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ABSTRACT 

Human Activity Determination (HAD) used the integrated sensors in a 

mobile phone is a very active research field to predict the everyday activities of humans 

in Machine Learning (ML). However, there are numerous challenges to develop 

systematically in the HAD system. In ML, feature selection is a critical issue due to 

containing redundant or irrelevant features to represent the target activity. Because of 

the large size of the dataset and the complexity of the features concerned, HAD relies 

mainly on feature selection to improve robustness and precision.  

The primary objective of this research is to discover the best ideal 

classifier model-based feature selection technique for HAD and Machine Learning 

(ML) problems. As the aim of this, an Artificial Neural Network (ANN) model using 

Multi-Layer Perceptron (MLP) is designed with formulating to discover the number of 

hidden nodes in neuron. In addition, two novel feature selection methods: 1) LDC 

(Linearly Dependent Concepts) using linearly dependent concepts, and 2) CAT (Cyclic 

Attribution Technique) using group theory and basic properties of cyclic group are 

identified. Three datasets (UCI-HAR, DATASET-UCI dataset, HAPT) and five 

different classifiers (SVM, BAG, KNN, CART, and BAYES) support to conduct the 

statistical and comparative analyses.  

Based on all systematic experiments, the performances with running 

time compared with each other. Although the CAT feature selection method could 

reduce more 30% of features than the LDC feature selection method, the accuracy of 

model-based LDC is better than the CAT model. The study concluded that the MLP 

model-based LDC approach was the most comprehensively applicable and effective 

methodology for HAD systems development. 
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CHAPTER 1   

INTRODUCTION 

Human Activity Determination (HAD) or Human Activity Recognition 

(HAR) is a process that uses Machine Learning (ML) to monitor the behaviour and 

characteristics of daily human activity [1]. It is becoming a critical and challenging 

research area due to its strong contributions and demand from areas such as healthcare, 

eldercare, security, entertainment, and fitness centres [2], [3]. It is a vital component of 

healthcare that enhances maintenance of human health by providing information about 

movement and behaviour [1], [4]–[6]. The detection of normal and abnormal behavior 

and monitoring the rehabilitation of patients are good examples of how HAD-supports 

healthcare systems.  

HAD is a sensor-based method of determining human physical activity 

using ML [7]. By using the sensor technology and associated information in mobile 

phones, HAD can infer a subject’s daily activity [8]. Due to the powerful built-in 

sensors of smartphones, HAD is becoming a significant focus of research [9]–[11]. 

Present mobile phones come together with embedded sensors including accelerometers, 

gyroscopes, and magnetometers that implement users to implement HAD software [12]. 

These mobile phone sensors enable the recording of complicated activities performed 

by users such as lying, walking, ascending and descending stairs, waving, running, 

jogging, sitting, standing, and cycling [13].  

A typical HAD task included four procedures: data retrieval,  

preprocessing, feature extraction/selection, and classification [14]. Data retrieval 

involves the acquisition of data derived from mobile phone or wearable sensors; 

preprocessing is the method in which raw data are cleaned and appropriate data 

transformed for further processing; feature extraction makes accurate information 

easier to obtain from the preprocessed data and feature selection is a way of selecting 

the most significant features for predictive model construction; finally, classification in 

HAD predicts the activities of the user and evaluates their performances using an 

algorithm.  
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In feature extraction, three types of features are recognized: relevant 

features that have an influence on the output, irrelevant features that have no influence 

on the output, and redundant features that occur whenever one feature can take the role 

of another. Feature selection can delete redundant or unnecessary features and a  

well-selected feature set not only improved recognition efficiency but also reduced 

computational complexity  [15] and prevented the output of classifiers with no useful 

information [16]. Feature selection is a key component of many pattern recognition 

applications in ML and good feature selection improves the performance of 

classification. Useful features were dependent features that supported critical 

information and improved the capability of the performance model [16]. A model with 

irrelevant features generated negative predictions but good feature selection with a 

well-defined classification theory improved performance [17]. Classifiers are utilized 

for recognition tasks ranging from simple categorization to complicated applications in 

various areas of Artificial Intelligence (AI). It is essential to select the correct 

classification algorithm to determine human activities. There are many classifiers used 

in ML, but a prediction tool conventionally used in HAD is Artificial Neural Network 

(ANN).  

ANN is a computational paradigm based on mathematical models with 

a mammalian brain framework. It automatically makes choices for multiple pattern 

recognition issues. ANN learns from the perceived data, justifies with undefined 

function, and transmits the results of the predicted models. The strategy for learning of 

this classifier is based on algorithms of supervised learning. To transmit the outcomes 

needed, simple models are constructed in which a vector may compose a pattern 

consisting of interrelationships attributed to meaningful categories.  

1.1 Research Problems 

Although many researchers have improved the general efficiency, 

stability and precision of HAD, there is still room for further development. Several 

researchers have discussed and analyzed the determination of human activities by 

investigating preprocessing techniques, feature selection methods, and classification 

models. However, the evaluation of HAD has not yet been sufficiently developed. The 
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following are the most important study issues that come within the scope of this 

dissertation. 

1.1.1 High Dimensionality Dataset 

One of the major issues is that HAD produces high-dimensional datasets. 

Human behavior was not always consistent because various tasks were performed 

simultaneously during the cycle of human activity [4], [18], [19]. Moreover, numerous 

kinds of physical activities and specific characteristics may be included in the 

developer’s inquiry and the changing position of the sensor during movement makes 

the information provided by the sensor very complicated. Therefore, the nature of 

sensor data and the user’s motion create a dataset of high dimensionality when sensor 

data is constantly retrieved.  

1.1.2 Redundant Features  

Extracting features that infer precise information from the context of 

user activities is a necessary approach to a high dimensional dataset with redundant or 

irrelevant features. Since datasets in HAR have high dimensionality, feature selection 

is an essential component [20]. In samples for training and testing, the fact that a dataset 

contains many unrelated or unneeded features complicates the achievement of robust 

performance [21]. More redundant features require more training and the testing 

process makes classification more complex. The complicated data makes the model 

overfit and impacts generalization of the model. Also, more time is needed for storage 

and processing. 

1.1.3 Sensitivity of Classifiers 

To significantly improve performance evaluation, HAD requires proper 

classifier design. A HAD system mainly depends on a classifier receiving features input 

as attributed values to be output as classified activities. Usually, a classifier needs to be 

trained on labeled data where the activity is known. The classifier can then be used to 

predict unknown data. In ML, different classifier models give different performances. 

The sensitivity of the classification performance of different classification models 

depends on various parameters. In a standard strategy, better decision making has a 
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significant impact on performance precision. This implies that a particular classifier 

needs an appropriate design to correctly determine human activities.  

1.2 Understanding HAD 

The ML method of determining human activity operates on three levels. 

At the lowest level, sensor data is generated for retrieval using mathematical ideas and 

language. At the intermediate level, hypotheses are tested and estimates derived by 

preprocessing, feature extraction, or feature selection. At the highest level, classifiers 

determine the overall goal for activity sequences.  

A preliminary study is necessary to understand the nature and type of 

sensor information to be processed later on. This study aims to establish the capabilities 

of the mobile phone sensors and to retrieve the data generated by complex user-

performed activities. Smartphones were previously equipped with a single sensor (an 

accelerometer) but most Android devices nowadays come with a range of built-in multi-

sensors [22]. These sensors can retrieve the context of substantial parameters such as 

movement, positioning, and different environmental conditions. They can be adapted 

to provide the user valuable information about numerous day-to-day physical activities. 

There are three sensor categories: sensors for motion, sensors for the 

environment, and sensors for location. Sensors of motion such as accelerometers, 

gyroscopes, gravity sensors, and sensors of rotational vectors measure the rotations and 

acceleration along three axes. Environmental sensors such as barometers, photometers, 

thermometers, Wi-Fi and Bluetooth sensors are used to calculate various environmental 

parameters. Location sensors such as orientation sensors and magnetometers measure 

the physical location of a device. Among built-in mobile phone sensors, the 

accelerometer, gyroscope, and magnetometer are the most powerful at determining 

human activity [23]. 

Two preliminary tasks were carried out to establish the capabilities of 

the HAD system: sensor data retrieval and step counting; and there had to be a trade-

off between processing power and the demands of the HAD system itself.  Sensor data 

retrieval involves recognizing physical activities with the sensors in mobile phones.  
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The Samsung Galaxy Note 4 using the Android 6.0.1 operating system 

was selected for this task. Thirty volunteers performed eight activities (sitting, standing, 

walking on the spot, jogging on the spot, walking normally, walking-upstairs, walking-

downstairs, and lying-down). Every 100 milliseconds, the phone’s accelerometer, 

gyroscope, and magnetometer detected every motion from the activities of the 30 users. 

After retrieving the data, the nature of the sensor can be understood and the sensor data 

can be managed to take into account the required processing power.  

The second task in the evaluation of HAD involves counting the walking 

steps of the user to get sufficient processing authority into the sensor data. Step counting 

is the automatic detection of paces walked. The use of smartphones to count steps has 

increased significantly and benefits society because its applications are numerous. It is 

used in HAD for better detection of walking. Consequently, a reliable step counting 

technique was introduced in this stage of the work. The accelerometer in the Samsung 

Galaxy J7 was used and nine volunteers performed three types of walking (normal, 

slow, and fast) in four phone usage modes (swinging, texting, in a waist-bag, and in a 

hand-bag). The results of step counting showed the reliability of the proposed 

algorithm.  

1.3 Research Contributions and Objectives  

Due to the importance of accuracy in ML problems, feature selection is 

a key component of HAD that reduces the size of the high-dimensional dataset. 

Selection of relevant features can help accomplish the two most challenging research 

problems: the high-dimensionality of data and redundancy of features. Despite the fact 

that there are many feature selection methods, the most appropriate methods to use with 

predictive problems have not yet been identified. 

Identifying the best feature selection method makes possible the main 

goal of this dissertation, which is to evaluate a better performance with respect to 

specific classifiers not only for the development of HAD but also the improvement of 

ML. To this end, the feature selection method needs to produce a well-defined 

determination with multi-way dependencies and correlations, which implies that simply 

selecting the best independent features may not create the best feature set.  



 

 

6  

In this dissertation, a novel feature selection method is first proposed 

using a linearly dependent concept on a homogeneous linear combination system, 

known as Linearly Dependent Concept (LDC). LDC is intended to define useful 

features determining human activity. It can appropriately reduce the number of 

irrelevant features and also offers advantages for the classification process. Even 

though this method can solve some challenges in feature redundancy problems, it still 

has some weak points. Due to the transformation requirement for a homogeneous linear 

combination system, it cannot identify more useful features. To compensate for this, a 

new technique of feature selection is tried, based on the Cyclic Attribute Technique 

(CAT), using group theory and the fundamental properties of the cyclic group.  

The quality of the selected features enables the classifier to correctly 

identify informatics features. ANN is a more robust classifier that reduced the number 

of false positives in HAD [24]. Therefore, by creating a formula for discovering the 

number of hidden neuron nodes, this research intends to evaluate the performance of 

selected features using a new MLP model with hidden layers and learning rates. 

To assess the effectiveness of the HAD system, this dissertation 

investigates the performance of two feature selection methods with a specific classifier. 

Both feature selection methods process three different datasets: i) a UCI-HAR dataset 

[25], ii) a UCI-HAPT dataset [26],  iii) a DATASET-UCI dataset [27]. These are the 

most well-known public datasets of the UCI repository (available from 

http://archive.ics.uci.edu/ml) for HAR. Then, the ANN classifier model determines the 

level of accuracy that can be achieved using the two feature selection methods. 

Performances of classification tasks are analysed and compared using Support Vector 

Machine (SVM), Bagging (BAG), K-Nearest Neighbors (KNN), the Classification and 

Regression Tree (CART), and Bayesian (BAYES) analysis. 

Finally, this research targets the following five objectives: 

i) Reducing the high dimensionality data size of human activity determination  

ii) Determining the best-suited features in human activity determination 

iii) Creating new feature selection methods, LDC and CAT, for human activity 

determination  
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iv) Expanding a new precise ANN classifier model for human activity 

determination  

v) Developing a more accurate human activity determination system 

1.4 Outline 

The dissertation is organized into the following five chapters. 

Chapter 1 presents an overview which introduces study issues, general knowledge of 

HAD, research contributions, and objectives for the development of the HAD system.  

Chapter 2 discusses certain techniques and motivations related to this dissertation that 

appeared in previous work on HAR. It also supports the background understanding of 

theories and techniques to be applied in this dissertation. 

Chapter 3 explains the detailed methodologies and designs of two different feature 

selection methods (LDC and CAT) and a novel classifier model (ANN) for the HAD 

system. 

Chapter 4 describes the outcomes of the experiments and analyzes the acquired results 

in order to assess performances after implementing the two feature selection methods 

on 4 datasets.  

Chapter 5 concludes the report of the dissertation by examining the findings of the 

outcomes acquired and presents future work. 
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CHAPTER 2  

 BACKGROUNDS AND REVIEWS 

This chapter provides detailed literature on the current HAD. The 

motivation, methods, data collection, step counting, feature selection, and 

classifications of current HAD work are discussed here. It also supports background 

understanding of significant theories, definitions, techniques, principles, and 

characteristics in this dissertation. The intention of this chapter is analyzing the existing 

HAD system and highlighting the gap in the current work. The gap establishing in this 

chapter allows the choice for this dissertation to be created.  
This chapter consists of four major sections. In the first stage, section 

2.1 is for covering the basic requirement of the HAD process. It investigates the primary 

HAD process, the role of sensors in HAD, and some everyday activities of humans. The 

second part is section 2.2, which approaches some HAD-related real-time applications 

and provides some methods for collecting data and steps counting. Based on this, the 

dissertation performs data collection and step counting to understand more in HAD.  

The third part is section 2.3, which focuses on knowledge and methods 

for selecting features and classifying them. This section is the central part of this 

dissertation. Based on this, this dissertation proposes two new techniques of feature 

selection and a new technique of classification. The last part is section 2.4, which 

discusses some popular datasets from the UCI-HAR dataset repository lab for HAD, 

and introduces background knowledge of linearly dependent concepts, group theory 

and fundamental properties of the cyclic group that are intended to be used in this 

research. 

2.1 Review on Human Activity Determination (HAD)  

2.1.1 Main HAD Process  

HAD refers to the automatic recognition of human physical activities 

using wearable sensors with the ML technique. It determines whether a single user or 
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multiple users performs physical activities. HAD is an essential research area in AI, due 

to the most vital applications in many fields, especially the healthcare system, security 

system, and also military [28].  Many researchers have developed in HAD with several 

techniques, methods, principals, characteristics, and methodologies to improve the 

HAD system. Although many researchers have developed many types of HAD system, 

there are four primary procedures with three levels in the ML techniques to determine 

personal human behaviors as shown in Figure 2.1 [14].  

 

 

 

 

               

                                

                       Figure 2.1 Four main processes of HAD system 

In Figure 2.1, the HAD system consists of three levels to determine 

human activity. The lowest level includes retrieving the sensor data are generated with 

the mathematical ideas and language. The intermediate level involves testing 

hypotheses and deriving estimates by preprocessing, feature extraction, and feature 

selection with assuming properties. The highest level concerns with determining the 

overall goal of HAD by using classifiers for the activity sequences [29].  

Basically, the main target of the HAD is to identify the activities of the 

user with the help of computing techniques [30]. Although HAD is a wider environment 

in AI, the primary work is recognizing the human physical activity [31]. HAD has great 

impacts for not only the healthcare system but also other areas such as entertainment, 

industry, operational areas and sport [32]–[34].  

2.1.2 Sensors for HAD 

Mobile phone technologies are increasing quickly year after year and 

offering many features. In addition, through networks such as Wi-Fi, Bluetooth, Skype, 

Facebook, Gmail, Viber, these mobile phones can communicate all over the world.  

Sensor 
Data  Preprocessing  

Feature 
Extraction/ 
Selection 

 

 Classification 

Lowest Level Intermediate Level Highest Level 
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Being smarter day by day with multi-tasking and high precision, these mobile phones 

are known as smartphones. As today’s smartphones offer a variety of built-in sensors 

and allow users to operate the software, HAD using built-in sensors on mobile phones 

has gradually become more popular and significant.  

Although the previous smartphones had a single sensor (accelerometer) 

[22], the present mobile phones came with many embedded sensors such as light 

sensors, camera sensors, accelerometer, gyroscope, magnetometer, etc. Most sensors 

are small, compact and portable for retrieving and responding to input information from 

the physical environment such as light, sound, heat, moisture, motion, pressure, human 

activity, etc. In general, the sensor output is one that can convert for reading or further 

processing to human-readable information. Among many built-in sensors, 

accelerometer, gyroscope, and magnetometer are very common in the study fields of 

HAD due to the efficient tools for data retrieval and user activity tracking. Among them, 

the accelerometer is one of the most popular sensors due to an electromechanical device 

to measure both static and dynamic acceleration. Table 2.1 shows a brief overview of 

some built-in mobile phone sensors. 

Table 2.1 A brief description of some integrated mobile phone sensors 

Built-in Sensors Uses 

Light Sensor Screen dimming 

Camera Sensor Image/ Video capture 

Microphone Sensor Audio capture 

GPS Sensor Global location 

Accelerometer Sensor Acceleration/ Position 

Gyroscope Sensor Local Orientation 

Magnetometer Sensor Motion 

Linear Sensor Displacement 
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HAD used built-in sensors of mobile phone is a popular method among 

many researchers. Although they have considered HAD with different methods of data 

collection, various analyzing procedures, many feature selection methods, and different 

classification techniques, there is still a lack of better results in HAD [35].  As shown 

in Table 2.1, the accelerometer sensor is a motion sensor capable of measuring the 

acceleration and position along three axes. The gyroscope sensor can also evaluate and 

place the rotational forces along three axes. The magnetometer is a sensor of movement 

that can assess the parameters of physical motion. Moreover, the use of other sensors 

is also helpful in diffident ways for HAD.  

According to the development of sensor technology, several researchers 

are focusing on creating HAD systems using the mobile phone's built-in sensors. The 

authors used the accelerometer as a motion sensor and they produced excellent 

outcomes for their studies [36], [37]. The researchers used a built-in accelerometer of a 

cell phone to infer physical activity for a fundamental problem of place [38]. The study 

also expended a tri-axial accelerometer of a mobile phone on a robust HAD 

classification model [39]. In this study, three people wore the device in front of two 

trouser pockets and performed the five daily activities (static, walking, running, upstairs 

walking, and downstairs walking). In [40], the authors used the Android accelerometer 

sensor for the device orientation. They transformed accelerometer data using Euler 

Angle Conversion (EAC) and showed an improvement in precision for five activities 

(standing, walking, running, ascending-stairs, and descending-stairs). 

The authors showed that the intended sensors for extended recording and 

monitoring in computing are flexible to use in HAD [8]. Some studies concentrated on 

the sensor types that used to determine human activity. A recent review on this topic 

found that the performance of HAD mainly depends on choosing the sensors type to 

correctly retrieve the sensor data. An increasing number of studies have discovered 

HAD with a combination of sensors to be better than signal sensor detection. Due to 

the effectiveness of accelerometers and gyroscopes in mobile phones, they are widely 

utilized as the combination sensors to fulfill the task of recognizing human activity [41]. 

The authors used the built-in accelerometer and gyroscope sensors to detect user 

motions [12], [42]. Using 3 sensors (accelerometer, gyroscope, and magnetometer), an 
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effective classifier model was established for better precision [43]. In HAD, Dernbach, 

et al. [44] observed in HAD that it is better to use more than one sensor than to use a 

single sensor. They demonstrated the reliability of performance using combined sensors 

(accelerometer + gyroscope + magnetometer) to determine six activities (walking, 

running, sitting, walking-upstairs, walking-downstairs, and standing).  

2.1.3 Human Activity  

Human activity is a multi-dimensional behaviour of a human's everyday 

routine work. Regular physical activity is very essential for everyone because it can 

assist their ability to make as an enjoyable daily life and can provide long-term health 

advantages [45]. In addition, regular exercise and physical activity can reduce the risks 

of some diseases such as heart disease, diabetes, etc. [46]. Every person should be active 

in daily activities to maintain their health. There are many physical activities such as 

sitting, standing, laying, walking, walking up-stairs, walking down-stairs, waving, 

running, jogging, cycling, etc. As shown in Figure 2.2, human physical activities in 

daily life can be split into three types:  static, transitions, and dynamic [47]-[48]. 

 

 

 

 

 

 

 

 
 
 
 
 

              

 

                       Figure 2.2 Some examples of physical activities of humans 

Human 
Activity 

Static Transitions Dynamic 

Sitting 

. . .  

Laying 

Standing 

Etc. 

Lie-Stand  
- 

. . .  

Walk-Stand 

Stand-Sit 

Etc. 

Walking 

. . .  

Walking-
upstairs 

Running 

Etc. 
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In real life, human activities are very complicated and miscellaneous. In 

some cases, it could perform simultaneously. For example, having dinner can be viewed 

as sitting down together. Monitoring the activities of patients improve the treatment of 

medical diagnosis and rehabilitation [8]. Although many researchers attempted to 

control the physical activities in interference studies, the early results generated 

unreliable outcomes. The authors identified 3 walking styles (slow, normal, and fast) 

of 21 users based on user movements. Android accelerometer was utilized and placed 

into the user’ pockets of a trouser [49]. They investigated the performance between 

them and gave a high performance in the fast-walking activity. The preliminary work 

in this field showed that the location of the sensor and its orientation carried out the 

complexity of the dataset. In [50],  the authors examined a phone’s location problem by 

carrying a mobile phone in different ways during human activities. An overview of 

some HAD using built-in sensors of a mobile phone is provided in Table 2.2. 

Table 2.2 A brief review of HAD system using built-in sensors of mobile phone 
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Although many researchers have developed several methodologies for 

HAD, there is still considerable with some drawbacks of failing to recognize every 

activity. The authors attempted to recognize the physical activities for elderly people 

(age≥70) by using the accelerometer sensor in the mobile phone [51]. By maintaining 

daily records of food intake and physical activity, the total energy expenditure and 

resting metabolic rate was tried to report [52]. However, their results failed to measure 

an accurate amount of physical activity due to the overestimation of physical activity. 

Among many human physical activities, walking is a common activity. Moreover, it 

directly associates with reducing the risk of some diseases. A new method for 

evaluating transportation-related physical activity was introduced and demonstrated the 

meaningfulness of daily levels of physical activity [53].  

2.2 A Review on Real-Time Recognition of Human Activity 

There are two categories available for the HAD system: 1) online 

recognition system and 2) offline recognition system. In which, data collection and step 

counting are online experiments with real-time response. The processing of these 

experiments provides the possibility of understanding the capabilities of the sensors to 

build the HAD system. This section overviews the previous data collection and step 

counting in order to improve the HAD system. 

2.2.1 Data Collection  

Data retrieving is a preliminary work of the HAD system. Due to the rich 

sources sensing, accelerometer and gyroscope are widely used to determine human 

physical activities. The data were collected from the tri-axial accelerometer on human 

physical activity and used a quasi-periodic time series to verify the better performance 

of the activity [54]. To achieve robust determination in human activity, a HAR dataset 

was created using accelerometer and gyroscope sensors of a Samsung Galaxy S2 to 

recognize six activities of 30 users [25]. The raw data was sampled with a constant rate 

of 50Hz, further analyzed and extracted features. Then they released this dataset to UCI 

Machine Learning Repository, namely the UCI-HAR dataset. In [39], the authors used 

Samsung Galaxy Ace GT-S5830M to collect data using of accelerometer sensor. In 

their experiment, three users performed five activities (sitting, walking, running, up-
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stairs-walking, and down-stairs-walking). For data retrieving, they used the sampling 

rate around 40Hz. They considered a recognition system of a position-independent 

activity [55].  

In [56], the authors collected data from 10 volunteers performing six 

different activities (sitting, standing, walking, upstairs, downstairs, and lying) on three 

sensors (accelerometer, gyroscope, linear). The data were recorded at a frequency rate 

of 50 Hz and 10,939 samples were collected. Their technique was focused on the 

Support Vector Machine (SVM) classifier for system development and 89.59% of 

accuracy has been accomplished. The study compared the device recognition and 

offline recognition with seven volunteers performing five activities (walking, running, 

cycling, idling, and driving a car) [57]. They demonstrated that the accuracy of device 

recognition was better than the accuracy of offline recognition. In [58], the authors 

considered many locations for sensors and introduced a USC-HAD (University of 

Southern California-Human Activity Dataset) dataset. They described their dataset in 

detail and compared it to the other datasets and collected the data from human activities 

using an accelerometer sensor of a mobile phone [59-62]. A brief description of the 

data acquisition system with built-in sensors of mobile phones is shown in Table 2.3. 

Table 2.3 Overview of some data retrieving techniques for HAD system 

No. Cite. Year No. 
subjects 

No. 
activities 

Sensor 
type 

Android 
position 

Sampling 
Rate 

1 [50] 2014 29 6 AC Trouser 
pocket 20 

2 [57] 2012 7 5 AC Trouser 
pocket 40 

3 [58] 2012 15 7 AC Chest 52 

4 [54] 2016 4 6 AC Hand 
pocket 100 

5 [60] 2015 9 6 AC Arm, 
Waist 50-200 

6 [56] 2017 30 9 AC Trouser 
pocket 50-200 
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No. Cite. Year No. 
subjects 

No. 
activities 

Sensor 
type 

Android 
position 

Sampling 
Rate 

7 [63] 2013 30 6 AC+ GY Waist 50 

8 [57] 2012 14 12 AC+ GY+ 
MG Hip 100 

9 [60] 2015 3 5 AC+ GY+ 
MG 

Trouser 
pocket 40 

10 [56] 2017 10 6 AC+ GY+ 
LN 

Waist, 
Angle, 
Arm 

50 

In Table 2.3, the word AC of the column Sensor Type means 

accelerometer, the word GY refers to the gyroscope, the word MG offers magnetometer, 

and the word LN gives the linear.  In the next section, due to efficiency in computing 

environments, accelerometer-based step counting will be discussed.  

2.2.2 Step Counting  

Step counting is the automatic detection of walking steps taken by a user. 

Being a key point to understand user’s motions, it is a critical part of HAD research 

[63]. It can provide many applications such as medical fields, fitness tracking centre 

[64], as well as step counting is essential to monitor in human daily activity. As the 

current smartphones with a variety of sensors and great processing skills, step counting 

using built-in sensors of a smartphone is increasingly becoming a vital factor among 

many researchers [65]. However, the step counting with sensors on a smartphone is still 

interesting research issues in dissimilar walking actions and mobile phone locations. 

In the former, the pedometers are used for counting steps as well as many 

other applications. Because they are portable and special devices to attach on waist, 

foot, or arms for step counting.  In the present, due to the effective sensing of mobile 

phones, accelerometer and gyroscope sensors of mobile phones become to track the 

walking steps as pedometers. To obtain precise measures, step counting with built-in 

sensors of mobile phones, especially accelerometer and gyroscope, has become an 

increasing research area [66]. Both sensors are suitable for analyzing movements 

because accelerometer can detect the rate of change in motion and gyroscope can 

measure the angular velocity. Indeed, sensor location and orientation are very 
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significant factors in the daily activities of humans to be more efficient step counting 

[67]. Based on threshold data and Fast Fourier Transform, a new step counting 

technique for the accelerometer in the android phone was introduced [68]. Six 

volunteers were carrying the smartphone in one of their front pants pockets and 

performing three activities (sitting, standing, and walking).  

Step counting is essential for the rehabilitation improvement of a person. 

Many researchers used the accelerometer to study gait detection and walking step 

detection. The accelerometer was considered to count the daily walks and compared 

with the steps of a pedometer [69]. In order to solve the false walking, a new robust and 

precise step counting technique was suggested [70]. A novel pedometer by combining 

both accelerometer and gyroscope sensors for various walking conditions was designed 

[71]. To support the health of elderly patients, the authors  investigated the accuracy of 

accelerometer type slow walking speeds [72]. A novel step counter using accelerometer 

and gyroscope was concentrated [73]. The authors attempted the accelerometer to 

monitor the natural walking for pulmonary patients with a step counter [74]. An 

overview of some studies on the methods of step counting using built-in sensors of 

mobile phones is expressed in Table 2.4. 

Table 2.4 Overview of Some Step Detection using Mobile’s Sensors 

No. Cite. Year Methods Android sensors 

1 [72] 2006 FFT algorithm AC 

2 [69] 2010 Convergent validity AC 

3 [66] 2012 Kalman filter method AC 

4 [68] 2014 FFT algorithm AC 

5 [74] 2016 A fixed stride length AC 

6 [70] 2017 Peak detection-based method AC 

7 [67] 2018 Internal and ecological validity AC+ GY 

8 [73] 2015 Test’s inherent conditions AC+ GY 

9 [71] 2017 Random motion detection algorithm AC+ GY 
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2.3 A Review on Feature Selection and Classification 

This section offers an overview of the related work to the current 

techniques and criteria for selecting features. This overview provides the research ideas 

and methodologies for studies to improve the HAD system. Finally, it makes this 

dissertation a challenge.  

2.3.1 Feature Selection Techniques 

Feature selection is a significant issue for improving the efficiency of 

human activity in determination. Because, HAD data is a huge amount of data 

containing relevant and irrelevant, or redundant features together [75]. These irrelevant 

or redundant features make the classification model complex. Those features make  

decreasing the performance of the model, but they make the evaluation time increase 

[76]. There are three general classes for feature selection algorithms: filter methods, 

wrapper methods, and embedded methods in ML [77]. In the filter feature selection 

method, a statistical measure is used to evaluate each feature with respect to learning 

methods [78]. The score of features from the dataset is ordered either by selecting or 

removing with statistical methods such as information gain and decision tree method 

[79]. The Chi-squared test, information gain, and correlation coefficient score are some 

examples of filter techniques. 

