

Chemical Constituents from the Twigs of Garcinia hombroniana, the Leaves of Garcinia prainiana and the Roots of Clerodendrum petasites S. Moore

Saranyoo Klaiklay

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry Prince of Songkla University

2009
Copyright of Prince of Songkla University

Thesis Title	Chemical Constituents from the Twigs of Garcinia hombroniana, the Leaves of Garcinia prainiana and the Roots of Clerodendrum
petasites S. Moore	
Author	Mr. Saranyoo Klaiklay
Major Program	Organic Chemistry

(Dr. Yaowapa Sukpondma)
(Dr. Yaowapa Sukpondma)

Co-advisor:

(Dr. Pornsiri Leewanich)
.......................................Chairperson
\qquad
(Prof. Dr. Vatcharin Rukachaisirikul)
(Asst. Prof. Dr. Kanda Panthong)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Degree of Master of Science in Organic Chemistry.
(Assoc. Prof. Dr. Krerkchai Thongnoo)
Dean of Graduate School

ชื่อวิทยานิพนธ์ องค์ประกอบทางเคมีจากกิ่งวา (Garcinia hombroniana) ใบจุมพุต (Garcinia prainiana) และ รากท้าวยายม่อม (Clerodendrum petasites S . Moore)

ผู้เขียน นายศรัณยู ใคลคลาย เคมีอินทรีย์

ปีการศึกษา

บทคัดย่อ

การศึกษาองค์ประกอบทางเคมีแบ่งเป็น 2 ตอน ตอนแรกเป็นการนำส่วนสกัด หยาบเมทานอลจากกิ่งวา (Garcinia hombroniana) และใบจุมพุต (Garcinia prainiana) ทำการแยก ให้บริสุทธิ์ด้วยวิธีทางโครมาโทรกราฟี สามารถแยกสารใหม่ได้จำนวน 8 สาร เป็นสารประเภท triterpene จำนวน 4 สาร (SK9 SK11 SK19 และ SK21) และสารประเภท xanthone จำนวน 4 สาร (SK10 SK18 SK20 และ SK22) และยังสามารถแยกสารที่มีรายงานโครงสร้างแล้ว จำนวน 11 สาร ซึ่งเป็นสารประเภท triterpene จำนวน 4 สาร (SK1 SK2 SK3 และ SK12) สารประเภท xanthone จำนวน 5 สาร (SK4 SK5 SK8 SK13 และ SK16) สารประเภทอนุพันธ์ของกรดเบนโซอิก จำนวน 2 สาร (SK7 และ SK17) และสารประเภท biflavone จำนวน 1 สาร (SK6) จากกิ่งวา ส่วนใบจุมพุต สามารถแยกสารประเภท flavonone glucoside ได้จำนวน 2 สาร (SK23 และ SK24) ตอนที่สองเป็น การนำส่วนสกัดหยาบจากรากท้าวยายม่อม (Clerodendrum petasites S . Moore) มาแยกและทำให้ บริสุทธิ์ด้วยวิธีทางโครมาโทรกราฟี สามารถแยกสารประเภท flavone จำนวน 2 สาร (SK14 และ SK15)

การวิเคราะห์โครงสร้างสารอาศัยข้อมูลทางสเปกโทรสโกปี โดยเฉพาะข้อมูล 1D และ 2D NMR สเปกโทรสโกปี ซึ่งโครงสร้างของ SK19 วิเคราะห์ในรูปอนุพันธ์อะซิเตท ส่วนสาร ที่มีการรายงานโครงสร้างแล้ว วิเคราะห์ได้จากการเปรียบเทียบข้อมูล NMR สเปกตรัม และค่าการ หมุนระนาบแสง

SK1

SK2

SK6

SK9 : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
SK12 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

SK4 : $\mathrm{R}_{1}=\mathrm{H}$	$\mathrm{R}_{2}=\mathrm{OH}$
SK5 : $\mathrm{R}_{1}=\mathrm{H}$	$\mathrm{R}_{2}=\mathrm{H}$
SK8 : $\mathrm{R}_{1}=$ そ~	$\mathrm{R}_{2}=\mathrm{OH}$

SK7 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
SK17: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$

SK10

SK13

SK14 : R = H
SK15 : $\mathrm{R}=\mathrm{CH}_{3}$

SK18

SK20 : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
SK22 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

SK16

SK19

SK21

SK23: R = H
SK24 : R = OH
\(\left.$$
\begin{array}{ll}\text { Thesis Title } & \begin{array}{l}\text { Chemical Constituents from the Twigs of Garcinia hombroniana, } \\
\text { the Leaves of Garcinia prainiana and the Roots of Clerodendrum }\end{array}
$$

\& petasites S. Moore\end{array}\right\}\)| Muther | Mr. Saranyoo Klaiklay |
| :--- | :--- |
| Major Program | Organic Chemistry |
| Academic Year | 2008 |

Abstract

Chemical investigation was divided into two parts. The first part involved the chromatographic separation of the crude methanol extracts from the twigs of Garcinia hombroniana and the leaves of Garcinia prainiana. Eight new compounds: four triterpenes (SK9, SK11, SK19 and SK21) and four xanthones (SK10, SK18, SK20 and SK22), together with eleven known compounds: four triterpenes (SK1, SK2, SK3 and SK12), five xanthones (SK4, SK5, SK8, SK13 and SK16), two benzoic acid derivatives (SK7 and SK17) and one biflavone (SK6) were isolated from the twigs of Garcinia hombroniana while the leaves of Garcinia prainiana yielded two flavonone glucosides (SK23 and SK24). The second part was the investigation of the crude methanol extract from the roots of Clerodendrum petasites using various chromatographic techniques. Two known flavones (SK14 and SK15) were obtained.

The structures were identified by analysis of UV, IR, 1D and 2D NMR spectroscopic data. Compound SK19 was identified as its acetate derivative. Known compounds were also identified by comparison of their NMR data and optical rotation with those reported in the literatures.

SK1

SK2

SK6

SK9 : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
SK12 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

SK4 : $\mathrm{R}_{1}=\mathrm{H}$	$\mathrm{R}_{2}=\mathrm{OH}$
SK5 : $\mathrm{R}_{1}=\mathrm{H}$	$\mathrm{R}_{2}=\mathrm{H}$
SK8 : $\mathrm{R}_{1}=$ そ~	$\mathrm{R}_{2}=\mathrm{OH}$

SK7 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
SK17: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$

SK10

SK13

SK14 : R = H
SK15 : $\mathrm{R}=\mathrm{CH}_{3}$

SK18

SK20 : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
SK22 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$

SK16

SK19

SK21

SK23: R = H
SK24: R = OH

ACKNOWLEDGEMENT

I wish to express my deepest and sincere gratitude to my supervisor, Dr. Yaowapa Sukpondma, for her valuable instruction, expert guidance and excellent suggestion. I would also like to express my appreciation to her for correction of my thesis.

My sincere thanks are expressed to Professor Dr. Vatcharin Rukachaisirikul, my co-advisor for her kindness and valuable advice, to Dr. Pornsiri leewanich and Assistant Professor Dr. Kanda Panthong for the valuable comments.

I would like to extend my appreciation to the staff of the Department of Chemistry, Faculty of Science, Prince of Songkla University, for making this thesis possible.

This work was made possible by a scholarship from Center for Innovation in Chemistry (PERCH-CIC). In addition, I would also like to thank the Graduate School, Prince of Songkla University, for material support.

Finally, none of this would have been possible without love and encouragement of my family and friends. I thank them all for their kindness and valuable advice. Everything will be always kept in my mind.

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

Species belonging to the Garcinia and Clerodendrum genera are well known to be rich in a variety of compounds. Some of compounds showed interesting biological and pharmacological activities such as cytotoxic, antifungal, antioxidant, anti-HIV, antimalaria and antibacterial activities. This research work involved isolation and structural elucidation of compounds isolated from the twigs of G. hombroniana, the leaves of G. prianiana and the roots of C. petasites. Eight new compounds and sixteen known compounds were isolated. The isolated compounds will be further evaluated for antibacterial and anti-HIV activities.

CONTENTS

Page
บทคัดย่อ iii
ABSTRACT vi
ACKNOWLEDGEMENT ix
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND X
CONTENTS xi
LIST OF TABLES xiv
LIST OF FIGURES xxi
LIST OF ABBREVIATIONS AND SYMBOLS xxiii
PART I CHEMICAL CONSTITUENTS FROM THE TWIGS OF 1 GARCINIA HOMBRONIANA AND THE LEAVES OF GARCINIA PRAINIANA
CHAPTER 1.1 INTRODUCTION 2
1.1.1 Introduction 2
1.1.1.1 Garcinia hombroniana 2
1.1.1.2 Garcinia prainiana 2
1.1.2 Review of literatures 3
1.1.3 The Objectives 59
1.1.3.1 Garcinia hombroniana 59
1.1.3.2 Garcinia prainiana 61
CHAPTER 1.2 EXPERIMENTAL 62
1.2.1 Chemical and instruments 62
1.2.2 Plant material 62
1.2.3 Chemical investigation from the twigs of G. hombroniana 63
1.2.3.1 Isolation and extraction 63
1.2.3.2 Chemical investigation of the crude methanol 63extract of the twigs of G. hombroniana

CONTENTS (Continued)

