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Abstract

Unmanned aerial vehicles (UAVS) have been developed to replace
human operation in complex and hazardous environments. Continuity of a
UAV operation when GPS is degraded or denied is crucial in many
applications such as flying near high buildings and trees, or flying outdoor-
to-indoor. The state estimation is used to determine the UAV position and
other states from the sensors fusion algorithm.

In order to estimate position of an UAV which is a nonlinear
dynamic system, accuracy, fast response and less computational burden are
Important requirements. In the first part, this thesis compares performance
of three state estimation algorithms: inertial navigation, robot localization
and Ethzasl MSF frameworks. They are implemented on ROS (Robot
Operating System) to control the same UAYV platform. In the experiment,
GPS measurement is referred as absolute ground position for short and
long flight dataset. Then, the state estimators are investigated in term of
accuracy, speed and computational burden. The experimental results show
that Ethzasl MSF framework has outperformed good estimation response,
acceptable accuracy and reasonable computational burden. Moreover, its
flexibility allows users to add other sensory information for complex
scenarios.

In second part, an algorithm for 3D-localization during transition
between indoor and outdoor environments for a UAV is presented.
Localization inputs are based on information from GPS, inertial
measurement unit (IMU), monocular camera and optical flow sensor. The
information is carefully selected corresponding to the operating
environment regarding the GPS quality indicator which based on GPS



viii

gradient of variance. After that, the proposed smoothing offset approach is
employed to smooth the position estimation. The selected sensor data are
filtered by indirect extended Kalman filter for localization and extrinsic
sensor calibration in real-time. The results show, the proposed smoothing
offset generates a seamless and reasonable flight trajectory of UAV for
indoor-outdoor transition. Moreover, the method of decision-making to
cutoff GPS measurement even when it experiences poor signal quality can
still outperform conventional GPS- based cutoff method in terms of
response time.
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Introduction

The unmanned aerial vehicle (UAV) is a flying machine that it being
used for scientific, public and commercial purposes such as agriculture
farming, surveillance, mapping, search and rescue mission, firefighting
survey, medical transportation, aerial photogrammetry, inspection of
power lines, weather forecast from atmospheric analysis, traffic monitoring

in urban areas and etc.

There are two main types of UAV: heavier-than-air (e.g., fixed wing,
rotary wing) and lighter-than-air (e.g., balloon) categorized by how lift is
produced. The fixed wing UAV uses airspeed through the wing to produce
the lift. The rotary wing UAV uses spinning rotor with airfoil section
blades to produce the lift. The lighter-than-air use buoyancy to float in the

air.

The UAVs take an advantage of manned aircraft by removing
onboard pilot and pilot support systems to increase endurance, loiter time
and allow deployment on high risk situations. The most important
technology of UAV is the autonomous system. The faster decision-making
ability than pilot, accurate sensing and situation awareness are trends of
research and development according to increasing power of processing

onboard controller.

The static hovering and capable of vertical take-off and landing of
the rotary wing UAV, overcome the fixed wing UAV that use a large area
to take-off and landing. The most popular rotary wing UAV is the multi-

copter that contained more than three rotors to produce the lift and to



balance the thrust direction for stabilization. The multi-copter is also
compactness and has less mechanic components to failure than the

helicopter UAV. This makes a multi-copter suitable for many applications.

Because of UAV is a highly dynamic system, the various types of
sensors and a robust controller must be carefully designed. That is a
microprocessor with sensors integration, called the flight controller. The
UAYV controller has been studied and develop to control the orientation (or
attitude), acceleration, velocity and position such as proportional-integral-
derivative (PID) controller, sliding mode controller, linear-quadratic
regulator (LQR) controller, back-stepping controller and etc. In general,
the orientation, velocity and position are separately controlled. Often, the
P-PID-controller is used for orientation control, P-controller for velocity

control and P-controller for position control. In this thesis, the flight control

is sufficiently elaborated by a Pixhawk! flight controller.

Although the UAV is in control, the UAV controller may not
recognize the drifted position data from accumulated error of itself. Many
non-drift sensors are used to compensate this situation such as global
positioning system (GPS), laser scanner, camera, beacon, accelerometer
for gravitation alignment and etc. Often, these sensors cannot be used alone
for UAV navigation due to noise and some individual limitation, for
examples GPS cannot be used in obstructed satellite areas, laser scanner
cannot be used in unstructured area, camera cannot be used when low

ambient light or non-feature area. Thus, the sensor fusion algorithms are

1 Pixhawk, https./pixhawk.org/



developed by integrating those advantages to overcome each limitation and

improve the UAV state estimation.

In the past, the GPS/IMU based state estimation was well designed
to complete most of autonomous tasks but the drawback is that the GPS
requires clean signal and usually fails when operate indoor or in obstructed
satellite area. The ideal UAV should suite to assist the pilot control even in
urban or cluttered environments. Many researches focus on correcting the
GPS denied situation by using camera sensor and IMU fusion. There are
some popular visual odometry software packages for ROS (Robot
Operating System) such as SVO (Forster et al. 2014), DSO (Engel et al.
2016), and visual-inertial odometry such as ROVIO (Bloesch et al. 2015)
which are robust and able to localize a UAV under indoor environment in

real-time.

However, operation with visual odometry for a long duration under
same location may increase positioning error. Simultaneous localization
and mapping (SLAM) was used to solve this problem with capability in
mapping and reutilizing the map data. Many effective SLAM methods are
available as open source software, e.g., TUM_ARDRONE (Engel, Sturm,
et al. 2014), LSD_SLAM (Engel, Schops, et al. 2014) and Visual-Inertial
ORB-SLAM (Mur-Artal & Tardos 2017). Nevertheless, their main
drawback is that they have the greater re-projection error of each pixel in
the larger scene when it operates outdoor (Hutchison et al. 2010; Weiss et
al. 2011; and Chowdhary et al. 2013). This leads to inaccurate map
estimation and unstable trajectories. The large re-projection error also

induces the incorrect map scale estimation which unsuitable for positioning
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control of the UAV. To overcome this problem, some additional sensors
such as the GPS sensor must be added to enhance global trajectory

consistency and scale correction.

The main objective of this thesis is to study and develop an IMU-
based model state estimation algorithm for 3D UAV localization between
indoor-outdoor transitions to improve ability of operate in GPS denied and
degrade areas. This thesis divided into two parts. The first part is to find
and compare appropriate state estimations that are currently available. The
second part is to design an algorithm based on the selected state estimation

to achieve the objective.

In first part, in order to estimate position of an UAV which is a
nonlinear dynamic system, fast response and less computational burden are
important requirements. The performance comparison of three state
estimation algorithms: inertial navigation, robot localization and Ethzasl
MSF frameworks is deployed and discussed in Chapter 2. The
experimental results show that Ethzasl MSF framework has outperformed
good estimation response, acceptable accuracy and reasonable
computational burden. Moreover, its flexibility allows users to add other
sensory information to extend the system capability to achieve the thesis

goal.

In the second part, an algorithm of 3D-localization during transition
between indoor and outdoor environments for a UAV is presented in
Chapter 3. Localization inputs are based on information from GPS, IMU,

pressure sensor, monocular camera and optical flow sensor. The



information is carefully selected using GPS quality indicator method
regarding to the operating environment. After that, the smoothing offset
approach is employed to smooth the position estimation. The selected
sensor data are filtered by indirect extended Kalman filter for localization
and extrinsic sensor calibration in real-time. Results show a seamless offset
convergence of UAV localization for indoor-outdoor transition. Moreover,
the proposed method of decision-making to cutoff GPS measurement even
when it experiences poor signal quality can still outperform conventional

GPS-based cutoff method in terms of response time.

In conclusion, the UAV state estimation along with GPS quality
indicator for indoor-outdoor transition and pre-scale vision handling have
been studied. The proposed algorithm is successfully implemented to
navigate the UAV with low-cost sensors platform between high rise
building and outdoor. In field test, the result shown seamless transition
between building and outdoor area, give reasonable trajectory and perform
GPS recovery when available. In the future, this MSF work might be
further improved by adding on more sensor measurements to assist UAV
state estimation in more complex tasks, such as avoidance of moving

objects.
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Abstract: In order to estimate position of an unmanned
aerial vehicle (UAV) which is a nonlinear dynamic
system, accuracy, fast response and less computational
burden are important requirements. This work compares
performance of three state estimation algorithms: inertial
navigation, robot localization and Ethzasl MSF
frameworks. They are implemented on ROS (Robot
Operating System) to control the same UAV platform. In
the experiment, GPS measurement is referred as absolute
ground position for short and long flight dataset. Then,
the state estimators are investigated in term of accuracy,
speed and computational burden. The experimental
results show that Ethzasl MSF  framework has
outperformed good estimation response, acceptable
accuracy and reasonable computational burden.
Moreaver, its flexibility allows users to add other sensory
information for complex scenarios.