The wrapper method is a search process as a best-first search algorithm 

that considers selecting a set of features based on different combinations of assigning a 

score to model precision. This strategy removes redundant or meaningless features and 

chooses helpful features to decrease the predictive model overfitting [77]. The 

stochastic search, heuristic method, and recursive feature elimination algorithms are 

examples of wrapper methods. The embedded method performs as the model creates in 

the training process [16]. This approach studies are offering the top features to provide 

the model's elevated precision. One of the most popular kinds of integrating feature 

selection is the regularization technique. It is also known as the technique of 

penalization, such as a regression algorithm, towards a predictive algorithm's low 

complexity. Examples of regularization algorithms are the Least Absolute Shrinkage 

and Selection Operator (LASSO), Elastic Net and Ridge Regression [77]. 
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Many feature selection methods are available automatically, such as 

Decision Tree (DT), Gradient Boosting (GB), Random Forest (RF), R-Square (RS), 

Partial Least Square (PLS), etc. Selecting features in supervised learning increases the 

efficiency of classification [80]. DT is a popular classifier in ML and one of the 

common important supervised learning algorithms [81]. The DT splits the data 

according to a set of laws into sections. In which, the general segment technique is 

called a tree, a whole data comprising all sections is labeled as root, and the remaining 

sections are labelled as leaves.  

GB is one of the best satisfying classifiers of ML. The model has the 

extra benefit of selecting the most significant features [82]. GB offers two approaches 

for assessing a feature's significance: 1) split-based approach and 2) sample-based 

approach. By dividing a node, the split-based technique decreases characteristics and 

sums over all nodes [83]. The sample-based rule improves a fit statistic from an 

uninformative variable according to the sample values. Based on the transformation 

method of feature selection, Principle Component Analysis (PCA) combines the 

features without reducing the cost and storage of the original feature set [84]. To fill in 

the lack of determination of physical activity, the authors removed the redundant 

features and reduced the time complexity using the built-in accelerometer of mobile 

phones [85]. The threshold-based condition box for minimizing feature vectors using 

accelerometer and gyroscope was designed [6].  

Feature selection is an essential component of predictive modeling in 

classification. Although the researchers have discussed several methods for selecting 

features, there are two types of attributes of selections: feature selection method and 

dimension reduction method [86]. Though both techniques attempt to reduce the 

number of attributes in the dataset, these are the different purposes. Dimension 

reduction method by combinations of original attributes is creating new attributes such 

as PCA, Singular Value Decomposition (SVD), Sammon Mapping (SM), etc. The 

feature selection method is searching for useful attributes such as filter methods. The 

study introduced a similarity feature selection method for unsupervised learning [87]. 

In their work, only one feature was selected for each group according to similar features. 

They approved the performance result of the number of the selecting features group and 
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the similarity of features. Feature selection has become an important role in many ML 

problems. In order to develop the recognition of human activities with wearable 

sensors, the generalize discriminant analysis feature reduction method was studied [88].  

One significant feature selection strategy is to reduce the vast amount of 

data on determining human activity. Based on Generalized Discriminant Analysis 

(GDA), the authors suggested a strong feature dimensional reduction technique and 

demonstrated that their technique significantly reduced the dimension of the feature 

space for large datasets [89]. Tensor Manifold Discriminant Projection (TMDP) was 

proposed as a new tensor-based feature selection method by demonstrating its 

effectiveness [90].  

 Due to an important technique of feature selection in the healthcare 

system, the Dynamic Time Warping (DTW) for automatic heartbeat classification was 

used to introduce a novel disease-specific feature selection method [91]. To perform 

feature and instance selection, an evolutionary model using a co-operative co-

evolutionary algorithm for instance and feature selection (IFS-CoCo) was investigated 

and approved this method in many computational problems [92]. 

Based on re-sampling of raw data and principal component analysis 

(PCA), the data dimensionality reduction technique was presented to reduce incomplete 

data dimensionality in HAD [93]. A new feature selection algorithm was suggested for 

supervised classification issues through simultaneous feature selection and Gaussian 

mixture model estimation by [94]. By using Kernel Principal Component Analysis 

(KPCA) and Linear Discriminant Analysis (LDA), was extracted the effective features 

[95]. Deep Belief Network (DBN) was trained to evaluate the performance and 

compared with traditional methods for classifying ANN and SVM.  

Feature selection can reduce not only original features but also the data 

dimensionality. Some feature selection techniques such as PCA, LDA can reduce the 

data dimensionality. However, those methods do not reduce the original feature sizes. 

In [9], the authors designed recognition of activity using the minimum redundancy 

maximum relevant feature selection method. Using correlation-based feature selection, 

fast correlation-based filter, and Relief-F algorithms, the authors discussed the 

importance of feature selection for elderly fall risk and faller classification [96]. In order 
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to reduce potentially large data, a feature selection method using an accelerometer and 

gyroscope was presented for elderly and stroke patients [97]. A brief description of 

some feature selection methods followed in this work is shown in Table 2.5. 

     Table 2.5 A brief overview on some feature selection methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the fourth column Methods of Table 2.5, the word IFS-CoCo means 

a Cooperative Co-evolutionary algorithm for Instance and Feature Selection method, 

the word DSF comes Disease-Specific Feature selection method, the word EM deals 

Expectation-Maximization feature selection model, the word GDA refers to the 

Generalized Discriminant Analysis, the word TMDP gives Tensor Manifold 

Discriminant Projection feature selection , the word DDR offers Data Dimensionality 

Reduction technique and the word LDC means Linearly Dependent Concept. In the 

fifth column Classifier of Table 2.5, the word RVM denotes Relevance Vector Machine 

classifier. The word SVM means Support Vector Machine and the word KNN gives K-

Nearest Neighbour. Although many feature selections techniques have been developed 

in ML issues in recants years, feature selection techniques in HAD are still challenging 

to enhance.  

 

No. Cite. Year Methods Classifier Accuracy% 

1 [67] 2010 IFS-CoCo Nearest 
Neighbor 87.69 

3 [66] 2014 DSF SVM 86.66 

4 [69] 2014 EM SVM 88.5 

2 [64] 2016 GDA RVM 99.2 

5 [65] 2016 TMDP KNN 85.42 

6 [93] 2017 DDR ANN, SVM 82.00 

7 [ 21] 2018 LDC ANN 98.8 
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2.3.2 Classification Techniques 

The main goal of the classification stage is to accurately identify the 

class labels to solve the classification issues. The classification technique is building a 

model that maps input feature space to one or more class output space by a function 

[98]. There are two stages in classification: 1) the training stage in which each feature 

vector refers to a set of associated class labels and 2) the performance evaluation stage 

in which to decide the system output.  

The Artificial Neural Network (ANN) model is built by training and 

testing data. Although ANN is an efficient tool in machine learning, it is a complicated 

network with many hidden layers of neurons.  In ANN, neurons are arranged in various 

layers and interconnected.  Each neuron is conducted by mathematical computations to 

receive processes and send information. The effectiveness of this network mainly 

depends on the training data and its model [86]. Many researchers have suggested 

improving the performance of neural networks classifiers. A backpropagation neural 

network is used to implement a pattern recognition system. The current approach to the 

recognition problem is based on a feed-forward neural network with backpropagation 

learning. The sample schematic representation of a single artificial neuron with two 

input neurons is described in Figure 2.3.  

 
        Figure 2.3 A single artificial neuron model 

In Figure 2.3, input components are 	𝑎$ and 𝑎% and y is an output 

component. When the signal 𝑎$ and 𝑎%   apply to the artificial neuron network, the input 

𝑎$  goes to neuron 1 and 𝑎%    goes to neuron 2 in the input layer. The activation function 

sends the signal to the neuron 3 in the output layer to generate the output y by passing 
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the weight 𝑤$ and 𝑤%. Multiple efforts have been made to assess classifier efficiency 

using many supervised learning algorithms. Neural networks with one or more hidden 

layers are called multi-layer neural networks or MLP.  Due to the robust performance 

of Multi-Layer Perceptron (MLP), it is widely applied to recognize human activity 

processes [99]. The MLP classifier can divide into three groups: 1) the input layer,  

2) the hidden layer, 3) the output layer. A layer of input units is connected to a layer of 

hidden units and a layer of hidden units also connected to a layer of the output unit. 

Due to a link between each of the neurons in any specified layer and each 

of the neurons in the next layer, ANN is known as a fully connected network. It is called 

a feed-forward-network when there is a link between neurons in a specified layer and 

there is none back to previous layers. This network is said to be a  

feed-forward-backward-network when the neurons are required to adjust the weight of 

the previous layer [100]. A multi-layer perceptron model with two hidden layers of 

supervised learning is shown in Figure 2.4. 

 

                    Figure 2.4 Multi-layer perceptron model with two-hidden layers 

In Figure 2.4, w and b are weight and bias for activation function in 

hidden layers. In ML, a classifier is an important role for learning and predicting of 

input data. Among many classifiers, ANN, DT, and KNN are well-known classifiers in 

HAD according to the literature reviews. Three classification algorithms (J48, Logistic 

Regression and Multilayer Perceptron) were proposed to fill the lack of classification 

by creating a model for recognizing six daily activities (walking, jogging, walking-

upstairs, walking-downstairs, sitting and standing) [86]. Their results showed that MLP 

performed well. They talked about that it was simpler to define jogging activity than 

walking, and it was much harder to distinguish the two stairs climbing operations. There 

are many ML methods to carry out many kinds of studies on determining human 

Hidden-layer2

w

b
+

w

b
+

Hidden-layer 1 Hidden-layer 2
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activity. In [101], the authors suggested an effective group-based context-aware 

classification technique for HAD. They compared to other famous classifiers and 

achieved the best accuracy. They trained a deep belief network and compared 

traditional techniques of classification of ANN and SVM. Their technique achieved 

better accuracy than other methods.  

Several researchers used different classification models to examine 

HAD. In [102], the authors explored a hierarchical recognizer for classifying physical 

activity using artificial neural networks because of the significance of classification in 

HAR. Their technique gave an average precision of 97.9% in HAR. In [86], the authors 

developed a model to recognize six daily physical activities (walking, jogging, upstairs-

walking, downstairs-walking, sitting and standing) using three classification algorithms 

(J48, Logistic Regression, and Multilayer Perceptron). They concentrated on simple 

time-domain features and reached classification precision of 98%. Their findings 

suggested the highest general precision conducted by the MLP.  In [103], the authors 

concentrated on sensitivity, specificity, and F-scores in MLP classification to achieve 

more efficiency.  

Many researchers have tried to achieve better efficiency in the 

determination of classification criteria in human activity. A quick and precise model of 

the Hidden Markov Model (HMM) classifier was proposed that used accelerometer and 

gyroscope in the mobile phone for various activities of a single user [104]. The 

threshold-based condition box was also designed to minimize feature vectors using the 

accelerometer and gyroscope [105].  

A neural network classifier was used to discuss a robust HAD model 

[106]. They tried this model on time-domain features. They gathered information 

carrying the phone into the pant pockets of the front and back pant s. Five daily 

activities (static, walking, running, upstairs-walking, and downstairs-walking) were 

conducted by three volunteers. Their technique had accomplished a total precision of 

92%.  

An automatic function extractor and classifier were introduced by using 

built-in sensors on a mobile phone [107]. Using deep learning neural networks, they 

conducted classification of UCI-HAR dataset and analyzed classification using other 
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state-of-the-art techniques. They accomplished performance precision of 94.79% by 

considering a wider time span of temporal local score. A Multi Class HF-SVM (MC-

HF SVM) model was introduced for monitoring disabled and elderly patients using 

portable accelerometer sensor and gyroscope sensor in mobile phone [108]. In [109], 

the authors mentioned HAD's requirements for ML approach criteria. Using Neural 

Networks (NN), Random Forests (RF), Nearest Centroid (NC), and multi-class 

SVM(MC-SVM), they demonstrated the significance of classification methods.  

2.4 A Review on Datasets and Main Ideas on Feature Selection 

2.4.1 Dataset 

Despite the high efficiency of the HAD system among various 

applications, it consists of very complicated sensor information. The greater 

dimensional dataset makes the system process more complicated. Among many 

datasets to determine the most appropriate human activity classification, there are three 

distinct HAR datasets: i) UCI-HAR dataset [25], ii) UCI-HAPT dataset [26],  

iii) DATASET-UCI dataset [27], which are the most popular UCI repository datasets 

(available from http:/archive.ics.uci.edu/ml). Table 2.6 shows the overall description of 

the three distinct datasets. 

  Table 2.6 General details of three datasets used in this dissertation 

Dataset No of. 
Activities 

No. of. 
Instances 

No. of. 
Attributes 

Released 
Date 

UCI-HAR 6 10299 561 2012-12-10 

UCI-HAPT 12 10929 561 2015-07-29 

DATASET-
UCI 

6 5744 561 2016-03-09 

 

In Table 2.6, all data sets can be found in the UCI-HAR dataset 

repository. In the first line, the UCI-HAR dataset was developed and published in 2012 

by Irvine University of California researchers [44]. In the second line, the UCI-HAPT 

dataset was an extended dataset of the UCI-HAR dataset released in 2015. Following 
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the UCI-HAR dataset, the DATASET-UCI dataset was released in 2016. These three 

datasets had already been split into a training set of 70% and a test set of 30%. Table 

2.7 describes the list of activities and the percentage of each activity for three datasets. 

Table 2.7 The percentage of each activity per dataset 

No. Activities 
Percentage of each activity 

UCI-HAPT UCI-HAR DATASET-UCI 

1 Walking 15.8% 18.5% 17.6% 

2 Walking-Upstairs 14.1% 17.3% 14.9% 

3 Walking-Downstairs 12.9% 18.9% 16.2% 

4 Sitting 16.5% 16.7% 19.6% 

5 Standing 18.1% 13.7% 17.9% 

6 Laying 17.9% 15.0% 13.8% 

7 Stand-to-Sit 0.6% - - 

8 Sit-to-Stand 0.3% - - 

9 Sit-to-Lie 1.0% - - 

10 Lie-to-Sit 0.8% - - 

11 Stand-to-Lie 1.3% - - 

12 Lie-to-Stand 0.8% - - 

In Table 2.7, all datasets include six basic types of activity such as 

walking, walking-upstairs, walking-downstairs, sitting, standing, and laying. However, 

there are more than six postural transition activities in the UCI-HAPT dataset, such as 

stand to sit, sit to stand, sit to lie, lie to sit, stand to lie, and lie to stand. The size of the 

UCI-HAR dataset is 10299 × 561 (5,777,739), the size of the UCI-HAPT dataset is 

10929 × 561 (6,131,169), and the size of the DATASET-UCI dataset is 5744 × 561 

(3,222,384). For all datasets, the accelerometer and gyroscope sensor of Samsung 

Galaxy SII mobile phone recorded 3-axial acceleration and 3-axial angular velocity 
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with the 50Hz sampling rate. These raw signals were removed from the noise and 

extracted the data from the fixed-width sliding window by 50% overlapping. From each 

window, the time-domain features and frequency-domain features were acquired. Table 

2.8 shows the extracted features and detailed descriptions of variable types.  

Table 2.8 Description of variable types of features 

No. Variable Types Description 

1 Mean () Average value 

2 Std () Standard Deviation 

3 Mad () Median absolute deviation 

4 Max () Maximum value 

5 Min () Minimum value 

6 Sma () Signal magnitude area 

7 Energy () Energy value 

8 Iqr () Interquartile range 

9 Entropy () Signal entropy value 

10 arCoeff () Autoregression coefficient 

11 Correlation () Correlation coefficient 

12 
maxInds () Index of the largest magnitude frequency 

component 

13 meanFreq () A weighted average of the frequency component  

14 Skewness () The skewness of the frequency domain signal 

15 Kurtosis () Kurtosis of the frequency domain signal  

16 bandsEnergy () Energy of the frequency by FFT of each window 

17 Angle () The angle between the vectors 
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Table 2.8 denotes the acceleration signals of the user body and gravity 

as tBodyAcc-XYZ and tGravityAcc-XYZ. TBodyAccJerk-XYZ and tBodyGyroJerk-

XYZ define the jerk signals the rate of acceleration change over time obtained from 

raw signals and angular velocity. Table 2.9 describes the extracted features of raw 

signals from the time-domain of three datasets.  

Table 2.9 Description of the types of raw signal in the time domain 

No. 
Raw signals in 

the time domain 
Description 

1 tBody Acc-XYZ  Body acceleration in time  

2 tGravityAcc-XYZ  Gravity acceleration in time  

3 tBodyAccJerk-XYZ   Jerk in body acceleration in time  

4 tBodyGyro-X YZ  Body Gyroscope measure in time  

5 tBodyGyroJerk-XYZ  Jerk in body Gyroscope measure in time  

6 tBody AccMag Magnitude of body acceleration in time 

7 tGravity AcMag  Magnitude of gravity acceleration in time 

8 tBody AccJerkMag  Magnitude of jerk in body acceleration in time  

9 tBodyGyroMag Magnitude of body Gyroscope measure in time  

10 tBodyGyroJerkMag  Magnitude of jerk in body Gyroscope measure in time 

 

There are 561 features in total, including 272 time-domain features, 289 

frequency-domain features. Initially, 3-axial raw signals are referred to as ' XYZ ' from 

the three-axis directions X, Y, Z. To represent raw signals from the accelerometer and 

gyroscope, the feature names are expressed as tAcc-XYZ, tGyro-XYZ, etc. In which, 

the prefix ‘t’ is pointed out to express the time domain variables. Thirty volunteers 

participated in the same age group within 19-48 years in two datasets (UCI-HAR 
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dataset, UCI-HAPT). Table 2.10 shows in the extracted feature types of raw signals 

from the frequency domain of three datasets.  

Table 2.10 Description of the types of raw signal in the frequency domain 

No. 
Raw signals in  

frequency domain 
                        Description 

1 fBody Acc-XYZ  Body acceleration in frequency  

2 fBodyAccJerk-XYZ   Jerk in body acceleration in frequency  

3 fBodyGyro-X YZ  Body Gyroscope measure in frequency  

4 fBody AccMag Magnitude of body acceleration in frequency 

5 fBody AccJerkMag  Magnitude of jerk in body acceleration in frequency  

6 fBodyGyroMag Magnitude of body Gyroscope measure in frequency  

7 fBodyGyroJerkMag  Magnitude of jerk in body Gyroscope measure 

 

However, 30 people performed 6 activities in the UCI-HAR dataset 

(walking, walking-upstairs, walking-downstairs, sitting, standing and laying) and 30 

people performed 12 activities in the UCI-HAPT dataset (walking, walking-upstairs, 

walking-downstairs, sitting, standing, laying, stand to sit, sit to stand, sit to lie, lie to 

sit, stand to lie, and lie to stand). On the other side, 30 volunteers in the age group of 

22-79 years performed 6 activities (walking, walking-upstairs, walking-downstairs, 

sitting, standing and laying) and gathered the DATASET-UCI dataset.  

The magnitude of three-dimensional signals is designated with 

tBodyAccMag, tBodygyroMag, tBodyAccJerkMag, tBodyGyroJerkMag, and 

tGravityAccMag, tGravitygyroMag specify the magnitude of three-dimensional gravity 

signals. By implementing a Fast Fourier Transform (FFT), all above three-dimensional 

signals generated fBodyAcc-XYZ, fBodyGyro-XYZ, fBodyAccJerk-XYZ, 

fBodyGyroMag, fBodyAccJerkMag, and fBodyGyroJerkMag, where prefix ‘f’ was 
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indicated to show frequency domain variables. Variable type ‘angle’ of 7 features from 

time-domain is calculated for tBodyAccMean, tBodyAccJerkMean, tBodyGyroMean, 

tBodyGyroJerkMean, and gravityMean. Table 2.11 shows a detailed description of all 

features of three datasets as well as the total number of features.  

Table 2.11 Feature categorization and number of features from the specified datasets 

Category Raw Signals Types # Features Variable Types 

Time (272) 

tBodyAcc-XYZ 40 
Mean () 

Std (), 

Mad (), 

Max (), 

Min (), 

Sma (), 

Energy (), 

Iqr (), 

Entropy (), 

arCorf (), 

Corelaion () 

tGravityAcc-XYZ 40 

tBodyAccJerk-XYZ 40 

tBodyGyro-XYZ 40 

tBodyGyroJerk-XYZ 40 

tBodyAccMag 13 

tGravityAccMag 13 

tBodyAccJerkMag 13 

tBodyGyroMag 13 

tBodyGyroJerkMag 13 

(tBodyAccMean, Gravity)  

(tBodyAccJerkMean, Gravity) 

(tBodyGyroMean, Gravity) 

(tBodyGyroJerkMean, Gravity) 

(XYZ,GravityMean) 

7 angle () 

Frequency 
(289) 

 

fBodyAcc-XYZ 79 

maxInds (), meanFreq (), 
Skewness (), Kurtosis (), 
bandEnergy () 

fBodyAccJerk-XYZ 79 

fBodyGyro-XYZ 79 

fBodyAccMag 13 

fBodyAccJerkMag 13 

fBodyGyroMag 13 

fBodyGyroJerkMag 13 

Total features 561 
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Finally, each dataset was given with a total of 561 features performed by 

30 volunteers for physical activities. The next section is to support the main idea of 

feature selection intended for use in this dissertation. 

2.4.2 Linearly Dependent Concepts 

Large datasets regularly consist of hundreds of millions of separable 

pieces of data information. Working with and operating on this data is easier when it is 

described in the form of vectors and matrices [110]. Linear equations are especially 

essential in modern science to create models with linear approximations. Therefore, 

linear algebra is also an important requirement in machine learning and information 

processing for algorithms [111]. Linear algebra is a branch of mathematics dealing with 

vectors and vector operations. There are three fundamental concepts: a linear 

combination; linearly dependence; and linearly independence. The following 

definitions and concepts are discussed in this dissertation with some examples.  

(i) Vector 

Vectors can be regarded as a number array. Usually, they are described 

by a bold letter as x in the lowercase. By subscription, the individual numbers are 

marked indicating the individual member's status. For instance, 𝑥$is the first vector, 𝑥% 

is the second vector and so on. With the individual elements in square brackets, a vector 

can be expressed as an array, 

 𝒙 = [	𝑥$, 𝑥%,… , 𝑥2	]. 

where m is the last element of an array. 

In a matrix of m × n, a column vector or column matrix is a matrix of  

m × 1 which implies a matrix composed of a single column with m elements and a row 

vector or row matrix is a matrix of 1 × n, that is to say a matrix composed of a single 

row with n elements as shown in Table 2.12.  

Table 2.11  Row vector and column vector 

Row vector Column vector 

𝒙 = [	𝑥$, 𝑥%, … , 𝑥2	] 
					𝒙 = 4

𝒙𝟏
𝒙𝟐
⋮
𝒙𝒎
9 
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(ii) Vector Addition and Multiplication 

Adding two vectors is completed by adding each respective component of a vector as 

shown in the example.  

                𝒙 = :1 2
3 4? , 𝑦 = :5 6

7 8? 

																𝑥 + 𝑦 = 	 :1 2
3 4? + :5 6

7 8? 

																𝑥 + 𝑦 = 	 :1 + 5 2 + 6
3 + 7 4 + 8? 

																𝑥 + 𝑦 = 	 : 6 8
10 12? 

Vector multiplication can be described by multiplying a vector with a scalar for each 

respective vector component as shown below.  

               If  𝒙 = :1 2
3 4? , 

 

														𝑡ℎ𝑒𝑛								2𝑥 = 	2 × :1 2
3 4? 

																						2𝑥 = 	 :1 × 2 2 × 2
3 × 2 4 × 2? 

																					2𝑥 = 	 :2 4
6 8? 

(iii) Matrix 

A matrix is an array of elements in two dimensions. It is represented by 

an uppercase letter such as A, and each element is represented by a small letter with 

two indices such as 𝑎JK, where I represent the row and j represents the column. The 

following matrix is an m × n matrix. A matrix m x n implies that the matrix consists of 

vectors of m row and vectors of n column.  
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																										𝐴 =

⎝

⎜⎜
⎛

𝑥$$			𝑥$%				.		.		.			𝑥$Q
𝑥%$			𝑥%%				.		.		.			𝑥%Q.

.

.
𝑥2$		𝑥2%				.		.		.			𝑥2Q⎠

⎟⎟
⎞

   

(iv) Vector Space 

A vector space is a collection of vectors on which two operations  

+ and · are defined, called vector addition and scalar multiplication. The R2 space and 

Rn space are examples of vector space as shown in Table 2.13. 

Table 2.13 Description of R2 vector space and Rn vector space 

Vector Space Description 

R2 space 
The xy plane represents the vector space R2. There are two 

components in each vector v. 

 R2 = {v = (x1, x2) / x1, x2 ∈ R2} 

Rn space The Rn space is a set of all vectors containing n components in 

each vector v. 

 Rn = {v = (x1, x2, …,	xn) / x1, x2, …, xn ∈ Rn} 

(v) Linear Combination 

If a vector v = (x1, x2, …, xn) ∈ Rn can be written as below: 

v = c1x1 + c2x2 + …,+ cnxn        (2.1) 

or   v =  ∑ 𝑐J	𝑥JQ
J       (2.2) 

Where c1, c2, …,	cn are scalars in R. 

Then v is called a linear combination of the vectors x1, x2, …,	xn. 
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(vi) Homogeneous Linear Combination 

If a linear equation c1x1 + c2x2 + …,+ cnxn is equal to zero, it is called a linear 

homogeneous equation. In symbol,  

∑ 𝑐J	𝑥JQ
J  = 0                 (2.3) 

where x1, x2, …,	xn are vectors in Rn and c1, c2, …,	cn are scalars in R. 

(vii)    Homogeneous Linear Combination System 

If more than one homogeneous linear equation exists, it can be called a 

homogeneous linear system of mixture. For example, below is described a 

homogeneous linear combination system with m homogeneous linear equations. 

𝑐$𝑥$$ + 𝑐%𝑥$% +	…	+ 𝑐Q𝑥$Q = 0
𝑐$𝑥%$ + 𝑐%𝑥%% +	… ,+𝑐Q𝑥%Q = 0

.

.

.
𝑐$𝑥2$ + 𝑐%𝑥2% +	… ,+𝑐Q𝑥2Q = 0⎭

⎪
⎬

⎪
⎫

             (2.4) 

where 𝑥$$, 𝑥$%	, … , 𝑥$Q	are vectors in Rn and c1, c2, …, cn are scalars in R. 

Then this system (2.4) is called as a homogeneous linear combination system. This 

system can be written in a matrix form as illustrated below. 

⎝

⎜⎜
⎛

𝑥$$			𝑥$%				.		.		.			𝑥$Q
𝑥%$			𝑥%%				.		.		.			𝑥%Q.

.

.
𝑥2$		𝑥2%				.		.		.			𝑥2Q⎠

⎟⎟
⎞

  

⎝

⎜⎜
⎛

𝑐$
𝑐%
.
.
.
𝑐Q⎠

⎟⎟
⎞
=	

⎝

⎜⎜
⎛

0
0
.
.
.
0⎠

⎟⎟
⎞
					  

Then, 

 

					𝐴 =

⎝

⎜⎜
⎛

𝑥$$			𝑥$%				.		.		.			𝑥$Q
𝑥%$			𝑥%%				.		.		.			𝑥%Q.

.

.
𝑥2$		𝑥2%				.		.		.			𝑥2Q⎠

⎟⎟
⎞

  ,   𝑐 =

⎝

⎜⎜
⎛

𝑐$
𝑐%
.
.
.
𝑐Q⎠

⎟⎟
⎞
,					0 = 	

⎝

⎜⎜
⎛

0
0
.
.
.
0⎠

⎟⎟
⎞

      (2.5) 
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Then the system of linear combination can be written as a matrix notation 

Ac = 0      .              (2.6) 

where A is an 𝑚 × 𝑛 matrix and ‘0’ is a zero matrix. 

(viii) Linear Independence and Linear Dependence 

If a homogeneous linear equation of the vectors (x1, x2, …	,	xn) ∈ Rn is  

																									∑ ∑ 𝑐J	𝑥KJQ
J

2
K  = 0                                                                                (2.7) 

then we can find all values of c1, c2, …	,	 cn. 

(a)  If each 𝒄𝒊	is equivalent to zero, then the vectors x1, x2, …	,	xn are linearly 

independence. 

(b)  If there exists a 𝒄𝒊	is not equivalent to zero, then the vectors x1, x2, …	,	xn are 

linearly dependence.  

 

(ix) Trivial Solution and Nontrivial Solution 

A homogeneous linear equation of the vectors (x1, x2, …	,	xn) ∈ Rn  has 

two kinds of solutions trivial solution and nontrivial solution. 

(a)  If every 𝒄𝒊	is equal to zero, the equation (2.7) has a trivial solution. 

(b)  If there exists a 𝒄𝒊	is not equal to zero, the equation (2.7) has a nontrivial solution. 

 

(x) Gauss Jordan Elimination Method 

Gauss Jordan elimination method is very popular in many engineering 

and science for solving linear systems [112]. The main technique of this method is 

reducing to row echelon form of the augmented matrix of the linear system. The 

method uses the following elementary row operations to solve the system. 

(a) Interchanging two rows. 

(b) Multiplying one of the rows by a nonzero constant. 

(c) Adding a multiple of one row to another row. 
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(xi) Example of Trivial Solution 

Given: v = {(x1, x2, x3}  

where   𝒙𝟏 = 	 :
2 1
0 1?	, 𝑥% = 	 :

3 0
2 1?	, 𝑥_ = 	 :

1 0
2 0?	.	 

Then homogeneous linear combination system is as follows. 

c1x1 + c2x2 + c3x3   = 0    

where c1, c2, c3 are any scalar numbers. 

The trivial solution of that system by using Gauss Jordan elimination 

method is as below. 

c1x1 + c2x2 + c3x3   = 0    

Here 

𝑐$ 	:
2 1
0 1?		+	𝑐% 	:

3 0
2 1? +	𝑐_ 	:

1 0
2 0? = 	 :

0 0
0 0?	   . 

By vector addition, we can construct a linear combination system with 

four equations as follows. 

 2𝑐$ + 3𝑐% + 			𝑐_ 		= 0
𝑐$					 																									= 0
												2𝑐% + 2𝑐_ 		= 0
𝑐$ 			+ 	 		𝑐% 														= 0

` 

Then we can find all values of scalars by using Gauss Jordan 

elimination method. 

 

 
Here, c1 = 0. 

c2 = 0. 

c3 = 0. 

Therefore, v is a linear independence. 

And the system has a trivial solution.  
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(xii) Example of Nontrivial Solution 

Given: v = {(x1, x2, x3}  

where    𝑥$ = 	 :
−3 0
5 3?	, 𝑥% = 	 :

12 0
4 −18?	, 𝑥_ = 	 :

6 0
−2 −8?	.	 

