D deployment area (DA) in a WSN, this dissertation derives two mathematical 

expressions.  One is for computing the expected detection probability (EDP) at any 

arbitrary point (AP) in the DA.  The other is for calculating the expected degree of sink 

connectivity or the number of communication paths to the sink for sensor nodes (SNs) 

that cannot directly wirelessly transmit the information to it.  This chapter introduces 

WSNs and the fundamental services they provide, namely sensing coverage and 

wireless connectivity, along with the corresponding benefits of having accurate 

estimates of these two qualities of service and the assessment problems of these two 

when a finite number of SNs are randomly placed.  These lead to the overall motivations 

and the subsequent problem statement for this dissertation.  Then the objectives and the 

scope of the research in this dissertation are presented.  In closing of this chapter, the 

contributions of this thesis are then explained and followed by the outline of the 

dissertation. 

 

1.1 Background Overview 

Wireless Sensor Networks are networks of low-cost and low-power 

autonomous sensors that can wirelessly communicate with one another.  Via other SNs 

in a multi-hop communication fashion, the SNs send the information they have sensed 

or detected back to a base station.  Depending on the application of that particular WSN, 

the SNs in the network receive or detect the information of interest by transducing heat 

or humidity or chemical or biological compounds or electromagnetic (EM) or acoustic 

waves or any other physical quantity of interest.  A number of applications of WSNs in 

military surveillance, security, industrial and environmental monitoring, underwater 

detections, and border monitoring employ the SNs that detect electromagnetic or 

acoustic signals radiated from the object of interest.   

For those physical quantities, an inverse-square law states that the 

intensity of such physical quantities is inversely proportional to the square of the 

distance from the source of those physical quantities.  There are also random 

electromagnetic or acoustic noises that can interfere with the sensing or the detection 

of the SNs.  Combining these two physical phenomena, for those applications of WSNs, 

there should be increasing uncertainty for an SN to detect the object of interest as the 

distance between the SN and the object grows.  Specifically, this uncertainty in 

detection or sensing can be mathematically modeled as a detection probability (DP) 

function.  This DP function is a decreasing function of the distance between a SN and 

the object.  In this function or mathematical model, the detection capability or 

probability of the SNs decreases as the object to be detected that radiates the signals is 

further away from the SNs.  Another effect of the unavoidable interfering noises on the 
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sensing model is that, beyond a certain distance between an SN and the signal-emitting 

object of interest, on average these noises can overwhelm the signals of interest.  As a 

result, the SN can no longer sense or detect the object or the DP in the sensing model 

is zero beyond a certain distance. 

For this kind of SNs and their corresponding range-limited and 

decreasing DP of the sensing model, the amount of overall sensing coverage should not 

be the percentage of the area being covered by the SNs deployed.  The reason is because 

it would not capture the essence of the uncertainty of sensing coverage in every spot in 

the DA.  In the traditional binary sensing model where every spot within the sensing 

range of a SN is covered with 100% probability and zero everywhere else, adopting the 

percentage of the covered area as the benchmark of the total sensing coverage of the 

WSN coverage is perfectly reasonable.  There is no uncertainty of sensing or detection 

within the sensing range of the SNs in the binary sensing model.  On the other hand, 

when the DP within the sensing range of a SN is not 100%, the overall sensing coverage 

in the DA should also reflect this.  It should not be the percentage of area that is covered 

with 100% certainty.  In fact, the overall sensing coverage for the kind of sensing model 

with decreasing DP over the distance should also be a DP or expected DP of any AP in 

the DA. 

This type of pre-deployment awareness for the overall picture of 

uncertainty in sensing coverage can assist WSN planners and implementers in 

accurately assessing risks associated with it and weigh its costs and benefits from 

increasing the level of DP coverage at the expense of higher deployment cost.  Not only 

is this overall DP sensing information useful for conducting risk assessment and cost-

benefit analysis, it also provides information needed for planning other measures in 

dealing with the resulting coverage liability. 

Besides sensing or detection, another crucial and fundamental operation 

in a WSN is SNs sending the information they have sensed to the base station or the 

sink of the network.  Since SNs in the WSNs are typically low-cost and low-power, in 

order for the WSNs to function as intended, majority of the SNs have to send this 

information to sink of the network in a multi-hop communication fashion.  Each SN 

has a limited communication range.  Only those with the sink within its communication 

range can send the data directly to the sink in a single hop.  The rest of the SNs have to 

rely on others to relay or route the data back to the sink.   

The further the SNs are from the sink, the higher number of 

communication hops they have to take.  This could increase the issue of the 

communication unreliability.  This reason is because each hop of communication can 

be broken either due to the receiving-end SN dies or the severe condition of the 

naturally time-varying wireless channel.  The more hops it takes each SN to send the 

data back to the sink, the more likely that path of communication will be broken down.  

Having extra communication paths reserved in the routing table of each SN that is far 

from the sink could deal with this problem of increasing unreliability.  In other words, 

the extra degrees of sink connectivity (SC) can provide fault tolerance or routing 

resilience to the communication aspect of the WSNs. 

Knowing the degree of SC before the SN deployment not only can pre-

ascertain and devise fault tolerance capability, it also can help design efficient routing 
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protocols and determine the possibility of communication traffic congestion.  Efficient 

routing protocols need, along with other information, accurate knowledge about the 

number of available communication paths. Traffic congestion can increase as the 

number of available communication paths rises in case of flooding of information in 

the network.  Knowing the credible pre-deployment overall degree of SC in the network 

can give the WSN operators both a better perception of the possibility of traffic 

congestion in a WSN and dependable information needed for the effective and efficient 

routing protocols. 

Both sensing coverage and SC degree can be precisely determined 

beforehand when the SNs are deterministically placed, or after they have been deployed 

by having SNs exchanging their coverage and connectivity information.  However, 

when the SN placement is random, both sensing coverage and connectivity may not be 

definitely determined before the deployment.  They, nonetheless, can still be accurately 

estimated in advance with mathematical models.  For overall sensing coverage that is 

the DP at any AP in the DA from random SN placement, precise prediction is 

impossible.  Nevertheless, the expected or average DP at any AP in the DA resulted 

from a random placement can be accurately calculated.  Likewise, it is mathematically 

viable to derive the expected or average degree of SC for the SNs that cannot directly 

transmit to the sink, even though a random SN placement makes it hard to determine 

the exact degree of SC in the pre-deployment phase for every SN. 

 

1.2 Motivations 

As alluded to earlier, sensing coverage and network connectivity are two 

of the fundamental concerns in designing and implementing WSNs [1].  The coverage 

provided by a WSN indicates its quality of monitoring or detecting service. As for 

connectivity, each of the WSNs typically has a sink or a base station to collect 

information observed by the SNs.  As a result, connectivity to the sink from every SN 

must be required to ensure that the information obtained in all covered areas is delivered 

to the sink.  This communication aspect is another vital and important quality of service 

of WSNs.  In order to have an efficient WSN implementation and operation, these two 

quantities must be determined either in the post-deployment or the pre-deployment 

phase. 

Previous pre-deployment analysis works, which will be discussed in 

Chapter 2, have analyzed and evaluated sensing coverage and connectivity in different 

scenarios and on a variety of assumptions.  Despite all these works, challenges in 

modeling and determining coverage and connectivity in WSNs in the pre-deployment 

phase still remain.  Specifically for this dissertation, the EDP at any AP in the DA and 

the expected degree of SC (EDSC) for SNs that cannot directly transmit to the sink are 

of the interest.  As noted earlier, the EDP at any AP in the DA is a suitable metric for 

SNs that rely on electromagnetic or acoustic signals for their detection, while knowing 

EDSC is beneficial for routing, fault tolerance, and traffic congestion considerations.   

In light of the above, this dissertation develops and proposes 

mathematical models for predicting both EDP at any AP in the DA and EDSC for SNs 

that cannot directly transmit to the sink.  With consideration of border effects, the 
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striking accuracy of the formulae was demonstrated by the result comparisons with 

simulations in various scenarios.  The models in this dissertation can determine values 

of related parameters for specific degrees of coverage and connectivity.  This is useful 

for the pre-deployment planning stage of implementing WSNS.  Because we can 

achieve cost efficiency for the desired expected levels of sensing coverage and sink 

connectivity by not over-employing SNs.  Unlike previous works on joint coverage and 

connectivity analysis in WSNs, when examining both coverage and connectivity 

together, the models in this dissertation show that the relationship between coverage 

and connectivity is not straightforward.  Furthermore, the formulae can be utilized in 

planning uncoordinated node scheduling schemes, analyzing the fault tolerance of 

networks in which the sensor nodes independently and randomly die, and optimizing 

the deployment cost from different sets of homogeneous SNs. 

 

1.3 Problem Statement 

This dissertation derives two mathematical expressions for a 2-D 

rectangular WSN with a finite size and a finite number of randomly placed SNs.  The 

2-D sensing areas are suitable for real terrestrial applications of WSNs [2, 3].  One is 

for the expected probabilistic detection coverage at any AP in the sensing field, and the 

other is for the EDSC for SNs that cannot direct transmit to the sink.  These models 

could serve as a reference and a foundation for future test-bed experiments in real 

environments for any number of SNs.  The dissertation assumes that a sink node is 

located at the center of the field, which is useful for balancing SN workload distribution.  

Moreover, not only do these assumptions make the work in the dissertation closer to 

real-life situations where the sensing field and the number of deployed SNs are finite 

than the asymptotic assumptions, they are also applicable for clustered WSNs of which 

the cluster head of each cluster is located in the middle.  These clusters can be 

considered similar to the finite sensing field assumption in this dissertation with the 

centrally located sink node.  All the SNs are assumed to be homogeneous with the same 

sensing and communication ranges.  The sensing model is probabilistic, with the 

sensing or DP as a decreasing function of the distance away from the sensor node.  The 

value of the DP tapers off like the Gaussian distribution.  Each SN detects a target in 

the sensor field independently.  Unlike the probabilistic sensing model, the 

communication model this dissertation assumes is the traditional binary disk.  All the 

SNs are randomly and independently deployed according to the uniform distribution.  

The numerical results from the proposed mathematical models show that the 

discrepancies between the calculations from the two formulae and those from 

simulations are around one percent, and in some scenarios are practically zero.  The 

high accuracy of both the mathematical models in this dissertation is aided by the 

consideration of border effects [4, 5, 6]. 

To be more specific, assumptions made in the dissertation are the 

following. 

1. The sensing field is a finite rectangular plane of size p by q where 

p, q ≥ 4 times the sensing range of the SNs. 

2. The sink node is located at the center of the DA. 
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3. A finite number of SNs are randomly placed according to the 

uniform distribution. 

4. All the SNs are homogeneous.  They all have the same sensing 

and communication models with the same sensing and communication ranges. 

5. The sensing model is based on an idea that a SN detects an object 

from its signals [7].  These signals could be thermal energy, acoustic waves, radio 

waves, light waves, or magnetic field [7].  As these signals propagate over a distance 

before it reaches an SN, the strength of the signals weakens.  As a result, the chances 

of detecting an object emitting these signals should decrease over the distance.  To 

mimic this effect in the sensing model of the SNs in the coverage problem, this 

dissertation adopts a distance-dependent equation similar to Gaussian probability 

distribution.  Let Di(ri) be the probability that SN i detects the object at distance ri from 

the SN i.  The equation for the probabilistic sensing model Di(ri) is as follows [8, 9, 10]: 

 

 
𝐷𝑖(𝑟𝑖) = {

exp(−𝑟𝑖
2 2𝛼𝑠

2⁄ ) ,   0 ≤ 𝑟𝑖 ≤ 𝑑𝑠;

0,                      𝑟𝑖 > 𝑑𝑠.
 

 

(1.1) 

 

A parameter, 
s

 , similar to the standard deviation in the Gaussian distribution, 

determines how the DP is distributed over the distance ri.  The bigger the value of 
s

 , 

the more flattened out or the more spread the value of the DP over the distance becomes.  

Another parameter, ds, is the maximum sensing range beyond which the DP is zero.  

The rationale behind this sensing range ds, is that, beyond a certain distance, the signal 

strength from the object falls below a detection threshold.  Hence the SN can no longer 

detect the object farther than that distance.  

6. Each SN detects the object independently. 

7. The communication model is the traditional binary disk where 

connectivity exists within the communication range with probability of one.  The 

dissertation notes that the work here with this simple assumption can serve as a basis 

for future works with more complicated communication models.  This simple binary 

model also can be applied with an irregular communication model by multiplying the 

communication range with (1 − ℎ) where ℎ is the degree of irregularity as shown in 

[4]. 

 

1.4 Objectives of the Research 

1.4.1 To be able to derive and propose an accurate mathematical 

expression of the expected detection probability at any arbitrary point in the finite 2-D 

rectangular deployment area of a wireless sensor network, assuming that a finite 

number of homogeneous SNs are placed and each SN independently detects an object 

with the detection probability based on a probabilistic sensing model that is a function 

of the distance between the SN and the object. 
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1.4.2 To be able to derive and propose an accurate mathematical 

expression of the expected degree of sink connectivity for SNs that cannot directly 

transmit to the sink which is located at the center of a finite 2-D rectangular deployment 

area of a wireless sensor work, assuming a binary communication model for the SNs 

and a finite number of homogeneous SNs are deployed. 

1.4.3 To be able to verify the accuracy and validity of both mathematical 

models with simulation results. 

1.4.4 To be able to analyze the causes of the discrepancies between the 

numerical results from the proposed mathematical models and those obtained from 

simulations. 

1.4.5 To be able to analyze the ramifications of the numerical results 

produced by the proposed models. 

1.4.6 To be able to show the applications of the proposed models in 

implementations of wireless sensor networks 

 

1.5 Scope of the Research 

1.5.1 Both proposed mathematical models are based on assumptions that 

a finite number of homogeneous SNs are deployed in a finite 2-D rectangular sensing 

field or deployment area of a wireless sensor networks. 

1.5.2 The sensing model of the SNs is probabilistic, a function of 

distance between the SN and the object to be detected, and has a finite detection or 

sensing range. 

1.5.3 The communication model of the SNs is binary with a limited 

communication range, meaning a SN can communicate with other SNs within its 

communication range with probability of one and cannot communicate at all with other 

SNs outside the range. 

1.5.4 The SNs are placed randomly with uniform distribution. 

1.5.5 The sink of the wireless sensor network is located at the center of 

the deployment region. 

1.5.6 The proposed models are for the calculations of the expected or 

average values of detection probability at an arbitrary point and degree of sink 

connectivity respectively.  They are not for determining the detection probability value 

of any arbitrary point for the degree of sink connectivity of any SN. 

 

1.6 Contributions 

To the best of the author’s knowledge, the scientific contributions of this 

dissertation are summarized as follows: 
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• First, with consideration of border effects, to have derived an 

analytical expression for the EDP at any AP based on a probabilistic sensing model of 

a finite number of randomly and uniformly placed homogeneous SNs in a finite 

rectangular DA of a WSN. 

• First to have obtained an analytical expression for EDSC based 

on a binary disk communication model for a finite number of randomly and uniformly 

placed homogeneous SNs that cannot directly transmit to the sink centrally located in a 

finite rectangular DA of a WSN. 

• Contrary to the traditional relationship between coverage and 

connectivity [11], by numerical results from both the mathematical models, the 

dissertation has demonstrated that this relationship does not exist when the sensing 

model is probabilistic and the communication model is binary.  An explanation for these 

results will be discussed in Chapter 5. 

• Suggestion to modify the uncoordinated sleep scheduling 

schemes proposed by Yen, Wu, and Cheng [4] in an application of these mathematical 

models.  The dissertation shows other potential utilities of the formulae in tracking or 

providing a snapshot of the degrees or fault tolerance capability of coverage and 

connectivity over time, and in choosing a set of homogeneous SNs that minimize the 

deployment cost.  