Key Words: State estimation; UAV navigation; EKF; GPS;
Inertial Nav; Robot localization; Multi-sensor fusion.

1. INTRODUCTION

An unmanned aerial vehicle (UAV) or “drone” is
widely used for aerial-photography, 3D-mapping,
transportation and etc. Most applications require a good
navigation system to assist pilot operation. Many research
works can be found in this field and many open-source
software packages are available.

The most common state estimation method is to
combine INS (Inertial Navigation System) with GPS
(Global Positioning System) information for merging
benefits of INS and GPS and reducing their errors as
shown in Table 1 [1]. INS is suitable for highly dynamic
navigation but trends to drift over time, whereas GPS can
bound the error but it has slow and fluctuated response.

Lpx4 autopilot firmware, https://github.com/PX4/Firmware/
2 robot_localization, http://wiki.ros.org/robot_localization

Using both together can improve performance of the
navigation system than either one alone [2].

Table 1. Advatages and drawbacks of INS and GPS

INS GPS
Measurement frequency | High Low
Error accumulate Unbounded | Bounded
Dynamic response Good Bad
Jamming susceptibility | Very low High
Attitude information Available Not available

Challenges for this state estimation apart from its
accuracy are speed of the state estimation, multi-
frequency and multi-delay measurement handling e.g.
various samplings of visual and GPS information.
Furthermore, flexibility of adding other sensory
information is advantage to be improved for navigation
performance. The main goal of this research is to compare
the three open-source state estimations that are based on
INS and GPS. They are the Inertial Nav (INAV)!,
robot_localization (RL)* and Ethzasl MSF frameworks.
(MSF)’. In summary, a proposed sensing technique that
developed based on MSF can significantly improve the
state estimation result. Detail of the algorithms,
performance criteria, experimental setup based results and
conclusion are respectively presented next.

2. STATE ESTIMATION ALGORITHMS

Inertial navigation, robot localization and MSF
estimations require two measurement models. First, the
measurement model of GPS (z;) that consists of 2-D
position (pg,./ and velocity (v,,,) measurements. It can
be written as

3 Ethz-asl MSF framework, http://wiki.ros.orgfethzas] sensor_fusion




pgps]
z = n 1
'gpsit Vgps gps (1)
ngps.p . . . .
where ng,s = |, ] is white Gaussian noise of GPS
gpsv

measurement. Second, an inertial measurement based on
accelerometer can be expressed as

an =ag +n, + b, (2)

where a,, is the measured acceleration of accelerometer
sensor, ag 1s the acceleration that expressed in body
frame, n, is white Gaussian noise and b, is the
accelerometer bias. Later, these two measurement models
will be inputs to estimate the position state for all studied
algorithms.

2.1 The inertial navigation (INAV)

INAV is one of accurate state estimators that used in
PX4 firmware [3]. It has an advantage of a compact code
that is compatible with cheap microcontrollers such as
Arduino. It utilizes both GPS position and velocity
measurements to estimate the 3DOF position of an UAV
by compensating the measurement delay as shown in Fig.

Romtional
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Fig. 1. The INAV algorithm used in PX4 firmware.
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The body acceleration ag can be determined by Eq.
(2). Then, the body acceleration relative to the earth frame
(a) can be obtained by

a = Regpag (3)

where R is the rotational matrix which can be obtained
from the attitude and heading reference system (AHRS)
[4]. The state variable (x;) consists of position (p;) and
velocity (v;) vectors in current time step ¢ that relative to
the earth frame as
x=[p vl )

In general, the position and velocity vectors have three
components in the x, y and z directions. However, in
practice, the estimations are calculate only in x and y
components because the measured GPS in the z direction
has too much fluctuation at low altitude [5]. First, before
any correction, the initial state is estimated by

1
Bt = De-1 + Ve-14t + ESREBaBAtZ (3)
Uy = v,y + SRggagAt (6)

where P, is the predicted position, ¥, is the predicted
velocity and S = [I,,; 0;x,] is a 2 X 3 selection matrix.
The hat sign means that the state has not been adjusted by
the correction step.

After the GPS information is available, the correction
(corr) of the state can be determined by the difference
between the state at the current iteration (t) and the state
at the (t — k) iteration as written in Eqs (7) and (8) where
and k is the number of iteration that corresponds to the
delayed time of the measurement.

COTTy = Pgpst — Pr—k (7N
COTTy = Vgpst — Vi-k (8)

Similarly, the accelerometer bias (b,,) can also be
corrected as

ba,t = ba,t—l + REB,t—kbaerr (9)
where
bg corr = —(corrn, W + corr, W) (10)
Consequently, the position and wvelocity states are
respectively predicted as

Pr + corm, WAt + corrn, WP At
Dy + corn, W, At

(n
(12)

D
L3

where W, and W, are the position and velocity GPS
weight functions, respectively. They are determined by
GPS standard deviation gy, for state correction as

axy min
W, =c - 13
F ? max (gxyl O-)chmin ) ( )
W, = c,W, (14)

where ¢, and c,, are the positive constants and gy, mn is
the minimum acceptable GPS standard deviation. Then,
state variables p, and v, will be stored for the next
prediction and correction.

2.2 The robot localization (RL)

The RL is a software package for nonlinear state
estimation developed by Charles River Analytics. It
operates under Robot Operation System (ROS) [6]. The
package contains an implementation of 6DOF nonlinear
state estimators that consists of Extended Kalman Filter
(EKF) and Unscented Kalman Filter (UKF). In this work,
the UKF for 6DOF estimation is implemented. The 15-
state variable x, composed of state vectors relative to the
earth frame is

x=[pf af v of oI (15)
where p; is the position state vector, g, is the Euler
attitude state vector, v; the velocity state vector, w, is the



angular velocity state vector and a; is the linear
acceleration state vector.

The RL utilizes information from sensors according to
ROS format. It supports relative measurement such as
IMU, odometry sensors (e.g. wheel-travelled distance and
vision velocity) that subjected to increase error in time,
and absolute measurement (e.g. GPS, VICON) as shown
in Fig. 2. This study uses the position p; and velocity
vy measurements from GPS, while the attitude g, and
acceleration a are from AHRS algorithm and IMU
respectively.

GPS Pr. Ut
Filtered state

Pe: Qe Ve

ag, Wy @y, dy

MU —)@ahmlim

“© G
AHRS —— C)x\D

Fig. 2. Sensor measurement and state variables of the
robot localization package®

2.3 The modified MSF framework (MSF)

Ethzasl MSF framework is also a ROS software
package that was developed by Eidgendssische
Technische Hochschule Ziirich. It contains time delay
compensation for single and multi-sensor fusion based on
an indirect (error-state) EKF for nonlinear 6DOF pose
estimation including intrinsic and extrinsic sensor
calibrations. The EKF is divided into the two stages:
prediction and update. The prediction is modelled based
on IMU measurement. This means that the framework can
be implemented on any robot that has IMU. The detail
algorithm of this framework can be found in [7].

In this work, the nominal state x; is defined with the
16-element variables relative to the earth frame as

Xy = [PI vl qf bc;:,t bcf,t]‘r (16)
where p; is the IMU position, v; is the IMU velocity, q;
is the IMU attitude, b, is the gyro biases and b, is the
accelerometer biases. The 15 elements of the error-state
can be written as

% = [p7 Ao} )

867 AblL. AbL.]"
where the error-state for non-quaternion components can
be determined by the difference between the true state n
and estimated state i as
An=n-1 (18)
where n € [pt,vt, by, bwjt}. In Hamilton representation

of the quaternion [8], the quaternion error §g can be
described in term of the rotational vector 68 [9] as

4 robot localization package, http://wiki ros.org/robot_localization

sq=qej~ (19)

1
)
2

The nominal state are predicted by using the 2" order
Taylor truncation integration as follows,

1
Pr = Pra v AL+ E(Rgs(am,r—1 - ba,r—i) + Q)Atz (20)
Vp =Veoqg + (REB(am,[—l - ba,:—l) + g)ﬂt + v, 21
q:=q9® Q{(‘-"m,r-i = b1 )ﬁt + gn} (22)
bcu,t = Ibc..;,c—:l + byn (23)
ba,r =bgs_1+ ban (24)

where Rpg £ Rep{q,} is the rotational matrix that can be
obtained from quaternion ¢, ®Wme—q is the angular
velocity that measured from gyroscope unit at time step ¢,
Up, 0y, byn and by, are the Gaussian noises of velocity,
orientation and estimated biases, respectively. The
indirect EKF prediction step of the error-state can be
summarized as

(25)
(26)

§t = Fp X1
P = F.D,tPth,t + Qpt

where Fp ; and Qp  are the discretized Jacobian matrixes
of IMU model, P; is the previous error-state covariance
matrix, B, is the predicted error-state covariance matrix
and Qp is the covariance matrix in discrete time, which
has been presented in [10].