Page
1.2.4 Chemical investigation from the leaves of G. prainiana 157
1.2.4.1 Isolation and extraction 157
1.2.4.2 Chemical investigation of the crude methanol 157extract of the leaves of G. prainiana
CHAPTER 1.3 RESULTS AND DISCUSSION 169
1.3.1 Triterpenes 169
1.3.1.1 Compound SK1 169
1.3.1.2 Compound SK2 171
1.3.1.3 Compound SK3 173
1.3.1.4 Compound SK12 175
1.3.1.5 Compound SK9 178
1.3.1.6 Compound SK19 180
1.3.1.7 Compound SK21 183
1.3.1.8 Compound SK11 187
1.3.2 Xanthones 190
1.3.2.1 Compound SK4 190
1.3.2.2 Compound SK5 192
1.3.2.3 Compound SK8 193
1.3.2.4 Compound SK16 195
1.3.2.5 Compound SK18 197
1.3.2.6 Compound SK13 199
1.3.2.7 Compound SK20 201
1.3.2.8 Compound SK22 203
1.3.1.9 Compound SK10 204
1.3.3 Benzoic acid derivatives 206
1.3.3.1 Compound SK17 206
1.3.3.2 Compound SK7 207

CONTENTS (Continued)

Page
1.3.4 Biflavone 208
1.3.4.1 Compound SK6 208
1.3.5 Flavanone glucosides 209
1.3.5.1 Compound SK23 209
1.3.5.2 Compound SK24 212
PART II CHEMICAL CONSTITUENTS FROM THE ROOTS OF 215
CLERODENDRUM PETASITES S. MOORE CHAPTER 2.1 INTRODUCTION 216
2.1.1 Introduction 216
2.1.2 Review of literatures 216
2.1.3 The Objectives 242
CHAPTER 2.2 EXPERIMENTAL 243
2.2.1 Chemical and instrument 243
2.2.2 Plant material 243
2.2.3 Chemical investigation from the roots of C. petasites 244
2.2.3.1 Isolation and extraction 244
2.2.3.2 Chemical investigation of the crude methanol 244
extract of the roots of C. petasites
CHAPTER 2.3 RESULTS AND DISCUSSION 251
2.3.1 Compound SK15 251
2.3.2 Compound SK14 253
REFERENCES 255
APPENDIX 273
VITAE 304

LIST OF TABLES

Table Page1 Compounds from the Garcinia genus4
2 Solubility of the crude extract in various solvents at room 63 temperature
3 Fractions obtained from the crude methanol extract by quick 64 column chromatography over silica gel
4 Fractions obtained from the fraction \mathbf{A} by column chromatography 65 over Sephadex LH-20
5 Fractions obtained from the fraction A2 by column 66 chromatography over silica gel
6 Fractions obtained from the fraction A3 by quick column 67 chromatography over silica gel
7 Fractions obtained from the fraction $\mathbf{A 5}$ by column 69 chromatography over silica gel
8 Fractions obtained from the fraction A5C by column 70 chromatography over silica gel
9 Fractions obtained from the fraction A5D by column 73
chromatography over silica gel
10 Fractions obtained from the fraction A5E by column 75 chromatography over silica gel
11 Fractions obtained from the fraction A5E2 by column 76 chromatography over Sephadex LH-20
12 Fractions obtained from the fraction A5E4 by column 79 chromatography over silica gel
13 Fractions obtained from the fraction A5E6 by column 81 chromatography over silica gel
14 Fractions obtained from the fraction A5F by column 82 chromatography over silica gel

LIST OF TABLES (Continued)

Table Page
15 Fractions obtained from the fraction $\mathbf{A 5 H}$ by column 84 chromatography over silica gel
16 Fractions obtained from the fraction $\mathbf{A 6}$ by column 87 chromatography over reverse phase C18 silica gel
17 Fractions obtained from the fraction A6C by column 88 chromatography over Sephadex LH-20
18 Fractions obtained from the fraction A6E by column 90 chromatography over silica gel
19 Fractions obtained from the fraction A6G by column 94 chromatography over silica gel
20 Fractions obtained from the fraction \mathbf{B} by column chromatography 95 over Sephadex LH-20
21 Fractions obtained from the fraction $\mathbf{B} 2$ by column 96 chromatography over silica gel
22 Fractions obtained from the fraction B2B by column 97 chromatography over silica gel
23 Fractions obtained from the fraction B2B3 by column 98 chromatography over silica gel
24 Fractions obtained from the fraction B2E by column 100 chromatography over silica gel
25 Fractions obtained from the fraction B2E3 by column 101 chromatography over silica gel
26 Fractions obtained from the fraction B3 by column 104 chromatography over Sephadex LH-20
27 Fractions obtained from the fraction B3B by column 104 chromatography over silica gel

LIST OF TABLES (Continued)

Table Page
28 Fractions obtained from the fraction B3B3 by column 106 chromatography over silica gel
29 Fractions obtained from the fraction B3B3B by column 107 chromatography over silica gel
30 Fractions obtained from the fraction B3B3D by column 108 chromatography over silica gel
31 Fractions obtained from the fraction B3B4 by column 110 chromatography over silica gel
32 Fractions obtained from the fraction B3B4A by column 110 chromatography over silica gel
33 Fractions obtained from the fraction B3B4B by column 111 chromatography over silica gel
34 Fractions obtained from the fraction B3B5 by column 113 chromatography over silica gel
35 Fractions obtained from the fraction B3C by column 115 chromatography over silica gel
36 Fractions obtained from the fraction B3C4A by column 116 chromatography over silica gel
37 Fractions obtained from the fraction B3C4A1 by column 117 chromatography over silica gel
38 Fractions obtained from the fraction B3C5A by column 119 chromatography over silica gel
39 Fractions obtained from the fraction B3E by column 122 chromatography over reverse phase C_{18} silica gel
40 Fractions obtained from the fraction B3F by column 123
chromatography over reverse phase C_{18} silica gel
41 Fractions obtained from the fraction $\mathbf{B 6}$ by column 124 chromatography over reverse phase C_{18} silica gel

LIST OF TABLES (Continued)

Table Page
42 Fractions obtained from the fraction \mathbf{C} by column chromatography 126over Sephadex LH-20
43 Fractions obtained from the fraction C6 by column chromatography 128over reverse phase C_{18} silica gel
44 Fractions obtained from the fraction C7 by column chromatography 130over Sephadex LH-20
45 Fractions obtained from the fraction \mathbf{D} by column chromatography 132 over Sephadex LH-20
46 Fractions obtained from the fraction D2 by column chromatography 132 over silica gel
47 Fractions obtained from the fraction D2A by column 133 chromatography over silica gel
48 Fractions obtained from the fraction D2A-7 by column 135 chromatography over silica gel
49 Fractions obtained from the fraction D4 by column chromatography 139over Sephadex LH-20
50 Fractions obtained from the fraction D4F by column 140 chromatography over reverse phase C_{18} silica gel
51 Fractions obtained from the fraction D5 by column chromatography 143 over reverse phase C_{18} silica gel
52 Fractions obtained from the fraction \mathbf{E} by column chromatography 144 over Sephadex LH-20
53 Fractions obtained from the fraction E2 by column 145 chromatography over silica gel
54 Fractions obtained from the fraction E2F by column 147 chromatography over silica gel

LIST OF TABLES (Continued)

Table Page55 Fractions obtained from the fraction E2G by column148chromatography over silica gel
56 Fractions obtained from the fraction $\mathbf{E} 4$ by column 150 chromatography over Sephadex LH-20
57 Fractions obtained from the fraction E6 by column 152chromatography over reverse phase C_{18} silica gel
58 Fractions obtained from the fraction \mathbf{F} by column chromatography 154over reverse phase C_{18} silica gel
59 Fractions obtained from the fraction $\mathbf{F 6}$ by column 155 chromatography over silica gel
60 Solubility of the crude extract in various solvents at room 158temperature
61 Fractions obtained from the crude methanol extract by column 159 chromatography over Sephadex LH-20
62 Fractions obtained from the fraction H3 by column 159 chromatography over reverse phase C_{18} silica gel
63 Fractions obtained from the fraction H3B by column 160 chromatography over reverse phase C_{18} silica gel
64 Fractions obtained from the fraction H3D by column 162
chromatography over reverse phase C_{18} silica gel
65 Fractions obtained from H3D3 by column chromatography over 163 Sephadex LH-20
66 Fractions obtained from the fraction H3H by column 165 chromatography over reverse phase C_{18} silica gel
67 Fractions obtained from the fraction $\mathbf{~ H} 3 \mathbf{H} 3$ by column 166 chromatography over reverse phase C_{18} silica gel

LIST OF TABLES (Continued)

Table Page
68 Fractions obtained from the fraction H3I by column 167chromatography over reverse phase C_{18} silica gel
69 The NMR data of compound SK1 and garcihombronane D in 170 $\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$
70 The NMR data of compound SK2 and garcihombronane C in 172 CDCl_{3}
71 The NMR data of compound SK3 and garcihombronane B in 174 CDCl_{3}
72 The NMR data of compound SK12 and garcihombronane F in 176 CDCl_{3}
73 The NMR data of compound SK9 in CDCl_{3} 179
74 The NMR data of compound SK19-Ac in CDCl_{3} 182
75 The NMR data of compound SK21 in CDCl_{3} 185
76 The NMR data of SK11 and Epimer-SK11 in CDCl_{3} 188
77 The HMBC correlations of compound SK11 and Epimer-SK11 189
78 The NMR data of compound SK4 and norathyriol 191
79 The NMR data of compound SK5 and 1,3,7-trihydroxyxanthone 192
80 The NMR data of compound SK8 and 1,3,6,7-tetrahydroxy-8- 194 prenylxanthone in Acetone- d_{6}
81 The NMR data of compound SK16 and toxyloxanthone B in 196 Acetone- d_{6}
82 The NMR data of compound SK18 in Acetone- d_{6} 198
83 The NMR data of compound SK13 and cheffouxanthone 200
84 The NMR data of compound SK20 in Acetone- d_{6} 203
85 The NMR data of compound SK22 in Acetone- d_{6} 204
86 The NMR data of compound SK10 in CDCl_{3} 206