The remainder of the dissertation is organized as follows.  In Chapter 2, 

an overview of sensor placement in WSNs and its impacts, an overview of research in 

wireless sensor placement, and a survey of current sensing coverage and connectivity 

analyses in WSNs are presented.  Subsequently, the analyses of the EDSC and EDP are 

demonstrated in Chapter 3 and 4 respectively.  Chapter 5 presents the verifications of 

both analytical models with simulations, discussions of results, and examines the 

applications of the proposed models.  Chapter 6 concludes this dissertation. 
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CHAPTER 2 

 

Background 

 

This chapter presents an overview of sensor placement in WSNs and its 

impacts.  They are then followed by an overview of research in wireless sensor 

placement and a survey of current sensing coverage and connectivity analyses. 

 

2.1 Sensor Placement in WSNs and its Impacts 

 

 

Figure 2.1. A Typical Wireless Sensor Network 

 

A WSN is a network of sensors that communicate with one another 

wirelessly.  A typical WSN is shown in Figure 2.1.  It usually consists of three types of 

devices, namely sensor nodes, cluster heads or relay nodes and base stations [11, 12, 

13, 14, 15, 16, 17, 18, 19, 20] [21, 22, 23, 24, 25, 26, 27, 28, 29, 30].  The duties of 

sensor nodes are to monitor an environment, collect data and then transmit the data back 

to the base station via a cluster head.  Cluster heads are usually more complicated and 

have more computation, storage and transmission capabilities than the regular sensor 

nodes [14, 15, 16].  Besides the task of aggregating and then relaying data via other 

cluster heads back to the base station, cluster heads also could perform sensing duties 

if required [14, 15, 16].  The base station or the sink is then the transmission destination 

that collects all data packets within the network.  Figure 2.1 shows four clusters within 
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which sensor nodes transmit their data to their cluster head.  This type of network 

architecture is now prevalent in WSNs because of its scalability.  A scalable network 

architecture is the one whose design can be implemented in all networks regardless of 

their sizes [14, 15, 16].   

In terms of SN mobility, SN placement can be classified as either static 

or dynamic placement [30].  In dynamic placement, all three types of devices in WSNs 

which are sensor nodes, cluster heads or relay nodes and base stations, could reposition 

themselves.  On the other hand, in static placement, they cannot.  Static sensor 

placement in WSNs can either be deterministic or random [30].  Random sensor 

placement is carried out in the environments where deterministic sensor placement is 

not possible.  Examples of these harsh environments are enemy territories, volcanic, 

and mining areas.  Naturally, deterministic sensor placement is preferred to random 

placement whenever it is applicable [30].   The efficiency in energy consumption, 

network deployment cost, network coverage, fault tolerance, connectivity, routing, end-

to-end delay, detection probability and even the ability by WSNs to classify objects of 

interest could all be enhanced or optimized via intelligent sensor placement strategies 

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20] [21, 22, 23, 24, 25, 26, 27, 28, 29, 30].  The 

impacts of sensor placement on these qualities are overviewed in this section. 

 

2.1.1 Coverage and Energy Consumption 

In typical WSNs where data transmission occurs on a regular basis, 

energy of a SN is most depleted by transmission energy [31, 14, 32, 33].  As shown in 

Figure 2.2, both networks have the same number of SNs of six, but the one of the left 

has less energy consumption, and hence longer network lifetime than the one on the 

right, assuming all operations of both networks are the same.  The reason is because all 

SNs are placed closer to the base station in the network on the left than the one on the 

right.  So SNs on the left do not consume as much transmission energy as the ones in 

the right network.  However, the left network covers a smaller area than the right one.  

As we can see here, sensor placement does impact coverage and energy consumption 

in WSNs, and they are two tradeoff qualities [11, 12, 18].  

 

Figure 2.2. Two different SN placements with different coverage & energy 

consumption. 
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2.1.2 Cost, Coverage, and Energy Consumption 

As shown in Figure 2.3, assuming that the sensing coverage and the 

transmission energy of each SN can be adjusted, for the same amount of sensing 

coverage, the left network when compared to the right network employs fewer SNs.  

Hence the left network has less SN deployment cost, but it also has shorter network 

lifetime because the SNs on the left have to transmit their data over longer distance and 

spend more energy [13, 14].  As we can see here, sensor placement does impact network 

cost, coverage and energy consumption. 

 

 

Figure 2.3. Two different SN placements with different cost, coverage, energy 

consumption 

 

2.1.3 Fault Tolerance (𝒌-coverage and 𝒌-connectivity) 

𝑘-coverage is the coverage whose existence is still guaranteed or the 

target point(s) of interest is still covered even after 𝑘 − 1 SNs have failed or been 

removed [11]. Figure 2.4 depicts the 𝑘-coverage of a target point where 𝑘 = 4.  As seen 

here, when any three of the four nodes that cover the target point or the target area fail, 

the target point or target area is still covered by one SN.  Similarly, 𝑘-connectivity is 

the connectivity to the base station from any node that exists even after any set of 𝑘 − 1 

SNs have failed or been removed from the network [11].  Figure 2.5 illustrates a 

network with 𝑘-connectivity where 𝑘 = 3.  When any set of two nodes fail in this 

network, the remaining SNs will still have at least a path to connect to the base station.  

As shown in Figure 2.4 and Figure 2.5, carefully planned sensor placements can 

establish these fault tolerant capacities in WSNs [11].   
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Figure 2.4. Network with 𝑘-Coverage of a target point where 𝑘 = 4. 

 

 

 

Figure 2.5. Network with 𝑘-Connectivity where 𝑘 = 3. 

 

2.1.4 Routing and Delay 

As a result of sensor placement, SNs only have certain ways to relay 

their data back to the sink.  Shown in Figure 2.6, one can see that each node in the 

network has its own specific communication route due to the limitation imposed by its 

position and those of its neighboring nodes.  The amount of data traffic and the number 

of communication hops in each route are also affected by the positions of the SNs and 
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their transmission radii as illustrated in Figure 2.6.  Since end-to-end delay of a route 

depends on the amount of traffic and the number of hops in it [34], one can expect the 

delay to be impacted by sensor placement as well.   

 

 

 

Figure 2.6. Impacts of SN placement on network connectivity and routing. 

 

2.1.5 Detection Probability 

Detection probability is the probability that an object of interest or an 

intruder is detected by a SN.  This probability equals one minus the probability that 

none of the SNs capable of detecting the intruder detects it.  The SNs that are capable 

of detecting the intruder are the SNs that have the intruder within its sensing or detecting 

range.  Hence the number of these SNs and the corresponding detection probability of 

the intruder must depend on the SN placement.  It is even more so when the detection 

probability of each SN depends on the distance between the SN and the target or the 

intruder, as noted and reasoned in Chapter 1, and as illustrated in Figure 2.7. 

 

Figure 2.7. Sensor nodes at different positions have different detection probabilities 
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2.2 Research Overview on Wireless Sensor Placement 

Since the inception of WSNs in 1989 [35], research in SN placement for 

WSNs has been focusing either on the optimization methodologies or strategies or the 

analytical models.  As presented in the previous section, sensor placement can impact 

various aspects of the performance of WSNs.  A deterministic placement can be 

optimized for a combination of these facets.  Several placement optimization 

methodologies [11, 12, 13, 14, 15, 16, 17, 18, 19, 20] [21, 22, 23, 24, 25, 26, 27, 28, 

29, 30] [36, 37, 38, 39, 40, 41, 42, 43] have been proposed to serve this purpose by 

taking a variety of these WSN performance aspects as optimization objectives and 

constraints in their sensor placement strategies.  In deterministic deployment of SNs, 

the coverage and connectivity could be determined and guaranteed at the expense of 

offline SN placement design [36, 37, 38, 39, 40, 41, 42, 43].  However, in some 

scenarios where the deployment region is inaccessible or hazardous to human beings, 

SNs will have to be deployed randomly instead.   

In this random deployment, both coverage and connectivity are not 

easily gauged.  Nevertheless they both can be assessed by either a coverage or 

connectivity evaluation protocol [44] or an analytical model.  An evaluation protocol 

would require the knowledge of actual SN locations and connectivity after they have 

been deployed and an elaborate information-exchanging scheme between the SNs to 

determine the coverage and connectivity resulted from random deployment [44].  It is 

carried out only after the deployment has taken place.  It is more accurate and reflects 

the real network conditions.  It can be used to guarantee desired levels of coverage and 

connectivity [44].  However, post-deployment procedures require overheads and SN 

energy [44].  Moreover, the protocols cannot forecast the levels of coverage and 

connectivity before the deployment, which is needed in employing efficient randomly-

placed WSNs.  These evaluation protocols can be categorized as post-deployment 

procedures for coverage and connectivity analyses.     

Analytical models while based on random placement, on the other hand, 

can predict the coverage and connectivity before the actual deployment.  Studies on the 

analytical models for SN placement also have largely been on sensing coverage and 

connectivity.  The models mostly aim to assess the levels of coverage and connectivity 

for a given number of SNs deployed, the size and type of the DA, and the sensing and 

communication models of the SNs.  Analytical models are mathematical equations that 

can easily and readily evaluate or predict coverage or connectivity, and can be used if 

only such basic information is available.  They are pre-deployment calculations.  The 

analytical models used in determining the sensing coverage and the network 

connectivity also could serve as a tool in designing and efficiently arranging 

uncoordinated SN sleep scheduling schemes in order to extend the network lifetime [4, 

45, 46, 47].  The models could possibly be employed as performance benchmarks for 

optimized deterministic SN placement schemes.  Proper optimized SN placements 

should at least outperform any random placement in terms of cost and quality of service 

proficiency.  Accurate analytical models could be tools to systematically demonstrate 

this.    

This dissertation is interested in analytical models for sensing coverage 

and sink connectivity in WSNs based on a uniform random static placement of a finite 
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number of uniform SNs in a finite 2-D area.  As such, in this section, related work in 

sensing coverage and connectivity analytical models is presented. 

 

2.2.1 Related Work on Analytical Models on Sensing Coverage   

A number of different analytical models for sensing coverage in WSNs 

have been proposed [48, 49, 45, 50, 51, 52, 47, 53, 54] [55, 56, 46, 57, 58, 7, 59, 60, 

61, 4] [62, 63, 64].  They were all different from one another due to their different 

assumptions and scenarios.  The models can be categorized according to: A. the type 

of the terrain on which the WSN is deployed, whether it is 2-D or 3-D, B. the kind of 

the sensing model, binary or probabilistic, C. the coverage metric used, area or detection 

probability, and D. the way the SNs are distributed, Poisson or uniform or clustered. 

The models [49, 45, 50, 51, 52, 47, 53, 54, 55, 56] [46, 57, 58, 7, 59, 60, 

61, 4, 62, 63] all assumed the 2-D sensing field.  Only the models proposed in [48, 64] 

looked at the analytical models for sensing coverage from the 3-D perspective.  In [48], 

the model computed the minimum sensor spatial density needed for 𝑘-coverage in a 3-

D deployment field, utilizing the concept of Reuleaux tetrahedron.  In this work [48] 

the degree of coverage, 𝑘, also had to be at least four.  It cannot compute the expected 

detection probability at an arbitrary point, when a probabilistic sensing model is 

assumed.  Work in [64] derived the coverage degree and target detection probability for 

autonomous underwater vehicles in the 3-D underwater environment.  The target of 

detection in [64] can be either static or mobile.  In the scenario where the target is 

mobile, the analytical detection model proposed in [64] also takes into account the 

exposure time and the moving speed of the mobile target.  The sensing or detection 

model for each autonomous underwater vehicle in [64] is binary. 

In terms of the type of the sensing model, [49, 45, 50, 52, 47, 53, 54, 56, 

46, 57] [58, 59, 61, 4, 64] based their analytical studies on the binary sensing model.  

Work by [49] sought the critical SN density required to guarantee what they called, 

barrier coverage, on thin 2-D strips.  The existence of barrier coverage meant that an 

intruder, the object to be sensed, could not cross the sensing field from one side to the 

other without being in the area covered by the SNs.  In [45], the authors derived the 

expected probability that the target or the intruder would be detected while traveling 

across the 2-D sensing field, assuming that each SN was turned on and off according to 

two different probability values that add up to one.  Once, the SN was on or off, it stayed 

in that state for a certain amount of time before selecting the on-off state again based 

on the same probabilities.  The authors in [50, 53] were also interested in deriving the 

probability of detecting the traversing intruder.  Work in [50] investigated a scenario 

where jammers were present in the sensing field.  These jammers were assumed to be 

capable of rendering all the SNs within their jamming range useless, causing coverage 

holes in the field.  The locations of the jammers were random, just like those of the 

SNs.  Based on a novel non-existence information-based target detection model, the 

authors in [52] proposed a closed-form solution for visual 𝑘-coverage probability 

estimation in a crowded environment with occlusions. Work by [53] focused their 

derivation for the detection probability in the case where the sensing area of each SN 

was in an arbitrary shape, not the typical circle or the disk.  The authors in [54] derived 
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the expected coverage ratio of randomly deployed homogeneous camera sensors by 

first finding the expected coverage of single camera sensor.  The authors in [47] studied 

the relation between the number of deployed SNs, the probability that each SN is active, 

the sensing range of the SN, and the degree of coverage, 𝑘, for 2-D sensing fields.  Work 

by [47] proposed a function for computing the critical value of the active probability of 

the SNs that would guarantee that the probability of 𝑘-coverage at all interested points 

in 2-D fields approaches one as the number of SNs go to infinity.  The authors in [56] 

developed analytical models for redundant coverage based on a model of natural 

clustering of SNs.  Specifically, the authors derived the mean number of coverage disks 

per unit area assuming a Poisson Cluster Point Process for the SN distribution.  Work 

in [56] also obtained an analytical model for vacancy in coverage resulted from natural 

clustering.  The authors in [46] found the expected detection probability for the 

traversing target similar to what the authors in [45] did.  The difference was that in this 

work by [46], the SNs switched on and off according to a duty cycle.  In each duty 

cycle, the SNs stayed on and off for certain amount of time.  After each duty cycle 

ended, another one started with the same amount of time for the on-off states.  Work 

by [57] introduced a new performance metric for multi-perspective coverage in visual 

sensor networks, and also analytically computed the multi-perspective coverage for a 

given number of uniformly deployed camera sensors.  The authors in [58] were 

interested in finding the probability that a target was covered by 𝑘 visual SNs.  The 

visual SNs had the sensing coverage of a circular sector instead of the normal disk.  

Work by [58] also considered the scenario where there were occlusions that blocked 

the fields of view of the SNs.  The authors in [59] examined the relation between the 

probability of every point of interest being covered by 𝑘 SNs, the sensing range, and 

the number of deployed SNs.  Work in [61] found the sensing coverage in terms of 

covered area to the total area of the sensing field by taking border effects into account.  

However, the consideration of the border effects did not differentiate the case where 

the SNs were close to the corners of the sensing field, and the case where the SNs were 

close to the four sides of the field.  Work in [4] attained an analytical model for the 

expected area that were covered by 𝑘 SNs, given that the size of the 2-D field, the 

sensing range of the SNs, and the number of deployed SNs were provided.  The authors 

in [4] also examined all the possible cases of border effects in their derivation.  All these 

works reviewed here assumed the binary sensing models for their analytical models.  

Hence, their models could not be applied to find the expected detection probability at 

an arbitrary point, when the probabilistic sensing model is assumed. 

Overall, existing work for sensing coverage analysis, in terms of the type 

of the sensing model, majority of prior analytical work [4, 47, 56, 59, 61, 49, 5, 65, 66] 

assumed the traditional binary disk model, and hence used the covered area ratio as the 

coverage metric.  Other work [58, 46, 45, 53, 50, 67, 64, 68] derived a detection 

probability (DP), yet still by assuming the binary disk for the sensing model.  The 

authors in [67] also found the probability that an event is detected before it goes out.  

Work in [68] derived the DP for barrier coverage assuming that an intruder has a 

preferred or favorite path which was based on real life observations. 

