

Synthesis and Characterization of Pyridine and Quinoline Derivatives for Non-linear Optics Applications

Pumsak Ruanwas

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Inorganic Chemistry

Prince of Songkla University
2008
Copyright of Prince of Songkla University

Thesis Title	
Author	
Major Program	Synthesis and Characterization of Pyridine and Quinoline Derivatives for Non-linear Optics Applications Mr. Pumsak Ruanwas Inorganic Chemistry
Major Advisor:	Examining Committee :

ชื่อวิทยานิพนธ์	การสังเคราะห์และหาโครงสร้างสารอนุพันธ์ของ pyridine และ quinoline
	เพื่อประยุกต์ใช้ด้านวัสดุทางทัศนศาสตร์
ผู้เขียน	นายภูมิศักดิ์ เรือนวาส
สาขาวิชา	เคมีอนินทรีย์
ปีการศึกษา	2551

บทคัดย่อ

การสังเคราะห์สารอนุพันธ์ของ pyridine (PM-C1Me PM-C1OMe $\mathbf{P M}-\mathrm{C} 1 \mathrm{Cl}$ และ $\mathbf{P M}-\mathrm{C} 1 \mathrm{Br}$) และสารอนุพันธ์ของ quinoline ($\mathbf{(P M - C 2 M e ~ P M - C 2 O M e ~}$ PM-C2Cl PM-C2Br PM-C3Zn PM-C4Zn PM-C5Zn และ PM-C6Zn) 12 ชนิด เพื่อหา สารที่มีสมบัติทาง ทัศนศาสตร์แบบไม่เชิงเส้น การหาโครงสร้างสารประกอบที่สังเคราะห์ได้ใช้ เทคนิคทางสเปกโทรสโกปีและสารประกอบ $\mathrm{PM}-\mathrm{C1Me} \quad \mathbf{P M}-\mathbf{C 1 C l} \quad \mathbf{P M - C 2 C l}$ และ $\mathbf{P M}-\mathbf{C 3 Z n}$ สามารถหาโครงสร้างได้จากเทคนิคการเลี้ยวเบนของรังสีเอ็กซ์บนผลึกเดี่ยวอีกด้วย พบว่าโครงสร้างของสารประกอบ $\mathbf{P M}-\mathrm{C} 1 \mathrm{Me} \mathrm{PM}-\mathrm{C} 1 \mathrm{CI}$ และ $\mathrm{PM}-\mathrm{C} 3 \mathrm{Zn}$ ตกผลึกในหมู่ปริภูมิ ที่มีจุดศูนย์กลางสมมาตร (centrosymmetric) ในขณะที่สารประกอบ $\mathbf{P M}-\mathbf{C 2 C l}$ ตกผลึกในหมู่ ปริภูมิที่ไม่มีจุดศูนย์กลางสมมาตร (non-centrosymmetric space group) และโครงสร้าง โมเลกุล ของแคตไอออนของ $\mathbf{P M}-\mathbf{C} \mathbf{C L}$ มีลักษณะแบนราบซึ่งส่งผลให้การถ่ายเทของ π อิเล็กตรอนเกิด ได้ดีจึงทำให้สภาพความเป็นขั้วของโมเลกุลมีค่ามากขึ้น ในขณะที่โครงสร้าง โมเลกุลของแคต ไอออนของ $\mathbf{P M}-\mathbf{C 1 M e} \mathbf{P M - C 1 C l}$ และ $\mathbf{P M}-\mathbf{C 3 Z n}$ มีลักษณะไม่แบนราบทำให้การถ่ายเทของ π อิเล็กตรอนเกิดได้ดีไม่เท่ากับเมื่อมีลักษณะแบนราบส่งผลให้สภาพความเป็นขั้วของโมเลกุลมีค่า น้อยกว่า ซึ่งผลดังกล่าวอาจส่งผลให้สารประกอบ $\mathbf{P M}-\mathbf{C} 2 \mathrm{Cl}$ แสดงสมบัติทางทัศนศาสตร์แบบไม่ เชิงเส้นอันดับสอง (second-order nonlinear optical properties) ในขณะที่ PM-C1Me $\mathbf{P M}-\mathbf{C 1 C l}$ และ $\mathbf{P M}-\mathbf{C 3 Z n}$ ไม่แสดงสมบัติทางทัศนศาสตร์แบบไม่เชิงเส้นอันดับสอง

PM-C1Me : $\mathrm{X}=\mathrm{CH}_{3}$
PM-C1OMe: $X=\mathrm{OCH}_{3}$
PM-C1Cl : $\mathrm{X}=\mathbf{C l}$
$\mathrm{PM}-\mathrm{C} 1 \mathrm{Br}: \quad \mathrm{X}=\mathrm{Br}$

PM-C1Me

PM-C1Cl

PM-C2Me : $\mathrm{X}=\mathrm{CH}_{3}$
PM-C2OMe : $\mathrm{X}=\mathrm{OCH}_{3}$
$\mathrm{PM}-\mathrm{C} 2 \mathrm{Cl}: \quad \mathrm{X}=\mathrm{Cl}$
$\mathrm{PM}-\mathrm{C} 2 \mathrm{Br}$: $\quad \mathrm{X}=\mathrm{Br}$

PM-C2Cl
(iv)

$\mathrm{PM}-\mathrm{C} 3 Z \mathrm{Z}: \mathrm{R1}=\mathrm{OH} \quad \mathrm{R} 2=\mathrm{OCH}_{3}$
$\mathrm{PM}-\mathrm{C4Zn}: \mathrm{R} 1=\mathrm{OCH}_{3} \quad \mathrm{R} 2=\mathrm{OH}$
PM-C5Zn:R1 = H
$\mathbf{R 2}=\mathbf{O H}$
PM-C6Zn:R1 $=\mathbf{H}$
$\mathbf{R 2}=\mathrm{OCH}_{3}$

PM-C3Zn

Thesis Title	Synthesis and Characterization of Pyridine and Quinoline Derivatives for Non-linear Optics Applications
Author	Mr. Pumsak Ruanwas
Major Program	Inorganic Chemistry
Academic Year	2551

Abstract

The twelve derivatives of pyridine (PM-C1Me, PM-C1OMe, $\mathbf{P M}-\mathbf{C 1 C l}$ and $\mathbf{P M}-\mathbf{C 1 B r}$) and quinoline ($\mathbf{P M}-\mathrm{C} 2 \mathrm{Me}, \mathbf{P M}-\mathrm{C} 2 \mathrm{OMe}, \mathbf{P M}-\mathrm{C} 2 \mathrm{Cl}$, PM-C2Br, PM-C3Zn, PM-C4Zn, PM-C5Zn and PM-C6Zn) were synthesized, aimed to search for nonlinear optical materials. All synthetic compounds were characterized by spectroscopic techniques. Compounds PM-C1Me, PM-C1Cl, PM-C2Cl and PM-C3Zn were also determined by the single crystal X-ray crystallography. Compounds PM-C1Me, PM-C1Cl and PM-C3Zn crystallized out in the centrosymmetric space group whereas compound PM-C2CI crystallized out in the non-centrosymmetric space group. Moreover, in the molecular structure of $\mathbf{P M}-\mathbf{C 2 C l}$, the cation is essentially planar therefore π electron can be better delocalized compare to the non-planar structures of the cations in PM-C1Me, PM-C1CI and PM-C3Zn. These effects may contribute to the second-harmonic generation (SHG) property of the compound $\mathbf{P M}-\mathbf{C 2 C l}$ whereas compounds PM-C1Me, PM-C1Cl and PM-C3Zn do not exhibit the SHG properties.

PM-C1Me : $\mathrm{X}=\mathrm{CH}_{3}$
PM-C1OMe: $X=\mathrm{OCH}_{3}$
PM-C1Cl : $\mathrm{X}=\mathbf{C l}$
$\mathrm{PM}-\mathrm{C} 1 \mathrm{Br}: \quad \mathrm{X}=\mathrm{Br}$

PM-C1Me

PM-C1Cl

PM-C2Me : $\mathrm{X}=\mathrm{CH}_{3}$
PM-C2OMe : $\mathrm{X}=\mathrm{OCH}_{3}$
$\mathrm{PM}-\mathrm{C} 2 \mathrm{Cl}: \quad \mathrm{X}=\mathrm{Cl}$
$\mathrm{PM}-\mathrm{C} 2 \mathrm{Br}$: $\quad \mathrm{X}=\mathrm{Br}$

PM-C2Cl
(vii)

$\mathrm{PM}-\mathrm{C} 3 \mathrm{Zn}: \mathrm{R} 1=\mathrm{OH} \quad \mathrm{R} 2=\mathrm{OCH}_{3}$
$\mathrm{PM}-\mathrm{C4Zn}: \mathrm{R} 1=\mathrm{OCH}_{3} \quad \mathrm{R} 2=\mathrm{OH}$
PM-C5Zn:R1 = H
$\mathbf{R 2}=\mathbf{O H}$
PM-C6Zn:R1 $=\mathbf{H}$
$\mathbf{R 2}=\mathrm{OCH}_{3}$

PM-C3Zn

ACKNOWLEDGEMENT

I wish to express my deepest and sincere gratitude to my supervisor, Associate Professor Dr. Suchada Chantrapromma, for her valuable instructions, expert guidance, excellent suggestions and kindness.

My sincere thank is expressed to Associate Professor Dr. Chatchanok Karalai my co-advisor for his kind help and suggestions. Special thanks are addressed to Professor Dr. Hoong-Kun Fun, X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, Malaysia for X-ray data collections. I also would like to thank Professor Dr. Supot Hannongbua, Department of Chemistry, Faculty of Science, Chulalongkorn University and Dr. Paradorn Pakdeevanich, Department of Physics, Faculty of Science, Prince of Songkla University for the valuable suggestions.

Appreciately thank to Center of Excellence for Innovation in Chemistry (PERCH-CIC) funded by Commission on Higher Education, Ministry of Education and Prince of Songkla University through Crystal Materials Research Unit (CMRU) and Graduate School for financial supports.

I also would like to thank Department of Chemistry for making available the facilities used in this research. Dr. Yaowapa Sukpondma is highly acknowledged for recording NMR spectral data

I am very grateful to M.Sc and Ph.D students, Crystal Materials Research Unit (CMRU) for their kind help and assistance during my study and research activities. Finally, none of this would have been possible without love and encouragement of my family.

Pumsak Ruanwas

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The relevance of this research are listed below:-

1) Twelve new compounds with four pyridinium derivatives and eight quinolinium derivatives were successfully synthesized.
2) Four single crystals of 4-[(E)-2-(2-Thienyl)ethenyl]-1methylpyridinium 4-methylbenzenesulfonate (PM-C1Me),

4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate (PM-C1Cl),

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-cholrobenzenesulfonate (PM-C2Cl) and
$\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C3Zn) were successfully growth and determined their structures by single crystal X-ray structure determinations.
3) It was found that PM-C1Me, PM-C1Cl and PM-C3Zn crystallized out in centrosymmetric space group whereas compounds $\mathbf{P M}-\mathbf{C 2 C l}$ crystallized out in non-centrosymmetric space group and exhibit nonlinear optical (NLO) properties.

CONTENTS

Page
บทคัดย่อ (3)
ABSTRACT (6)
ACKNOWNLEDGEMENT (9)
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND (10)CONTENTS(11)
LIST OF TABLES (18)
LIST OF ILLUSTRATIONS (20)
ABBREVIATIONS AND SYMBOLS (27)

1. INTRODUCTION 1
1.1 Nonlinear optics 1
1.1.1 Theory of nonlinear optics 2
1.1.2 Second-Order Nonlinear Optical properties 3
1.1.3 Structural requirements 6
1.2 Nonlinear optic materials 8
1.3 Review of literatures 9
1.4 Objective and outline of this study 18
2. EXPERIMENT 20
2.1 Instruments and chemicals 20
2.1.1 Instruments 20
2.1.2 Chemicals 21
2.2 Synthesis of starting materials 22
2.2.1 1,4-Dimethylpyridinium iodide (PM-S1) 22
2.2.2 1,2-Dimethylquinolinium iodide (PM-S2) 22
2.3 Synthesis of cation parts 23
2.3.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium iodide (PM-C1) 23
2.3.2 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C2) 24

CONTENTS (Continued)

Page
2.3.3 2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C3) 24
2.3.4 4-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-methylpyridinium iodide (PM-C4) 25
2.3.5 2-[(E)-2-(4-Hydroxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C5) 26
2.3.6 2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C6) 26
2.4 Synthesis of anion counter parts 27
2.4.1 Silver (I) 4-methylbenzenesulfonate (An-CH3) 27
2.4.2 Silver (I) 4-methoxybenzenesulfonate ($\mathbf{A n}-\mathbf{O C H}_{\mathbf{3}}$) 28
2.4.3 Silver (I) 4-chlorobenzenesulfonate (An-Cl) 29
2.4.4 Silver (I) 4-bromobenzenesulfonate (An-Br) 30
2.5 Salts 31
2.5.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate (PM-C1Me) 31
2.5.2 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-methoxybenzenesulfonate (PM-C1OMe) 32
2.5.3 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate (PM-C1CI) 33
2.5.4 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium
4-bromobenzenesulfonate ($\mathbf{P M}-\mathbf{C 1 B r}$) 34
2.5.5 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate (PM-C2Me) 35
2.5.6 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methoxybenzenesulfonate (PM-C2OMe) 35

CONTENTS (Continued)

Page
2.5.7 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-cholrobenzenesulfonate (PM-C2Cl) 36
2.5.8 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate (PM-C2Br) 37
2.5.9 Bis[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1- methylquinolinium tetraiodidozincate(II) (PM-C3Zn) 38
2.5.10 Bis[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1- methylquinolinium tetraiodidozincate(II) (PM-C4Zn) 38
2.5.11 Bis[(E)-2-(4-hydroxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C5Zn) 39
2.5.12 Bis[(E)-2-(4-methoxyphenyl)ethenyl]-1- methylquinolinium tetraiodidozincate(II) (PM-C6Zn) 40
3. RESULTS AND DISCUSSION 41
3.1 Structural elucidation of starting material 41
3.1.1 1,4-Dimethylpyridinium iodide (PM-S1) 41
3.1.2 1,2-Dimethylquinolinium iodide (PM-S2) 42
3.2 Structural elucidation of cation 42
3.2.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium iodide (PM-C1) 42
3.2.2 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C2) 44
3.2.3 2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C3) 46
3.2.4 4-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methylpyridinium iodide (PM-C4) 48
3.2.5 2-[(E)-2-(4-Hydroxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C5) 50
3.2.6 2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C6) 52

CONTENTS (Continued)

Page
3.3 Structural elucidation of anion 54
3.3.1 Silver (I) 4-methylbenzenesulfonate (An-CH3) 54
3.3.2 Silver (I) 4-methoxybenzenesulfonate (An-OCH $\mathbf{3}$) 54
3.3.3 Silver (I) 4-chlorobenzenesulfonate (An-Cl) 55
3.3.4 Silver (I) 4-bromobenzenesulfonate (An-Br) 55
3.4 Structural elucidation of Salts 56
3.4.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate (PM-C1Me) 56
3.4.2 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-methoxybenzenesulfonate (PM-C1OMe) 64
3.4.3 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate (PM-C1CI) 66
3.4.4 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate (PM-C1Br) 74
3.4.5 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate (PM-C2Me) 75
3.4.6 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methoxybenzenesulfonate (PM-C2OMe) 78
3.4.7 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium
4-cholrobenzenesulfonate (PM-C2Cl) 80
3.4.8 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate (PM-C2Br) 87
3.4.9 $\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1- methylquinolinium tetraiodidozincate(II) (PM-C3Zn) 89

CONTENTS (Continued)

Page
3.4.10 Bis[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1- methylquinolinium tetraiodidozincate(II) (PM-C4Zn) 100
3.4.11 Bis[(E)-2-(4-hydroxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C5Zn) 102
3.4.12 Bis[(E)-2-(4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C6Zn) 104
4. CONCLUSION 107
REFERENCES 110
APPENDIX 116
VITAE 159

LIST OF TABLES

Table Page
1 1H NMR of compound PM-C1 43
$2{ }^{1}$ H NMR of compound PM-C2 45
$3{ }^{1}$ H NMR of compound PM-C3 47
$4{ }^{1}$ H NMR of compound PM-C4 49
$5{ }^{1}$ H NMR of compound PM-C5 51
$6{ }^{1}$ H NMR of compound PM-C6 53
$7 \quad{ }^{1}$ H NMR of compound PM-C1Me 58
8 Crystal data of PM-C1Me 59
9 Bond lengths $[\AA]$ and angles [${ }^{\circ}$] for PM-C1Me 60
10 Hydrogen-bond geometry of compound PM-C1Me 62
$11{ }^{1}$ H NMR compound $\mathbf{P M}$-C1OMe 65
$12{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{P M}-\mathbf{C 1 C l}$ 68
13 Crystal data of PM-C1CI 69
14 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for PM-C1CI 70
15 Hydrogen-bond geometry of compound PM-C1Cl 72
$16{ }^{1}{ }^{1}$ H NMR of compound $\mathbf{P M}-\mathbf{C 1 B r}$ 75
$17{ }^{1}$ H NMR of compound PM-C2Me 77
$18{ }^{1}$ H NMR of compound PM-C2OMe 79
$19{ }^{1}$ H NMR of compound $\mathbf{P M}-\mathbf{C 2 C l}$ 81
20 Crystal data of PM-C2CI 82
21 Bond lengths $\left[\AA\right.$] and angles [${ }^{\circ}$] for $\mathbf{P M}-\mathbf{C 2 C l}$ 83
$22{ }^{1}$ H NMR of compound $\mathbf{P M}-\mathbf{C 2 B r}$ 88
$23{ }^{1}$ H NMR of compound PM-C3Zn 91
24 Crystal data of PM-C3Zn 92
25 Bond lengths [\AA] and angles [${ }^{\circ}$] for PM-C3Zn 93
26 Hydrogen-bond geometry of compound PM-C3Zn 98
$27{ }^{1}$ H NMR of compound PM-C4Zn 101
$28{ }^{1}$ H NMR of compound PM-C5Zn 103

LIST OF TABLES (Continued)

Table Page
$29{ }^{1}$ H NMR of compound PM-C6Zn 105
30 UV-Vis absorption spectra of compounds PM-S1, PM-S2, PM-C1, PM-C2, PM-C3, PM-C4, PM-C5 and PM-C6 106

LIST OF ILLUSTRATIONS

Figure Page
1 1a Sum-frequency generation $\omega 1+\omega 2=\omega 3$ in a medium with a quadratic nonlinearity. The case of $\omega 1=\omega 2$ corresponds to second-harmonic generation 4
1b Second Harmonic Generation (SHG). 4
1c Energy-level diagram describing second-harmonic generation 4
2 Scheme of a push-pull chromophore 6
3 Prototypical examples of nonlinear optical molecules 6
4 Ground-state and lowest energy polar resonance forms for para- and ortho- substitution. Resonance is forbidden in the case of meta-substitution. 7
5 An ionic organic with high SHG efficiency 8
6 Derivatives of pyridinium and quinolinium 19
7 X-ray ORTEP diagram of compound PM-C1Me 63
8 Packing diagram of compound PM-C1Me 63
9 X-ray ORTEP diagram of compound PM-C2Me 73
10 Packing diagram of compound PM-C2Me 73
11 X-ray ORTEP diagram of compound PM-C2Cl 86
12 Packing diagram of compound PM-C2CI 86
13 X-ray ORTEP diagram of compound PM-C3Zn 99
14 Packing diagram of compound PM-C3Zn 99
15 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-S1 117
16 IR (KBr) spectrum of compound $\mathbf{P M}-\mathbf{S 1}$ 117
$17{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-S1 118
18 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-S2 119
19 IR (KBr) spectrum of compound PM-S2 119
$20{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-S2 120
21 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C1 121
22 IR (KBr) spectrum of compound $\mathbf{P M}-\mathbf{C 1}$ 121
$23{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C1 122

LIST OF ILLUSTRATIONS (Continued)

Figure Page
24 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C2 123
25 IR (KBr) spectrum of compound PM-C2 123
$26{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C2 124
27 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C3 125
28 IR (KBr) spectrum of compound PM-C3 125
$29{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C3 126
30 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C4 127
31 IR (KBr) spectrum of compound PM-C4 127
32 ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C4 128
33 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C5 129
34 IR (KBr) spectrum of compound PM-C5 129
35 ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C5 130
36 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C6 131
37 IR (KBr) spectrum of compound PM-C6 131
$38{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C6 132
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ DMSO- d_{6}) spectrum of compound $\mathbf{A n}-\mathbf{C H}_{3}$ 133
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound $\mathbf{A n}-\mathbf{O C H}_{3}$ 133
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound An-Cl 134
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound $\mathbf{A n}-\mathbf{B r}$ 134
UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C1Me 135
44 IR (KBr) spectrum of compound PM-C1Me 135
$45{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$) spectrum of compound PM-C1Me 136
46 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound $\mathbf{P M}-\mathrm{C1OMe}$ 137
47 IR (KBr) spectrum of compound PM-C1OMe 137
$48{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$) spectrum of compound PM-C1OMe 1 138
49 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound $\mathbf{P M}-\mathbf{C 1 C l}$ 139
$50 \quad \mathrm{IR}(\mathrm{KBr})$ spectrum of compound $\mathbf{P M}-\mathbf{C 1 C l}$ 139
$51{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C1CI 140

LIST OF ILLUSTRATIONS (Continued)

Figure Page
52 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound $\mathbf{P M}-\mathbf{C 1 B r}$ 141
53 IR (KBr) spectrum of compound $\mathbf{P M}-\mathbf{C 1 B r}$ 141
$54{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C1Br 142
55 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C2Me 143
$56 \mathrm{IR}(\mathrm{KBr})$ spectrum of compound $\mathbf{P M}-\mathbf{C 2 M e}$ 143
$57{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}$) spectrum of compound PM-C2Me 144
58 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C2OMe 145
59 IR (KBr) spectrum of compound $\mathbf{P M}-\mathbf{C 2 O M e}$ 145
$60{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C2OMe 146
61 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C2CI 147
62 IR (KBr) spectrum of compound $\mathbf{P M}-\mathbf{C 2 C l}$ 147
$63{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound $\mathbf{P M}-\mathbf{C 2 C l}$ 148
64 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound $\mathbf{P M}-\mathbf{C} 2 \mathrm{Br}$ 149
65 IR (KBr) spectrum of compound $\mathbf{P M}-\mathbf{C} 2 \mathrm{Br}$ 149
$66{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C2Br 150
67 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C3Zn 151
68 IR (KBr) spectrum of compound PM-C3Zn 151
$69{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C3Zn 152
70 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound $\mathbf{P M}-\mathbf{C 4 Z n}$ 153
71 IR (KBr) spectrum of compound PM-C4Zn 153
$72{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C4Zn 154
73 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C5Zn 155
74 IR (KBr) spectrum of compound PM-C5Zn 155
$75{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C5Zn 156
76 UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ spectrum of compound PM-C6Zn 157
77 IR (KBr) spectrum of compound PM-C6Zn 157
$78{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}) spectrum of compound PM-C6Zn 158

ABBREVIATIONS AND SYMBOLS

s	=	singlet
d	=	doublet
t	=	triplet
q	=	quartet
m	=	multiplet
$d d$	=	doublet of doublet
$d t$	=	doublet of triplet
brd	=	broad doublet
g	=	gram
nm	$=$	nanometer
ml	$=$	milliliter
mp .	=	melting point
cm^{-1}	=	reciprocal centimeter (wave number)
δ	$=$	chemical shift relative to TMS
J	=	coupling constant
$\lambda_{\text {max }}$	$=$	maximum wavelength
v	=	absorption frequencies
ε	=	molar extinction frequencies
${ }^{\circ} \mathrm{C}$	=	degree celcius
MHz	=	Megahertz
Hz	=	Hertz
ppm	$=$	part per million
NLO	=	Nonlinear optics
SHG	=	Second Harmonic Generation
HRS	=	hyper-Rayleigh scattering
ICT	$=$	intramolecular charge-transfer
Å	=	Angstrom
hr	$=$	hour
$p \mathrm{NA}$	=	p-nitroaniline

ABBREVIATIONS AND SYMBOLS (Continued)

KDP	$=$	potassium dihydrogenphosphate
POM	$=$	3-methyl 4-nitropyridine 1-oxide
DAST	=	1-methyl-4-(2-(4-(dimethylamino)phenyl)ethenyl) pyridinium p-toluenesulfonate
MBST	$=$	4-methoxybenzaldehyde- N -methyl-4-stilbazolium tosylate
HBST	$=$	4-hydroxybenzaldehyde- N -methyl-4-stilbazolium tosylate
HOST	=	(N-(4-hydroxyphenyl)ethenyl)pyridinium p-toluenesulfonate
DANS	$=$	4-(N,N-dimethylamino)-4'-nitrostilbene
DMAEPI	=	4-(dimethylamino)-1-ethylpyridinium iodide
EFISHG	=	Electric Field Induced Second Harmonic Generation
XRD	=	X-ray diffraction
Fig.	$=$	Figure
IR	$=$	Infrared
UV-Vis	=	Ultraviolet-Visible
NMR	$=$	Nuclear magnetic resonance
TMS	$=$	tetramethylsilane
CDCl_{3}	=	deuterochloroform
DMSO- d_{6}	$=$	hexadeutero-dimethyl sulphoxide

CHAPTER 1

INTRODUCTION

1.1 Non-linear optics

Nonlinear optics is a studied that deals mainly with various new optical effects and novel phenomena arising from the interactions of intense coherent optical radiation with mater. In the first nonlinear-optical experiment of the laser era, performed by Franken et al. in 1961 (Franken, 1961), a ruby laser radiation with a wavelength of 694.2 nm was used to generate the second harmonic in a quartz crystal at the wavelength of 347.1 nm . This seminal work was followed by the discovery of a rich diversity of nonlinear-optical effects, including sum-frequency generation, stimulated Raman scattering, self-focusing, optical rectification, four-wavemixing, andmany others. While in the pioneering work by Franken the efficiency of second-harmonic generation (SHG) was on the order of 10^{-8}, optical frequency doublers created by early 1963 provided $20 \%-30 \%$ efficiency of frequency conversion (Terhune, 1963). Interest in this field has grown continuously since it has significant impact on optical storage technology and integrated optics technology (Bass, 1962 and Williams, 1984).