Then homogeneous linear combination system is as follows. 

c1x1 + c2x2 + c3x3   = 0    

where c1, c2, c3 are any scalar numbers. 

It can be determined by the nontrivial solution of that system by using the Gauss 

Jordan elimination method as below. 

c1x1 + c2x2 + c3x3   = 0    

Here, 

					𝑐$ 	:
−3 0
5 3?			+	𝑐% 	:

12 0
4 −18? +	𝑐_ 	:

6 0
−2 −8? = 	 :

0 0
0 0?		 

By vector addition, a linear combination system can be constructed with three 

equations as follows. 

		−3𝒄$ 		+ 			12𝒄% 		+ 							𝟔𝒄_ 			= 0
				5𝒄$	 	+ 		 				4𝒄% 	− 								2𝒄_ 			= 0
				𝟑𝒄$ 			− 				18𝒄%		 − 				 		8𝒄_ 			= 0

 

Then, using Gauss Jordan elimination technique, all scalar values can discover. 

   

Hence, c1 = 2. 

     c2 = -1. 

       c3 = 3. 

The values show that all scalar values are not zeros.  

Therefore, v is a linear dependence. 

And the system has a non-trivial solution.  
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2.4.3 Group Theory 

Group theory, a branch of abstract algebra, is an essential tool in some 

scientific fields such as mathematics, physics, chemistry, etc. It is a symmetrical 

analysis that remains invariant under certain transformations [113]. Group theory 

supports to predict the existence of group elements. Different structures and behaviors 

of objects have different symmetry.  For the asymmetry of polygons, group theory is 

very essential in geometry. Group theory is applied in number theory and Elliptic 

groups are widely applied in modern cryptography fields.  

A cyclic group is a single-element abelian group. In group theory, the 

fundamental properties of cyclic groups play a vital role. The authors viewed the 

fundamental of a cyclic group [114]. The writers discussed the significance of polygon 

stars in art and culture [115]. The study of abstract groups is very challenging to get the 

algebraic concepts. The authors attempted to understand the structure of the cyclic 

group for algebra concepts using stars polygons [116]. The study suggested a technique 

for finding expectation numbers of cyclic groups [117].  

There are many complicated classes with different kinds of elements in 

a group. A classification of that group's affiliation is one of the most significant points 

in a group. Sometimes, groups contain some arbitrary subgroups without specific 

properties. Sometimes, groups with some binary operations could also come up with 

special properties. In [118], the authors investigated the relationship between cyclic soft 

groups and classical groups. The authors proposed a method to find an average order 

of the elements in a cyclic group of order n and proved that an arbitrary group G is 

cyclic if and only if distinct subgroups of G have distinct indexes in G [119]. The reason 

why this section is interested in the group theory and fundamental properties of the 

cyclic group with a binary operation involving some special properties.  

(1) Group 

Let G= {g1, g2, . . .  ,gn } be a finite set of elements. Then G is called a 

group if it fulfills four properties (closure, associativity, unity, and inverse element) 

under addition operation as follows: 
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(i) ∀a, b ∈ G, : c= a + b ∈ G (Closure) 

(ii) ∀a, b, c ∈ G, : (a + b) + c = a (b + c) ∈ G (Associativity) 

(iii) ∀	𝒂	 ∈ 𝑮	, ∃𝒆 ∈ G,  : a + e = a (Identity) 

(iv) ∀	𝒂	 ∈ 𝑮	, ∃𝒃 ∈ G, : a + b = e (Inverse element) 

(2) Order of Group G 

Let G be a group. Then the order of a group G is the total number of 

elements in G   denoted by either |G| or O (G). 

For example: 

Given:  G = {1,2,3,4,5,6,7}. 

Then order of a group G is |G|= O (G) = 7 

(3) Cyclic Group 

A group G is a cyclic group if that is generated by a single element of 

it. Instantly, if G = <a> = {na / a ∈G, n ∈ 𝒁 }is called a cyclic group generated by ‘a’.  

For example: 

Let G = {1,2,3,4,5,6,7,} and Z5 = {2,3,4,5,6}, then  

Z5 = <1> with |1| = 5 

Here, we call Z5 = <1> is a cyclic group generated by 1. 

(4) Fundamental Properties of Cyclic Group 

Every cyclic group satisfies the following fundamental properties: 

(a) Every group is a cyclic group itself with generator 1.  

(b) Every subgroup of a cyclic group is also a cyclic group. 

(c) The order of every subgroup is a divisor of the order of group G. 

(d) There exists exactly one subgroup of order k which is divisor of the order of G. 

For example: 

Let G = Z8 = {1,2,3,4,5,6,7,8} 

Then G is a cyclic group generated by 1 with |G| =8. 
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The divisors of 8 are 2 and 4. 

Since, each divisor has exactly one subgroup of G. 

<2> = {2,4,6,8} with order 4 and  

<4>= {4,8} to order 2 are subgroups of G. 

(5) Euler Phi Function 

The function of Euler Phi 𝝋 is described as the total number of elements 

in a cyclic group. If there is a divisor d of the order of group G, then the number of 

elements of that devisor d can be expressed as  

 𝝋 = the number of positive integers less than d and relatively prime to d  

Some examples of total number of elements of cyclic group G are shown in Table 

2.14. 

  Table 2.14 Example of the total number of elements of cyclic subgroup G 

|G| d 𝝋 

(Order of G) (Divisor of |G|) (Euler Phi) 

4 2, 4 1, 2 

6 2, 3 1, 2 

8 2, 4, 8 1, 2, 4 

10 2, 5 1, 4 
 

 

In Table 2.14, the word G means a cyclic group G generated by 1 and 

the word |G| is the order of group G. The word d refers to the divisor of the order of 

group G. The word 𝝋 is the total number of elements of the cyclic subgroup of G. 
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CHAPTER 3  

METHODOLOGY 

The main goal of this work is to develop a HAD system using  

high-quality features and a best classifier. New feature selection techniques and a new 

classification design are the focal points of the work. This chapter of the dissertation is 

organized into two main sections. An initial assessment of the HAD system was made 

based on data collection and step counting. The first section of the chapter deals with 

the performance and evaluation of these two tasks. The second section discusses the 

five primary concerns of this research: data selection, data preprocessing, feature 

selection, classification, and performance evaluation.  

3.1 Task_1 (Understanding Work in HAD) 

3.1.1 Data Collection 

To understand how a HAD system works, it is first necessary to collect 

human activity data. The collected data are needed to control real activity recognition 

[120]. The creation of a new human activity dataset is described in this section. The 

main goal is to identify the key characteristics of sensor data that determine the activity. 

The data collection process is the preliminary step in determining human activity and 

uses the built-in sensors on a mobile phone. Many types of sensors can be implemented 

to retrieve sensor data for human activity recognition. However, retrieved sensor 

datasets differ from each other due to the following factors: 

• Different types of sensors 

• Different integrated devices 

• Different sensor locations 

• Different activities 

• Different type of data collection protocols 

• Different sampling rates 

• Different types of users 
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In this work, a Samsung Galaxy Note 4 device using the Android 6.0.1 

operating system was selected as the data collection tool. Three sensors (accelerometer, 

gyroscope, and magnetometer) were used to retrieve data. A new data collection tool 

using version 3.1.4 of Android Studio was developed and installed on the Samsung 

Galaxy Note 4 to retrieve data produced by physical activity.  

Thirty healthy volunteers of various heights, weights, and ages 

participated. Most were international students at Prince of Songkla University from 

countries such as Pakistan, the Philippines, Cambodia, Vietnam, Bangladesh, Thailand, 

and Myanmar. Data collection took place at the Department of Computer Science, 

Faculty of Science, Prince of Songkla University. Participants followed guidance on 

how to perform the data collection process. Before the tests began, the characteristics 

of participants such as age, sex, height, and weight were recorded. To collect data 

produced by eight human activities, the Samsung Galaxy Note 4 was connected to the 

waist-bag of the users. The three sensors collected data of the user’s movements every 

100 milliseconds. Every 2 minutes, each user performed a sequence of activities. This 

collected dataset was named Testing Activity Data (TAD). There were eight activities 

to perform in this data collection as shown in Table 3.1. 

Table 3.1 Descriptions of Activities 

Class Activity Description 

1 Sitting Sitting on a chair 

2 Standing Standing straight 

3 Walking Normal walking forward on a flat floor 

4 Walking- upstairs walking up the stairs 

5 Walking-downstairs walking down the stairs 

6 Laying Laying on the bed 

7 Stand-walking Walking with keeping the position 

8 Stand-jogging Jogging with keeping the position 
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A series of instances were collected as raw data containing a timestamp, 

three accelerometer values along the X-axis, Y-axis, and Z-axis, three gyroscope values 

along the X-axis, Y-axis, Z-axis, and three magnetometer values along the X-axis,  

Y-axis, and Z-axis. Detailed information for TED data collection is shown in Table 3.2. 

Table 3.2 Detail descriptions of TED data collection 

Type Description 

Mobile phone Samsung Galaxy Note 4 

Number of sensors Accelerometer, Gyroscope, Magnetometer 

Number of subjects 30 

Number of activities 8 

Mobile phone location User’s waist-bag 

Time stamp 100ms 

Total number of samples 150,982 

Tagging raw data 
[Timestamp], [Ac-X], [Ac-Y], [Ac-Z], [Gy-X], 

[Gy-Y], [Gy-Z], [MX], [MY], [MZ], [Steps], 

In Table 3.2, the word Timestamp means the occurrence of time to 

record the specific user’s activity. The word Ac means an accelerometer value. The 

word Gy refers to gyroscope value, and the M is the magnetometer value.  The words 

X, Y, and Z mention along the X-axis, Y-axis, and Z-axis. The word Steps implies the 

number of counting steps for walking by each user.  

The collected TAD dataset was accomplished and compared with UCI-

HAR [25] dataset that was planned to use in this research. It is a common dataset widely 

used by current researchers. This dataset includes 6 activities of 30 subjects wearing 

the smartphone at their waist. The activity data were recorded by the accelerometer and 

gyroscope with a sampling rate of 50Hz. A comparison of a brief description of  

UCI-HAR dataset and TAD dataset is given in Table 3.3. 
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Once obtained, the collected TAD dataset was  compared with the UCI-

HAR dataset [25] chosen for use in this research. The UCI-HAR dataset is widely used 

by current researchers and comprises data of six activities performed by 30 subjects 

wearing a smartphone at their waist. The activity data were recorded by the 

accelerometer and gyroscope at a sampling rate of 50Hz. Brief descriptions of the UCI-

HAR dataset and the TAD dataset are given for comparison in Table 3.3. 

 Table 3.3 A comparison of UCI-HAR dataset and TAD dataset 

Description UCI-HAR dataset TAD-Dataset 

Mobile phone Samsung Galaxy SII Samsung Galaxy Note4 

Sensors type 
Accelerometer, 

Gyroscope 

Accelerometer, Gyroscope, 

magnetometer 

Number of subjects 30 30 

Sampling rate 50Hz 10Hz 

Sensor location User’s waist bag User’s waist bag 

Number of activities 6 8 

Number of samples 10299 150982 

The comparative results in Table 3.3 show that the production of the 

datasets was characterized by several different factors:  

• Different devices 

• Different types of sensors 

• Different types of activities 

• Different sampling rates 

While a Samsung Galaxy Note 4 was the embedded TAD data collection 

tool, a Samsung Galaxy SII was the embedded UCI-HAR data collection tool. Where 

the TAD dataset was retrieved by 3 sensors (accelerometer, gyroscope, and 

magnetometer), the UCI-HAR dataset was collected by 2 sensors (accelerometer, and 
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gyroscope). While 30 users performed 8 activities (walking, walking upstairs, walking 

downstairs, sitting, standing, lying down, walking on the spot, and jogging on the spot) 

to provide the TAD data, 30 volunteers performed 6 activities (walking, walking 

upstairs, walking downstairs, sitting, standing, lying down) to provide data for the UCI-

HAR dataset. 

In addition, sensing frequency for the TAD dataset was 10HZ and 50Hz 

frequency was given by the UCI-HAR dataset. In these factors of views, the TAD 

dataset and UCI-HAR dataset differ from each other. Due to difficulty to compare 

different datasets together. Therefore, 3 benchmark datasets (UCI-HAR, DATASET-

UCI, HAPT) intended to use in this dissertation will be discussed in the next section. 

As a benefit of collecting human activity data, the knowledge of sensing data and its 

characteristics is to be supported in finding new techniques for feature selections. 

Moreover, the sensing frequency to collect the TAD dataset was 10HZ 

and the sensing frequency of UCI-HAR dataset was 50Hz. In view of these factors, the 

TAD dataset and UCI-HAR dataset differ from each other. Due to the difficulty of 

comparing these different datasets, this study used three benchmark datasets (UCI-

HAR, DATASET-UCI, and UCI-HAPT), which will be discussed in the next section. 

The knowledge gained from the collected human activity data and its characteristics 

will support the development of new techniques for feature selection. 

3.1.2 Step Counting 

Beyond the data collection aspect, further understanding of HAD 

systems followed from step counting using the built-in accelerometer of the mobile 

phone. This sensor provided data from real activity that was applied in the assessment 

of HAD before development began. 

In this task, the Samsung Galaxy Note 4 operating with Android 6.0.1 

was used to count the walking steps of the user. An Android studio application was 

introduced to collect the data. Data were recorded with the acquisition protocol. The 

sensor recorded the user’s horizontal movement along the X-axis, vertical movements 

along the Y-axis, and the forward and backward movements along the Z-axis. Under 

instructions, nine participants (6 males, 3 females) performed walking activities. The 
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experiment involved three types of walking (normal walking, slow walking, and fast 

walking) in four sensor location modes (in-hand swinging-mode, texting mode, waist-

bag mode, and arm-bag mode). Brief descriptions of walking styles for step counting 

are listed in Table 3.4. 

Table 3.4 Three types of walking during step counting 

Walking Types Description Notation 

Normal-Walking Walking at ordinary pace N-walk 

Slow-Walking Walking more slowly than ordinary walking S-walk 

Fast-Walking Walking faster than ordinary walking F-walk 

Four different sensor usage modes indicating where the participants 

carried the mobile phone are shown in Table 3.5. 

Table 3.5 Four usage modes for mobile location 

Usage Modes Description Notation 

In-Hand 

Swinging mode 

Carrying the mobile phone in the hand with a 

swinging motion 
Swinging-M 

Texting mode 
Holding the mobile phone in the hand while 

text messaging 
Texting-M 

Waist-bag mode Carrying the mobile phone in a waist-bag  Waist-bag-M 

Arm-bag mode Carrying the mobile phone in an arm-bag  Arm-bag-M 

The walking data collected by the accelerometer were recorded with the 

subject ID, activity name, and number of steps. To prevent mislabeling, the participants 

were required to stop and change the labels on the phone after each activity. The 

participants had to follow the experimental rules precisely and were not permitted to 

alter the position of the mobile phone during the process. 

The accelerometer collected walking data at a frequency of 10 Hz.  After 

collection, data were adjusted to cancel signal noise. The gravitational force was 

separated from the raw signal by a high-pass filter of 0.8. After gravitational isolation, 
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a low-pass filter of 0.3 reduced unwanted noise signals to make acceleration signals 

smoother for each walking activity. In addition to performing three modes of walking, 

participants had to position the phone in four places for each mode of walking. 

Therefore, there were four categorizations of each walking mode. Hence, there were 

twelve activity categories for each user in this study, as shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                   Figure 3.1 Twelve categorizations of walking activity for each user 

The step counting algorithm used in this task mainly relied on the 

acceleration value, described in equation (3.1), with a sinusoidal pattern. 

                               𝑎 = l𝐴𝑐m% + 𝐴𝑐n% + 𝐴𝑐o% (3.1) 

where 𝑎 is the magnitude of acceleration on sensor data and 

Swinging-M 

Texting-M 

Waist-bag-M 

Arm-bag-M 

N-Walk 

Swinging-M 

Texting-M 

Waist-bag-M 

Arm-bag-M 

S-Walk 

Swinging-M 

Texting-M 

Waist-bag-M 

Arm-bag-M 

F-Walk 

 
User 



 

 

48  

𝐴𝑐m, 𝐴𝑐n, and 𝐴𝑐o are acceleration values along the X-axis, Y-axis, and Z-axis. 

 Step detection algorithm 

      Input:       𝑎       // Magnitude of acceleration 
      Output:    𝑇𝑜𝑡𝑎𝑙 // Number of walking steps 

1. 

2. 

   3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

							𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒			𝑤 ← 𝜙 , 𝑠𝑡𝑒𝑝 ← 0, 𝑖 ← 2, m  

      𝑤ℎ𝑖𝑙𝑒	𝑖 < 𝑚			𝑑𝑜 

     					𝑖𝑓	𝑎J > 𝑎J}$	&		𝑎J > 𝑎J�$	𝑡ℎ𝑒𝑛	 

                         𝑤	[𝑖] ← 1 

                𝑒𝑙𝑠𝑒 

                         𝑤	[𝑖] ← 0 

      𝑗 ← 0, 𝑘 ← 0       

     𝑤ℎ𝑖𝑙𝑒		𝑗 < 𝑚			𝑑𝑜       

                𝑖𝑓	𝑤[𝑗] = 	1	𝑡ℎ𝑒𝑛  

                         𝑖𝑓	𝑘	 ≠ 0	𝑡ℎ𝑒𝑛 

                                  B ← 𝑗 − 𝑘 − 1 

                                  𝑖𝑓	𝐵 > 2	𝑡ℎ𝑒𝑛 

                                         𝑠𝑡𝑒𝑝 ← 	𝑠𝑡𝑒𝑝 + 1 

                        𝑘 ← 𝑗      

               		𝑗 + +   

     𝑖𝑓	𝑗 = 𝑚			𝑡ℎ𝑒𝑛   

             B← 𝑚− 𝑘 

              𝑖𝑓	𝐵 > 2		𝑡ℎ𝑒𝑛 

                        𝑠𝑡𝑒𝑝 ← 	𝑠𝑡𝑒𝑝 + 1 

     𝑇𝑜𝑡𝑎𝑙 ← 𝑠𝑡𝑒𝑝 

     𝑅𝑒𝑡𝑢𝑟𝑛	𝑇𝑜𝑡𝑎𝑙 

                                    Figure 3.2 Step detection algorithm 

In Figure 3.2, the term a refers to the magnitude of the acceleration 

value calculated from equation 3.1. The term Total means the total number of steps. 

The term w refers to the peak point, the term m refers to the total number of time-

stamps, the term step refers to the detection step point calculated by the algorithm, and 

the term B refers to step occurrences that the algorithm detects at the step points. Based 

on the information acquired from the data collection task, two new feature selection 
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methods and a new classifier technique will be designed in the second task, system 

design.  

3.2 Task_2 (Implementing the system design) 

The second focus of this work, the main system design, requires the 

introduction of some fundamental theories. The design of this HAD system is based on 

feature selection and classification. The key objective of this research is the 

identification of the most suitable classifier using a feature selection algorithm for ML 

problems. Two different types of feature selection techniques were applied to find the 

best classifier for HAD. The first technique used in effective HAD system construction 

was the Linear Dependent Concept (LDC) and the second technique was the Cyclic 

Attribution Technique (CAT). Different types of feature selection techniques entail 

different procedures for testing human activities. The system designs in this study are 

shown in Figure 3.3. 

 
  

(a)  LDC system design              (b)  CAT system design 

 

     Figure 3.3 System designs of HAD based on LDC and CAT feature selections 
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In figure 3.3, the system has three main functions: 1) data preprocessing, 

2) feature selection, and 3) classification. The input of the system is three datasets from 

UCI-Repository datasets and output is human activities.  

3.2.1 Dataset 

This section deals with the three datasets of human activity recognition 

that were obtained from the UCI repository for use in this dissertation, namely the UCI-

HAR dataset [25], the UCI-HAPT dataset [26], and the DATASET-UCI dataset [27]. 

These datasets were used through pre-processing, feature selection, implementation, 

and testing to determine the best-suited classifier for human activities. The general 

description of the three datasets is shown in Table 3.6. 

Table 3.6 General Information of three datasets 

Dataset # Activities # Instances # Attributes Released Date 

UCI-HAR 6 10299 561 2012-12-10 

UCI-HAPT 12 10929 561 2015-07-29 

DATASET-UCI 6 5744 561 2016-03-09 

The datasets in Table 3.6 are the most well-known publicly accessible 

UCI repository datasets from the field of human activity recognition (available from 

http://archive.ics.uci.edu/ml). Although the total number of attributes for all datasets is 

the same, the total number of instances is different. Moreover, while the UCI-HAR 

dataset and DATASET-UCI were derived from the same activities, the UCI-HAPT 

dataset was derived from six more activities. The activities of each dataset are described 

in Table 3.7 and a brief description of each dataset is shown in Table 3.8. 

In Table 3.7, although the HAPT dataset contains six more activities, 

the first six are the same in all three datasets. In order to compare the performance 

results in the HAPT dataset with the other two datasets, it was divided into two 

datasets, namely HAPT_1 and HAPT_2. The HAPT_1 dataset comprised the first six 

activities which are the same as the activities in the UCI-HAR and DATASET-UCI 
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datasets and HAPT_2 contained the complete original UCI-HAPT dataset. Therefore, 

there were four datasets to apply when evaluating the performances of HAD feature 

selection with the designed classifiers.  

Table 3.7 Activities of each dataset 

No. Activities UCI-HAR 
DATASET-

UCI 
UCI-HAPT 

1 Walking Ö Ö Ö 

2 Walking-Upstairs Ö Ö Ö 

3 Walking-Downstairs Ö Ö Ö 

4 Sitting Ö Ö Ö 

5 Standing Ö Ö Ö 

6 Lying down Ö Ö Ö 

7 Standing-to-Sitting - - Ö 

8 Sitting-to-Standing - - Ö 

9 Sitting-to-Lying - - Ö 

10 Lying-to-Sitting - - Ö 

11 Standing-to-Lying - - Ö 

12 Lying-to-Standing - - Ö 

  Table 3.7 provides a short overview of these four datasets, which will 

be used throughout this research in pre-processing, feature selection, implementation, 

and classification tasks. 
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Table 3.8 Four datasets to use in system 

No. Dataset No. 
Activities No. Instances No. Features 

1. UCI-HAR 6 10299 561 
2. DATASET-UCI 6 5744 561 

3. HAPT_1 6 10411 561 

4. HAPT_2 12 10929 561 

3.2.2 Data pre-processing 

Two new feature selection methods (LDC and CAT) are introduced in 

this chapter.  Since different feature selection methods have different data pre-

processing protocols, data pre-processing protocols for the two different feature 

selection methods are also addressed in this section. 

3.2.2.1 Data pre-processing for LDC 

The four datasets were split into training sets (70%) and testing sets 

(30%). In the first step of data pre-processing for LDC, these training and testing sets 

were combined as a single dataset and stored in a two-dimensional array as shown 

below. 

 

 

 

          (3.2) 

 

 

 

where 𝑎JK is a sensor value,  1 ≤ 𝑖 ≤ 𝑘	,	and 1 ≤ 𝑗 ≤ 𝑛.  

The term n is the total number of features, k is the total number of 

instances, 𝑖 is the row index, and 𝑗 is the column index. Then, the sequence of feature 

𝑓J , where 1 ≤ 𝑖 ≤ 𝑛, is stored in a one-dimensional array indexed by n as described 

below, 
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where   𝑓J	s	the	given	feature, 1 ≤ 𝑖 ≤ 𝑛, and n is the total number of features. 

This method prepares data for transformation into linear combination 

space. Due to the basic concepts of LDC, given data cannot be considered if divided 

into smaller groups. The CAT was taken into consideration for feature selection to try 

and overcome this challenge to more efficient feature selection. 

3.2.2.2 Data pre-processing for CAT 

Since the use of CAT aims to overcome some of the shortcomings of the 

LDC method, the same datasets used in the LDC method were also used in the CAT 

method. In the first stage, pre-processing for CAT is the same as pre-processing for 

LDC. The CAT method then continues with further pre-processing. This method first 

separates data into appropriate domains (time domain and frequency domain), as 

illustrated in Figure 3.4. 

 

 

 

 

 

 

 

 

 

 

      Figure 3.4 Dividing data into three feature subgroups 
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In Figure 3.4, D1 is data with time domain-relevant features based on 

variable values; D2 is data with time-domain features based on angle values; D3 is data 

with frequency domain-relevant features. For each dataset, the total numbers of features 

placed in D1, D2, and D3 are shown in Table 3.9.  

       Table 3.9 Total numbers of features for each subgroup of data in each dataset 

Dataset D1 D2 D3 Total features 

UCI-HAR 265 7 289 561 

DATASET-UCI 265 7 289 561 

HAPT_1 265 7 289 561 

HAPT_2 265 7 289 561 

At the first stage of implementing CAT, the three different feature 

subgroups (D1, D2, D3) are divided into two group-sets of input features (G) and input 

instances (H). The detailed sets of input features and instances are listed in Table 3.10. 

There are three input feature groups: G1 comes from D1 of the time domain, G2 from D2 

of the time domain, and G3 comes from D3 of the frequency domain.  

   Table 3.10 Total numbers of features for each subgroup of data in each dataset 

Dataset 
No. Input 

Instances (H) 

No. Input Features (G) 

G1 G 2 G 3 

UCI-HAR 10299 265 7 289 

DATASET-UCI 5744 265 7 289 

HAPT_1 10411 265 7 289 

HAPT_2 10929 265 7 289 
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3.2.3 Feature Selection 

Due to the importance of the relevance of features for classification, 

accurate feature selection is key to solving ML problems. Although there are many 

feature selection methods, the most appropriate features have not yet been identified 

for predicting problems with human activity. The objective of this section is to find the 

best-suited features for the determination of human activity. 

LDC is intended to define the useful features in determining human 

activity.  LDC can properly reduce the irrelevant features of each dataset [120]. There 

would remain some advantages for the feature selection of human activity recognition 

LDC feature selection method can solve some problems of feature redundancy. 

However, it cannot identify which features are more useful because it uses all features 

to compute for transformation. Therefore, the concept of a new feature selection 

technique based on the Cyclic Attribute Technique (CAT) is introduced not only to 

determine key features but also to further reduce irrelevant features in HAD. 

3.2.3.1 Linearly Dependent Concept (LDC) feature selection method [i] 

To remove redundant features, the LDC feature selection method uses 

linearly dependent concepts. Six new statements using linear dependent ideas are 

introduced in this section before a novel LDC feature selection method is developed. 

Statement (1): Dataset Expression in Matrix Form 

Every two-dimensional dataset can be expressed in a matrixed form. 

As an example, a two-dimensional dataset is as described below. 

                      

(3.3) 
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Then, this two-dimensional dataset can also be expressed as matrix A. 

 

(3.4) 

Here, A is (𝒌	 × 	𝒏) matrix,  𝑖	is the row index, j is the column index, 𝑘 is the total 

number of instances, and n is the total number of features. 

Statement (2): Feature Set expression to a Matrix Form 

Every feature set can be illustrated as a one-dimensional array in a 

matrix form. 

As an example, a feature set with a one-dimensional dataset is shown below. 

 Features: 
 

(3.5) 

This feature set can be expressed as matrix F, 

                          F = 	 [𝑓$					𝑓%				𝑓_ 	…		𝑓Q] (3.6) 

This is a (1 × 	𝑛) matrix and n is the total number of features and 𝑓$, 𝑓%		, 𝑓_, …			 , 𝑓Q	 

are vectors or attributes or features. 

Statement (3): Feature Expression as a Column Matrix 

If a dataset containing k samples and n features can be expressed as  

(𝒌	 × 	𝒏) matrix A then each feature can also be expressed as a 

column matrix of given input values containing k samples. 

For example, if a dataset in a (𝒌	 × 	𝒏) matrix A may be displayed as below, where k 

is the total number of instances and n is the total number of features, 
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then each feature can be expressed in a column matrix as below: 
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⎣
⎢
⎢
⎢
⎡
𝑎$$			
𝑎%$			
𝑎_$			
⋮

𝑎�$			⎦
⎥
⎥
⎥
⎤
 , 𝑓% = 		

⎣
⎢
⎢
⎢
⎡
𝑎$%			
𝑎%%			
𝑎_%			
⋮

𝑎�%			⎦
⎥
⎥
⎥
⎤
 , . . . , 𝑓Q = 		

⎣
⎢
⎢
⎢
⎡
𝑎$Q			
𝑎%Q			
𝑎_Q			
⋮

𝑎�Q			⎦
⎥
⎥
⎥
⎤
 (3.8)  

where 𝑓$, 𝑓%, …	𝑓Q  are the features.   

Statement (4): Linear Combination System 

If a two-dimensional dataset can be expressed in a matrix A (𝑘	 × 	𝑛 

matrix) and  𝑐J	is	a	constant,where	1 ≤ 𝑖 ≤ 𝑛 , then this two-

dimensional dataset can be constructed as a linear combination 

system. 

 

In symbols, it can be expressed as follows:  

𝑋 =	¡¡𝑐J	𝑥KJ

Q

J

2

K

 (3.9) 

where X is the linear combination name, 𝑓KJ is a feature and 𝑐J is a constant  

(1<i <n, 1<j<m). 

Statement (5): Linear Homogeneous System 

If a linear combination system X of a two-dimensional array dataset 

is equal to 0 (0 is a zero-column matrix), it can be called a linear 

homogeneous system.  
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In symbols, 

𝑋 =		¡¡𝑐J	𝑥KJ

Q

J

2

K

= 0            (3.10)                             

where 𝑓$,					𝑓%		, 𝑓_, …			 , 𝑓Q	 are features, 𝑐$,					𝑐%		, 𝑐_, …			 , 𝑐Q	 are constants and 0 is 

a zero matrix. 

Statement (6): Determining Useful or Redundant feature 

For solving a linear combination system in which ‘X= 0’, 

there are two types of solution constant: a group with 𝑐J that is equal 

to zero, and a group with 𝑐J that is not equal to zero. Then, the 

features can be identified as follows: 

𝑖) If 𝑐J= 0, an associated feature is a redundant	feature. 

ii) If 𝑐J ≠ 0, an associated feature is	a	useful	feature. 

 

The above statements underpin the LDC feature selection method 

described in this dissertation. The four primary procedures involved in the design of the 

LDC feature selection method are set out below. 

1) Set each feature 𝒇𝒊 as a column matrix. 

2) Solve a homogeneous linear combination system of the matrix (X=0). 