LIST OF TABLES (Continued)

Table Page
87 The NMR data of compound SK17 and protocatechic acid methyl 207ester
88 The NMR data of compound SK7 and 4-hydroxybenzoic acid 208
89 The NMR data of compound SK6 and (+)-volkensiflavone 209
90 The NMR data of compound SK23 in $\mathrm{CD}_{3} \mathrm{OD}$ 211
91 The NMR data of compound SK24 and 7-O- β-glucuronide of 212 eriodictyol
92 Major HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOEDIFF data of compound 213 SK24
93 Compounds from the Clerodendrum genus 217
94 Solubility of the crude extract in various solvents at room 244 temperature
95 Fractions obtained from the crude methanol extract by column 245 chromatography over Sephadex LH-20
96 Fractions obtained from the fraction T3M by flash column 246 chromatography over silica gel
97 Fractions obtained from the fraction $\mathbf{T 4 M}$ by column 248 chromatography over reverse phase C_{18} silica gel
98 The NMR data of compound SK15 and 6-methoxyscutellarin 252
99 The NMR data of compound SK14 and 6,4'-dimethoxyscutellarin 254

LIST OF FIGURES

Figure Page$1 \quad{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound274SK1${ }^{13} \mathrm{C}$ NMR (125 MHz) ($\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound274
SK1
$3 \quad{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK2 275
4 ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK2 275
5 ${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK3 276
6 ${ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK3 276
${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{S K 1 2}$ 277
8 ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK12 277
$9 \quad{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK9 278
$10 \quad{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK9 278
11 Mass spectrum of compound SK9 279
$12 \quad{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK19 280
$13 \quad{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK19 280
14 Mass spectrum of compound SK19 281
$15 \quad{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK21 282
16 ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK21 282
17 Mass spectrum of compound SK21 283
$18 \quad{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK11 284
19
${ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK11 284
20
${ }^{1} \mathrm{H}$ NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK4 285
21
${ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK4 285
22 ${ }^{1}$ H NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK5 286
23 ${ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK5 286
$24 \quad{ }^{1} \mathrm{H}$ NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK8 287287

LIST OF FIGURES (Continued)

Figure Page
$26 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK16 288
27
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK16 288
28
${ }^{1} \mathrm{H}$ NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK18 289
29
${ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK18 289
30 Mass spectrum of compound SK18 290
31 ${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK13 291
32 ${ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK13 291
33 ${ }^{1} \mathrm{H}$ NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK20 292
${ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK20 292
35
Mass spectrum of compound SK20 293
36
${ }^{1}$ H NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK22 294
37
${ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK22 294
38 Mass spectrum of compound SK22 295
39
${ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK10 296
${ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK10 296
41 Mass spectrum of compound SK10 297
42
${ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK17 298
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK17 298
${ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound SK7 299
${ }^{1} \mathrm{H}$ NMR (300 MHz) (DMSO- d_{6}) spectrum of compound SK6 299
${ }^{1} \mathrm{H}$ NMR (300 MHz) (CD ${ }_{3} \mathrm{OD}$) spectrum of compound SK23 300
${ }^{13} \mathrm{C}$ NMR (75 MHz) ($\mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound SK23 300
${ }^{1} \mathrm{H}$ NMR (300 MHz) ($\mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound SK24 301
${ }^{13} \mathrm{C}$ NMR (75 MHz) ($\mathrm{CD}_{3} \mathrm{OD}$) spectrum of compound SK24 301
${ }^{1} \mathrm{H}$ NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK15 302
51 ${ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK15 302
52 ${ }^{1} \mathrm{H}$ NMR (300 MHz) (Acetone- d_{6}) spectrum of compound SK14 303
53 ${ }^{13} \mathrm{C}$ NMR (75 MHz) (Acetone- d_{6}) spectrum of compound SK14 303

LIST OF ABBREVIATIONS AND SYMBOLS

S	$=$	singlet
d	$=$	doublet
t	$=$	triplet
q	$=$	quartet
m	$=$	multiplet
brs	$=$	broad singlet
brd	=	broad doublet
$d d$	$=$	doublet of doublet
$d t$	$=$	doublet of triplet
$d q$	$=$	doublet of quartet
ddd	$=$	doublet of doublet of doublet
$d d q$	$=$	doublet of doublet of quartet
$d d m$	$=$	doublet of doublet of multiplet
$m t$	=	multiplet of triplet
qd	$=$	quartet of doublet
δ	$=$	chemical shift relative to TMS
J	$=$	coupling constant
m / z	$=$	a value of mass divided by charge
${ }^{\circ} \mathrm{C}$	$=$	degree celcius
R_{f}	$=$	retention factor
g	$=$	gram
kg	$=$	kilogram
mg	$=$	milligram
$\mu \mathrm{g}$	$=$	microgram
ml	$=$	milliliter

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

L	=	Liter
cm^{-1}	=	reciprocal centimeter (wave number)
nm	=	nanometer
ppm	=	part per million
$\lambda_{\text {max }}$	=	maximum wavelength
v	$=$	absorption frequencies
ε	$=$	molar extinction coefficient
Hz	=	Hertz
MHz	$=$	megaHertz
${ }_{[\alpha]}{ }_{\text {D }}$	$=$	specific rotation
c	=	concentration
TLC	=	thin-layer chromatography
UV-S	=	Ultraviolet-short wavelength
FT-IR	=	Fourier Transform Infrared
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectroscopy
NMR	=	Nuclear Magnetic Resonance
1D NMR	=	One Dimensional Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
HMQC	$=$	Heteronuclear Multiple Quantum Coherence
HMBC	=	Heteronuclear Multiple Bond Correlation
DEPT	$=$	Distortionless Enhancement by Polarization Transfer
NOE	=	Nuclear Overhauser Effect
NOEDIFF	=	NOE Difference Spectroscopy
NOSEY	=	Nuclear Overhauser Enhanced Spectroscopy
COSY	=	Correlation Spectroscopy
TMS	=	tetramethylsilane

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

CDCl_{3}	$=$ deuterochloroform
Acetone- d_{6}	$=$ hexadeuteroacetone
ASA	$=$ anisaldehyde-sulphuric acid in acetic acid solution
$\mathrm{CD}_{3} \mathrm{OD}$	$=$ tetradeuteromethanol
$\mathrm{DMSO}^{2} d_{6}$	$=$ hexadeuterodimethylsulphoxide
CHCl_{3}	$=$ chloroform
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$=$ dichloromethane
EtOH^{2}	$=$ ethanol
EtOAc^{2}	$=$ ethyl acetate
HCl	$=$ hydrochloric acid
HCOOH	$=$ formic acid
$\mathrm{H}_{2} \mathrm{O}$	$=$ water
MeOH	$=$ methanol
NaHCO	
NaOH	$=$ sodium hydrogen carbonate
$\mathrm{Na}_{2} \mathrm{SO}_{4}$	$=$ sodium hydroxide
Petrol	$=$ sodium sulfate

PART I

CHEMICAL CONSTITUENTS FROM THE TWIGS OF GARCINIA HOMBRONIANA AND THE LEAVES OF GARCINIA PRAINIANA

CHAPTER 1.1

INTRODUCTION

1.1.1 Introduction

1.1.1.1 Garcinia hombroniana

Garcinia hombroniana, a plant belonging to the Guttiferae family, is widely distributed in the southern part of Thailand. G. hombroniana is small to medium size tree about 30 to 60 feet high, 180 cm girth. Inner bark with opaque, white or yellow exudates. Leaves: stalk 15-20 mm, stout, irregularly, often finely, transversely striate and drying golden; blade very variable in size, ovate to ovate-oblong, 6.5x3.5$9.5 \times 5.5-15.5 \times 7 \mathrm{~cm}$; broadly tapered to apex; base broadly wedge-shaped or, less usually, rounded, drying warn, chestnut brown, or occasionally blackish brown; leathery; midrib broad, flat, slightly raised on upper surface, strongly raised below, keeled, striate towards base, nerves faint to almost invisible; secondaries fine, parallel, straight, fairly close, 2 mm apart, sometime forking outwards, with equally prominent or fainter intercostals faintly looping and joining to form a weak intramarginal nerve. Flower with 4 sepals and petals, terminal; males in clusters, pedicel $5-10 \mathrm{~mm}$, opening 2.5 cm across staments in a slightly 4-lobed mass surrounding a pistil lode; female solitary, with no staminodes. Fruits globose, to 4 cm across, usually depressed, wall thin, woody, drying brown shiny, amooth, tending to fracture; stigma raised on, and slightly projecting from a distinct apical beak, 1-10 mm long, thin margin wavy or with touching lobes, surface weakly finely papillose; seated on the persistent calyx stout, 1-7 mm. In Thailand, G. hombroniana has a local name, "Waa" (Saelim, 2005).