Non-linear optics (NLO) is concerned with the interaction of electromagnetic fields (light) in various media to produce new fields altered in phase, frequency, amplitude or other propagation characteristics from the incident fields. The media in which these effects occur are becoming the subject of intense interest, due to their complement properties, such as stability, ease of preparation, compatibility with microelectronic processing methods, mechanical and other properties, as well as their nonlinear optical properties will extremely determine the technological utility of the effect (Williams, 1984). A major advantage of the use of photonics instead of electronics is the possibility to increase the speed of information processes such as photonic switching and optical computing. Typically, only laser light is sufficiently intense to modify the optical properties of a material system. One of the most intensively studied nonlinear optical phenomena is SHG, in which incident light at one
frequency (ω) is converted into light at twice that frequency (2ω). The resulting wavelength is half the incident wavelength and hence it is possible to store information with a higher density. Second-order NLO properties can only be observed in materials lacking a center of symmetry since the second-order NLO coefficient is a third-order tensor which in centrosymmetric system all the tensor components equal zero. So, an important point in designing new organic materials for SHG is to introduce non-centrosymmetry in crystal structures. Electro-optic modulators have traditionally employed ferroelectric inorganic crystals, such as lithium niobate $\left(\mathrm{LiNbO}_{3}\right)$ or potassium dihydrogenphosphate (KDP), which are formed at high temperatures. However, organic NLO materials offer better several advantages in performance, such as higher nonlinear susceptibilities, higher modulation rates, ultrafast response times, lower dielectric constants, better processability characteristics and a remarkable resistance to optical damage, when compared to the inorganic materials (Nie, 1993). The theory of nonlinear optics has been described thoroughly by Chemla and Zyss (Chemla and Zyss, 1987) and by Williams (Williams, 1984) and will be shortly summarized.

1.1.1 Theory of nonlinear optics

A number of nonlinear optical phenomena can be described as frequency-mixing processes. If the induced dipole moments of the material respond instantaneously to an applied electric field, the dielectric polarization (dipole moment per unit volume) $P(t)$ at time t in a medium can be written as a power series in the electrical field:

$$
\begin{equation*}
P(t) \propto \chi^{(1)} E(t)+\chi^{(2)} E^{2}(t)+\chi^{(3)} E^{3}(t)+\ldots \tag{1.1}
\end{equation*}
$$

Here, the coefficients $\chi^{(n)}$ are the n-th order susceptibilities of the medium. For any three-wave mixing process, the second-order term is crucial; it is only nonzero in media that have no inversion symmetry. If we write

$$
\begin{equation*}
E(t)=E_{1} e^{i \omega_{1} t}+E_{1} e^{i \omega_{2} t}+\text { c.c. } \tag{1.2}
\end{equation*}
$$

where c.c. denotes the complex conjugate (E_{1} and E_{2} being the incident beams of interest), the second-order term in the above expansion will write

$$
\begin{equation*}
\mathrm{P}^{(2)}(t) \propto \Sigma \chi^{(2)} n_{0} E_{1}^{n_{1}} E_{2}^{n_{2}} e^{i(\mathrm{~m} 1 \omega 1+\mathrm{m} 2 \omega 2) t}+\text { c.c. }, \tag{1.3}
\end{equation*}
$$

where the summation is over

$$
\begin{align*}
\left(n_{0}, n_{1}, n_{2}, m_{1}, m_{2}\right)= & (1,2,0,2,0),(1,0,2,0,2),(2,2,0,0,0),(2,0,2,0,0), \\
& (2,1,1,1,-1),(2,1,1,1,1) \tag{1.4}
\end{align*}
$$

The six combinations (n_{x}, m_{x}) correspond, respectively, to the second harmonic of E_{1}, the second harmonic of E_{2}, the optically rectified signals of E_{1} and E_{2}, the difference frequency, and the sum frequency. A medium that is thus pumped by the fields E_{1} and E_{2} will radiate a field E_{3} with an angular frequency $\omega_{3}=m_{1} \omega_{1}+m_{2} \omega_{2}$.
Note: in this description, $\chi^{(2)}$ is a scalar. In reality, $\chi^{(2)}$ is a tensor whose components depend on the combination of frequencies.

1.1.2 Second-Order Nonlinear Optical Properties

In second-harmonic generation, a pump wave with a frequency of ω generates a signal at the frequency 2ω as it propagates through a medium with a quadratic nonlinearity (Fig. 1a). Since all even-order nonlinear susceptibilities $\chi^{(n)}$ vanish in centrosymmetric media, SHG can occur only in media with no inversion symmetry. Two incident photons are converted into one emerging photon with exactly twice the energy (half wavelength). No excitation of molecules take place so all energy is conserved. Second harmonics can be generated by nonlinear optical materials with a non-centrocymmetric molecular organisation. SHG signals characterize by a given value of quadratic hyperpolarizability value β or of the second-order electrical susceptibility $\chi^{(2)}$, to produce a new wave with frequency 2ω as shown in Fig. 1b.

1b

1c

Figure 1a Sum-frequency generation $\omega_{1}+\omega_{2}=\omega_{3}$ in a medium with a quadratic nonlinearity. The case of $\omega_{1}=\omega_{2}$ corresponds to second-harmonic generation.
1b Second Harmonic Generation (SHG).
1c Energy-level diagram describing second-harmonic generation.

The SHG can also represent by considering the interaction of an electron in molecule and a photon from incoming light. This process visualized in Fig. 1b, an electron absorbs a photon from the incident light and makes a transition to the next higher unoccupied allowed state, then the excited electron absorbs another photon of the same frequency and makes a transition to yet another allowed state at higher energy. This electron when falling back to its original state emits a photon of a frequency which is two times that of the incident light. This results in the frequency doubling in the output.

The SHG of crystalline materials depends both on the magnitude of the molecular hyperpolarizability β (microscopic non-linearity) and on the orientation
of the molecules in the crystal lattice. In 1977, Oudar and Chemla (Oudar and Chemla, 1977) produced a theoretical interpretation of the electronic origin of β and providing a simple model for the design of second-order NLO molecular materials. NLO properties are concerned to the polarizability of the electrons with electric field E of the light, second-order NLO properties are dependent on electronic transition with high charge-transfer character. Oudar and Chemla assumed that in asymmetric 1D organic NLO chromophores the second-order NLO response is dominated mainly by one major charge-transfer process, so that it is possible to assume that:

$$
\begin{equation*}
\beta_{\mathrm{zzz}}=\frac{3}{2 h^{2} c^{2}} \frac{v_{\mathrm{eg}}^{2} r_{\mathrm{eg}}^{2} \Delta \mu_{\mathrm{eg}}}{\left(v_{\mathrm{eg}}^{2}-v_{\mathrm{L}}^{2}\right)\left(v_{\mathrm{eg}}^{2}-4 v_{\mathrm{L}}^{2}\right)} \tag{1.5}
\end{equation*}
$$

This equation represents the so-called "two level" models, z is the direction of the charge-transfer, $v_{\mathrm{eg}}\left(\mathrm{cm}^{-1}\right)$ the frequency of the charge-transfer transition, r_{eg} its transition dipole moment, $\Delta \mu_{\mathrm{eg}}$ its difference between the excited state and ground state molecular dipole moment $\left(\mu_{\mathrm{e}}-\mu_{\mathrm{g}}\right)$ and ν_{L} is the frequency of the incident radiation.

For obtaining the materials with large macroscopic second-order NLO susceptibilities $\left(\chi^{2}\right)$, optimization of both the molecular first hyperpolarizabilities (β) and their orientation in the bulk are required. It must be non-centrosymmetric, according to the useful guideline of two-level model, should have a large difference in dipole moment of molecule between the ground state and excited state, large $\Delta \mu_{\mathrm{eg}}$ and $v_{\text {eg, }}$ and a small band-gap energy (charge-transfer transitions). In synthesis, these can be achieved in a linear organic chromophore by attaching strong donor and acceptor group through a π-conjugated polarizable spacer and/or elongation of the π-conjugated electron system, as it occur in classical 1D organic dipolar so called push-pull system (Fig. 2).

Figure 2 Scheme of a push-pull chromophore.

Nevertheless in such system, molecules with large ground-state dipoles tend to pack in an antiparallel (centric) manner due to intermolecular head-to-tail interactions. For this reason, much effort has been employed to overcome this problem such as the use of supramolecular strategies (Desiraju, 1995), co-crystallization or salt formation strategies (Duan, 2000), inclusion formation with inorganic zeolites strategies (Cox, 1988), etc.

1.1.3 Structural requirements

Organic molecules that exhibit second-order nonlinear optical properties usually consist of a frame with a delocalized π-system, end-capped with either a donor (D) or acceptor (A) substituent or both. This asymmetry results in a high degree of intramolecular charge-transfer (ICT) interaction from the donor to acceptor, which seems to be a prerequisite for a large second-order nonlinearity (Oudar and Chemla, 1977). Extensively studied classes of NLO-chromophores of this type are 1,4-disubstituted benzenes and stilbenes, from which p-nitroaniline ($p \mathrm{NA}$) and 4-($N, N-$ dimethylamino)-4'-nitrostilbene (DANS) are prototypical examples (Fig. 3) (Levine, 1975):

$p \mathrm{NA}$

DANS

Figure 3 Prototypical examples of nonlinear optical molecules.
The second-order nonlinearity can be enhanced by using stronger donor and acceptor substituents to increase the electronic asymmetry or by increasing
the conjugation length between the substituents. Dulcic and Sauteret (Dulcic and Sauteret, 1978) were the first group to study the substituent effect in p-disubstituted benzene derivatives and Oudar and Le Person reported about the effect of the conjugation length by using a stilbene instead of a benzene π-system (Oudar and Le Person,1975). The p, p-disubstituted molecules possessed largest β values are obtained when the molecule contains substituents that lead to low-lying charge-transfer resonance states (Fig. 4) (Williams, 1984).

Figure 4 Ground-state and lowest energy polar resonance forms for para- and orthosubstitution. Resonance is forbidden in the case of meta-substitution.

The polarization occurred from contributions of the substituent-induced asymmetry of the π cloud and the σ skeleton of the molecule, as well as from field-induced mixing of the excited state (polar character) into the ground electronic configuration.

Organic crystals were the first bulk organic materials to be investigated for their nonlinear optical properties (Marder and Perry, 1993). About 75\% of all organic molecules tend to crystallize in a centrosymmetric space group, which is a serious disadvantage of this approach. Meredith (Williams, 1984) first reported ionic organic NLO (Fig. 5).

Figure 5 An ionic organic with high SHG efficiency.

This salt had SHG efficiency about 220 times that of urea. Crystallization of organic ionic salts is interesting because they exhibit large β values at molecular level, e.g., the β values of 4-(dimethylamino)pyridinium cation are about $35 * 10^{-30}$ esu, which is twice larger than that of $p \mathrm{NA}$ (Anwar, 1997). Moreover, crystals of hydroxylsubstituted stilbazoliums with p-toluenesulfonate, MC-PTS, (Okada, 1990) exhibit extremely large $\chi^{(2)}$ more than ten times of inorganic materials such as LiNbO_{3}. In addition, ionic organic NLO crystals possess high values for hardness and have high melting points. Their crystal structures can also be controlled by changing the counter-ions (Nogi, 2000). Benzenesulfonate is most frequently used to co-crystallize with cations to form compounds which are expected to have second-order nonlinear optical properties.

1.2 Nonlinear optic materials

In order to exhibit second-order nonlinearity, a bulk organic material has to possess a non-centrosymmetric alignment of the (di)polar molecules which it consists of. There are several ways to achieve a parallel orientation of NLO-chromophores; those most frequently used are:
(1) Non-centrosymmetric crystals;
(2) Langmuir-Blodgett films;
(3) Poled polymers.

In this study, only the non-centrosymmetric crystals used will be discussed.

Non-centrosymmetric crystals

Organic molecules containing conjugate systems are highly polar in their ground state, tend to set up antiparallel arrangements leading to centrosymmetric structure in the solid state which vanish all components of $\chi^{(2)}$, or although they achieve noncentrosymmetric structure, the orientation of their molecular dipole moments in the crystalline solid with respect to the polar crystal axes are not optimum for maximizing second-order NLO response (Anwar, 2000). Furthermore, it is difficult to direct the crystallization of an organic compound towards a crystal of the required size, processability, environmental stability and transparency for a typical application. Strategies to favour non-centrosymmetric crystallization are incorporation of chiral substituents in the molecular structure (Zyss et al., 1984), organic salts (Marder et al., 1989) or designing molecules with specific intermolecular interaction such as hydrogen bonding (Etter and Frankenbach, 1989).

1.3 Review of Literatures

Chou et al. (1996) studied, UV-VIS absorption spectrum, thermal stability and second-order nonlinear optical properties of a series of new thiophenecontaining chromophores (1-4) with methylsulfonyl and phenylsulfonyl acceptors.

Anwar et al. (1997) studied second-order hyperpolarizability of pyridinium cations (5, $\mathbf{6}$).

5

$$
\mathrm{X}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{NH}_{2}, \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}
$$

$\mathrm{CONH}_{2}, \mathrm{COOCH}_{3}, \mathrm{CN}$

$\mathrm{X}=\mathrm{CONH}_{2}, \mathrm{COOCH}_{3}, \mathrm{Cl}$

Huang et al. (1997) synthesized phenol-pyridine and nitrophenolpyridine co-crystals for second harmonic generation. Since organic molecules possess large β-values and usually accompanied by high molecular dipole moments, they tend to form pairs aligned in an anti-parallel fashion and thus tend to crystallize in centrosymmetric space groups. They proposed strategy employed to encourage non-centrosymmetric crystallization of these molecules by make use of ionic and hydrogen-bonding interaction in a system to form ionic co-crystals from proton transfer between organic acid and organic base, as illustrated in below equation.

$$
\mathbf{A}-\mathbf{H}+\mathbf{B} \xrightarrow{\text { co-crystallization }} \mathbf{A}^{-} \cdots \mathbf{H}-\mathbf{B}^{+}
$$

A-H is organic acid; B is organic base and $\mathbf{A}^{-} \cdots \mathbf{H}-\mathbf{B}^{+}$is the resulting ionic co-crystal, which involves in both ionic attractions and hydrogen-bonding interactions.

Anwar et al. (1998) studied hyperpolarizability of benzoate anions (7a-j) and ester (8a-j).

$\mathbf{7 a}: \mathrm{X}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	$\mathbf{7 b}: \mathrm{X}=\mathrm{NH}_{2}$	
$\mathbf{7 c}: \mathrm{X}=\mathrm{OH}$	$\mathbf{7 d}: \mathrm{X}=\mathrm{OCH}_{3}$	$\mathbf{8 a}: \mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}$
$\mathbf{7 e}: \mathrm{X}=\mathrm{CH}$	$\mathbf{7 f}: \mathrm{X}=\mathrm{H}$	$\mathbf{8 b - j}: \mathrm{R}=\mathrm{CH}_{3}$
$\mathbf{7 \mathbf { g } : \mathrm { X } = \mathrm { Cl }}$	$\mathbf{7 h}: \mathrm{X}=\mathrm{Br}$	
$\mathbf{7 \mathbf { i } : \mathrm { X }}=\mathrm{CN}$	$\mathbf{7 j}: \mathrm{X}=\mathrm{NO}_{2}$	

Anwar et al. (1999) synthesized substituted pyridinium benzenesulfonate ($\mathbf{9 a - h}, \mathbf{1 0 f}, \mathbf{1 0 g}, \mathbf{1 0 i})$ crystals for NLO properties.

9a: $\mathrm{X}=\mathrm{H}$
10f : $\mathrm{X}=\mathrm{CONH}_{2}$
9b: $\mathrm{X}=\mathrm{CH}_{3}$
$10 \mathrm{~g}: \mathrm{X}=\mathrm{COOCH}_{3}$
9c: $\mathrm{X}=\mathrm{C}_{2} \mathrm{H}_{5}$
10i : $\mathrm{X}=\mathrm{Cl}$
9d: $\mathrm{X}=\mathrm{NH}_{2}$
9e: $\mathrm{X}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$
9f : $\mathrm{X}=\mathrm{CONH}_{2}$
$\mathrm{Z}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{OH}, \mathrm{OCH}_{3}$,
9g: $\mathrm{X}=\mathrm{COOCH}_{3}$
9h: $\mathrm{X}=\mathrm{CN}$

Anwar et al. (1999) synthesized 4-carbamoylpyridinium benzenesulfonate (11) salts for NLO properties.

$\mathrm{Z}=\mathrm{OH}, \mathrm{OCH}_{3}, \mathrm{Br}$

11
Zelichenok et al. (1999) reported synthesis, characterization which used X-ray diffraction (XRD), NMR and FTIR, and optical spectroscopy measurements of derivatives of donor-acceptor substituted quinolinium iodide (12).

12
These quinolinium derivatives are transparency in the blue and this property is practical importance for NLO usage.

Anwar et al. (2000) synthesized 4-amino-1-methylpyridinium benzenesulfonate salts (13) for second-order NLO properties.

$$
\mathrm{X}=\mathrm{OH}, \mathrm{OCH}_{3}, \mathrm{CH}_{3}, \mathrm{Cl}, \mathrm{Br}
$$

13

Nogi et al. (2000) synthesized 1-methyl-4-(2-(4-(dimethlyamino) phenyl)ethenyl)pyridinium p-toluenesulfonate (DAST) analogues (14) with increased double bond number between pyridinium and (dimethylamino)phenyl ring.

$$
\mathrm{n}=1,2,3,4,5
$$

Umezawa et al. (2000) synthesized compounds based on stilbazolium structure with extended π-conjugation by increasing conjugated double-bond number between two aromatic rings and/or using a fused ring system like naphthalene instead of phenylene for NLO materials.

Anwar et al. (2001) synthesized 4-(dimethylamino)-1-ethylpyridinium iodide (DMAEPI) (17) for use in second-order NLO.

17
Bourgogne et al. (2001) reported the synthesis, modeling of μ and β, and hyper-Rayleigh scattering (HRS) hyperpolarizability measurements of 4'-nitro-4-stilbazole- N-oxide (18) and it azo analogue (19). These molecules present an intramolecular donor/acceptor charge transfer (ICT) leading to high β
hyperpolarizability, but its exhibit a vanishing dipole moment μ which was confirmed by Hartree-Fock calculations.

18

19

Lakshmanaperumal et al. (2002) synthesized a new organic nonlinear optical material of 4-methoxybenzaldehyde- N-methyl-4-stilbazolium tosylate (MBST) (20). Single crystals of MBST were grown by slow cooling solution growth technique. The growth crystals were characterized by IR, NMR and powder XRD techniques. The SHG studies were done with Kurtz powder technique.

20

Boomadevi et al. (2004) grew organic NLO crystals of 3-methyl 4nitropyridine 1-oxide (POM) (21). Growth technique used was the slow evaporation technique. Second harmonic generation was observed by using Q-switched Nd:YAG laser. Laser damage threshold value has been determined using Q-switched Nd:YAG laser. It was found to be $10.5 \mathrm{GW} / \mathrm{cm}^{2}$ for single shot and $9.3 \mathrm{GW} / \mathrm{cm}^{2}$ for multiple shots, indicating POM had potential for high power laser application.

21

Crasta et al. (2004) synthesized new chalcone derivative, 1-(4-methyl-phenyl)-3-(4-methoxyphenyl)-2-propen-1-one (22). The crystal of chalcone derivative was grown with low temperature solution growth technique. These crystals were characterized using powder X-ray diffraction, FT-IR, UV-Vis and powder SHG studies.

Glavcheva et al. (2004) synthesized pyridinium-metal iodide complexes (23a-f, 24a-f and 25a-f) for SHG materials.

23a : m = 1
23b-f:m $=2$

25a-f : m = 1

24a-f: m = 2
$\mathrm{X}=\mathrm{CH}_{3} \quad \mathrm{X}=\mathrm{NH}_{2}$
$\mathrm{X}=\mathrm{CN} \quad \mathrm{X}=\mathrm{CO}_{2} \mathrm{CH}_{3}$
$\mathrm{X}=\mathrm{CONH}_{2} \quad \mathrm{X}=\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$

Lakshmanaperumal et al. (2004) synthesized new NLO material of 4-hydroxy benzaldehyde- N-methyl-4-stilbazolium tosylate (HBST) (26). Single crystals of HBST were grown using solution growth technique. The growth crystals were characterized by UV-Vis, IR, NMR and powder XRD techniques. The SHG studies were done with Kurtz powder technique.

26

Crasta et al. (2005) synthesized new chalcone derivative, 1-(4-chloro-phenyl)-3-(4-chlorophenyl)-2-propen-1-one (27). The chalcone derivative was grown with low temperature solution growth technique. These crystals were characterized using single crystal X-ray diffraction (XRD), FT-IR, UV-Vis and powder SHG studies.

27

Chantrapromma et al. (2005) synthesized new NLO material of
benzenesulfonate (28). The SHG efficiency of the compound is about 0.85 times that of urea.

28

Chantrapromma et al. (2007) synthesized new NLO material of 2-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methyl-quinolinium 4-chlorobenzenesulfonate (29). The SHG efficiency of the compound is about 0.5 times that of urea.

29

1.4 Objective and outline of this study

The objectives of this study are:

1. To synthesize pyridinium and quinolinium derivatives.
2. To determine the structure of pyridinium and quinolinium derivatives by spectroscopic techniques and X-ray diffraction method.

Much attention has been given to NLO materials because their promising applications including telecommunication, optical data storage and difference frequency doubling of lasers. In this thesis, the twelve novel compounds of pyridinium and quinolinium derivatives which are expected to exhibit NLO property were designed and synthesized. Their structures were elucidated by spectroscopy techniques. Single crystal X-ray structure determination was also be studied for those compounds which can be crystallized out in order to study for their structures, crystal packing and NLO properties.

The twelve compounds were designed base on introduction of an oxochromes, such as $\mathrm{OH}, \mathrm{OCH}_{3}, \mathrm{OCH}_{2} \mathrm{CH}_{3}$ in ring \mathbf{B} or modification of ring \mathbf{B} with thiophene ring or modification of ring \mathbf{A} with quinolinium unit in the stilbazolium cation which was expected to increase π-conjugation system.