A probabilistic sensing model was adopted in work on sensing coverage 

analyses in [51, 55, 7, 60], but their performance measure for sensing coverage was all 

the ratio of the covered area to the total area, not the expected detection probability at 
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an arbitrary point.  Work in [63] was based on a combination of two probabilistic 

sensing models, Elfes and log normal shadow fading, and the overall sensing 

performance metric was still the coverage area fraction.  In [62] using a probabilistic 

sensing model, the minimum energy connected target 𝜀-probability coverage problem 

was proven to be nondeterministic polynomial-hard.  The authors in [62] also proposed 

an algorithm for the solution to the problem adopting a minimum weight maximum 

flow technique.  The authors in [51] derived the coverage ratio using Elfes sensing 

model, and also investigated the impact of one node failure on the coverage ratio for 

the coverage degree of one and two.   Work in [55] modeled their sensing model after 

the model for signal reception power in shadowing environment.  The coverage area 

that the authors in [55] analyzed was equated to the probability that a point in the 

circular 2-D sensing field would be covered by at least an SN.  In their derivation, work 

in [55] also considered the border effects.  The authors in [7] did the same thing as the 

authors in [55], except they did not factor in the border effects.  Work in [60] explored 

an analytical model for the sensing coverage from an angle of how data fusion and 

noisy measurements impacted the coverage.  The area coverage that the authors in [60] 

were interested in was defined according to the false alarm probability and detection 

probability.  Data fusion in this work meant that the signal measurement in their sensing 

model was the sum of signal measurements from all the SNs that covered an arbitrary 

point in the sensing field.  The coverage work in [60] investigated was still the area not 

the expected detection probability at an arbitrary point.  The authors in [69] also 

investigated a data fusion model assuming the traditional binary disc sensing model in 

their sensing coverage analysis.  Work in [70] proposed a new localization-oriented 

sensing model and found the localization-oriented coverage probability for randomly 

deployed wireless camera sensor networks.  There still has not been work that derives 

the EDP at any arbitrary point AP in a finite sensing field based on a probabilistic 

Gaussian-like disk model.      

Work in [45, 50, 52, 53, 54, 46, 58] considered the detection probability 

for the performance metric of sensing coverage in their analytical works.  Yet, all their 

sensing models were the binary sensing model which would not represent the sensing 

capability of signal detection SNs as well as a probabilistic sensing model.  Other work 

[48, 49, 51, 47, 55, 56, 57, 7, 59, 60] [61, 4] employed the ratio of the covered area to 

the total area of the sensing field as the sensing coverage metric. 

Another interesting aspect of analytical works for sensing coverage in 

WSNs is how the SNs are randomly distributed.  Work in [48, 45, 50, 54, 46, 57, 61, 4] 

assumed in their works that the SNs were randomly distributed with uniform 

distribution.  On the other hand, work in [49, 51, 52, 47, 53, 55, 58, 7, 59, 60] presumed 

the Poisson distribution.  The difference between uniform distribution and Poisson 

distribution is that Poisson distribution is the asymptotic estimate of binomial 

distribution, which is what used in the derivations for uniform SN distribution, when 

the number of deployed SNs approaches infinity [53, 58, 7].  Work in [56] considered 

cluster distribution of SNs.   
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2.2.2 Related Work on Analytical Models on Connectivity   

As for connectivity, earlier work without consideration of a sink was 

interested in the number of neighboring nodes (NNs) or a node degree needed for 

overall peer-to-peer connectivity [71] and the minimum node density (ND) for an 

almost surely connected subarea on an infinite plane [72] or a single large connected 

component [61, 73, 74, 75], or end-to-end connectivity in thin strips [49].  The authors 

in [76] however argued that, due to the existence of “critical nodes”, the minimum node 

degree alone is not enough to indicate peer-to-peer connectivity in sparse and medium-

density networks.  Analytical models involving the node degree were also found for 

shadow fading environments [77].  Work in [78] derived node isolation probability 

considering both interference and fading.  The authors in [79, 80] analyzed both 2-D 

and 3-D connectivity under fading and shadowing effects.  Other analytical work also 

investigated the probability of peer-to-peer connectivity [81, 82, 6].  The probability of 

connecting a source to a sink on a one-dimensional (1-D) network through SNs of 

random communication ranges was derived by the authors in [83]. Also considering 

sink connectivity (SC), the authors in [84] proposed an arithmetic average of expected 

probability that each SN can transmit to a sink in a three-dimensional (3-D) grid field, 

assuming the SNs were placed at grid vertices.  The authors in [85] derived the lower 

and upper bounds of SC for Poissonly distributed underground SNs considering soil 

water content, sensor burial depth, sink antenna height, the SN density, the operating 

frequency, a Rayleigh fading channel for the above ground path, and the tolerable 

latency of the networks.  In [86], the probability of sink connectivity for underwater 

optical WSNs with the consideration of the sensors’ divergence angle was derived.  

This work was based on a random sector directed graph and the assumption that the 

number of SNs deployed approached infinity.  In [87], the connectivity of the WSNs 

was investigated in the framework of network security. 

Another important question of expected number of paths to a sink that 

each randomly and uniformly placed SN has in a two-dimensional (2-D) field, given 

that a finite number of SNs have been deployed, still hasn’t been explored so far.  

WSNs, as noted earlier, gather information from SNs by having the SNs transmit the 

information in a single- or multi-hop fashion to a base station or a sink node.  Thus, it 

is imperative to know that each SN has connectivity to the sink when a WSN is 

deployed.  Assuming a finite number of deployed SNs makes the model more 

applicable and accurate in practice than asymptotic assumption of infinite number of 

SNs.  Furthermore, SNs or communication links in WSNs do fail from time to time [6].  

Multiple distinct paths can provide redundancy needed to ensure that there is no 

observed data missing at the receiving end.  The analytical work on connectivity in this 

dissertation aims to find the answer to this number-of-path-to-sink connectivity 

question for WSNs with a finite number of randomly placed SNs.    

 

2.2.3 Related Work on Analytical Models on Joint Sensing Coverage and 

Connectivity 

Typically, analytical work on joint coverage and connectivity was 

largely based on a theorem [11] about a relationship between coverage and peer-to-peer 
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connectivity which states that the degree of peer-to-peer network connectivity is the 

same as the degree of sensing coverage when the communication range of the SNs is at 

least twice as big as the sensing range.  Consequently, earlier work on joint coverage 

and connectivity analysis assumed that both sensing and communication models were 

binary disks or spheres.  Thanks to this assumption and the theorem, deriving coverage 

could lead to the derivation of connectivity [49, 67, 73, 74, 48, 88].  The relationships 

between coverage and peer-to-peer connectivity in 3-D were found in [48].  The authors 

in [48] proved that, in a 3-D sensing field, probabilistically 𝑘-covered SNs are 

connected when a stochastic communication range is at least equal to a stochastic 

sensing range.  They also found a bound of connectivity degree to the sink when the 

coverage degree is at least four in the 3-D field.  Work in [88] found a tighter 

relationship between the sensing range and the communication range for 1-coverage to 

imply peer-to-peer connectivity in a rectangular DA by introducing a constraint of the 

minimum allowed distance between SNs.  If this minimum allowed distance between 

SNs is zero, for the 1-coverage to imply peer-to-peer connectivity, the communication 

range still has to be at least twice the sensing range.  In [89, 90], using continuum 

percolation, critical densities for coverage and connectivity for directional and fixed 

directional sensor networks were found respectively.  The authors in [2] developed 

probabilistic models for 𝑘-coverage and connectivity in randomly deployed sensor 

networks near the boundary.  In [91], they derived expressions for 𝑘-coverage and 𝑚-

connectivity in 3-D heterogeneous directional WSNs.  In [92], a method to calculate 

the network density for the specified DP while maintaining connectivity of linear WSNs 

was proposed.  Coverage and connectivity for 3-D WSNs were also analyzed in [93], 

while link probability, node degree, and coverage were studied in [94].  Unlike prior 

work, the study in this dissertation assumes that only the communication model is the 

binary disk.  The sensing model employed in this dissertation is probabilistic, not 

binary.  As a result, the mathematical approaches in deriving the probabilistic coverage 

and the degree of SC of each SN in the dissertation are different.   

In summary, since the sensing model of the SNs assigns the DP at any 

point within the sensing range ds, we measure the level of sensing coverage resulted 

from randomly deploying a finite number of such SNs by the EDP at any point within 

the DA.  The first derivation finds this expectation.  The second derivation of this 

dissertation analyzes the expected number of paths to the sink for the SNs that cannot 

directly transmit to it, to determine the level of connectivity and the fault tolerance in 

SC of the WSNs. 

 

2.3 Open Challenges 

Thanks to a variety of applications, scenarios, types of SNs employed in 

WSNs, deriving analytical models for sensing coverage and connectivity in WSNs 

remains an important challenge.  Despite numerous models having been proposed over 

the years, there are still challenges ahead.  One important scenario of a random uniform 

deployment of a finite number of homogeneous SNs that detect objects from their EM 

waves or acoustic signals or other similar physical quantity is one of the challenges.  

Being able to accurately predict the expected probabilistic detection coverage and 

expected sink connectivity in this scenario could prove fruitful in practice for several 
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real-world applications.  Not only can the models be used for a cost-efficient 

deployment of WSNs, but they can also be employed in planning uncoordinated sleep 

scheduling, determining fault tolerance capability of coverage and connectivity over 

time, and gauging the performance of deterministic sensor placement strategies.  These 

are what motivates the research in this dissertation.  
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CHAPTER 3 

 

Expected Degree of Sink Connectivity 

 

This chapter shows the derivation of the expected degree of sink 

connectivity (EDSC) of SNs that cannot directly transmit to the sink which is located 

in the center of deployment area (DA).  It begins with how the degree of sink 

connectivity can be found based on work in [38], and what this means in the geometry 

of 2-D rectangular DA.  Then order statistics which is a mathematical tool used to derive 

the EDSC is presented.  Then the derivation of the EDSC based on the order statistics 

is shown.  The chapter ends with the final form of the mathematical model for the EDSC 

and some discussions observed during the derivation. 

 

3.1 Degree of Sink Connectivity in 2-D Rectangular Plane 

A WSN has k degrees of connectivity when any k-1 SNs fail, and each 

remaining SN still has a connectivity left.  This connectivity can be either to any other 

SN in the case of peer-to-peer connectivity, or to a sink for SC.  This dissertation is 

interested in knowing the EDSC of the SNs that are uniformly deployed at random in a 

finite rectangular plane with a sink located in the middle.  In [38], Bari, Jaekel, and 

Bandyopadhyay has theoretically proved that a network of nodes has k degrees of SC 

if all the nodes that cannot directly transmit to the sink have at least k neighboring nodes 

(NNs) that are closer to the sink than themselves.  This means that for a network of 

randomly deployed SNs, the minimum number of closer-to-sink neighboring SNs of 

the SNs without direct transmissions to the sink is the network degree of SC.  Therefore, 

the EDSC of which this dissertation is deriving an analytical expression, is the 

expectation of this minimum number. 

Before the expectation of the minimum number of closer-to-sink NNs 

(NoCSNNs) of the SNs without direct transmissions to the sink is obtained, where these 

CSNNs are located must be identified.  The NNs are the ones that are within the 

transmission range of a SN.  Being closer to the sink than the SN itself means that if 

one draws a circle whose center is the sink and radius equals the distance between the 

sink and the SN, these nodes will be located in this circle.  Thus the CSNNs lie at the 

overlap of the two circles; one whose center is the SN and radius equals the SN 

transmission range 𝑟𝑡, and another whose center is the sink and radius equals the 

distance 𝑠 between the sink and the SN.  Figure 3.1 illustrates this overlapped area. 

Since the minimum NoCSNNs for each iteration of sensor deployment 

is a discrete random variable (r.v.) depending on the number of SNs deployed, the size 

of the rectangular sensing field, and the communication range of the SNs, to determine 

its expected value, its probability mass function (PMF) as a function of these factors 

must be found.  The PMF for the SC degree problem here is the probability distribution 

of a minimum number.  Thus it can be found by utilizing order statistics [95].   
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Figure 3.1. Overlap of the two circles where closer-to-sink NNs lie 

 

To compute the EDSC, let 𝑋(1) denote the minimum NoCSNNs of the 

SNs without direct transmission to the sink, and 𝐷𝑆𝐶 be the network degree of SC.  It 

yields that, 

 

 

𝐸[𝐷𝑆𝐶] = 𝐸[𝑋(1)] = ∑ 𝑘Pr(𝑋(1) = 𝑘)

𝑛−1

𝑘=0

 

 

(3.1) 

 

where Pr(𝑋(1) = 𝑘) is the probability that the minimum NoCSNNs is 𝑘 or the PMF of 

the minimum NoCSNNs for each iteration of sensor deployment.  As alluded to earlier, 

Pr(𝑋(1) = 𝑘) is found by applying the 1st order statistic in order statistics [95]. 

 

3.2 Order Statistics 

Given that 𝑋 is a discrete r.v., and 𝑀 is the number of independent 

observations or samples of 𝑋, it follows that 𝑋(1) is the 1st order stat or the minimum of 

the samples, 𝑋(𝑀) is the Mth order stat or the maximum of the samples, and so on.  By 

order stats [95], the probability distribution of 𝑋(1) is the following: 

 

 

Pr(𝑋(𝑖) = 𝑘) = ∑ ∑ (
𝑀

𝑢, 𝑀 − 𝑢 − 𝑤, 𝑤
) 𝜋1

𝑢𝜋2
𝑀−𝑢−𝑤𝜋3

𝑤

𝑀−𝑖

𝑤=0

𝑖−1

𝑢=0

 

 

(3.2) 

 

where 𝜋1 = 𝐵(𝑘 − 1), 𝜋2 = 𝛽(𝑘), 𝜋3 = 1 − 𝐵(𝑘), 𝐵(𝑐) = ∑ 𝛽(𝛼),𝑐
𝛼=0  and 𝛽(𝑘) =

Pr(𝑋 = 𝑘).  When 𝑘 = 0, 𝐵(𝑘 − 1) = 0. 
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From (3.2), Pr(𝑋(𝑖) = 𝑘) is a multinomial distribution that accounts for 

all the different and mutually exclusive cases for when 𝑋(𝑖) = 𝑘 or the ith order stat is 𝑘 

[95].  When 𝑋(𝑖) = 𝑘 and the number of observations is 𝑀, there are 𝑢 observations 

below 𝑋(𝑖) = 𝑘, (𝑀 − 𝑢 − 𝑤) observations of 𝑋(𝑖) = 𝑘, and 𝑤 observations above 

𝑋(𝑖) = 𝑘, with the respective probabilities as shown in (3.2) [95].  Of the interest of the 

particular research problem in this dissertation, the first order stat, Pr(𝑋(1) = 𝑘) is what 

applies here.  From (3.2), it immediately follows that, 

 

 

Pr(𝑋(1) = 𝑘) = ∑ (
𝑀

𝑀 − 𝑤, 𝑤
) 𝜋2

𝑀−𝑤𝜋3
𝑤

𝑀−1

𝑤=0

 

 

(3.3) 

 

3.3 Expected Degree of Sink Connectivity by Order Statistics 

In the EDSC problem, the random variable 𝑋 in the order stats represents 

the number of SNs in the overlap of the two circles, and 𝑀, the number of observations 

in the order stats, equals the number of SNs that cannot directly transmit to the sink.  

On average, in the EDSC problem, this 𝑀 number should be equal to 𝑛 (
𝑝𝑞−𝜋𝑟𝑡

2

𝑝𝑞
), 

assuming that the deployment area is rectangular and of the size 𝑞 by 𝑝 and 𝑝 > 𝑞 as 

shown in Figure 3.1.  However, depending on the number of deployed SNs, 𝑛, the 

dimension of the deployment area which are 𝑞 and 𝑝, and 𝑟𝑡, this 𝑀 number more often 

than not is not an integer.  Since in the order stats the number observations must be an 

integer all the time, to be able to apply the order stats to the EDSC problem, this 

𝑛 (
𝑝𝑞−𝜋𝑟𝑡

2

𝑝𝑞
) is rounded for 𝑀. 