3) Check zeros or non-zeros for all constant values. 

4) Determine useful features of a given dataset. 

Therefore, the LDC feature selection method can select the useful 

features from every dataset containing k samples and n features, referred to previously 

as a matrix A (k x n matrix).  

In figure 3.5, the feature 𝑓J		(𝑖= 1,2,3, …	,	n) expressed as a column 

matrix of the given input values containing k samples and n features. A constant 

 𝑐J	(𝑖= 1,2,3, …	,	n) is a value for building a linear combination system. The SF is the 

set of newly selected features set using LDC feature selection method.  

 

 



 

 

59  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            Figure 3.5 Algorithm design for LDC feature selection method 
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3.2.3.2 Cyclic Attribution Technique (CAT) feature selection method  

This technique investigates a different aspect of selected features and 

outputs. The LDC selection method can reduce only around half of the datasets. The 

CAT feature selection technique looks more carefully at the most important features 

[121]. Before describing the development of the CAT selection method, four new 

definitions are introduced that use group theory and cyclic group characteristics, which 

are interesting concepts and methods for feature selection. 

Definition (1): Cyclic Group of Features 

If each feature set is a group G containing n features, then this group 

is a cyclic group itself with a generator 1.  

 

Definition (2): Cyclic Subgroup of Features 

Let G be a cyclic feature group generated by 1 containing n features.  

There exists a quotient Q for every prime divisor D of n. Therefore, 

a cyclic group generated by quotient Q, denoted by <𝑄>, is a cyclic 

subset of feature group G, satisfying the properties of feature group 

G and is a newly selected feature set containing relevant or useful 

features of a specified dataset. 

 

Definition (3): Total Number of Features of Cyclic Subgroup 

Let a cyclic group <Q> be a newly selected feature subgroup 

containing relevant or useful features. Then, in this feature set 

<𝑄>, the total number of features (𝜑) is    

		𝜑 = 𝑄 ®1 − $
¯°
± ®1 − $

¯²
± . . . (1 − $

¯³
)                        (3.11) 

    
where     𝑞$, 𝑞%	, … , 𝑞µ   are prime divisors of Q and h <𝑄 
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Definition (4): Important Features 

Let D be a divisor of n, the total number of selected features 𝜑 = 𝑚 

and <Q> be a set of new selected features. Then the best selected 

features of <Q> are: 

          <Q> = {𝐷(1,2, . .		 . , 𝑚)} (3.12)   
 

The CAT feature selection technique was developed using the above-

proposed statements and definitions. Figure 3.6 illustrates the algorithm design for the 

CAT method.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 3.6 Algorithm design for CAT feature selection method 
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As shown in Figure 3.6, the CAT feature selection process is created 

through five primary procedures. Assuming a dataset referring to a matrix A (𝑘	 × 	𝑛 

matrix) containing k samples and n features, then the procedures can be expressed as 

follows. 

(1) Setting up feature group 

 
 
 

where 

𝐺 = {𝑓J/𝑖 = 1,2, . . . , 𝑛} 

𝐻 = {𝑥K	/𝑗 = 1,2, … , 𝑘} 

𝐺 =	the given feature set  
𝐻 =	the set of the time series value of each feature 
n = the total number of features, k = the total number of given instants 

(2) Listing features by means 

 
where 

 

	𝑚J =
∑ 𝑥K�
K¼$

𝑘 	 , 𝑤ℎ𝑒𝑟𝑒	𝑖 = 1, 2, . . . , 𝑛 

M = {𝑚J/ 𝑚J}$ < 𝑚J < 𝑚J�$} 

New_𝐺 = {i /	𝑚J 	 ∈ 𝑀} 

𝑚J = the mean value of each feature, New_𝐺 = the new list of features 

 M = the set of all mean values in ascending order 

(3) Determining new feature subgroup 

 
 
 

where 

 

 

  𝐷 = {𝑑J	/		𝑑J = 	𝑝𝑟𝑖𝑚𝑒	𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠	𝑜𝑓	𝑛} 
𝑄 = {𝑞J	/		𝑞J = 𝑞𝑢𝑜𝑡𝑖𝑒𝑛𝑡𝑠	𝑟𝑒𝑙𝑎𝑡𝑒𝑑	𝑤𝑖𝑡ℎ	𝑑J} 
< 𝑄 >	= 𝑁𝑒𝑤_𝐹 
D = the set of all prime divisors 𝑑J	 

Q = the set of all quotients 𝑞J 

<Q> = the new features subgroup 

(4) Discovering total number of features 

 
 
 

where 
 

𝜑 = {𝜑J/	𝜑J 	= 	 𝑞J(1 −
1
𝑝J
),		 

𝑝J = 𝑝𝑟𝑖𝑚𝑒	𝑑𝑖𝑣𝑖𝑠𝑜𝑟𝑠	𝑜𝑓	𝑞J, 1 < 𝑖 < 𝑞J 

𝜑 = 𝑡𝑜𝑡𝑎𝑙	𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠	𝑜𝑓	𝑁𝑒𝑤_𝐹 

𝜑 = the set of the total number of features of the new feature subgroup 

 𝑝J = the prime divisor of the quotient q 
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(5) Determining important features 

 𝐺J = 	 {𝑑J(1,2, . .		 . , 𝜑J)},		

CAT_F=	∪ (𝐺J)	

where	

𝐺J = the new selected feature subgroup  

CAT_F = the set of features newly selected by the CAT method	

The description of this algorithm concludes the design of the CAT 

feature selection method. Designing a selection method that produces newly selected 

features was the first major aim of this dissertation. Designing the ANN classifier 

model-based feature selection method to achieve correct predicted values is the second 

major aim. 

3.2.4 Designing ANN Classifier [ii] 

ANN is designed to classify HAD system data based on LDC and CAT.  

For a more accurate and robust identification of features in a HAD system, MLP is 

expected to produce a better classifier [122]. In this work, the design of the MLP model 

focused on four categories: activation function, determination of hidden neuron sizes, 

decision of the learning rate, and determination of the number of hidden layers. 

1) Activation Function 

The proposed MLP uses a Feed Forward Back Propagation algorithm. 

The logistic (sigmoid) function is used as an activation function for each hidden 

layer. It is shown in following equation. 

			𝑓(𝑥) = 	
1

1 + 𝑒}m 

2) Determination of the Hidden Neuron Sizes 

This strategy is the key point in this research. It can identify the number 

of hidden neurons for classifier design. Indeed, hidden neuron nodes and hidden layers 

are significant components that control the complexity of an artificial neural network 

model. Although ANN has no technique and no stable condition to determine numbers 

of hidden neurons, the model's property is convergence to a balanced state [123].  As a 
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consequence, it was decided to approach the formula of hidden neuron nodes of the 

MLP model as outlined below: 

Formula of Number of Hidden Neuron Nodes 

If n is the finite total number of input neurons to be classified in the ANN model, 

the total number of hidden neurons for each hidden layer can be determined as 

follows: 

     Total number of hidden neurons =  
%Q²�$
_Q�$

	                                     (3.13) 

where n is the total number of input neurons.  
 

 

Example: To find the total number of hidden neuron nodes for input 

neurons n = 561 (the total number of input neurons in the  

UCI-HAR dataset): 

Given the 𝑡otal	hidden	neuron	nodes	 = 2𝑛2+1
3𝑛+1  

when n = 561, rounding to the nearest integer, 

total	hidden	neuron	nodes	 = 2(561)2+1
3(561)+1 					= 373.79 = 374   

Therefore, when 561 neurons are input to the ANN model, 374 

hidden neurons are possible to use for each hidden layer.                                                              

(3)  Decision of the learning rate 

In a backpropagation neural network, the learning rate is important 

because it can reduce training time and learning error. If the learning rate is small, the 

network is approaching the best solution. Consequently, an experiment to determine a 

better learning rate with the MLP classifier was tested on the UCI-HAR dataset with a 

learning rate set between 0.0001 and 0.001. The neural network was trained three times, 

with one hidden layer, with two hidden layers, and with three hidden layers and the 

Means Square Errors (MSE) were compared, as illustrated in Figure 3.7. 
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         Figure 3.7   Comparison of learning rates and MSE of UCI-HAR dataset 

According to the results shown in Figure 3.5, using the one hidden layer 

network, the learning rate 0.0005 gave a small error and using the two hidden layers 

network, the learning rate of 0.0005 provided the lowest error recorded. When using 

the three hidden layers network, the learning rate 0.0008 produced a small error. With 

these results in mind, the learning rate of 0.0005 was considered the best to apply in 

this network. 

4)   Determination of the hidden layers 

MLP models with 1 hidden layer and 2 hidden layers classified three 

datasets (UCI-HAR dataset, DATASET-UCI, HAPT_1) using 25%, 50%, and a 

proposed number of neurons notes. Accuracies of the models are presented in Table 

3.11.   
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Table 3.11 Accuracy of MLP models with 1 hidden layer and 2 hidden layers used 

with 25%, 50%, and proposed numbers of neurons

 
As shown in Table 3.11, the MLP model with 1 hidden layer achieved 

the best accuracy with the UCI-HAR dataset using the proposed number of neurons. 

The best accuracy with the DATASET-UCI dataset was achieved using 50% of the 

neurons, and the best accuracy with the HAPT_1 was achieved with the proposed 

number of neurons. The MLP model with 2 hidden layers, achieved the best accuracy 

with every dataset using the proposed number of neurons. Therefore, the best MLP 

model was considered to be the two hidden layer network using a proposed number 

of neuron nodes. 

3.2.5 MLP model 

To develop a HAD system based on the proposed feature selection 

method, a good classifier model is required. In section 3.2.4, the specific requirements 

were investigated for constructing an exact MLP model. These specific requirements 

are described in Table 3.12. 

       Table 3.12 Specific requirements to build an MLP model 

No. Categories Specific Requirements 

1. Activation function Logistic (sigmoid) 

2. Splitting the dataset 70% for training and 30% for testing 

3. Hidden neuron sizes   
%Q²�$
_Q�$

 , ( 𝑛 = total number of input) 

4. Learning rate 0.0005 

5. Number of hidden layers 2 (using the same hidden neuron sizes) 

Dataset 
MLP model with 1 hidden layer MLP model with 2 hidden layers 

Number of Neurons Number of Neurons 

25% 50% Proposed 25% 50% Proposed 

UCI-HAR  98.32 98.38 98.67 98.48 98.54 98.61 
DATASET-
UCI. 90.95 91.07 91.01 90.55 90.43 91.3 

HAPT_1 98.24 98.5 98.56 97.82 98.5 98.56 
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Finally, the successful design of the new effective MLP classifier 

model was as shown in Figure 3.8. 

 
                        Figure 3.8 A new MLP model design 

In Figure 3.8, the 𝒂𝟏, 𝒂𝟐,… . , 𝒂𝒏	are the input patterns and 𝐲	is the output 

pattern. In this case, n is the total number of input neurons and h is the total number of 

hidden neuron nodes in each hidden layer.  

3.2.6 Performance Evaluation 

To meet the main goal of this study, the MLP performed classifications 

on four datasets, namely UCI-HAR, DATASET-UCI, HAPT 1 and HAPT-2. 

Performance was evaluated with a confusion matrix. The outcomes of each 

classification were represented as a matrix with real positive (TP), real negative (TN), 

false positive (FP), or false negative (FN) information. These values define how well 

the classifier determines measurements of real and predicted activities. The parts of the 

confusion matrix are shown in Table 3.13 [124]. 

Table 3.13 Confusion matrix 

 Predicted Value 

Positive Negative 

Actual Value Positive TP FN 
Negative FP TN 

 

h h 
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where 

TP (True Positive) 
- The number of positive records correctly predicted as 

positive by the model 

TN (True Negative) 
- The number of negative records correctly predicted as 

negative by the model 

FP (False Positive) 
- The number of negative records incorrectly predicted as 

positive by the model 

FN (False Negative) 
- The number of positive records incorrectly predicted as 

negative by the model 

  Accuracy was determined by the total number of correctly predicted 

results from the classifier that included both positive and negative predictions [125]. 

The performance result was evaluated with the equation 

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (3.14) 

The activity classes for UCI-HAR dataset, DATASET -UCI dataset, and 

HAPT_1 dataset were described in Table 3.14 and activity classes for HAPT_2 were 

shown in Table 3.15. 

Table 3.14 Activity classes of UCI-HAR, DATASET -UCI, and HAPT_1 

No. Activity Notation 

1. Walking WK 

2. Walking-Upstairs WKU 

3. Walking-Downstairs WKD 

4. Sitting SIT 

5. Standing STD 

6. Laying LY 
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Table 3.15 Activity Classes for HAPT_2 

No. Activity Notation 

1. Walking WK 

2. Walking-Upstairs WKU 

3. Walking-Downstairs WKD 

4. Sitting SIT 

5. Standing STD 

6. Laying LY 

7. Stand-to-Sit STD-SIT 

8. Sit-to-Stand SIT-STD 

9. Sit-to-Lie SIT-LY 

10. Lie-to-Sit LY-SIT 

11. Stand-to-Lie STD-LY 

12. Lie-to-Stand LY-STD 

 

Concepts, principles, theories, techniques, and designs central to this 

research were presented in this section. The initial objective of data collection and step 

counting was well realized and understood. A further objective was the development of 

a new feature selection method using LDC to provide a better classifier for the HAD 

system. Although LDC could properly reduce the irrelevant features, it faced some 

challenges to specify more important features. Therefore, the CAT feature selection 

method was included in this dissertation to identify the key features and to reduce more 

irrelevant features. Furthermore, a new classifier using MLP was designed to determine 

the quality of new feature selection methods and support the HAD system. Three UCI 

datasets (UCI-HAR, DATASET-UCI, UCI-HAPT) were integrated into the research to 

provide the HAD system with suitable datasets for the development of feature selection 

and classification. Therefore, the next section presents the practical implementation of 

the proposed strategy with the obtained results.  
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

Having achieved the first objective of this work, accurate step counting, 

the second objective comes into focus: the design of a specific classifier for HAD 

feature selection using the LDC and CAT techniques. The main task of the specific 

classifier is to identify the outcomes of each feature selection method.  

Five sections are presented in this chapter. Section 4.1 presents the 

results of step counting from actual walking. Section 4.2 explains a measure to 

determine the performance of the MLP classifier. Section 4.3 presents results and 

performance evaluation of feature selection from datasets using the LDC feature 

selection method. Section 4.4 focuses on the results of feature selection and 

performance using the CAT method. In section 4.5, analysis and discussion of the LDC 

and the CAT feature selection methods is presented. 

4.1 Step counting 

The step counting technique using the accelerometer sensor in the 

Samsung Galaxy Note 4 to detect the walking steps of the user was outlined in section 

3.2. The accelerometer sensor measured acceleration along the X-axis, Y-axis, and Z-

axis. The number of steps in each activity was saved and video capture was recorded 

for experimental elaboration. The number of steps collected by the algorithm was 

compared to actual walking steps. This experiment involved three types of walking 

(normal walking, slow walking, and fast walking) in four smartphone usage modes 

(in-hand swinging, in-hand texting, in a waist-bag, and in an arm-bag). Significant 

results for the average successful steps percentage of three walking styles for each 

mode are shown in Figure 4.1. The results obtained from normal walking were more 

accurate than those obtained from other walking styles. 

 

 

 



 

 

71  

           Step counting result of three different walking in each mobile location  
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    Figure 4.1 Comparison of step counting results for 3 walking styles in each mode 

* Swinging-M: Hand-in Swinging mode, Texting-M: Texting mode, Waist-bag-M:   Waist-

bag mode, and Arm-bag-M: Arm-bag mode. 

Figure 4.1 clearly showed that the result of normal-walking is better than other walking 

styles. That means the results of routine walking were stable and accurate in every 

usage mode. Due to the complicated movement involved in the slow walking activity, 

the accuracy achieved in every usage mode was less than the accuracy achieved in 

both normal and fast walking activities. During normal and fast walking activities, the 

smartphone was stable and the steps were correctly picked up in the texting mode and 

waist-bag mode. Normal walking gave the best outcome in each usage mode. In each 

mode, the outcomes of fast-walking were the second best.  Slow-walking gave the 

worst result in every mode. Table 4.1 compares the results of the four mobile phone 

modes between algorithm counting and actual walking steps.  
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Table 4.1 Comparison results between algorithm counting and actual walking steps 

in four mobile locations 

 

U
se

r Hand-in swinging mode  

U
se

r Text mode 

N-walk S-walk F-walk  N-walk S-walk F-walk 

R P R P R P  R P R P R P 
1 30 30 31 30 30 30  1 30 30 31 30 30 30 
2 30 30 31 31 30 29  2 31 31 31 30 30 29 
3 31 31 31 31 30 30  3 30 30 30 30 29 29 
4 30 30 30 30 30 30  4 30 29 31 31 30 30 
5 30 30 31 30 30 30  5 31 31 31 30 31 31 
6 30 30 30 30 30 30  6 30 30 30 30 30 30 
7 30 29 30 29 31 30  7 30 29 29 29 30 29 
8 30 30 30 29 29 29  8 30 30 30 30 30 30 
9 30 30 30 30 31 30  9 30 30 30 29 30 30 

 

U
se

r 

Waist-bag mode  

U
se

r 

Arm-bag mode 

N-walk S-walk F-walk 
 

N-walk S-walk F-walk 
R P R P R P  R P R P R P 

1 30 30 30 30 31 29  1 30 29 30 29 30 30 

2 31 31 31 30 30 30  2 31 31 31 31 30 30 

3 31 30 31 31 30 30  3 30 30 30 30 30 29 

4 31 31 29 29 30 30  4 30 30 30 29 30 29 

5 31 31 30 31 31 30  5 31 31 31 31 31 30 

6 30 30 30 29 30 30  6 30 30 30 29 30 30 

7 31 31 30 30 30 30  7 30 30 29 31 30 30 

8 31 31 31 31 31 31  8 30 30 30 30 31 31 

9 30 30 30 29 31 31  9 29 29 29 29 30 30 
 

* N-walk: normal walking, S-walk: slow walking, and F-walk: fast walking, 

*  R: Actual walking steps and P: Predicted walking steps 
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Table 4.1 demonstrates that the step counting algorithm can exactly 

detect the steps of a user walking for three walking styles in four phone position modes.  

However, all user walking can be into activeness level because everyone has their own 

walking pace relying on weight and height. Every step counting could not exactly get 

an accurate target. It is a challenge in the counting of steps because the step counting 

depends mainly on the walking styles of the user. The overall results for the stability of 

four usage modes (in-hand swing mode, texting mode, waist-bag mode, arm-bag mode) 

on three different walking styles are shown in Figure 4.2. 

         Overall step counting results for all walking styles in each mobile location 
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                                          Mobile phone locations 
                     Figure 4.2 Overall results of step counting in four different modes 

As a result of Figure 4.2, the step counting technique performed well in 

the waist-bag mode for all walking styles due to the stability of the sensor. This meant 

that the waist-bag mode was the best mode for counting steps to retrieve sensor data.  

For all walking styles, the step counting algorithm had the same quality in swinging 

mode and texting mode. These three modes were the best modes to apply the step 

counting algorithm. The step counting results show that the arm-bag mode was unstable 

in each walking style. The step counting experiment indicated how the sensor operates 

to provide data in determining human activity. This study contributed knowledge of the 

sensor that helped in designing effective feature selection methods. 
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4.2 MLP Model  

The efficiency of classifiers relies on a number of factors including the 

type of classifier, the input features and the required output. An MLP classifier was 

applied to classify the data from human activity recognition. The MLP model was 

designed with a logistic sigmoid activation function, a learning rate of 0.0005, 2 hidden 

layers, and 375 hidden neuron nodes. MLP, UCI-HAR, DATASET-UCI, and HAPT 1 

datasets were used to evaluate the performance of the MLP classifier. The performance 

results were presented in comparison with results of five other classifiers (Support 

Vector Machine (SVM), Bagging (BAG), K-Nearest Neighbors (KNN), Classification 

and Regression Tree (CART), and Bayesian (BAYES). The comparative accuracy rates 

and running times are shown in Table 4.2.  

Table 4.2 Accuracy rates and running times of six classification methods 

 UCI-HAR DATASET-UCI. HAPT_1 

     
Classifier 

Accuracy 
(%) 

Running 
Time 

(min:sec) 

Accuracy 
(%) 

Running 
Time 

(min:sec) 

Accuracy 
(%) 

Running 
Time 

(min:sec) 

MLP 98.61 0:48.27 91.30 0:44.62 98.56 0:54.25 

SVM 97.41 0:19.45 88.69 0:12.52 97.50 0:20.17 

BAG 96.44 4:25.73 91.35 3:35.72 97.06 6:56.25 

KNN 96.25 0:27.36 86.83 0:12.91 95.99 0:28.22 

CART 92.49 0:7.03 84.22 0:5.35 93.31 0:10.47 
BAYES 79.42 0:4.19 53.6 0:1.88 75.77 0:4.43 

As shown in Table 4.2, among all the classifiers, the best accuracy was 

achieved by MLP with UCI-HAR and HAPT_1 dataset: 98.61% and 98.56%, 

respectively. In DATASET-UCI, the proposed MLP classifier was 0.05% less accurate 

than the BAG classifier, although the BAG classifier took 3 minutes and 35.72 seconds 

to evaluating the data: 2 minutes and 51 seconds longer than the proposed MLP model. 

The MLP classifier was clearly faster than the BAG classifier. Although the BAYES 

classifier was the fastest of all the classifiers, it was the least accurate. The running time 

of the MLP classifier was longer than SVM, KNN, CART, and BAYES classifiers due 
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to the use of feed-forward neural networks to achieve optimized accuracy. However, 

the MLP classifier performed better than other classifiers.  The MLP classifier was 

clearly one of the most robust classifiers for all datasets.  

The MLP model was designed with a logistic sigmoid activation 

function, a learning rate of 0.0005, 2 hidden layers and a proposed number of hidden 

neuron nodes. This approach was chosen to investigate the most suitable number of 

hidden neuron nodes for the MLP model. To evaluate accuracy rates and running times, 

the UCI-HAR, DATASET-UCI, and HAPT 1 datasets were generated to the MLP 

model with different percentages of hidden neuron nodes. The four main pillars of the 

MLP architecture were datasets with 25%, 50%, 100%, and a proposed number of 

hidden neuron nodes, as shown in Table 4.3. 

  Table 4.3 Accuracy results of MLP model with different number of neurons 

 

Dataset Feature (%) 
No. Hidden 

Neuron Nodes 

Accuracy 

(%) 

Running Time 

(Sec) 

UCI-HAR 

25% 140 98.48 17 

50% 280 98.54 35 

Proposed 376 98.67 43 

100% 561 98.51 60 

DATASET-UCI 

25% 140 90.55 18 

50% 280 90.43 30 

Proposed 376 91.30 36 

100% 561 90.02 60 

HAPT_1 

25% 140 97.82 19 

50% 280 98.50 33 

Proposed 376 98.56 41 

100% 561 98.27 60 
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Using the proposed number of hidden neuron nodes clearly improved 

the performance of the MLP model with each dataset. It appears that the performance 

of MLP has a positive dependence on the number of hidden neuron nodes. Moreover, 

using the proposed number of hidden neuron nodes proved the MLP model to be one 

of the most robust classifiers not only for the issue of recognition of human activity but 

also any issues of machine learning. As a side note, the calculations took more running 

time when more neuron nodes were added due to the increased difficulty of learning 

the task for the classifier. The suitability of the MLP classifier was compared to the 

other five classifiers and a number of hidden neuron nodes as compared to 25%, 50%, 

and 100% of hidden neuron nodes. This approach used hidden layers to check the 

architecture and maintain the performance of the proposed MLP classifier. 

The two-hidden layers MLP model was described in section 3.2.4. This 

approach reduced the two hidden layers of the proposed MLP model to one and 

compared the accuracy results and running times. After passing the three datasets, the 

accuracy rates and running times were presented in Table 4.4.  

  Table 4.4 Accuracy results of MLP with different numbers of neurons 

 

Dataset 

1 Hidden Layer 2 Hidden Layers 

Accuracy 

(%) 

Running 

Time (Sec) 
Accuracy (%) 

Running 

Time (Sec) 

UCI-HAR  98.61 48 98.67 43 

DATASET-UCI 91.01 44 91.30 36 

HAPT_1 98.56 47 98.56 41 
 

The results clearly show that the proposed MLP model using two hidden 

layers achieved higher overall accuracy from each dataset with less running time than 

the MLP model using one hidden layer. There are many reasons why the runtime of the 

2-hidden layer model was less than the runtime of the 1-hidden layer architecture. To 

train neural networks, there are now very large and complex HAD datasets. ANNs are 

the very core of Deep Learning. There are so many kinds of ANNs. When an ANN has 

two or more hidden layers, it is called a deep neural network (DNN). In this study, the 
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ANN with a 1-hidden layer architecture normally learned from inputs to outputs with a 

single layer mapping that could be used to provide input and output sequences of 

different lengths by taking more time to run. However, ANN architecture with two 

hidden layers is very flexible and can generally be used as a DNN to learn from inputs 

to outputs. Therefore, it is possible to reduce the running time by feeding the data into 

an MLP through 2-hidden layers networks. It clearly indicates that the proposed 

architecture of two hidden layers is a better MLP model than an architecture of one 

hidden layer with supposedly optimal hidden neuron nodes. 

4.3 LDC Feature Selection Method  

Feature selection reduces the number of features in the input. Reducing 

the number of features not only reduces the dimensionality of the dataset but also 

improves classification efficiency.  

4.3.1 Results of Feature Selection by LDC 

When the LDC feature selection method is run on a dataset, it executes 

the values of constants correlated with useful features from the original dataset [124].  

A brief example of the executed result of constant values by the LDC to UCI-HAR 

dataset is shown in Table 4.5.  

Table 4.5 Constant values related with features of LDC 

No. Feature Name Constant-values 

0 tBodyAcc-mean ()-X 0 

1 tBodyAcc-mean ()-Y -0.984916859 

2 tBodyAcc-mean ()-Z -0.76404401 

3 tBodyAcc-std ()-X 2.852157208 

4 tBodyAcc-std ()-Y 0 

5 tBodyAcc-std ()-Z 0 

6 tBodyAcc-mad ()-X 0 

7 tBodyAcc-mad ()-Y 0 

8 tBodyAcc-mad ()-Z 0 
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No. Feature Name Constant-values 

9 tBodyAcc-max ()-X 0.160728141 

10 tBodyAcc-max ()-Y 0.146233619 

11 tBodyAcc-max ()-Z 0.254649998 

⋮ ⋮  ⋮ 

In Table 4.5, there are two types of constant values correlated to given 

features. Some are equal to zero and some are not. To reduce the original dataset, some 

features with zero constant values are assumed to be redundant or irrelevant. The 

remaining features are useful features that produce accurate data on human activity. 

After implementing the LDC, the selected and reduced features of the total 561 features 

of each dataset are illustrated in Table 4.6. 

  Table 4.6 Selected and removed features from each dataset by the LDC 

Dataset Original 
features 

Removed 
features 

Selected 
Features 

UCI-HAR 561 316 245 

DATASET-UCI 561 292 269 
HAPT_1 561 317 244 
HAPT_2 561 269 292 

 

The high dimensionality of the data also makes data visualization 

complex and difficult during data processing. In this experiment, the LDC method not 

only determined the essential features but also reduced data dimensionality. Table 4.7 

shows the reduced dimensionality of data implemented by the LDC method for each 

dataset. 

 Table 4.7 Dimensionality reductions on each dataset by the LDC 

Dataset Original data LDC data Reduced data 

UCI-HAR 5,777,739 2,523,255 3,254,484 

DATASET-UCI 3,222,384 1,545,136 1,677,248 

HAPT_1 5,840,571 2,540,284 3,300,287 
HAPT_2 6,131,169 3,191,268 2,939,901 
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As shown in Table 4.6 and Table 4.7, LDC not only identified the 

important features of the original dataset but can also reduce data dimensionality. In 

doing so, it fulfilled research questions 1 and 2. In the next section, to complete research 

question 3, feature selection with the LDC method is evaluated with the ANN classifier. 

Performance evaluation identified the effectiveness of the LDC feature selection 

method applied to the whole dataset and to three groups (t, t’, f) derived from the 

dataset. Accuracy rates were compared with the whole dataset. 

4.3.2 Performance Evaluations to the Whole Dataset Based on LDC 

The performances of MLP are measured with and without feature 

selection with the LDC method. Four datasets (UCI-HAR, DATASET-UCI, HAPT-1, 

HAPT-2) and five classifiers (Support Vector Machine (SVM), Bagging (BAG),  

K-Nearest Neighbors (KNN) were applied for all experiments. 

(1) Performance Results to UCI-HAR Dataset with LDC 

Results of the evaluation with (245 features) and without LDC  

(561 features) of the UCI-HAR dataset are presented with confusion matrix.  

Table 4.8 Confusion matrix of MLP with and without LDC to UCI-HAR dataset 

UCI-HAR dataset Predicted Active 
WK WKU WKD SIT STD LY 

With 
LDC / 
(245) 

features 

A
ct

ua
l a

ct
iv

ity
 WK 548 19 0 0 0 0 

WKU 13 515 1 0 0 0 

WKD 0 0 609 0 1 1 

SIT 0 0 0 495 1 0 
STD 0 0 0 1 430 2 
LY 0 0 0 0 0 454 

UCI-HAR dataset 
Predicted Active 

WK WKU WKD SIT STD LY 

without 
LDC/ 
(561) 

features 

A
ct

ua
l A

ct
iv

ity
 WK 544 23 0 0 0 0 

WKU 16 513 0 0 0 0 

WKD 0 1 609 0 0 1 

SIT 0 0 0 495 1 0 
STD 0 0 0 1 431 1 
LY 0 0 0 0 0 454 
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*WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting,  STD: 

standing, LY: laying 

With the UCI-HAR dataset, MLP achieved an overall accuracy of 

98.74% with LDC feature selection and 98.54% without. Although classification of the 

walking and walking upstairs activities was wrong, the predictions of the remaining 

activities were good both with and without LDC. This implies that the specific MLP 

classifier performed very well on the data with and without LDC and the accuracy of 

the MLP model was 0.2% better with LDC than without. 