The synthesized compounds were shown in Figure 6.

$\mathrm{X}=\mathrm{OCH}_{3}(\mathbf{6})$
$\mathrm{X}=\mathrm{Cl}$
$\mathrm{X}=\mathrm{Br}$
(7)
(8)

$$
\begin{array}{lll}
\mathrm{R} 1=\mathrm{OH} & \mathrm{R} 2=\mathrm{OCH}_{3} & \mathbf{(9)} \\
\mathrm{R} 1=\mathrm{OCH}_{3} & \mathrm{R} 2=\mathrm{OH} & (\mathbf{1 0}) \\
\mathrm{R} 1=\mathrm{H} & \mathrm{R} 2=\mathrm{OH} & \mathbf{(1 1)} \\
\mathrm{R} 1=\mathrm{H} & \mathrm{R} 2=\mathrm{OCH}_{3} & (\mathbf{1 2})
\end{array}
$$

Figure 6 Derivatives of pyridinium and quinolinium.

In this study, focus shall be on the adducts of derivatives of pyridinium and quinolinium (Fig. 6) which are expected to exhibit the NLO property. Crystals of a size and quality suitable for single crystal X-ray diffraction studies are grown with the objective to study their structure in solid state.

This thesis is divided into four parts, namely introduction, experimental, results and discussion, and conclusion.

2. EXPERIMENT

2.1 Instruments and chemicals

2.1.1 Instruments

Melting point was recorded in ${ }^{\circ} \mathrm{C}$ and was measured using an Electrothermal melting point apparatus. Proton nuclear magnetic resonance spectra were recorded on FT-NMR Bruker Ultra Shield ${ }^{\mathrm{TM}} 300 \mathrm{MHz}$. Spectra were recorded in deuterochloroform mixed with hexadeutero-dimethyl sulphoxide solution and were recorded as δ value in ppm downfield from TMS (internal standard $\delta 0.00$). Infrared spectra were recorded by using FTS 165 FT-IR spectrophotometer. Major bands (v) were recorded in wave numbers $\left(\mathrm{cm}^{-1}\right)$. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S 100 (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. Single crystal X-ray diffraction measurements were collected using a Bruker Apex2 CCD diffractometer with a graphite monochromated MoK_{\propto} radiation. $(\lambda=0.71073 \AA)$ at a detector distance of 5 cm and with APEX2 software. The collected data were reduced using SAINT (Bruker, 2005) program, and the empirical absorption corrections were performed using SADABS program. The structures were solved by direct methods and refined by least-squares using the SHELXTL (Sheldrick, 2008) software package. The SHG measurements were done at Department of studies in Physics, Mangalore University, Mangalagangotri, Mangalore, India. The yields were reported as percentage of crude products.

2.1.2 Chemicals

All chemicals used in this study are AR grade and were used without further purification.

1) 4-Picoline from Fluka Chemica, Switzerland
2) 2-Methylquinoline from Fluka Chemica, Switzerland
3) Piperidine from Fluka Chemica, Switzerland
4) Thiophene-2-carboxaldehyde from Fluka Chemica, Switzerland
5) 3-Hydroxy-4-methoxybenzaldehyde (isovanillin) from Sigma Chemica, USA
6) 4-Hydroxy-3-methoxybenzaldehyde (vanillin) from Sigma Chemica, USA
7) 4-Hydroxybenzaldehtde from Fluka Chemica, Switzerland
8) 4-Methoxybenzaldehyde from Fluka Chemica, Switzerland
9) 4-Ethoxybenzaldehyde from Fluka Chemica, Switzerland
10) p-Toluenesulfonic acid monohydrate from Fluka Chemica, Switzerland
11) 4-Methoxybenzenesulfonyl chloride from Fluka Chemica, Switzerland
12) 4-Chlorobenzenesulfonyl chloride from Fluka Chemica, Switzerland
13) 4-Bromobenzenesulfonyl chloride from Fluka Chemica, Switzerland
14) Methyl iodide from Riedel-de Haën, Germany
15) Silver nitrate from Merck, Germany
16) Sodium hydroxide from Lab-Scan, Ireland
17) Zinc iodide from Fluka Chemica, Switzerland
18) Dichloromethane (AR grade) from Merck, Germany
19) Diethyl ether (AR grade) from Merck, Germany
20) Methanol (AR grade) from Merck, Germany
21) Ethanol (AR grade) from Merck, Germany
22) Acetone (AR grade) from Merck, Germany

2.2 Synthesis of the starting materials

2.2.1 1,4-Dimethylpyridinium iodide (PM-S1)

1,4-dimethylpyridinium iodide (PM-S1) and 1,2-dimethylquinolinium iodide (PM-S2) were prepared to be employed as starting material for the syntheses of related products. Methyl iodide ($6.45 \mathrm{ml}, 0.10 \mathrm{~mol}$) was added dropwise to a stirred solution of 4-picoline (PM1A) ($10.00 \mathrm{ml}, 0.10 \mathrm{~mol}$) in cold methanol $(15 \mathrm{ml})$ at $5^{\circ} \mathrm{C}$ under nitrogen atmosphere for 1 hr and then refluxing for 1 hr . The mixture was cooled in an ice bath and the obtained crystalline solid was filtered, washed with cold methanol and dried in vacuum to give a pale yellow solid of 1,4-dimethylpyridinium iodide (PM-S1) $(15.50 \mathrm{~g}, 66 \%)$, mp. $140-142{ }^{\circ} \mathrm{C}$, UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon)$: 219.7 (3.78), 255.3 (3.16), FT-IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 1600-1500 (C=C stretching), ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right)(\delta \mathrm{ppm})(300 \mathrm{MHz}): 9.13(2 \mathrm{H}, d, J=6.3 \mathrm{~Hz})$, $7.88(2 \mathrm{H}, d, J=6.3 \mathrm{~Hz}), 4.62(3 \mathrm{H}, s), 2.69(3 \mathrm{H}, s)$.

2.2.2 1,2-Dimethylquinolinium iodide (PM-S2)

Methyl iodide ($4.65 \mathrm{ml}, 0.07 \mathrm{~mol}$) was added dropwise to a stirred solution of quinaldine (PM1B) ($10.00 \mathrm{ml}, 0.07 \mathrm{~mol})$ in cold methanol $(15 \mathrm{ml})$ at $5{ }^{\circ} \mathrm{C}$ under nitrogen atmosphere for 1 hr and then refluxing for 2 hrs . The mixture was cooled and the precipitated solid was filtered, washed with cold methanol and dried in vacuum to give yellow solid of 1,2-dimethylquinoliinium iodide (PM-S2) (14.00 g, $66 \%)$, mp. 182-184 ${ }^{\circ} \mathrm{C}$, UV-Vis $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 234.5$ (3.47), 316.7 (2.90), FT-IR (KBr) $\quad v\left(\mathrm{~cm}^{-1}\right): \quad 1600-1500 \quad(\mathrm{C}=\mathrm{C} \quad$ stretching $), \quad{ }^{1} \mathrm{H} \quad$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right)(\delta \mathrm{ppm})(300 \mathrm{MHz}): 9.07(1 \mathrm{H}, d, J=8.7 \mathrm{~Hz}), 8.55$ $(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz}), 8.39(1 \mathrm{H}, d d, J=1.5,8.1 \mathrm{~Hz}), 8.23(1 \mathrm{H}, d t, J=1.5,8.1 \mathrm{~Hz}), 8.09$ $(1 \mathrm{H}, d, J=8.7 \mathrm{~Hz}), 7.98(1 \mathrm{H}, t, J=8.1 \mathrm{~Hz}), 4.57(3 \mathrm{H}, s), 3.20(3 \mathrm{H}, s)$.

2.3 Synthesis of the cation parts

2.3.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium iodide (PM-C1)

The mixture of 1,4 -dimethylpyridinium iodide ($3.00 \mathrm{~g}, 12.80 \mathrm{mmol}$), thiophene-2-carboxaldehyde $(1.18 \mathrm{ml}, 12.82 \mathrm{mmol})$ and piperidine $(1.25 \mathrm{ml}$, 12.65 mmol) in methanol was refluxed under nitrogen atmosphere for 4 hrs . The solid formed was filtered off, washed with diethyl ether to give pale yellowish green solid of 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium iodide (PM-C1) (3.17 g, 75\%), mp. 219-221 ${ }^{\circ} \mathrm{C}, \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 218.6$ (4.12), 250.6 (2.51),
389.7 (4.16), $\quad \operatorname{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 1607$ ($\mathrm{C}=\mathrm{C}$ stretching), 1168 ($\mathrm{C}-\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 1).

2.3.2 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolidinium iodide

 (PM-C2)

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium iodide
(PM-C2) was prepared to be employed as cationic part by refluxing a stirred solution of 1,2-dimethylquinolinium iodide ($2.98 \mathrm{~g}, 10.05 \mathrm{mmol}$), 4-ethoxybenzaldehyde $(1.46 \mathrm{ml}, 10.05 \mathrm{mmol})$ and piperidine $(1.00 \mathrm{ml}, 10.00 \mathrm{mmol})$ in methanol $(25 \mathrm{ml})$ for 3 hrs under nitrogen atmosphere. The solid was filtered, washed with diethyl ether to give brown-red solid of PM-C2 ($3.86 \mathrm{~g}, 92 \%$), mp. $219-221{ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $\lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon): 217.5$ (3.59), 252.8 (3.02), 314.1 (3.54), 416.2 (3.19), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 1605$ ($\mathrm{C}=\mathrm{C}$ stretching), 1233 (C-O stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 2).

2.3.3 2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-

 methylquinolinium iodide (PM-C3)

PM-S2
PM-C3

2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C3) was prepared by condensation of 1,2-dimethylquinolinium iodide (PM-S2) ($3.00 \mathrm{~g}, 10.05 \mathrm{mmol}$) and isovanillin $(1.60 \mathrm{~g}, 10.05 \mathrm{mmol})$ in the presence of piperidine $(1.00 \mathrm{ml}, 10.00 \mathrm{mmol})$ as a catalyst. The reaction mixture was refluxed for 2 hrs under nitrogen atmosphere. The solid formed was filtered, washed with diethyl ether and re-crystallized from methanol to give red-brown crystals of PM-C3 (2.80 g , $64 \%)$, mp. 218-220 ${ }^{\circ} \mathrm{C}$, $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 216.1$ (4.12), 306.2 (3.59), 431.3 (4.06), $\mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3424$ ($\mathrm{O}-\mathrm{H}$ stretching), 1612, 1583 ($\mathrm{C}=\mathrm{C}$ stretching), 1235 (C-O stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 3).

2.3.4 4-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-

methylpyridinium iodide (PM-C4)

2-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C4) was prepared to be employed as cationic part by refluxing a stirred solution of 1,2-dimethylquinolinium iodide $(2.98 \mathrm{~g}, 10.05 \mathrm{mmol})$, vanillin (1.60 g , 10.05 mmol) and piperidine ($1.00 \mathrm{ml}, 10.00 \mathrm{mmol}$) in methanol (25 ml) for 3 hrs under nitrogen atmosphere. The solid was filtered, washed with diethyl ether and crystallized from methanol to give dark red crystals of PM-C4 (3.00 g, 68\%), mp. $248-250{ }^{\circ} \mathrm{C}, \mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon)$: 215.3 (3.59), 308.9 (3.02), 440.1 (3.54), 576.5 (3.19), $\mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3439(\mathrm{O}-\mathrm{H}$ stretching), 1609, $1580(\mathrm{C}=\mathrm{C}$ stretching), 1233 (C-O stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 4).
2.3.5 2-[(E)-2-(4-Hydroxyphenyl)ethenyl]-1-methylquinolidinium iodide (PM-C5)

PM-S2
PM-C5

2-[(E)-2-(4-Hydroxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C5) was prepared by refluxing a stirred solution of 1,2-dimethylquinolinium iodide ($2.00 \mathrm{~g}, 7.01 \mathrm{mmol}$), 4-hydroxybenzaldehyde ($0.86 \mathrm{~g}, 7.01 \mathrm{mmol}$) and piperidine $(0.69 \mathrm{ml}, 7.01 \mathrm{mmol})$ in methanol $(25 \mathrm{ml})$ for 3 hrs under nitrogen atmosphere. The solid was filtered, washed with diethyl ether to give purple solid of PM-C5 (1.99 g, 73\%), mp. $192-194{ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 218.3$ (2.99), 258.9 (2.75), 425.1 (2.84), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 3447 ($\mathrm{O}-\mathrm{H}$ stretching), 1576 ($\mathrm{C}=\mathrm{C}$ stretching), 1220 (C-O stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 5).
2.3.6 2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylquinolidinium iodide (PM-C6)

2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylquinolinium iodide (PM-C6) was prepared by refluxing a stirred solution of 1,2-dimethylquinolinium
iodide ($1.00 \mathrm{~g}, 3.51 \mathrm{mmol}$), 4-methoxybenzaldehyde ($0.43 \mathrm{~g}, 3.55 \mathrm{mmol}$) and piperidine ($0.35 \mathrm{ml}, 3.54 \mathrm{mmol}$) in methanol (25 ml) for 7 hrs under nitrogen atmosphere. The solid was filtered, washed with diethyl ether to give brown solid of PM-C6 (0.95 g, 67\%), mp. 225-226 ${ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon): 217.3$ (2.99), 407.6 (2.66), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 1569-1595 ($\mathrm{C}=\mathrm{C}$ stretching), 1221 ($\mathrm{C}-\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 6).

2.4 Synthesis of anions counter part

2.4.1 Silver (I) 4-methylbenzenesulfonate (An-CH3)

A solution of 4-methylbenzenesulfonic acid monohydrate (PM1C) $(5.00 \mathrm{~g}, 26.30 \mathrm{mmol})$ in hot methanol was added to a stirred solution of sodium hydroxide ($1.05 \mathrm{~g}, 26.30 \mathrm{mmol}$) in hot methanol, followed by addition of a solution of silver nitrate ($4.47 \mathrm{~g}, 26.30 \mathrm{mmol}$) in hot methanol. A solution mixed with a solid was obtained which was then filtered. The white crystalline solid of An-CH3 (5.20 g , 71%) was collected after allowing the filtrate to stand in air for a few days, mp. 264-266 ${ }^{\circ} \mathrm{C}$ (decomp.), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.d_{6}\right)(\delta \mathrm{ppm})(300 \mathrm{MHz}): 7.74$ $(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}), 7.17(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}), 2.38(1 \mathrm{H}, s)$.

2.4.2 Silver (I) 4-methoxybenzenesulfonate (An-OCH \mathbf{H}_{3})

Silver (I) 4-methoxybenzenesulfonate ($\mathbf{A n}^{\mathbf{- O C H}} \mathbf{3}$) was prepared by mixing a solution of 4-methoxybenzenesulfonyl chloride (PM1D) (5.00 g, 24.20 mmol) and sodium hydroxide ($0.97 \mathrm{~g}, 24.25 \mathrm{mmol}$) in hot methanol. A colorless solution mixed with a white solid of sodium chloride was obtained. The mixture was worked up by addition of water and extraction with dichloromethane. The dichloromethane part was evaporated and the resulting residue was dissolved in methanol, followed by addition of the solution of sodium hydroxide $(0.96 \mathrm{~g}$, $24.00 \mathrm{mmol})$ in hot methanol and a solution of silver nitrate ($4.10 \mathrm{~g}, 24.14 \mathrm{mmol}$) in hot methanol. The colorless solution mixed with a solid of sodium nitrate was obtained, which was filtered and discarded. Compound $\mathbf{A n}-\mathbf{O C H}_{3}(4.53 \mathrm{~g}, 63 \%)$ was obtained after allowing the resulting filtrate to stand in air for a few days, mp. $240-242{ }^{\circ} \mathrm{C}$ (decomp.), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\operatorname{DMSO}-d_{6}\right)(\delta \mathrm{ppm})(300 \mathrm{MHz}):$ $7.78(2 \mathrm{H}, d, J=8.7), 6.86(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz}), 3.82(1 \mathrm{H}, s)$.

2.4.3 Silver (I) 4-chlorobenzenesulfonate (An-CI)

Silver (I) 4-chlorobenzenesulfonate (An-Cl) was prepared to be employed as anionic part by mixing a solution ($1: 1$ molar ratio) of 4-chlorobenzenesulfonyl chloride (PM1E) ($5.00 \mathrm{~g}, 19.57 \mathrm{mmol}$) and sodium hydroxide $(0.78 \mathrm{~g}, 19.57 \mathrm{mmol})$ in hot methanol. A colorless solution mixed with a white solid of sodium chloride was obtained. The mixture was worked up by addition of water and extraction with dichloromethane. The dichloromethane part was evaporated and dissolved in methanol, followed by addition of the solution of sodium hydroxide $(0.77 \mathrm{~g}, 19.32 \mathrm{mmol})$ in hot methanol and a solution of silver nitrate (3.32 g , $19.57 \mathrm{mmol})$ in hot methanol. The colorless solution mixed with a solid of sodium nitrate was obtained, which was filtered and discarded. Compound An-Cl (4.56 g, 68%) was obtained after allowing the resulting filtrate to stand in air for a few days, mp. 227-229 ${ }^{\circ} \mathrm{C}$ (decomp.), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\operatorname{DMSO}-d_{6}\right)(\delta \mathrm{ppm})(300 \mathrm{MHz}):$ $7.76(2 \mathrm{H}, d, J=7.8), 7.50(2 \mathrm{H}, d, J=7.8 \mathrm{~Hz})$.

2.4.4 Silver (I) 4-bromobenzenesulfonate (An-Br)

Silver (I) 4-bromobenzenesulfonate (An-Br) was synthesized by mixing a solution of 4-bromobenzenesulfonyl chloride (PM1F) ($5.00 \mathrm{~g}, 23.69 \mathrm{mmol}$) and sodium hydroxide ($0.95 \mathrm{~g}, 23.69 \mathrm{mmol}$) in hot methanol. A colorless solution mixed with a white solid of sodium chloride was obtained. The mixture was worked up by addition of water and extraction with dichloromethane. The dichloromethane part was evaporated and dissolved in methanol, followed by addition of the solution of sodium hydroxide ($0.96 \mathrm{~g}, 23.64 \mathrm{mmol}$) in hot methanol and a solution of silver nitrate $(4.00 \mathrm{~g}, 23.57 \mathrm{mmol})$ in hot methanol. The colorless solution mixed with a solid of sodium nitrate was obtained, which was filtered and discarded. Compound An-Br (4.36 g, 61\%) was obtained after allowing the resulting filtrate to stand in air for a few days, mp. $230-232{ }^{\circ} \mathrm{C}$ decomposed, ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\right.$ DMSO- $\left.d_{6}\right)(\delta \mathrm{ppm})$ $(300 \mathrm{MHz}): 7.81(2 \mathrm{H}, d, J=8.4), 7.34(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz})$.

2.5 Salt formations

2.5.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

 4-methylbenzenesulfonate (PM-C1Me)

4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate (PM-C1Me), was synthesized by addition of a solution of silver (I) 4-methylbenzenesulfonate ($0.08 \mathrm{~g}, 0.30 \mathrm{mmol}$) in hot methanol (20 ml) to a solution of compound PM-C1 ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}$) in hot methanol (45 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a brown solid. The brown solid was re-crystallized from methanol to give brown crystals of compound PM-C1Me ($0.08 \mathrm{~g}, 75 \%$), mp. $232-234{ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }$ $(\mathrm{nm})(\log \varepsilon): 220.9(4.04), 251.4(3.58), 379.2(3.95), \mathrm{IR}(\mathrm{KBr}) \mathrm{v}\left(\mathrm{cm}^{-1}\right): 1523$, ($\mathrm{C}=\mathrm{C}$ stretching), 1186 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 7).

2.5.2 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

4-methoxybenzenesulfonate (PM-C1OMe)

4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-methoxybenzenesulfonate (PM-C1OMe), was synthesized by addition of a solution of silver (I) 4-methoxybenzenesulfonate ($0.09 \mathrm{~g}, 0.30 \mathrm{mmol}$) in hot methanol (30 ml) to a solution of compound PM-C1 ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}$) in hot methanol (10 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a yellow solid of compound PM-C1OMe ($0.11 \mathrm{~g}, 87 \%$), mp. 234-236 ${ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 230.2(2.83), 381.1(3.58)$, IR $(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 1590(\mathrm{C}=\mathrm{C}$ stretching), 1188 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 11).

2.5.3 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

4-chlorobenzenesulfonate (PM-C1Cl)

4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate (PM-C1CI), was synthesized by addition of a solution of silver (I) 4-chlorobenzenesulfonate $(0.09 \mathrm{~g}, 0.30 \mathrm{mmol})$ in hot methanol $(20 \mathrm{ml})$ to a solution of compound PM-C1 ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}$) in hot methanol (10 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a brown solid. The brown solid was re-crystallized from methanol and ethanol (1:1) to give brown crystals of compound PM-C1Cl ($0.11 \mathrm{~g}, 90 \%$), mp. 230-232 ${ }^{\circ} \mathrm{C}$, $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 220.9$ (4.35), 251.4 (3.02) 379.2 (3.42), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 1523$ ($\mathrm{C}=\mathrm{C}$ stretching), 1210 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 12).

2.5.4 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate (PM-C1Br), was synthesized by addition of a solution of silver (I) 4-bromobenzenesulfonate ($0.10 \mathrm{~g}, 0.30 \mathrm{mmol}$) in hot methanol (60 ml) to a solution of compound PM-C1 $(0.10 \mathrm{~g}, 0.30 \mathrm{mmol})$ in hot methanol (10 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a brown solid of compound $\mathbf{P M}-\mathbf{C 1 B r}(0.10 \mathrm{~g}, 70 \%), \mathrm{mp} .231-233^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $\lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon): 222.3$ (4.26), 258.0 (3.62), 381.8 (2.34), $\mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 1577$ ($\mathrm{C}=\mathrm{C}$ stretching), 1208 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 16).

2.5.5 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

4-methylbenzenesulfonate (PM-C2Me)

$\mathrm{An}-\mathrm{CH}_{3}$
PM-C2
PM-C2Me

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate (PM-C2Me), was synthesized by addition of a solution of silver (I) 4-methylbenzenesulfonate ($0.07 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (10 ml) to a solution of compound PM-C2 ($0.10 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (70 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a yellow solid of compound PM-C2Me ($0.06 \mathrm{~g}, 54 \%$), mp. $250-252{ }^{\circ} \mathrm{C}$, $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right)$ $\lambda_{\max }(\mathrm{nm})(\log \varepsilon): 202.7$ (4.68), 217.6 (4.88), 256.2 (3.45), 413.9 (3.75), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 1592$ ($\mathrm{C}=\mathrm{C}$ stretching), 1220 ($\mathrm{C}-\mathrm{O}$ stretching), 1175 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 17).

2.5.6 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

 4-methoxybenzenesulfonate (PM-C2OMe)

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methoxybenzenesulfonate (PM-C2OMe), was synthesized by addition of a solution of silver (I) 4-methoxybenzenesulfonate ($0.07 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (20 ml) to a solution of compound PM-C2 ($0.10 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (70 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a yellow solid of compound PM-C2OMe ($0.07 \mathrm{~g}, 61 \%$), mp. 256-257 ${ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon): 330.3$ (3.21), $413.1(4.46), \mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 1572$
($\mathrm{C}=\mathrm{C}$ stretching), 1220 ($\mathrm{C}-\mathrm{O}$ stretching), 1164 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 18).

2.5.7 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-cholrobenzenesulfonate (PM-C2Cl)

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-chlorobenzenesulfonate ($\mathbf{P M} \mathbf{- C 2 C l}$), was synthesized by addition of a solution of silver (I) 4-chlorobenzenesulfonate ($0.07 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (20 ml) to a solution of compound PM-C2 ($0.10 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (70 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a yellow-orange solid, The brown solid was re-crystallized from methanol to give yellow crystals of compound PM-C2CI ($0.07 \mathrm{~g}, 62 \%$), (mp. $254-256{ }^{\circ} \mathrm{C}$), $\mathrm{UV}\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon): 228.7$ (3.86), 268.4 (3.12), 410.2 (4.37), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 1590$ ($\mathrm{C}=\mathrm{C}$ stretching), 1225 ($\mathrm{C}-\mathrm{O}$ stretching), 1153 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 19).