In order stats, each observation of 𝑋 is assumed to be i.i.d.  However, in 

the EDSC problem of this dissertation, each observation in order stats which is the 

NoCSNNs of each SN that cannot directly transmit to the sink is not identically 

distributed.  The reason for this is because the probability that the NoCSNNs equals a 

certain number depends on where the SN is.  As shown in Figure 3.1, the further a SN 

is away from the sink, the slightly bigger its overlap area is because of the marginally 

bigger the circle whose center is the sink.  Hence, it is slightly more likely for the SNs 

that are further away from the sink to have a higher NoCSNNs.  Similarly, on the other 

hand, SNs closer to the sink are more likely to have fewer NoCSNNs.  As a result, each 

observation of the NoCSNNs is not identically distributed.  It depends on how far this 

observed SN is from the sink.  To be able to accurately apply the concept of order stats 

in the derivation of the EDSC, each observation of the number of the neighbors must 

be approximated to be identically distributed.  This is carried out by first finding the 

probability mass function (PMF) of the NoCSNNs at a particular distance of the 

observed SN to the sink, then averaging this PMF over all the distances starting from 

the observed SN’s transmission range away from the sink, in order to account for only 

the SNs that cannot directly transmit to the sink, to the edge of the DP. 

Let 𝑃𝑟 (𝑋 = 𝑘|𝑠) denote the probability that the NoCSNNs is 𝑘 for a SN 
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that is at distance 𝑠 away from the sink.  One can write,  

 

 Pr(𝑋 = 𝑘|𝑠) = (
𝑛 − 1

𝑘
) {𝑝|𝑠}𝑘{1 − 𝑝|𝑠}𝑛−1−𝑘 (3.4) 

   

where 𝑛 is total number of SNs deployed in the sensing field as mentioned before, and 

𝑝|𝑠 is the probability that there is one SN in the overlap area of the SN that is at distance 

𝑠 away from the sink, as shown Figure 3.1.  This 𝑝|𝑠 clearly depends on the size of the 

overlap area as shown in the equation above.  Since the size of the overlap area depends 

on the distance 𝑠, so does 𝑝|𝑠 and hence 𝑃 𝑟(𝑋 = 𝑘|𝑠).  The probability 𝑃𝑟 (𝑋 = 𝑘│𝑠) 

is not the same for all observations of 𝑋.  It depends on the distance 𝑠, which is a 

continuous random variable.  In order to approximate each observation of the 

NoCSNNs of an SN as identically distributed, 𝑃𝑟 (𝑋 = 𝑘│𝑠) is averaged over 𝑠, and 

this average will be used for all the observations of the SNs that cannot directly transmit 

to the sink as the i.i.d. PMF or 𝛽(𝑘) = Pr(𝑋 = 𝑘) in (3.3). 

Without loss of generality, again assuming that the DA is a rectangular 

plane of size 𝑞 by 𝑝 and 𝑝 > 𝑞 as shown in Figure 3.1. Overlap of the two circles 

where closer-to-sink NNs lie 

, and 𝑟𝑡 is the transmission range of the SNs, by geometry one has, 

 

 

𝑝|𝑠 =
𝑟𝑡

2𝑐𝑜𝑠−1 (
𝑟𝑡
2𝑠) + 𝑠2𝑐𝑜𝑠−1 (

2𝑠2 − 𝑟𝑡
2

2𝑠2 ) − (
𝑟𝑡
2) √4𝑠2 − 𝑟𝑡

2

𝑝𝑞
. 

 

(3.5) 

   

The numerator in equation (3.5) is the size of the overlap area as a function of 𝑟𝑡 and 𝑠.  
Since 𝑟𝑡 is a given constant, the size of the overlapped area depends only on 𝑠, the 

distance between the observed SN and the sink.  Now one can write that 𝛽(𝑘│𝑠) =
𝑃𝑟 (𝑋 = 𝑘|𝑠).  Since 𝑠 is a continuous r.v.  Thus 𝛽(𝑘) in equations (3.2) and (3.3) which 

is the approximated i.i.d. PMF of the NoCSNNs  can be calculated as follows: 

 

 
𝛽(𝑘) = ∫ 𝛽(𝑘|𝑠)𝑓(𝑠)𝑑𝑠 

 (3.6) 

    

where 𝑓(𝑠) is the p.d.f. of 𝑠.  A p.d.f. is the derivative of a cumulative distribution 

function (CDF).  To find a p.d.f., its CDF first has to be found.      

The lower bound of the integral in equation (3.6) is 𝑟𝑡 because only the 

neighbors of the SNs that do not have a direct transmission to the sink are considered.  

These SNs are located at the distance of at least 𝑠 = 𝑟𝑡 away from the sink.  To attain 
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the p.d.f. 𝑓(𝑠) for equation (3.6), one can first observe that it is not just one function.  

Due to the three different shapes of the areas in considering the CDF of 𝑠 as shown in 

Figure 3.2, Figure 3.3, and Figure 3.4, there are three of its p.d.f.’s.  The are named 

𝑓1(𝑠), 𝑓2(𝑠), and 𝑓3(𝑠).  The first p.d.f. 𝑓1(𝑠) is for 𝑟𝑡 < 𝑠 ≤
𝑞

2
 , the second p.d.f. 𝑓2(𝑠) 

is for 
𝑞

2
< 𝑠 ≤

𝑝

2
 , and the last p.d.f. 𝑓3(𝑠) is for 

𝑝

2
< 𝑠 ≤ (

1

2
) √𝑞2 + 𝑝2.   Also, based on 

the these, it yields the following: 

 

 

𝛽(𝑘) = ∫ 𝛽(𝑘|𝑠)𝑓1(𝑠)𝑑𝑠 +

𝑞
2

𝑠=𝑟𝑡

∫ 𝛽(𝑘|𝑠)𝑓2(𝑠)𝑑𝑠

𝑝
2

𝑠=
𝑞
2

 

                + ∫ 𝛽(𝑘|𝑠)𝑓3(𝑠)𝑑𝑠

(
1
2

)√𝑞2+𝑝2

𝑠=𝑝/2

 

 

 

 

 

 

(3.7) 

 

Figure 3.2. Areas for CDF computation when 𝑟𝑡 < 𝑠 ≤
𝑞

2
 

 

Figure 3.3. Areas for CDF computation when 
𝑞

2
< 𝑠 ≤

𝑝

2
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Figure 3.4. Areas for CDF computation when 
𝑝

2
< 𝑠 ≤ (

1

2
) √𝑞2 + 𝑝2 

The three sections of the p.d.f.’s of 𝑠 are all calculated by first finding 

their CDF’s.  In the first section, 𝑟𝑡 < 𝑠 ≤
𝑞

2
 , the probability that a point selected at 

random lies within 𝑠 units of the center of the circle whose radius is 
𝑞

2
 , is the area of 

the circle whose radius is 𝑠, divided by the area of the circle whose radius is 
𝑞

2
 , as shown 

in Figure 3.2.  This probability, Pr (𝑆 ≤ 𝑠), represents the CDF of 𝑠, 𝐹1(𝑠), in the first 

section.  From Figure 3.2, one can write 𝐹1(𝑠) as shown in equation (3.8). 

 

 
𝐹1(𝑠) =

𝜋𝑠2

𝜋(𝑞 2⁄ )2
=

4𝑠2

𝑞2
 

 

(3.8) 

 

Subsequently, the first p.d.f. 𝑓1(𝑠), which is the derivative of 𝐹1(𝑠) with respect to 𝑠, 

can be found as illustrated in equation (3.9) below. 

 

 
𝑓1(𝑠) =

𝑑

𝑑𝑠
𝐹1(𝑠) =

𝑑

𝑑𝑠
(

4𝑠2

𝑞2
) =

8𝑠

𝑞2
 

 

(3.9) 

 

Similarly, for the second section, 
𝑞

2
< 𝑠 ≤

𝑝

2
 , since the shapes of the 

areas for calculating the second CDF of 𝑠, 𝐹2(𝑠), are the overlaps of the circles with the 

rectangular DA as shown in Figure 3.3.  It follows that 𝐹2(𝑠), Pr (𝑆 ≤ 𝑠), is the area of 

the overlap between the circle with the radius 𝑠 with the DA, divided by the area of the 

overlap between the circle with radius 
𝑝

2
 with the DA.  By geometry, the area of the 

overlap between the circle with radius 
𝑝

2
 with the DA can be found by summing the 
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areas of the four triangles with catheti of 
𝑞

2
 and 

𝑝

2
 with the areas of the remaining circular 

sectors.  Let 𝐴2 represent this area.  It can be found as shown below in equation (3.10). 

 

 
𝐴2 =

𝑞

2
√𝑝2 − 𝑞2 + 𝜋

𝑝2

4
(1 −

2

𝜋
cos−1 (

𝑞

𝑝
)) 

 

(3.10) 

 

From equation (3.10), 𝐹2(𝑠) is found as follows. 

 

 

𝐹2(𝑠) =

𝑞
2 √4𝑠2 − 𝑞2 + 𝜋𝑠2 (1 −

2
𝜋 cos−1 (

𝑞
2𝑠))

𝐴2
 

 

(3.11) 

 

Hence, the second p.d.f. 𝑓2(𝑠), which is the derivative of 𝐹2(𝑠) with respect to 𝑠, is as 

follows. 

 

 

𝑓2(𝑠) =
𝑑

𝑑𝑠
𝐹2(𝑠) =

2𝜋𝑠 − 4𝑠 cos−1 (
𝑞

2𝑠)

𝐴2
 

 

(3.12) 

 

Finally, for the third section, 
p

2
< s ≤ (

1

2
) √q2 + p2, from Figure 3.4, 

𝐹3(𝑠) or Pr (𝑆 ≤ 𝑠), is the area of the overlap between the circle with the radius 𝑠 with 

the DA, divided by the area of the DA.  Using the same geometric analysis employed 

in finding 𝐴2 for 𝐹2(𝑠) in equation (3.11), we can get 𝐹3(𝑠) as follows. 

 

 
𝐹3(𝑠) =

𝑞
2 √4𝑠2 − 𝑞2 +

𝑝
2 √4𝑠2 − 𝑝2 + 𝜋𝑠2 − 2𝑠2 cos−1 (

𝑞
2𝑠

) − 2𝑠2 cos−1 (
𝑝

2𝑠
)

𝑝𝑞
 

 

(3.13) 

 

Therefore, by taking the derivative of 𝐹3(𝑠) respect to 𝑠, the final p.d.f. 𝑓3(𝑠) is as 

follows. 

 

𝑓3(𝑠) =
𝑑

𝑑𝑠
𝐹3(𝑠) =

2𝜋𝑠 − 4𝑠 cos−1 (
𝑞

2𝑠) − 4𝑠 cos−1 (
𝑝

2𝑠)

𝑝𝑞
 

 

(3.14) 

With the three p.d.f.’s of 𝑠 as found in equations (3.9), (3.12), and (3.14), 

𝛽(𝑘) in equation (3.3) can be computed as shown in equation (3.7).  However, there is 

no closed form expression for 𝛽(𝑘).  As a result, there is no closed form expression for 
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Pr(𝑋(1) = 𝑘) in equation (3.3), and neither is there for 𝐸[𝐷𝑆𝐶] in equation (3.1).  Only 

the analytical expression of EDSC is achieved, and it can be computed through 

numerical methods.  It is worth noting that besides approximating each observation of 

the NoCSNNs as identically distributed and using the rounded number of SNs that 

cannot directly transmit to the sink for the number of observations in equation (3.3), 

another round of approximation in (3.5) for 𝑝|𝑠 is also performed.  In equation (3.5), 

the shape of the overlap in which CSNNs reside changes when it crosses a border.  

However, for 𝑝|𝑠, these border effects are not taken into account.  These three 

adjustments have impacts on the accuracy of the connectivity analytical model in this 

dissertation, and they govern the scenarios in which the mathematical expression 

proposed in the dissertation is the most accurate.  This will be investigated further in 

the Chapter 5 on the verification by simulation results and discussions of the EDSC 

analytical expressions. 
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CHAPTER 4 

 

Expected Probabilistic Detection Coverage 

 

This chapter presents the derivation of the expected detection 

probability (EDP) at arbitrary point (AP) in the deployment area (DA).  First the 

detection probability of the object at the arbitrary point is discussed along with its 

expectation.  Then the subsequent probability distributions needed for the formulation 

of the EDP are presented.  The chapter ends with the mathematical model for the EDP 

and a discussion of the ramifications of the derived model. 

 

4.1 Detection Probability and its Expectation 

To calculate the EDP at an arbitrary point (AP) in the sensing field, first 

the detection probability (DP) at a point must be found.  The DP at a point in the 

deployment area (DA) is the probability that an object at the point is detected by at least 

one SN.  Since each SN has the sensing range of 𝑑𝑠, it means that only the SNs that are 

within the distance 𝑑𝑠 from that point can detect the object there.  Assuming that there 

are 𝑘 SNs that are located within the distance 𝑑𝑠 from the point or the object, the 

probability that at least one out of 𝑘 SNs detects it equals one minus the probability that 

none of the 𝑘 SNs detect it.  By assuming that each SN independently detects the object, 

one can write DP as follows. 

 

 

𝐷𝑃 = 1 − ∏(1 − 𝐷𝑖(𝑟𝑖))

𝑘

𝑖=1

 

 

(4.1) 

 

𝐷𝑖(𝑟𝑖) is the probability that SN 𝑖 detects the object and assumed to be as shown in 

equation (Error! Reference source not found.), and ri is the distance between the SN 

i and the object at the AP. 

Since the SNs are uniformly deployed at random, 𝑘 and 𝑟𝑖 are r.v.’s when 

analyzing the EDP.  More specifically, 𝑘 is a discrete r.v., and 𝑟𝑖 is a continuous one.  

In addition, 𝑟𝑖 can simply be replaced by just 𝑟.  The reason for this is because, when 

one analyzes the EDP, all the SNs are the same in a sense that they are all randomly 

deployed with uniform distribution.  Thus, the EDP becomes, 

 

𝐸[𝐷𝑃] = 𝐸[1 − ∏(1 − 𝐷(𝑟))

𝑘

𝑖=1

] 
 

(4.2) 
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where 𝐷(𝑟) is the DP of any SN that is within the distance 𝑑𝑠 from the AP and the same 

as what is shown in equation (Error! Reference source not found.).  The EDP at an 

AP is the DP averaged over all the APs in the entire sensing field. 

In order to derive 𝐸[𝐷𝑃], the probability distributions of 𝑘 and 𝑟 must 

be determined.  These distributions are dictated by where in the deployment area the 

AP is.  Recall that only the SNs that are within the distance 𝑑𝑠 from the AP can detect 

the object there.  In this dissertation, the region in which the SNs that can detect the 

object are located, is called a detection region (DR).  The shape and size of this region 

affects the probability distributions of 𝑘 and 𝑟.  When the AP is in middle area, the DR 

is a circle as shown in Figure 4.1.  When the AP is close to a border of the deployment 

area, the DR becomes an overlap of the circle with the deployment area as seen in Figure 

4.2.  This overlap area which happens when the AP is close to the borders or in sub-

region (SR) 𝑏 and 𝑐 will be referred to as the effective DR.  Its shape and size vary 

depending on the location of the AP.  This effective DR clearly affects the probability 

distributions of 𝑘 and 𝑟.  Therefore, to accurately account for all the effects of these in 

the mathematical model of the expectation for the DP, the deployment area is 

partitioned into three SRs [4] as demonstrated in Figure 4.3 to correctly find the 

corresponding probability distributions of 𝑘 and 𝑟. 

 

4.2 Probability Distribution of 𝒌 

The number of SNs, 𝑘, that have the object to be detected within their 

sensing range is a discrete random variable.  Its value depends on where the AP at which 

the object is located is.  As mentioned earlier, because of the border effects and the 

assumption of uniform distribution for SN placement, it is likely to have fewer SNs 

located due to a smaller DR when the AP is around the borders.  Hence, the number of 

SNs, 𝑘, is expectedly smaller for the APs close to the border.  The reason for this is 

again because some part of the DR whose center is a point near the border is cut off as 

shown in Figure 4.2.  When the area containing potential SNs that could detect the object 

or the DR becomes smaller, so is the number of SNs potentially inside the DR.  This 

would possibly result in smaller DP’s for APs near the border.  To derive the analytical 

model for the EDP, the 2-D rectangular sensing field is divided into three types of SRs: 

𝑎, 𝑏, and 𝑐, the same way that the authors in [4] did in their work.  The SRs 𝑐 are square 

areas located at the four corners of the sensing field.  The dimension of each square 

area 𝑐 is 𝑑𝑠 by 𝑑𝑠.  The SRs 𝑏 are strips whose width is 𝑑𝑠, and they are located along 

each side of the border of the rectangular sensing field.  Finally, the SR 𝑎 is the rest of 

the area in the sensing field after excluding the SRs 𝑏 and 𝑐.  Figure 4.3 illustrates how 

the 2-D rectangular sensing field whose dimension is 𝑝 by 𝑞 is segmented into three 

different kinds of SRs. 
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Figure 4.1. Circular DR of radius 𝑑𝑠 when the AP is midway inside the DA 

 

Figure 4.2. DR where the circle intersects the DA 

 

 

Figure 4.3. 3 SRs: 𝑎, 𝑏, and 𝑐 of an 𝑝 x 𝑞 rectangular DA. 