To determine the reliability of the LDC feature selection method with 

the MLP classifier, the UCI-HAR output dataset was classified by five different 

classification algorithms. Figure 4.3 shows all classification results of six classifiers 

based on features selected by the LDC method. 
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Figure 4.3 Performances of 6 classifiers to UCI-HAR dataset after feature selection 

with LDC 

The results of Figure 4.3 show that the MLP classifier performed well in 

comparison to the other classification algorithms. MLP achieved the best accuracy of 

98.74%. The next best classifier was SVM with an accuracy rate of 97.57% while 

BAYES classification achieved the lowest accuracy of 85.21%. According to the 

results, the LDC feature selection method successfully identified the beneficial features 
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of the UCI-HAR dataset and offered the highest performance with the specific classifier 

for HAD.  

(2) Result Accuracies of MLP to DATASET-UCI by LDC 

The MLP classifier was applied to the DATASET-UCI dataset with (269 

features) and without (561 features) LDC feature selection. Table 4.9 presents the 

performance values of the DATASET-UCI dataset with and without LDC feature 

selection. 

Table 4.9 Confusion matrix of MLP with and without LDC to the DATASET-UCI 

DATASET-UCI 
Predicted Activity 

WK WKU WKD SIT STD LY 

With 
LDC / 
(269) 

features 

A
ct

ua
l A

ct
iv

ity
 

WK 273 1 9 0 2 0 

WKU 8 212 14 1 1 7 

WKD 15 13 236 0 1 0 

SIT 0 1 2 310 53 4 

STD 0 0 0 29 290 0 

LY 0 1 0 0 0 241 

DATASET-UCI 
Predicted Activity 

WK WKU WKD SIT STD LY 

without 
LDC/ 
(561) 

features 

A
ct

ua
l A

ct
iv

ity
 

WK 262 5 17 0 1 0 

WKU 19 203 13 2 2 4 

WKD 17 21 227 0 0 0 

SIT 0 6 0 299 64 1 

STD 0 0 0 43 276 0 

LY 0 0 0 0 0 242 
 

*WK: walking, WKU: walking-upstairs, WKD: walking-downstairs,  
SIT: sitting, STD: standing, LY: laying 
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The MLP model applied to the DATASET-UCI after LDC feature 

selection (269 features) achieved an overall accuracy of 90.66%. The overall accuracy 

of the MLP model on the original DATASET-UCI dataset (561 features) without LDC 

was 87.53%. While the dataset without the LDC shows some confusion between 

walking upstairs and walking downstairs, and between sitting and standing, this 

confusion decreased after feature selection with LDC. Therefore, the overall accuracy 

of the dataset after LDC selection was 3.13% more than the overall accuracy of the 

dataset without LDC feature selection.  

The DATASET-UCI dataset after feature selection was then classified 

by five different classifiers to provide a comparison with MLP classifier. The results 

are presented in Figure 4.4. 
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     Figure 4.4 Performance results of six classifiers on DATASET-UCI dataset 

Although the scheme tests human activity datasets, the core of the 

scheme is independent of the features of other activity datasets; therefore, it is 

applicable to any dataset. In Figure 4.4, the MLP achieved the best accuracy of 90.66%, 

while BAG and SVM were second-best with the same accuracy rate of 89.85%. BAYES 

was the least accurate classifier with 62.47% accuracy.  MLP was 0.81% more accurate 

than the BAG and SVM classifiers. MLP performed better than the other classification 

algorithms.  
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(3) Discussion on Result Accuracy of HAPT_1 Dataset by LDC 

The MLP classification results on the HAPT_1 dataset with (244 

features) and without feature selection with LDC (561 features) are presented in Table 

4.10.  

Table 4.10 Confusion matrix of MLP on the HAPT_1 dataset with and without LDC 

HAPT_1 
Predicted Activity 

WK WKU WKD SIT STD LY 

With 

LDC / 

(244) 

features A
ct

ua
l A

ct
iv

ity
 

WK 483 0 0 0 0 0 

WKU 3 478 3 0 0 0 

WKD 0 0 385 0 0 0 

SIT 0 1 0 534 24 0 

STD 1 0 0 6 600 0 

LY 0 0 0 0 0 606 

HAPT_1 
Predicted Activity 

WK WKU WKD SIT STD LY 

With 

LDC / 

(561) 

features A
ct

ua
l A

ct
iv

ity
 

WK 481 1 1 0 0 0 

WKU 2 480 2 0 0 0 

WKD 0 1 384 0 0 0 

SIT 0 1 0 537 21 0 

STD 0 0 0 12 595 0 

LY 0 0 0 1 0 605 

 

*WK: walking, WKU: walking-upstairs, WKD: walking-downstairs,  

SIT: sitting, STD: standing, LY: laying 
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In Table 4.10, the overall accuracy of MLP was 98.75% after feature 

selection with LDC (244 features), and 98.66% before (561 features). Despite the fact 

that both datasets had a false classification between sitting and standing activity, the 

overall accuracy of the dataset was 0.09% better after LDC feature selection.  

To determine the reliability of the results of the MLP classifier, five 

different classifiers were implemented on the HAPT_1 dataset after LDC feature 

selection (244 features). The classification accuracies of all six different classifiers are 

entered in Figure 4.5. 
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Figure 4.5 Performances comparison of 6 classifiers to HAPT_1 dataset using LDC  

Figure 4.5 illustrates that MLP worked best, SVM worked second best, 

BAG third best, KNN fourth best, CART fifth best, and BAYES performed the worst. 

That implies that the MLP model based on the LDC feature selection method was strong 

on the HAPT_1 dataset.  

(4) Discussion on Result Accuracy of HAPT_2 Dataset by LDC 

The dataset HAPT_2 included 12 activities (walking, walking upstairs, 

walking downstairs, sitting, standing, lying, standing-to-sitting, sitting-to-standing, 

sitting-to-lying, lying-to-sitting, standing-to-lying, lying-to-standing). The 
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performance evaluation of the MLP model applied to the HAPT_2 dataset after LDC 

feature selection (292 features) is shown in Table 4.11.  

Table 4.11 Confusion matrix of MLP on HAPT_2 dataset with LDC 

HAPT_2 

with the LDC 

(292-features) 

Predicted Activity 
W

K
 

W
K

U
 

W
K

D
 

SI
T  

ST
D

 

LY
 

ST
D

-S
IT

 

SI
T-

ST
D

 

SI
T-

LY
 

LY
- S

IT
 

ST
D

-L
Y

 

LY
-S

TD
 

A
ct

ua
l A

ct
iv

ity
 

WK 503 0 1 0 0 0 0 0 0 0 0 0 

WKU 1 479 0 0 0 0 1 0 0 0 0 0 

WKD 2 0 434 0 0 0 0 0 0 0 0 0 

SIT 0 0 0 495 29 1 1 0 0 0 0 0 

STD 0 0 0 16 577 0 0 0 0 0 0 0 

LY 0 0 0 0 0 594 0 0 0 0 0 0 

STD-SIT 0 0 1 1 0 0 16 0 2 0 0 0 

SIT-STD 0 0 0 0 0 0 1 8 0 1 0 0 

SIT-LY 0 0 0 0 0 0 0 0 18 0 9 0 

LY-SIT 0 0 0 0 0 0 0 0 0 13 0 6 

STD-LY 1 0 0 1 0 2 0 0 3 0 35 0 

LY-STD 0 0 0 0 0 0 0 0 1 8 0 18 
 

* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting,  

STD: standing, LY: laying, STD-SIT: stand-to-sit, SIT-STD: sit-to-stand,  

SIT-LY: sit-to-lie, LY-SIT: lie-to-sit, STD-LY: stand-to-lie, LY-STD: lie to stand. 

In Table 4.11, MLP achieved an accuracy of 97.52%. Although sitting 

and standing activities were falsely classified, MLP performed better on each activity. 

In order to determine the efficiency of the MLP model, the original HAPT_2 dataset 

before LDC feature selection method was also evaluated.  The performance results of 

the MLP model without LDC are presented in Table 4.12. 
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Table 4.12 Confusion matrix of MLP on HAPT_2 dataset without LDC 

HAPT_2 
Without the 

LDC 

(561-features) 

Predicted Activity 

W
K

 

W
K

U
 

W
K

D
 

SI
T 

ST
D

 

LY
 

ST
D

-S
IT

 

SI
T-

ST
D

 

SI
T-

LY
 

LY
-S

IT
 

ST
D

-L
Y

 

LY
-S

TD
 

A
ct

ua
l A

ct
iv

ity
 

WK 504 0 1 0 0 0 0 0 0 0 0 0 

WKU 0 480 0 0 0 0 0 0 0 0 0 0 

WKD 2 0 434 0 0 0 0 0 0 0 0 0 

SIT 0 0 0 503 21 0 1 0 0 1 0 0 

STD 0 0 0 16 577 0 0 0 0 0 0 0 

LY 0 0 0 0 0 594 0 0 0 0 0 0 

STD-SIT 0 0 0 2 1 0 16 0 0 0 1 0 

SIT-STD 0 0 0 0 0 0 0 8 0 1 0 1 

SIT-LY 0 0 0 0 0 0 1 0 17 0 9 0 

LY-SIT 0 0 0 0 0 1 0 0 0 14 0 4 

STD-LY 0 0 0 1 0 2 1 0 3 0 35 0 

LY-STD 0 0 0 0 0 0 0 0 1 9 1 16 

 

* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting,  

STD: standing, LY: laying, STD-SIT: stand-to-sit, SIT-STD: sit-to-stand,  

SIT-LY: sit-to-lie, LY-SIT: lie-to-sit, STD-LY: stand-to-lie, LY-STD: lie to stand 

As a result of Table 4.12, the overall accuracy of HAPT_2 before LDC 

feature selection (561 features) was 97.53%.  The confusion table demonstrates that 

there is a little bit of false classification between sitting and standing activities. 

According to the results of Table 4.11 and 4.12, the overall accuracy of HAPT_2 before 

LDC feature selection was 0.01% higher than HAPT_2 after LDC selection. Besides 
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this difference, the performance values of every activity are virtually the same in both 

models.  

To compare the results of the MLP model, five other classifiers were 

applied to HAPT-2 after LDC feature selection (292 features). Experimental results of 

dataset HAPT_2 after LDC feature selection (292 features) from all six classifiers are 

shown in Figure 4.6.  
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Figure 4.6 Performances of 6 classifiers to HAPT_2 dataset with the LDC feature 

selection  

In Figure 4.6, MLP achieved the best accuracy with 97.30%. SVM was 

the next best classifier with 96.86% accuracy. BAG performed third best, KNN fourth-

best, CART fifth-best, and BAYES the worst. The results indicate that the MLP 

classifier was robust on the HAPT_2 dataset with the LDC features.  

4.3.2 Performance evaluations by applying the LDC method to three groups  

(t, t’, f) of the datasets 

The LDC feature selection method was introduced as the main 

contribution of this dissertation in section 3.4. Three distinct datasets (UCI-HAR dataset, 

DATASET-UCI dataset, and HAPT-1 datasets) were used to further examine the 
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effectiveness of the proposed LDC feature selection method. Each dataset was divided 

into three groups (t = time-domain features grouped by angle values, t’= another time-

domain features group of raw data, and f = frequency-domain features). The LDC 

method was individually applied to these three groups of features. By combining these 

three case features from each group, the performance results were evaluated and 

compared to the proposed system based on LDC feature selections of the whole dataset. 

The comparative performance results from the UCI-HAR dataset are illustrated in Table 

4.13, Table 4.14, and Table 4.15. 

Table 4.13 Evaluation comparisons for UCI-HAR dataset: Performance results by 

individual features selected with LDC to form three data groups (t, t’, f) and 

performance results based on proposed LDC method 

UCI-HAR dataset 

Dataset t  t' f  
Total 

Features 

Accuracy

% 

Running Time 

(Sec) 

UCI-HAR 7 265 289 561 96.02 17 

LDC Data 3 158 145 306 98.45 17 

 

Table 4.14 Evaluation comparison for DATASET-UCI dataset: Performance results 

by individual features selected with LDC to form three data groups (t, t’, f) and 

performance result based on proposed LDC method 

DATASET-UCI dataset 

Dataset t  t' f  
Total 

Features 

Accuracy 

% 

Running Time 

(Sec) 

DATASET-UCI  7 265 289 561 87.53 16 

LDC Data 2 162 150 314 90.07 16 
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Table 4.15 Evaluation comparisons for HAPT-1 dataset: Performance results by 

individual features selected with LDC to form three data groups (t, t’, f) and 

performance results based on proposed LDC method 

HAPT-1 dataset 

Dataset t  t' f  
Total 

Feature 
Accuracy% 

Running Time 

(Sec) 

HAPT-1 7 265 289 561 98.66 19 

LDC Data 3 156 143 302 98.56 25 

 

* t = a time domain feature group by angle values,  

* tÉ= another time domain features group by raw data,  

* f = frequency domain features 

*LDC Data = the data selecting the features by LDC method 

As shown in Table 4.13, Table 4.14, and Table 4.15, although the 

proposed model performed slightly better with the entire dataset than with the 

individually selected feature groups, the performance calculation reduced running time 

more than the performance of the individually selected feature sets from the three 

different data groups. Therefore, the proposed method maintained the capacity of the 

suggested LDC feature selection method to achieve the necessary level of component 

accuracy by satisfying the most significant selection features for human activity 

recognition. 

4.4 CAT Feature Selection Method  

Feature selection methods were developed using LDC and CAT. The 

aim was to identify the best features for human activity recognition data. The CAT 

feature selection method selects the key features of a specified dataset [120].  

4.4.1 Implemented results of features of the CAT method 

Data preprocessing was outlined in section 3.2.2.2. Each dataset was 

divided into three groups: 𝐺$ from the time-domain raw signals,  𝐺% from the time-
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domain angle values, and  𝐺_ from the frequency domain. The CAT feature selection 

method identified the important features of each group to produce newly selected 

feature groups (𝑁𝑒𝑤_𝐺$, 	𝑁𝑒𝑤_𝐺%, 	𝑁𝑒𝑤_𝐺_)	 of each dataset. The total numbers are 

presented in Table 4.16.   

 Table 4.16 Selected new features group and the total numbers of features 

Original feature 

group 

New selected 

feature group 

Total number of 

original features 

Total number of 

selected features 	

𝐺$ 𝑁𝑒𝑤_𝐺$ 265 56 

𝐺% 𝑁𝑒𝑤_𝐺% 7 6 

𝐺_ 𝑁𝑒𝑤_𝐺_ 289 16 

Total number of features 561 78 

As a result of Table 4.16, the CAT feature selection method identifies 

the total number of selected features comprised 14% of the original dataset. The 

subgroups of the selected features, the total number of these features, and a list of all 

newly selected features are shown in Table 4.17. 

Table 4.17 New feature groups, total numbers of features, and CAT features 

𝑮𝒊 
No. new 

features 
CAT features 

𝐺$ 56 

{5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 53, 55, 60, 65, 70, 75, 80, 

85, 90, 95, 100, 105, 106, 110, 115, 120, 125, 130, 135, 140, 145, 

150, 155, 159, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 

210, 212, 215, 220, 225, 230, 235, 240, 245, 250, 255, 260} 

𝐺% 6 {1,2,3,4,5,6} 

𝐺_ 16 {17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 

255, 272} 

In Table 4.17, 𝑮𝟏 is a newly selected feature subgroup from the time 

domain D1, 𝑮𝟐 is a newly selected feature subgroup from the time-domain D2, and 𝑮𝟑 
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is a newly selected feature subgroup from the frequency domain D3. The numbers 1,2,3, 

. . . , 255 under the heading CAT features are the features newly selected by CAT. 

The CAT feature selection method not only determined essential 

features but also reduced data dimensionality. Table 4.18 indicates the reduced 

dimensionality of each dataset implemented by the CAT method.  

 Table 4.18 Dimensionality reductions on four datasets by CAT 

Data UCI-
HAR 

DATERSET-
UCI 

HAPT_
1 HAPT_2 

Original Data 5,777,739 3,222,384 5,840,5
71 6,131,169 

CAT Data 803,322 448,032 812,058 852,462 

Reduced Data 4,974,417 2,774,352 5,028,5
13 5,278,707 

As shown in Table 4.18, CAT feature selection operated well on each 

dataset to reduce dimensionality. This result supported the classifier model to make 

classification faster and more effective. 

In this section, performance of the CAT feature selection method was 

evaluated to identify the improvements due to the CAT feature selection method.  The 

CAT method was applied to the whole dataset, and to three feature groups (t, t’, f), 

picking up 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50% of features, and the 

performances were also evaluated without CAT. 

4.4.2 Performances evaluations on the whole data by applying the CAT method 

Four datasets (UCI-HAR, DATASET-UCI, HAPT_1, HAPT-2) were 

used in this experiment in the same way as in the LDC method. The MLP classifier was 

applied to each data set before and after feature selection by the CAT method. 

(1) Discussion on Result Accuracy of UCI-HAR Dataset by CAT 

The MLP classifier was applied to the UCI-HAR dataset before (78 

features) and after feature selection by the CAT method (561 features). Results are 

given in Table 4.19.   
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   Table 4.19 Confusion matrix of MLP to UCI-HAR dataset with and without CAT 

UCI-HAR dataset 
Predicted Activity 

WK WKU WKD SIT STD LY 

With 

CAT / 

(78 

features) A
ct

ua
l A

ct
iv

ity
 

WK 518 49 0 0 0 0 

WKU 47 482 0 0 0 0 

WKD 0 0 609 0 2 0 

SIT 0 0 0 491 2 3 

STD 0 0 0 1 431 1 

LY 0 0 0 1 0 453 

UCI-HAR dataset 
Predicted Activity 

WK WKU WKD SIT STD LY 

without 

CAT/ 

(561 

features) A
ct

ua
l A

ct
iv

ity
 

WK 544 23 0 0 0 0 

WKU 16 513 0 0 0 0 

WKD 0 1 609 0 0 1 

SIT 0 0 0 495 1 0 

STD 0 0 0 1 431 1 

LY 0 0 0 0 0 454 
 

*WK: walking, WKU: walking-upstairs, WKD: walking-downstairs,  

SIT: sitting, STD: standing, LY: laying 

As a result of Table 4.19, the MLP classifier achieved an overall 

accuracy of 96.67% on the UCI-HAR dataset after feature selection with CAT and 

98.56% before. In the MLP model, while walking and walking upstairs activities were 

falsely classified, the predictions of the remaining activities were good.  

To determine the capability of the CAT model, SVM, BAG, KNN, 

CART, and BAYES classifiers were also implemented on the UCI-HAR dataset after 

CAT feature selection. The performance results of five classifiers applied to the  
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UCI-HAR dataset are compared in Figure 4.7. 
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                                          Classifiers 

Figure 4.7 Performance values of six classifiers for UCI-HAR data with CAT  

As shown in Figure 4.8, MLP achieved the best overall accuracy of 

96.67% followed by BAG with 96.28% accuracy. The BAYES classifier produced the 

worst accuracy of 85.01%. The MLP classifier for UCI-HAR dataset based on the CAT 

feature selection performed well in comparison with the other five classification 

algorithms. This result is a product of the successful identification by CAT of the key 

features of the UCI-HAR dataset. The MLP classifier supplied the best output for the 

CAT model.  

(2) Discussion on Result Accuracy of DATASET-UCI Dataset by CAT 

The DATASET-UCI is invoked as the next experiment to create the 

MLP model. Table 4.20 presents performance values of the MLP model applied to the 

DATASET-UCI dataset with (78 features) and without (561 features) CAT feature 

selection. 
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Table 4.20 Confusion matrix of MLP to DATASET-UCI with and without CAT 

DATASET-UCI 

dataset 

Predicted Activity 

WK WKU WKD SIT STD LY 

With 

CAT / 

(78 

features) A
ct

ua
l A

ct
iv

ity
 

WK 257 6 20 0 2 0 

WKU 7 208 13 2 3 10 

WKD 19 11 233 0 2 0 

SIT 0 3 0 297 63 7 

STD 1 0 0 76 242 0 

LY 0 2 0 0 0 240 

UCI-HAR dataset 
Predicted Activity 

WK WKU WKD SIT STD LY 

without 

CAT/ 

(561 

features) A
ct

ua
l A

ct
iv

ity
 

WK 262 5 17 0 1 0 

WKU 19 203 13 2 2 4 

WKD 17 21 227 0 0 0 

SIT 0 6 0 299 64 1 

STD 0 0 0 43 276 0 

LY 0 0 0 0 0 242 

 

*WK: walking, WKU: walking-upstairs, WKD: walking-downstairs,  

SIT: sitting, STD: standing, LY: laying 

Table 4.20 presents the MLP applied to the DATASET-UCI before CAT 

feature selection (561 features) was 87.53% accurate. After CAT feature selection (78 

features) the classifier was 85.67% accurate. Although the confusion table shows that 

the standing activity was wrongly categorized as sitting activity, the overall accuracy 
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of the MLP model on that dataset after feature selection with the CAT method (78 

features) still met the aims of this study.  

To establish the efficiency of the MLP model, five different classifiers 

were applied to DATASET-UCI after CAT feature selection (78 features). The 

comparison of performance results of different classifiers is shown in Figure 4. 
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                                 Classifiers 
Figure 4.8 Performances of six classifiers on DATASET-UCI with the CAT feature 

selection 

As shown in Figure 4.8, due to false classifications between sitting and 

standing activities, the accuracy of the MLP classifier was 3.48% lower than the 

accuracy of the BAG classifier. However, MLP still operated well in classification 

among the remaining four algorithms. The MLP model achieved the second-best 

accuracy with 85.67%, SVM the third best and the BAYES classifier the lowest 

accuracy with 65.78%.  

(3) Discussion on Result Accuracy of HAPT_1 Dataset by CAT 

The MLP model was applied to the HAPT_1 dataset with (78 features) 

and without feature selection with the CAT method (561 features). The results are 

shown in Table 4.21.  
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   Table 4.21 Classification results to HAPT_1 with and without CAT  

HAPT_1 

 dataset 

Predicted Activity 

WK WKU WKD SIT STD LY 

With CAT / 

 (78 features) 

A
ct

ua
l A

ct
iv

ity
 

WK 478 1 4 0 0 0 

WKU 6 474 4 0 0 0 

WKD 3 3 378 0 0 0 

SIT 0 1 0 494 64 0 

STD 1 0 0 31 576 0 

LY 0 0 0 0 0 606 

HAPT_1 

 dataset 

Predicted Activity 

WK WKU WKD SIT STD LY 

without CAT/ 

 (561 features) 

A
ct

ua
l A

ct
iv

ity
 

WK 481 1 1 0 0 0 

WKU 2 480 2 0 0 0 

WKD 0 1 384 0 0 0 

SIT 0 1 0 537 21 0 

STD 0 0 0 12 595 0 

LY 0 0 0 1 0 605 
 

*WK: walking, WKU: walking-upstairs, WKD: walking-downstairs,  

SIT: sitting, STD: standing, LY: laying 

In Table 4.21, MLP achieved a classification accuracy of 96.22% on the 

HAPT_1 dataset after feature selection with the CAT method. Before CAT feature 

selection, MLP was 98.66% accurate. Having falsely classified sitting and standing 

activities, the overall accuracy of MLP after CAT selection was 2.44% less than it was 

before feature selection.  
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To compare the performance of the MLP classifier, five different 

classifiers were applied to the HAPT_1 dataset after feature selection with the CAT 

method (78 features). Figure 4.9 displays the outcomes of the different classifiers. 
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                                          Classifiers 
Figure 4.9 Performances of six classifiers on HAPT_1 with the CAT feature selection 

(78 features) 

As it can be seen in Figure 4.9, the MLP classifier achieved the best 

accuracy of 96.22%.  BAG achieved the second-best accuracy with 95.74% and the 

BAYES classifier the lowest accuracy with 84.22%.  The CAT feature selection method 

successfully identified the useful features of the HAPT_1 dataset. 

(4) Discussion on Result Accuracy of HAPT_2 Dataset by CAT 

The HAPT_2 dataset contained 12 activities (walking, walking upstairs, 

walking downstairs, sitting, standing, lying, standing-to-sitting, sitting-to-standing, 

sitting-to-lying, lying-to-sitting, standing-to-lying, lying-to-standing). The MLP 

classification results of each activity in HAPT_2 after CAT feature selection method 

are given in Table 4.22. 
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Table 4.22 Classification results of MLP to HAPT_2 with CAT features selection 

HAPT_2 
with CAT 

(78-features) 

Predicted Activity 

W
K

 

W
K

U
 

W
K

D
 

SI
T 

ST
D

 

LY
 

ST
D

-S
IT

 

SI
T-

ST
D

 

SI
T-

LY
 

LY
-S

IT
 

ST
D

-L
Y

 

LY
-S

TD
 

A
ct

ua
l A

ct
iv

ity
 

WK 497 4 4 0 0 0 0 0 0 0 0 0 

WKU 3 474 2 0 1 0 1 0 0 0 0 0 

WKD 9 3 424 0 0 0 0 0 0 0 0 0 

SIT 0 0 0 479 43 0 1 1 1 1 0 0 

STD 1 0 0 31 561 0 0 0 0 0 0 0 

LY 0 0 0 0 0 593 0 0 0 0 0 1 

STD-SIT 0 0 0 1 1 0 16 0 1 0 1 0 

SIT-STD 0 0 0 0 0 0  8 0 1 0 1 

SIT-LY 0 0 0 1 0 0 0 0 18 0 8 0 

LY-SIT 0 0 0 0 0 2 0 0 0 13 0 4 

STD-LY 0 0 0 1 1 1 0 0 3 0 36 0 

LY-STD 0 0 0 0 0 0 0 0 1 6 0 20 

 

* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting,  

STD: standing, LY: laying, STD-SIT: stand-to-sit, SIT-STD: sit-to-stand,  

SIT-LY: sit-to-lie, LY-SIT: lie-to-sit, STD-LY: stand-to-lie, LY-STD: lie to stand. 

In Table 4.22, the overall accuracy of the MLP model to HAPT_2 with 

78 features was 95.73%. The specific MLP classifier model was more efficient on the 

first six activities. There were some misclassifications in the remaining 6 activities. In 

order to determine the effectiveness of the CAT model, the original HAPT_2 dataset 

before CAT feature selection was also classified by MLP. The performance results for 

the HAPT_2 dataset without the CAT (561 features) are presented in Table 4.23. 
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Table 4.23 Classification results of MLP to HAPT_2 without CAT feature selection  

HAPT_2 
Without CAT 

(561-features) 

Predicted Activity 

W
K

 

W
K

U
 

W
K

D
 

SI
T 

ST
D

 

LY
 

ST
D

-S
IT

 

SI
T-

ST
D

 

SI
T-

LY
 

LY
-S

IT
 

ST
D

-L
Y

 

LY
-S

TD
 

A
ct

ua
l A

ct
iv

ity
 

WK 504 0 1 0 0 0 0 0 0 0 0 0 

WKU 0 480 0 0 0 0 0 0 0 0 0 0 

WKD 2 0 434 0 0 0 0 0 0 0 0 0 

SIT 0 0 0 503 21 0 1 0 0 1 0 0 

STD 0 0 0 16 577 0 0 0 0 0 0 0 

LY 0 0 0 0 0 594 0 0 0 0 0 0 

STD-SIT 0 0 0 2 1 0 16 0 0 0 1 0 

SIT-STD 0 0 0 0 0 0 0 8 0 1 0 1 

SIT-LY 0 0 0 0 0 0 1 0 17 0 9 0 

LY-SIT 0 0 0 0 0 1 0 0 0 14 0 4 

STD-LY 0 0 0 1 0 2 1 0 3 0 35 0 

LY-STD 0 0 0 0 0 0 0 0 1 9 1 16 
 

* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting,  

STD: standing, LY: laying, STD-SIT: stand-to-sit, SIT-STD: sit-to-stand,  

SIT-LY: sit-to-lie, LY-SIT: lie-to-sit, STD-LY: stand-to-lie, LY-STD: lie to stand. 

Table 4.23 is shown that the overall accuracy of HAPT_2 without CAT 

(561 features) is 97.53%. The specific MLP classifier model performed better on the 

first six activities, which excluded the transition activities. Five different classifiers 

were also run on HAPT_2 after feature selection with the CAT method to compare the 

performance values with MLP. The comparison of performance results is shown in 

Figure 4.10. 
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Figure 4.10 Comparison of performance values with the MLP model and other 

classifiers using HAPT_2 dataset with CAT 

In Figure 4.10, the MLP classifier produced the best accuracy of 97.53%.  

SVM was the next most accurate with 95.06% and the BAYES classifier was the least 

accurate with 79.08%. The MLP classifier successfully identified features of the 

HAPT_2 dataset with the CAT feature selection method. 

4.4.3 Performances evaluations by dividing the data into three groups (t, t’, f), 

picking up 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50% of features, and evaluation the 

performances without CAT 

The main goal of this work was to effectively identify six human 

activities with a feature selection-based MLP classifier. The CAT feature selection 

method was implemented as one contribution of this dissertation. The CAT case 

approach was validated and assessed to show the effectiveness of its selection of the 

most significant features. The experiment passed through three datasets: UCI-HAR, 

DATASET-UCI, and HAPT-1. 

These datasets were divided into three groups (t = time-domain features 

grouped by angle values, t’= another time-domain features group of raw data, and  

f = frequency-domain features. The experimental design included a total of ten (10) test 
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operations that picked up 5, 10, 15, 20, 25, 30, 35, 40, 45 and 50% of each group of data 

before feature selection by CAT to evaluate the performance results by combining 

selected features from these three groups. The evaluation results are listed in Table 4.24, 

Table 4.25, and Table 4.26. The performance results are compared with the evaluation 

result of the proposed CAT feature set. 