When the measurement is available, each update
follows the same procedure as expressed in Eq. (27)
through Eq. (30).

Ve =2 — % (27)

K, = PHT (HP.HT +R,)™ 28)
i =Ky, (29)
Pa=(- Kth)P: (30)

where y; is the analytic residual, z; is the measurement,
Z; 1s the measurement from the model, H; is the Jacobian
of the analytic residual with respect to the error-state, K;
is the Kalman gain, P, is the propagated error-state
covariance and R, is the covariance of measurement. The
updated error-state ¥;" is injected to the nominal state x as
x=xoi" (€28)
where the operator @ is defined by the following rules.
First, all states except quaternion states can be determined
by x; = x4y + Ax" and second, quaternion can be
determined by q; = q;—1 ® q{56;} [9].
Finally, the true state x, and the updated error-state
covariance matrix P,,, is stored for the next iteration
while the error-state is reset to zero.

2.3.1 GPS error measurement model
A 2-D GPS velocity measurement handler Eq.(1) is
added into the framework in order to fuse with GPS



measurement. Then, the GPS error measurement model
can be written as

Apgps

n.qu]
Avyp

Nypsw (32)

Zgpst =

where ng, , is the white Gaussian noise of GPS position
and g, is the white Gaussian noise of GPS velocity.
The GPS measurement error model can be linearized as

igpsjr = ngsft + Rgps,t (33)

where H,,; denotes the Jacobian of the GPS measurement
with respect to the error-state.

Ho = Ly, 02 Oz 02><10]

gps (34)

OZXZ 02><1 IZXZ 02><1[)

The measurement covariance R, . can be written as

Rops = diag[a},, o7y (35)
where o, is the horizontal position standard deviation
and g, is the horizontal speed standard deviation. They
can be obtained directly from GPS information.

Mahalanobis test is implemented to reject the GPS
measurement outlier before applying the update to the
error-state. In general, the Mahalanobis distance d may
not always be positive, it has to be modified by forcing the
error-state covariance matrix P to be the symmetric matrix
as follow,

-1
de = ytT (ngsPtngs + Rgps,t) Ve (36)

where d, P, is the symmetric covariance matrix that can
be obtained by Py, = = (P, + PT).

2.3.2 Attitude error measurement model

GPS measurement does not provide reliable attitude
observation. Thus, the Mahony's AHRS algorithm [4] is
adopted as an estimated observed attitude measurement.
The attitude error Z;,.; can be defined as [9]

5 1.
arrs =5(5%) 37
where §,e. 1s the pure quaternion and §, is the real
quaternion. The analytic residual § can be computed by
using multiplication [11] instead of using subtraction [12]
as

q = q'® Jahrs (38)
where qgnrs 1s the AHRS attitude measurement. The
attitude error can be linearized as

fﬂhrs,t = Hﬂhrsft + Ruhrs,t (39)
where

3 Pixhawk, https://pixhawk.org/
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03x6] (40)

(41)

Hgjrs = [03XE I3x3
Raprst = qu,t[',b(l]

where g, is the orientation standard deviation which can
be obtained from Mahony's AHRS algorithm in [13].

3. EXPERIMENTAL SETUP

All proposed algorithms are tested on a quadrotor
UAV as shown in Fig. 3. The flight control board is
developed based on PX4 firmware autopilot [3]. The
Pixhawk® board consists of an IMU (3-axis
accelerometer+gyroscope (MEMS-IMU, MPU6000),
internal/external compass (HMCS5883L), barometric
sensor (MS5611) and external GPS (Ublox NEO-7N).
The state estimation and trajectory generation are
processed by an Odroid U3 computer with 1.7GHz Quad-
Core processor and memory of 2 GB. The computer is
installed on the UAV.

PIXHAWK flight P I—
controller
build-in IMU, barometer

Odroid U3 1.7GHz Quad-
Core processor and 2GByte
RAM

/

Fig. 3. The tested quadrotor UAV.

Platform weight 2.5kg

The desired velocity and trajectory are generated by a
waypoint equation and sent to the Pixhawk flight
controller. There are two flight testing paths: short and
long travelling distance. The short flight path is an eight-
shape trajectory and the UAV desired heading velocity is
set at 0.6 m/s. The long flight path is a rectangular-shape
trajectory (70m>100m) and the UAV travels with desired
velocity of 2 m/s and stops at each corner. The short and
long flight datasets (IMU, GPS, barometer and compass
information) are recorded in ROS bag format®. Then, the
fight datasets are fed to the state estimators as inputs. The
estimation performance is investigated by means of
position, accuracy and computation burden.

In order to validate the estimation accuracy, the GPS
delayed time is shifted by 0.25 sec to compute the absolute
ground position. The shift between the ground truth and
the estimated position indicates the prediction accuracy.
A computer with Intel Core i7-2630QM 2.00 GHz
processor and memory of 2 GB is the shared platform for
testing the computational burden of each state estimator.
Flexibility of framework development is defined by
ability of adding new sensory information with minimum
coding.

© roshag, http://wiki.ros.org/roshag



4. RESULTS

All state estimation frameworks are tested with the
short flight trajectory compared with the ground truth. The
result (Fig. 4) shows that the MSF framework has the best
position estimation for the flight path with many turns in
short distance.

Short distance trajectory

North (m)

East (m)
Fig. 4. Position estimation results of short flight testing.

The perimeter of the long flight path ground truth is
about the size of a soccer field as shown in Fig. 5(left). In
large scale view, state estimation results of each
framework are very hard to distinguish (Fig. 5 (right)).
Thus, the change of estimated positon in time is plotted in
small scale to compare the accuracy of the frameworks.

60 80

East (m)
Fig. 5. Position estimation results of long flight testing in
large scale view.

Position estimation and error compared with ground
truth of the short and long flight tests are shown in Fig. 6
and 7, respectively. The modified MSF framework fusing
with GPS velocity input provides the most accurate
estimation for the short flight test (Fig. 6). However, the
INAV provides the most accurate state estimation for the
long flight test (Fig. 7). To quantify accuracy of state
estimation algorithms, root-mean-square error (RMSE) of
the position state is determined by comparing with the
ground truth as reported in Table 2.

INAV position INAV position error
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Fig. 6. Position estimation (x-direction) and error
compared with ground truth of the short flight test.
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Fig. 7. Position estimation (x-direction) and error
compared with ground truth of the long flight test.

Table 2. Root-mean-square error of position estimation

Algorithm Short flight | Long flight
INAV 0.13 0.12
MSF 0.17 0.22
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For speed estimation, both INAV and Modified MSF
framewaorks can predict the state before arrival of the GPS
information, that is faster than that of the RL framework.
It is because the INAV and MSF frameworks have the
time-delayed compensation and the
accelerometer/gyroscope bias correction as mentioned
before.

The flexibility of framework is compared in Table 3.
It shows that the MSF is the most flexible framework for
adding other state variables or measurement types, such as
INS, GPS or vision odometry. The MSF also supports the
relative measurement handling on exteroceptive sensors
such as laser scan or vision sensors [14].

Table 3. Properties of frameworks
Delay Modification

compensa- | measuremen Covariance |Mahalanobis |State
P . handling distance extendable
ted t matrix
INAV |Yes No Constant  |No No
MSF  [Yes Yes Statistically |Yes Yes
RL No No Statistically |Yes No

On the other hand, the RL framework utilizes UKF to
avoid Jacobian matrix derivation for both prediction and
correction steps. This causes the RL framework to have
the highest computational burden as shown in Table 4.
Hence, the RL framework is not suitable for the limited
computational resource platform.