 

After dividing the sensing field into three types of SRs, one can now 

take the expectation of the DP in equation (4.2) as shown below.  Let γi denote the EDP 

when the AP is in SR i, or the conditional EDP.  Due to three different types of SRs, it 

follows that, 
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𝐸[𝐷𝑃] = 𝛾𝑎𝑃𝐴(𝑎) + 𝛾𝑏𝑃𝐴(𝑏) + 𝛾𝑐𝑃𝐴(𝑐) 

 

(4.3) 

where PA(i) is the probability that the AP is in SR i.  A denotes a r.v. representing the 

type of SR in which the AP or the object is located.  PA(a) is the probability that A = a, 

i.e. the AP is in SR a.  PA(b) is the probability that A = b, i.e. the AP is in SR b and so 

forth.  This means that the expected detection probability E[DP] is the sum of 

conditional EDPs when A = a, A = b, and A = c.  Since the point at which the object is 

located is arbitrary and with uniformly distributed SNs at random, PA(a), PA(b), and 

PA(c) are the ratios of the area of the corresponding SR, a, b, and c to the total DA.  In 

other words, PA(i) equals the total area of the SR i divided by pq.  With the dimensions 

of the sensing field and the SRs assumed as shown in Figure 4.3, the values of PA(a), 

PA(b), and PA(c) are as the following. 

 

 
𝑃𝐴(𝑎) =

(𝑝 − 2𝑑𝑠)(𝑞 − 2𝑑𝑠)

𝑝𝑞
 

𝑃𝐴(𝑏) =
2𝑑𝑠(𝑝 + 𝑞 − 4𝑑𝑠)

𝑝𝑞
 

𝑃𝐴(𝑐) =
4𝑑𝑠

2

𝑝𝑞
 

 

 

 

(4.4) 

 

Now, each conditional EDP in equation (4.3), γi, must be calculated.  As 

mentioned earlier, the number of SNs, k, that could potentially sense the object at the 

AP is a discrete random number.  Let K be the discrete r.v. for k.  In addition, this 

number k is drawn out of the all possible number of SNs that could possibly be in the 

DR when the AP at which the object is located is in a particular SR a, b, or c.  Let the 

number of all SNs that could possibly be in the DR be m, and let M be its discrete 

random variable.  This means that the probability that M = m and K = k when A = a or 

A = b or A = c can be found accordingly.  Notice that this m number cannot be equal to 

n, the total number of SNs deployed, because, for example when the AP in in SR a, 

there are areas at the four corners of the deployment area where the SNs that could 

possibly be in DR will never be, as shown in Figure 4.4.  This means, in other words, 

that out of n SNs that have been deployed, there are some SNs get left out of the 

possibility of being in the DR when the AP is in SR a because they are in those four 

corners.  Similarly, the areas where the SNs that could possibly be in the DR when the 

AP is in SR b and c are shown in Figure 4.5 and Figure 4.6 respectively.  Since both M 

and K are discrete r.v.’s, the conditional EDP in each SR i equation (4.3), γi, when A = 

a, A = b, and A = c can be expanded as the sums as follows: 

 

 
𝛾𝑖 = ∑ ∑ 𝛽𝑖,𝑚,𝑘𝑃(𝑚, 𝑘|𝑖)

𝑚

𝑘=0

𝑛

𝑚=0

 
 

(4.5) 
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where βi,m,k is the EDP when the AP is in SR i, the number of SNs that could possibly 

be inside the DR is m, and there are k SNs that in that DR.  𝑃(𝑚, 𝑘|𝑖) is the probability 

that, when the AP is in SR i, there are exactly k SNs in the DR while there are m SNs 

that could possibly be in it.  Again let it be emphasized that that the number m is not 

the same as the total number of SNs deployed n.  This is because when the AP is in a 

certain SR, it is not necessary that all n SNs could be in the DR.  Thus, this number m 

is less than or equal to n, as shown in Figure 4.4, Figure 4.5, and Figure 4.6.    

It then also follows that 𝑃(𝑚, 𝑘|𝑖)  =  𝑃(𝑘|𝑚, 𝑖)𝑃(𝑚|𝑖).  𝑃(𝑚|𝑖) is a 

binomial distribution of having m SNs that could be in the DR from the total n deployed 

SNs when the point is in SR i.  This is because of the assumption that the total number 

of SNs, 𝑛, are independently and uniformly distributed over the entire DA, and the fact 

that when the AP is in a particular SR.  Then the probability of each event or success in 

this binomial distribution 𝑃(𝑚|𝑖) is the proportion of the total area in which a SN could 

be, given SR i, to the whole DA. For the SR a, one has, 

 

 
𝑃(𝑚|𝑎) = (

𝑛
𝑚

) 𝜌𝑚(1 − 𝜌)𝑛−𝑚, 𝜌 =
𝑝𝑞 − (4 − 𝜋)𝑑𝑠

2

𝑝𝑞
 

(4.6) 

 

The reason for 𝜌 in 𝑃(𝑚|𝑎) to be as shown is again because, not all the n SNs that have 

been deployed could possibly be the candidates to be inside the DR.  Given the AP is 

in a particular SR, there will be some areas in which the SNs that could plausibly be 

inside the DR will never be.  Figure 4.4 illustrates this for when the AP is in SR 𝑎. 

 

 

Figure 4.4. The area in which the deployed SNs could only be if 𝐴 =  𝑎.  It is the 

entire area of the DA minus the areas of the four corners. 
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Figure 4.4 demonstrates that when A = a, the area in which the SNs that 

could possibly in the DR are located is the entire DA minus the areas in which the SNs 

will never be.  By the same fashion when A = b and A = c, the sizes of the respective 

areas in which the SNs could only be are 4ds(q + p - 4ds) and (12 + )ds
2.  These areas 

which are shown in Figure 4.5 and Figure 4.6 are then used in the computation of the 

probability of success in the binomial distribution of choosing m SNs from n SNs, 

𝑃(𝑚|𝑖), when A = b and A = c.  To be precise, 𝜌’s for 𝑃(𝑚|𝑏) and 𝑃(𝑚|𝑐) are 

(4𝑑𝑠(𝑞 + 𝑝 − 4𝑑𝑠))/𝑝𝑞 and ((12 + 𝜋)𝑑𝑠
2)/𝑝𝑞 respectively. 

 

 

 

Figure 4.5. The area in which the SNs could only be when 𝐴 =  𝑏. 

 

 

 

Figure 4.6. The area in which the SNs could only be when 𝐴 =  𝑐. 
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Similarly, 𝑃(𝑘|𝑚, 𝑖) is another binomial distribution with probability in 

accordance with the SR i in which the AP is.  This probability that K = k given that M 

= m and A = a or A = b or A = c is the probability that there will be exactly k SNs inside 

the DR when there are m available SNs that could be inside it.  This probability is 

essentially the probability of the binomial distribution of choosing k SNs out of possible 

m SNs with the probability of each success equaling the area of the average effective 

DR divided by the area that the SNs could only be for a given SR.  As noted earlier, 

this is due to the border effects, which cut off some parts of the DR.  Figure 4.7, Figure 

4.8, and Figure 4.9 demonstrate how some parts of the DR are cut off or are outside the 

boundary of the sensing field or the DA, when A = b and A = c.  The area of the effective 

DR is the area of the DR circle that is inside the DA.  This area varies in size depending 

on the location of the AP.  Therefore, to compute the probability that K = k given that 

M = m and A = a or A = b or A = c, one has to use the average size of the effective DR 

for each given SR.  When A = a, the size of the effective DR is a complete circle, which 

is ds
2.  When A = b, the average size of the effective DR is ( - 2/3)ds

2 [4], while when 

A = c, the average size of the effective DR is ( - 29/24)ds
2 [4]. 

 

Figure 4.7. The DR  is not a complete circle when 𝐴 =  𝑏.  The effective DR is the 

area of the DR that is within the boundary of the sensing field or the DA. 

 

Figure 4.8.  The DR when 𝐴 =  𝑐 and the distance from the AP to the corner is less 

than 𝑑𝑠.  The effective DR is the area of the DR that is within the boundary of the 

sensing field or the DA. 
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Figure 4.9. The DR when 𝐴 =  𝑐 and the distance from the AP to the corner is more 

than 𝑑𝑠.  The effective DR is the area of the DR that is within the boundary of the 

sensing field or the DA. 

  

𝑃(𝑘|𝑚, 𝑖) for three SRs can be written as follows: 

 

 𝑃(𝑘 |𝑚, 𝑎) = (
𝑚
𝑘

) 𝜌𝑘(1 − 𝜌)𝑚−𝑘, 𝜌 =
𝜋𝑑𝑠

2

𝑝𝑞−(4−𝜋)𝑑𝑠
2 (4.7) 

 

 𝑃(𝑘 |𝑚, 𝑏) = (
𝑚
𝑘

) 𝜌𝑘(1 − 𝜌)𝑚−𝑘 , 𝜌 =
(𝜋−2 3)⁄ 𝑑𝑠

2

4𝑑𝑠(𝑞+𝑝−4𝑑𝑠)
 (4.8) 

   

 𝑃(𝑘 |𝑚, 𝑐) = (
𝑚
𝑘

) 𝜌𝑘(1 − 𝜌)𝑚−𝑘 , 𝜌 =
𝜋−29/24

12+𝜋
. (4.9) 

 

Each of those probabilities ρ’s is the average size of the effective DR in each SR i over 

the size of the SR.  After having 𝑃(𝑚|𝑖) and 𝑃(𝑘|𝑚, 𝑖) for all three SRs, 𝑃(𝑚, 𝑘|𝑖) in 

equation (4.5) can be readily computed as the product of these two probabilities. 

 

4.3 Probability Distribution of 𝒓 

In equation (4.5), βi,m,k  is the EDP when the AP is in SR i and there are 

k out of the possible m SNs in the DR.  It can be written as follows: 

 

 𝛽𝑖,𝑚,𝑘 = 𝐸[(1 − ∏ (1 − 𝐷(𝑟)))|𝑖, 𝑚, 𝑘]𝑘
𝑖=1 . (4.10) 
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Since the SNs are randomly placed with uniform distribution, the expectations of the 

products become the products of the expectations.  One can rewrite 𝛽𝑖,𝑚,𝑘 as follows, 

 

 𝛽𝑖,𝑚,𝑘 = 1 − (𝐸[(1 − 𝐷(𝑟))|𝑖, 𝑚, 𝑘])
𝑘
. (4.11) 

 

Since 𝑟 is continuous r.v. representing the random distance between the AP and any SN 

inside the DR, one can write, 

 

 
𝐸[(1 − 𝐷(𝑟))|𝑖, 𝑚, 𝑘] = ∫(1 − 𝐷(𝑟))𝑓𝑖(𝑟)𝑑𝑟 

(4.12) 

 

where  𝑓𝑖(𝑟) is the p.d.f. of r when the AP is in SR i.  This expectation is the conditional 

EDP for any SN inside the DR.  As noted earlier, the probability distribution of this 

continuous r.v., 𝑟, which is the random distance between a SN within the DR to the AP, 

depends on where the AP is inside the deployment area.  The reason is because, the 

CDF of 𝑟, from which its corresponding p.d.f. is derived, is the ratio of the area with 

radius 𝑟 from the AP to the area of the effective DR.  When the AP is close to the 

borders, or in other words in SR 𝑏 and 𝑐, the shapes and the sizes of both the area with 

radius 𝑟 from the AP and the effective DR change.  As a result, in order to accurately 

derive the CDF of 𝑟, the careful and accurate considerations of all the cases for all the 

different shapes and sizes of those areas must be carried out.  In the subsequent 

subsections, all these cases will be explicitly shown along with the calculation of the 

CDF’s and the p.d.f.’s.  Letting 𝜀𝑖,𝑚,𝑘 = 𝐸[(1 − 𝐷(𝑟))|𝑖, 𝑚, 𝑘], 𝑓𝑖(𝑟) which is the p.d.f. 

of r has to be found for each SR i, and then the corresponding 𝜀𝑖,𝑚,𝑘 can be calculated. 

 

4.3.1 Finding 𝜺𝒂,𝒎,𝒌 

Let R be the continuous r.v. for the distance from the center of the DR, 

which represents an AP, to any SN inside the DR.  Similar to when EDSC is derived in 

Chapter 3, the CDF of r is the probability that a point selected randomly lies within r 

distance units of the center of the DR.  It is written as shown below. 

 

 𝐹(𝑟) = 𝑃(𝑅 ≤ 𝑟) = 𝑃(0 ≤ 𝑅 ≤ 𝑟) (4.13) 

 

Thus, the CDF of r is the area with radius 𝑟 from the AP, divided by the area of the 

effective DR whose radius is ds. 
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When 𝐴 =  𝑎, both the area with radius 𝑟 from the AP and the effective 

DR are complete circles as illustrated in Figure 4.10.  Their areas are then readily 

computed.  As a result, the CDF of 𝑟 when 𝐴 =  𝑎, is written as the following. 

 

 
𝐹𝑎(𝑟) =

𝜋𝑟2

𝜋𝑑𝑠
2
 

 

(4.14) 

 

Thus, its corresponding 𝑓𝑎(𝑟) = 𝑑𝐹𝑎(𝑟) 𝑑𝑟⁄ = 2𝑟/𝑑𝑠
2.  From equation (4.12), one can 

write, 

 

 

𝜀𝑎,𝑚,𝑘 = ∫ (1 − 𝐷(𝑟)) (
2𝑟

𝑑𝑠
2

)

𝑑𝑠

𝑟=0

𝑑𝑟 

 

(4.15) 

 

Applying 𝐷(𝑟) as assumed in equation (Error! Reference source not found.), one can 

simplify equation (4.15) further to: 

 

 
𝜀𝑎,𝑚,𝑘 = 1 − (

2𝛼𝑠
2

𝑑𝑠
2

) (1 − exp (−
𝑑𝑠

2

2𝛼𝑠
2

)) 
 

(4.16) 

 

One can now compute 𝛽𝑖,𝑚,𝑘 in equation (4.11) when the AP is in SR 𝑎. 

 

 

Figure 4.10. The DR whose radius is 𝑑𝑠 and the smaller DR whose radius is 𝑟 for the 

CDF of 𝑟 when 𝐴 =  𝑎 
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4.3.2 Finding 𝜺𝒃,𝒎,𝒌 

Deriving 𝜀𝑏,𝑚,𝑘, again, starts by calculating the CDF of r in SR b, 𝐹𝑏(𝑟).  
This computation is more involving due to the border effects and hence most of the 

time a noncircular effective DR as illustrated in Figure 4.11.  The effective DR in Figure 

4.11 is the overlap between the circle whose center is the AP and radius equals 𝑑𝑠 and 

the deployment area.  The shape of the DR in SR 𝑏 remains the same, but its size varies 

depending on how far the AP is from the border. 

On the other hand, the area with radius 𝑟 from the AP inside the effective 

DR in Figure 4.11 is sometimes a complete circle, and some other times it is not.  As 

seen in Figure 4.11, when r is less than or equal to u, the area with radius 𝑟 from the 

AP is a complete circle.  However, when it is more than u, the area with radius 𝑟 from 

the AP has the same shape as the effective DR, and it is not a circle.  Recalling Figure 

4.3, the width of the subarea b is ds.  Thus u, which is a r.v., has the value of 0 to ds.  