2.5.8 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

4-bromobenzenesulfonate ($\mathbf{P M}-\mathrm{C} 2 \mathrm{Br}$)

2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium 4-bromobenzenesulfonate (PM-C2Br), was synthesized by addition of a solution of silver (I) 4-Bromobenzenesulfonate ($0.08 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (20 ml) to a solution of compound PM-C2 ($0.10 \mathrm{~g}, 0.24 \mathrm{mmol}$) in hot methanol (70 ml). Upon addition a yellow solid of silver iodide was immediately formed which was removed by filtration and the yellow filtrate was evaporated under reduced pressure to yield a yellow-orange solid of compound PM-C2Br ($0.08 \mathrm{~g}, 72 \%$), mp. 249-251 ${ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\mathrm{nm})(\log \varepsilon): 221.0(4.20), 255.5$ (3.69), 413.9 (2.68), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right)$: 1592 ($\mathrm{C}=\mathrm{C}$ stretching), 1224 (C-O stretching), 1169 ($\mathrm{S}=\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 22).

2.5.9 $\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-

 methylquinolinium tetraiodidozincate(II) (PM-C3Zn)
$\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C3Zn), was synthesized by addition 1:2 molar ratio of a solution of $\operatorname{Zinc}($ II $)$ iodide $(0.15 \mathrm{~g}, 0.40 \mathrm{mmol})$ in hot methanol $(10 \mathrm{ml})$ to a solution of compound PM-C3 ($0.40 \mathrm{~g}, 0.80 \mathrm{mmol}$) in hot methanol (15 ml). The mixture turned orange, stirring for 1 hr and was then evaporated to give a brown solid of compound PM-C3Zn $(0.14 \mathrm{~g}, 40 \%)$, mp. $220-221^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon)$: 218.2 (5.24), 305.4 (4.51), 430.9 (4.99), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3436$ (O-H stretching), 1585 ($\mathrm{C}=\mathrm{C}$ stretching), 1221 ($\mathrm{C}-\mathrm{O}$ stretching), ${ }^{\mathrm{I}} \mathrm{H}$ NMR (see Table 23).

2.5.10 $\operatorname{Bis}[(E)$-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1-

 methylquinolinium tetraiodidozincate(II) (PM-C4Zn)
$\operatorname{Bis}[(E)$-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C4Zn), was synthesized by addition 1:2 molar ratio of a solution of $\operatorname{Zinc}(\mathrm{II})$ iodide $(0.15 \mathrm{~g}, 0.40 \mathrm{mmol})$ in hot methanol $(10 \mathrm{ml})$ to a solution of compound PM-C4 ($0.40 \mathrm{~g}, 0.80 \mathrm{mmol}$) in hot methanol (15 ml). The mixture turned yellow, stirring for 1 hr and was then evaporated to give a brown solid of compound PM-C4ZnBr ($0.14 \mathrm{~g}, 40 \%$), mp. $225-226{ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\text {max }}(\mathrm{nm})$ $(\log \varepsilon): 217.3$ (4.87), 311.6 (3.83), 440.9 (5.04), 561.8 (4.60), IR (KBr) $v\left(\mathrm{~cm}^{-1}\right): 3437$ ($\mathrm{O}-\mathrm{H}$ stretching), 1579 ($\mathrm{C}=\mathrm{C}$ stretching), 1221 ($\mathrm{C}-\mathrm{O}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 27).
2.5.11 $\operatorname{Bis}[(E)$-2-(4-hydroxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C5Zn)

$\operatorname{Bis}[(E)$-2-(4-hydroxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C5Zn), was synthesized by addition 1:2 molar ratio of a solution of Zinc(II) iodide ($0.25 \mathrm{~g}, 0.77 \mathrm{mmol}$) in hot methanol (15 ml) to a solution of compound PM-C5 $(0.60 \mathrm{~g}, 1.54 \mathrm{mmol})$ in hot methanol $(30 \mathrm{ml})$. The mixture turned dark red, stirring for 1 hr and was then evaporated to give a dark red solid of compound PM-C5Zn ($0.37 \mathrm{~g}, 43 \%$), mp. 234-236 ${ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon):$ 220.9 (3.38), 260.6 (3.02), 312.2 (2.79), 426.8 (3.32), $\mathrm{IR}(\mathrm{KBr}) v\left(\mathrm{~cm}^{-1}\right): 3421$ (O-H stretching), 1586 ($\mathrm{C}=\mathrm{C}$ stretching), ${ }^{1} \mathrm{H}$ NMR (see Table 28).
2.5.12 $\operatorname{Bis}[(E)$-2-(4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C6Zn)

$\operatorname{Bis}[(E)$-2-(4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C6Zn), was synthesized by addition 1:2 molar ratio of a solution of $\operatorname{Zinc}($ II $)$ iodide $(0.24 \mathrm{~g}, 0.74 \mathrm{mmol})$ in hot methanol $(35 \mathrm{ml})$ to a solution
of compound PM-C6 ($0.60 \mathrm{~g}, 1.48 \mathrm{mmol}$) in hot methanol (165 ml). The mixture turned brown, stirring for 0.5 hr and was then evaporated to give a brown solid of compound PM-C6Zn ($0.4 \mathrm{~g}, 73 \%$), mp. 229-231 ${ }^{\circ} \mathrm{C}$, UV $\left(\mathrm{CH}_{3} \mathrm{OH}\right) \lambda_{\max }(\mathrm{nm})(\log \varepsilon)$: 219.1 (3.92), 249.2 (3.73), 407.2 (3.68), IR (KBr$) v\left(\mathrm{~cm}^{-1}\right): 1,587(\mathrm{C}=\mathrm{C}$ stretching) and $\mathrm{C}-\mathrm{O}\left(1220 \mathrm{~cm}^{-1}\right) .{ }^{1} \mathrm{H}$ NMR (see Table 29).

CHAPTER 3
 RESULTS AND DISCUSSION

3.1 Structural elucidations of the starting materials

3.1.1 1,4-Dimethylpyridinium iodide (PM-S1)

PM-S1

A pale yellow solid of PM-S1 was received in 66% yield, mp. $140-142{ }^{\circ} \mathrm{C}$. The UV-visible absorption spectra (Fig. 15) exhibited maximum bands at 219.7 and 255.3 nm . The IR spectrum (Fig. 16) revealed the presence of stretching vibration of $\mathrm{C}=\mathrm{C}$ in aromatic ring at $1600-1500 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 17) showed two doublet signals of equivalent protons H-2, H-6 and H-3, H-5 at $\delta 9.09(2 \mathrm{H}, J=6.6 \mathrm{~Hz})$ and $\delta 7.92(2 \mathrm{H}, J=6.6 \mathrm{~Hz})$, respectively. Two singlet signals of $N-\mathrm{CH}_{3}$ and $4-\mathrm{CH}_{3}$ appeared at $\delta 4.55$ and $\delta 2.71 \mathrm{ppm}$, respectively. PM-S1 was assigned to be 1,4-dimethylpyridinium iodide.

3.1.2 1,2-dimethylquinolinium iodide (PM-S2)

PM-S2

A yellow solid of PM-S2 was obtained in 66% yield, mp. $172-174{ }^{\circ} \mathrm{C}$. The UV-visible absorption spectra (Fig. 18) showed maximum bands at 204.8, 234.5 and 316.7 nm . The IR spectrum (Fig. 19) exhibited stretching vibration of $\mathrm{C}=\mathrm{C}$ in aromatic ring at $1600-1500 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum was shown in Fig. 20. The peak assigned to $N-\mathrm{CH}_{3}$ and $2-\mathrm{CH}_{3}$ protons appeared at $\delta 4.57(3 \mathrm{H}, s)$ and $\delta 3.20(3 \mathrm{H}, s)$, respectively. Two doublet signals at $\delta 9.07(1 \mathrm{H}, J=8.7 \mathrm{~Hz})$ and $\delta 8.09(1 \mathrm{H}, J=8.7 \mathrm{~Hz})$ were assigned to H-4 and H-3, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed the signals of aromatic protons H-5 ($\delta 8.39$), H-6 ($\delta 7.98$), H-7 ($\delta 8.23$) and H-8 ($\delta 8.55$). From the above spectral data, PM-S2 was assigned to be 1,2-dimethylquinolinium iodide.

3.2 Structural elucidations of cation parts

3.2.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium iodide (PM-C1)

The pale yellowish green solid of PM-C1 was prepared (75% yield), mp. 219-221 ${ }^{\circ} \mathrm{C}$. The UV-visible spectrum (Fig. 21) showed maxima at 218.6, 250.6 and 389.7 nm . The $\mathrm{C}=\mathrm{C}$ stretching vibration was observed in the IR spectrum (Fig. 22) at $1607 \mathrm{~cm}^{-1}$ and the C-O stretching vibration was observed at $1168 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 23, see Table 1) consisted of singlet signals of $N-\mathrm{CH}_{3}$ protons at $\delta 4.40 \mathrm{ppm}(3 \mathrm{H})$. Two doublets of $\mathrm{H}-1^{\prime}(\delta 7.04, J=15.6$ Hz) and $\mathrm{H}-2^{\prime}(\delta 8.08, J=15.6 \mathrm{~Hz}$) were assigned to be trans-disubstituted double bonds and two doublets at $\delta 8.89(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ and $\delta 8.10(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ were the signals of H-2, H-6 and H-3, H-5, respectively. Resonances of aromatic protons $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$ and H-5" were also shown at $\delta 7.49(d, J=5.1 \mathrm{~Hz}), \delta 7.16(t, J=5.1 \mathrm{~Hz})$ and $\delta 7.57(d, J=5.1 \mathrm{~Hz})$, respectively. Thus, these assignments clearly support the proposed structure.

Table $1{ }^{1} \mathrm{H}$ NMR of compound PM-C1

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.40(3 \mathrm{H}, s)$
2	$8.89(2 \mathrm{H}, d, 6.9)$
6	
3	$8.10(2 \mathrm{H}, d, 6.9)$
5	$7.04(1 \mathrm{H}, d, 15.6)$
1^{\prime}	$8.08(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$7.49(1 \mathrm{H}, d, 5.1)$
$3^{\prime \prime}$	$7.16(1 \mathrm{H}, t, 5.1)$
$4^{\prime \prime}$	$7.57(1 \mathrm{H}, d, 5.1)$
$5^{\prime \prime}$	

3.2.2 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolidinium iodide

 (PM-C2)

Compound PM-C2 is a brown-red solid (92% yield), mp. $219-221^{\circ} \mathrm{C}$. The UV-visible spectrum (Fig. 24) showed maximum absorptions at 217.5, 252.8, 314.1 and 416.2 nm . The IR spectrum (Fig. 25) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}$ ($1605 \mathrm{~cm}^{-1}$) and C-O ($1233 \mathrm{~cm}^{-1}$).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 26, see Table 2) showed characteristic of trans-disubstituted double bonds at $\delta 7.74\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.09$ $\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$. The singlet signal at $\delta 4.62(3 \mathrm{H})$ was assigned as $\mathrm{N}-\mathrm{CH}_{3}$. The triplet and quartet signals at $\delta 1.42(3 \mathrm{H}, J=6.9 \mathrm{~Hz})$ and $\delta 4.15(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ were assigned as CH_{3} and CH_{2} of ethoxy, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.89(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 7.02(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublet signals at $\delta 8.93$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.50(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ were the signals of $\mathrm{H}-4$ and $\mathrm{H}-3$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons $\mathrm{H}-5$ ($\delta 8.27$), H-6 ($\delta 7.90$), H-7 ($\delta 8.15$) and H-8 ($\delta 8.45$). Accordingly, compound PM-C2 was assigned to be 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolidinium iodide.

Table $2{ }^{1} \mathrm{H}$ NMR of compound PM-C2

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
CH_{3}	$1.42(3 \mathrm{H}, t, 6.9)$
OCH_{2}	$4.15(2 \mathrm{H}, q, 6.9)$
$1-\mathrm{CH}_{3}$	$4.60(1 \mathrm{H}, s)$
3	$8.50(1 \mathrm{H}, d, 9.0)$
4	$8.93(1 \mathrm{H}, d, 9.0)$
5	$8.27(1 \mathrm{H}, d, 7.5)$
6	$7.90(1 \mathrm{H}, t, 7.5)$
7	$8.15(1 \mathrm{H}, t, 7.5)$
8	$8.45(1 \mathrm{H}, t, 7.5)$
1^{\prime}	$7.74(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$8.09(1 \mathrm{H}, d, 15.6)$
$2^{\prime \prime}$	$7.89(2 \mathrm{H}, d, 8.7)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$7.02(2 \mathrm{H}, d, 8.7)$
$5^{\prime \prime}$	

3.2.3 2-[(E)-2-(3-Hydroxy-4-methoxyphenyl)ethenyl]-1-

methylquinolinium iodide (PM-C3)

PM-C3

Compound PM-C3 was synthesized as a red-brown crystal (64% yield), mp. $218-220{ }^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 30) appeared at 216.1, 306.2 and 431.3 nm . The IR spectrum (Fig. 31) displayed stretching vibrations of O-H ($3424 \mathrm{~cm}^{-1}$), $\mathrm{C}=\mathrm{C}\left(1612\right.$ and $\left.1583 \mathrm{~cm}^{-1}\right)$ and $\mathrm{C}-\mathrm{O}\left(1235 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 29, see Table 3) showed characteristic of trans-disubstituted double bonds at $\delta 7.69\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.09$ $\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$.Two singlet signals at $\delta 4.65(3 \mathrm{H})$ and $\delta 3.95(3 \mathrm{H})$ were assigned as $\mathrm{N}-\mathrm{CH}_{3}$ and $\mathrm{O}-\mathrm{CH}_{3}$, respectively. Three signals of 1,3,4-trisubstituted benzene pattern at $\delta 7.49(1 \mathrm{H}, d, J=2.1 \mathrm{~Hz}), \delta 7.36(1 \mathrm{H}, d, J=8.4 \mathrm{~Hz})$ and $\delta 7.41$ $(1 \mathrm{H}, b r d, J=8.4 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$, respectively. Two doublet signals at $\delta 8.95(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.52(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ were the signals of H-4 and H-3, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also further showed the signals of aromatic protons of H-5 ($\delta 8.32$), $\mathrm{H}-6(\delta 7.93)$, $\mathrm{H}-7(\delta 8.18)$ and $\mathrm{H}-8(\delta 8.49)$. Accordingly, compound PM-C3 was considered to be 2-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium iodide.

Table $3{ }^{1} \mathrm{H}$ NMR of compound PM-C3

Position	$\boldsymbol{\delta}_{\mathrm{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.65(3 \mathrm{H}, s)$
3	$8.52(1 \mathrm{H}, d, 9)$
4	$8.95(1 \mathrm{H}, d, 9)$
5	$8.32(1 \mathrm{H}, d, 7.5)$
6	$7.93(1 \mathrm{H}, t, 7.5)$
7	$8.18(1 \mathrm{H}, d t, 1.5,7.5)$
8	$8.49(1 \mathrm{H}, d, 7.5)$
1^{\prime}	$7.69(1 \mathrm{H}, d, 15.9)$
2^{\prime}	$8.09(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$7.49(1 \mathrm{H}, d, 2.1)$
$4^{\prime \prime}-\mathrm{OCH}_{3}$	$3.95(3 \mathrm{H}, s)$
$5^{\prime \prime}$	$7.36(1 \mathrm{H}, d, 8.4)$
$6^{\prime \prime}$	$7.41(1 \mathrm{H}, b r d, 8.4)$

3.2.4 2-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-

methylquinolinium iodide (PM-C4)

PM-C4

Compound PM-C4 is a dark red crystal (68% yield), $\mathrm{mp} .248-250{ }^{\circ} \mathrm{C}$. The UV-visible spectrum (Fig. 27) showed maximum absorptions at 215.3, 308.9, 440.1 and 576.5 nm . The IR spectrum (Fig. 28) exhibited stretching vibrations of O-H ($3439 \mathrm{~cm}^{-1}$), $\mathrm{C}=\mathrm{C}\left(1609\right.$ and $1580 \mathrm{~cm}^{-1}$) and C-O ($1233 \mathrm{~cm}^{-1}$).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 32, see Table 4) showed characteristic of trans-disubstituted double bonds at $\delta 7.73\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.17$ $\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$.Three singlet signals at $\delta 10.02(1 \mathrm{H}), \delta 4.62(3 \mathrm{H})$ and $\delta 3.95(3 \mathrm{H})$ were assigned as $\mathrm{OH}, N-\mathrm{CH}_{3}$ and $\mathrm{O}-\mathrm{CH}_{3}$. Three signals of $1,3,4-$ trisubstituted benzene pattern at $\delta 7.58(1 \mathrm{H}, d, J=1.8 \mathrm{~Hz}), \delta 6.93$ $(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz})$ and $\delta 7.41(1 \mathrm{H}, d d, J=1.8,8.1 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$ and H-6", respectively. Two doublet signals at $\delta 8.94(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.53$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ were the signals of $\mathrm{H}-4$ and $\mathrm{H}-3$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons H-5 ($\delta 8.30$), H-6 ($\delta 7.90$), H-7 ($\delta 8.15$) and H-8 (δ 8.50). Accordingly, compound PM-C4 was assigned to be 2-[(E)-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium iodide.

Table $4{ }^{1} \mathrm{H}$ NMR of compound PM-C4

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.62(3 \mathrm{H}, s)$
3	$8.53(1 \mathrm{H}, d, 9)$
4	$8.94(1 \mathrm{H}, d, 9)$
5	$8.30(1 \mathrm{H}, d d, 1.2,7.5)$
6	$7.90(1 \mathrm{H}, t, 7.5)$
7	$8.15(1 \mathrm{H}, d t, 1.2,7.5)$
8	$8.50(1 \mathrm{H}, d, 7.5)$
1^{\prime}	$7.73(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$8.17(1 \mathrm{H}, d, 15.6)$
$2^{\prime \prime}$	$7.58(1 \mathrm{H}, d, 1.8)$
$3^{\prime \prime}-\mathrm{OCH}_{3}$	$3.95(3 \mathrm{H}, s)$
$4^{\prime \prime}-\mathrm{OH}$	$10.02(1 \mathrm{H}, s)$
$5^{\prime \prime}$	$6.93(1 \mathrm{H}, d, 8.1)$
$6^{\prime \prime}$	$7.41(1 \mathrm{H}, d d, 1.8,8.1)$

3.2.5 2-[(E)-2-(4-Hydroxyphenyl)ethenyl]-1-methylquinolinium

iodide (PM-C5)

PM-C5
Compound PM-C5 is a brown solid (73% yield), mp. $192-194{ }^{\circ} \mathrm{C}$. The UV-visible spectrum (Fig. 33) showed maximum absorptions at 218.3, 258.9 and 425.1 nm . The IR spectrum (Fig. 34) exhibited stretching vibrations of $\mathrm{O}-\mathrm{H}$ ($3447 \mathrm{~cm}^{-1}$), $\mathrm{C}=\mathrm{C}\left(1576 \mathrm{~cm}^{-1}\right)$ and $\mathrm{C}-\mathrm{O}\left(1220 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 35, see Table 5) showed characteristic of trans-disubstituted double bonds at $\delta 7.02\left(1 \mathrm{H}, d, J=15.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 7.98(1 \mathrm{H}$, $\left.d, J=15.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$.The singlet signal at $\delta 4.35(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. Two signals of 4-substituted benzene pattern at $\delta 7.68(2 \mathrm{H}, d, J=9.0 \mathrm{~Hz})$ and $\delta 6.72$ $(2 \mathrm{H}, d, J=9.0 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublet signals at $\delta 8.47(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.22(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ were the signals of H-4 and H-3, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons H-5 ($\delta 8.05$), H-6 ($\delta 7.72$), H-7 ($\delta 8.01$) and H-8 ($\delta 8.15)$. Accordingly, compound PM-C5 was assigned to be 2-[(E)-2-(4-hydroxyphenyl)ethenyl]-1methylquinolinium iodide.

Table $5{ }^{1} \mathrm{H}$ NMR of compound PM-C5

Position	$\boldsymbol{\delta}_{\mathrm{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.35(3 \mathrm{H}, s)$
3	$8.22(1 \mathrm{H}, d, 9.0)$
4	$8.47(1 \mathrm{H}, d, 9.0)$
5	$8.05(1 \mathrm{H}, b r d, 8.1)$
6	$7.72(1 \mathrm{H}, d d, 7.2,8.1)$
7	$8.01(1 \mathrm{H}, d d d, 1.5,7.2,8.4)$
8	$8.15(1 \mathrm{H}, d, 8.4)$
1^{\prime}	$7.02(1 \mathrm{H}, d, 15.3)$
2^{\prime}	$7.98(1 \mathrm{H}, d, 15.3)$
$2^{\prime \prime}$	$7.68(2 \mathrm{H}, d, 9.0)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$6.72(2 \mathrm{H}, d, 9.0)$
$5^{\prime \prime}$	

3.2.6 2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylquinolinium

iodide (PM-C6)

PM-C6

Compound PM-C6 was synthesized as brown solid (67% yield), mp. 225-226 ${ }^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 36) appeared at 217.3 and 407.6 nm . The IR spectrum (Fig. 37) displayed stretching vibrations of $\mathrm{C}=\mathrm{C}$ (1569-1595 cm^{-1}) and C-O (1221 cm ${ }^{-1}$).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 38, see Table 6) showed characteristic of trans-disubstituted double bonds at $\delta 7.72\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.10$ $\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$.Two singlet signals at $\delta 4.62(3 \mathrm{H})$ and $\delta 3.91(3 \mathrm{H})$ were assigned as $\mathrm{N}-\mathrm{CH}_{3}$ and $\mathrm{O}-\mathrm{CH}_{3}$, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.90(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 7.04(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublet signals at $\delta 8.91$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.47(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ were the signals of $\mathrm{H}-4$ and $\mathrm{H}-3$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also further showed the signals of aromatic protons of H-5 (δ 8.27), H-6 (δ 7.92), H-7 (δ 8.17) and H-8 (δ 8.42). Accordingly, compound PM-C6 was considered to be 2-[(E)-2-(4-methoxyphenyl)ethenyl]-1methylquinolinium iodide.

Table $6{ }^{1} \mathrm{H}$ NMR of compound PM-C6

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.62(3 \mathrm{H}, s)$
3	$8.47(1 \mathrm{H}, d, 9.0)$
4	$8.91(1 \mathrm{H}, d, 9.0)$
5	$8.27(1 \mathrm{H}, b r d, 8.1)$
6	$7.92(1 \mathrm{H}, t, 8.1)$
7	$8.17(1 \mathrm{H}, d t, 1.5,8.1)$
8	$8.42(1 \mathrm{H}, d, 8.1)$
1^{\prime}	$7.72(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$8.10(1 \mathrm{H}, d, 15.6)$
$2^{\prime \prime}$	$7.90(2 \mathrm{H}, d, 8.7)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$7.04(2 \mathrm{H}, d, 8.7)$
$5^{\prime \prime}$	$3.91(3 \mathrm{H}, s)$
$4^{\prime \prime}-\mathrm{OCH}_{3}$	

3.3 Structural elucidations of anions counter parts

3.3.1 Silver (I) 4-methylbenzenesulfonate (An-CH3)

A white solid of compound $\mathbf{A n}-\mathbf{C H}_{3}$ was obtained in 71% yield which decomposed at $264-266{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig.39) showed equivalent protons of p-disubstituted aromatic at $\delta 7.74(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, \mathrm{H}-2, \mathrm{H}-6)$ and $7.17(2 \mathrm{H}, d, J=8.1 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5)$. A singlet signal of $4-\mathrm{CH}_{3}$ was observed at $\delta 2.38 \mathrm{ppm}$. Therefore, compound $\mathbf{A n}-\mathbf{C H}_{3}$ was identified to be silver (I) 4-methylbenzenesulfonate.