Table 4.24 Performance results of data divided into three groups (t, t’, f) with picked-

up data of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% without feature 

selection by the CAT method and performance results based on feature selection by 

CAT method for the UCI-HAR dataset 

UCI-HAR dataset  

Data t  t' f  Total Feature Accuracy% 

5% without CAT 0 13 14 27 68.28 

10% without CAT 1 26 29 56 79.58 

15% without CAT 1 40 43 84 80.39 

20% without CAT 1 53 58 112 83.37 

25% without CAT 2 66 72 140 84.56 

30% without CAT 2 80 87 169 86.05 

35% without CAT 2 93 101 196 86.25 

40% without CAT 3 106 116 225 87.02 

45% without CAT 3 119 130 252 88.03 

50% without CAT 4 132 144 280 91.26 

CAT Data 6 56 16 78 96.57 
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Table 4.25 Performance results of data divided into three groups (t, t’, f) with 

picked-up data of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% 

without feature selection by the CAT method and performance results based on 

feature selection by CAT method for the DATASET-UCI dataset 

 

DATASET-UCI dataset 

Data t  t' f  Total Feature Accuracy% 

5% without CAT 0 13 14 27 61.77 

10% without CAT 1 26 29 56 71.00 

15% without CAT 1 40 43 84 73.49 

20% without CAT 1 53 58 112 76.39 

25% without CAT 2 66 72 140 76.74 

30% without CAT 2 80 87 169 79.81 

35% without CAT 2 93 101 196 82.89 

40% without CAT 3 106 116 225 84.57 

45% without CAT 3 119 130 252 84.11 

50% without CAT 4 132 144 280 83.87 

CAT Data 6 56 16 78 85.67 
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Table 4.26 Performance results of data divided into three groups (t, t’, f) with picked-

up data of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, and 50% without feature 

selection by the CAT method and performance results based on feature selection by 

CAT method for the HAPT_1 dataset 

HAPT_1 dataset 

Data t  t' f  Total Feature Accuracy% 

5% without CAT 0 13 14 27 65.91 

10% without CAT 1 26 29 56 77.11 

15% without CAT 1 40 43 84 80.12 

20% without CAT 1 53 58 112 83.51 

25% without CAT 2 66 72 140 87.42 

30% without CAT 2 80 87 169 87.00 

35% without CAT 2 93 101 196 89.08 

40% without CAT 3 106 116 225 90.01 

45% without CAT 3 119 130 252 90.24 

50% without CAT 4 132 144 280 91.01 

CAT Data 6 56 16 78 96.22 

 

In Table 4.24, Table 4.25, and Table 4.26, results of classifying data 

without feature selection by CAT show that accuracy was higher when the percentage 

of data without feature selection was higher.  However, as shown in this table, the MLP 

classifier performed better on a dataset with 78 selected features than on the divided 

dataset. The MLP classifier was more effective based on complete CAT feature 
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selection than on data which was not completely selected by CAT. As expected, the 

performance of the system using CAT was better than all testing using random 

percentage methods. The performance results were 96.57% accurate on the UCI-HAR 

dataset, 85.67% accurate on the DATASET-UCI dataset, and 96.22% accurate on the 

HAPT-1 dataset. In conclusion, the effectiveness of determining human activity was 

improved by the ability of CAT to identify the most significant features. 

4.5 Comparative analysis of the LDC method and the CAT method 

This section presents a comparative analysis of the impact of feature 

selection by LDC and the CAT on four datasets. 

4.5.1 Dimensionality reduction 

High dimensionality makes data visualization difficult and data 

processing complex. This section addresses objective 1 of this research to reduce the 

dimensionality of datasets in HAD. To determine the minimum number of features that 

could be selected for HAD, two feature selection methods were applied to four datasets. 

All the above results show that the LDC and the CAT methods accurately identified the 

more prominent features from each dataset. Based on the experimental results, these 

feature selection techniques could reduce the dimensionality of each dataset by 

determining the best features in each dataset. The comparison of the original features 

with a number of selected features by the LDC and the CAT for each dataset is 

presented in Table 4.27. 

   Table 4.27 Comparison of original features, selected features using LDC and CAT 

Dataset Original 
features 

LDC 
features 

CAT 
features 

CAT reduced 
more features 
than LDC 

UCI-HAR 561 245 78 167 

DATASET-
UCI 561 269 78 191 

HAPT_1 561 244 78 166 

HAPT_2 561 292 78 214 
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As shown in Table 4.27, The LDC features column gives the important 

features selected by the LDC. The CAT features column gives the most significant 

features selected by the CAT. The column CAT reduced more features than LDC 

indicates that the number of more reduced features of the CAT. 

 Depending on the experimental results of the LDC and the CAT, these 

techniques can well determine the best feature from each dataset. However, the number 

of features selected by each method was significantly different. The data sizes of the 

selected feature sets and the original feature datasets are compared in Figure 4.11. 
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Figure 4.11 Comparison of data percentage size of original, LDC and CAT features  

Figure 4.11 shows that both the LDC and CAT techniques performed 

quite well at selecting features from each HAD dataset. However, the CAT feature 

selection method selected significantly more of the best features. These selected 

features reduced the high dimension of the data. Both feature selection methods 

performed well in choosing the most important features and in reducing the 

dimensionality of the data. The reduction in data dimensionality was the same as the 

reduction in feature data. The CAT method reduced the features selected from the 

original dataset by 86%, and also the dimensionality of the dataset by 86%. The 
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comparison of the data dimensionality applied by the CAT and the LDC to four 

different datasets is shown in Table 4.28. 

       Table 4.28 Dimensionality data sizes of original, the CAT and LDC data 

Dataset Original 
Data size 

Data size by 
LDC 

Data size by 
CAT 

UCI-HAR 5,777,739 2,523,255 803,322 

DATASET-UCI 3,222,384 1,545,136 448,032 

HAPT_1 5,840,571 2,540,284 812,058 

HAPT_2 6,131,169 3,191,268 852,462 

In Table 4.28, the column Dataset corresponds to the names of 4 datasets 

used throughout this research. The Original Data size column refers to the size of the 

original dataset from each original dataset. Data size by the LDC column gives the 

dataset sizes of the best feature subsets selected by the LDC. Data size by the CAT 

column shows the dataset sizes of the best feature subsets selected by the CAT.   

Based on the results, the CAT method more significantly reduced data 

size than the LDC method: by 86% compared with 48% to 57%. This result supports 

the achievement of Objective 1 effectively. The following section analyses in detail the 

performance results of the MLP classifier on four HAD datasets based on both the LDC 

and CAT feature selection methods. 

4.5.2 Performance Comparison on each activity with and without LDC & CAT  

This chapter deals with Objective 4 of this study: to build a more precise 

recognition system. The MLP classifier performed well in evaluating the performance 

results of datasets derived from the LDC and the CAT feature selection methods. The 

MLP classifier was applied to the original UCI-HAR dataset, the DATASET-UCI 

dataset, and the HAPT-1 dataset to compare the performance values of newly selected 

feature datasets. 

Firstly, the performance results of classifications of each activity were 

considered using the original UCI-HAR dataset (561features), and using datasets from 

feature selection with the LDC method (245 features), and the CAT method (78 
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features). The performance results of the original data are available from the researchers 

who published the UCI-HAR dataset [27]. The UCI-HAR datasets from feature 

selection with LDC and CAT methods were assessed by the MLP classifier designed in 

this research. Figure 4.12 displays a comparison of all performance results for these 

three datasets for each activity.  
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* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting,  

STD: standing, LY: laying 

Figure 4.12 Performance comparison of each activity from UCI-HAR dataset with 

original data, LDC data, and CAT data 

As the results show, the MLP classifier performed well after feature 

selection with LDC and CAT for walking downstairs, sitting, standing, and lying down 

activities. Without feature selection, the performance of MLP on the UCI-HAR dataset 

was only better for walking. For the activity of walking upstairs, the MLP classifier 

performed best on the LDC selected feature set. For walking downstairs, standing, and 

lying down, MLP was most accurate with the CAT selected feature set.   

The overall accuracy of MLP applied to the UCI-HAR dataset without 

feature selection was 96.02%, the overall accuracy of MLP applied to the CAT selected 

feature set was 96.67%, and the overall accuracy of MLP applied to the LDC feature 

set was 98.74%. While the MLP model applied to the LDC feature set used 44% of the 

UCI-HAR dataset, it achieved an accuracy that was 2.74% better than it achieved with 
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the original feature dataset. While the MLP model after feature selection with CAT 

used only 14% of the UCI-HAR dataset, its overall accuracy was still 0.65% better than 

with the complete, original dataset. Therefore, feature selection with the LDC and CAT 

methods effectively achieved Objective 4 of this study. 

Secondly, the DATASET-UCI dataset was classified without feature 

selection, and after feature selection with the LDC and the CAT methods. The LDC 

and CAT data refer to the newly selected features datasets from the DATASET-UCI 

dataset. The original DATASET-UCI dataset contained 561 features. The LDC dataset 

contained 269 features, and the CAT dataset 78 features. The DATASET-UCI, the LDC 

data, and the CAT data were evaluated by the MLP classifier designed in this research. 

The comparison of all performance results of MLP for these datasets is given in Figure 

4.13. 
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* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting, 

STD: standing, LY: laying 

Figure 4.13 Performance comparison of each activity to DATASET-UCI 

dataset with original data, LDC data, and CAT data 

The LDC data produced the best results, with an achieved accuracy rate 

of 90.66%. The DATASET-UCI produced an accuracy rate of 87.53% and the CAT 

dataset produced an accuracy rate of 85.67%. While the accuracy produced by the CAT 

data was 4.99% less than the LDC data produced and 1.86% less than the DATASET-

UCI dataset produced, it was achieved using only 14% of the original dataset. 
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Therefore, the CAT feature selection method still performed well in selecting the best 

features from the DATASET-UCI dataset.   

Finally, the classification of the HAPT_1 dataset and its derived LDC 

data and CAT data were considered. The LDC and CAT data from the HAPT_1 dataset 

refer to the datasets of features newly selected by LDC and CAT feature selection from 

the HAPT_1 dataset. The original HAPT_1 dataset contained 561 features, the LDC 

dataset 244 features, and the CAT dataset 78 features. The HAPT_1 dataset, the LDC 

dataset, and the CAT dataset were evaluated by the MLP classifier created in this 

research. The comparison of all performance results of datasets in each activity is 

shown in Figure 4.14. 
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* WK: walking, WKU: walking-upstairs, WKD: walking-downstairs, SIT: sitting, STD: 

standing, LY: laying 

Figure 4.14 Performances of HAPT_1, LDC data, CAT data in each activity 

MLP performed best on the LDC dataset with an accuracy of 98.7%. The 

classifier achieved 98.66% accuracy with the HAPT_1 dataset and 96.22% accuracy 

with the CAT dataset. It misclassified between standing and sitting activities. Even 

though overall accuracy with the CAT dataset was 2.48% less than the accuracy 

achieved with the LDC dataset and 2.44% less than the overall accuracy achieved with 

the HAPT_1 dataset, the MLP generally produced quite good results from the CAT 

dataset.  
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CHAPTER 5  

CONCLUSIONS 

5.1 Summary 

Evaluating recognition performance is crucial for HAD in many study 

fields, especially in healthcare systems. Although many researchers have developed 

HAD systems with machine learning methods, there remains a difficult challenge to 

develop a more general and precise system. Some of the problems include the high 

dimensionality of the data, extreme slowness of the model, and the complexity of 

detection. The main objectives of this research were to reduce the dimensionality of the 

data, to determine the best-suited features, to create new feature selection methods 

using LDC and CAT, and to develop a new, precise ANN classifier model and a more 

accurate HAD system. This research was undertaken in two tasks. 

Task_1 of this study aimed to understand the HAD system. Data 

collection is one process of the HAD system. To get a background understanding of 

mobile sensing data, the TAD dataset was created. Before creating the main system 

design, step counting increased understanding of the system and helped to manage the 

high dimensionality of the dataset. Then a step counting technique using a smartphone 

accelerometer was introduced as a basic preliminary work. Task_2 of this research was 

the work on the main system. Two different feature selection methods and a novel 

classifier were proposed to fulfill the primary goal. It was decided to implement a 

system where the advantages of each technique could be used. Feature selection is the 

process of selecting a subset of relevant features or variables. Redundant or irrelevant 

features are useless features that do not have any information for the output. Ignoring 

irrelevant features improves the accuracy and decreases the dimensionality of the data.  

An excellent feature selection method requires a better mathematical 

model to determine the best-suited features. A good feature selection technique is 

directly correlated to the dimensionality of the data and the classification model. 

Therefore, two different feature selection methods were investigated. One method, 
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Linearly Dependent Concepts (LDC) feature selection, used linearly dependent 

concepts, and the other, Cyclic Attribution Technique (CAT) feature selection, used 

group theory and fundamental properties of cyclic groups.  

In order to achieve better performance in ML, it is essential when 

modeling to choose a suitable classifier with appropriate parameters. ANN is an 

effective tool in the field of pattern recognition. Hence, an artificial neural network 

model using Multi-Layer Perception (MLP) was designed with a new formula of hidden 

neuron nodes for systematic development of the HAD system based on a novel feature 

selection method.  

This ANN model examined the level of accuracy in HAD by using a new 

feature selection method. The accuracy of the MLP classifier was measured on four 

datasets (UCI-HAR, DATASET-UCI, HAPT_1, HAPT_2). The performance 

indicators were the identification of six activities (walking, walking upstairs, walking 

downstairs, sitting, standing, and lying down) before and after feature selection by LDC 

and CAT methods. To compare the classification outcomes, SVM, BAG, KNN, CART, 

and BAYES algorithms were also used to classify the feature sets. This section presents 

a model comparison of MLP classification between LDC and CAT datasets. Table 5.1 

summarizes the primary precision of the results of running time obtained in the previous 

section. 

Table 5.1 Performance of MLP on three original datasets before and after feature 

selection methods (LDC vs. CAT)  
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Data 
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Original 561 96.67 43 561 87.53 36 561 98.56 41 
LDC 
Data 245 98.74 10 269 90.66 15 244 98.75 18 

CAT 
Data 78 96.57 12 78 85.67 10 78 96.22 13 
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In Table 5.1, the word Original refers to the original data from the UCI-

HAR dataset, DATASET-UCI dataset, and HAPT_1. Word LDC data give the newly 

selected features dataset by using LDC feature selection method from these datasets. 

The CAT data related to the newly selected feature dataset by using the CAT feature 

selection method from these datasets. Depending on the LDC and CAT experimental 

outcomes, the best feature of each dataset can be determined by these methods. 

However, there is a significant difference in the number of features selected by the LDC 

and CAT. 

The main goal was to identify the most efficient feature selection method 

with a specific MLP classifier for HAD and to demonstrate the advantages and 

disadvantages of feature selection by the LDC and CAT methods. These two feature 

selection methods had been developed with different methodologies and techniques. 

The main aim of feature selection methods is to identify the most important features. 

Although the sizes of the three datasets used in this system were significantly different, 

accuracies among them were not much different. The findings showed a quite 

satisfactory level of accuracy.  

Based on the LDC and CAT experimental outcomes, the best features of 

each dataset were determined by both these methods. However, there was a significant 

difference in the number of features selected by the two methods. Implementing the 

ANN model with LDC reduced 561 features to 245 (44%) from the UCI-HAR dataset, 

269 (48%) from the DATASET-UCI dataset, 244 (43%) from the HAPT_1 dataset, and 

292 (52%) from the HAPT_2 dataset. Running the model with CAT reduced 561 

features to 78 (14%) for all datasets.  

The results in Table 5.1 show that feature selection with LDC generated 

the best overall accuracy of the model with all datasets, achieving a score of 96.41%, 

the original datasets produced an overall accuracy of 94.93%, and feature selection with 

the CAT method generated the third best accuracy of 93.57% from all the datasets.  

The two feature selection methods have different approaches and 

solutions. Possible solutions can be found in this study. The benefits of these proposed 
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feature selection methods are the generation of a small set of features, the reduced 

dimensionality of the data, and a more effective and quicker classifier. The 

disadvantages of these feature selection methods are the dependence on feature sets and 

some loss of information. Nonetheless, our proposed system successfully fulfilled the 

main objectives of this research and, therefore, a specific feature selection method and 

specific classifier might be able to play important roles in the determination of human 

activity.  

As shown in Table 5.1, the MLP model-based LDC is a very 

comprehensive methodology and evaluation technique. Although CAT could reduce 

the features 30% more than LDC, it was not more accurate. When comparing running 

time, LDC not only had a better accuracy but also a shorter running time than CAT, 

although CAT running time was a few seconds quicker than LDC runtime on the 

DATASET-UCI and HAPT datasets. Therefore, the MLP model-based LDC approach 

was the most comprehensively applicable and effective methodology for HAD systems 

development and the MLP model-based CAT approach was the second-best 

methodology. 

5.2 Future Work 

The present MLP model-based LDC and CAT feature selections 

methods were generated to produce a more reliable and precise system for the 

determination of human activity. In the future, implemented in many machine learning 

problems, these models will be beneficial for any ML problems and support in 

healthcare systems. In addition, these proposed classifier and feature selection methods 

can be compared with different feature selection methods and create real-time 

applications to support many human healthcare systems.  
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APPENDIX 

No. 
FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

1 tBodyAcc-mean()-X tBodyAcc-mean()-X tBodyAcc-Mean-1                 

2 tBodyAcc-mean()-Y tBodyAcc-mean()-Y tBodyAcc-Mean-2                 

3 tBodyAcc-mean()-Z tBodyAcc-mean()-Z tBodyAcc-Mean-3                 

4 tBodyAcc-std()-X tBodyAcc-std()-X tBodyAcc-STD-1                  

5 tBodyAcc-std()-Y tBodyAcc-std()-Y tBodyAcc-STD-2                  

6 tBodyAcc-std()-Z tBodyAcc-std()-Z tBodyAcc-STD-3                  

7 tBodyAcc-mad()-X tBodyAcc-mad()-X tBodyAcc-Mad-1                  

8 tBodyAcc-mad()-Y tBodyAcc-mad()-Y tBodyAcc-Mad-2                  

9 tBodyAcc-mad()-Z tBodyAcc-mad()-Z tBodyAcc-Mad-3                  

10 tBodyAcc-max()-X tBodyAcc-max()-X tBodyAcc-Max-1                  

11 tBodyAcc-max()-Y tBodyAcc-max()-Y tBodyAcc-Max-2                  

12 tBodyAcc-max()-Z tBodyAcc-max()-Z tBodyAcc-Max-3                  

13 tBodyAcc-min()-X tBodyAcc-min()-X tBodyAcc-Min-1                  

14 tBodyAcc-min()-Y tBodyAcc-min()-Y tBodyAcc-Min-2                  

15 tBodyAcc-min()-Z tBodyAcc-min()-Z tBodyAcc-Min-3                  

16 tBodyAcc-sma() tBodyAcc-sma() tBodyAcc-SMA-1                  

17 tBodyAcc-energy()-X tBodyAcc-energy()-X tBodyAcc-Energy-1               

18 tBodyAcc-energy()-Y tBodyAcc-energy()-Y tBodyAcc-Energy-2               

19 tBodyAcc-energy()-Z tBodyAcc-energy()-Z tBodyAcc-Energy-3               

20 tBodyAcc-iqr()-X tBodyAcc-iqr()-X tBodyAcc-IQR-1                  

21 tBodyAcc-iqr()-Y tBodyAcc-iqr()-Y tBodyAcc-IQR-2                  

22 tBodyAcc-iqr()-Z tBodyAcc-iqr()-Z tBodyAcc-IQR-3                  

23 tBodyAcc-entropy()-X tBodyAcc-entropy()-X tBodyAcc-ropy-1                 

24 tBodyAcc-entropy()-Y tBodyAcc-entropy()-Y tBodyAcc-ropy-1                 

25 tBodyAcc-entropy()-Z tBodyAcc-entropy()-Z tBodyAcc-ropy-1                 

26 tBodyAcc-arCoeff()-X,1 tBodyAcc-arCoeff()-X,1 tBodyAcc-ARCoeff-1              

27 tBodyAcc-arCoeff()-X,2 tBodyAcc-arCoeff()-X,2 tBodyAcc-ARCoeff-2              

28 tBodyAcc-arCoeff()-X,3 tBodyAcc-arCoeff()-X,3 tBodyAcc-ARCoeff-3              

29 tBodyAcc-arCoeff()-X,4 tBodyAcc-arCoeff()-X,4 tBodyAcc-ARCoeff-4              

30 tBodyAcc-arCoeff()-Y,1 tBodyAcc-arCoeff()-Y,1 tBodyAcc-ARCoeff-5              
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No. 
FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

31 tBodyAcc-arCoeff()-Y,2 tBodyAcc-arCoeff()-Y,2 tBodyAcc-ARCoeff-6              

32 tBodyAcc-arCoeff()-Y,3 tBodyAcc-arCoeff()-Y,3 tBodyAcc-ARCoeff-7              

33 tBodyAcc-arCoeff()-Y,4 tBodyAcc-arCoeff()-Y,4 tBodyAcc-ARCoeff-8              

34 tBodyAcc-arCoeff()-Z,1 tBodyAcc-arCoeff()-Z,1 tBodyAcc-ARCoeff-9              

35 tBodyAcc-arCoeff()-Z,2 tBodyAcc-arCoeff()-Z,2 tBodyAcc-ARCoeff-10             

36 tBodyAcc-arCoeff()-Z,3 tBodyAcc-arCoeff()-Z,3 tBodyAcc-ARCoeff-11             

37 tBodyAcc-arCoeff()-Z,4 tBodyAcc-arCoeff()-Z,4 tBodyAcc-ARCoeff-12             

38 tBodyAcc-correlation()-X,Y tBodyAcc-correlation()-X,Y tBodyAcc-Correlation-1          

39 tBodyAcc-correlation()-X,Z tBodyAcc-correlation()-X,Z tBodyAcc-Correlation-2          

40 tBodyAcc-correlation()-Y,Z tBodyAcc-correlation()-Y,Z tBodyAcc-Correlation-3          

41 tGravityAcc-mean()-X tGravityAcc-mean()-X tGravityAcc-Mean-1              

42 tGravityAcc-mean()-Y tGravityAcc-mean()-Y tGravityAcc-Mean-2              

43 tGravityAcc-mean()-Z tGravityAcc-mean()-Z tGravityAcc-Mean-3              

44 tGravityAcc-std()-X tGravityAcc-std()-X tGravityAcc-STD-1               

45 tGravityAcc-std()-Y tGravityAcc-std()-Y tGravityAcc-STD-2               

46 tGravityAcc-std()-Z tGravityAcc-std()-Z tGravityAcc-STD-3               

47 tGravityAcc-mad()-X tGravityAcc-mad()-X tGravityAcc-Mad-1               

48 tGravityAcc-mad()-Y tGravityAcc-mad()-Y tGravityAcc-Mad-2               

49 tGravityAcc-mad()-Z tGravityAcc-mad()-Z tGravityAcc-Mad-3               

50 tGravityAcc-max()-X tGravityAcc-max()-X tGravityAcc-Max-1               

51 tGravityAcc-max()-Y tGravityAcc-max()-Y tGravityAcc-Max-2               

52 tGravityAcc-max()-Z tGravityAcc-max()-Z tGravityAcc-Max-3               

53 tGravityAcc-min()-X tGravityAcc-min()-X tGravityAcc-Min-1               

54 tGravityAcc-min()-Y tGravityAcc-min()-Y tGravityAcc-Min-2               

55 tGravityAcc-min()-Z tGravityAcc-min()-Z tGravityAcc-Min-3               

56 tGravityAcc-sma() tGravityAcc-sma() tGravityAcc-SMA-1               

57 tGravityAcc-energy()-X tGravityAcc-energy()-X tGravityAcc-Energy-1            

58 tGravityAcc-energy()-Y tGravityAcc-energy()-Y tGravityAcc-Energy-2            

59 tGravityAcc-energy()-Z tGravityAcc-energy()-Z tGravityAcc-Energy-3            

60 tGravityAcc-iqr()-X tGravityAcc-iqr()-X tGravityAcc-IQR-1               
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No. 
FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

61 tGravityAcc-iqr()-Y tGravityAcc-iqr()-Y tGravityAcc-IQR-2               

62 tGravityAcc-iqr()-Z tGravityAcc-iqr()-Z tGravityAcc-IQR-3               

63 tGravityAcc-entropy()-X tGravityAcc-entropy()-X tGravityAcc-ropy-1              

64 tGravityAcc-entropy()-Y tGravityAcc-entropy()-Y tGravityAcc-ropy-1              

65 tGravityAcc-entropy()-Z tGravityAcc-entropy()-Z tGravityAcc-ropy-1              

66 tGravityAcc-arCoeff()-X,1 tGravityAcc-arCoeff()-X,1 tGravityAcc-ARCoeff-1           

67 tGravityAcc-arCoeff()-X,2 tGravityAcc-arCoeff()-X,2 tGravityAcc-ARCoeff-2           

68 tGravityAcc-arCoeff()-X,3 tGravityAcc-arCoeff()-X,3 tGravityAcc-ARCoeff-3           

69 tGravityAcc-arCoeff()-X,4 tGravityAcc-arCoeff()-X,4 tGravityAcc-ARCoeff-4           

70 tGravityAcc-arCoeff()-Y,1 tGravityAcc-arCoeff()-Y,1 tGravityAcc-ARCoeff-5           

71 tGravityAcc-arCoeff()-Y,2 tGravityAcc-arCoeff()-Y,2 tGravityAcc-ARCoeff-6           

72 tGravityAcc-arCoeff()-Y,3 tGravityAcc-arCoeff()-Y,3 tGravityAcc-ARCoeff-7           

73 tGravityAcc-arCoeff()-Y,4 tGravityAcc-arCoeff()-Y,4 tGravityAcc-ARCoeff-8           

74 tGravityAcc-arCoeff()-Z,1 tGravityAcc-arCoeff()-Z,1 tGravityAcc-ARCoeff-9           

75 tGravityAcc-arCoeff()-Z,2 tGravityAcc-arCoeff()-Z,2 tGravityAcc-ARCoeff-10          

76 tGravityAcc-arCoeff()-Z,3 tGravityAcc-arCoeff()-Z,3 tGravityAcc-ARCoeff-11          

77 tGravityAcc-arCoeff()-Z,4 tGravityAcc-arCoeff()-Z,4 tGravityAcc-ARCoeff-12          

78 tGravityAcc-correlation()-X,Y tGravityAcc-correlation()-X,Y tGravityAcc-Correlation-1       

79 tGravityAcc-correlation()-X,Z tGravityAcc-correlation()-X,Z tGravityAcc-Correlation-2       

80 tGravityAcc-correlation()-Y,Z tGravityAcc-correlation()-Y,Z tGravityAcc-Correlation-3       

81 tBodyAccJerk-mean()-X tBodyAccJerk-mean()-X tBodyAccJerk-Mean-1             

82 tBodyAccJerk-mean()-Y tBodyAccJerk-mean()-Y tBodyAccJerk-Mean-2             

83 tBodyAccJerk-mean()-Z tBodyAccJerk-mean()-Z tBodyAccJerk-Mean-3             

84 tBodyAccJerk-std()-X tBodyAccJerk-std()-X tBodyAccJerk-STD-1              

85 tBodyAccJerk-std()-Y tBodyAccJerk-std()-Y tBodyAccJerk-STD-2              

86 tBodyAccJerk-std()-Z tBodyAccJerk-std()-Z tBodyAccJerk-STD-3              

87 tBodyAccJerk-mad()-X tBodyAccJerk-mad()-X tBodyAccJerk-Mad-1              

88 tBodyAccJerk-mad()-Y tBodyAccJerk-mad()-Y tBodyAccJerk-Mad-2              

89 tBodyAccJerk-mad()-Z tBodyAccJerk-mad()-Z tBodyAccJerk-Mad-3              

90 tBodyAccJerk-max()-X tBodyAccJerk-max()-X tBodyAccJerk-Max-1              
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No. 
FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

91 tBodyAccJerk-max()-Y tBodyAccJerk-max()-Y tBodyAccJerk-Max-2              

92 tBodyAccJerk-max()-Z tBodyAccJerk-max()-Z tBodyAccJerk-Max-3              

93 tBodyAccJerk-min()-X tBodyAccJerk-min()-X tBodyAccJerk-Min-1              

94 tBodyAccJerk-min()-Y tBodyAccJerk-min()-Y tBodyAccJerk-Min-2              

95 tBodyAccJerk-min()-Z tBodyAccJerk-min()-Z tBodyAccJerk-Min-3              

96 tBodyAccJerk-sma() tBodyAccJerk-sma() tBodyAccJerk-SMA-1              

97 tBodyAccJerk-energy()-X tBodyAccJerk-energy()-X tBodyAccJerk-Energy-1           

98 tBodyAccJerk-energy()-Y tBodyAccJerk-energy()-Y tBodyAccJerk-Energy-2           

99 tBodyAccJerk-energy()-Z tBodyAccJerk-energy()-Z tBodyAccJerk-Energy-3           

100 tBodyAccJerk-iqr()-X tBodyAccJerk-iqr()-X tBodyAccJerk-IQR-1              

101 tBodyAccJerk-iqr()-Y tBodyAccJerk-iqr()-Y tBodyAccJerk-IQR-2              

102 tBodyAccJerk-iqr()-Z tBodyAccJerk-iqr()-Z tBodyAccJerk-IQR-3              

103 tBodyAccJerk-entropy()-X tBodyAccJerk-entropy()-X tBodyAccJerk-ropy-1             

104 tBodyAccJerk-entropy()-Y tBodyAccJerk-entropy()-Y tBodyAccJerk-ropy-1             

105 tBodyAccJerk-entropy()-Z tBodyAccJerk-entropy()-Z tBodyAccJerk-ropy-1             

106 tBodyAccJerk-arCoeff()-X,1 tBodyAccJerk-arCoeff()-X,1 tBodyAccJerk-ARCoeff-1          

107 tBodyAccJerk-arCoeff()-X,2 tBodyAccJerk-arCoeff()-X,2 tBodyAccJerk-ARCoeff-2          

108 tBodyAccJerk-arCoeff()-X,3 tBodyAccJerk-arCoeff()-X,3 tBodyAccJerk-ARCoeff-3          

109 tBodyAccJerk-arCoeff()-X,4 tBodyAccJerk-arCoeff()-X,4 tBodyAccJerk-ARCoeff-4          

110 tBodyAccJerk-arCoeff()-Y,1 tBodyAccJerk-arCoeff()-Y,1 tBodyAccJerk-ARCoeff-5          

111 tBodyAccJerk-arCoeff()-Y,2 tBodyAccJerk-arCoeff()-Y,2 tBodyAccJerk-ARCoeff-6          

112 tBodyAccJerk-arCoeff()-Y,3 tBodyAccJerk-arCoeff()-Y,3 tBodyAccJerk-ARCoeff-7          

113 tBodyAccJerk-arCoeff()-Y,4 tBodyAccJerk-arCoeff()-Y,4 tBodyAccJerk-ARCoeff-8          

114 tBodyAccJerk-arCoeff()-Z,1 tBodyAccJerk-arCoeff()-Z,1 tBodyAccJerk-ARCoeff-9          

115 tBodyAccJerk-arCoeff()-Z,2 tBodyAccJerk-arCoeff()-Z,2 tBodyAccJerk-ARCoeff-10         

116 tBodyAccJerk-arCoeff()-Z,3 tBodyAccJerk-arCoeff()-Z,3 tBodyAccJerk-ARCoeff-11         

117 tBodyAccJerk-arCoeff()-Z,4 tBodyAccJerk-arCoeff()-Z,4 tBodyAccJerk-ARCoeff-12         

118 tBodyAccJerk-correlation()-X,Y tBodyAccJerk-correlation()-X,Y tBodyAccJerk-Correlation-1      

119 tBodyAccJerk-correlation()-X,Z tBodyAccJerk-correlation()-X,Z tBodyAccJerk-Correlation-2      

120 tBodyAccJerk-correlation()-Y,Z tBodyAccJerk-correlation()-Y,Z tBodyAccJerk-Correlation-3      
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No. 

FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

121 tBodyGyro-mean()-X tBodyGyro-mean()-X tBodyGyro-Mean-1                

122 tBodyGyro-mean()-Y tBodyGyro-mean()-Y tBodyGyro-Mean-2                

123 tBodyGyro-mean()-Z tBodyGyro-mean()-Z tBodyGyro-Mean-3                

124 tBodyGyro-std()-X tBodyGyro-std()-X tBodyGyro-STD-1                 

125 tBodyGyro-std()-Y tBodyGyro-std()-Y tBodyGyro-STD-2                 

126 tBodyGyro-std()-Z tBodyGyro-std()-Z tBodyGyro-STD-3                 

127 tBodyGyro-mad()-X tBodyGyro-mad()-X tBodyGyro-Mad-1                 

128 tBodyGyro-mad()-Y tBodyGyro-mad()-Y tBodyGyro-Mad-2                 

129 tBodyGyro-mad()-Z tBodyGyro-mad()-Z tBodyGyro-Mad-3                 

130 tBodyGyro-max()-X tBodyGyro-max()-X tBodyGyro-Max-1                 

131 tBodyGyro-max()-Y tBodyGyro-max()-Y tBodyGyro-Max-2                 

132 tBodyGyro-max()-Z tBodyGyro-max()-Z tBodyGyro-Max-3                 

133 tBodyGyro-min()-X tBodyGyro-min()-X tBodyGyro-Min-1                 

134 tBodyGyro-min()-Y tBodyGyro-min()-Y tBodyGyro-Min-2                 

135 tBodyGyro-min()-Z tBodyGyro-min()-Z tBodyGyro-Min-3                 

136 tBodyGyro-sma() tBodyGyro-sma() tBodyGyro-SMA-1                 

137 tBodyGyro-energy()-X tBodyGyro-energy()-X tBodyGyro-Energy-1              

138 tBodyGyro-energy()-Y tBodyGyro-energy()-Y tBodyGyro-Energy-2              

139 tBodyGyro-energy()-Z tBodyGyro-energy()-Z tBodyGyro-Energy-3              

140 tBodyGyro-iqr()-X tBodyGyro-iqr()-X tBodyGyro-IQR-1                 

141 tBodyGyro-iqr()-Y tBodyGyro-iqr()-Y tBodyGyro-IQR-2                 

142 tBodyGyro-iqr()-Z tBodyGyro-iqr()-Z tBodyGyro-IQR-3                 

143 tBodyGyro-entropy()-X tBodyGyro-entropy()-X tBodyGyro-ropy-1                

144 tBodyGyro-entropy()-Y tBodyGyro-entropy()-Y tBodyGyro-ropy-1                

145 tBodyGyro-entropy()-Z tBodyGyro-entropy()-Z tBodyGyro-ropy-1                

146 tBodyGyro-arCoeff()-X,1 tBodyGyro-arCoeff()-X,1 tBodyGyro-ARCoeff-1             

147 tBodyGyro-arCoeff()-X,2 tBodyGyro-arCoeff()-X,2 tBodyGyro-ARCoeff-2             

148 tBodyGyro-arCoeff()-X,3 tBodyGyro-arCoeff()-X,3 tBodyGyro-ARCoeff-3             

149 tBodyGyro-arCoeff()-X,4 tBodyGyro-arCoeff()-X,4 tBodyGyro-ARCoeff-4             

150 tBodyGyro-arCoeff()-Y,1 tBodyGyro-arCoeff()-Y,1 tBodyGyro-ARCoeff-5             
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No. 
FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

151 tBodyGyro-arCoeff()-Y,2 tBodyGyro-arCoeff()-Y,2 tBodyGyro-ARCoeff-6             

152 tBodyGyro-arCoeff()-Y,3 tBodyGyro-arCoeff()-Y,3 tBodyGyro-ARCoeff-7             

153 tBodyGyro-arCoeff()-Y,4 tBodyGyro-arCoeff()-Y,4 tBodyGyro-ARCoeff-8             

154 tBodyGyro-arCoeff()-Z,1 tBodyGyro-arCoeff()-Z,1 tBodyGyro-ARCoeff-9             

155 tBodyGyro-arCoeff()-Z,2 tBodyGyro-arCoeff()-Z,2 tBodyGyro-ARCoeff-10            

156 tBodyGyro-arCoeff()-Z,3 tBodyGyro-arCoeff()-Z,3 tBodyGyro-ARCoeff-11            

157 tBodyGyro-arCoeff()-Z,4 tBodyGyro-arCoeff()-Z,4 tBodyGyro-ARCoeff-12            

158 tBodyGyro-correlation()-X,Y tBodyGyro-correlation()-X,Y tBodyGyro-Correlation-1         

159 tBodyGyro-correlation()-X,Z tBodyGyro-correlation()-X,Z tBodyGyro-Correlation-2         

160 tBodyGyro-correlation()-Y,Z tBodyGyro-correlation()-Y,Z tBodyGyro-Correlation-3         

161 tBodyGyroJerk-mean()-X tBodyGyroJerk-mean()-X tBodyGyroJerk-Mean-1            

162 tBodyGyroJerk-mean()-Y tBodyGyroJerk-mean()-Y tBodyGyroJerk-Mean-2            

163 tBodyGyroJerk-mean()-Z tBodyGyroJerk-mean()-Z tBodyGyroJerk-Mean-3            

164 tBodyGyroJerk-std()-X tBodyGyroJerk-std()-X tBodyGyroJerk-STD-1             

165 tBodyGyroJerk-std()-Y tBodyGyroJerk-std()-Y tBodyGyroJerk-STD-2             

166 tBodyGyroJerk-std()-Z tBodyGyroJerk-std()-Z tBodyGyroJerk-STD-3             

167 tBodyGyroJerk-mad()-X tBodyGyroJerk-mad()-X tBodyGyroJerk-Mad-1             

168 tBodyGyroJerk-mad()-Y tBodyGyroJerk-mad()-Y tBodyGyroJerk-Mad-2             

169 tBodyGyroJerk-mad()-Z tBodyGyroJerk-mad()-Z tBodyGyroJerk-Mad-3             

170 tBodyGyroJerk-max()-X tBodyGyroJerk-max()-X tBodyGyroJerk-Max-1             

171 tBodyGyroJerk-max()-Y tBodyGyroJerk-max()-Y tBodyGyroJerk-Max-2             

172 tBodyGyroJerk-max()-Z tBodyGyroJerk-max()-Z tBodyGyroJerk-Max-3             

173 tBodyGyroJerk-min()-X tBodyGyroJerk-min()-X tBodyGyroJerk-Min-1             

174 tBodyGyroJerk-min()-Y tBodyGyroJerk-min()-Y tBodyGyroJerk-Min-2             

175 tBodyGyroJerk-min()-Z tBodyGyroJerk-min()-Z tBodyGyroJerk-Min-3             

176 tBodyGyroJerk-sma() tBodyGyroJerk-sma() tBodyGyroJerk-SMA-1             

177 tBodyGyroJerk-energy()-X tBodyGyroJerk-energy()-X tBodyGyroJerk-Energy-1          

178 tBodyGyroJerk-energy()-Y tBodyGyroJerk-energy()-Y tBodyGyroJerk-Energy-2          

179 tBodyGyroJerk-energy()-Z tBodyGyroJerk-energy()-Z tBodyGyroJerk-Energy-3          

180 tBodyGyroJerk-iqr()-X tBodyGyroJerk-iqr()-X tBodyGyroJerk-IQR-1             
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181 tBodyGyroJerk-iqr()-Y tBodyGyroJerk-iqr()-Y tBodyGyroJerk-IQR-2             

182 tBodyGyroJerk-iqr()-Z tBodyGyroJerk-iqr()-Z tBodyGyroJerk-IQR-3             

183 tBodyGyroJerk-entropy()-X tBodyGyroJerk-entropy()-X tBodyGyroJerk-ropy-1            

184 tBodyGyroJerk-entropy()-Y tBodyGyroJerk-entropy()-Y tBodyGyroJerk-ropy-1            

185 tBodyGyroJerk-entropy()-Z tBodyGyroJerk-entropy()-Z tBodyGyroJerk-ropy-1            

186 tBodyGyroJerk-arCoeff()-X,1 tBodyGyroJerk-arCoeff()-X,1 tBodyGyroJerk-ARCoeff-1         

187 tBodyGyroJerk-arCoeff()-X,2 tBodyGyroJerk-arCoeff()-X,2 tBodyGyroJerk-ARCoeff-2         

188 tBodyGyroJerk-arCoeff()-X,3 tBodyGyroJerk-arCoeff()-X,3 tBodyGyroJerk-ARCoeff-3         

189 tBodyGyroJerk-arCoeff()-X,4 tBodyGyroJerk-arCoeff()-X,4 tBodyGyroJerk-ARCoeff-4         

190 tBodyGyroJerk-arCoeff()-Y,1 tBodyGyroJerk-arCoeff()-Y,1 tBodyGyroJerk-ARCoeff-5         

191 tBodyGyroJerk-arCoeff()-Y,2 tBodyGyroJerk-arCoeff()-Y,2 tBodyGyroJerk-ARCoeff-6         

192 tBodyGyroJerk-arCoeff()-Y,3 tBodyGyroJerk-arCoeff()-Y,3 tBodyGyroJerk-ARCoeff-7         

193 tBodyGyroJerk-arCoeff()-Y,4 tBodyGyroJerk-arCoeff()-Y,4 tBodyGyroJerk-ARCoeff-8         

194 tBodyGyroJerk-arCoeff()-Z,1 tBodyGyroJerk-arCoeff()-Z,1 tBodyGyroJerk-ARCoeff-9         

195 tBodyGyroJerk-arCoeff()-Z,2 tBodyGyroJerk-arCoeff()-Z,2 tBodyGyroJerk-ARCoeff-10        

196 tBodyGyroJerk-arCoeff()-Z,3 tBodyGyroJerk-arCoeff()-Z,3 tBodyGyroJerk-ARCoeff-11        

197 tBodyGyroJerk-arCoeff()-Z,4 tBodyGyroJerk-arCoeff()-Z,4 tBodyGyroJerk-ARCoeff-12        

198 tBodyGyroJerk-correlation()-X,Y tBodyGyroJerk-correlation()-X,Y tBodyGyroJerk-Correlation-1     

199 tBodyGyroJerk-correlation()-X,Z tBodyGyroJerk-correlation()-X,Z tBodyGyroJerk-Correlation-2     

200 tBodyGyroJerk-correlation()-Y,Z tBodyGyroJerk-correlation()-Y,Z tBodyGyroJerk-Correlation-3     

201 tBodyAccMag-mean() tBodyAccMag-mean() tBodyAccMag-Mean-1              

202 tBodyAccMag-std() tBodyAccMag-std() tBodyAccMag-STD-1               

203 tBodyAccMag-mad() tBodyAccMag-mad() tBodyAccMag-Mad-1               

204 tBodyAccMag-max() tBodyAccMag-max() tBodyAccMag-Max-1               

205 tBodyAccMag-min() tBodyAccMag-min() tBodyAccMag-Min-1               

206 tBodyAccMag-sma() tBodyAccMag-sma() tBodyAccMag-SMA-1               

207 tBodyAccMag-energy() tBodyAccMag-energy() tBodyAccMag-Energy-1            

208 tBodyAccMag-iqr() tBodyAccMag-iqr() tBodyAccMag-IQR-1               

209 tBodyAccMag-entropy() tBodyAccMag-entropy() tBodyAccMag-ropy-1              

210 tBodyAccMag-arCoeff()1 tBodyAccMag-arCoeff()1 tBodyAccMag-ARCoeff-1           
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211 tBodyAccMag-arCoeff()2 tBodyAccMag-arCoeff()2 tBodyAccMag-ARCoeff-2           

212 tBodyAccMag-arCoeff()3 tBodyAccMag-arCoeff()3 tBodyAccMag-ARCoeff-3           

213 tBodyAccMag-arCoeff()4 tBodyAccMag-arCoeff()4 tBodyAccMag-ARCoeff-4           

214 tGravityAccMag-mean() tGravityAccMag-mean() tGravityAccMag-Mean-1           

215 tGravityAccMag-std() tGravityAccMag-std() tGravityAccMag-STD-1            

216 tGravityAccMag-mad() tGravityAccMag-mad() tGravityAccMag-Mad-1            

217 tGravityAccMag-max() tGravityAccMag-max() tGravityAccMag-Max-1            

218 tGravityAccMag-min() tGravityAccMag-min() tGravityAccMag-Min-1            

219 tGravityAccMag-sma() tGravityAccMag-sma() tGravityAccMag-SMA-1            

220 tGravityAccMag-energy() tGravityAccMag-energy() tGravityAccMag-Energy-1         

221 tGravityAccMag-iqr() tGravityAccMag-iqr() tGravityAccMag-IQR-1            

222 tGravityAccMag-entropy() tGravityAccMag-entropy() tGravityAccMag-ropy-1           

223 tGravityAccMag-arCoeff()1 tGravityAccMag-arCoeff()1 tGravityAccMag-ARCoeff1      

224 tGravityAccMag-arCoeff()2 tGravityAccMag-arCoeff()2 tGravityAccMag-ARCoeff2        

225 tGravityAccMag-arCoeff()3 tGravityAccMag-arCoeff()3 tGravityAccMag-ARCoeff3      

226 tGravityAccMag-arCoeff()4 tGravityAccMag-arCoeff()4 tGravityAccMag-ARCoeff4     

227 tBodyAccJerkMag-mean() tBodyAccJerkMag-mean() tBodyAccJerkMag-Mean-1          

228 tBodyAccJerkMag-std() tBodyAccJerkMag-std() tBodyAccJerkMag-STD-1           

229 tBodyAccJerkMag-mad() tBodyAccJerkMag-mad() tBodyAccJerkMag-Mad-1           

230 tBodyAccJerkMag-max() tBodyAccJerkMag-max() tBodyAccJerkMag-Max-1           

231 tBodyAccJerkMag-min() tBodyAccJerkMag-min() tBodyAccJerkMag-Min-1           

232 tBodyAccJerkMag-sma() tBodyAccJerkMag-sma() tBodyAccJerkMag-SMA-1           

233 tBodyAccJerkMag-energy() tBodyAccJerkMag-energy() tBodyAccJerkMag-Energy1     

234 tBodyAccJerkMag-iqr() tBodyAccJerkMag-iqr() tBodyAccJerkMag-IQR-1           

235 tBodyAccJerkMag-entropy() tBodyAccJerkMag-entropy() tBodyAccJerkMag-ropy-1          

236 tBodyAccJerkMag-arCoeff()1 tBodyAccJerkMag-arCoeff()1 tBodyAccJerkMag-ARCoeff-1       

237 tBodyAccJerkMag-arCoeff()2 tBodyAccJerkMag-arCoeff()2 tBodyAccJerkMag-ARCoeff-2       

238 tBodyAccJerkMag-arCoeff()3 tBodyAccJerkMag-arCoeff()3 tBodyAccJerkMag-ARCoeff-3       

239 tBodyAccJerkMag-arCoeff()4 tBodyAccJerkMag-arCoeff()4 tBodyAccJerkMag-ARCoeff-4       

240 tBodyGyroMag-mean() tBodyGyroMag-mean() tBodyGyroMag-Mean-1             
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241 tBodyGyroMag-std() tBodyGyroMag-std() tBodyGyroMag-STD-1              

242 tBodyGyroMag-mad() tBodyGyroMag-mad() tBodyGyroMag-Mad-1              

243 tBodyGyroMag-max() tBodyGyroMag-max() tBodyGyroMag-Max-1              

244 tBodyGyroMag-min() tBodyGyroMag-min() tBodyGyroMag-Min-1              

245 tBodyGyroMag-sma() tBodyGyroMag-sma() tBodyGyroMag-SMA-1              

246 tBodyGyroMag-energy() tBodyGyroMag-energy() tBodyGyroMag-Energy-1           

247 tBodyGyroMag-iqr() tBodyGyroMag-iqr() tBodyGyroMag-IQR-1              

248 tBodyGyroMag-entropy() tBodyGyroMag-entropy() tBodyGyroMag-ropy-1             

249 tBodyGyroMag-arCoeff()1 tBodyGyroMag-arCoeff()1 tBodyGyroMag-ARCoeff-1          

250 tBodyGyroMag-arCoeff()2 tBodyGyroMag-arCoeff()2 tBodyGyroMag-ARCoeff-2          

251 tBodyGyroMag-arCoeff()3 tBodyGyroMag-arCoeff()3 tBodyGyroMag-ARCoeff-3          

252 tBodyGyroMag-arCoeff()4 tBodyGyroMag-arCoeff()4 tBodyGyroMag-ARCoeff-4          

253 tBodyGyroJerkMag-mean() tBodyGyroJerkMag-mean() tBodyGyroJerkMag-Mean-1         

254 tBodyGyroJerkMag-std() tBodyGyroJerkMag-std() tBodyGyroJerkMag-STD-1          

255 tBodyGyroJerkMag-mad() tBodyGyroJerkMag-mad() tBodyGyroJerkMag-Mad-1          

256 tBodyGyroJerkMag-max() tBodyGyroJerkMag-max() tBodyGyroJerkMag-Max-1          

257 tBodyGyroJerkMag-min() tBodyGyroJerkMag-min() tBodyGyroJerkMag-Min-1          

258 tBodyGyroJerkMag-sma() tBodyGyroJerkMag-sma() tBodyGyroJerkMag-SMA-1          

259 tBodyGyroJerkMag-energy() tBodyGyroJerkMag-energy() tBodyGyroJerkMagEnergy1  

260 tBodyGyroJerkMag-iqr() tBodyGyroJerkMag-iqr() tBodyGyroJerkMag-IQR-1          

261 tBodyGyroJerkMag-entropy() tBodyGyroJerkMag-entropy() tBodyGyroJerkMag-ropy-1         

262 tBodyGyroJerkMag-arCoeff()1 tBodyGyroJerkMag-arCoeff()1 tBodyGyroJerkMag-ARCoeff-1      

263 tBodyGyroJerkMag-arCoeff()2 tBodyGyroJerkMag-arCoeff()2 tBodyGyroJerkMag-ARCoeff-2      

264 tBodyGyroJerkMag-arCoeff()3 tBodyGyroJerkMag-arCoeff()3 tBodyGyroJerkMag-ARCoeff-3      

265 tBodyGyroJerkMag-arCoeff()4 tBodyGyroJerkMag-arCoeff()4 tBodyGyroJerkMag-ARCoeff-4      

266 fBodyAcc-mean()-X fBodyAcc-mean()-X fBodyAcc-Mean-1                 

267 fBodyAcc-mean()-Y fBodyAcc-mean()-Y fBodyAcc-Mean-2                 

268 fBodyAcc-mean()-Z fBodyAcc-mean()-Z fBodyAcc-Mean-3                 

269 fBodyAcc-std()-X fBodyAcc-std()-X fBodyAcc-STD-1                  

270 fBodyAcc-std()-Y fBodyAcc-std()-Y fBodyAcc-STD-2                  
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271 fBodyAcc-std()-Z fBodyAcc-std()-Z fBodyAcc-STD-3                  
272 fBodyAcc-mad()-X fBodyAcc-mad()-X fBodyAcc-Mad-1                  
273 fBodyAcc-mad()-Y fBodyAcc-mad()-Y fBodyAcc-Mad-2                  
274 fBodyAcc-mad()-Z fBodyAcc-mad()-Z fBodyAcc-Mad-3                  
275 fBodyAcc-max()-X fBodyAcc-max()-X fBodyAcc-Max-1                  
276 fBodyAcc-max()-Y fBodyAcc-max()-Y fBodyAcc-Max-2                  
277 fBodyAcc-max()-Z fBodyAcc-max()-Z fBodyAcc-Max-3                  
278 fBodyAcc-min()-X fBodyAcc-min()-X fBodyAcc-Min-1                  
279 fBodyAcc-min()-Y fBodyAcc-min()-Y fBodyAcc-Min-2                  
280 fBodyAcc-min()-Z fBodyAcc-min()-Z fBodyAcc-Min-3                  
281 fBodyAcc-sma() fBodyAcc-sma() fBodyAcc-SMA-1                  
282 fBodyAcc-energy()-X fBodyAcc-energy()-X fBodyAcc-Energy-1               
283 fBodyAcc-energy()-Y fBodyAcc-energy()-Y fBodyAcc-Energy-2               
284 fBodyAcc-energy()-Z fBodyAcc-energy()-Z fBodyAcc-Energy-3               
285 fBodyAcc-iqr()-X fBodyAcc-iqr()-X fBodyAcc-IQR-1                  
286 fBodyAcc-iqr()-Y fBodyAcc-iqr()-Y fBodyAcc-IQR-2                  
287 fBodyAcc-iqr()-Z fBodyAcc-iqr()-Z fBodyAcc-IQR-3                  
288 fBodyAcc-entropy()-X fBodyAcc-entropy()-X fBodyAcc-ropy-1                 
289 fBodyAcc-entropy()-Y fBodyAcc-entropy()-Y fBodyAcc-ropy-1                 
290 fBodyAcc-entropy()-Z fBodyAcc-entropy()-Z fBodyAcc-ropy-1                 
291 fBodyAcc-maxInds-X fBodyAcc-maxInds-X fBodyAcc-MaxInds-1              
292 fBodyAcc-maxInds-Y fBodyAcc-maxInds-Y fBodyAcc-MaxInds-2              
293 fBodyAcc-maxInds-Z fBodyAcc-maxInds-Z fBodyAcc-MaxInds-3              
294 fBodyAcc-meanFreq()-X fBodyAcc-meanFreq()-X fBodyAcc-MeanFreq-1             
295 fBodyAcc-meanFreq()-Y fBodyAcc-meanFreq()-Y fBodyAcc-MeanFreq-2             
296 fBodyAcc-meanFreq()-Z fBodyAcc-meanFreq()-Z fBodyAcc-MeanFreq-3             
297 fBodyAcc-skewness()-X fBodyAcc-skewness()-X fBodyAcc-Skewness-1             
298 fBodyAcc-kurtosis()-X fBodyAcc-kurtosis()-X fBodyAcc-Kurtosis-1             
299 fBodyAcc-skewness()-Y fBodyAcc-skewness()-Y fBodyAcc-Skewness-1             
300 fBodyAcc-kurtosis()-Y fBodyAcc-kurtosis()-Y fBodyAcc-Kurtosis-1             
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301 fBodyAcc-skewness()-Z fBodyAcc-skewness()-Z fBodyAcc-Skewness-1             

302 fBodyAcc-kurtosis()-Z fBodyAcc-kurtosis()-Z fBodyAcc-Kurtosis-1             

303 fBodyAcc-bandsEnergy()-1,8 fBodyAcc-bandsEnergy()-1,8 fBodyAcc-BandsEnergyOld1       

304 fBodyAcc-bandsEnergy()-9,16 fBodyAcc-bandsEnergy()-9,16 fBodyAccBandsEnergyOld2     

305 fBodyAcc-bandsEnergy()-17,24 fBodyAcc-bandsEnergy()-17,24 fBodyAccBandsEnergyOld3       

306 fBodyAcc-bandsEnergy()-25,32 fBodyAcc-bandsEnergy()-25,32 fBodyAccBandsEnergyOld4       

307 fBodyAcc-bandsEnergy()-33,40 fBodyAcc-bandsEnergy()-33,40 fBodyAccBandsEnergyOld5   

308 fBodyAcc-bandsEnergy()-41,48 fBodyAcc-bandsEnergy()-41,48 fBodyAccBandsEnergyOld6       

309 fBodyAcc-bandsEnergy()-49,56 fBodyAcc-bandsEnergy()-49,56 fBodyAccBandsEnergyOld7       

310 fBodyAcc-bandsEnergy()-57,64 fBodyAcc-bandsEnergy()-57,64 fBodyAccBandsEnergyOld8      

311 fBodyAcc-bandsEnergy()-1,16 fBodyAcc-bandsEnergy()-1,16 fBodyAcc-BandsEnergyOld-9       

312 fBodyAcc-bandsEnergy()-17,32 fBodyAcc-bandsEnergy()-17,32 fBodyAcc-BandsEnergyOld-10      

313 fBodyAcc-bandsEnergy()-33,48 fBodyAcc-bandsEnergy()-33,48 fBodyAcc-BandsEnergyOld-11      

314 fBodyAcc-bandsEnergy()-49,64 fBodyAcc-bandsEnergy()-49,64 fBodyAcc-BandsEnergyOld-12      

315 fBodyAcc-bandsEnergy()-1,24 fBodyAcc-bandsEnergy()-1,24 fBodyAcc-BandsEnergyOld-13      

316 fBodyAcc-bandsEnergy()-25,48 fBodyAcc-bandsEnergy()-25,48 fBodyAcc-BandsEnergyOld-14      

317 fBodyAcc-bandsEnergy()-1,8 fBodyAcc-bandsEnergy()-1,8 fBodyAcc-BandsEnergyOld-15      

318 fBodyAcc-bandsEnergy()-9,16 fBodyAcc-bandsEnergy()-9,16 fBodyAcc-BandsEnergyOld-16      

319 fBodyAcc-bandsEnergy()-17,24 fBodyAcc-bandsEnergy()-17,24 fBodyAcc-BandsEnergyOld-17      

320 fBodyAcc-bandsEnergy()-25,32 fBodyAcc-bandsEnergy()-25,32 fBodyAcc-BandsEnergyOld-18      

321 fBodyAcc-bandsEnergy()-33,40 fBodyAcc-bandsEnergy()-33,40 fBodyAcc-BandsEnergyOld-19      

322 fBodyAcc-bandsEnergy()-41,48 fBodyAcc-bandsEnergy()-41,48 fBodyAcc-BandsEnergyOld-20      

323 fBodyAcc-bandsEnergy()-49,56 fBodyAcc-bandsEnergy()-49,56 fBodyAcc-BandsEnergyOld-21      

324 fBodyAcc-bandsEnergy()-57,64 fBodyAcc-bandsEnergy()-57,64 fBodyAcc-BandsEnergyOld-22      

325 fBodyAcc-bandsEnergy()-1,16 fBodyAcc-bandsEnergy()-1,16 fBodyAcc-BandsEnergyOld-23      

326 fBodyAcc-bandsEnergy()-17,32 fBodyAcc-bandsEnergy()-17,32 fBodyAcc-BandsEnergyOld-24      

327 fBodyAcc-bandsEnergy()-33,48 fBodyAcc-bandsEnergy()-33,48 fBodyAcc-BandsEnergyOld-25      

328 fBodyAcc-bandsEnergy()-49,64 fBodyAcc-bandsEnergy()-49,64 fBodyAcc-BandsEnergyOld-26      

329 fBodyAcc-bandsEnergy()-1,24 fBodyAcc-bandsEnergy()-1,24 fBodyAcc-BandsEnergyOld-27      

330 fBodyAcc-bandsEnergy()-25,48 fBodyAcc-bandsEnergy()-25,48 fBodyAcc-BandsEnergyOld-28      
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331 fBodyAcc-bandsEnergy()-1,8 fBodyAcc-bandsEnergy()-1,8 fBodyAcc-BandsEnergyOld-29      

332 fBodyAcc-bandsEnergy()-9,16 fBodyAcc-bandsEnergy()-9,16 fBodyAcc-BandsEnergyOld-30      

333 fBodyAcc-bandsEnergy()-17,24 fBodyAcc-bandsEnergy()-17,24 fBodyAcc-BandsEnergyOld-31      

334 fBodyAcc-bandsEnergy()-25,32 fBodyAcc-bandsEnergy()-25,32 fBodyAcc-BandsEnergyOld-32      

335 fBodyAcc-bandsEnergy()-33,40 fBodyAcc-bandsEnergy()-33,40 fBodyAcc-BandsEnergyOld-33      

336 fBodyAcc-bandsEnergy()-41,48 fBodyAcc-bandsEnergy()-41,48 fBodyAcc-BandsEnergyOld-34      

337 fBodyAcc-bandsEnergy()-49,56 fBodyAcc-bandsEnergy()-49,56 fBodyAcc-BandsEnergyOld-35      

338 fBodyAcc-bandsEnergy()-57,64 fBodyAcc-bandsEnergy()-57,64 fBodyAcc-BandsEnergyOld-36      

339 fBodyAcc-bandsEnergy()-1,16 fBodyAcc-bandsEnergy()-1,16 fBodyAcc-BandsEnergyOld-37      

340 fBodyAcc-bandsEnergy()-17,32 fBodyAcc-bandsEnergy()-17,32 fBodyAcc-BandsEnergyOld-38      

341 fBodyAcc-bandsEnergy()-33,48 fBodyAcc-bandsEnergy()-33,48 fBodyAcc-BandsEnergyOld-39      

342 fBodyAcc-bandsEnergy()-49,64 fBodyAcc-bandsEnergy()-49,64 fBodyAcc-BandsEnergyOld-40      

343 fBodyAcc-bandsEnergy()-1,24 fBodyAcc-bandsEnergy()-1,24 fBodyAcc-BandsEnergyOld-41      

344 fBodyAcc-bandsEnergy()-25,48 fBodyAcc-bandsEnergy()-25,48 fBodyAcc-BandsEnergyOld-42      