Moreover, it is a uniform continuous random variable.  The reasons for this are because 

it is the distance from the center of the effective DR which represents the AP to the 

border of the deployment area, and the fact that the AP is picked arbitrarily.  As for the 

effective DR, whether or not it is a complete circle depends on u.  When u = ds, the 

effective DR circle is complete.  When u is less than ds, the effective DR is not a circle. 

 

 

 

Figure 4.11. Noncircular overlapped DR 𝐴 =  𝑏. 

 

The shapes and the sizes of the area with radius 𝑟 from the AP and the 

effective DR and when they are in such shapes are now used in the computation of the 

CDF of r.  Let 𝐴𝐷𝑏 be the area of the effective DR when the AP is in SR b for a given 

𝑢.  By geometry, one can obtain the following: 

 𝐴𝐷𝑏(𝑢) = 𝑢√𝑑𝑠
2 − 𝑢2 + (𝜋 − 𝑐𝑜𝑠−1 (

𝑢

𝑑𝑠
))𝑑𝑠

2, (4.17) 
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where 𝑢 is a continuous r.v. for the distance from the AP to the border.  Since the SNs 

are uniformly distributed at random, the p.d.f. of u, 𝑓(𝑢), is 1/𝑑𝑠.  Since the shape and 

the size of the area with radius 𝑟 from the AP depend on the value of r relative to the 

given u as explained before, one has to derive the CDF of r for two cases.  Then using 

the same technique that derives 𝐹𝑎(𝑟), one can get 𝐹𝑏(𝑟|𝑢) for two cases where 𝑟 ≤ 𝑢 

and 𝑢 < 𝑟 ≤ 𝑑𝑠.  They are 𝐹𝑏1(𝑟|𝑢) = 𝜋𝑟2/𝐴𝐷𝑏 and 𝐹𝑏2(𝑟|𝑢) = (𝑢√𝑟2 − 𝑢2 +

(𝜋 − 𝑐𝑜𝑠−1(𝑢/𝑟))𝑟2)/𝐴𝐷𝑏.  The subscripts 𝑏1 and 𝑏2 represent the cases where 𝑟 ≤
𝑢 and 𝑢 < 𝑟 ≤ 𝑑𝑠 respectively.  It then follows that 𝑓𝑏1(𝑟|𝑢) = 𝑑𝐹𝑏1(𝑟) 𝑑𝑟⁄ =

2𝜋𝑟/𝐴𝐷𝑏 and 𝑓𝑏2(𝑟|𝑢) = 𝑑𝐹𝑏2(𝑟) 𝑑𝑟⁄ = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑢/𝑟))/𝐴𝐷𝑏.   

From equations (Error! Reference source not found.) and (4.12), one 

can rewrite 𝜀𝑖,𝑚,𝑘 for SR 𝑏 as follows, 

 

 

𝜀𝑏,𝑚,𝑘 = ∫ ∫ (1 − 𝑒
−𝑟2

2𝛼𝑠
2
) 𝑓𝑏(𝑟|𝑢)𝑓(𝑢)𝑑𝑟𝑑𝑢

𝑑𝑠

𝑟=0𝑢

 

 

(4.18) 

 

Expanding equation (4.18) further, one can write, 

 

 

𝜀𝑏,𝑚,𝑘 = ∫ ∫ (1 − 𝑒
−𝑟2

2𝛼𝑠
2

) 𝑓𝑏1(𝑟|𝑢) (
1

𝑑𝑠
) 𝑑𝑟𝑑𝑢

𝑢

𝑟=0

𝑑𝑠

𝑢=0

 

                + ∫ ∫ (1 − 𝑒
−𝑟2

2𝛼𝑠
2

) 𝑓𝑏1(𝑟|𝑢) (
1

𝑑𝑠
) 𝑑𝑟𝑑𝑢

𝑑𝑠

𝑟=𝑢

𝑑𝑠

𝑢=0
. 

 

(4.19) 

 

4.3.3 Finding 𝜺𝒄,𝒎,𝒌 

The same technique is used to obtain 𝜀𝑐,𝑚,𝑘.  To compute 𝑓𝑐(𝑟), one first 

considers the corresponding CDF.  As in the case of SR b, in SR c the effective DR is 

also not a circle. Unlike in SR b, here both the shape and the size of the effective DR 

change depending on how far the AP is from the corner.  When the distance between 

the AP and the corner is less than 𝑑𝑠, the effective DR is the overlapped area as shown 

in Figure 4.12. When the distance is more than 𝑑𝑠, the effective DR becomes what is 

illustrated in Figure 4.13. 
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Figure 4.12. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is within the distance 𝑑𝑠  from the 

corner of the DA, and 𝑚𝑖𝑛 (𝑢, 𝑣) ≤ 𝑟 ≤ 𝑚𝑎𝑥 (𝑢, 𝑣). 

 

 

Figure 4.13. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is further than the distance 𝑑𝑠 

from the corner of the DA, and 0 ≤ 𝑟 ≤ 𝑚𝑖𝑛 (𝑢, 𝑣). 

 

Figure 4.12, Figure 4.14, Figure 4.15, and Figure 4.16 show the shapes of 

the area with radius 𝑟 from the AP inside the effective DR and the effective DR when 

the AP is within the distance ds from the corner of the deployment area.  In Figure 4.14, 

the area with radius 𝑟 from the AP inside the effective DR is a full circle when r is less 

than the minimum of u and v, which in this case is u.  The effective DR for when is the 

AP is within the distance ds from the corner of the deployment area, is only partially 
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inside the deployment area as shown in all four figures.  Note that the r.v.’s u and v 

represent the random distances from the AP to the side and the top borders of the 

deployment area respectively.  When r is more than u or min(u, v) but less than the 

maximum of u and v which is v in this case, the area with radius 𝑟 from the AP inside 

the effective DR is not a complete circle and it becomes a different shape as illustrated 

in Figure 4.12.  Once r is more than v or max (u, v) but smaller than the square root of 

u2+v2 or the distance from the center of the DR to the corner, the area with radius 𝑟 

from the AP inside the effective DR also changes to another shape as shown in Figure 

4.15.  Finally when r is more than the square root of u2+v2 but less than or equal to ds, 

one has the area with radius 𝑟 from the AP inside the effective DR in the same shape 

as the effective DR as displayed in Figure 4.16.  Notice that in Figure 4.12, Figure 4.14, 

Figure 4.15, and Figure 4.16, the AP or the center of the DR is in the lower half of the 

subarea c if the subarea is divided by the diagonal line in the subarea c.  This is why 

𝑚𝑖𝑛(𝑢, 𝑣) is u and 𝑚𝑎𝑥(𝑢, 𝑣) is v.  However if the AP is in the upper half of the subarea 

c, 𝑚𝑖𝑛(𝑢, 𝑣) then becomes v and 𝑚𝑎𝑥(𝑢, 𝑣) becomes u.  When one derives the CDF of 

r for the case A = c, it is mathematically necessary to differentiate these two variables 

u and v.  Hence when computing the area with radius 𝑟 from the AP inside the effective 

DR and the area of the effective DR for the condition A = c, one has to consider the 

scenarios in which the AP is in the lower and the upper parts of the subarea c.  This is 

in addition to the scenarios for all the values of r relative to 𝑚𝑖𝑛(𝑢, 𝑣), 𝑚𝑎𝑥(𝑢, 𝑣), and 

ds, and also the scenarios where the distance from the AP to the corner of the 

deployment area is less or more than ds. 

 

 

 

Figure 4.14. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is within the distance 𝑑𝑠 from the 

corner of the DA, and 0 ≤ 𝑟 ≤ 𝑚𝑖𝑛(𝑢, 𝑣). 
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Figure 4.15. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is within the distance 𝑑𝑠  from the 

corner of the DA, and 𝑚𝑎𝑥 (𝑢, 𝑣) ≤ 𝑟 ≤ √𝑢2 + 𝑣2. 

 

 

 

Figure 4.16. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is within the distance 𝑑𝑠  from the 

corner of the DA, and √𝑢2 + 𝑣2 ≤ 𝑟 ≤  𝑑𝑠. 
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Let C be the continuous r.v. for the distance from the AP to the corner 

of the deployment area.  Now consider the shapes of the area with radius 𝑟 from the AP 

inside the effective DR and the effective DR for all scenarios of r when C ≥ ds.  In this 

case, the effective DR is of a different shape than what one has found when C < ds.  

Figure 4.13, Figure 4.17, and Figure 4.18 illustrate the effective DR when C ≥ ds.  the area 

with radius 𝑟 from the AP inside the effective DR is a complete circle when 

𝑟   𝑚𝑖𝑛(𝑢, 𝑣) which again is u, because the AP is in the lower half of the subarea c.  

This is shown in Figure 4.13.  Note again that, just like when C < ds, one also has to 

separately consider the two scenarios where the AP is in the lower and the upper parts 

of the subarea c when C ≥ ds.  When 𝑚𝑖𝑛(𝑢, 𝑣)  <  𝑟  𝑚𝑎𝑥(𝑢, 𝑣), the area with radius 

𝑟 from the AP inside the effective DR becomes a different shape as illustrated in Figure 

4.17.  In the last scenario of 𝑟, which is 𝑚𝑎𝑥(𝑢, 𝑣) <  𝑟   ds, it can be seen in Figure 

4.18 that the shape the area with radius 𝑟 from the AP is the same as the one of the 

effective DR. 

 

 

 

Figure 4.17. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is further than the distance 𝑑𝑠  

from the corner of the DA, and 𝑚𝑖𝑛 (𝑢, 𝑣) ≤ 𝑟 ≤ 𝑚𝑎𝑥 (𝑢, 𝑣). 
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Figure 4.18. The smaller DR within the DA and the effective DR used in the 

computation of the CDF of 𝑟 when 𝐴 =  𝑐, the AP is further than the distance 𝑑𝑠  

from the corner of the DA, and 𝑚𝑎𝑥 (𝑢, 𝑣) ≤ 𝑟 ≤ 𝑑𝑠. 

 

After considering the geometry of all possible scenarios and given 𝑢 and 

𝑣, let 𝐴𝐷𝑐𝐿𝑒𝑠𝑠 and 𝐴𝐷𝑐𝑀𝑜𝑟𝑒 be the areas of the effective DR in SR c when the distance 

to the corner is less than 𝑑𝑠 and more than 𝑑𝑠 respectively.  By geometry, one can write, 

 

 
𝐴𝐷𝑐𝐿𝑒𝑠𝑠 = 𝑢𝑣 +

𝑢√𝑑𝑠
2 − 𝑢2

2
+

𝑣√𝑑𝑠
2 − 𝑣2

2
 

                    +(1 −
𝑐𝑜𝑠−1 (

𝑢
𝑑𝑠

) + 𝑐𝑜𝑠−1 (
𝑣
𝑑𝑠

) +
𝜋
2

2𝜋
)𝜋𝑑𝑠

2 

 

(4.20) 

 

 𝐴𝐷𝑐𝑀𝑜𝑟𝑒 = 𝑢√𝑑𝑠
2 − 𝑢2 + 𝑣√𝑑𝑠

2 − 𝑣2 

                     +(1 −
𝑐𝑜𝑠−1 (

𝑢
𝑑𝑠

) + 𝑐𝑜𝑠−1 (
𝑣
𝑑𝑠

)

𝜋
)𝜋𝑑𝑠

2 

 

(4.21) 

 

where u and v are continuous r.v.’s for the distances from the AP to the two borders of 

the deployment area.  One can then apply the equations of these areas in (4.20) and 

(4.21) in the derivations of the CDF’s of r, and hence the pdf’s of r.  
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Let 𝐹𝑐(𝑟) denote the CDF of r in SR c for a given pair of u and v. One 

has, 

 

 𝐹𝑐(𝑟) = 𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠)𝑃(𝑙𝑒𝑠𝑠) + 𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒)𝑃(𝑚𝑜𝑟𝑒) (4.22) 

 

where 𝑃(𝑙𝑒𝑠𝑠) and 𝑃(𝑚𝑜𝑟𝑒) are the probabilities that the distance 𝐶 is less and more 

than 𝑑𝑠 respectively.  By geometry, 𝑃(𝑙𝑒𝑠𝑠) = (1 4)𝜋𝑑𝑠
2⁄ 𝑑𝑠

2⁄  = 𝜋/4 and thus 

𝑃(𝑚𝑜𝑟𝑒) equals (1 − 𝜋/4).  From equation (4.22), correspondingly, one can write, 

 

 𝑓𝑐(𝑟) = 𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠)𝑃(𝑙𝑒𝑠𝑠) + 𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒)𝑃(𝑚𝑜𝑟𝑒)  

(4.23) 

Both 𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠) and 𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒) can be expanded further as follows: 

 

 𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠) = 𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣)𝑃(𝑢 < 𝑣|𝑙𝑒𝑠𝑠) 

                        +𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣)𝑃(𝑢 ≥ 𝑣|𝑙𝑒𝑠𝑠) 

 

(4.24) 

 

 𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒) = 𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣)𝑃(𝑢 < 𝑣|𝑚𝑜𝑟𝑒) 

                           +𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣)𝑃(𝑢 ≥ 𝑣|𝑚𝑜𝑟𝑒) 

 

(4.25) 

 

By geometry, 𝑃(𝑢 < 𝑣|𝑙𝑒𝑠𝑠) = (1 8)𝜋𝑑𝑠
2⁄ (1 4)𝜋𝑑𝑠

2⁄⁄ = 1 2⁄ . 

Hence, 𝑃(𝑢 ≥ 𝑣|𝑙𝑒𝑠𝑠) = 1 2⁄ .  Similarly, 𝑃(𝑢 < 𝑣|𝑚𝑜𝑟𝑒) =
((𝑑𝑠

2 − (1 4⁄ )𝜋𝑑𝑠
2) 2⁄ ) (𝑑𝑠

2 − (1 4⁄ )𝜋𝑑𝑠
2)⁄ = 1 2⁄ = 𝑃(𝑢 ≥ 𝑣|𝑚𝑜𝑟𝑒) as well. 

From equations (4.24) and (4.25), it follows that, 

 

 𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠) = 𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣)𝑃(𝑢 < 𝑣|𝑙𝑒𝑠𝑠) 

                        +𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣)𝑃(𝑢 ≥ 𝑣|𝑙𝑒𝑠𝑠) 

 

(4.26) 

 

 𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒) = 𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣)𝑃(𝑢 < 𝑣|𝑚𝑜𝑟𝑒) 

                           +𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣)𝑃(𝑢 ≥ 𝑣|𝑚𝑜𝑟𝑒) 

 

(4.27) 

 

As explained earlier, when the distance 𝐶 is less than 𝑑𝑠 as shown in Figure 4.12, Figure 

4.14, Figure 4.15, and Figure 4.16, 𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣) and 𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣) are 
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determined for four cases of r. They are when 0 ≤ 𝑟 ≤ min (𝑢, 𝑣), min(𝑢, 𝑣) < 𝑟 ≤

max (𝑢, 𝑣), max(𝑢, 𝑣) < 𝑟 ≤ √𝑢2 + 𝑣2, and √𝑢2 + 𝑣2 < 𝑟 ≤ 𝑑𝑠.  Thus one writes, 

 

 

𝐹𝑐(𝑟|𝑙𝑒𝑠𝑠) =
1

2
∑ 𝐹𝑐1𝑖(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣)

4

𝑖=1

 

                        +
1

2
∑ 𝐹𝑐1𝑖(𝑟|𝑙𝑒𝑠𝑠𝑠, 𝑢 ≥ 𝑣)

4

𝑖=1

 

 

 

 

 

(4.28) 

 

where each subscript 𝑐1𝑖 for 1 ≤ 𝑖 ≤ 4 represents each of the four cases of r in the 

order as previously described. It turns out that, 

 

 𝐹𝑐11(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣) = 𝐹𝑐11(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣) = π𝑟2/𝐴𝐷𝑐𝐿𝑒𝑠𝑠.           

(4.29) 

 

Thus, one has, 

 

 𝑓𝑐11(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣) = 𝑓𝑐11(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣) 

                                     = (2𝜋𝑟)/𝐴𝐷𝑐𝐿𝑒𝑠𝑠 . 