Table 4 Computational burden.

Algorithms Rate CPU Load
INAV Up to IMU (100hz)  |25%

MSF Up to IMU (100hz) |38%

RL 15hz 112%

5. CONCLUSION

The three state estimation algorithms are evaluated
and experimentally compared in this work. The MSF
algorithm fusing with the GPS velocity information has
the good position estimation, in term of accuracy, and
flexibility of adding sensor inputs with the minimum work
to convert measurement data to the state variables.
Although the MSF has slightly lower accuracy in position
estimation than that of INAV. This work is a guidance on
choosing a suitable open-source framework for UAV
navigation. Next, the MSF framework will be tested in
complex situations such as outdoor-to-indoor flight.
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A method for UAV multi-sensor fusion
3D-localization under degraded or denied
GPS situation

Thanabadee Bulunseechart and Pruittikorn Smithmaitrie

Abstract: Unmanned aerial vehicles (UAVs) have been developed to be used in complex
environments. Continuity of a UAV operation when GPS is degraded or denied is crucial in
many applications, such as flying near high buildings and trees, or flying outdoor-to-indoor.
In this paper, an algorithm for 3D-localization during transition between indoor and out-
door environments for a UAV is presented. Localization inputs are based on information
from GPS, inertial measurement unit, monocular camera, and optical flow sensor.
Information is carefully selected using GPS quality indicator method corresponding to the
operating environment. After that, a smoothing offset approach is employed to smooth
the position estimation. The selected sensors’ data are filtered by indirect extended
Kalman filter for localization and extrinsic sensor calibration in real time. Results show a
seamless offset convergence of UAV localization for indoor-outdoor transition. Moreover,
the proposed method of decision-making to cut off GPS measurement even when it experi-
ences poor signal quality can still outperform conventional GPS-based cutoff method in
terms of response time.

Key words: sensor fusion, simultaneous localization and mapping (SLAM), unmanned aerial
vehicles (UAV), global positioning system (GPS), GPS denied environments, Kalman filters,
measurement of uncertainty.

Résumé : Les véhicules aériens sans pilote (UAV) ont été développés afin d’étre utilisés dans
des environnements complexes. La continuité du fonctionnement d’un UAV, dans le cas ol
le systéme de positionnement GPS est dégradé ou sans service, est cruciale dans un grand
nombre d’applications comme le cas du vol d'un UAV pres d’édifices en hauteur et d’arbres,
ou de vol de I'extérieur a I'intérieur. Dans le cadre de cette étude, on présente un algorithme
aux fins de la localisation tridimensionnelle pendant la transition d'un UAV entre des envi-
ronnements intérieur et extérieur. Les saisies de localisation sont fondées sur des données
de GPS, d’un appareil d’unité de mesure inertielle, d’'un appareil-photo monoculaire et
d’un capteur de flux optique. Les informations sont soigneusement choisies utilisant la
méthode d’'indicateur de la qualité GPS correspondant au contexte de manceuvre. Apres
cela, une approche de lissage des écarts est employée pour lisser 1’évaluation de la position.
Les données des capteurs choisis sont filtrées par le filtre de Kalman élargi indirect pour la
localisation et I'étalonnage extrinseque de capteurs en temps réel. Les résultats montrent
une convergence uniforme des écarts de localisation d’UAV au niveau de la transition
intérieure-extérieure. De plus, la méthode proposée de prise de décision quant au seuil de
mesure de GPS, méme quand celui-ci éprouve une faible qualité de signal, peut toutefois
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surpasser la méthode traditionnelle d’établissement de seuil GPS, et ce, au niveau du temps
de réponse. [Traduit par la Rédaction)]

Mots-clés : fusion de données de capteurs, cartographie et localisation simultanées (« SLAM »),
véhicules aériens sans pilote (UAV), systéme de localisation GPS, environnements sans service
GPS, filtres de Kalman, incertitude de mesure.

1. Introduction

During the past several years, unmanned aerial vehicle (UAV) navigation research has
been highly active for both indoor and outdoor applications. The main research goal is to
improve UAV performance in many applications, such as agriculture farming, surveillance,
mapping, search and rescue, and aerial photogrammetry. These applications require a
robust state estimation of the UAV to cope with highly dynamic responses.

Many research works achieve good UAV state estimation for navigation with low-cost
sensors (Lynen et al. 2013; Abeywardena et al. 2014; Burri et al. 2015; Leishman and McLain
2015; Santamaria-Navarro et al. 2015). Two major groups of dynamic models for state esti-
mation algorithm are: the inertial measurement unit (IMU)-based approach (Lynen et al.
2013; Santamaria-Navarro et al. 2015) and the model-based approach (Abeywardena et al.
2014; Burri et al. 2015; Leishman and McLain 2015). The advantage of the IMU-based model
is that UAV motion is directly modeled based on IMU information to avoid calculation com-
plexity and to increase the ease of implementation on various types of sensor information.
On the other hand, the model-based approach is a mathematical model of specific UAV
dynamics. It is complicated to derive though it is more robust in terms of disturbance rejec-
tion and state estimator convergence.

Research on vision-based navigation systems has been increasingly conducted during
the past several years. There are some popular visual odometry software packages for ROS
(Robot Operating System) such as SVO (Forster et al. 2014), DSO (Engel et al. 2016), and
visual-inertial odometry, such as ROVIO (Bloesch et al. 2015), which are robust and able to
localize a UAV under indoor environment in real-time. However, operation with visual
odometry for a long duration under the same location may increase positioning error.
Simultaneous localization and mapping (SLAM) was used to solve this problem with its
capability in mapping and reutilizing the map data. Many effective SLAM methods are avail-
able as open source software (e.g., TUM_ARDRONE (Engel et al. 2014b), LSD_SLAM (Engel
et al. 2014a), and visual-inertial ORB-SLAM (Mur-Artal and Tardos 2017). Nevertheless, their
main drawback is the greater re-projection error of each pixel of the larger scene
(Hutchison et al. 2010; Weiss et al. 2011; Chowdhary et al. 2013) when it operates outdoors.
This leads to inaccurate map estimation and unstable trajectories. The larger re-projection
error also induces incorrect map scale estimation unsuitable for positioning control of
the UAV. To overcome this problem, some additional sensors, such as a GPS sensor, must
be added to enhance global trajectory consistency and scale correction.

The main goal of this work is to develop an algorithm for 3D UAV localization between
indoor—outdoor transition environment similar to works presented by Nyholm (2015) and
Shen et al. (2014). However, proprioceptive and exteroceptive methods are adopted to apply
to low-cost sensors. The sensors are: a MEMS IMU (MPU6000), a barometric sensor (MEAS
MS5611), and a magnetometer (ST Micro LSM303D), which are built in within a Pixhawk
flight controller unit (Meier et al. 2012), GPS sensor (UBLOX NEO-7N), optical flow sensor
(PX4FLOW), and CMOS camera (QUMOX-5J4000). In this work, the UAV dynamics are mod-
eled by the IMU model-based state estimation to lessen computational burden.

State estimation, based on indirect extended Kalman filter (IEKF) (Lynen et al. 2013), has
an advantage of delay measurement compensation with good results in GPS outdoor

< Published by NRC Research Press
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positioning, and that open-source code is also available. For indoor localization, the
ORB-SLAM-inertial algorithm is implemented in the case of degraded or denied GPS mea-
surements because its processed large-scale map can be reused to prevent drifting at recog-
nized locations.

The anticipated benefit of this work is to expand the frontier of semi-autonomous UAV
operation to more applications that involve unpredictable GPS quality environment. One
example is the search and rescue application that uses a semi-autonomous UAV to survey
a variety of areas: indoors, high-rise buildings, and open spaces. Another example is that
of a human-assisted UAV that operates in an unpredictable environment with a chance of
having degraded or denied GPS signal, such as when inside an affected building or under
bad weather conditions. This work aims to improve flight operation by providing reason-
able and robust trajectory environment transitions.

The outline of this paper is as follows: multi-sensor fusion is described for estimation of
3D position, velocity, attitude, etc.; method of GPS measurement quality quantization is
then presented; pre-scale process of SLAM is subsequently discussed; state estimation tech-
nique for UAV positioning during outdoor-to-indoor transition is then proposed following
the experimental setup and field test results.