1.1.1.2 Garcinia prainiana

Garcinia prainiana, a plant belonging to the Guttiferae family, is widely distributed in the southern part of Thailand. G. prainiana is a small tree, 10 m tall crown narrow, dense, with milky latex; branchlets not angled, glabrous. Stipules
absent. Leaves simple, opposite, petioles 3 mm long, stout, blades conriaceous, ovateoblong, $15-23$ by $7-15 \mathrm{~cm}$, the slightly heart-sharped base often clasping the twig, apex acuminate, margins entrie, deep green and glabrous on both surfaces, nerves 1215 pairs. Flower unisexual, in dense terminal cymes, male and female flowers on the same plant. Male flowers 2.5 cm across, sepals 5 , free, the outer 2 smaller than the inner, orbicular, 5 mm long, red with green margin, fleshy, petal 5 , free, sur-orbilar, 8 mm long, pink, stamens numerous, filament red, anthers yellow, connate into 5 bundles around a pistillode, pistillode globose, red, with numerous tubercles. Female flowers 3.5 cm across, sepals 5 , free, orbicular, 7 mm long, pale green with pink stripe at center, petals 5 , free, obovate, 10 mm long, red, when young then creamy white, staminode none, ovary superior, globose, glabrous, pale green, 6 mm . diam., 7- to 8loculed, ovule 1 in each locule, pink, stima sessile, red, 6-7 mm diam., dome-shaped, margin entire. Fruits a fleshy berry, depressed globose, $2.5-4.5 \mathrm{~cm}$ across, with a thin and smooth leathery rind, ripening golden yellow to orange yellow. Seeds 5-8, suborbicular, compressed, 1.3 by 1.0 cm , pale brown, embedded in fleshy orange pulp (Upo, 2005).

1.1.2 Review of Literatures

Chemical constituents from the genus Garcinia

Plants in the Garcinia genus (Guttiferae) are well known to be rich in a variety of compounds: xanthones (Shadid, 2007; Reutrakul, 2007; Deachathai, 2006; Jung, 2006; Panthong, 2006; Rukachaisirikul, 2006; Suksumrarn, 2006), benzophenones (Kumar, 2007a; Hamed, 2006; Masullo, 2008; Soemiati, 2006), biflavonoids (Lu, 2008, Mbwanbo, 2006), biphenyls (Chen, 2006; Wu, 2008), flavonoids (Okwu, 2007; Hartati, 2007; Shen, 2007b), depsidones (Rukachaisikul, 2006), alkaloids (Fotie, 2007) and triterpenes (Shadid, 2007; Shen, 2006a; Rukachaisirikul, 2005). Some of these compounds showed interesting biological and pharmacological activities such as cytotoxic (Akao, 2008; Kijjao, 2008; Han, 2006a,b; Kumar; 2007b; Suksamrarn, 2006), anti-inflammatory (Castardo, 2008; Chen, 2008; Huang, 2008; Lin, 2006), antimicrobial (Taher, 2008; Kuete, 2007; Okwu, 2007), antifungal (Dharmarate,
2005), antibacterial (Rukachaisirikul, 2008; 2006; 2005; Panthong, 2006; Sukpondma, 2005), anti-HIV (Reutrakul, 2007) and antioxidant (Wu, 2008a; Tarher, 2007; Yu, 2007; Okwu, 2007; Lannang , 2006) activities.

Chemical constituents isolated from Garcinia species up to the year 2005 have been reported (Naklue, 2006). The continuing search using SciFinder database revealed additional chemical constituents in the year 2006 up to 2008 which were summarized in Table 1.

Table 1 Compounds from the Garcinia genus

Scientific name	Investigated parts	Compounds	Structures	References
G. afzelii	stem barks	afzeliixanthone A afzeliixanthone B β-sitosterol stigmasterol 1,7-dihydroxy- xanthone 1,5-dihydroxy- xanthone 1,3,7-trihydroxy- 2-(3-methylbut-2- enyl)xanthone	$\begin{gathered} \hline 12.3 \mathrm{hh} \\ 12.2 \mathrm{c} \\ 10 \mathrm{a} \\ 10 \mathrm{~b} \\ 12.1 \mathrm{f} \\ 12.1 \mathrm{~d} \\ \\ 12.2 \mathrm{l} \end{gathered}$	Kamdem, W., et al., 2006
G. benthami	stem barks	salimbenzophenone	2 t	$\begin{aligned} & \text { Elya, B., et al., } \\ & \text { 2006b } \end{aligned}$
G. brasiliensis	roots fruits fruits seeds	7-epiclusianone garciniaphenone guttiferone A	$\begin{aligned} & 2 \mathrm{x} \\ & 2 \mathrm{cc} \\ & 2 \mathrm{c} \end{aligned}$	Neves, J. S., et al., 2007 Martins, F. T., et al., 2008 Martins, F. T., et al., 2007

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
G. brevipedicellata	stem barks	brevipsidone scopoletin damnacanthal Pilloin	$\begin{gathered} \text { 6c } \\ \mathbf{1 3 g} \\ \mathbf{1 3 j} \\ 7 e \end{gathered}$	Ngoupayo, J., et al., 2007
G. cambogia	fruits fruits rinds	guttiferone I guttiferone J guttiferone K guttiferone M guttiferone N oxyguttiferone K Garcinia lactone	$2 \mathbf{p}$ $2 q$ 2 r 2 n 2 z 12.6 mm 13 f	Masullo, M., et al., 2008 Mahapatra, S., et al., 2007
G. cantleyana	leaves and trunk barks	cantleyanone A 7-hydroxyforbe- sione Cantleya none B cantleyanone C cantleyanone D 4-(1,1-dimethyl- prop-2-enyl)-1,3,- 5,8-tetrahydroxy- xanthone deoxygaudichau- dione A gaudichaudione H Friedelin	12.6a 12.6b 12.6c 12.6d 12.6e 12.3uu 12.6bb 12.6ii 11b	Shadid, K. A., et al., 2007

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		Garbogiol macranthol glutin-5-en-3 β-ol	$\begin{gathered} \hline \text { 12.3aaaa } \\ \text { 13n } \\ \text { 11c } \end{gathered}$	
G. cowa	stems fruits and stems	garccowaside A garccowaside B garccowaside C Quercetin 2-(3,5-dihydroxy- phenyl)-2,3-dihy- dro-5,7-dihydro- xyflavone 2-(3,5-dihydroxy- phenyl)-2,3-dihy- dro-3,5,7-trihy- droxyflavone (+)-6-(3,4-dihy- droxybenzoyl)-2,- 3,4,4a,8,9,10,11,- 12,12a-decahydro- 3,3,4a,9,9-penta- methyl-8,10-bis(3- methyl-2-buten-1- yl)-1H-8,11a-me- thano-7H-benzo- [b]cycloocta[e]- pyran-7-13-dione	8b 8c 8d 7b 7 g 7h 2aa	Shen, J., et al., 2007b Shen, J., et al., 2007a

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	stems	Cambogin 1,5,6-trihydroxy- 3-methoxy-4-(3- hydroxyl-3-methyl butyl)xanthone 1,5-dihydroxy-3- methoxy-6',6'-di- methyl-2H-pyra- no(2',3':6,7)-4-(3- methylbut-2- enyl)xanthone 1,3,5-trihydroxy- 6',6'-dimethyl-2H- pyrano(2',3':6,7)- xanthone dulxanthone A 1,5,6-trihydroxy- 3,7-dimethoxy- xanthone 1,7-dihydroxy- xanthone 1,3,5-trihydroxy- 6-methoxyxan- thone norathyriol		Shen, J., et al., $2006 \mathrm{c}$

Table 1 (continued)

\begin{tabular}{|c|c|c|c|c|}
\hline Scientific name \& \begin{tabular}{l}
Investigated \\
parts
\end{tabular} \& Compounds \& Structures \& References \\
\hline \& \begin{tabular}{l}
fruits \\
fruits
\end{tabular} \& \begin{tabular}{l}
cowaxanthone A \\
cowaxanthone B \\
cowaxanthone C \\
cowaxanthone \\
cowaxanthone D \\
cowaxanthone E \\
fuscaxanthone C \\
7-O-methyl garci- \\
none E \\
mangostanin \\
1,6-dihydroxy-3,- \\
7-dimethoxy-2- \\
(3-methyl-2-bute- \\
nyl)xanthone \\
6-O-methyl- \\
mangostanin \\
\(\alpha\)-mangostin \\
\(\beta\)-mangostin \\
cowanol \\
Cowanin \\
\(\beta\)-sitosterol \\
daucosterol \\
amentoflavone \\
cirsiumaldehyde \\
p-coumaric acid \\
morelloflavone
\end{tabular} \& \(12.3 \mathbf{w}\)
12.3 e
12.3 nnn
12.3 l
12.3 sss
12.3 c
12.3 f
12.3 d
\(12.3 \mathbf{w w w}\)
\(12.3 \mathbf{v}\)

$12.3 \mathbf{y y y}$
12.3 a
12.3 b
12.3 m
12.3 y
10 a
10 c
$4 \mathbf{e}$
$13 \mathbf{h}$
13 b

$4 \mathbf{a}$ \& | Panthong, K., et al., 2006 |
| :--- |
| Shen, J., et al., 2006a |

\hline
\end{tabular}

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
G. dulcis	fruits flowers	morelloflavone camboginol Dulcinone dulcisxanthone C dulcisxanthone D dulcisxanthone E dulcisxanthone F rhamnazin	$4 \mathbf{a}$ $2 d$ 130 $12.4 b$ $12.3 f f f f$ $12.3 p p$ $12.3 t t t$ $7 a$	Hutadilok- Towatana, N., et al., 2007 Deachathai, M., et al., 2006
G. eugeniaefolia	stem barks stem barks	eugeniaphenone enervosanone Cambogin epicatechin osajaxanthone rubraxanthone isocowanol	2f 9a $2 e$ $7 j$ $12.2 r$ $12.3 e e$ $12.3 n n$	Hartati, S., et al., 2008a Taher, M., et al., 2007
G. gardneriana	leaves	Fukugetin GB-2a	4a $\mathbf{4 f}$	Castardo, J. C., et al., 2008
G. hanburyi	resin and fruits	7-methoxydesoxymorellin 2-isoprenylforbesione 8,8a-epoxymore- llic acid	12.6q 12.6hh 12.6x	Reutrakul, V., et al., 2007