 

(4.30) 

 

Similarly, one can derive that,  

 

 𝑓𝑐12(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣) = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑢/𝑟))/𝐴𝐷𝑐𝐿𝑒𝑠𝑠 (4.31) 

  

 𝑓𝑐12(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣) = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑣/𝑟))/𝐴𝐷𝑐𝐿𝑒𝑠𝑠 (4.32) 

 

 𝑓𝑐13(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣) = 𝑓𝑐13(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣) 

                                     = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑢/𝑟) 

                               −2𝑟𝑐𝑜𝑠−1(𝑣/𝑟))/𝐴𝐷𝑐𝐿𝑒𝑠𝑠 

 

 

(4.33) 
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 𝑓𝑐14(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣) = 𝑓𝑐14(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣) 

                          = (3𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑢/𝑟) 

                                   −2𝑟𝑐𝑜𝑠−1(𝑣/𝑟))/2𝐴𝐷𝑐𝐿𝑒𝑠𝑠. 

 

 

(4.34) 

As a result, one now have computed 𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠) needed for 𝑓𝑐(𝑟) in equation (4.23). 

Similarly for the case when the distance 𝐶 is more than 𝑑𝑠, 

𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣) and 𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣) are computed for three cases of r.  From 

Figure 4.13, Figure 4.17, and Figure 4.18, they are when 0 ≤ 𝑟 ≤ min (𝑢, 𝑣), min(𝑢, 𝑣) <
𝑟 ≤ max (𝑢, 𝑣), and max(𝑢, 𝑣) < 𝑟 ≤ 𝑑𝑠.  As a result, one has, 

 

 

𝐹𝑐(𝑟|𝑚𝑜𝑟𝑒) =
1

2
∑ 𝐹𝑐2𝑖(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣)

3

𝑖=1

 

+
1

2
∑ 𝐹𝑐2𝑖(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣)3

𝑖=1    

 

 

(4.35) 

 

where here, each subscript 𝑐2𝑖 for 1 ≤ 𝑖 ≤ 3 represents each of the three cases of r.  

One then obtains, 

 

 𝑓𝑐21(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣) = 𝑓𝑐21(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣) 

                                       = (2𝜋𝑟)/𝐴𝐷𝑐𝑀𝑜𝑟𝑒 

 

(4.36) 

 

 𝑓𝑐22(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣) = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑢 𝑟⁄ ))/ 

                                             𝐴𝐷𝑐𝑀𝑜𝑟𝑒 

 

(4.37) 

 

 𝑓𝑐22(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣) = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑣 𝑟⁄ ))/ 

                                             𝐴𝐷𝑐𝑀𝑜𝑟𝑒 

 

(4.38) 

 

 𝑓𝑐23(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣) = 𝑓𝑐23(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣) 

                                 = (2𝜋𝑟 − 2𝑟𝑐𝑜𝑠−1(𝑢/𝑟) 

                                        −2𝑟𝑐𝑜𝑠−1(𝑣/𝑟))/𝐴𝐷𝑐𝑀𝑜𝑟𝑒. 

 

 

(4.39) 

 

These are used to find 𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒) in equation (4.23).  One now has derived 𝑓𝑐(𝑟) for 

a pair of u and v.  Subsequently because the joint p.d.f.’s of u and v are 1/(𝜋𝑑𝑠
2 4⁄ ) and 

1/(𝑑𝑠
2(1 − 𝜋 4⁄ )) when the distance 𝐶 is less than 𝑑𝑠 and more than 𝑑𝑠 respectively, it 
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yields that, 

 

 
𝜀𝑐,𝑚,𝑘 = 𝐶1 ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

                +𝐶1 ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

                +𝐶2 ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

           +𝐶2 ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

 

 

 

 

(4.40) 

 

where 𝐶1 = (π/4)(1/2)(8/ 𝜋𝑑𝑠
2), and 𝐶2 = (1 − π/4)(1/2) ×{1/[(1-π/4) (𝑑𝑠

2/2)]}.  One 

then obtains, 

 

 
𝜀𝑐,𝑚,𝑘 = (

1

𝑑𝑠
2) ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

+ (
1

𝑑𝑠
2) ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

  + (
1

𝑑𝑠
2) ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

  + (
1

𝑑𝑠
2) ∭(1 − 𝐷(𝑟))𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣)𝑑𝑟𝑑𝑣𝑑𝑢 

 

 

 

 

 

 

(4.41) 

 

where the bounds on the integrals correspond to all the cases of r’s for 

𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 < 𝑣), 𝑓𝑐(𝑟|𝑙𝑒𝑠𝑠, 𝑢 ≥ 𝑣), 𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 < 𝑣), and 𝑓𝑐(𝑟|𝑚𝑜𝑟𝑒, 𝑢 ≥ 𝑣). 

The closed-form expressions for both 𝜀𝑏,𝑚,𝑘 and 𝜀𝑐,𝑚,𝑘 cannot be found. 

Hence numerical integration is needed to evaluate both of them.  However having 

analytical expressions for 𝜀𝑖,𝑚,𝑘’s for all the three SRs, one can find each corresponding 

𝛽𝑖,𝑚,𝑘 and thus 𝛾𝑖 in equation (4.5).  Then, finally, the analytical expression for the EDP 

at AP in a finite 2-D rectangular DA as expressed in equation (4.3) has been obtained.  

It is also worth noting that this analytical model can be applied to any other probabilistic 

sensing models as long as they are also a function of the distance 𝑟 between the SN and 

the object to be detected.  The derivation here can still be applied for those sensing 

models, because the probability distributions of 𝑟 have already been derived here, and 

are ready to be used for the computation of the EDP that are based on those other models 

that are functions of the distance 𝑟. 
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CHAPTER 5 

 

Verifications, Applications, and Discussions 

 

This chapter presents the verifications of both analytical models with 

simulations, discussions of results, and examines the applications of these models.  The 

verifications of both proposed mathematical models are carried out by comparing the 

numerical results from the models with those obtained from MATLAB simulations.  

Since the final forms of both mathematical models derived in this dissertation contain 

integrands whose antiderivatives are very hard or impossible to reduce, the numerical 

results from equation (Error! Reference source not found.) are obtained by Mathcad, 

which can compute numerical integrations.  After the accuracy of both models have 

been verified, the numerical results are investigated more closely to gain more insight 

into the EDP and the EDSC.  Then, the practical applications of the models are proposed 

and discussed in this chapter. 

 

5.1 Simulation Design for the Verification of Expected Detection Probability 

On the computer used for simulations for this dissertation, Mathcad can 

only calculate up to the factorial of 170.  Since the analytical expression for the EDP 

has factorial computations in it, and one of the input values for these factorial 

computations is the number of SNs deployed, it means that the numerical values for the 

proposed EDP mathematical models can only be obtained up to 170 SNs deployed.  

This puts a restriction on the kinds of scenarios in MATLAB that can be simulated to 

have meaningful comparisons. 

The first goal for the simulations is to verify the accuracy of the 

proposed EDP mathematical model.  Thus the MATLAB simulation is designed to test 

the accuracy at various number of SNs deployed, hence the different levels of node 

density for a fixed sensing range, 𝑑𝑠, and the fixed sensing parameter, 𝛼𝑠, in a fixed 

size of the deployment area.  The objective is to be able to observe the accuracy of the 

EDP model at various levels of EDP.  Thus, first, the appropriate levels of 𝑑𝑠 and 𝛼𝑠 

for a deployment area that can offer various values of the average detection probability 

from the MATLAB simulations must be found. 

After successfully be able to investigate the accuracy of the EDP for this 

particular set of values of 𝑑𝑠, 𝛼𝑠, and the deployment area size, the next batch of 

simulations are carried out by varying the levels of node density and both 𝑑𝑠 and 𝛼𝑠 for 

various sizes and dimensions of the deployment area until the accuracy of the EDP 

model is satisfactorily confirmed. 

All in all, depending on the size of the deployment field, the number of 

deployed SNs is varied from 4 to 170.  The maximum number of SNs deployed is 

capped at 170, because in equation (Error! Reference source not found.) there are 

factorial computations based on this maximum number as stated earlier.  This also 
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results in lines in some figures presented in this dissertation to appear as if they are 

missing some data.  Nevertheless, an enough variety of simulation scenarios can be 

carried out to validate the mathematical expression for the EDP.  The random 

placements of SNs with uniform distribution are simulated on three different sizes of 

the DA, 50x50, 70x70, and 100x100.  The sensing range of all the SNs, 𝑑𝑠, is set at 10, 

while the parameter 𝛼𝑠 in equation (Error! Reference source not found.) is assumed 

to be 4. 

 

5.2 Simulation Implementation for the Verification of Expected Detection 

Probability 

The values of the average detection probability (ADP) at an arbitrary 

point (AP) from MATLAB simulations are calculated in two ways.  One is by picking 

an AP from each of the 100,000 random simulations and averaging it.  The other is by 

picking 100,000 APs from one simulation and then taking the average.  From these 

results, it has been found that both methods yield practically the same ADP numerical 

results and are interchangeable.  This shows ergodicity of these MATLAB simulations.  

These average numbers of the detection probability at an AP are then used to 

demonstrate the correctness of the analytical expression found in equation (Error! 

Reference source not found.) by comparing them with the expected values computed 

in Mathcad based on the analytical expression. 

Thanks to ergodicity of these simulations, the final version of the 

MATLAB simulation program used to find ADP picks 100,000 APs from one 

simulation and averages them.  In MATLAB, the simulation starts by using the uniform 

random distribution for the values of x- and y- coordinates for the placement location 

of each SN, then uniformly randomly picks 100,000 APs using the same MATLAB 

uniform distribution function.  Note that the MATLAB uniform distribution function 

does not use initial seed, thus each iteration of the simulation is all different from the 

others.  This MATLAB simulation takes the number of deployed SNs, the number of 

APs, the dimension of the deployment area, and values of 𝑑𝑠 and 𝛼𝑠 as its inputs. 

After uniformly picking 100,000 APs at random, the simulation program 

computes its detection probability from the SNs that are within the distance 𝑑𝑠 based 

on the sensing model in (Error! Reference source not found.).  Finally, the ADP can 

be calculated for this particular set of input values of the simulation program. 

 

5.3 Verification of Expected Detection Probability 

The correctness of the analytical expression is calculated by computing 

the discrepancy.  This discrepancy is defined as the values of the EDP from our 

analytical expression minus those of the average from the MATLAB simulations.  

Figure 5.1 shows these discrepancies versus the number of deployed SNs per the unit 

area of the DA or the Node Density (ND).  Figure 5.2 illustrates the discrepancies versus 

the average values from the simulations.  The reason the ADPs from the simulations 

are used on the x-axis in Figure 5.2 is because the ADPs represent the real practical 

values that the proposed analytical model is measured up against. 
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Figure 5.1. Discrepancies between analytical estimations and the simulation results 

for EDP at each level of ND 

 

From Figure 5.1 and Figure 5.2, it can be said that the proposed 

mathematical expression for the EDP is strikingly accurate.  As shown in both Figure 

5.1 and Figure 5.2, the proposed formula never overestimates the ADP more than three 

percent in all scenarios.  Moreover, as the ND or the ADP increases, the overestimation 

plateaus at no more than 1.5 percent for the node density above 0.035.  In some cases, 

the discrepancies are practically zero or very close to zero.  The analytical expression 

also becomes more accurate when the DA gets bigger.  The reason for this is because 

for bigger areas, the impacts from the border effects in our model are lessened as the 

SR a in our calculation gets bigger.  From these numerical results, it can be concluded 

that the proposed analytical expression is an accurate prediction for the EDP at any AP 

in a rectangular deployment plane. 
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Figure 5.2. Discrepancies between analytical estimations and the simulation results at 

each level of ADP from simulations. 

 

5.4 Simulation Design for the Verification of Expected Degree of Sink 

Connectivity 

The mathematical model for the EDSC also has factorial computations 

in it, and one of its input values for these factorial computations is also the number of 

SNs deployed.  Thus, the Mathcad restriction of the maximum 170 factorials still 

applies here.  Hence some figures appear to be missing partial data.  However, more 

scenarios for the EDSC model verification can be simulated in meaningful ways than 

those for EDP verification. 

As in the case of the simulation design for the verification of EDP, the 

first goal for the simulations here is to establish the accuracy of the proposed EDSC 

mathematical model.  Again, the objective is to be able to inspect the accuracy of the 

EDSC model at various levels of EDSC.  Therefore, first, the appropriate levels of 𝑟𝑡 

for a deployment area that can offer various values of the average degree of sink 

connectivity from the MATLAB simulations must be identified. 

Again after successfully be able to study the accuracy of the EDSC for 

this particular set of values of 𝑟𝑡, and the deployment area size, more simulations are 

carried out by varying the levels of node density and 𝑟𝑡 for various sizes and dimensions 

of the deployment area until the accuracy of the EDSC model is substantiated. 
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In the MATLAB simulations for the verification of the EDSC model, 

the number of deployed SNs is varied from 17 to 170.  The transmission range of the 

SNs, 𝑟𝑡, is varied from 7 to 15 for a DA of 40x40.  When 𝑟𝑡 is fixed at 10, the size of a 

square deployment area ranges from 35x35 to 70x70.  Also for 𝑟𝑡 equals 10, the shape 

of the deployment area is varied from a square of 40x40 to a rectangle of 40x50 and 

40x60.   

 

5.5 Simulation Implementation for the Verification of Expected Degree of 

Sink Connectivity 

The MATLAB simulation program for the verification of EDSC takes 

the number of deployed SNs, the dimension of the deployment area, the transmission 

range 𝑟𝑡, and the number of simulations as the inputs of the function.  The degree of SC 

for each MATLAB simulation is the minimum NoCSNNs found among all the SNs that 

cannot directly transmit to the sink.  Each value of the average degree of SC from 

MATLAB is calculated from 5,000 experiments or simulations.  The discrepancy 

between the analytical calculation values and these experimental results is defined as 

the percentage difference.  It is the analytical estimate from the EDSC model minus the 

average value of the sink connectivity from the MATLAB experiments times 100 and 

divided by the average MATLAB number. 

The simulation program first starts by placing the sink at the center of 

the deployment area according to its dimension.  It then runs each experiment or 

simulation by initially placing SNs with uniform distribution function as described for 

the simulation program for computing the ADP in section 5.2.  The program then 

computes the distance from all the SNs to the sink to identify the SNs that cannot 

directly transmit to the sink.  For all the SNs that cannot directly transmit to the sink, 

the program finds the SNs that are within the transmission range of each of them.  These 

are neighboring SNs.  Then from these neighboring SNs of each SN, the program 

determines the neighboring SNs that are closer to the sink than itself.  The final part of 

the program finds the smallest number of these NoCSNNs for all these SNs that cannot 

directly transmit to the sink.  Next, as mentioned earlier, the average degree of sink 

connectivity is then found by averaging over 5,000 MATLAB experiments. 

 

5.6 Verification of Expected Degree of Sink Connectivity 

It is found that in the majority of scenarios simulated, the analytical 

predictions overestimate the average degree of SC.  In others, they slightly 

underestimate.  As the transmission range 𝑟𝑡 gets bigger relative to the size of the 

deployment field, the overestimate becomes bigger.  Likewise, as 𝑟𝑡 becomes smaller, 

the overestimate gets smaller and smaller to the point where the discrepancies become 

an underestimate.  The degree of this underestimate also increases as 𝑟𝑡 decreases for a 

fixed size of the DA.  Figure 5.3 illustrates this point for a fixed DA of 40x40 and 𝑟𝑡 

varying from 7 to 15.  Figure 5.3 also shows that the discrepancies vary from about 

+4.7% to -2.4% when the ND is higher than 0.06 for 𝑟𝑡 = 7 to 𝑟𝑡 = 12.  For 𝑟𝑡 = 10, 

the theoretical predictions are most accurate as the ND increases.  The discrepancies 
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for 𝑟𝑡 = 10 are close to zero for ND higher than 0.8 as shown in Figure 5.4.  This means 

that the proposed analytical model for the EDSC is accurate enough in general and can 

be strikingly accurate for an appropriate set of 𝑟𝑡 and the deployment area size.  