2. Multi-sensor fusion

Multi-sensor fusion (MSF) is a signal processing technique to combine information from
different sensors with an aim to provide robust and complete navigation information for
UAV localization. IEKF is one of the widely used multi-sensor fusions chosen for this work
because its error-state guarantees Jacobian linearization, which is valid when operating
close to the origin. Moreover, some second-order terms of the error-state could be neglected
in the computation (Sola 2015).

2.1. IEKF

The IEKF categorizes state variables into two parts. They are the error-states (x), which
are the small change of states in a short period of time, and the estimated-states (), which
estimated the states from the last prediction. The true-state (x) is the suitable combination
of error- and estimated-states, which is used as control feedback states in the control
system.

In this study, the MSF true-state of the UAV consists of 28 state variables, among which a
six-degree-of-freedom position is included. The six-degree-of-freedom position consists of 10
states (three states of position, four states of orientation in quaternion, and three states of
velocity to describe dynamic of the vehicle). The orientation is presented in quaternion to
avoid the problem of gimbal lock phenomenon occurring at Euler angles. The remaining
18 states are auxiliary states for self-calibration of the UAV. The true-state is defined as

T
M x={pL v g b5 B 2 pl, g% = pL}

where p.,;, V. and q,,; are the position, velocity, and orientation state variables, respec-
tively, expressed in the world frame; b,, and b, are the gyroscope and accelerometer bias
variables, respectively, expressed in the IMU frame; 4 is the visual scale; p,,, is the position
of vision frame expressed in the world frame; g;¢ is the quaternion rotational offset of the
optical flow sensor frame relative to the IMU frame expressed in terms of the IMU frame;
tz is the terrain height expressed in the world frame; and p;; is the position offset of the
GPS sensor frame relative to the IMU frame written in terms of the IMU frame.

It is assumed that the IMU frame and the body frame are at the same place, as shown
in Fig. 1. The world frame is the reference of the IEKF, which drifted over time.
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Fig. 1. The UAV reference frames.
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The stationary global frame is placed at the UAV takeoff point, which needed GPS to esti-
mate the location. The result of the world frame drifted away from the global frame can
be calculated by an estimator, and the difference is the takeoff point correction relative
to the world frame in the control system. The camera frame is placed at the camera sen-
sor lens and measured relative to the vision frame of the SLAM system. The vision frame
is located where the SLAM system is initialized and usually not the same as the takeoff
location.

Matrices and vectors are written in boldfacewhile scalar values are written in italic type.

The error-state of a UAV can be written as

. .. T
(2) X= {5;,; svI. 60T, bl obT 51 opl, oL otz 5piTp}

where the error-state is defined as §x = x, — X for position, velocity, and bias. The quaternion
error-state is defined as the multiplication §q=q ® q* ~[(1/2)60 1]T as presented by

Crassidis et al. (2007); [A] notation is for the estimated-state.

In this study, the multi-sensor fusion algorithm is developed based on the IEKF. It con-
sists of two processing phases, as shown in Fig. 2. First, in the prediction phase, the IMU
information (angular velocity @ and linear acceleration a) is treated as the control variable
U, to propagate the estimated-state X, by using the previous true-state of the system
dynamic fiXx_1, #m). Next, the discretized error-state system dynamic propagates the error-
state dx, in the predicted error-state. Then, the estimated error covariance P~ is determined
by the error-state and discretized covariance matrix Q. Second, the correction phase begins
as soon as a sensor measurement z,, is available. However, update rate of the correction
phase is much slower than that of the prediction phase. The sensor measurement model
h(x) is linearized to be H before computation of the Kalman gain K that related to the sensor
measurement covariance R. Later, the Kalman gain is used to update the error state and
error covariance. Consequently, the error-state is used for correction of the true-state that
is then used in the next iteration.

2.2. Measurement of sensors
2.2.1. GPS measurement

For outdoor environment, GPS plays a major role in the world position measurement
and also can be used to determine yaw measurement (Lynen et al. 2013). The yaw
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Fig. 2. The multi-sensor fusion algorithm state diagram.
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measurement is not directly provided by a GPS sensor. However, it can be determined by
the UAV movement whereas the GPS sensor location relative to the IMU frame is known.
For example, when the UAV purely rotates around the IMU frame, the GPS measurement
and angular velocity change while the linear acceleration does not change. Thus, the predic-
tion phase will report the UAV rotation movement. When the predicted GPS measurement
is non-zero, the yaw measurement is corrected in every iteration in the correction phase.
A 3D GPS position measurement model z,ps can be written as

(3) Zops = Pwi + Caipip + Mgy

where C,; £ Cyi(q,;) is the quaternion-derived rotation matrix of the IMU frame with
respect to the world frame and ngp, is the white Gaussian noise.

The error-state measurement is the difference between the true-state and the estimated-
state, thus

(4) Zgps =2Zgps — (f"wi + éaii’ip)

where z,, is the error-state of the 3D GPS position measurement and Cyi 2 C(§,s;) is the
rotation matrix corresponding to the estimated attitude §,,;-

Equation (4) can be linearized as z,,, = H,,X where Jacobian Hg,s denotes the Jacobian of
GPS measurement with respect to the error-state, thus

(5) Hgps= [IS)G O35 —Cyi Pipl, O34 Cyi

where [« is the skew matrix.

The —C,; [P;p),, term can be used to recover the attitude error-state 50, of x. That is, the
position measurement can be used as the attitude error measurement as long as the offset
position between the GPS sensor and IMU sensor p;, is non-zero. The observability analysis
has guaranteed that the yaw measurement is observable (Weiss 2012). Covariance of GPS
measurements can be obtained directly from the GPS module because horizontal accuracy
estimate is available. Covariance of the GPS measurement — an indicator of the UAV envi-
ronment whether it is indoor or outdoor — increases when satellite signal is obstructed.
This will be further discussed in Sect. 3.
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2.2.2. Vision measurement

In this work, the ORB-SLAM-Inertial software package provides a six-degree-of-freedom
measurement of position and orientation. The obtained map and graph-based optimization
provide a better measurement than the GPS does. The ORB-SLAM-Inertial uses FAST corner
and ORB descriptor to estimate the camera pose, and applies bundle adjustment to refine
the map points as shown in Fig. 3. On the other hand, the IMU data is used to calculate
the scale using the pre-integration technique as discussed in Sect. 4. Then, the scaled cam-
era pose is corrected by an initial offset, which is the alignment of the vision measurement
to the current state of the IEKF, as mentioned in Sect. 5. In the IEKF measurement, the
vision is finally measured relative to the vision frame as soon as the SLAM is initialized.

This work proposes the vision measurement model, which estimates the position drift of
the vision frame away from the world frame expressed in terms of the world frame, and the
drift scale to work with low-cost sensor and processor. Other states, such as position and
orientation offsets between the camera and IMU frames are calibrated offline using Kalibr
toolbox (Maye et al. 2013). The 3D position vision measurement model z, ;, can be defined
thus

(6) zyp=(Pwi—Pw)i+m,
The error measurement can be defined as
() Zep=2up = (Pui =P )
which can be linearized as Z, , = H, ,X, where the Jacobian H, , is
(8) Hyp= [I3x3:4:- Osxiz (P—Pwv)T Dixad Osxr
The vision attitude measurement z,, is calculated by

[9) Zm =Gy @ Gve,m ® q:c

where q,,, is the attitude offset of the vision frame with respect to the world frame, q,, , is
the attitude measurement from SLAM system, and q; is the attitude of camera frame with
respect to the IMU frame. Both g, and g;. are constants and will be analyzed in Sects. 5
and 6, respectively. Hence, the attitude measurement model z, 4 can be written as

(10) Zyq=qwi ® q,

where ¢, is the attitude zero-mean white Gaussian noise.
The attitude error measurement can be written as

(1) Zuq=2q—2g=Gui ® (dwi)

Error measurement of the attitude can be linearized as z, ; = H, (X where the Jacobian
H, 4 denotes the Jacobian of vision attitude measurement with respect to the error-state

T
(12) Hv,q= [Osxe | 03x1?]