3.3.2 Silver (I) 4-methoxybenzenesulfonate (An-OCH3)

Compound An- $\mathbf{O C H}_{3}$ was obtained as a white solid, decomposed at $240-242^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 40) showed two doublet signals of H-2, H-6 and H-3, H-5 at $\delta 7.78(2 \mathrm{H}, J=8.7 \mathrm{~Hz})$ and $\delta 6.86(2 \mathrm{H}, J=8.7 \mathrm{~Hz})$ respectively. The singlet signal of $4-\mathrm{OCH}_{3}$ appeared at $\delta 3.82(3 \mathrm{H})$. Therefore, compound $\mathbf{A n}-\mathbf{O C H}_{3}$ was assigned to be silver (I) 4-methoxybenzenesulfonate.

3.3.3 Silver (I) 4-chlorobenzenesulfonate (An-Cl)

An-Cl

Compound An-Cl was synthesized as a white solid, decomposed at $227-229{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 41) exhibited only two doublet signals of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern at $\delta 7.76(\mathrm{H}-2, \mathrm{H}-6)$ and $\delta 7.50(\mathrm{H}-3, \mathrm{H}-5)$ with coupling constant of 7.8 Hz which indicated the location of Cl at $\mathrm{C}-4$. Thus, compound An-Cl was considered to be silver (I) 4-chlorobenzenesulfonate.

3.3.4 Silver (I) 4-bromobenzenesulfonate (An-Br)

An-Br

Compound An-Br was received as a white solid, decomposed at $230-232{ }^{\circ} \mathrm{C}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 42) exhibited only two doublets of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ pattern at $\delta 7.81(\mathrm{H}-2, \mathrm{H}-6)$ and $\delta 7.34(\mathrm{H}-3, \mathrm{H}-5)$ with coupling constant of 8.4 Hz which indicated the location of Br at $\mathrm{C}-4$. Accordingly, compound $\mathbf{A n}-\mathrm{Br}$ was assigned as silver (I) 4-bromobenzenesulfonate.

3.4 Structural elucidations of Salts

3.4.1 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

 4-methylbenzenesulfonate (PM-C1Me)

PM-C1Me
Compound PM-C1Me was obtained as a brown crystals (75\% yield), mp. 232-234 ${ }^{\circ} \mathrm{C}$. The UV-Vis absorption spectra (Fig. 43) showed maximum bands at 220.9, 251.4 and 379.2 nm . The IR spectrum (Fig. 44) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}\left(1523 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1186 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 45, see Table 7) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 6.91\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 7.94(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}$, H-2'). The singlet signal at $\delta 4.22(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. Equivalent protons of p-disubstituted aromatic appeared as two doublet signals at $\delta 8.72(2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6)$ and $\delta 7.93(2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5)$. Three signals of thiophene ring at
$\delta 7.37(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz}), \delta 7.04(1 \mathrm{H}, t, J=5.1 \mathrm{~Hz})$ and $\delta 7.49(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz})$ were assigned to $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons of anionic part at $\delta 7.59\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.01\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. The singlet signal of $4^{\prime \prime \prime} \square-\mathrm{OCH}_{3}$ \square appeared at $\delta 3.95(3 \mathrm{H})$. These observations confirmed the structure of compound PM-C1Me.

The crystal structure of PM-C1Me is illustrated in Fig. 7 and Fig. 8 which show the packing diagram of PM-C1Me and intermolecular hydrogen bondings. The crystal and experiment data are given in Table 8. Bond lengths and angles are shown in Table 9. The X-ray study shows that PM-C1Me crystallized out in centrosymmetric space group $\boldsymbol{P} \overline{\mathbf{1}}$.

The asymmetric unit of the PM-C1Me compound consists of the $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NS}^{+}$cation and the $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{O}_{3} \mathrm{~S}^{-}$anion. The cation exists in an E configuration with respect to the ethenyl $\mathrm{C}=\mathrm{C}$ bond $[\mathrm{C} 6=\mathrm{C} 7=1.346(3) \AA$. . The cation is essentially planar with a dihedral angle between the pyridinium and thiophene rings of $1.94(1)^{\circ}$. The orientation of the anion with respect to the cation can be indicated by the interplanar angles between the benzene ring [C13-C18] with the pyridinium [C1-C5/N1] and thiophene [C8-C11/S1] rings of 75.23(1) and 76.83(1) ${ }^{\circ}$, respectively. The ethenyl unit is nearly coplanar with the pyridinium and thiophene rings with the torsion angles $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7=3.0(3)^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{S} 1=-3.7(3)^{\circ}$. The atom O 3 of the sulfonate and the S 1 atom of the thiophene contribute to the weak intramolecular $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{S}$ interactions (Fig. 7 and Table 10), forming $S(5)$ ring motifs (Bernstein et al., 1995).

All the O atoms of 4-methylbenzenesulfonate anion are involved in the $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ weak interaction (Table 10). In the crystal packing (Fig. 8), the cations and anions form alternate layers parallel to the $b c$ plane. Within each layer both cations and anions are arranged into chains directed along the b axis. The cations and anions chains are interconnected by $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ weak interactions into a three dimensional network. The crystal structure is future stabilized by the $\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A} \cdots \pi$ and $\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A} \cdots \pi$ interactions (Table 10); Cg 1 is the centroid of the $\mathrm{C} 13-\mathrm{C} 18$ benzene ring.

Table $7{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{P M}-\mathrm{C} 1 \mathrm{Me}$

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m}), \boldsymbol{m u l t}, \boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.22(3 \mathrm{H}, s)$
2	$8.72(2 \mathrm{H}, d, 6.9)$
6	
3	$7.93(2 \mathrm{H}, d, 6.9)$
5	$6.91(1 \mathrm{H}, d, 15.6)$
1^{\prime}	$7.94(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$7.37(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$3^{\prime \prime}$	$7.04(1 \mathrm{H}, t, 5.1 \mathrm{~Hz})$
$4^{\prime \prime}$	$7.49(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$5^{\prime \prime}$	$7.59(2 \mathrm{H}, d, 8.4)$
$2^{\prime \prime \prime}$	
$6^{\prime \prime \prime}$	$7.01(2 \mathrm{H}, d, 8.4)$
$3^{\prime \prime \prime}$	$3.95(3 \mathrm{H}, s)$
$5^{\prime \prime \prime}$	
$4^{\prime \prime \prime}-\mathrm{CH}_{3}$	

Table 8 Crystal data of PM-C1Me.

Identification code	PM-C1Me
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}_{2}$
Formula weight	373.47
Temperature	$100.0(1) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Triclinic, $P \overline{1}$
Unit cell dimensions	$a=9.2947(1) \AA \quad \alpha=87.817(1)^{\circ}$
	$b=9.6144(1) \AA \quad \beta=64.702(1)^{\circ}{ }^{\circ}$
	$c=10.779(1) \AA \quad \gamma=88.712(1)^{\circ}$
Volume	$870.214(15) \AA^{3}$
Z, Calculated density	$2,1.425 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.324 \mathrm{~mm}{ }^{-1}$
$\mathrm{~F}(000)$	392
Crystal size	0.36 x 0.35 x 0.18 mm
Theta range for data collection	2.42 to 29.00°
Limiting indices	$-12<=\mathrm{h}<=12,-13<=\mathrm{k}<=13,-14<=1<=14$
Reflections collected / unique	$18024 / 4606[\mathrm{R}($ int $)=0.0231]$
Completeness to theta $=29.00$	99.6%
Max. and min. transmission	0.9451 and 0.8927
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$4606 / 0 / 228$
Goodness-of-fit on F^{2}	1.044
Final R indices [l>2 $\sigma(\mathrm{I})]$	$R 1=0.0514, w R 2=0.1439$
R indices (all data	$R 1=0.0565, w R 2=0.1485$
Largest diff. peak and hole	0.291 and $-0.253 \mathrm{e} . \AA^{3}$

Table 9 Bond lengths [\AA] and angles [${ }^{\circ}$] for PM-C1Me

S1-C11	$1.707(2)$	C9-C10	$1.484(3)$
S1-C8	$1.715(2)$	C9-H9A	0.9300
S2-O2	$1.4569(15)$	C10-C11	$1.362(3)$
S2-O3	$1.4574(14)$	C10-H10A	0.93
S2-O1	$1.4587(14)$	C11-H11A	0.93
S2-C16	$1.7769(18)$	C12-H12A	0.96
N1-C3	$1.351(2)$	C12-H12B	0.96
N1-C2	$1.352(3)$	C12-H12C	0.96
N1-C12	$1.479(3)$	C13-C18	$1.394(3)$
C1-C2	$1.367(3)$	C13-C14	$1.398(3)$
C1-C5	$1.400(3)$	C13-C19	$1.504(3)$
C1-H1A	0.93	C14-C15	$1.391(3)$
C2-H2A	0.93	C14-H14A	0.93
C3-C4	$1.371(3)$	C15-C16	$1.393(3)$
C3-H3A	0.93	C15-H15A	0.93
C4-C5	$1.403(3)$	C16-C17	$1.393(3)$
C4-H4A	0.93	C17-C18	$1.393(3)$
C5-C6	$1.458(3)$	C17-H17A	0.93
C6-C7	$1.346(3)$	C18-H18A	0.93
C6-H6A	0.9300	C19-H19A	0.96
C7-C8	$1.447(3)$	C19-H19B	0.96
C7-H7A	0.93	C19-H19C	0.96
C8-C9	$1.357(3)$		
O2-S2-O3	$112.96(8)$	C11-S1-C8	$92.72(11)$
O2-S2-O1	$113.06(9)$	C3-N1-C12	$118.95(17)$
O3-S2-O1	$113.19(9)$	C2-N1-C12	$120.41(17)$
O2-S2-C16	$105.46(9)$	C2-C1-C5	$120.85(18)$

Table 9 (Continued)

C3-N1-C2	$120.63(17)$	N1-C12-H12A	109.5
N1-C2-C1	$120.52(18)$	N1-C12-H12B	109.5
N1-C2-H2A	119.7	H12A-C12-H12B	109.5
C1-C2-H2A	119.7	N1-C12-H12C	109.5
N1-C3-C4	$120.49(18)$	H12A-C12-H12C	109.5
N1-C3-H3A	119.8	H12B-C12-H12C	109.5
C4-C3-H3A	119.8	C18-C13-C14	$118.08(18)$
C3-C4-C5	$120.62(18)$	C18-C13-C19	$121.03(18)$
C3-C4-H4A	119.7	C14-C13-C19	$120.87(18)$
C5-C4-H4A	119.7	C15-C14-C13	$121.46(18)$
C1-C5-C4	$116.87(18)$	C15-C14-H14A	119.3
C1-C5-C6	$117.82(18)$	C13-C14-H14A	119.3
C4-C5-C6	$125.3(19)$	C14-C15-C16	$119.38(17)$
C7-C6-C5	$123.75(19)$	C14-C15-H15A	120.3
C7-C6-H6A	118.1	C16-C15-H15A	120.3
C5-C6-H6A	118.1	C15-C16-C17	$120.27(17)$
C6-C7-C8	$126.6(2)$	C15-C16-S2	$119.07(14)$
C6-C7-H7A	116.7	C17-C16-S2	$120.61(14)$
C8-C7-H7A	116.7	C16-C17-C18	$119.45(17)$
C9-C8-C7	$122.8(2)$	C16-C17-H17A	120.3
C9-C8-S1	$112.58(16)$	C18-C17-H17A	120.3
C7-C8-S1	$124.57(17)$	C17-C18-C13	$121.35(18)$
C8-C9-C10	$110.76(17)$	C17-C18-H18A	119.3
C8-C9-H9A	124.6	C13-C18-H18A	119.3
C10-C9-H9A	124.6	C13-C19-H19A	109.5
C11-C10-C9	$112.07(19)$	C13-C19-H19B	109.5
C11-C10-H10A	124.	H19A-C19-H19B	109.5
C9-C10-H10A	124.	C13-C19-H19C	109.5
C10-C11-S1	$111.84(17)$	H19A-C19-H19C	109.5
C10-C11-H11A	124.1	H19B-C19-H19C	109.5
S1-C1-H11A	124.1		

Table 10 Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

D-H*A	D-H	$\mathrm{H}^{\prime \prime} A$	D"A	$\mathrm{D}-\mathrm{H}^{*} A$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 3^{\text {i }}$	0.93	2.31	3.219(3)	166
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A} \cdots{ }^{\cdots} 1^{\text {ii }}$	0.93	2.49	3.168(2)	130
C6-H6A ${ }^{\circ} \mathrm{O} 2$	0.93	2.56	3.378(3)	147
C11- $\mathrm{H} 11 \mathrm{~A}^{\cdots} \mathrm{O} 1^{\text {iii }}$	0.93	2.54	3.303(3)	139
C12-H12A ${ }^{\cdots} \mathrm{Ol}^{\text {i }}$	0.96	2.52	3.455(3)	165
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{~A} \cdots \mathrm{O}^{\text {ii }}$	0.96	2.47	3.341(3)	151
C15-H15A $\cdots 2^{\text {a }}$ iv	0.93	2.42	3.272(2)	152
C17-H17A ${ }^{\text {O }} \mathrm{O}^{\text {i }}$	0.93	2.43	$3.202(2)$	141
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}^{\cdots} \mathrm{Cg} 1^{\text {v }}$	0.93	2.62	3.431(2)	145
C10-H10A ${ }^{\text {C }} \mathrm{Cg} 1^{\text {vi }}$	0.93	2.95	3.666(3)	135

Symmetry codes: (i) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$; (ii) $\mathrm{x}-1, \mathrm{y}, \mathrm{z}+1$; (iii) $-\mathrm{x}+1,-\mathrm{y}+2,-\mathrm{z}$; (iv) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z} ; \quad$ (v) $-\mathrm{x},-\mathrm{y}+1,-\mathrm{z}+1$; (vi) $\mathrm{x}-1, \mathrm{y}+1, \mathrm{z} . \operatorname{Cg} 1$ is the centroid of the C13-C18 benzene ring.

Figure 7 X-ray ORTEP diagram of the compound PM-C1Me

Figure 8 Packing diagram of PM-C1Me viewed down the a axis with H -bonds shown as dashed lines.

3.4.2 4-[(\boldsymbol{E})-2-(2-Thienyl)ethenyl]-1-methylpyridinium

4-methoxybenzenesulfonate (PM-C1OMe)

PM-C1OMe

Compound PM-C1OMe was obtained as a yellow solid (87% yield), mp. 234-236 ${ }^{\circ} \mathrm{C}$. The UV-Vis absorption spectra (Fig. 46) showed maximum bands at 230.2 and 381.1 nm . The IR spectrum (Fig. 47) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}$ $\left(1590 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1188 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 48, see Table 11) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 6.99\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.01(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime}\right)$. The singlet signal at $\delta 4.43(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. Equivalent protons of p-disubstituted aromatic appeared as two doublet signals at $\delta 8.82(2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6)$ and $\delta 7.98(2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5)$. Three signals of thiophene ring at $\delta 7.46(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz}), \delta 7.16(1 \mathrm{H}, t, J=5.1 \mathrm{~Hz})$ and $\delta 7.57(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz})$ were assigned to $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons of anionic part at $\delta 7.77\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 6.81\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. The singlet signal of $4{ }^{\prime \prime \prime} \square-\mathrm{OCH}_{3}$ \square appeared at $\delta 3.79(3 \mathrm{H})$. These observations confirmed that PM-C1OMe is 4-[(E)-2-(2-thienyl)ethenyl]-1-methylpyridinium 4-methoxybenzenesulfonate.

Table $11{ }^{1} \mathrm{H}$ NMR of compound PM-C1OMe

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.43(3 \mathrm{H}, s)$
2	$8.82(2 \mathrm{H}, d, 6.9)$
6	
3	$7.98(2 \mathrm{H}, d, 6.9)$
5	$6.99(1 \mathrm{H}, d, 15.6)$
1^{\prime}	$8.01(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$7.46(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$3^{\prime \prime}$	$7.16(1 \mathrm{H}, t, 5.1 \mathrm{~Hz})$
$4^{\prime \prime}$	$7.57(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$5^{\prime \prime}$	$7.77(2 \mathrm{H}, d, 8.4)$
$2^{\prime \prime \prime}$	
$6^{\prime \prime \prime}$	$6.81(2 \mathrm{H}, d, 8.4)$
$3^{\prime \prime \prime}$	$3.79(3 \mathrm{H}, s)$
$5^{\prime \prime \prime}$	
$4^{\prime \prime \prime}-\mathrm{OCH}_{3}$	

3.4.3 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

4-chlorobenzenesulfonate (PM-C1CI)

PM-C1Cl

Compound PM-C1CI was obtained as a brown crystals (90% yield), $\mathrm{mp} .230-232{ }^{\circ} \mathrm{C}$. The UV-Vis absorption spectra (Fig. 49) showed maximum bands at 220.9, 251.4 and 379.2 nm . The IR spectrum (Fig. 50) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}\left(1523 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1210 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 51, see Table 12) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 6.99\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.02(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}$, H-2'). The singlet signal at $\delta 4.34(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. Equivalent protons of p-disubstituted aromatic appeared as two doublet signals at $\delta 8.79(2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6)$ and $\delta 8.01(2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5)$. Three signals of thiophene ring at $\delta 7.47(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz}), \delta 7.14(1 \mathrm{H}, t, J=5.1 \mathrm{~Hz})$ and $\delta 7.58(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz})$ were assigned to $\mathrm{H}-3^{\prime \prime}$, H-4" and $\mathrm{H}-5^{\prime \prime}$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons of anionic part at $\delta 7.79\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.30\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. These observations confirmed that $\mathbf{P M}-\mathbf{C 1 C l}$ is 4-[(E)-2-(2-thienyl)ethenyl]-1-methylpyridinium 4-chlorobenzenesulfonate.

The crystal structure of PM-C1CI is illustrated in Fig. 9 and Fig. 10 which show the packing diagram of $\mathbf{P M}-\mathbf{C 1 C l}$ and intermolecular hydrogen bondings. The crystal and experiment data are given in Table 12. Bond lengths and angles are shown in Table 13. The X-ray study shows that PM-C1Cl crystallized out in centrosymmetric space group $P \mathbf{P 2}_{1} / c$.

The asymmetric unit of the PM-C1Cl compound consists of the $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NS}^{+}$cation and the $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{ClO}_{3} \mathrm{~S}^{-}$anion. The cation is almost planar and exists in the E configuration with respect to the $\mathrm{C} 6=\mathrm{C} 7$ double bond $[1.334(3) \AA]$. The cation is almost perpendicular to the anion as is indicated by the angles between the mean planes of the chlorophenyl ring to the pyridinium as well as to the thiophene ring being $87.64(9)^{\circ}$ and $86.73(9)^{\circ}$, respectively. The dihedral angle between the pyridinium and the thiophene rings is $5.74(10)^{\circ}$. The ethenyl unit is nearly planar. The torsion angles $\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7=-4.3(3)^{\circ}$ and $\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{S} 1=-1.5(3)^{\circ}$.

The atom O 3 of the sulfonate and the S atom of the thiophene contribute to the $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{S}$ intramolecular weak interactions (Fig. 9 and Table 15) forming $S(5)$ ring motifs (Bernstein et al., 1995).

All the O atoms of 4-chlorobenzenesulfonate anion are involved in the $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ weak interaction (Table 15). The cations and anions form alternate layers parallel to the $a b$ plane. Within each respective layer, the ions are interconnected by $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ weak ineractions and in each respective layer can be distinguished chains directed along the b axis. The alternating layers are separated by 4.282(2) \AA and are future linked into a three dimensional network by $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ weak interaction (Table 15). The sulfonate as well as the thiophene are involved in $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ and $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{S}$ intramolecular weak interactions, respectively. These weak hydrogen bonds participate in $\mathrm{S}(5)$ ring motifs.The crystal structure is future stabilized by the $\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B} \cdots \pi$ interaction to the thiophene ring $\mathrm{C} 8-\mathrm{C} 11 / \mathrm{S} 1: \mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}=0.96$; $\mathrm{H} 12 \mathrm{~B}{ }^{\cdots} \mathrm{Cg} 1^{\mathrm{i}}=2.692 ; \mathrm{C} 12-\mathrm{Cg} 1^{\mathrm{i}}=3.515(2) \AA \AA ; \mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}^{\cdots} \mathrm{Cg} 1^{\mathrm{i}}=144^{\circ} .\left[\mathrm{Cg} 1^{\mathrm{i}}\right.$ is the centroid of the S1/C8-C11 thiophene ring (symmetry code: (i): 2-x, 2-y, 1-z).]

Table $12{ }^{1} \mathrm{H}$ NMR of compound PM-C1CI

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.34(3 \mathrm{H}, s)$
2	$8.79(2 \mathrm{H}, d, 6.9)$
6	
3	$8.01(2 \mathrm{H}, d, 6.9)$
5	$6.99(1 \mathrm{H}, d, 15.6)$
1^{\prime}	$8.02(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$7.47(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$3^{\prime \prime}$	$7.14(1 \mathrm{H}, t, 5.1 \mathrm{~Hz})$
$4^{\prime \prime}$	$7.58(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$5^{\prime \prime}$	$7.79(2 \mathrm{H}, d, 8.4)$
$2^{\prime \prime \prime}$	
$6^{\prime \prime \prime}$	$7.3(2 \mathrm{H}, d, 8.4)$
$3^{\prime \prime \prime}$	
$5^{\prime \prime \prime}$	

Table 13 Crystal data of PM-C1C1.