Specifically, the appropriate ratio of the dimension of the square deployment area to 

the transmission range, 𝑟𝑡, is around 4 as shown in Figure 5.6. 

 

Figure 5.3. Percentage differences between analytical values and simulation results 

for EDSC at each level ND for various 𝑟𝑡 and fixed DA 40x40. 

 

Figure 5.4 shows the discrepancies for 𝑟𝑡 = 10 and a number of different 

square DAs.  It shows that for the ND higher than 0.6, the discrepancies are close to 

zero, and as the more SNs are deployed, the more accurate the analytical estimations 

for the proposed EDSC become.  It can also be observed that as the DA becomes smaller 

relative to 𝑟𝑡, the overestimate becomes bigger.  When the DA gets bigger, the 

discrepancies change to underestimate.  This is in accordance with what has been 

observed in Figure 5.3. 

The reason for the overestimate is suspected to be due to the border 

effects on the overlap area in the calculation in equation (3.5).  The probability in 

equation (3.5) does not take into account the change of the overlap area for SNs close 

to the border.  This results in overestimating of our analytical model.  When 𝑟𝑡 is big 

relative to the DA, the overlap area used in equation (3.5) becomes bigger for SNs close 

to the borders than it actually is.  This results in overestimation for relatively big 𝑟𝑡.  As 

for the underestimate, it can be speculated that it is resulted from the compromise on 
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the i.i.d. assumption of observations in order stats used to derive the EDSC model.  

When 𝑟𝑡 is relatively small compared to the DA, the SNs which are equivalent to the 

observations in order stats become more and more non-identically distributed.  It is 

reasonable to assume that this is the reason why underestimate is observed for relatively 

small 𝑟𝑡.  To test this hypothesis about the underestimation, observations are made for 

the discrepancies for 𝑟𝑡 = 10 while the shape of the DA is varied.  Figure 5.5 shows that 

as the DA becomes more rectangular hence resulting in SNs to become more non-

identically distributed, the discrepancies change from overestimate for DA 40x40 to 

underestimate in area 40x50 and 40x60.  Figure 5.5 though still shows that the proposed 

formula for EDSC becomes more accurate with the discrepancies close to zero when 

the ND is high enough which is around at 0.04. 

 

Figure 5.4. Percentage differences between analytical values and simulation results 

for EDSC at each level ND for square DA of various sizes and 𝑟𝑡 = 10. 

 

From Figure 5.4 and Figure 5.5, the discrepancies between analytical 

estimates and those from MATALB experiments are high for ND that is lower than 

0.04.  However, these high levels of discrepancies are not worrying, because they occur 

when the average degree of SC is much lower than one.  Figure 5.6 demonstrates this. It 

can be seen from Figure 5.6 that for average degree of SC that equals or is higher than 

one, the discrepancies are less than 5% and become smaller and smaller for the higher 

average degrees.  Since in practice, when the analytical model is used for pre-

deployment network planning, one is only interested to know how many SNs are 
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needed for each degree of SC.  The big discrepancies that happen when the average 

degree of connectivity is less than one are not concerning.  In conclusion, the proposed 

analytical model of EDSC is accurate when it matters. 

 

Figure 5.5. Percentage differences between analytical values and simulation results 

for EDSC at each level ND for DA of various shapes and 𝑟𝑡 = 10. 

 

Figure 5.6. Percentage differences between analytical values and simulation results 

for EDSC at different average degrees of SC for DA 40x40 and 𝑟𝑡 = 10. 
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5.7 Discussions and Applications of the Models 

The model for the EDP is accurate for all the three simulation scenarios 

that are run, while the EDSC is accurate when the ND is high enough and the 

transmission range 𝑟𝑡 is not too big or too small for a DA.  This means that when one 

would like to determine the levels of coverage and connectivity from a random 

deployment of object-detecting SNs, the environments for which both the proposed 

analytical expressions are suitable at the same time are clustered networks.  Clustered 

networks are networks in which nodes are grouped in clusters with cluster heads which 

usually act as relay nodes situated in the middle of the clusters.  The sizes of the clusters 

are also typically not big relative to 𝑟𝑡.  This scenario would fit perfectly with where 

the proposed models in this dissertation can give the most accurate predictions.  

Moreover, although the analytical expressions in this dissertation do not render their 

inverse counterparts, one can still estimate the values of these parameters needed for 

certain degrees of probabilistic coverage and sink connectivity from the graphs of EDP 

and EDSC with each of these parameters. 

Based on work in [4], the models proposed in the dissertation can also 

help determine the required active-to-sleep ratio in uncoordinated sleep scheduling for 

the desired degrees of coverage and connectivity.  Using the graphs from the proposed 

analytical expressions, one can find the number of SNs required for certain degrees of 

coverage and connectivity.  This number is then used as the expected number of active 

nodes in an uncoordinated sleep scheduling scheme to calculate the required active-to-

sleep ratio [4].  Similarly, both the mathematical expressions found in this dissertation 

can predict coverage and connectivity for any other applications or scenarios that know 

the number of active SNs at any time.  This also means if one can model the probability 

that a SN dies over time, the proposed formulae can be used to determine the degrees 

of both coverage and connectivity over any period of active operation of the networks 

one is interested in.  This could help in the studies of the fault tolerance capability of 

WSNs over a period of time.  Since the proposed formulae are based on uniform and 

random deployment of SNs, they can also be used to provide a snapshot of EDP and 

EDSC for networks of SNs with random mobility. 

It also has been observed that, for connectivity, the higher EDSC, the 

more likely the traffic congestion can happen.  Thus, this dissertation proposes to 

modify the uncoordinated sleep scheduling scheme by limiting EDSC as  𝐶𝑚𝑖𝑛 ≤
𝐸𝐷𝑆𝐶 ≤ 𝐶𝑚𝑎𝑥 and EDP as 𝑆𝑚𝑖𝑛 ≤ 𝐸𝐷𝑃 where 𝐶𝑚𝑖𝑛 and 𝑆𝑚𝑖𝑛 are the minimum degree 

of  sink connectivity and minimum level of coverage required respectively, while 𝐶𝑚𝑎𝑥 

is the maximum degree of sink connectivity for the acceptable level of traffic 

congestion.  From these two constraints one can get the number of active nodes used to 

find the active-to-sleep ratio where the mean time for sleeping is not greater than the 

maximum delay allowed for the network. 

The EDP and EDSC formulae can also be utilized to find the type of 

homogeneous SNs that minimizes the deployment cost by constraining 𝐸𝐷𝑃 ≥  𝑆𝑚𝑖𝑛 

and 𝐸𝐷𝑆𝐶 ≥  𝐶𝑚𝑖𝑛.  For SN type i , the deployment cost optimization equation is 

min
𝑖

𝑐𝑜𝑠𝑡𝑖 = min
𝑖

𝑁𝑖𝑐𝑖 where 𝑁𝑖 is the number of SNs of type i calculated from 

max
𝑁𝑖

[min
𝑁𝑖

𝐸𝑃𝐷 ≥ 𝑆𝑚𝑖𝑛 ,  min
𝑁𝑖

𝐸𝐷𝑆𝐶 ≥ 𝐶𝑚𝑖𝑛 ]   and 𝑐𝑖 is the cost of one SN of type i



58 

 

depending on 𝑑𝑠, 𝛼𝑠, and 𝑟𝑡. 

From numerical results of both of the proposed mathematical models, it 

can also be observed that at the same level of ND, the EDP is largely the same for all 

sizes of the square DA. This is shown in Figure 5.7. Furthermore, one can see a 

diminishing return from the number of SNs deployed for the EDP.  Figure 5.8 shows 

that rate of increase of EDP is slower for higher number of SNs deployed.  For larger 

DAs, this diminishing return in expected level of coverage is however less noticeable. 

 

Figure 5.7. EDP vs ND for various DA sizes with 𝑑𝑠 = 10 and 𝛼𝑠 = 4. 

 

For the EDSC, the numerical results from the proposed model show that 

the first degree of connectivity requires the biggest number of SNs.  The subsequent 

degrees require fewer SNs.  However, after a certain degree of SC, the number of SNs 

needed for the next degree plateaus to a constant.  This is illustrated in Figure 5.9.  Figure 

5.9 also shows that on average several SNs have to fail to reduce the degree of SC by 

one.  This is different from the strict definition of k-connectivity where 𝑘 − 1 SNs die, 

all the remaining SNs still have a connectivity left.  In Figure 5.9, it shows that for an 

expected k degrees of SC, a greater number of SNs than 𝑘 − 1 must fail in order for the 

remaining SNs to have just a connectivity left on average.  In terms of the relationship 

between the EDSC and the ND, taking into account of the accuracy observations of our 

EDSC formula shown in Figure 5.4, Figure 5.10 shows that, with the same ND, the EDSC 

is approximately the same for all DA sizes.  There is also a linearity between the EDSC 

and the ND.  It can also be postulated that the bigger 𝑟𝑡, the higher the slope of this 
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linearity. 

 

Figure 5.8. EDP vs number of deployed SNs for various DA sizes with 𝑑𝑠 = 10 and 

𝛼𝑠 = 4. 

 

This dissertation finds both the EDP and the EDSC models.  However, 

unlike majority of previous analytical work on joint coverage and connectivity, the 

studies in this dissertation do not derive these based on the relationship between the 

sensing and communication ranges.  The reason for this, as mentioned earlier in this 

dissertation, is because the sensing model in this research is not the traditional binary 

disk, while the communication model is.  So both the proposed models are derived and 

thus can be computed independently. This helps in scenarios where the sensing and 

communication models are not alike. 

When one tries to investigate the numerical results of both of the 

proposed analytical expressions jointly, one finds that knowing the degree of one does 

not tell one about the other.  Figure 5.11 shows the EDSC for the transmission range 

𝑟𝑡 = 10 with the EDP at various values of sensing range 𝑑𝑠 and the parameter for DP 

distribution 𝛼𝑠 in a DA of 40x40.  One can see that there are no relationships between 

the degrees of coverage and SC regardless of the ratio of sensing and communication 

ranges.  At a certain EDSC, there are varying levels of EDP that can be achieved 

depending on 
s

 and ds.  When both sensing and communication models are binary and 

𝑟𝑡 ≥ 2𝑑𝑠, the relationship between sensing coverage and network connectivity is 1-to-

1 [11].  However, when the sensing model is not binary but continuous-valued like the 

one in this dissertation while the connectivity model still is, the 1-to-1 relationship 
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between coverage and connectivity does not exist.  It becomes 1-to-many.  One level 

of EDSC can result in infinite levels of EDP as suggested by results in Figure 5.11.  

Hence, it can be postulated that when the sensing and communication models are not 

both binary as in the case for this dissertation, the coverage and SC have to be analyzed 

separately.  One cannot automatically use the relationship or the ratio of the sensing 

and communication ranges to determine the level of SC by the level of coverage.  There 

are no clear relationships between the sensing coverage level and the SC level when the 

sensing and communication models are different. 

 

Figure 5.9. EDSC vs number of deployed SNs for DA 40x40 with 𝑟𝑡 = 10,12. 

 

Figure 5.10. EDSC vs ND for various DA sizes with 𝑟𝑡 = 10. 
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Figure 5.11. EDP vs EDSC for DA 40x40 with 𝑟𝑡 = 10 and various values of 𝑑𝑠 and 

𝛼𝑠. 
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CHAPTER 6 

 

Conclusions, Limitations, and Future Work 

 

This dissertation derives two analytical or mathematical models, one for 

the expected probabilistic detection coverage and the other one is for the expected sink 

connectivity degree in WSNs for SNs that cannot directly transmit to the sink.  Unlike 

prior joint coverage and connectivity analysis for WSNs, the research work in this 

dissertation is based on a probabilistic sensing model, while the connectivity model is 

binary.  This dissertation also focuses on a finite number of homogeneous SNs that are 

uniformly distributed at random in a finite DA.  It is more practical than the asymptotic 

assumption previously normally used in previous WSN coverage and connectivity 

studies.  The models are derived by taking the border effects into account as 

comprehensive as possible and based on order stats, expectation and probability 

calculations.  Chapter 2 presents an overview of sensor placement in WSNs and its 

impacts on various aspects of WSN performance.  Then an overview of related research 

in wireless sensor placement and a survey of current sensing coverage and connectivity 

analyses are presented.  Chapter 3 derives the EDSC, while Chapter 4 presents the 

derivation of the EDP at any AP in the DA.  Chapter 5 shows the verification of both 

derived models with numerical results from simulations, then discusses findings from 

the results from the models including the applications in which the proposed models 

can be utilized.  The rest of this chapter will summarize the overall major findings from 

this research, and discuss the limitations of the proposed models, and some possible 

future work based on this dissertation. 

 

6.1 Conclusions 

Overall contributions and findings of this dissertation are as follows. 

1. In derivations of both models, a careful consideration of 

geometry and its implications in finding the CDF of each related parameters in the 

model is necessary in achieving accurate models. 

2. To achieve precise models, all border effects must be taken into 

account in order for the models to be exact for all scenarios. 

3. Every little approximation made in the derivation of the models 

does have impact on their accuracy.  The magnitude of the impacts depends on the 

scenarios in which the models are applied. 

4. The models derived in the dissertation can still achieve high 

accuracy thanks to careful consideration of border effects and judicious 

approximations.  Its accuracy is within around 2.5 percent of the simulation results, and 

in pragmatic scenarios the discrepancies can be close to zero. 

5. The proposed models are best suited for clustered networks in 
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DA with appropriate sizes relative to the transmission range of the SNs.  From the 

results, the appropriate ratio of the dimension of the square deployment area to the 

transmission range, 𝑟𝑡, is about 4. 

6. The EDP model can be applicable for any other probabilistic 

sensing models that are functions of 𝑟. 

7. The related parameters for desired degrees of coverage and 

connectivity can be estimated from graphs. 

8. Unlike most other works on joint coverage and connectivity 

analysis, ours can be used to compute the coverage and connectivity separately thanks 

to the models that are based on different sensing and communication models. 

9. This work also shows that when the sensing and communication 

models are not both the binary disk model, the relationship between the sensing and 

communication ranges cannot indicate the connectivity from the coverage. 

10. The models in this dissertation can be utilized in uncoordinated 

node scheduling schemes to find the active-to-sleep ratio for each SN, fault tolerance 

and traffic congestion analysis of networks, and optimizing the deployment cost. 

11. Node density is what determines the level of the probabilistic 

sensing coverage, and as the number of deployed SNs increases, the smaller the increase 

of the level of coverage. 

12. Node density also controls EDSC regardless of the size of the 

DA. 

13. For the EDSC, the first degree of sink connectivity requires the 

highest number of SNs.  The subsequent degree will require fewer and later be almost 

a constant, suggesting that previously placed SNs help make the connectivity for the 

later deployed SNs easier. 

 

6.2 Limitations 

Both the proposed models contain integrands that so far cannot be 

reduced to closed form expressions.  As a result, the reverse functions of both models 

are yet to exist.  Accordingly, in order to find specific values of input parameters such 

as the number of deployed SNs needed for a specific level of expected detection 

coverage and expected degree of sink connectivity, one has to use graphs such as those 

in Error! Reference source not found. and Error! Reference source not found..  Also if 

the computer used to compute the numerical values from both models are not powerful 

enough, it can then only compute the values up to a certain number of deployed SNs.  

The reason is because of the factorial computation of the number of deployed SNs.  As 

in the case of this dissertation, it is limited to 170. 

 

6.3 Future Work 
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The work in this dissertation could serve as another piece in the 

foundation of other future related works in trying to analyze coverage and connectivity 

from random SN deployments in other scenarios.  In the future, if it becomes financially 

feasible and sensors based on the probabilistic sensing model assumed in this 

dissertation are available, the investigations into various test-bed experiments in a 

number of interesting real-life scenarios could be conducted.  Also, the proposed 

concept of deployment cost optimization based on this function, max
𝑁𝑖

[min
𝑁𝑖

𝐸𝑃𝐷 ≥

𝑆𝑚𝑖𝑛 ,  min
𝑁𝑖

𝐸𝐷𝑆𝐶 ≥ 𝐶𝑚𝑖𝑛 ], as mentioned in section 5.7 could be investigated in more 

detail. 
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