In general, vision measurements have some time delay compared to IMU measurements.
This means that the images taken display disagreeing timestamps because of ambient

light change between indoor and outdoor flight, for example (Hutchison et al. 2010).
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Fig. 3. The vision measurement flowchart.
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The unsynchronized measurement can affect both the accelerometer and the gyroscope
bias estimations. Optimal time of adjustment is needed to correct the timestamp between
the image trigger and the IMU measurement. This can be calculated offline using least-
square optimization, thus

N
(13)  tgeny = dtmdin (Z llzq,x = “iwi‘k—d“)

k=1

where tg1,, and dt are the optimal time delay and the sample period, respectively; z,; and
i ra are the visual orientation measurement and the dth prior iteration of the estimated
orientation from MSF. Position measurement is not used in this step because the position
can be scaled arbitrarily. Sufficient rotational excitation for all axes is required to correct
the measurement (Yang and Shen 2017).

The quality of visual SLAM measurement would be low with a lot of outliers when oper-
ated under outdoor environment due to the more distant scene (Hutchison et al. 2010).
Thus, a fuzzy logic rule table is applied to classify the priority between visual SLAM and
GPS measurement, thus,

at
gps
(14) Oyp =20y,
Ogps

where oy, is the artificial variance of vision positioning; and og,s and oy are the GPS hori-
zontal variance and its cutoff level, respectively.

2.2.3. Barometer measurement

In practice, GPS height estimation fluctuates widely at low altitude (Shi and Cannon
1995). Therefore, a barometer is used to measure the altitude, especially when operating
under outdoor environment. The barometer measurement model can be written as

(15) Zpz = Pwiz T Mpz

where p.,; , is the height (in the z-direction) of the position state p,,; expressed in terms of
the world frame and np, is the white Gaussian noise.
The error measurement of barometer can be written as

(16] Epz =Zpg — f)wi‘z

where p,; , is the estimated height (in the z-direction) of the position state p,,; expressed in
terms of the world frame.

The error measurement of barometer can be linearized as z,, ; = H,,X where the Jacobian
Hp,; can be defined as
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(17) sz = [olx?. 1 01x23]

2.2.4. Optical flow measurement

When an UAV has only vision measurement data (GPS measurement is denied), the posi-
tion scale estimation calculated based on vision, barometric, and IMU measurement may
not be enough in some cases, such as when flying with a constant height and velocity.
This makes scale estimation prone to divergence, especially when the actual scale is largely
different from the estimated scale.

Optical flow is chosen as the body velocity measurement to improve scale estimation
and to prevent scale divergence. It is assumed that the UAV flies at low speed over a leveled
terrain. The relationship between the mean displacement of the optical flow sensor and the
angular velocity can be written thus

h
(18) wve=- Es{vabs -w)

where h is the height above ground level (AGL) expressed in terms of the world frame,
(h = pwi.z — tz, calculated from the previous state); At is the flow sampling period;

100
S=[010}

is the selective matrix that allows the pixel displacement to be expressed only in the x- and
y-axes; v, € R3!is the pixel displacement per metre in the x- and y-axes of the body frame;
and o is the body angular velocity from the optical flow internal gyroscope.

The optical flow measurement model zf can be written as

(19) z=SC}CL.v; +n;

where Cis = Ci¢(q;¢) is the rotation matrix of the optical flow sensor relative to the IMU
frame expressed in terms of the IMU frame and nyis the white Gaussian noise.
The error measurement model is

(20) Zg =2¢ — SCiCuaby;

This can be linearized to Z; = H¢X using the relation C}, ~ (I - |80, ) Cr; and the skew
matrix property |a|,b=—|b]. a.
The Jacobian Hf can be written as

(21) Hy= [szs SCiCyi  SCir {ﬁ&i’me 020 S {f-‘?fﬁ&iirme 02><4]

Visual scale ] is always observable by the body velocity measurement (Weiss 2012).

2.2.5. Terrain measurement

To achieve accurate body velocity estimation from the optical flow sensor, the AGL meas-
urement and its estimation must be accurate as well. Low-cost ultrasonic sensors often give
faulty measurements over outdoor terrain, for example, when measuring over grass or
rough floor, and in noisy environment. Instead of direct estimation, ultrasonic sensing
information of the ground level is estimated using MSF, and then the AGL is used to deter-
mine the terrain height, as shown in Fig. 4.

& Published by NRC Research Press



32

Bulunseechart and Smithmaitrie 163

Fig. 4. Relationship between terrain height, above-ground level (AGL), and estimated UAV altitude from the
barometer.
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The terrain measurement model can be defined as
(22) zy= Pwi,z —tZ+ Ny

where py; , is the height (z-axis) of the IMU frame with respect to the world frame; tz is the
terrain height; and ny; is the white Gaussian noise.
The error measurement model can be defined as

(23) Zp =2z, - (f’wi.z - fz)
which can be linearized as z,, = H;,Xx where the Jacobian Hy, can be written as

(24) Hu=[0pe 1 Opao -1 O

The Mahalanobis distance is used to reject outlier of the terrain measurement when the
outlier is larger than the critical /*. R

Finally, the AGL can be computed by h = p,; , — iz for scaling up the optical flow velocity
to the next iteration.

3. GPS quality indicator

GPS measurement should be taken into account only when its variance is less than a spe-
cific value. Many studies rely on pseudo-range (Serranoa et al. 2014) or horizontal-vertical
dilution of precision (HDOP-VDOP) (Kealy et al. 2010) to qualify the GPS signal. In practice,
pseudo-range algorithm is complex, but on the other hand, the HDOP-VDOP cutoff method
is too slow and too rough to be implemented on highly dynamic UAV state estimation.
Recently, GPS horizontal-vertical position accuracy (hAcc-vAcc), which corresponds to 1o
value in metric units, is successfully used as GPS position measurement variance in many
commercial UAV firmware (e.g., PX4 and Ardupilot) (Meier et al. 2015; ArduPilot Open
Source Autopilot) with advantages such as fast response, high accuracy, and the ability to
be implemented on low-cost GPS sensors.

Nevertheless, hAcc-vAcc variance provides a poor estimation when the number of vis-
ible satellites is <5. This is because hAcc-vAcc variance increases slowly and is not suitable
for being used as a cutoff number. This happens when the UAV flies close to a tall building
and the GPS sensor yields faulty position measurements before the state-estimations switch
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off the GPS information, and this fault indicates wrongly that it is indoors. To avoid this
problem, this work proposes a method to indicate GPS quality using gradient of the GPS
variance.

The gradient of hAcc variance is defined as

[25] Ao = O — O
(26)  Obounded = Omin < 6k < Omax

where Ag is the gradient of the variance and g is the hAcc variance information from the
GPS sensor at the kth iteration.
The qualified variables as the criteria function D(s) can be defined as

@) Dlosounied) =5g0(80) [sgn(0)(p —1)(Tomted=Coin)

Omax — Omin
where sgn(-) is the sign function that extracts the sign of a real number and

B= 1 whenAs=>0
“1p whenAs <0

where f is the selected response rate where 0 < f<1.

Figure 5 shows the behavior output from the criteria function eq. (27) when the GPS vari-
ance changes. For example, a UAV has a current GPS variance of 3 m outdoors, then the UAV
goes indoors, the variance increases to 4 m (As > 0), so the criterion of the bad trend line
(the upper dashed line in Fig. 5) is used to calculate the quality score, which is from Point
1 to Point 2. When the UAV comes back outdoors, the GPS variance reduces from 4 to
2.5 m (Ac < 0, the criterion is calculated along the good GPS trend line (the lower full-line)
from Point 3 to Point 4.

The criteria values of good and bad trends are determined as soon as the GPS variance
changes direction (As sign is changed). Whenever the UAV goes indoors again, the GPS vari-
ance increases (As > 0) and the criteria function will switch back to the bad trend line again
(Point 4 to Point 5). These criteria values are always updated and used to determine the GPS
quality indicator score for turning on or turning off the GPS measurement,

scorey_, +D whenAs #0
score,_; + sgn(Acy)f whenAs=0

(28) score, = {
where scorey is the kth iteration of the GPS measurement where scorenj, < scorey <
scorep,,, and Aoy is the last non-zero GPS gradient at the dth iteration.

If there is no change of the GPS variance (As = 0), the GPS indicator score would still be
updated by the f bias. The score is to indicate whether the UAV is indoors or outdoors,
and to turn off the GPS measurement when it is indoors (high positive score). However,
the GPS variance would still be calculated to be ready to turn on the GPS measurement
when it is outdoors (high negative score).