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	dry latex	desoxymorellin dihydroisomore- llin isomorellin Gambogic acid morellic acid isomorellinol desoxygamboge- nin Hanburin forbesione Moreollic acid isogambogenic acid desoxymorellin $10-m e t h o x y$ gambogenic acid $10-m e t h o x y$ gambogic acid $10-$ ethoxy gambogic acid desoxygambo- genin Gambogic acid morellic acid	12.6 g 12.6 nn 12.6 j 12.6 z 12.6 r 12.6 l 12.6 ee 12.6 gg 12.6 jj 12.6 oo 12.6 cc 12.6 o 12.6 dd 12.6 g 12.6 h 12.6 ee 12.6 z 12.6 r	$\begin{aligned} & \text { Feng, F., et al., } \\ & 2007 \end{aligned}$

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	gamboges resin	2-isoprenylforbesone Gambogin Moreollic acid gambogellic acid hanburin gambogenic acid 30-hydroxy gambogic acid epigambogic acid Gambogic acid desoxymorellin isomorellic acid morellic acid isogambogic acid isomorellinol gambogenic acid gambogoic acid A gambogoic acid B gaudichaudic acid isogambogenic acid deoxygaudichau- dione A	$\begin{gathered} \hline 12.6 \mathrm{hh} \\ \\ 12.6 \mathrm{f} \\ 12.6 \mathrm{oo} \\ 12.6 \mathrm{w} \\ 12.6 \mathrm{gg} \\ 12.6 \mathrm{ff} \\ 12.6 \mathrm{n} \\ \\ 12.6 \mathrm{v} \\ 12.6 \mathrm{z} \\ 12.6 \mathrm{o} \\ 12.6 \mathrm{k} \\ 12.6 \mathrm{r} \\ 12.6 \mathrm{~m} \\ 12.6 \mathrm{l} \\ 12.6 \mathrm{ff} \\ 12.6 \mathrm{kk} \\ 12.6 \mathrm{ll} \\ 12.6 \mathrm{aa} \\ 12.6 \mathrm{cc} \\ 12.6 \mathrm{bb} \end{gathered}$	Han, Q.-B., et al., 2006b Han, Q.-B., et al., 2006a

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
G. indica	fruit rinds fruit rinds	Garcinol xanthochymol isoxanthochymol	$\begin{aligned} & 2 d \\ & 2 b \\ & 2 a \end{aligned}$	Huang, M.-T., et al., 2008 Kumar, S., et al., 2007a, b
G. kola	seeds	naringin-7-rharmnoglucoseside	8a	Okwu, D. E., et al., 2007
G. lancilimba	stem barks	1,5,6-trihydroxy- 6',6'-dimethyl-2H- pyrano(2',3':3,4)- 2-(3-methylbut-2- enyl)xanthone 1,6,7-trihydroxy- 6',6'-dimethyl-2H- pyrano(2',3':3,2)- 4-(3-methylbut-2- enyl)xanthone 6-deoxyjacareubin Xanthone V1 Xanthone V1a dulxanthone B cudratricusxan- thone E parvifolixan- thone B	12.3iii 12.3000 12.2p 12.3ppp 12.30 12.3p 12.3q 12.3ff	Yang, N. Y., et al., 2007
G. linii	roots	(S)-3-hydroxygarcibenzopyran	5 e	$\begin{aligned} & \text { Chen, J.-J., } \\ & \text { et al., } 2006 \end{aligned}$

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		garcibiphenyl C garcibiphenyl D garcibiphenyl E	$5 a$ 5b $5 f$	
G. livingstonei	root barks	ent-naringeninyl- (I-3 $\alpha, \mathrm{II}-8$)-4'-O- methylnaringenin (+)-morellofla- vone (+)-volkensifla- vone 6,11-dihydroxy- 3-methyl-3-(4- methyl-3-pent- enyl)xanthone 4-(3',7'-dimethyl- octa-2',6'-dienyl)- 1,3,5-trihydroxy- 9H-xanthen-9-one Garcilivin A 1,4,5-trihydroxy- 3-(3-methyl-2- butenyl)xanthone Garcilivin C	4c $4 \mathbf{a}$ 4b 12.2w 12.2u 12.8a 12.2d 12.8b	Mbwambo, Z., et al., 2006
G. lucida	stem barks	dihydrochelerythrine 6-acetonyldihydrochelerythrine	1a 1b	Fotie, J., et al., 2007

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		lucidamine A lucidamine B	$\begin{aligned} & \hline \text { 1c } \\ & \text { 1d } \end{aligned}$	
G. maingayii	stem barks	isoxanthochymol camboginol stigmasterol 5,7,2',5'-tetrahy-droxyflavan-3-ol griffipavixanthone	2a 2d 10b 7k 12.8c	Hartati, S., et al., 2007
G. mangostana	fruits	1,2-dihydro-1,8,- 10-trihydroxy-2- (2-hydroxypro- pan-2-yl)-9-(3-me- thylbut-2-enyl)- furo[3,2-a]xan- then-11-one 6-deoxy-7-deme- thylmangostanin 1,3,7-trihydroxy- 2,8-di-(3-methyl- but-2-enyl)xan- thone mangostanin α-mangostin α-mangostin	12.2x 12.2 y 12.2n 12.3www 12.3a 12.3a	Chin, Y.-W., et al., 2008b Balunas, M. J., et al., 2008

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	fruit hulls pericarps	1-isomangostin γ-mangostin 8-deoxygartanin Gartanin tovophyllin A Garcinone D mangostinone Garcinone E cudraxanthone G smeathxanthone A 8-hydroxy cudraxanthone G γ-mangostin α-mangosin epicatechin 8-hydroxycudra- xanthone G mangostingone cudraxanthone G 8-deoxygartanin garcimangosone B Garcinone D Garcinone E Gartanin 1-isomangostin	$12.3 e e e e$ 12.3 g 12.2 m $12.3 \mathbf{u}$ $12.3 \mathbf{k k} \mathbf{k}$ $12.3 \mathbf{x}$ $12.2 \mathbf{v}$ 12.3 h $12.2 \mathbf{i}$ 12.3 s 12.3 t 12.3 g 12.3 a 7 j 12.3 t $12.3 \mathbf{a a a}$ $12.2 \mathbf{i}$ 12.2 m $12.3 \mathbf{b b b b}$ $12.3 \mathbf{x}$ 12.3 h $12.3 \mathbf{u}$ $12.3 \mathbf{e e e e}$	Yu, L., et al., 2007 Jung, H.-A., et al., 2006

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	young fruits	α-mangostin γ-mangostin smeathxanthone A mangostinone tovophyllin A mangostenone C mangostenone D mangostenone E Garcinone C Garcinone B demethylcalaba- xanthone Garcinone D Garcinone E 11 -hydroxy-1- isomangostin mangostinone mangostanol mangostanin thawaitesixanthone 8 -deoxygartanin Gartanin α-mangostin β-mangostin γ-mangostin		Suksamrarn, S., et al., 2006

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	stems fruit hulls	Garcinone D mangosharin 1,6-dihydroxy- 3,7-dimethoxy-2- (3-methylbut-2- enyl)xanthone α-mangostin β-mangostin mangostanol $5,9-$ dihydroxy-8- methoxy-2,2-dime- thyl-7-(3-methyl- but-2-enyl)-2H,- 6 H -pyrano-[3,2- b]xanthene-6-one α-mangostin β-mangostin γ-mangostin 5,9 -dihydroxy-8- methoxy-2,2-dime- thyl-7-(3-methyl- but-2-enyl)-2H,- $6 H$-pyrano-[3,2- b]xanthen-6-one	12.3 x 12.2 b 12.3 v 12.3a 12.3b 12.3III 12.3ccc 12.3a 12.3b 12.3 g 12.3ccc	Ee, G. C. L., et al., 2006 Hu, J., et al., 2006

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		epicatechin Egonol	$\begin{gathered} \hline 7 \mathbf{j} \\ 13 \mathrm{~m} \end{gathered}$	
G. merguensis	woods	3,3',4-O-trimethylellagic acid α-mangostin rubraxanthone isocowanol	$13 i$ 12.3 a $12.3 e \mathrm{e}$ 12.3 nn	Kijjao, A., et al., 2008
G. morella	seed coat	morellic acid isomorellic acid Gambogic acid morellin Guttiferic acid 2-methyl-4-[(1R,- 3aS,5S,14aS)-3a,- 4,5,7-tetrahydro- 8-hydroxy-3,3,- 11,11-tetrame- thyl-13-(3-methyl- 2-buten-1-yl)- 7,15-dioxo-1,5- methano-1H,3H,- 11H-furo[3,4-g]- pyra-no-[3,2-b]- xan-then-1-yl]me- thyl ester	$\begin{gathered} 12.6 \mathrm{r} \\ 12.6 \mathrm{k} \\ 12.6 \mathrm{u} \\ 12.6 \mathrm{i} \\ 12.7 \mathrm{~b} \\ 12.6 \mathrm{~s} \end{gathered}$	Rao, D. R., et al., 2007

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		2-methyl-4-[(1R,- $3 \mathrm{aS}, 5 \mathrm{~S}, 14 \mathrm{aS})-3 \mathrm{a},-$ $4,5,7-$ tetrahydro- 8-methoxy-3,3,- 11,11-tetramethyl- 13-(3-methyl-2- buten-1-yl)-7,15- dioxo-1,5-metha- no-1H,3H,11H- furo[3,4-g]pyra- no[3,2-b]xanthen- 1-yl]methyl ether 3a,4,5,7-tetrahy- dro-8-hydroxy-1- [(2Z)-4-methoxy- $3-m e t h y l-4-o x o-~$ 2-buten-1-yl]-3,- 3,11,11-tetrame- thyl- 13-(3-me- thyl-2-buten-1-yl)- 7-oxoxanthone methyl ester	12.6t 12.7a	
G. multiflora	roots	garcinialone isoxanthochymol	$\begin{gathered} \text { 12.6y } \\ \text { 2a } \end{gathered}$	$\begin{aligned} & \text { Chein, S.-C., } \\ & \text { et al., } 2008 \end{aligned}$
G. oblongifolia	stems and leaves	oblongifoliagarcinine A	5c	$\begin{aligned} & \text { Wu, X., et al., } \\ & 2008 \mathrm{~b} \end{aligned}$