Identification code	PM-C1Cl
Empirical formula	$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClNO}_{3} \mathrm{~S}_{2}$
Formula weight	393.89
Temperature	$100.0(1) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Unit cell dimensions	$a=7.3532(1) \AA \quad \alpha=90^{\circ}$
	$b=14.025(2) \AA \quad \beta=111.232(1)^{\circ}$
	$c=18.3755(2) \AA \quad \gamma=90^{\circ}$
Volume	$1766.41(4) \AA^{3}$
Z, Calculated density	$1,1.481 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.470 \mathrm{~mm}{ }^{-1}$
$\mathrm{~F}(000)$	816
Crystal size	0.49 x 0.22 x 0.18 mm
Theta range for data collection	1.88 to 29.00°
Limiting indices	$-10<=\mathrm{h}<=10,-19<=\mathrm{k}<=19,-21<=1<=25$
Reflections collected / unique	$23692 / 4688[\mathrm{R}($ int $)=0.0371]$
Completeness to theta $=29.00$	99.9%
Max. and min. transmission	0.9206 and 0.8013
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$4688 / 0 / 227$
Goodness-of-fit on F^{2}	1.057
Final R indices [l>2 $\sigma(\mathrm{I})]$	$R 1=0.0371, w R 2=0.0893$
R indices (all data	$R 1=0.0469, w R 2=0.0944$
Largest diff. peak and hole	0.567 and $-0.424 \mathrm{e} . \AA^{3}$

Table 14 Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{P M}-\mathbf{C 1 C l}$

S1-C11	1.7105(19)	C7-C8	1.443(3)
S1-C8	$1.7335(18)$	C7-H7A	0.93
S2-O1	1.4541(12)	C8-C9	1.366(2)
S2-O3	1.4550(12)	C9-C10	1.443(2)
S2-O2	1.4560(12)	C9-H9A	0.93
S2-C13	$1.7806(16)$	C10-C11	1.367(3)
Cl1-C1	1.7428(16)	C10-H10A	0.93
N1-C2	1.346(2)	C11-H11A	0.93
N1-C3	1.352(2)	C12-H12A	0.96
N1-C12	1.479(2)	C12-H12B	0.96
C1-C2	1.363(3)	C12-H12C	0.96
C1-C5	1.395(3)	C13-C18	1.388(2)
C1-H1A	0.93	C13-C14	1.393(2)
C2-H2A	0.93	C14-C15	1.390(2)
C3-C4	1.369(3)	C14-H14A	0.93
C3-H3A	0.93	C15-C16	1.393(2)
C4-C5	1.404(3)	C15-H15A	0.93
C4-H4A	0.93	C16-C17	1.381(2)
C5-C6	1.455(3)	C17-C18	1.393(2)
C6-C7	1.334(3)	C17-H17A	0.93
C6-H6A	0.93	C18-H18A	0.93
C11-S1-C8	91.87(9)	C2-N1-C12	120.78(16)
O1-S2-O3	113.77(7)	C3-N1-C12	119.34(16)
O1-S2-O2	112.64(7)	C2-C1-C5	120.86(18)
O3-S2-O2	112.86(7)	C2-C1-H1A	119.6
O1-S2-C13	105.32(7)	C5-C1-H1A	119.6
O3-S2-C13	105.65(7)	N1-C2-C1	121.28 (17)
O2-S2-C13	105.68(7)	N1-C2-H2A	119.4
C2-N1-C3	119.87(16)	C1-C2-H2A	119.4

Table 14 (Continued)

N1-C3-C4	$120.76(17)$	S1-C11-H11A	123.9
N1-C3-H3A	119.6	N1-C12-H12A	109.5
C4-C3-H3A	119.6	N1-C12-H12B	109.5
C3-C4-C5	$120.70(17)$	H12A-C12-H12B	109.5
C3-C4-H4A	119.6	N1-C12-H12C	109.5
C5-C4-H4A	119.6	H12A-C12-H12C	109.5
C1-C5-C4	$116.51(17)$	H12B-C12-H12C	109.5
C1-C5-C6	$119.63(17)$	C18-C13-C14	$120.17(15)$
C4-C5-C6	$123.86(17)$	C18-C13-S2	$120.39(13)$
C7-C6-C5	$124.26(17)$	C14-C13-S2	$119.44(12)$
C7-C6-H6A	117.9	C15-C14-C13	$120.28(15)$
C5-C6-H6A	117.9	C15-C14-H14A	119.9
C6-C7-C8	$126.54(17)$	C13-C14-H14A	119.9
C6-C7-H7A	116.7	C14-C15-C16	$118.36(15)$
C8-C7-H7A	116.7	C14-C15-H15A	120.8
C9-C8-C7	$124.44(16)$	C16-C15-H15A	120.8
C9-C8-S1	$111.55(13)$	C17-C16-C15	$122.2(15)$
C7-C8-S1	$124.01(14)$	C17-C16-C11	$118.91(12)$
C8-C9-C10	$112.16(15)$	C15-C16-C11	$118.89(13)$
C8-C9-H9A	123.9	C16-C17-C18	$118.65(15)$
C10-C9-H9A	123.9	C16-C17-H17A	120.7
C11-C10-C9	$112.22(16)$	C18-C17-H17A	120.7
C11-C10-H10A	123.9	C13-C18-C17	$120.27(15)$
C9-C10-H10A	123.9	C13-C18-H18A	119.9
C10-C11-S1	$112.19(14)$	C17-C18-H18A	119.9
C10-C11-H11A	123.9		

Table 15 Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

D-H*A	D-H	$\mathrm{H}^{\prime \prime} A$	D*A	D- ${ }^{\text {* }}$ A
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}{ }^{\cdots} \mathrm{O} 3^{\text {i }}$	0.93	2.31	3.211(2)	164
C6-H6A ${ }^{\text {S }}$ 1	0.93	2.84	3.228(2)	106
C7-H7A ${ }^{\text {O }} 1^{\text {ii }}$	0.93	2.39	3.266(2)	157
C9-H9A ${ }^{\cdots} \mathrm{O}^{\text {iii }}$	0.93	2.58	3.495(2)	166
C10-H10A ${ }^{\circ} \mathrm{O} 2^{\text {iii }}$	0.93	2.39	3.302(2)	167
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.93	2.55	3.063(2)	115
$\mathrm{C} 12-\mathrm{H} 12 \mathrm{C}{ }^{\cdots} \mathrm{O} 2^{\text {i }}$	0.96	2.39	3.344(2)	168
C17-H17A ${ }^{\circ} \mathrm{O}^{\text {iv }}$	0.93	2.41	3.318(2)	166
C18—H18A ${ }^{\text {O }}$ 3	0.93	2.51	2.892(2)	105
C12-H12B ${ }^{\text {Cg }} 1^{\text {i }}$	0.96	2.69	3.515(2)	144

Symmetry codes: (i) $-\mathrm{x}+2,-\mathrm{y}+2,-\mathrm{z}+1$; (ii) $\mathrm{x},-\mathrm{y}+3 / 2, \mathrm{z}+1 / 2$;
(iii) $-\mathrm{x}+2,-\mathrm{y}+1,-\mathrm{z}+1$; (iv) $\mathrm{x}-1, \mathrm{y}, \mathrm{z} . \mathrm{Cg} 1$ is the centroid of the $\mathrm{S} 1 / \mathrm{C} 8-\mathrm{C} 11$
thiophene ring.

Figure 9 X-ray ORTEP diagram of the compound PM-C1CI

Figure 10 Packing diagram of $\mathbf{P M}-\mathbf{C 1 C l}$ viewed down the a axis with H -bonds shown as dashed lines.

3.4.4 4-[(E)-2-(2-Thienyl)ethenyl]-1-methylpyridinium

4-bromobenzenesulfonate (PM-C1Br)

PM-C1Br

Compound $\mathbf{P M}-\mathbf{C 1 B r}$ was obtained as a brown solid (70% yield), mp. 231-233 ${ }^{\circ} \mathrm{C}$. The UV-Vis absorption spectra (Fig. 52) showed maximum bands at 222.3, 258.0 and 381.8 nm . The IR spectrum (Fig. 53) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}\left(1577 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1208 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 54, see Table 16) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 7.10\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.14(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}$, H-2'). The singlet signal at $\delta 4.29(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. Equivalent protons of p-disubstituted aromatic appeared as two doublet signals at $\delta 8.82(2 \mathrm{H}, J=6.9 \mathrm{~Hz}$, $\mathrm{H}-2, \mathrm{H}-6)$ and $\delta 8.15(2 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{H}-3, \mathrm{H}-5)$. Three signals of thiophene ring at $\delta 7.43(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz}), \delta 7.16(1 \mathrm{H}, t, J=5.1 \mathrm{~Hz})$ and $\delta 7.62(1 \mathrm{H}, d, J=5.1 \mathrm{~Hz})$ were assigned to $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum also showed resonances of aromatic protons of anionic part at $\delta 7.62\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.43\left(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. These observations confirmed that $\mathbf{P M}-\mathbf{C 1 B r}$ is 4-[(E)-2-(2-thienyl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate.

Table $16{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{P M}-\mathbf{C 1 B r}$

Position	$\boldsymbol{\delta}_{\mathrm{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.29(3 \mathrm{H}, s)$
2	$8.82(2 \mathrm{H}, d, 6.9)$
6	
3	$8.15(2 \mathrm{H}, d, 6.9)$
5	$8.14(1 \mathrm{H}, d, 15.6)$
1^{\prime}	$7.10(1 \mathrm{H}, d, 15.6)$
2^{\prime}	$7.43(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$3^{\prime \prime}$	$7.16(1 \mathrm{H}, t, 5.1 \mathrm{~Hz})$
$4^{\prime \prime}$	$7.62(1 \mathrm{H}, d, 5.1 \mathrm{~Hz})$
$5^{\prime \prime}$	$7.62(2 \mathrm{H}, d, 8.4)$
$2^{\prime \prime \prime}$	
$6^{\prime \prime \prime}$	$7.43(2 \mathrm{H}, d, 8.4)$
$3^{\prime \prime \prime}$	
$5^{\prime \prime \prime}$	

3.4.5 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

 4-methylbenzenesulfonate (PM-C2Me)

PM-C2Me

Compound PM-C2Me was obtained as a yellow solid (54% yield), mp. $250-252{ }^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 55) were shown at 202.7, 217.6, 256.2 and 413.9 nm . The IR spectrum (Fig. 56) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}$ $\left(1592 \mathrm{~cm}^{-1}\right), \mathrm{C}-\mathrm{O}\left(1220 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1175 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 57, see Table 17) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 7.69\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime}\right)$ and $\delta 8.09(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime}$). The singlet signals at $\delta 4.53(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. The triplet and quartet signals at $\delta 1.49(3 \mathrm{H}, J=6.9 \mathrm{~Hz})$ and $\delta 4.08(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ were assigned as CH_{3} and CH_{2} of ethoxy, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.83(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 6.96(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$, $\mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublets of $\mathrm{H}-3$ and $\mathrm{H}-4$ were observed at $\delta 8.43$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.85(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, respectively. Resonances of aromatic protons H-5, H-6, H-7 and H-8 were also shown at $\delta 8.22(d, J=7.5 \mathrm{~Hz}), \delta 7.84$ $(t, J=7.5 \mathrm{~Hz}), \delta 8.09(t, J=7.5 \mathrm{~Hz})$ and $\delta 8.39(d, J=7.5 \mathrm{~Hz})$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum showed signals of anionic part. Equivalent protons of p-disubstituted aromatic appeared as two doublets at $\delta 7.57\left(2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}, \mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.03$ $\left(2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. The singlet signal of $4^{\prime \prime \prime}-\mathrm{CH} \square \square 3$ was observed
at $\delta 2.27(3 \mathrm{H})$. These spectroscopic data confirmed that PM-C2Me is 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methylbenzenesulfonate .

Table $17{ }^{1} \mathrm{H}$ NMR of compound PM-C2Me

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.53(3 \mathrm{H}, s)$
CH_{3}	$1.49(3 \mathrm{H}, 6.9 \mathrm{~Hz})$
$\mathrm{O}^{-\mathrm{CH}_{2}}$	$4.08(2 \mathrm{H}, 6.9 \mathrm{~Hz})$
3	$8.43(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
4	$8.85(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
5	$8.22(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
6	$7.84(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
7	$8.09(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
8	$8.39(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
1^{\prime}	$7.69(1 \mathrm{H}, d, 15.9)$
2^{\prime}	$8.09(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$7.83(2 \mathrm{H}, d, 8.7)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$6.96(2 \mathrm{H}, d, 8.7)$
$5^{\prime \prime}$	
$2^{\prime \prime \prime}$	$7.57(2 \mathrm{H}, d, 8.1)$
$6^{\prime \prime \prime}$	
$3^{\prime \prime \prime}$	$2.27(3 \mathrm{H}, s)$
$5^{\prime \prime \prime}$	
$4^{\prime \prime \prime}-\mathrm{CH}_{3}$	

3.4.6 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

4-methoxybenzenesulfonate (PM-C2OMe)

PM-C2OMe

Compound PM-C2OMe was obtained as a yellow solid (61% yield), $\mathrm{mp} .256-257{ }^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 58) were shown at 330.3 and 413.1 nm . The IR spectrum (Fig. 59) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}$ ($1572 \mathrm{~cm}^{-1}$), C-O $\left(1220 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1164 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 60, see Table 18) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 7.70\left(1 \mathrm{H}, d, J=15.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.09(1 \mathrm{H}, d, J=15.8 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime}$). The singlet signals at $\delta 4.60(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. The triplet and quartet signals at $\delta 1.45(3 \mathrm{H}, J=6.9 \mathrm{~Hz})$ and $\delta 4.13(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ were assigned as CH_{3} and CH_{2} of ethoxy, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.85(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 6.80(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$, $\mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublets of $\mathrm{H}-3$ and $\mathrm{H}-4$ were observed at $\delta 8.47$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.89(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, respectively. Resonances of aromatic protons H-5, H-6, H-7 and H-8 were also shown at $\delta 8.25(d, J=7.5 \mathrm{~Hz}), \delta 7.89$ $(t, J=7.5 \mathrm{~Hz}), \delta 8.18(t, J=7.5 \mathrm{~Hz})$ and $\delta 8.40(d, J=7.5 \mathrm{~Hz})$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum showed signals of anionic part. Equivalent protons of p-disubstituted aromatic appeared as two doublets at $\delta 7.60\left(2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.01\left(2 \mathrm{H}, J=8.7 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. The singlet signal of $4^{\prime \prime \prime}-\mathrm{OCH} \square \square$
was observed at $\delta 3.78(3 \mathrm{H})$. From these spectroscopic data PM-C2OMe was assigned to be 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium 4-methoxybenzene-sulfonate.

Table $18{ }^{1} \mathrm{H}$ NMR of compound PM-C2OMe

Position	$\left.\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(p p m}\right), \boldsymbol{m u l t}, \boldsymbol{J} \mathbf{(H z)}$
$1-\mathrm{CH}_{3}$	$4.60(3 \mathrm{H}, s)$
CH_{3}	$1.45(3 \mathrm{H}, 6.9 \mathrm{~Hz})$
${\mathrm{O}-\mathrm{CH}_{2}}^{3}$	$4.13(2 \mathrm{H}, 6.9 \mathrm{~Hz})$
4	$8.47(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
5	$8.89(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
6	$8.25(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
7	$7.89(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
8	$8.18(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
1^{\prime}	$8.40(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
$2^{\prime \prime}$	$7.70(1 \mathrm{H}, d, 15.8)$
$2^{\prime \prime}$	$8.09(1 \mathrm{H}, d, 15.8)$
$6^{\prime \prime}$	$7.85(2 \mathrm{H}, d, 8.7)$
$3^{\prime \prime}$	$6.80(2 \mathrm{H}, d, 8.7)$
$2^{\prime \prime \prime}$	$7.60(2 \mathrm{H}, d, 8.1)$
$6^{\prime \prime \prime}$	
$3^{\prime \prime \prime}$	$7.01(2 \mathrm{H}, d, 8.1)$
$5^{\prime \prime \prime}$	$3.78(3 \mathrm{H}, s)$
$4^{\prime \prime \prime}-\mathrm{CH}_{3}$	

3.4.7 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

4-cholrobenzenesulfonate ($\mathrm{PM}-\mathrm{C} 2 \mathrm{Cl}$)

PM-C2Cl
Compound PM-C2CI was obtained as a yellow crystals (62% yield), $\mathrm{mp} .254-256^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 61) were shown at 228.7, 268.4 and 410.2 nm . The IR spectrum (Fig. 62) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}$ $\left(15920 \mathrm{~cm}^{-1}\right)$, C-O $\left(1225 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1153 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 63, see Table 19) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 7.72\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.09(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime}$). The singlet signals at $\delta 4.60(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. The triplet and quartet signals at $\delta 1.46(3 \mathrm{H}, J=6.9 \mathrm{~Hz})$ and $\delta 4.18(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ were assigned as CH_{3} and CH_{2} of ethoxy, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.88(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 7.05(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$, $\mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublets of H-3 and H-4 were observed at $\delta 8.45$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.90(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, respectively. Resonances of aromatic protons H-5, H-6, H-7 and H-8 were also shown at $\delta 8.35(d, J=7.5 \mathrm{~Hz}), \delta 7.91$ $(t, J=7.5 \mathrm{~Hz}), \delta 8.12(t, J=7.5 \mathrm{~Hz})$ and $\delta 8.41(d, J=7.5 \mathrm{~Hz})$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum showed signals of anionic part. Equivalent protons of p-disubstituted aromatic appeared as two doublets at $\delta 7.74\left(2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.30\left(2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. The singlet signal of $4^{\prime \prime \prime}$ - $\mathrm{CH} \square_{\square}$ was observed at $\delta 2.27(3 \mathrm{H})$. From these spectroscopic data PM-C2CI was assigned
to be
2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium 4-
chlorobenzenesulfonate.
The crystal structure of PM-C2CI is illustrated in Fig. 11 and Fig. 12 which show the packing diagram of $\mathbf{P M}-\mathbf{C 2 C l}$ and intermolecular hydrogen bondings. The crystal and experiment data are given in Table 18. Bond lengths and angles are shown in Table 19. It was found that PM-C2Cl crystallized out in noncentrosymmetric $\boldsymbol{P} \mathbf{2}_{1}$ space group.

Table $19{ }^{1} \mathrm{H}$ NMR of compound PM-C2Cl

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J} \mathbf{(H z)}$
$1-\mathrm{CH}_{3}$	$4.60(3 \mathrm{H}, s)$
CH_{3}	$1.46(3 \mathrm{H}, 6.9 \mathrm{~Hz})$
${\mathrm{O}-\mathrm{CH}_{2}}^{3}$	$4.18(2 \mathrm{H}, 6.9 \mathrm{~Hz})$
4	$8.45(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
5	$8.90(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
6	$8.35(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
7	$7.91(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
8	$8.12(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
1^{\prime}	$8.41(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
2^{\prime}	$7.72(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$8.09(1 \mathrm{H}, d, 15.9)$
$6^{\prime \prime}$	$7.78(2 \mathrm{H}, d, 8.7)$
$3^{\prime \prime}$	$7.05(2 \mathrm{H}, d, 8.7)$
$5^{\prime \prime}$	
$2^{\prime \prime \prime}$	$7.74(2 \mathrm{H}, d, 8.1)$
$6^{\prime \prime \prime}$	

$3^{\prime \prime \prime}$	$7.30(2 \mathrm{H}, d, 8.1)$
$5^{\prime \prime \prime}$	

Table 20 Crystal data of PM-C2Cl.

Identification code	PM-C2Cl
Empirical formula	$\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClNO}_{6} \mathrm{~S}$
Formula weight	518.00
Temperature	$100.0(1) \mathrm{K}$
Wavelength	$0.71073 \AA$
Crystal system, space group	Monoclinic, $P 2_{1}$
Unit cell dimensions	$a=9.8072(9) \AA \quad \alpha=90^{\circ}$
	$b=6.4848(5) \AA \quad \beta=103.421(5)^{\circ}$
	$c=19.4405(16) \AA \quad \gamma=90^{\circ}$
Volume	$1202.61(17) \AA^{3}$
Z, Calculated density	$2,1.431 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.290 \mathrm{~mm}{ }^{-1}$
F(000)	544
Crystal size	0.58 x 0.26 x 0.06 mm
Theta range for data collection	$2.13 \mathrm{to} 30.00{ }^{\circ}$
Limiting indices	$-13<=\mathrm{h}<=13,-9<=\mathrm{k}<=9,-27<=1<=27$
Reflections collected / unique	$12272 / 6192[\mathrm{R}($ int $)=0.0603]$
Completeness to theta $=30.00$	99.7%
Max. and min. transmission	0.9820 and 0.8505
Refinement method	$\mathrm{Full-matrix} \mathrm{least-squares} \mathrm{on} \mathrm{F}^{2}$
Data / restraints / parameters	$6192 / 1 / 316$
Goodness-of-fit on F^{2}	1.035
Final R indices [I>2 $\sigma(\mathrm{I})]$	$R 1=0.0705, w R 2=0.1501$
R indices (all data	$R 1=0.0907, w R 2=0.1592$
Largest diff. peak and hole	0.750 and $-0.592 \mathrm{e} . \AA^{3}$

Table 21 Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{P M - C 2 C l}$

S1-O2	$1.445(3)$	C12-C17	$1.390(5)$
S1-O4	$1.454(3)$	C13-C14	$1.379(6)$
S1-O3	$1.455(3)$	C13-H13A	0.93
S1-C24	$1.770(4)$	C14-C15	$1.378(5)$
C11-C21	$1.745(4)$	C14-H14A	0.93
O1-C15	$1.365(4)$	C15-C16	$.404(5)$
O1-C18	$1.443(5)$	C16-C17	$1.385(6)$
C1-C6	$1.403(5)$	C16-H16A	0.93
C1-C2	$1.405(5)$	C17-H17A	0.93
C1-N1	$1.414(5)$	C18-C19	$1.506(5)$
C2-C3	$1.370(6)$	C18-H18A	0.97
C2-H2A	0.93	C18-H18B	0.97
C3-C4	$1.388(6)$	C19-H19A	0.96
C3-H3A	0.93	C19-H19B	0.96
C4-C5	$1.360(6)$	C19-H19C	0.96
C4-H4A	0.93	C20-N1	$1.47(5)$
C5-C6	$1.421(5)$	C20-H20A	0.96
C5-H5A	0.93	C20-H20B	0.96
C6-C7	$1.411(5)$	C20-H20C	0.96
C7-C8	$1.348(6)$	C21-C26	$1.365(6)$
C7-H7A	0.93	C21-C22	$1.396(6)$
C8-C9	$1.424(5)$	C22-C23	$1.381(6)$
C8-H8A	0.93	C22-H22A	0.93
C9-N1	$1.345(5)$	C23-C24	$1.388(5)$
C9-C10	$1.459(5)$	C23-H23A	0.93
C10-C11	$1.341(5)$	C24-C25	$1.400(6)$
C10-H10A	0.93	C25-C26	$1.381(6)$

$\mathrm{C} 11-\mathrm{C} 12$	$1.454(6)$	$\mathrm{C} 25-\mathrm{H} 25 \mathrm{~A}$	0.93
$\mathrm{C} 11-\mathrm{H} 11 \mathrm{~A}$	0.93	$\mathrm{C} 26-\mathrm{H} 26 \mathrm{~A}$	0.93
$\mathrm{C} 12-\mathrm{C} 13$	$1.389(5)$	O1W-H1W1	0.9845

Table 21 (Continued)

O1W-H2W1	1.2162	O2W-H1W2	0.8918
O2W-H2W2	0.9862		
O2-S1-O4	113.1(2)	C7-C8-C9	121.5(3)
O2-S1-O3	113.01(19)	C7-C8-H8A	119.2
O4-S1-O3	112.68(18)	C9-C8-H8A	119.2
O2-S1-C24	105.87(17)	N1-C9-C8	118.2(3)
O4-S1-C24	105.46(19)	N1-C9-C10	121.1(3)
O3-S1-C24	105.84(17)	C8-C9-C10	120.7(3)
C15-O1-C18	118.8(3)	C11-C10-C9	123.7(3)
C6-C1-C2	119.5(4)	C11-C10-H10A	118.1
C6-C1-N1	119.2(3)	C9-C10-H10A	118.1
C2-C1-N1	121.3(3)	C10-C11-C12	127.3(3)
C3-C2-C1	119.5(4)	C10-C11-H11A	116.4
C3-C2-H2A	120.2	C12-C11-H11A	116.4
C1-C2-H2A	120.2	C13-C12-C17	117.6(4)
C2-C3-C4	121.1(4)	C13-C12-C11	118.6(3)
C2-C3-H3A	119.4	C17-C12-C11	123.8(3)
C4-C3-H3A	119.4	C14-C13-C12	121.4(4)
C5-C4-C3	120.9(4)	C14-C13-H13A	119.3
C5-C4-H4A	119.5	C12-C13-H13A	119.3
C3-C4-H4A	119.5	C15-C14-C13	120.2(3)
C4-C5-C6	119.4(4)	C15-C14-H14A	119.9
C4-C5-H5A	120.3	C13-C14-H14A	119.9
C6-C5-H5A	120.3	O1-C15-C14	115.8(3)
C1-C6-C7	118.5(4)	O1-C15-C16	124.1(3)
C1-C6-C5	119.6(3)	C14-C15-C16	120.1(3)

C7-C6-C5	$122.0(3)$	C17-C16-C15	$118.3(3)$
C8-C7-C6	$120.6(3)$	C17-C16-H16A	120.9
C8-C7-H7A	119.7	C15-C16-H16A	120.9
C6-C7-H7A	119.7	C16-C17-C12	$122.4(4)$
Table 21 (Continued)			
C16-C17-H17A	118.8	C22-C21-Cl1	$118.4(3)$
C12-C17-H17A	118.8	C23-C22-C21	$117.8(4)$
O1-C18-C19	$106.2(3)$	C23-C22-H22A	121.1
O1-C18-H18A	110.5	C21-C22-H22A	121.1
C19-C18-H18A	110.5	C22-C23-C24	$121.7(4)$
O1-C18-H18B	110.5	C22-C23-H23A	119.2
C19-C18-H18B	110.5	C24-C23-H23A	119.2
H18A-C18-H18B	108.7	C23-C24-C25	$119.1(4)$
C18-C19-H19A	109.5	C23-C24-S1	$120.4(3)$
C18-C19-H19B	109.5	C25-C24-S1	$120.5(3)$
H19A-C19-H19B	109.5	C26-C25-C24	$119.4(4)$
C18-C19-H19C	109.5	C26-C25-H25A	120.3
H19A-C19-H19C	109.5	C24-C25-H25A	120.3
H19B-C19-H19C	109.5	C21-C26-C25	$120.4(4)$
N1-C20-H20A	109.5	C21-C26-H26A	119.8
N1-C20-H20B	109.5	C25-C26-H26A	119.8
H20A-C20-H20B	109.5	C9-N1-C1	$121.9(3)$
N1-C20-H20C	109.5	C9-N1-C20	$121.8(3)$
H20A-C20-H20C	109.5	C1-N1-C20	$116.3(3)$
H20B-C20-H20C	109.5	H1W1-O1W-H2W1	109.3
C26-C21-C22	$121.6(4)$	H2W2-O2W-H1W2	101.8
C26-C21-C11	$120.0(3)$		

Figure 11 X-ray ORTEP diagram of the compound PM-C2CI.