4. Pre-scale process in vision measurement

Large discrepancy between an initial guess scale and a real scale causes unstable state
estimation (Weiss 2012). An initial guess scale is determined before feeding to the estima-
tor. The initial guess scale is estimated using IMU pre-integration technique (Forster
et al. 2017), which summarizes hundreds of IMU measurement data into one single
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Fig. 5. Criteria function D(o) for increasing GPS variance (the upper dashed line, when Ao > 0) and decreasing GPS
variance (the lower solid line, when Ac < 0).
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measurement. Position, velocity, and attitude measurements are used for short-term scal-
ing of the SLAM until a new vision keyframe is available.

The IMU pre-integration form had been presented by Mur-Artal and Tardés (2017).
Accelerometer measurement a,, and gyroscope measurement @, are used to calculate
the position (pyi), velocity (vy;), and attitude (C,;) of the IMU frame with respect to the vision
frame written in terms of the vision frame. These measurements can be discretized for the
kth to the (k + 1)th iteration thus

(29) pil’ =py +vyAt+ %gmz + %C“ (ak —pt) a2
(30) wii! =vk +gAt+ Cy (ak —BE) At
(31) CH'=C¥ exp [(m'fn - bt,) At]

where @, and a,, are the angular velocity and the linear acceleration measurements from
the IMU sensor; b, and b,, are the accelerometer and gyroscope biases, respectively,
obtained from MSF since the initial guess became available; exp(-) is the exponential map that
can be estimated as the first-order approximation of exp(¢,) ~ I + ¢, where ¢ is the R3 vec-
tor; and g is the gravity vector.

In between the vision keyframes i and i + 1, the position, velocity, and attitude measure-
ments can be summarized as Ap:*', Av:*! and AC:*, respectively. Thus, the IMU pre-
integration can be determined as

(32) pif" = pis + ViGAT + 5 gAT? + G (Api™? +J2,bL + T3, bl )
(33) vi!=vi, +gAT + G (Avh* +J bl + J4,bi )
(34) Cif' = CyaCi* exp(Jachh)
where AT is the time difference between two consecutive keyframes i and i +1; and J¢’ and
J{, are the Jacobians of changing bias calculated (Forster et al. 2017).
The relationship of the estimated IMU measurement and the estimated SLAM in

between any two consecutive keyframes is
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(35) Pvi =Py + CucPa

where p; is the IMU position estimated by eq. (32); s is the scale of the camera trajectory cor-
responding to the world frame; p,. is the camera position estimated by the SLAM system;
and p; is the IMU frame with respect to the camera frame.

After the initial guess of the gyroscope bias is obtained by MSF, the scale and gravity vec-
tors are determined using singular value decomposition of at least four consecutive key-
frames (Mur-Artal and Tardos 2017). The gyroscope and accelerometer biases are also
refined during the scale initialization process. Finally, the estimated scale is used for map-
ping points on any prior keyframes within the SLAM system.

5. Seamless transition position measurement

When a new type of position measurement emerges, consistency between the new posi-
tion sensor measurement and the current estimated position must be properly handled
before feeding into the MSF as measurement for the next state estimation, otherwise it
may cause an unnecessary skip trajectory as shown in Fig. 6a. The difference between the
new sensor position measurement (star) and the estimated-state (dashed line) causes an
interrupting change of the next position estimation, and that leads the UAV to fly in the
opposite direction to the offset direction to maintain its previous desired trajectory. This
can be improved by offsetting the estimated-state.

However, it is not straightforward to apply the offset due to sensor measurement noise.
The graph-based optimization method proposed by Shen et al. (2014) used a laser, vision-
based odometry, and GPS information to smooth the offset. In this work, an alternative
3D position smoothing offset is proposed, that is, by applying a low-pass filter to reduce sen-
sor measurement noise uncertainty. With the benefit of compact code and less computa-
tion load, the method gains smooth position offset using only one sensor. Offset between
the position state p,,; and the position measurement z, can be written in the form of a
low-pass filter as

(36) AP, =AP,_,(1—a)+a (Pwi — AP, - zp)

where AP, and APy, are the smooth offsets of the current and the prior iterations, respec-
tively and « is the low-pass smoothing factor where 0 < a <1, and can be calculated thus

T,
RC+ T,

(37) a=

where T is the sensor measurement period and the sensor time constant RC = 1/2xf,
where f_ is the cutoff frequency corresponding to the position measurement noise.

The new available sensor (GPS or vision-based) added to smooth the position offset APy
leads to a smooth position measurement.

In general, the position offset AP, may cause misalignment between the global frame
and UAV world frame, especially when GPS sensor measurement is applied, for example,
in the case of an UAV flying indoors to outdoors. The offset is due to accumulation in posi-
tion drifts in the estimated vision position. This can be solved by shifting the home refer-
ence point by the same amount of AP, in the UAV world frame. The shifted home
reference point is the global frame reference.

For the vision measurement offset, the initial vision orientation frame offset must be cal-
culated before applying the smooth position offset. In general, to have a proper scale of a
monocular SLAM system, a UAV must travel for some time to ensure that all observable
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Fig. 6. Estimated position behavior from different GPS position measurement zg,s , and vision position
measurement z,, (a) without smoothing offset and (b) with smoothing offset.
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parameters are sufficiently excited before calculating the initial vision frame (Mur-Artal
and Tardos 2017).

The initial offset of the vision frame p,,, and q,,, with respect to the world frame can be
calculated using the last dth iteration of the position p,,; ;_; and quaternion q; ;_4
estimated-state where the kth is the current iteration of the vision measurement, thus

(38)  Puy =DPuwik-d + Qwik—a @ Piv ® Qi g

where

B = ["g’ ]

is the quaternion form of the position vision frame with respect to the IMU frame calcu-
lated using

(39) P =Pic +4ic ® (-Pvc) ® dic

and the orientation of vision frame q,,, with respect to the world frame is determined using
(40) Gy =quwik-a @ Gic @ Gyc

where p;. and g;. are the position and orientation offsets between the camera frame and the
IMU frame that can be obtained from Kalibr toolbox (Maye et al. 2013);

Pvc = [pgcj|

is the camera position with respect to the vision frame; and q. is the orientation of the
camera frame with respect to the vision frame.

All discussed algorithms, especially the multi-sensor fusion scheme, need to identify
sensing characteristic constants, such as noise densities, random walks, and measurement
delays. These constants depend on a specific platform setup, to be discussed in Sect. 6.
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Fig. 7. The tested UAV setup.
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6. Implementation and setup

6.1. The UAV platform

The tested UAV is a quadrotor platform, as depicted in Fig. 7. The autopilot is developed
based on PX4 firmware (Meier et al. 2015). The Pixhawk flight controller is originally
equipped with an IMU 3-axis accelerometer + gyroscope (MPU6000), external compass
(HMC5883L), barometric sensor (MS5611), external optical flow sensor (PX4FLOW), external
GPS (Ublox NEO-7N), and a CMOS camera (SJ4000) as a visual SLAM monocular.

For state estimation, obstacle avoidance and trajectory generation are processed on an
Intel NUC computer with i3-4010U Processor (3M Cache, 1.70 GHz), 128 GB SSD, and 4 GB
memory. The computer is installed on the UAV. The total takeoff mass is 2.41 kg, including
two LiPo batteries (4s 5000 mAh and 3s 1500 mAh). All presented algorithms are imple-
mented and tested on this UAV platform.

6.2. Real-time onboard software

Our proposed algorithm, named “Crossover”, is developed in C++, which runs on an
onboard computer with Robot Operating System (ROS) as a middleware. The workflow dia-
gram is shown in Fig. 8. The Pixhawk flight controller communicates to the computer via a
USB serial port with Mavlink (Meier et al. 2013) protocol. The SLAM node for vision position-
ing (ORB_SLAM?2) is modified by the pre-integration IMU technique (Forster et al. 2017) to
calibrate the initial scale, as mentioned in Sect. 4. However, in this case the modified
ORB_SLAM?2 is not continuously taking the IMU information into the bundle adjustment
as (Mur-Artal and Tardos 2017) did. Hence, it reduces the computational burden but with a
less long-term accuracy.

6.3. Control system

To optimize gains in low-level control system of the PX4 firmware, the PX4tools
(Dronecrew 2017) for PID optimal gains are used. For high-level control system, the linear
model predictive control (MPC) proposed by Kamel et al. (2017) is implemented to create
3D flight trajectories. The second-order plant can be obtained from system identification
to determine the optimal roll and pitch transfer functions for the plant model of MPC
framework according to Sa et al. (2017).