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	bark	oblongifoliagar- cinine B oblongifoliagar- cinine C oblongifoliagar- cinine D oblongifolin A oblongifolin B oblongifolin C oblongifolin D camboginol guttiferone B	$\begin{aligned} & \text { 5d } \\ & 5 g \\ & 5 h \\ & 2 h \\ & 2 \mathrm{~h} \\ & 2 k \\ & 2 \mathrm{i} \\ & 2 d \\ & 2 \mathrm{~g} \end{aligned}$	Hamed, W., et al., 2006
G. parvifolia	leaves roots twigs	parvifoliol B parvifoliol C parvifoliol E garcidepsidone B nigrolineaisofla- vone A mangostinone parvifoliquinone parvixanthone A rubraxanthone parvifoliol A	$13 \mathbf{e}$ $3 \mathbf{a}$ $3 \mathbf{c}$ $6 \mathbf{b}$ $7 \mathbf{i}$ $12.2 \mathbf{v}$ $13 \mathbf{k}$ 12.3 z $12.3 e \mathrm{e}$ $13 \mathbf{d}$	Rukachaisirikul, V., et al., 2008 Kardono, L. B. S., et al., 2006 Rukachaisiri- kul, V., et al., 2006

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		parvifoliol B parvifoliol C parvifoliol D parvifoliol E parvifoliol F parvifoliol G parvifolidone A parvifolidone B parvifolixan- thone A parvifolixan- thone B parvifolixan- thone C garcidepsidone B mangostinone rubraxanthone dulxanthone D $(2 E, 6 E, 10 E)-(+)-$ 4β-hydroxy-3-me- thyl-5 β-($3,7,11,15$ tetramethylhexa- deca-2,6,10,14- tetraenyl)cyclo- hex-2-en-1-one	$13 \mathbf{e}$ $3 \mathbf{a}$ $3 \mathbf{b}$ $3 \mathbf{c}$ $3 \mathbf{d}$ $3 \mathbf{e}$ $6 \mathbf{a}$ $6 d$ $12.3 \mathbf{n}$ $12.3 f f$ 12.3 mm $6 \mathbf{b}$ $12.2 \mathbf{v}$ $12.3 \mathbf{e e}$ $12.3 d d$ 131	

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		$1,3,5,6$-tetrahy- droxyxanthone norathyriol	$\mathbf{1 2 . 3 t t}$	
G. penangiana	leaves	4-(1,1-dimethyl- prop-2-enyl)-1,3,-	$\mathbf{1 2 . 3 u \mathbf { c c }}$	Jabit, M. L., et al., 2007
		5,8-tetrahydroxy- xanthone penangianaxan- thone	$\mathbf{1 2 . 3 g g g g}$	
		cudratricusxan- thone H macluraxan-	$\mathbf{1 2 . 3 u u u}$	$\mathbf{1 2 . 3 0 0}$

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		1,6-dihydroxy-5- methoxyxanthone $1,3,5,6-t e t r a h y-~$	$\mathbf{1 2 . 2 0}$	
			droxyxanthone	

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	leaves	musaxanthone asmaxanthone	$\begin{gathered} \text { 12.4c } \\ \text { 12.3ggg } \end{gathered}$	$\begin{aligned} & \text { Elya, B., et } \\ & \text { al., 2006a } \end{aligned}$
G.smeathmahnii	stem barks root barks	bangangxan- thone A guttiferone I cheffouxanthone triacontanylcaf- feate smeathxanthone B smeathxanthone A isoxanthochymol 1,5-dihydroxy- xanthone 1,3,5-trihydroxy- xanthone Friedelin cheffouxanthone guttiferone I isoxanthochymol smeathxanthone A smeathxanthone B triacontanylcaf- feate	$12.3 f f f$ $2 p$ 12.3 r 13 c 12.3 bbb 12.3 s 2 a 12.1 d 12.2 f 11 b 12.3 r 2 p 2 a 12.3 s 12.3 bbb 13 c	Kuete, V., et al., 2007 Lannang, A. M., et al., 2006
G. subelliptica	heartwoods and pericarps	garcinielliptone HF	9h	Wu, C.-C., et al., 2008a

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	green and ripened fruits heartwoods fresh fruits	garcinielliptone FC garcinielliptone FC tautomer (+)-4"'-O-methylfukugetin garcinielliptone HA garcinielliptone HB garcinielliptone HC garcinielliptone HD garcinielliptone HE garcinielliptone F garcinielliptone I	21 2m 4d 9c 9e 9f 9g 9d 9b 2y	Terashima, K., et al., 2008 Lu, Y.-H., et al., 2008 Lin, C.-N., et al., 2006
G. tetrandra	stem barks	1,3-dihydroxy- 2',2'-dimethyl- pyrano($5^{\prime}, 6^{\prime}, 5,6$)- xanthone cudraxanthone Lupeol	12.2bb 12.2z 11a	Hartati, S., et al., 2008b

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		stigmasterol thawaitesixanthone 3- α-hopenol Cambogin camboginol	$\begin{gathered} \hline \text { 10b } \\ 12.2 a a \\ 11 \mathrm{f} \\ 2 \mathrm{e} \\ 2 \mathrm{~d} \end{gathered}$	
G. urophylla	leaves	7-hydroxydesoxymorellin isocaledonixanthone D gaudichaudione H 1,7-dihydroxy-3-methoxy-2-(3-methyl-2-butenyl)xanthone 1,5-dihydroxy-3-methoxy-2-(3-methyl-2-butenyl)xanthone 1,3,7-trihydroxy-2-(3-methyl-2-butenyl)xanthone lupeol	12.6p 12.3zz 12.6ii 12.2j 12.2k 12.21 11a	Mohd Khalid, R., et al., 2007
G. vieillardii	stem barks	vieillardiixanthone B vieillardiixanthone C	$\begin{aligned} & 12.3 \mathrm{ww} \\ & 12.3 \mathrm{xx} \end{aligned}$	Hay, A.-E., et al., 2008

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
		pancixanthone A pancixanthone B 1,6-dihydroxyxanthone pyranojacareubin 5,6-O-dimethyl- 2-deprenylrheediaxanthone clusiachromene C 3-geranyl-2,4,6-trihydroxybenzophenone	12.2 s 12.2 t 12.1 e 12.3 hhhh 12.3 iiii 2 s $2 b b$	
G. virgata	stem barks	guttiferone I guttiferone J xanthochymol guttiferone E	$\begin{aligned} & 2 \mathbf{p} \\ & 2 q \\ & 2 \mathbf{b} \\ & 2 c \end{aligned}$	Merza, J., et al., 2006
G. xanthochymus	twig barks	1,4,5,6-tetrahy-droxy-7,8-diprenylxanthone 1,3,5,6-tetrahy-droxy-4,7,8-triprenylxanthone garciniaxanthone E 1,4,6-trihydroxy-5-methoxy-7-(3-methyl-2-buten-1yl)xanthone	12.3II 12.3vv 12.3jj 12.3qq	Han, Q.-B., et al., 2007

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	barks	$\begin{array}{\|l} \hline \text { 1,4,5,6-tetrahy- } \\ \text { droxy-7-(3-methyl- } \\ \text { 2-buten-1-yl)- } \\ \text { xanthone } \\ \text { 7-(3,7-dimethyl- } \\ \text { 2,6-octadien-1-yl)- } \\ \text { 1,2,5,6-tetrahy- } \\ \text { droxyxanthone } \\ \text { 6-prenylapigenin } \\ \text { 1,4,5,6-tetrahy- } \\ \text { droxy-7,8-dipre- } \\ \text { nylxanthone } \\ \text { 1,6-dihydroxy-4, } \\ \text { 5-dimethoxyxan- } \\ \text { thone } \\ \text { 1,5,6-trihydroxy- } \\ \text { 7,8-di-(3-methyl-2 } \\ \text {-butenyl)-6',6'-di- } \\ \text { methylpyrano(2',- } \\ \text { 3':3,4)xanthone } \end{array}$	12.3rr 12.3yy $7 f$ 12.3II 12.3ss 12.3hhh	Zhong, F. F., et al., 2007
G. xipshuanbannaensis	twigs	bannaxanthone A bannaxanthone B bannaxanthone C bannaxanthone D bannaxanthone E	12.3 i 12.3 j 12.3 k 12.3 qqq 12.3 mmmm	$\begin{aligned} & \text { Han, Q.-B., et } \\ & \text { al., } 2008 \end{aligned}$

Table 1 (continued)

Scientific name	Investigated parts	Compounds	Structures	References
	fruits	bannaxanthone F bannaxanthone G bannaxanthone H γ-mangostin isojacareubin xanthochymol Garcinone C Garcinone E guttiferone E allanxanthone C tovophyllin B β-sitosterol ursolic acid 1 -stearyl alcohol isogarcinol Luteolin 3',5,7-trihydro- xy-4'-methoxy- flavone luteolin-7-O-glu- curonic acid Me ester daucosterol Vitexin		$\begin{aligned} & \text { Shen, J., et al., } \\ & 2006 \mathrm{~b} \end{aligned}$