345 fBodyAccJerk-mean()-X fBodyAccJerk-mean()-X fBodyAccJerk-Mean-1             

346 fBodyAccJerk-mean()-Y fBodyAccJerk-mean()-Y fBodyAccJerk-Mean-2             

347 fBodyAccJerk-mean()-Z fBodyAccJerk-mean()-Z fBodyAccJerk-Mean-3             

348 fBodyAccJerk-std()-X fBodyAccJerk-std()-X fBodyAccJerk-STD-1              

349 fBodyAccJerk-std()-Y fBodyAccJerk-std()-Y fBodyAccJerk-STD-2              

350 fBodyAccJerk-std()-Z fBodyAccJerk-std()-Z fBodyAccJerk-STD-3              

351 fBodyAccJerk-mad()-X fBodyAccJerk-mad()-X fBodyAccJerk-Mad-1              

352 fBodyAccJerk-mad()-Y fBodyAccJerk-mad()-Y fBodyAccJerk-Mad-2              

353 fBodyAccJerk-mad()-Z fBodyAccJerk-mad()-Z fBodyAccJerk-Mad-3              

354 fBodyAccJerk-max()-X fBodyAccJerk-max()-X fBodyAccJerk-Max-1              

355 fBodyAccJerk-max()-Y fBodyAccJerk-max()-Y fBodyAccJerk-Max-2              

356 fBodyAccJerk-max()-Z fBodyAccJerk-max()-Z fBodyAccJerk-Max-3              

357 fBodyAccJerk-min()-X fBodyAccJerk-min()-X fBodyAccJerk-Min-1              

358 fBodyAccJerk-min()-Y fBodyAccJerk-min()-Y fBodyAccJerk-Min-2              

359 fBodyAccJerk-min()-Z fBodyAccJerk-min()-Z fBodyAccJerk-Min-3              

360 fBodyAccJerk-sma() fBodyAccJerk-sma() fBodyAccJerk-SMA-1              

 



 

 

126  

No. 
FEATURE-NAMES 

UCI-HAR  DATASET_UCI HAPT 

361 fBodyAccJerk-energy()-X fBodyAccJerk-energy()-X fBodyAccJerk-Energy-1           

362 fBodyAccJerk-energy()-Y fBodyAccJerk-energy()-Y fBodyAccJerk-Energy-2           

363 fBodyAccJerk-energy()-Z fBodyAccJerk-energy()-Z fBodyAccJerk-Energy-3           

364 fBodyAccJerk-iqr()-X fBodyAccJerk-iqr()-X fBodyAccJerk-IQR-1              

365 fBodyAccJerk-iqr()-Y fBodyAccJerk-iqr()-Y fBodyAccJerk-IQR-2              

366 fBodyAccJerk-iqr()-Z fBodyAccJerk-iqr()-Z fBodyAccJerk-IQR-3              

367 fBodyAccJerk-entropy()-X fBodyAccJerk-entropy()-X fBodyAccJerk-ropy-1             

368 fBodyAccJerk-entropy()-Y fBodyAccJerk-entropy()-Y fBodyAccJerk-ropy-1             

369 fBodyAccJerk-entropy()-Z fBodyAccJerk-entropy()-Z fBodyAccJerk-ropy-1             

370 fBodyAccJerk-maxInds-X fBodyAccJerk-maxInds-X fBodyAccJerk-MaxInds-1          

371 fBodyAccJerk-maxInds-Y fBodyAccJerk-maxInds-Y fBodyAccJerk-MaxInds-2          

372 fBodyAccJerk-maxInds-Z fBodyAccJerk-maxInds-Z fBodyAccJerk-MaxInds-3          

373 fBodyAccJerk-meanFreq()-X fBodyAccJerk-meanFreq()-X fBodyAccJerk-MeanFreq-1 

374 fBodyAccJerk-meanFreq()-Y fBodyAccJerk-meanFreq()-Y fBodyAccJerk-MeanFreq-2         

375 fBodyAccJerk-meanFreq()-Z fBodyAccJerk-meanFreq()-Z fBodyAccJerk-MeanFreq-3         

376 fBodyAccJerk-skewness()-X fBodyAccJerk-skewness()-X fBodyAccJerk-Skewness-1         

377 fBodyAccJerk-kurtosis()-X fBodyAccJerk-kurtosis()-X fBodyAccJerk-Kurtosis-1         

378 fBodyAccJerk-skewness()-Y fBodyAccJerk-skewness()-Y fBodyAccJerk-Skewness-1         

379 fBodyAccJerk-kurtosis()-Y fBodyAccJerk-kurtosis()-Y fBodyAccJerk-Kurtosis-1         

380 fBodyAccJerk-skewness()-Z fBodyAccJerk-skewness()-Z fBodyAccJerk-Skewness-1         

381 fBodyAccJerk-kurtosis()-Z fBodyAccJerk-kurtosis()-Z fBodyAccJerk-Kurtosis-1         

382 fBodyAccJerk-bandsEnergy()-1,8 fBodyAccJerk-bandsEnergy()-1,8 fBodyAccJerk-BandsEnergyOld-1   

383 fBodyAccJerk-bandsEnergy()-9,16 fBodyAccJerk-bandsEnergy()-9,16 fBodyAccJerk-BandsEnergyOld-2   

384 fBodyAccJerk-bandsEnergy()-17,24 fBodyAccJerk-bandsEnergy()-17,24 fBodyAccJerk-BandsEnergyOld-3   

385 fBodyAccJerk-bandsEnergy()-25,32 fBodyAccJerk-bandsEnergy()-25,32 fBodyAccJerk-BandsEnergyOld-4   

386 fBodyAccJerk-bandsEnergy()-33,40 fBodyAccJerk-bandsEnergy()-33,40 fBodyAccJerk-BandsEnergyOld-5   

387 fBodyAccJerk-bandsEnergy()-41,48 fBodyAccJerk-bandsEnergy()-41,48 fBodyAccJerk-BandsEnergyOld-6   

388 fBodyAccJerk-bandsEnergy()-49,56 fBodyAccJerk-bandsEnergy()-49,56 fBodyAccJerk-BandsEnergyOld-7   

389 fBodyAccJerk-bandsEnergy()-57,64 fBodyAccJerk-bandsEnergy()-57,64 fBodyAccJerk-BandsEnergyOld-8   

390 fBodyAccJerk-bandsEnergy()-1,16 fBodyAccJerk-bandsEnergy()-1,16 fBodyAccJerk-BandsEnergyOld-9   
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391 fBodyAccJerk-bandsEnergy()-17,32 fBodyAccJerk-bandsEnergy()-17,32 fBodyAccJerk-BandsEnergyOld10  

392 fBodyAccJerk-bandsEnergy()-33,48 fBodyAccJerk-bandsEnergy()-33,48 fBodyAccJerk-BandsEnergyOld11  

393 fBodyAccJerk-bandsEnergy()-49,64 fBodyAccJerk-bandsEnergy()-49,64 fBodyAccJerk-BandsEnergyOld12  

394 fBodyAccJerk-bandsEnergy()-1,24 fBodyAccJerk-bandsEnergy()-1,24 fBodyAccJerk-BandsEnergyOld13  

395 fBodyAccJerk-bandsEnergy()-25,48 fBodyAccJerk-bandsEnergy()-25,48 fBodyAccJerk-BandsEnergyOld14  

396 fBodyAccJerk-bandsEnergy()-1,8 fBodyAccJerk-bandsEnergy()-1,8 fBodyAccJerk-BandsEnergyOld15  

397 fBodyAccJerk-bandsEnergy()-9,16 fBodyAccJerk-bandsEnergy()-9,16 fBodyAccJerk-BandsEnergyOld16  

398 fBodyAccJerk-bandsEnergy()-17,24 fBodyAccJerk-bandsEnergy()-17,24 fBodyAccJerk-BandsEnergyOld17  

399 fBodyAccJerk-bandsEnergy()-25,32 fBodyAccJerk-bandsEnergy()-25,32 fBodyAccJerk-BandsEnergyOld18  

400 fBodyAccJerk-bandsEnergy()-33,40 fBodyAccJerk-bandsEnergy()-33,40 fBodyAccJerk-BandsEnergyOld19  

401 fBodyAccJerk-bandsEnergy()-41,48 fBodyAccJerk-bandsEnergy()-41,48 fBodyAccJerk-BandsEnergyOld20  

402 fBodyAccJerk-bandsEnergy()-49,56 fBodyAccJerk-bandsEnergy()-49,56 fBodyAccJerk-BandsEnergyOld21  

403 fBodyAccJerk-bandsEnergy()-57,64 fBodyAccJerk-bandsEnergy()-57,64 fBodyAccJerk-BandsEnergyOld22  

404 fBodyAccJerk-bandsEnergy()-1,16 fBodyAccJerk-bandsEnergy()-1,16 fBodyAccJerk-BandsEnergyOld23  

405 fBodyAccJerk-bandsEnergy()-17,32 fBodyAccJerk-bandsEnergy()-17,32 fBodyAccJerk-BandsEnergyOld24  

406 fBodyAccJerk-bandsEnergy()-33,48 fBodyAccJerk-bandsEnergy()-33,48 fBodyAccJerk-BandsEnergyOld25  

407 fBodyAccJerk-bandsEnergy()-49,64 fBodyAccJerk-bandsEnergy()-49,64 fBodyAccJerk-BandsEnergyOld26  

408 fBodyAccJerk-bandsEnergy()-1,24 fBodyAccJerk-bandsEnergy()-1,24 fBodyAccJerk-BandsEnergyOld27  

409 fBodyAccJerk-bandsEnergy()-25,48 fBodyAccJerk-bandsEnergy()-25,48 fBodyAccJerk-BandsEnergyOld28  

410 fBodyAccJerk-bandsEnergy()-1,8 fBodyAccJerk-bandsEnergy()-1,8 fBodyAccJerk-BandsEnergyOld29  

411 fBodyAccJerk-bandsEnergy()-9,16 fBodyAccJerk-bandsEnergy()-9,16 fBodyAccJerk-BandsEnergyOld30  

412 fBodyAccJerk-bandsEnergy()-17,24 fBodyAccJerk-bandsEnergy()-17,24 fBodyAccJerk-BandsEnergyOld31  

413 fBodyAccJerk-bandsEnergy()-25,32 fBodyAccJerk-bandsEnergy()-25,32 fBodyAccJerk-BandsEnergyOld32  

414 fBodyAccJerk-bandsEnergy()-33,40 fBodyAccJerk-bandsEnergy()-33,40 fBodyAccJerk-BandsEnergyOld33  

415 fBodyAccJerk-bandsEnergy()-41,48 fBodyAccJerk-bandsEnergy()-41,48 fBodyAccJerk-BandsEnergyOld34  

416 fBodyAccJerk-bandsEnergy()-49,56 fBodyAccJerk-bandsEnergy()-49,56 fBodyAccJerk-BandsEnergyOld35  

417 fBodyAccJerk-bandsEnergy()-57,64 fBodyAccJerk-bandsEnergy()-57,64 fBodyAccJerk-BandsEnergyOld36  

418 fBodyAccJerk-bandsEnergy()-1,16 fBodyAccJerk-bandsEnergy()-1,16 fBodyAccJerk-BandsEnergyOld37  

419 fBodyAccJerk-bandsEnergy()-17,32 fBodyAccJerk-bandsEnergy()-17,32 fBodyAccJerk-BandsEnergyOld38  

420 fBodyAccJerk-bandsEnergy()-33,48 fBodyAccJerk-bandsEnergy()-33,48 fBodyAccJerk-BandsEnergyOld39  
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421 fBodyAccJerk-bandsEnergy()-49,64 fBodyAccJerk-bandsEnergy()-49,64 fBodyAccJerk-BandsEnergyOld40  

422 fBodyAccJerk-bandsEnergy()-1,24 fBodyAccJerk-bandsEnergy()-1,24 fBodyAccJerk-BandsEnergyOld41  

423 fBodyAccJerk-bandsEnergy()-25,48 fBodyAccJerk-bandsEnergy()-25,48 fBodyAccJerk-BandsEnergyOld42  

424 fBodyGyro-mean()-X fBodyGyro-mean()-X fBodyGyro-Mean-1                

425 fBodyGyro-mean()-Y fBodyGyro-mean()-Y fBodyGyro-Mean-2                

426 fBodyGyro-mean()-Z fBodyGyro-mean()-Z fBodyGyro-Mean-3                

427 fBodyGyro-std()-X fBodyGyro-std()-X fBodyGyro-STD-1                 

428 fBodyGyro-std()-Y fBodyGyro-std()-Y fBodyGyro-STD-2                 

429 fBodyGyro-std()-Z fBodyGyro-std()-Z fBodyGyro-STD-3                 

430 fBodyGyro-mad()-X fBodyGyro-mad()-X fBodyGyro-Mad-1                 

431 fBodyGyro-mad()-Y fBodyGyro-mad()-Y fBodyGyro-Mad-2                 

432 fBodyGyro-mad()-Z fBodyGyro-mad()-Z fBodyGyro-Mad-3                 

433 fBodyGyro-max()-X fBodyGyro-max()-X fBodyGyro-Max-1                 

434 fBodyGyro-max()-Y fBodyGyro-max()-Y fBodyGyro-Max-2                 

435 fBodyGyro-max()-Z fBodyGyro-max()-Z fBodyGyro-Max-3                 

436 fBodyGyro-min()-X fBodyGyro-min()-X fBodyGyro-Min-1                 

437 fBodyGyro-min()-Y fBodyGyro-min()-Y fBodyGyro-Min-2                 

438 fBodyGyro-min()-Z fBodyGyro-min()-Z fBodyGyro-Min-3                 

439 fBodyGyro-sma() fBodyGyro-sma() fBodyGyro-SMA-1                 

440 fBodyGyro-energy()-X fBodyGyro-energy()-X fBodyGyro-Energy-1              

441 fBodyGyro-energy()-Y fBodyGyro-energy()-Y fBodyGyro-Energy-2              

442 fBodyGyro-energy()-Z fBodyGyro-energy()-Z fBodyGyro-Energy-3              

443 fBodyGyro-iqr()-X fBodyGyro-iqr()-X fBodyGyro-IQR-1                 

444 fBodyGyro-iqr()-Y fBodyGyro-iqr()-Y fBodyGyro-IQR-2                 

445 fBodyGyro-iqr()-Z fBodyGyro-iqr()-Z fBodyGyro-IQR-3                 

446 fBodyGyro-entropy()-X fBodyGyro-entropy()-X fBodyGyro-ropy-1                

447 fBodyGyro-entropy()-Y fBodyGyro-entropy()-Y fBodyGyro-ropy-1                

448 fBodyGyro-entropy()-Z fBodyGyro-entropy()-Z fBodyGyro-ropy-1                

449 fBodyGyro-maxInds-X fBodyGyro-maxInds-X fBodyGyro-MaxInds-1             

450 fBodyGyro-maxInds-Y fBodyGyro-maxInds-Y fBodyGyro-MaxInds-2             
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451 fBodyGyro-maxInds-Z fBodyGyro-maxInds-Z fBodyGyro-MaxInds-3             

452 fBodyGyro-meanFreq()-X fBodyGyro-meanFreq()-X fBodyGyro-MeanFreq-1            

453 fBodyGyro-meanFreq()-Y fBodyGyro-meanFreq()-Y fBodyGyro-MeanFreq-2            

454 fBodyGyro-meanFreq()-Z fBodyGyro-meanFreq()-Z fBodyGyro-MeanFreq-3            

455 fBodyGyro-skewness()-X fBodyGyro-skewness()-X fBodyGyro-Skewness-1            

456 fBodyGyro-kurtosis()-X fBodyGyro-kurtosis()-X fBodyGyro-Kurtosis-1            

457 fBodyGyro-skewness()-Y fBodyGyro-skewness()-Y fBodyGyro-Skewness-1            

458 fBodyGyro-kurtosis()-Y fBodyGyro-kurtosis()-Y fBodyGyro-Kurtosis-1            

459 fBodyGyro-skewness()-Z fBodyGyro-skewness()-Z fBodyGyro-Skewness-1            

460 fBodyGyro-kurtosis()-Z fBodyGyro-kurtosis()-Z fBodyGyro-Kurtosis-1            

461 fBodyGyro-bandsEnergy()-1,8 fBodyGyro-bandsEnergy()-1,8 fBodyGyro-BandsEnergyOld-1      

462 fBodyGyro-bandsEnergy()-9,16 fBodyGyro-bandsEnergy()-9,16 fBodyGyro-BandsEnergyOld-2      

463 fBodyGyro-bandsEnergy()-17,24 fBodyGyro-bandsEnergy()-17,24 fBodyGyro-BandsEnergyOld-3      

464 fBodyGyro-bandsEnergy()-25,32 fBodyGyro-bandsEnergy()-25,32 fBodyGyro-BandsEnergyOld-4      

465 fBodyGyro-bandsEnergy()-33,40 fBodyGyro-bandsEnergy()-33,40 fBodyGyro-BandsEnergyOld-5      

466 fBodyGyro-bandsEnergy()-41,48 fBodyGyro-bandsEnergy()-41,48 fBodyGyro-BandsEnergyOld-6      

467 fBodyGyro-bandsEnergy()-49,56 fBodyGyro-bandsEnergy()-49,56 fBodyGyro-BandsEnergyOld-7      

468 fBodyGyro-bandsEnergy()-57,64 fBodyGyro-bandsEnergy()-57,64 fBodyGyro-BandsEnergyOld-8      

469 fBodyGyro-bandsEnergy()-1,16 fBodyGyro-bandsEnergy()-1,16 fBodyGyro-BandsEnergyOld-9      

470 fBodyGyro-bandsEnergy()-17,32 fBodyGyro-bandsEnergy()-17,32 fBodyGyro-BandsEnergyOld-10     

471 fBodyGyro-bandsEnergy()-33,48 fBodyGyro-bandsEnergy()-33,48 fBodyGyro-BandsEnergyOld-11     

472 fBodyGyro-bandsEnergy()-49,64 fBodyGyro-bandsEnergy()-49,64 fBodyGyro-BandsEnergyOld-12     

473 fBodyGyro-bandsEnergy()-1,24 fBodyGyro-bandsEnergy()-1,24 fBodyGyro-BandsEnergyOld-13     

474 fBodyGyro-bandsEnergy()-25,48 fBodyGyro-bandsEnergy()-25,48 fBodyGyro-BandsEnergyOld-14     

475 fBodyGyro-bandsEnergy()-1,8 fBodyGyro-bandsEnergy()-1,8 fBodyGyro-BandsEnergyOld-15     

476 fBodyGyro-bandsEnergy()-9,16 fBodyGyro-bandsEnergy()-9,16 fBodyGyro-BandsEnergyOld-16     

477 fBodyGyro-bandsEnergy()-17,24 fBodyGyro-bandsEnergy()-17,24 fBodyGyro-BandsEnergyOld-17     

478 fBodyGyro-bandsEnergy()-25,32 fBodyGyro-bandsEnergy()-25,32 fBodyGyro-BandsEnergyOld-18     

479 fBodyGyro-bandsEnergy()-33,40 fBodyGyro-bandsEnergy()-33,40 fBodyGyro-BandsEnergyOld-19     

480 fBodyGyro-bandsEnergy()-41,48 fBodyGyro-bandsEnergy()-41,48 fBodyGyro-BandsEnergyOld-20     
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481 fBodyGyro-bandsEnergy()-49,56 fBodyGyro-bandsEnergy()-49,56 fBodyGyro-BandsEnergyOld-21     

482 fBodyGyro-bandsEnergy()-57,64 fBodyGyro-bandsEnergy()-57,64 fBodyGyro-BandsEnergyOld-22     

483 fBodyGyro-bandsEnergy()-1,16 fBodyGyro-bandsEnergy()-1,16 fBodyGyro-BandsEnergyOld-23     

484 fBodyGyro-bandsEnergy()-17,32 fBodyGyro-bandsEnergy()-17,32 fBodyGyro-BandsEnergyOld-24     

485 fBodyGyro-bandsEnergy()-33,48 fBodyGyro-bandsEnergy()-33,48 fBodyGyro-BandsEnergyOld-25     

486 fBodyGyro-bandsEnergy()-49,64 fBodyGyro-bandsEnergy()-49,64 fBodyGyro-BandsEnergyOld-26     

487 fBodyGyro-bandsEnergy()-1,24 fBodyGyro-bandsEnergy()-1,24 fBodyGyro-BandsEnergyOld-27     

488 fBodyGyro-bandsEnergy()-25,48 fBodyGyro-bandsEnergy()-25,48 fBodyGyro-BandsEnergyOld-28     

489 fBodyGyro-bandsEnergy()-1,8 fBodyGyro-bandsEnergy()-1,8 fBodyGyro-BandsEnergyOld-29     

490 fBodyGyro-bandsEnergy()-9,16 fBodyGyro-bandsEnergy()-9,16 fBodyGyro-BandsEnergyOld-30     

491 fBodyGyro-bandsEnergy()-17,24 fBodyGyro-bandsEnergy()-17,24 fBodyGyro-BandsEnergyOld-31     

492 fBodyGyro-bandsEnergy()-25,32 fBodyGyro-bandsEnergy()-25,32 fBodyGyro-BandsEnergyOld-32     

493 fBodyGyro-bandsEnergy()-33,40 fBodyGyro-bandsEnergy()-33,40 fBodyGyro-BandsEnergyOld-33     

494 fBodyGyro-bandsEnergy()-41,48 fBodyGyro-bandsEnergy()-41,48 fBodyGyro-BandsEnergyOld-34     

495 fBodyGyro-bandsEnergy()-49,56 fBodyGyro-bandsEnergy()-49,56 fBodyGyro-BandsEnergyOld-35     

496 fBodyGyro-bandsEnergy()-57,64 fBodyGyro-bandsEnergy()-57,64 fBodyGyro-BandsEnergyOld-36     

497 fBodyGyro-bandsEnergy()-1,16 fBodyGyro-bandsEnergy()-1,16 fBodyGyro-BandsEnergyOld-37     

498 fBodyGyro-bandsEnergy()-17,32 fBodyGyro-bandsEnergy()-17,32 fBodyGyro-BandsEnergyOld-38     

499 fBodyGyro-bandsEnergy()-33,48 fBodyGyro-bandsEnergy()-33,48 fBodyGyro-BandsEnergyOld-39     

500 fBodyGyro-bandsEnergy()-49,64 fBodyGyro-bandsEnergy()-49,64 fBodyGyro-BandsEnergyOld-40     

501 fBodyGyro-bandsEnergy()-1,24 fBodyGyro-bandsEnergy()-1,24 fBodyGyro-BandsEnergyOld-41     

502 fBodyGyro-bandsEnergy()-25,48 fBodyGyro-bandsEnergy()-25,48 fBodyGyro-BandsEnergyOld-42     

503 fBodyAccMag-mean() fBodyAccMag-mean() fBodyAccMag-Mean-1              

504 fBodyAccMag-std() fBodyAccMag-std() fBodyAccMag-STD-1               

505 fBodyAccMag-mad() fBodyAccMag-mad() fBodyAccMag-Mad-1               

506 fBodyAccMag-max() fBodyAccMag-max() fBodyAccMag-Max-1               

507 fBodyAccMag-min() fBodyAccMag-min() fBodyAccMag-Min-1               

508 fBodyAccMag-sma() fBodyAccMag-sma() fBodyAccMag-SMA-1               

509 fBodyAccMag-energy() fBodyAccMag-energy() fBodyAccMag-Energy-1            

510 fBodyAccMag-iqr() fBodyAccMag-iqr() fBodyAccMag-IQR-1               
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511 fBodyAccMag-entropy() fBodyAccMag-entropy() fBodyAccMag-ropy-1              

512 fBodyAccMag-maxInds fBodyAccMag-maxInds fBodyAccMag-MaxInds-1           

513 fBodyAccMag-meanFreq() fBodyAccMag-meanFreq() fBodyAccMag-MeanFreq-1          

514 fBodyAccMag-skewness() fBodyAccMag-skewness() fBodyAccMag-Skewness-1          

515 fBodyAccMag-kurtosis() fBodyAccMag-kurtosis() fBodyAccMag-Kurtosis-1          

516 fBodyBodyAccJerkMag-mean() fBodyBodyAccJerkMag-mean() fBodyAccJerkMag-Mean-1          

517 fBodyBodyAccJerkMag-std() fBodyBodyAccJerkMag-std() fBodyAccJerkMag-STD-1           

518 fBodyBodyAccJerkMag-mad() fBodyBodyAccJerkMag-mad() fBodyAccJerkMag-Mad-1           

519 fBodyBodyAccJerkMag-max() fBodyBodyAccJerkMag-max() fBodyAccJerkMag-Max-1           

520 fBodyBodyAccJerkMag-min() fBodyBodyAccJerkMag-min() fBodyAccJerkMag-Min-1           

521 fBodyBodyAccJerkMag-sma() fBodyBodyAccJerkMag-sma() fBodyAccJerkMag-SMA-1           

522 fBodyBodyAccJerkMag-energy() fBodyBodyAccJerkMag-energy() fBodyAccJerkMag-Energy-1        

523 fBodyBodyAccJerkMag-iqr() fBodyBodyAccJerkMag-iqr() fBodyAccJerkMag-IQR-1           

524 fBodyBodyAccJerkMag-entropy() fBodyBodyAccJerkMag-entropy() fBodyAccJerkMag-ropy-1          

525 fBodyBodyAccJerkMag-maxInds fBodyBodyAccJerkMag-maxInds fBodyAccJerkMag-MaxInds-1       

526 fBodyBodyAccJerkMag-meanFreq() fBodyBodyAccJerkMag-meanFreq() fBodyAccJerkMag-MeanFreq-1      

527 fBodyBodyAccJerkMag-skewness() fBodyBodyAccJerkMag-skewness() fBodyAccJerkMag-Skewness-1      

528 fBodyBodyAccJerkMag-kurtosis() fBodyBodyAccJerkMag-kurtosis() fBodyAccJerkMag-Kurtosis-1      

529 fBodyBodyGyroMag-mean() fBodyBodyGyroMag-mean() fBodyGyroMag-Mean-1             

530 fBodyBodyGyroMag-std() fBodyBodyGyroMag-std() fBodyGyroMag-STD-1              

531 fBodyBodyGyroMag-mad() fBodyBodyGyroMag-mad() fBodyGyroMag-Mad-1              

532 fBodyBodyGyroMag-max() fBodyBodyGyroMag-max() fBodyGyroMag-Max-1              

533 fBodyBodyGyroMag-min() fBodyBodyGyroMag-min() fBodyGyroMag-Min-1              

534 fBodyBodyGyroMag-sma() fBodyBodyGyroMag-sma() fBodyGyroMag-SMA-1              

535 fBodyBodyGyroMag-energy() fBodyBodyGyroMag-energy() fBodyGyroMag-Energy-1           

536 fBodyBodyGyroMag-iqr() fBodyBodyGyroMag-iqr() fBodyGyroMag-IQR-1              

537 fBodyBodyGyroMag-entropy() fBodyBodyGyroMag-entropy() fBodyGyroMag-ropy-1             

538 fBodyBodyGyroMag-maxInds fBodyBodyGyroMag-maxInds fBodyGyroMag-MaxInds-1          

539 fBodyBodyGyroMag-meanFreq() fBodyBodyGyroMag-meanFreq() fBodyGyroMag-MeanFreq-1         

540 fBodyBodyGyroMag-skewness() fBodyBodyGyroMag-skewness() fBodyGyroMag-Skewness-1         
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541 fBodyBodyGyroMag-kurtosis() fBodyBodyGyroMag-kurtosis() fBodyGyroMag-Kurtosis-1         

542 fBodyBodyGyroJerkMag-mean() fBodyBodyGyroJerkMag-mean() fBodyGyroJerkMag-Mean-1         

543 fBodyBodyGyroJerkMag-std() fBodyBodyGyroJerkMag-std() fBodyGyroJerkMag-STD-1          

544 fBodyBodyGyroJerkMag-mad() fBodyBodyGyroJerkMag-mad() fBodyGyroJerkMag-Mad-1          

545 fBodyBodyGyroJerkMag-max() fBodyBodyGyroJerkMag-max() fBodyGyroJerkMag-Max-1          

546 fBodyBodyGyroJerkMag-min() fBodyBodyGyroJerkMag-min() fBodyGyroJerkMag-Min-1          

547 fBodyBodyGyroJerkMag-sma() fBodyBodyGyroJerkMag-sma() fBodyGyroJerkMag-SMA-1          

548 fBodyBodyGyroJerkMag-energy() fBodyBodyGyroJerkMag-energy() fBodyGyroJerkMag-Energy-1       

549 fBodyBodyGyroJerkMag-iqr() fBodyBodyGyroJerkMag-iqr() fBodyGyroJerkMag-IQR-1          

550 
fBodyBodyGyroJerkMag-

entropy() 

fBodyBodyGyroJerkMag-

entropy() fBodyGyroJerkMag-ropy-1         

551 
fBodyBodyGyroJerkMag-

maxInds 

fBodyBodyGyroJerkMag-

maxInds fBodyGyroJerkMag-MaxInds-1      

552 
fBodyBodyGyroJerkMag-

meanFreq() 

fBodyBodyGyroJerkMag-

meanFreq() fBodyGyroJerkMag-MeanFreq-1     

553 
fBodyBodyGyroJerkMag-

skewness() 

fBodyBodyGyroJerkMag-

skewness() fBodyGyroJerkMag-Skewness-1     

554 
fBodyBodyGyroJerkMag-

kurtosis() 

fBodyBodyGyroJerkMag-

kurtosis() fBodyGyroJerkMag-Kurtosis-1     

555 angle(tBodyAccMean,gravity) angle(tBodyAccMean,gravity) tBodyAcc-AngleWRTGravity-1      

556 
angle(tBodyAccJerkMean),grav

ityMean 

angle(tBodyAccJerkMean),gra

vityMean tBodyAccJerkAngleWRTGravity1  

557 
angle(tBodyGyroMean,gravity

Mean) 

angle(tBodyGyroMean,gravity

Mean) tBodyGyro-AngleWRTGravity-1     

558 
angle(tBodyGyroJerkMean,grav

ityMean 

angle(tBodyGyroJerkMean,gra

vityMean tBodyGyroJerkAngleWRTGravity1 

559 angle(X,gravityMean) angle(X,gravityMean) tXAxisAcc-AngleWRTGravity-1     

560 angle(Y,gravityMean) angle(Y,gravityMean) tYAxisAcc-AngleWRTGravity-1     

561 angle(Z,gravityMean) angle(Z,gravityMean) tZAxisAcc-AngleWRTGravity-1     
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