6.4. Determination of system parameters
The Allan standard deviation is used for identification and measurement of noise and
drift, as shown in Tables 1 and 2. In practice, we have found that the standard deviation
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Fig. 8. Processing workflow diagram of the UAV system.
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Table 1. Gyroscope and accelerometer random
walks obtained from Allan standard deviation
method of the IMU.

Parameter Value
Gyroscope random walk ~ 0.000195rad/s*v/Hz
Acc random walk 0.00904 m/s*/Hz

Table 2. Continuous-time accelerometer,
gyroscope, and barometer measurement
noises.

Parameter Value
Acc XY noise density 0.090m/s*\/Hz
Acc Z noise density 0.198 m/s*/Hz

Gyroscope noise density 0.01380rad/svHz
Barometer noise density ~ 0.0788m/+/Hz

often need to be multiplied by 10 or more to cover vibration effect

In practice, timestamps of individual sensor’s measurement are not synchronized and
are typically affected by a delay, which reduces the performance of the state estimation in
terms of speed estimation and accuracy. The delay time in communication between the
flight controller and the ROS message is caused by several reasons (e.g., USB latency)

(Meier et al. 2012). This is

computed using least-squared optimization in eq. (13). Results of

the time delay of each measurement compared with the IMU timestamp, except the MSF
delay, which is compared to the flight controller system timestamp, are shown in Table 3.
Figure 9 shows a plot of normalized errors related to the time delay. The x marked points
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Table 3. Delay of MSF-to-Pixhawk,
GPS, and vision measurements.

Parameter Time (s)
MSF to Pixhawk delay 0.092
GPS delay 0.265

Vision measurement delay 0119

Fig. 9. Optimal measurement delay calculated using least-square optimization.
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are the optimal delayed time of each measurement. The MSF delay time also occurs due to
the latency of data transfers. The MSF state is estimated as a measurement of the low-level
IEKF inside the flight control computation to compensate for the delay.

7. Experimental results

Because this work is to design a smooth navigation system during transition between
outdoor and indoor flight, the test emphasizes the UAV state in the transition period. To
show the algorithm performance, the UAV is tested over a large open space and the result
obtained from the proposed algorithms is compared with the conventional GPS-based cut-
off algorithm. The test field encompasses an eight-storey building and another 10 m tall
building to ascertain that GPS signals would diminish when the UAV is close to the
buildings.

Figures 10a and 10b show the MSF estimated position and the GPS position plotted using
conventional GPS-based cutoff algorithm. The bottom row is the MSF estimated position
which is plotted using the proposed GPS quality indicator algorithm. The marked back-
ground regions are labeled as the sensor transition state as follows: the first state (I), when
GPS is available but vision SLAM is not available or in pre-scale processing; the second
state (II), when both GPS and vision SLAM are available; the third state (III), when GPS is
not available while vision SLAM is available; and the fourth state (IV), when GPS is regained
and vision is available.

In the case of outdoor-to-indoor transition, the enlarged plots are shown in Figs. 10b and
10d. Figure 10b shows that position estimation with GPS-based cutoff takes more time to
indicate that GPS is worse than that of position estimation with the GPS quality indicator
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Fig. 10. MSF estimated position with the GPS-based cutoff (a and b), and with the proposed GPS quality indicator
algorithm (c and d).
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algorithm in Fig. 10d. Thus, the proposed GPS quality indicator algorithm can reasonably
reject the GPS measurement before the false trajectory from the GPS measurement gets
too far off. Furthermore, when the system quickly rejects the false GPS measurement, it
means that the UAV will have better agility handling during the transition.

In the case of indoor-to-outdoor transition, the zoom plots are shown in Figs. 11b and 11d.
The MSF estimated position without the proposed smoothing shown in Fig. 11b jumps to a
GPS position with a difference of more than 2 m. This large jump is due to the fact that
the estimated position carries position error over time from vision SLAM. This large offset
can affect the UAV flight because the UAV will try to maintain its previous desired trajec-
tory, and that leads the UAV to fly in the opposite direction to the offset direction to reduce
the position error.

On the other hand, the proposed algorithm shown in Fig. 11d can better smooth the path
between the GPS position and MSF estimated position by applying the offset to the GPS
measurement to reduce the difference between them and provide a more reasonable trajec-
tory for MSF estimation.

The position and velocity covariances generated from the MSF estimated position during
the flight are shown in Fig. 12. The result shows that the covariances continuously increase
when there is no GPS signal during the indoor flight (State III), and the covariances decrease
and converge to a certain value when flying toward the outdoors.

The position covariance is divergent when GPS is not available, but the velocity covari-
ance stays in bound. This is because the world position estimation is no longer observable
by only the vision SLAM during the indoor flight because the vision scale drifts over time.
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Fig. 11. The MSF estimated position without the smoothing offset (a and b), and with the proposed smoothing

offset algorithm (c and d).
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Fig. 12. MSF estimated (a) position covariance and (b) velocity covariance.
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However, for the velocity covariance, the velocity estimated by the optical flow bounds the
covariance to a certain value even without the GPS measurement.

Before going indoors, the GPS and optical flow measurements are used for localization.
However, once the UAV is indoors there is no ground truth to validate the UAV position esti-
mation. The estimated flight and estimated GPS paths are thus overlaid on a satellite map,
as shown in Fig. 13. The features of ORB_SLAM2 are shown as color points. The red line is the
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Fig. 13. The testing ground and (a) flight trajectories (b) in the flight environment.
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Fig. 14. Above-ground level (AGL) estimated from h = p, — tz (a) without outlier rejection and (b) with outlier
rejection using Mahalanobis distance check.
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GPS signal that has fault value near buildings, and the black line is the position estimated
from the MSF. Figure 13b shows the tested UAV and the captured picture from the camera
on the UAV at positions outdoors (left) and indoors (right). Video of the experiment can be
accessed at https://goo.gl/1jeK9X and https://goo.gl/SDGVDc.

The estimated terrain data can be validated with the AGL (h) measurement as discussed
in Sect. 2.2.5. The estimated AGL results and sonar measurements are shown in Fig. 14.
Results show that the outlier data could be rejected using Mahalanobis distance method
to ensure that optical flow measurement would be properly scaled even when the UAV
operates over rougher terrain.

Scale initialization is started as soon as the original ORB_SLAM2 system is initialized in
parallel thread. Result of the scale optimization is shown in Fig. 15. The accelerometer and
gyroscope biases converge to steady values after 20 s (Figs. 15a and 15b). The scale initializa-
tion takes 30 s to make sure that all variables have already converged (Fig. 15c). Then, scaled
vision measurement is processed by smoothing the offset, after that the scaled vision meas-
urement would be available as a measurement for MSF to compute UAV state estimation.
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Fig. 15. Vision pre-scale process that includes accelerometer and gyroscope biases.
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Fig. 16. 2D satellite Google map overlay on 3D cloud points from the modified ORB_SLAM2 algorithm.
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The vision scale 1 and vision position offset P, between the vision frame and world
frame can be estimated using MSF, and can be used to refine the point cloud outputs from
ORB_SLAM2. All points are adjusted and refined with state estimation during the flight.
Figure 16 shows the construction of the estimated cloud point overlays near the building
located on a satellite map.
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When the UAV is near the building the GPS variance increases, and GPS measurement is
then switched off by the GPS quality indicator algorithm as discussed in Sect. 3. Vision, opti-
cal flow, and IMU measurements are used in Stage III as shown in Fig. 12. The plots also show
that GPS measurement is much influential at this stage. When the UAV is outdoors, the GPS
quality factor indicates the GPS measurement is up, then position estimation is adjusted by
smoothing the offset before feeding to the MSF for the outdoor state estimation.

8. Conclusion

Multi-sensor fusion (MSF) algorithm along with a GPS quality indicator for indoor-
outdoor transition and pre-scale vision handling have been proposed in this work.
Experiments have shown that the UAV states could be optimized by the proposed measure-
ment method, resulting in a smoother transition when the GPS measurement is lost, or
recovered. In field test, the UAV with low-cost sensors could better perform smooth flights
from outdoor to indoor environments, and back to outdoor than the conventional method.
This indicates that the proposed algorithm is practical and sufficient to operate without
high-quality measurement sensors.

In the future, this MSF work may be further improved by adding on more sensor mea-
surements to assist UAV state estimation in more complex tasks, such as avoidance of other
moving objects.
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