Structures of compounds isolated from plants of the genus Garcinia

1. Alkaloids

1a: R $=\mathrm{H}$
dihydrochelerythrine
1b: $\mathrm{R}=\mathrm{CH}_{2} \mathrm{COMe}$ 6-acetonyldihydrochelerythrine

2. Benzophenones

2a : isoxanthochymol

2b: $\mathrm{R}=$ xanthochymol
$2 \mathrm{c}: \mathrm{R}=$ guttiferone E

2d : camboginol (garcinol)

2e: cambogin (isogarcinol)

2f : eugeniaphenone

2g: guttiferone G

2h: $\mathrm{R}=\mathrm{H}$

oblongifolin A
oblongifolin D

2j: $\mathrm{R}=\mathrm{H}$
$2 k: R=$ 亿
oblongifolin B oblongifolin C

21 : garcinielliptone FC

2m: garcinielliptone FC tautomer

2n : guttiferone M

$\mathbf{2 q}$: guttiferone J

2s: clusiachromene C

2t : salimbenzophenone

$2 \mathbf{w}$: guttiferone F

2x:7-epiclusianone

2y: garcinielliptone I

$2 z$: guttiferone N

2aa: (+)-6-(3,4-dihy-droxybenzoyl)-2, 3,4,4a, $8,9,10,11,12,12$ a-decahydro- $3,3,4 \mathrm{a}, 9,9-$ penta-methyl-8,10-bis(3-methyl-8,10-bis(3- methyl-2-buten-1-yl)-1H-8,11a-me-thano-7H-benzo [b]cycloocta[e]py ran-7-13-dione

2cc: garciniaphenone

3. Benzopyrans

3a : parvifoliol C

3b : parvifloliol D

$$
\begin{array}{ll}
\mathbf{3 c}: \mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H} & \text { parvifoliol } \mathrm{E} \\
\mathbf{3 d}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H} & \text { parvifoliol } \mathrm{F} \\
\mathbf{3 e}: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3} & \text { parvifoliol } \mathrm{G}
\end{array}
$$

4. Biflavones

4a: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH} \quad(+)$-morelloflavone (fukugetin)
4b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} \quad(+)$-volkensiflavone
4c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$ ent-narngeninyl-(I-3 α-II-8)-4'-O-methylnaringenin

4d : (+)-4"'-O-methylfukugetin

4e : amentoflavone

4f: GB-2a

5. Biphenyls

5a : R $=\mathbf{O H}$
garcibiphenyl C
$\mathbf{5 b}: \mathrm{R}=\underbrace{}_{2}$ garcibiphenyl D
5c: $\mathrm{R}=\mathrm{H}$
oblongfoliagarcinine A 5d : R = ヶ 人 oblongfoliagarcinine B

5e: (S)-3-hydroxygarcibenzopyran

5f : garcibiphenyl E

$5 \mathrm{~g}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
oblongfoliagarcinine C
$5 \mathrm{~h}: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}=\zeta$
oblongfoliagarcinine D

6. Despidones

6a: $\mathrm{R}_{1}=\boldsymbol{\sim}$ ~人, $\mathrm{R}_{2}=\mathrm{H}$ parvifolidone A
6b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ garcidepidone B

7. Flavonoids

7a : $\mathrm{R}=\mathrm{H} \quad$ rhamnazin
7b : $\mathrm{R}=\mathrm{CH}_{3}$ quercetin

$7 \mathrm{c}: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{4}=\mathrm{H} \quad$ 3',5,7-trihydroxy-4'-
7d : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{4}=\mathrm{OH} \quad$ luteotin
7e: $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{4}=\mathrm{OH}$ pilloin
7f: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=$ \}人

7g : 2-(3,5-dihydroxyphenyl)-2,3-dihydro-5,7-dihydroxyflavone

7h : 2-(3,5-dihydroxyphenyl)-2,3-di-hydro-3,5,7-trihydroxyflavone

$$
\begin{array}{ll}
7 \mathbf{j}: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H} & \text { epicatechin } \\
\mathbf{7 k}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} & 5,7,2^{\prime}, 5^{\prime} \text {-tetrahydroxy- } \\
& \text { flavan-3-ol }
\end{array}
$$

8. Flavone glycosides

8a : naringin-7-rharmnoglucoseside

8b: $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{CH}_{3}$ garccowaside A
8c : $\mathrm{R}=O-n-\mathrm{Bu} \quad$ garccowaside B
8d : $\mathrm{R}=\mathrm{OCH}_{3} \quad$ garccowaside C

8e: vitexin

8f: luteolin-7-O-glucuronic acid Me ester

9. Phloroglucinols

9a : enervosanone

9b : garcinielliptone F

9c : garcinielliptone HA

9d : garcinielliptone HE

9e : garcinielliptone HB

9f : garcinielliptone HC

9g : garcinielliptone HD

9h : garcinielliptone HF

10. Steroids

11. Triterpenes

11d : ursolic acid

11g : porlanosterol

12. Xanthones

12.1 Dioxygenated xanthones

12.1a : 1,5-dimethoxyxanthone

12.1b: $\mathrm{R}=\mathrm{H} \quad$ polyanxanthone B
12.1c: $\mathrm{R}=\boldsymbol{\sim}$ 人 $\begin{aligned} & \text { polyanxanthone } \mathrm{C}\end{aligned}$

12.1d : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H} \quad$ 1,5-dihydroxyxanthone
12.1e: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H} \quad$ 1,6-dihydroxyxanthone
12.1f: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH} \quad$ 1,7-dihydroxyxanthone

12.2 Trioxygenated xanthones

12.2a : 2-hydroxy-1,7-dimethoxyxanthone

12.2c : afzeliixanthone B

12.2b : mangosharin

12.2d : 1,4,5-trihydroxy-3-(3-methyl-2-butenyl)xanthone

12.2e : polyanxanthone A

12.2f : 1,3,5-trihydroxyxanthone

12.2g: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$? ly)-1,4,8-trihydroxyxanthone

12．2i： $\mathrm{R}_{1}=$ と $, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{H} \quad$ cudraxanthone G
12．2j： $\mathrm{R}_{1}=\mathrm{H} \quad, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{OH} \quad$ 1，7－dihydroxy－3－methoxy－2－ （3－methyl－2－butenyl）xanthone
12．2k： $\mathrm{R}_{1}=\mathrm{H} \quad, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{H}$ 1，5－dihydroxy－3－methoxy－2－（3－ methyl－2－butenyl）xanthone

12．2I： $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{4}=\mathrm{H}$
1，3，7－trihydroxy－2－（3－ methylbut－2－enyl）xanthone
12．2m： $\mathrm{R}_{1}=$ と人 $, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{H}$
8－deoxygartanin
12．2n： $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{4}=$ と
1，3，7－trihydroxy－2，8－di－（3－ methylbut－2－enyl）xanthone

12．20：1，6－dihydroxy－5－methoxyxanthone

12．2p：6－deoxyjacareubin

12．2q：R＝とへ demethoxylcalabaxanthone
12．2r： $\mathrm{R}=\mathrm{H} \quad$ osajaxanthone

12．2s ：pancixanthone A

12．2t ：pancixanthone B

12.2u : 4-(3',7'-dimethylocta-2',6'-dienyl)-

1,3,5-trihydroxy-9H-xanthen-9-one

12.2v : mangostinone

12.2w : 6,11-dihydroxy-3-methyl-3-(4-methyl-3-pentenyl)xanthone

12.2x : 1,2-dihydro-1,8,10,-trihydroxy-2-(2-hydroxy-propan-2-ly)-9-(3-methylbut-2-enyl)furo-[3,2-a]xanthen-11-one

12.2y: 6-deoxy-7-demethylmanostanin

12.2aa : thawaitesixanthone

$12.2 z$: cudraxanthone

12.2bb : 1,3-dihydroxy-2', 2'-dimethyl pyrano-($5^{\prime}, 6^{\prime}, 5,6$)xanthone

12．3a： $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H} \quad \alpha$－mangostin
12．3b： $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H} \quad \beta$－mangostin
12．3c： $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CHO}, \mathrm{R}_{3}=\mathrm{H}$ cowaxanthone E
12．3d ： $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{c}^{2}$
7－O－methyl garcinone E

12．3e ： $\mathrm{R}=\mathrm{OH} \quad$ cowaxanthone B
12．3f ： $\mathrm{R}=\mathrm{OCH}_{3}$ fuscaxanthone C

12．3g： $\mathrm{R}=\mathrm{H} \quad \gamma$－mangostin
$12.3 \mathrm{~h}: \mathrm{R}=$ と
garcinone E

12．3i： $\mathrm{R}_{1}=\mathrm{K}_{\mathrm{OH}}, \mathrm{R}_{2}=$ bannaxanthone A
12．3j： $\mathrm{R}_{1}=\underbrace{\mathrm{OH}}_{\text {bannaxanthone } \mathrm{B}}, \mathrm{R}_{2}=$
12．3k： $\mathrm{R}_{1}=$ と～人, $\mathrm{R}_{2}=\mathrm{H}$ bannaxanthone C

$12.31: \mathrm{R}_{1}=$ と人 人， $\mathrm{R}_{2}=\mathrm{H}$ cowaxanthone

12．3n： $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=$ と parvifolixanthone A
12．30： $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$
xanthone V1a
12．3p： $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$
dulxanthone B
12．3q： $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}$
cudratricusxanthone E

12．3r： $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ と～人 cheffouxanthone
12．3s： $\mathrm{R}_{1}=$ ，2－ $\mathrm{R}_{2}=\mathrm{H}$ smeathxanthone A

12．3t： $\mathrm{R}=\mathrm{OCH}_{3} \quad$ 8－hydroxycudraxanthone G
12．3u： $\mathrm{R}=\mathrm{OH} \quad$ gartanin