Figure 12 Packing diagram of $\mathbf{P M}-\mathbf{C 2 C l}$ viewed down the a axis with H -bonds shown as dashed lines.

3.4.8 2-[(E)-2-(4-Ethoxyphenyl)ethenyl]-1-methylquinolinium

4-bromobenzenesulfonate (PM-C2Br)

PM-C2Br

Compound PM-C2Br was obtained as a yellow-orange solid (72% yield), mp. $249-251{ }^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 64) were shown at 221.0, 255.5 and 413.9 nm . The IR spectrum (Fig. 65) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}\left(1592 \mathrm{~cm}^{-1}\right), \mathrm{C}-\mathrm{O}\left(1224 \mathrm{~cm}^{-1}\right)$ and $\mathrm{S}=\mathrm{O}$ in sulfonates $\left(1169 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 66, see Table 22) showed two fragments of cationic and anionic parts. The former showed characteristic of trans-disubstituted double bonds at $\delta 7.72\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.00(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime}$). The singlet signals at $\delta 4.55(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. The triplet and quartet signals at $\delta 1.40(3 \mathrm{H}, J=6.9 \mathrm{~Hz})$ and $\delta 4.10(2 \mathrm{H}, J=6.9 \mathrm{~Hz})$ were assigned as CH_{3} and CH_{2} of ethoxy, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.84(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 6.98(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}$, $\mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublets of $\mathrm{H}-3$ and $\mathrm{H}-4$ were observed at $\delta 8.48$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.89(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, respectively. Resonances of aromatic protons H-5, H-6, H-7 and H-8 were also shown at $\delta 8.25(d, J=7.5 \mathrm{~Hz}), \delta 7.87$ $(t, J=7.5 \mathrm{~Hz}), \delta 8.09(t, J=7.5 \mathrm{~Hz})$ and $\delta 8.44(d, J=7.5 \mathrm{~Hz})$, respectively. ${ }^{1} \mathrm{H}$ NMR spectrum showed signals of anionic part. Equivalent protons of
p-disubstituted aromatic appeared as two doublets at $\delta 7.60\left(2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime \prime}\right.$, $\left.\mathrm{H}-6^{\prime \prime \prime}\right)$ and $\delta 7.41\left(2 \mathrm{H}, J=8.1 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime \prime}, \mathrm{H}-5^{\prime \prime \prime}\right)$. The singlet signal of $4^{\prime \prime \prime}$ - $\mathrm{CH} \square_{\square 3}$ was observed at $\delta 2.27(3 \mathrm{H})$. From these spectroscopic data PM-C2Br was assigned to be 2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium 4bromobenzenesulfonate.

Table $22{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{P M}-\mathrm{C} 2 \mathrm{Br}$

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.55(3 \mathrm{H}, s)$
CH_{3}	$1.40(3 \mathrm{H}, 6.9 \mathrm{~Hz})$
$\mathrm{O}^{-\mathrm{CH}_{2}}$	$4.10(2 \mathrm{H}, 6.9 \mathrm{~Hz})$
3	$8.48(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
4	$8.89(1 \mathrm{H}, 9.0 \mathrm{~Hz})$
5	$8.25(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
6	$7.87(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
7	$8.09(1 \mathrm{H}, t, 7.5 \mathrm{~Hz})$
8	$8.44(1 \mathrm{H}, d, 7.5 \mathrm{~Hz})$
1^{\prime}	$7.72(1 \mathrm{H}, d, 15.9)$
2^{\prime}	$8.00(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$7.84(2 \mathrm{H}, d, 8.7)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$6.98(2 \mathrm{H}, d, 8.7)$
$5^{\prime \prime}$	$7.60(2 \mathrm{H}, d, 8.1)$
$2^{\prime \prime \prime}$	
$6^{\prime \prime \prime}$	$71(2 \mathrm{H}, d, 8.1)$
$3^{\prime \prime \prime}$	
$5^{\prime \prime \prime}$	

3.4.9 $\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-

 methylquinolinium tetraiodidozincate(II) (PM-C3Zn)

Compound PM-C3Zn was obtained as a brown solid (40% yield), $\mathrm{mp} .220-221^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 67) were shown at 218.2, 249.4, $305.4,403.9$ and 574.8 nm . The IR spectrum (Fig. 68) exhibited stretching vibrations of O-H (3436 cm ${ }^{-1}$), $\mathrm{C}=\mathrm{C}\left(1585 \mathrm{~cm}^{-1}\right)$ and C-O (1221 cm$\left.{ }^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 69, see Table 23) showed characteristic of trans-disubstituted double bonds at $\delta 7.70\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.11$ $\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$. Three singlet signals at $\delta 9.31(3 \mathrm{H}), \delta 4.57(3 \mathrm{H})$ and $\delta 3.92$ $(3 \mathrm{H})$ were assigned as $\mathrm{OH}, \mathrm{N}-\mathrm{CH}_{3}$ and $\mathrm{O}-\mathrm{CH}_{3}$, respectively. Three signals of 1,3,4-trisubstituted benzene pattern at $\delta 7.47(1 \mathrm{H}, d, J=2.1 \mathrm{~Hz}), \delta 7.04(1 \mathrm{H}, d$, $J=8.4 \mathrm{~Hz})$ and $\delta 7.41(1 \mathrm{H}, b r d, J=8.4 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$, respectively. Two doublets of $\mathrm{H}-3$ and $\mathrm{H}-4$ were observed at $\delta 8.54(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.97(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, respectively. Resonances of aromatic protons $\mathrm{H}-5, \mathrm{H}-6$, H-7 and H-8 were also shown at $\delta 8.31(d, J=7.5 \mathrm{~Hz}), \delta 7.91(t, J=7.5 \mathrm{~Hz}), \delta 8.15$ $(d t, J=1.5,7.5 \mathrm{~Hz})$ and $\delta 8.50(d, J=7.5 \mathrm{~Hz})$, respectively. From these spectroscopic data PM-C3Zn was assigned to be $\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II).

The crystal structure of PM-C3Zn is illustrated in Fig. 13 and Fig. 14 which show the packing diagram of PM-C3Zn and intermolecular hydrogen bondings. The crystal and experiment data are given in Table 22. Bond lengths and angles are shown in Table 23. It was found that PM-C3Zn crystallized out in centrosymmetric $\mathbf{P 2}_{1} / \boldsymbol{c}$ space group

The asymmetric unit of the $\mathbf{P M}-\mathbf{C} \mathbf{3 Z n}$ compound consists of two $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$cations, a $\mathrm{ZnI}_{4}{ }^{2-}$ anion and a methanol solvate molecule (Fig. 13). Each cation is nearly planar as indicated by the dihedral angle between the quinolinium planes and the benzene rings in each cation being 1.78(1) and 5.44(1) ${ }^{\circ}$, respectively. The H atoms attached to the alkene C atoms C 10 and C 11 and C 29 and C 30 are mutually trans; torsion angles $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12=179.1(2)^{\circ}$ and $\mathrm{C} 28-\mathrm{C} 29-\mathrm{C} 30-\mathrm{C} 31=-179.3(2)^{\circ}$. Both the hydroxyl and methoxy groups are reasonably coplanar with the benzene rings to which they are attached with torsion angles C19-O2-C15-C16 $=-0.4(4)^{\circ}$ and C38-O4-C34-C35 $=1.2(4)^{\circ}$. Both cations form intramolecular $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bonds between the hydroxyl and methoxy groups whch generate $\mathrm{S}(5)$ ring motifs (Bernstein et al., 1995). The two cations are approximately parallel to one another with dihedral angles $7.55(7)^{\circ}$ between two the quinolinium planes ($\mathrm{C} 1-\mathrm{C} 9 / \mathrm{N} 1$ and $\mathrm{C} 20-\mathrm{C} 28 / \mathrm{N} 2$) and $12.28(12)^{\circ}$ between the two benzene rings $(\mathrm{C} 12-\mathrm{C} 17$ and $\mathrm{C} 31-\mathrm{C} 36)$. The $\mathrm{ZnI}_{4}{ }^{2-}$ anion shows only small distortions from a regular tetrahedron as was found previously (Glavcheva et al., 2004). Zn -I bond distances are in the range 2.6035(3)-2.6409(3) \AA, and $\mathrm{I}-\mathrm{Zn}-\mathrm{I}$ bond angles lie in the range $106.583(11)-114.187(11)^{\circ}$.

In the crystal packing, the cations are linked together through $\mathrm{O}-\mathrm{H}^{\cdots} \mathrm{O}$ hydrogen bond and weak $\mathrm{C}-\mathrm{H}^{\cdots} \mathrm{O}$ interactions (Table 26). The cations are also linked to the $\mathrm{ZnI}_{4}{ }^{2-}$ anions through weak $\mathrm{C} 27-\mathrm{H} 27 \mathrm{~A}^{\cdots} \mathrm{I} 4$ interactions (symmetry code: $-1+\mathrm{x}, \mathrm{y},-1+\mathrm{z})$. The methanol molecule links with the cation by an $\mathrm{O} 3-\mathrm{H} 1 \mathrm{O} 3 \cdots \mathrm{O} 5$ hydrogen bond (symmetry code: $1-\mathrm{x},-1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$) and with the $\mathrm{ZnI}_{4}{ }^{2-}$ anion by an $\mathrm{O} 5-\mathrm{H} 1 \mathrm{O} 5 \cdots \mathrm{I} 1$ hydrogen bond (symmetry code: 1-x, $1-\mathrm{y}, 1-\mathrm{z}$). The cations are arranged in an antiparallel manner and stacked along the a axis in such a way that the centroid-centroid distance between the $\mathrm{C} 1-\mathrm{C} 6(\mathrm{Cg} 1)$ and $\mathrm{C} 12-\mathrm{C} 17$ (Cg2) rings is $3.6054(15) \AA$ (symmetry code: $1-\mathrm{x}, 1-\mathrm{y}, 1-\mathrm{z}$) and that between the $\mathrm{C} 20-\mathrm{C} 25(\mathrm{Cg} 3)$ and $\mathrm{C} 31-\mathrm{C} 36(\mathrm{Cg} 4)$ rings is $3.6057(15) \AA$ (symmetry code: $1-\mathrm{x}$,
$1-\mathrm{y},-\mathrm{z}$), indicating $\pi-\pi$ interactions. The crystal further stabilized by $\mathrm{C}-\mathrm{H}^{\cdots} \pi$ interactions (Table 26); Cg 2 and Cg 4 are the centroids of the $\mathrm{C} 12-\mathrm{C} 17$ and C31-C36 benzene rings, respectively.
Table $23{ }^{1} \mathrm{H}$ NMR of compound PM-C3Zn

Position	$\left.\boldsymbol{\delta}_{\mathbf{H}} \mathbf{(p p m}\right)$, mult, $\boldsymbol{J} \mathbf{(H z)}$
$1-\mathrm{CH}_{3}$	$4.57(3 \mathrm{H}, s)$
3	$8.54(1 \mathrm{H}, d, 9)$
4	$8.97(1 \mathrm{H}, d, 9)$
5	$8.31(1 \mathrm{H}, d, 7.5)$
6	$7.91(1 \mathrm{H}, t, 7.5)$
7	$8.15(1 \mathrm{H}, d t, 1.5,7.5)$
8	$8.50(1 \mathrm{H}, d, 7.5)$
1^{\prime}	$7.70(1 \mathrm{H}, d, 15.9)$
2^{\prime}	$8.11(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$7.47(1 \mathrm{H}, d, 2.1)$
$3^{\prime \prime}-\mathrm{OH}^{\prime \prime}$	$9.31(3 \mathrm{H}, s)$
$4^{\prime \prime}-\mathrm{OCH}_{3}$	$3.92(3 \mathrm{H}, s)$
$5^{\prime \prime}$	$7.04(1 \mathrm{H}, d, 8.4)$
$6^{\prime \prime}$	$7.41(1 \mathrm{H}, b r d, 8.4)$

Table 24 Crystal data of PM-C3Zn.

Identification code	PM-C3Zn
Empirical formula	$\mathrm{C}_{39} \mathrm{H}_{40} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Zn}$
Formula weight	1189.70
Temperature	100.0(1) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic, $P 2_{1} / c$
Unit cell dimensions	$a=8.6449(1) \AA \alpha=90^{\circ}$
	$b=23.4312(4) \AA \beta=91.724(1)^{\circ}$
	$c=19.7763(3) \AA \gamma=90^{\circ}$
Volume	4004.08(10) \AA^{3}
Z, Calculated density	$4,1.974 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.742 \mathrm{~mm}^{-1}$
F(000)	2280
Crystal size	$0.43 \times 0.28 \times 0.13 \mathrm{~mm}$
Theta range for data collection	1.35 to 36.00°
Limiting indices	$-14<=\mathrm{h}<=14,-38<=\mathrm{k}<=38,-32<=1<=32$
Reflections collected / unique	$100181 / 18959[\mathrm{R}(\mathrm{int})=0.0327]$
Completeness to theta $=36.00$	99.9 \%
Max. and min. transmission	0.6459 and 0.2948
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	18959 / 0 / 465
Goodness-of-fit on F^{2}	1.096
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$R 1=0.0352, w R 2=0.0811$
R indices (all data)	$R 1=0.0492, w R 2=0.0912$
Largest diff. peak and hole	4.980 and -1.460 e. \AA^{3}

Table 25 Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for PM-C3Zn

Zn1-I3	2.6035(3)	C11-H11A	0.93
Zn1-I2	2.6135(3)	C12-C17	1.397(3)
Zn1-I1	2.6406 (3)	C12-C13	1.408 (3)
Zn1-I4	2.6409(3)	C13-C14	1.383(3)
O1-C14	1.364(3)	C13-H13A	0.93
O1-H1O1	0.82	C14-C15	1.405 (3)
O2-C15	1.356(3)	C15-C16	1.389(3)
O2-C19	1.426 (3)	C16-C17	1.393(3)
N1-C9	1.347(3)	C16-H16A	0.93
N1-C1	1.401(3)	C17-H17A	0.93
N1-C18	1.478 (3)	C18-H18A	0.96
C1-C2	1.405(3)	C18-H18B	0.96
C1-C6	1.413(3)	C18-H18C	0.96
C2-C3	1.380(3)	C19-H19A	0.96
C2-H2A	0.93	C19-H19B	0.96
C3-C4	1.399(4)	C19-H19C	0.96
C3-H3A	0.93	O3-C33	1.353(3)
C4-C5	1.366(4)	O3-H1O3	0.82
C4-H4A	0.93	O4-C34	1.351(3)
C5-C6	1.420(3)	O4-C38	1.434 (3)
C5-H5A	0.93	N2-C28	1.354 (3)
C6-C7	1.413(4)	N2-C20	1.403(3)
C7-C8	1.359(4)	N2-C37	1.480 (3)
C7-H7A	0.93	C20-C21	1.408(3)
C8-C9	1.422(3)	C20-C25	1.415 (3)
C8-H8A	0.93	C21-C22	1.375 (3)
C9-C10	1.455(3)	C21-H21A	0.93
C10-C11	1.344(3)	C22-C23	1.407(4)

$\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$	0.93	C22-H22A	0.93
$\mathrm{C} 11-\mathrm{C} 12$	$1.459(3)$	C23-C24	$1.368(4)$

Table 25 (Continued)

C23-H23A	0.93	C33-C34	$1.412(3)$
C24-C25	$1.412(3)$	C34-C35	$1.389(3)$
C24-H24A	0.93	C35-C36	$1.393(3)$
C25-C26	$1.404(4)$	C35-H35A	0.93
C26-C27	$1.370(3)$	C36-H36A	0.93
C26-H26A	0.93	C37-H37A	0.96
C27-C28	$1.415(3)$	C37-H37B	0.96
C27-H27A	0.93	C37-H37C	0.96
C28-C29	$1.450(3)$	C38-H38A	0.96
C29-C30	$1.351(3)$	C38-H38B	0.96
C29-H29A	0.93	C38-H38C	0.96
C30-C31	$1.450(3)$	O5-C39	$1.429(4)$
C30-H30A	0.93	O5-H1O5	0.82
C31-C36	$1.398(3)$	C39-H39A	0.96
C31-C32	$1.409(3)$	C39-H39B	0.96
C32-C33	$1.384(3)$	C39-H39C	0.96
C32-H32A	0.93		
I3-Zn1-I2	$106.804(12)$	C2-C1-C6	$119.8(2)$
I3-Zn1-I1	$111.295(11)$	C3-C2-C1	$119.0(2)$
I2-Zn1-I1	$106.985(11)$	C3-C2-H2A	120.5
I3-Zn1-I4	$110.977(11)$	C1-C2-H2A	120.5
I2-Zn1-I4	$114.187(11)$	C2-C3-C4	$121.9(3)$
I1-Zn1-I4	$106.583(11)$	C2-C3-H3A	119.0
C14-O1-H1O1	109.5	C4-C3-H3A	119.0
C15-O2-C19	$118.2(2)$	C5-C4-C3	$119.6(2)$
C9-N1-C1	$122.09(19)$	C5-C4-H4A	120.2
C9-N1-C18	$119.8(2)$	C3-C4-H4A	120.2

C1-N1-C18	$118.1(2)$	C4-C5-C6	$120.4(2)$
N1-C1-C2	$121.6(2)$	C4-C5-H5A	119.8
N1-C1-C6	$118.6(2)$	C6-C5-H5A	119.8
Table 25 (Continued)			
C1-C6-C7	$119.3(2)$	C15-C16-H16A	120.3
C1-C6-C5	$119.1(2)$	C17-C16-H16A	120.3
C7-C6-C5	$121.5(2)$	C16-C17-C12	$121.1(2)$
C8-C7-C6	$119.9(2)$	C16-C17-H17A	119.4
C8-C7-H7A	120.0	C12-C17-H17A	119.4
C6-C7-H7A	120.0	N1-C18-H18A	109.5
C7-C8-C9	$120.9(2)$	N1-C18-H18B	109.5
C7-C8-H8A	119.6	H18A-C18-H18B	109.5
C9-C8-H8A	119.6	N1-C18-H18C	109.5
N1-C9-C8	$119.1(2)$	H18A-C18-H18C	109.5
N1-C9-C10	$119.9(2)$	H18B-C18-H18C	109.5
C8-C9-C10	$121.0(2)$	O2-C19-H19A	109.5
C11-C10-C9	$125.2(2)$	O2-C19-H19B	109.5
C11-C10-H10A	117.4	H19A-C19-H19B	109.5
C9-C10-H10A	117.4	O2-C19-H19C	109.5
C10-C11-C12	$125.0(2)$	H19A-C19-H19C	109.5
C10-C11-H11A	117.5	H19B-C19-H19C	109.5
C12-C11-H11A	117.5	C33-O3-H1O3	109.5
C17-C12-C13	$119.0(2)$	C34-O4-C38	$118.0(2)$
C17-C12-C11	$122.4(2)$	C28-N2-C20	$122.0(2)$
C13-C12-C11	$118.5(2)$	C28-N2-C37	$120.7(2)$
C14-C13-C12	$120.0(2)$	C20-N2-C37	$117.3(2)$
C14-C13-H13A	120.0	N2-C20-C21	$121.8(2)$
C12-C13-H13A	120.0	N2-C20-C25	$118.4(2)$
O1-C14-C13	$120.5(2)$	C21-C20-C25	$119.8(2)$

O2-C15-C14	$113.4(2)$	C21-C22-C23	$121.8(2)$
C16-C15-C14	$120.2(2)$	C21-C22-H22A	119.1
C15-C16-C17	$119.4(2)$	C23-C22-H22A	119.1
Table 25 (Continued)			
C24-C23-C22	$119.2(2)$	O3-C33-C32	$119.5(2)$
C24-C23-H23A	120.4	O3-C33-C34	$121.2(2)$
C22-C23-H23A	120.4	C32-C33-C34	$119.3(2)$
C23-C24-C25	$120.9(2)$	O4-C34-C35	$125.3(2)$
C23-C24-H24A	119.5	O4-C34-C33	$114.5(2)$
C25-C24-H24A	119.5	C35-C34-C33	$120.2(2)$
C26-C25-C24	$121.5(2)$	C34-C35-C36	$119.9(2)$
C26-C25-C20	$119.5(2)$	C34-C35-H35A	120.0
C24-C25-C20	$119.0(2)$	C36-C35-H35A	120.0
C27-C26-C25	$119.8(2)$	C35-C36-C31	$120.8(2)$
C27-C26-H26A	120.1	C35-C36-H36A	119.6
C25-C26-H26A	120.1	C31-C36-H36A	119.6
C26-C27-C28	$121.0(2)$	N2-C37-H37A	109.5
C26-C27-H27A	119.5	N2-C37-H37B	109.5
C28-C27-H27A	119.5	H37A-C37-H37B	109.5
N2-C28-C27	$118.9(2)$	N2-C37-H37C	109.5
N2-C28-C29	$120.1(2)$	H37A-C37-H37C	109.5
C27-C28-C29	$121.0(2)$	H37B-C37-H37C	109.5
C30-C29-C28	$124.5(2)$	O4-C38-H38A	109.5
C30-C29-H29A	117.7	O4-C38-H38B	109.5
C28-C29-H29A	117.7	H38A-C38-H38B	109.5
C29-C30-C31	$124.6(2)$	O4-C38-H38C	109.5
C29-C30-H30A	117.7	H38A-C38-H38C	109.5
C31-C30-H30A	117.7	H38B-C38-H38C	109.5
C36-C31-C32	$118.7(2)$	C39-O5-H1O5	109.5
C36-C31-C30	$122.2(2)$	O5-C39-H39A	109.5

C33-C32-H32A	119.4	O5-C39-H39C	109.5
C31-C32-H32A	119.4	C1-C6-C5	$119.1(2)$

Table 25 (Continued)

C7-C6-C5	$121.5(2)$	C16-C17-C12	$121.1(2)$
C8-C7-C6	$119.9(2)$	C16-C17-H17A	119.4
C8-C7-H7A	120.0	C12-C17-H17A	119.4
C6-C7-H7A	120.0	N1-C18-H18A	109.5
C7-C8-C9	$120.9(2)$	N1-C18-H18B	109.5
C7-C8-H8A	119.6	H18A-C18-H18B	109.5
C9-C8-H8A	119.6	N1-C18-H18C	109.5
N1-C9-C8	$119.1(2)$	H18A-C18-H18C	109.5
N1-C9-C10	$119.9(2)$	H18B-C18-H18C	109.5
C8-C9-C10	$121.0(2)$	O2-C19-H19A	109.5
C11-C10-C9	$125.2(2)$	O2-C19-H19B	109.5
C11-C10-H10A	117.4	H19A-C19-H19B	109.5
C9-C10-H10A	117.4	O2-C19-H19C	109.5
C10-C11-C12	$125.0(2)$	H19A-C19-H19C	109.5
C10-C11-H11A	117.5	H19B-C19-H19C	109.5
C12-C11-H11A	117.5	C33-O3-H1O3	109.5
C17-C12-C13	$119.0(2)$	C34-O4-C38	$118.0(2)$
C17-C12-C11	$122.4(2)$	C28-N2-C20	$122.0(2)$
C13-C12-C11	$118.5(2)$	C28-N2-C37	$120.7(2)$
C14-C13-C12	$120.0(2)$	C20-N2-C37	$117.3(2)$
C14-C13-H13A	120.0	N2-C20-C21	$121.8(2)$
C12-C13-H13A	120.0	N2-C20-C25	$118.4(2)$
O1-C14-C13	$120.5(2)$	C21-C20-C25	$119.8(2)$
O1-C14-C15	$119.3(2)$	C22-C21-C20	$119.1(2)$
C13-C14-C15	$120.2(2)$	C22-C21-H21A	120.4
O2-C15-C16	$126.4(2)$	C20-C21-H21A	120.4
O2-C15-C14	$113.4(2)$	C21-C22-C23	$121.8(2)$
C16-C15-C14	$120.2(2)$	C21-C22-H22A	119.1

C15-C16-C17	$119.4(2)$	H39A-C39-H39C	109.5
C15-C16-H16A	120.3	H39B-C39-H39C	109.5
C17-C16-H16A	120.3		

Table 26 Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$

$\mathrm{D}-\mathrm{H}^{\cdots} A$	D-H	$\mathrm{H}^{\cdots} A$	D"A	D-H ${ }^{\prime \prime} A$
$\mathrm{O} 1-\mathrm{H1O1}{ }^{\cdots} \mathrm{O} 2$	0.82	2.15	2.611(3)	116
$\mathrm{O} 3-\mathrm{H1O3} \cdots{ }^{\circ}$	0.82	2.23	2.673(3)	114
$\mathrm{O} 3-\mathrm{H} 1 \mathrm{O} 3 \cdots{ }^{\text {a }}$	0.82	1.92	2.693(3)	156
O5- $\mathrm{H} 1 \mathrm{O} 5 \cdots \mathrm{I} 1^{\text {ii }}$	0.82	2.82	3.6161(17)	163
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}^{\cdots} \mathrm{O} 3^{\text {iii }}$	0.93	2.56	3.476(3)	167
C18-H18B* ${ }^{\text {O }} 3^{\text {iii }}$	0.96	2.60	3.355(3)	136
C27-H27A ${ }^{\cdots} 14^{\text {iv }}$	0.93	3.02	3.899(3)	158
C19-H19B*Cg4	0.96	2.99	3.944(3)	172
C38-H38B* ${ }^{\text {Cg } 2}$	0.96	2.94	3.871(3)	165

Symmetry codes: (i) $-\mathrm{x}+1, \mathrm{y}-1 / 2,-\mathrm{z}+1 / 2$; (ii) $-\mathrm{x}+1,-\mathrm{y}+1,-\mathrm{z}+1$;
(iii) $-\mathrm{x}+1,-\mathrm{y}+1 / 2,-\mathrm{z}+1 / 2$; (iv) $-\mathrm{x}-1, \mathrm{y}, \mathrm{z}-1$.

Figure 13 X-ray ORTEP diagram of the compound PM-C3Zn.

Figure 14 Packing diagram of PM-C3Zn viewed down the a axis with H -bonds shown as dashed lines.

3.4.10 $\operatorname{Bis}[(E)$-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1-

 methylquinolinium tetraiodidozincate(II) (PM-C4Zn)

PM-C4Zn

Compound PM-C4Zn was obtained as a brown solid (40% yield), $\mathrm{mp} .225-226^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 70) were shown at 217.3, 311.6, 440.9 and 561.8 nm The IR spectrum (Fig. 71) exhibited stretching vibrations of O-H ($3437 \mathrm{~cm}^{-1}$), $\mathrm{C}=\mathrm{C}\left(1579 \mathrm{~cm}^{-1}\right)$ and $\mathrm{C}-\mathrm{O}\left(1221 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 72, see Table 27) showed characteristic of trans-disubstituted double bonds at $\delta 7.70\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 7.92$ $\left(1 \mathrm{H}, d, J=15.6 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$. Two singlet signals at $\delta 4.62(3 \mathrm{H})$ and $\delta 4.00(3 \mathrm{H})$ were assigned as $\mathrm{N}-\mathrm{CH}_{3}$ and $\mathrm{O}-\mathrm{CH}_{3}$, respectively. Three signals of 1,3,4-trisubstituted benzene pattern at $\delta 7.52(1 \mathrm{H}, d, J=1.8 \mathrm{~Hz}), \delta 6.95(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz})$ and $\delta 7.39$ $(1 \mathrm{H}, d d, J=1.8,8.1 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime}$, respectively. Two doublets of H-3 and H-4 were observed at $\delta 8.48(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.89$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$, respectively. Resonances of aromatic protons $\mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-8$ were also shown at $\delta 8.27(d d, J=1.2,7.5 \mathrm{~Hz}), \delta 7.90(t, J=7.5 \mathrm{~Hz}), \delta 8.14$ $(d t, J=1.2,7.5 \mathrm{~Hz})$ and $\delta 8.45(d, J=7.5 \mathrm{~Hz})$, respectively. From these spectroscopic data PM-C4Zn was assigned to be $\operatorname{Bis}[(E)$-2-(4-hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II).

Table $27{ }^{1} \mathrm{H}$ NMR of compound $\mathbf{P M}-\mathbf{C 4 Z n}$

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m}), \boldsymbol{m u l t}, \boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.62(3 \mathrm{H}, s)$
3	$8.48(1 \mathrm{H}, d, 9.0)$
4	$8.89(1 \mathrm{H}, d, 9.0)$
5	$8.27(1 \mathrm{H}, d d, 1.2,7.5)$
6	$7.90(1 \mathrm{H}, t, 7.5)$
7	$8.14(1 \mathrm{H}, d t, 1.2,7.5)$
8	$8.45(1 \mathrm{H}, d, 7.5)$
1^{\prime}	$7.70(1 \mathrm{H}, d, 15.9)$
2^{\prime}	$7.92(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$7.52(1 \mathrm{H}, d, 1.8)$
$3^{\prime \prime}-\mathrm{OCH}_{3}$	$4.00(3 \mathrm{H}, s)$
$5^{\prime \prime}$	$6.95(1 \mathrm{H}, d, 8.1)$
$6^{\prime \prime}$	$7.39(1 \mathrm{H}, d d, 1.8,8.1)$

2.5.11 Bis[(E)-2-(4-hydroxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II) (PM-C5Zn)

Compound PM-C5Zn was obtained as a dark red solid (43% yield), $\mathrm{mp} .234-236^{\circ} \mathrm{C}$. The UV-Vis absorption bands (Fig. 73) were shown at 220.9, 260.6, 312.2 and 426.8 nm . The IR spectrum (Fig. 74) exhibited stretching vibrations of $\mathrm{O}-\mathrm{H}$ ($3421 \mathrm{~cm}^{-1}$) and $\mathrm{C}=\mathrm{C}\left(1586 \mathrm{~cm}^{-1}\right)$.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 75, see Table 28) showed characteristic of trans-disubstituted double bonds at $\delta 7.64\left(1 \mathrm{H}, d, J=15.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.10$ $\left(1 \mathrm{H}, d, J=15.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$. The singlet signal at $\delta 4.48(3 \mathrm{H})$ was assigned as $N-\mathrm{CH}_{3}$. Two signals of 4-substituted benzene pattern at $\delta 7.78(2 \mathrm{H}, d, J=9.0 \mathrm{~Hz})$ and $\delta 6.92$ $(2 \mathrm{H}, d, J=9.0 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$ respectively. Two doublets of H-3 and H-4 were observed at $\delta 8.46(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ and $\delta 8.86$ $(1 \mathrm{H}, J=9.0 \mathrm{~Hz})$ respectively. Resonances of aromatic protons H-5, H-6, H-7 and H-8 were also shown at $\delta 8.25(b r d, J=8.1 \mathrm{~Hz}), \delta 7.87(t, J=8.1 \mathrm{~Hz}), \delta 8.12$ $(d t, J=1.5,8.1 \mathrm{~Hz})$ and $\delta 8.41(d, J=8.1 \mathrm{~Hz})$ respectively. From these spectroscopic data PM-C5Zn was assigned to be $\operatorname{Bis}[(E)$-2-(4-hydroxyphenyl)ethenyl]-1methylquinolinium tetraiodidozincate(II).

Table $28{ }^{1} \mathrm{H}$ NMR of compound PM-C5Zn

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m}), \boldsymbol{m u l t}, \boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.48(3 \mathrm{H}, s)$
3	$8.46(1 \mathrm{H}, d, 9.0)$
4	$8.86(1 \mathrm{H}, d, 9.0)$
5	$8.25(1 \mathrm{H}, b r d, 8.1)$
6	$7.87(1 \mathrm{H}, t, 8.1)$
7	$8.12(1 \mathrm{H}, d t, 1.5,8.1)$
8	$8.41(1 \mathrm{H}, d, 8.1)$
1^{\prime}	$7.64(1 \mathrm{H}, d, 15.3)$
2^{\prime}	$8.10(1 \mathrm{H}, d, 15.3)$
$2^{\prime \prime}$	$7.78(2 \mathrm{H}, d, 9.0)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$6.92(2 \mathrm{H}, d, 9.0)$
$5^{\prime \prime}$	

3.4.12 $\operatorname{Bis}[(E)$-2-(4-methoxyphenyl)ethenyl]-1-methylquinolinium

 tetraiodidozincate(II) (PM-C6Zn)

PM-C6Zn

Compound PM-C6Zn was obtained as a brown solid (73% yield), $\mathrm{mp} .229-231{ }^{\circ} \mathrm{C}$. UV-Vis absorption bands (Fig. 76) were shown at 204.1, 237.1, 306.4 and 442.2 nm . The IR spectrum (Fig. 77) exhibited stretching vibrations of $\mathrm{C}=\mathrm{C}$ ($1587 \mathrm{~cm}^{-1}$) and C-O (1220 cm^{-1}).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Fig. 78, see Table 29) showed characteristic of trans-disubstituted double bonds at $\delta 7.79\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and $\delta 8.20$ $\left(1 \mathrm{H}, d, J=15.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$. Two singlet signals at $\delta 4.57(3 \mathrm{H})$ and $3.59(3 \mathrm{H})$ were assigned as $\mathrm{N}-\mathrm{CH}_{3}$ and $\mathrm{O}-\mathrm{CH}_{3}$, respectively. Two signals of 4 -substituted benzene pattern at $\delta 7.95(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ and $\delta 7.08(2 \mathrm{H}, d, J=8.7 \mathrm{~Hz})$ were assigned to $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$ and $\mathrm{H}-5^{\prime \prime}$, respectively. Two doublets of H-3 and H-4 were observed at $\delta 8.53(1 \mathrm{H}, J=8.7 \mathrm{~Hz})$ and $\delta 8.97(1 \mathrm{H}, J=8.7 \mathrm{~Hz})$, respectively. Resonances of aromatic protons $\mathrm{H}-5, \mathrm{H}-6, \mathrm{H}-7$ and $\mathrm{H}-8$ were also shown at $\delta 8.32(d, J=7.2 \mathrm{~Hz})$, $\delta 8.02-7.90(1 \mathrm{H}, m), \delta 8.25-8.14(1 \mathrm{H}, m)$ and $\delta 8.51(1 \mathrm{H}, d, J=7.2 \mathrm{~Hz})$, respectively. From these spectroscopic data PM-C6Zn was assigned to be $\operatorname{Bis}[(E)$-2-(4-methoxyphenyl)ethenyl]-1-methylquinolinium tetraiodidozincate(II).

Table $29{ }^{1} \mathrm{H}$ NMR of compound PM-C6Zn

Position	$\boldsymbol{\delta}_{\mathbf{H}}(\mathbf{p p m})$, mult, $\boldsymbol{J}(\mathbf{H z})$
$1-\mathrm{CH}_{3}$	$4.57(3 \mathrm{H}, s)$
3	$8.53(1 \mathrm{H}, d, 8.7)$
4	$8.97(1 \mathrm{H}, d, 8.7)$
5	$8.32(1 \mathrm{H}, d, 7.2)$
6	$8.02-7.90(1 \mathrm{H}, m)$
7	$8.25-8.14(1 \mathrm{H}, m)$
8	$8.51(1 \mathrm{H}, d, 7.2)$
1^{\prime}	$7.79(1 \mathrm{H}, d, 15.9)$
2^{\prime}	$8.20(1 \mathrm{H}, d, 15.9)$
$2^{\prime \prime}$	$7.95(1 \mathrm{H}, d, 8.7)$
$6^{\prime \prime}$	
$3^{\prime \prime}$	$7.08(1 \mathrm{H}, d, 8.7)$
$5^{\prime \prime}$	$3.59(3 \mathrm{H}, s)$
$4^{\prime \prime}-\mathrm{OCH}_{3}$	

Table 30 UV-Vis absorption spectra of compounds PM-S1, PM-S2, PM-C1, PM-C2, PM-C3, PM-C4, PM-C5 and PM-C6

Compounds	$\lambda_{\max }(\mathrm{nm})$			
PM-S1	219.7	255.3		
PM-S2	234.5	316.7		
PM-C1	218.6	250.6	389.7	
PM-C2	217.5	252.8	314.1	416.2
PM-C3	216.1	306.2	431.3	
PM-C4	215.3	308.9	440.1	576.5
PM-C5	218.3	258.9	425.1	
PM-C6	217.3	407.6		

The $\lambda_{\max }(\mathrm{nm})$ of compounds PM-S1, PM-S2, PM-C1, PM-C2, PM-C3, PM-C4, PM-C5 and PM-C6 are listed in Table 30 for comparision. It can be seen that when π-conjugation system was extended (PM-S1 to PM-C1 and PM-S2 to PM-C2 - PM-C6) the position of $\lambda_{\max }$ were shifted to the longer wavelength position (red-shift). In addition, the wavelength of the molecule which has stronger electron donor and electron acceptor (PM-C4 $>$ PM-C3 $>$ PM-C5 $>$ PM-C2 $>$ PM-C6 > PM-C1) also tend to have a red-shift too which correspond to the polarizability of the compounds.

CHAPTER 4

CONCLUSION

Eight new ionic-organic compounds and four organic-inorganic compounds consist of four pyridine and eight quinoline derivatives were successfully synthesized. Their structures were elucidated by spectroscopic techniques. Four structures of these compounds namely:

4-[(E)-2-(2-thienyl)ethenyl]-1-methylpyridinium 4-methylbenzenesulfonate (PM-C1Me),

4-[(E)-2-(2-thienyl)ethenyl]-1-methylpyridinium
4-chlorobenzenesulfonate (PM-C1CI),
2-[(E)-2-(4-ethoxyphenyl)ethenyl]-1-methylquinolinium 4-cholrobenzenesulfonate (PM-C2Cl) and
$\operatorname{Bis}[(E)$-2-(3-hydroxy-4-methoxyphenyl)ethenyl]-1-methylquinolinium
tetraiodidozincate(II) (PM-C3Zn) were also determined by the single crystal X-ray crystallography. It was found that PM-C1Me, PM-C1CI and PM-C3Zn were crystallized out in centrosymmetric space group $\overline{\boldsymbol{P} 1}$ (for $\boldsymbol{P M}-\mathbf{C 1 M e}$) and $\boldsymbol{P 2}_{1} / \boldsymbol{c}$ (for PM-C1Cl and PM-C3Zn), thus they do not exhibit the second-order nonlinear optic properties. On the other hand, PM-C2Cl was crystallized out in non-centrosymmetric space group, $\boldsymbol{P 2}_{\mathbf{1}}$ meaning that this compound showed NLO properties.

REFERENCES

Anwar, A.; Komatsu, K.; Okada, S.; Oikawa, H.; Matsuda, H.; Nakanishi, H. 1999. "Synthesis, crystal structures, and second-order nonlinear optical properties of new colorless 4-carbamoylpyridinium benzenesulfonate salts", Pro. SPIE., 3796, 219-228.

Anwar; Duan, X-M.; Komatsu, K.; Okada, S.; Matsuda, H.; Oikawa, H.; Nakanishi, H. 1997. "Second-order hyperpolarizability of pyridinium cations", Chem. Lett., 3, 247-248.

Anwar; Duan, X-M.; Komatsu, K.; Okada, S.; Oikawa, H.; Matsuda, H.; Nakanishi, H. 1999. "Synthesis of substituted pyridinium-benzenesulfonates crystals for second-harmonic generation", Nonlinear Optics, 22, 251-254.

Anwar, Duan, X-M.; Okada, S.; Matsuda, H.; Oikawa, H.; Nakanishi, H. 1998. "First hyperpolarizability of benzoate anions and esters", J. Chem. Soc., Perkin Trans., 2, 11, 2451-2457.

Anwar; Kosuge, H.; Okada, S.; Oikawa, H.; Nakanishi, H. 2001. "4-(Dimethyl-amino)-1-ethylpyridinium iodide: a new colorless organic ionic crystal for second-order nonlinear optics", Jpn. J. Appl. Phys., 40, 4213-4216.

Anwar; Okada, S.; Oikawa, H.; Nakanishi, H. 2000. "Preparation and Crystal Structures of New Colorless 4-Amino-1-methylpyridinium Benzenesulfonate Salts for Second-Order Nonlinear Optics", Chem. Mater., 12, 1162-1170.

Bass, M.; Franken, P. A.; Ward, J. F.; Weinreich, G. 1962. "Optical rectification", Phys. Rev. Lett., 9, 446-448.

Bernstein, J., Davis, R. E., Shimoni, L., Chamg, N-L. 1995. "Patterns in hydrogen bonding: functionality and graph set analysis in crystals", Angew. Chem. Int. Ed. Engl., 34, 1555-1573.

Bourgogne, C.; Masson, P.; Nicoud, J-F.; Brasselet, S.; Zyss, J. 2001. "Investigation of new push-pull pyridine-1-oxide derivatives as 1D NLO chromophores with vanishing dipole moment", Synthetic Metals, 124, 213-216.

Boomadevi, S.; Mittal, H.P.; Dhansekaran, R. 2004. "Synthesis, crystal growth and characterization of 3-methyl 4-nitropyridine 1-oxide (POM) single crystals", J. Cryst. Growth, 261, 55-62.

Bruker 2005. APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chantrapromma, S.; Jindawong, B.; Fun, H-K.; Patil, P.S.; Karalai, C. 2007. "4-(4'-Hydroxy-3'-methoxystyryl)-1-methylpyridini 4-chlorobenzenesulfonate", Acta Cryst., E61, o2096-02098.

Chantrapromma, S.; Jindawong, B.; Fun, H-K.; Anjum, S.; Karalai, C. 2005. " Synthesis, Characterization and Crystal Structure of 2-[(E)-2-(4-Hydroxy-3-methoxyphenyl)ethenyl]-1-methylquinolinium 4-chlorobenzenesulfonate", Anal. Science., 23, x27-x28.

Chemla, D. S.; Zyss, J. 1987. "Nonlinear Optical Properties of Organic Molecules and Crystals", Vol. 2, Academic press, Orlando, 275 pp.

Chou, S-S. P.; Sun, D-J.; Huang, J-Y.; Yang, P-K.; Lin, H-C. 1996. "Synthesis of sulfone-substituted thiophene chromophores for second-order nonlinear optics", Tet. Lett., 37, 7279-7282.

Cox, S. D.; Gier, T. E.; Stucky, G. D.; Bierlein, J. D. 1988. "Inclusion tuning of nonlinear optical materials: switching the SHG of p-nitroaniline and 2-methyl-p-nitroaniline with molecular sieve hosts", J. Am. Chem. Soc., 110, 2986-2987.

Crasta, V.; Ravindrachary, V.; Bhajantri, R. F.; Gonsalves, R. 2004. "Growth and characterization of an organic NLO crystal: 1-(4-methylphenyl)-3-(4-methoxyphenyl)-2-propen-1-one", J. Cryst. Growth, 267, 129-133.

Crasta, V.; Ravindrachary, V.; Lakshmi, S.; Pramod, S. N.; Shridar, M. A.; Prasad, J. S. 2005. "Growth, Characterization and Crystal structure analysis of 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one", J. Cryst. Growth, 275, e329-e335.

Desiraju, G. R. 1995. "Supramolecular synthons in crystal engineering-a new organic synthesis", Angew. Chem. Int. Ed. Engl., 34, 2311-2327.

Duan, X.-M.; Konami, H.; Okada, S.; Oikawa, H.; Matsuda, H.; Nakanishi, H. 2000. "Influence of counter anion on geometries, electronic structures and nonlinear optical properties of dimethylaminostilbazolium cation: an investigation by semiempirical calculation", Journal of Molecular Structure, 531, 65-77.

Dulcic, A.; Sauteret, C. 1978. "The regularities observed in the second order hyperpolarizabilities of variously disubstituted benzenes", J. Chem. Phys., 69, 3453-3457.

Etter, M. C.; Frankenbach, G. M. 1989. "Hydrogen-bond directed cocrystallization as a tool for designing acentric organic solids", Chemistry of materials, 1, 10-12.

Franken, P. A.; Hill, A. E.; Peters, C. W.; Weinrich, G. 1961. "Generation of optical harmonics", Phys. Rev. Lett. 7, 118-119.

Glavcheva, Z.; Umezawa, H.; Okada, S., Nakanishi, H. 2004. "New pyridinium-metal iodide complexes toward nonlinear optical materials", Materials Letters, 58, 2466-2471.

Huang, K-S.; Britton, D.; Etter, M. C.; Byrn, S. R. 1997. "A novel class of phenolpyridine co-crystals for second harmonic generation" J. Matter. Chem., 7, 713-720.

Jones, A. M.; Coleman, J. J. 1997. "Integrated optoelectronic devices by selectivearea epitaxy", Pro. SPIE.,The international Society for Optical Engineering, 2918, 146-154.

Lakshmanaperumal, C. K.; Arulchakkaravarthi, A.; Balamurugan, N.; Santhanaraghavan, P.; Ramasamy, P. 2004. "Synthesis, Crystal growth and Characterization of novel NLO material: 4-hydroxy benzaldehyde- N -methyl-4-stilbazolium tosylate", J. Cryst. Growth, 265, 260-265.

Lakshmanaperumal, C. K.; Arulchakkaravarthi, A.; Rajesh, N. P.; Raghavan, P. S.; Huang, Y. C.; Ichimura, M.; Ramasamy, P. 2002. "Synthesis, Crystal growth and FTIR, NMR, SHG studies of 4-methoxy benzaldehyde- N-methyl-4stilbazolium tosylate (MBST)", J. Cryst. Growth, 240, 212-217.

Levine, B. F. 1975. "Conjugated electron contributions to the second order hyperpolarizability of substituted benzene molecules", J. Chem. Phys., 63, 115-117.

Marder, S. R.; Beratan, D. N.; Cheng, L. T. 1991. "Approaches for optimizing the first electronic hyperpolarizability of conjugated organic molecules", Science(Washington, DC, United States), 252, 103-106.

Marder, S. R.; Perry, J. W. 1993. "Molecular materials for second-order nonlinear optical applications", Adv. Mater., 5, 804-815.

Marder, S. R.; Perry, J. W.; Schaefer, W. P. 1989. "Synthesis of organic salts with large second-order optical nonlinearities", Science, 245, 626-628.

Mitzi, D.B.; Chondroudis, K.; Kagan, C.R. 2001. "Organic-inorganic electronics", Org. Electron., 45, 29-45.

Nie, W. 1993. "Optical nonlinearity: phenomena, applications, and materials", Adv. Mater., 5, 520-545.

Nogi, K.; Anwar; Tsuji, K.; Duan, X-M. 2000. "Preparation of polyene analogues of stilbazolium", Nonlinear Optics, 24, 35-40.

Okada, S.; Matsuda, H.; Nakanishi, H.; Kato, M. 1990. "Preparation and nonlinear optical property of polydiacetylenes from dialkyltetraacetylene compound", Molecular Crystals and Liquid Crystals, 189, 57-63.

Oudar, J. L.; Chemla, D. S. 1977. "Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment", J. Chem. Phys., 66, 2664-2668.

Oudar, J. L.; Le Person, H. 1975. "Second-order polarizabilities of some aromatic molecules", Opt. Commun., 15, 258-262.

Sheldrick, G. M. 2008. "A short history of SHELX", Acta Cryst., A64, 112-122.

Terhune, R.; Maker, P.; Savage, C. 1963. "Observation of saturation effects in optical harmonic generation", Phys. Rev. Lett. 2, 54-55.

Umezawa, H.; Tsuji, K.; Anwar; Duan, X-M.; Okada, S.; Oikawa, H.; Matsuda, H. 2000. "Synthesis of stilbazolium derivatives having 2-(6-dimethylamino)naphthyl group for nonlinear optics", Nonlinear Optics, 24, 73-78.

Williams, D. J. 1984. "Organic polymeric and Non-polymeric Materials with large optical nonlinearities", Angew. Chem. Int. Ed. Engl., 23, 690-703.

Zelichenok, A.; Burtman, V.; Zenou, N.; Yitzchaik, S.; Bella, S. D.; Meshulam. G.; Kotler, Z. 1999. "Quinolinium-derived acentric crystals for second-order NLO applications with transparency in the blue", J. Phys. Chem. B, 103, 8702-8705.

Zyss, J.; Nicoud, J. F.; Coquillay, M. 1984. "Chirality and hydrogen bonding in molecular crystals for phase-matched second-harmonic generation: N-(4-nitrophenyl)-(L)-prolinol (NPP)", J. Chem. Phys., 81, 4160-4167.