12．3v： $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$ 1，6－dihydroxy－3，7－dimethoxy－2－ （3－methyl－2－butenyl）xanthone
12．3w ： $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$ cowaxanthone A

12．3x： $\mathrm{R}=$ garcinone D
12．3y ：R＝～～～cowanin
$12.3 \mathrm{z}: \mathrm{R}=$ parvixanthone A

12．3cc： $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$
norathyriol

12．3dd ： $\mathrm{R}=$ と
12．3ee： $\mathrm{R}=$ ヶ七人

12．3gg ：dulxathone A

12．3ii ：1，3，5－trihydroxy－6－ methoxyxanthone

12．3hh ：afzeliixanthone A

12．3jj ：garciniaxanthone E

12.3kk : 1,5,6-trihydroxy-3-methoxy-4-(3-hydroxy-3-methylbutyl)xanthone

12.311 : 1,4,5,6-tetrahydroxy-7,8-diprenylxanthone

12.3mm : parivifolixanthone C

12.3nn : isocowanol

12.300 : macluraxanthone C

12.3pp : dulcisxanthone E

12.3qq : $\mathrm{R}=\mathrm{OCH}_{3}$ 1,4,6-trihydroxy-5-methoxy-7-(3-methyl-2-buten-1-yl)xanthone
12.3rr : $\mathrm{R}=\mathrm{OH} \quad \begin{aligned} & \text { 1,4,5,6-tetrahydroxy-7-(3-methyl- } \\ & \text { 2-buten-1-yl)xanthone }\end{aligned}$

12.3ss : 1,6-dihydroxy-4,5dimethoxyxanthone

12.3uu : 4-(1,1-dimethylprop-2-enyl)-1,3,5,8-tetrahydroxyxanthone

12.3tt : 1,3,5,6-tetrahydroxyxanthone

12.3vv : 1,3,5,6-tetrahydroxy-4,7,8triprenylxanthone

12.3ww : $\mathrm{R}=$ \}
12.3xx : $\mathrm{R}=$, vieillardiixanthone C

12.3yy : 7-(3,7-dimethyl-2,6-octadien-1-ly)-

1,2,5,6-tetrahydroxyxanthone

12.3zz : isocaledonixanthone D

12.3aaa : mangostingone

12.3bbb : smeathxanthone B

12.3ccc : 5,9-dihydroxy-8-methoxy-2,2-dimethyl-7-(3-methyl-but-2-enyl),2H,6H-pyrano-[3,2-b]-xanthen-6-one

12.3ddd : $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=$ と人

1,5-dihydroxy-3-methoxy-6',6'-dimethyl-2H-pyrano(2',3':6,7)-4-(3-methylbut-2-enyl)xanthone 1,3,5-trihydroxy-6',6'-dimethyl-2Hpyrano($\left.2^{\prime}, 3^{\prime}: 6,7\right)$ xanthone

12.3fff : bangangxanthone A

12.3hhh : 1,5,6,-trihydroxy-7-8-di(3-me-thyl-2-butenyl)-6',6'-dimethyl-pyrano(2',3':3,4)-xanthone

12.3jjj : tovophyllin B

12.3ggg : asmaxanthone

12.3iii : 1,5,6,-trihydroxy-6',6'-dimethyl-2H-pyrano (2',3',:3,4)-2-(3-methylbut-2-enyl)-xanthone

12.3kkk : tovophyllin A

12.31II : mangostanol

12.3mmm : porxanthone A

12.3nnn : cowaxanthone C

12.3000 : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} \quad 1,6,7$-trihydroxy-6',6'- dimethyl-2H-pyrano-($\left.2^{\prime}, 3^{\prime}: 3,2\right)$-4-(3-methylbut-2-enyl)xanthone
12.3ppp : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H} \quad$ xanthone V 1

12.3qqq: R=とへ~bannaxanthone D
12.3rrr : $\mathrm{R}=\overbrace{\text { ? }}^{\text {OH }}$ bannaxanthone O

12.3sss : cowaxathone D

12.3ttt : dulcisxanthone F

12.3uuu : cudratricusxanthone H

12.3vvv : mangostenone D

12.3www : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}$ mangostanin
12.3xxx : $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$ mangostenone C
12.3yyy: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$ 6-O-methyl mangostanin

12.3zzz : gerontoxanthone C

12.3aaaa : garbogiol

12.3bbbb : garcimangosone B

12.3cccc : garcinone B

12.3dddd : $\mathrm{R}=\mathrm{OH}$ 11-hydroxy-1-isomangostin
12.3eeee : $\mathrm{R}=\mathrm{H} \quad$ 1-isomangostin

12.3ffff : dulcisxanthone D

12.3hhhh : pyranojacareubin

12.3jjjj : isojacareubin

12.3gggg : penangianaxanthone

12.3iiii : 5,6-O-dimethyl-2-deprenylrheediaxanthone

12.3kkkk : bannaxanthone H

12.3mmmm : bannaxanthone E

12.3nnnn : bannaxanthone F

12.4 Pentaoxygenated xanthones

12.4a : 1,5,6-trihydroxy-3,7dimethoxyxanthone

12.4b : dulcisxanthone C

12.4c : musaxathone

12.4d : $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$ dulxanthone E
12.4e: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OCH}_{3} \quad$ dulxanthone F

12.5 Hexaoxygenated xanthones

12.5a : dulxanthone G

12.5b : yahyaxanthone

12.6 Caged-polyprenylated xanthones

12.6a : cantleyanone A

12.6b : 7-hydroxyforbesione

12.6c : cantleyanone B

12.6d : cantleyanone C

12.6e : cantleyanone D

12.6f : gambogin

12.6g: $\mathrm{R}=\mathrm{OCH}_{3} \quad$ 10-methoxygambogic acid
12.6h: $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{CH}_{3}$ 10-ethoxygambogic acid

12.6i: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CHO}$ morellin
12.6j : $\mathrm{R}_{1}=\mathrm{CHO}, \mathrm{R}_{2}=\mathrm{CH}_{3} \quad$ isomorellin

12.6k: $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H} \quad$ isomorellic acid
12.61 : $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$ isomorellinol

12.6m : $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3} \quad$ isogambogic acid
12.6n: $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{OH}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}$ 30-hydroxygambogic acid

12.60 : $\mathrm{R}=\mathrm{H} \quad$ desoxymorellin
12.6p : $\mathrm{R}=\mathrm{OH} \quad$ 7-hydroxydesoxymorellin
12.6q: $\mathrm{R}=\mathrm{OCH}_{3}$ 7-methoxydesoxymorellin

12.6r : $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{2}=\mathrm{H} \quad$ morellic acid
12.6s : $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H} \quad$ 2-methyl-4-[(1R,3aS,5S,14aS)-3a,4,5,7-tetrahydro-8-hydroxy-3,3,11,11-tetra-methyl-13-(3-methyl-2-buten-1-yl)-7,15-dioxo-1,5-methano- $1 \mathrm{H}, 3 \mathrm{H}, 11 \mathrm{H}$-furo $[3,4-\mathrm{g}]$ -pyrano[3,2-b]xanthen-1-yl]methyl ester
12.6t : $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CH}_{3}$ 2-methyl-4-[(1R,3aS,5S,14aS)-3a,4,5,7-tetrahydro-8-methoxy-3,3,11,11-tetra-methyl-13-(3-methyl-2-buten-1-yl)-7,15-dioxo-1,5-methano-1H,3H,11H-furo[3,4-g]-pyrano[3,2-b]xanthen-1-yl]methyl ester

12.6u : gambogic acid

12.6w : gambogellic acid

12.6v : epigambogic acid

12.6x : 8,8a-epoxymorellic acid

12.6y : garcinialone

12.6z : $\mathrm{R}_{1}=\mathrm{CHO}, \mathrm{R}_{2}=\mathrm{CH}_{3}$ gambogic acid
12.6aa : $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}$ gaudichaudic acid
12.6bb: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CH}_{3}$ deoxygaudichaudione A

12.6cc: $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{OH}$ isogambogenic acid
12.6dd : $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{3}=\mathrm{OCH}_{3}$ 10-methoxygambogenic acid
12.6ee : $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{OH}$ desoxygambogenin
12.6ff : $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}$ gambogenic acid

12.6gg : hanburin

12.6hh : 2-isoprenylforbesione

12.6ii : $\mathrm{R}=\mathrm{OCH}_{3}$ gaudichaudione H
12.6jj : $\mathrm{R}=\mathrm{H} \quad$ forbesione

12.6kk: $\mathrm{R}=\mathrm{CH}_{3} \quad$ gambogenic acid A
12.6II : $\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{3}$ gambogenic acid B

12.6mm : oxyguttiferone K

12.6nn : $\mathrm{R}_{1}=\mathrm{CHO}, \mathrm{R}_{2}=\mathrm{CH}_{3}, \mathrm{R}_{3}=\mathrm{H} \quad$ dihydroisomorellin 12.600 : $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{3}=\mathrm{OCH}_{3}$ moreollic acid

12.7 Rearranged xanthones

12.7a : 3a,4,5,7-tetrahydro-8-hydroxy-1-[(2Z)-4-methoxy-3-methyl-4-oxo-2-buten-1-yl]--3,3,11,11-tetramethyl-13-(3-methyl-2-buten-1-yl)-7-oxoxanthone methyl ester

12.7b : guttiferic acid

12.8 Bixanthones

12.8a : garcilivin A

12.8b : garcilivin C

12.8c : griffipavixanthone

13. Miscellaneous

$\mathrm{HO}-\left(\mathrm{CH}_{2}\right)_{17}-\mathrm{CH}_{3}$
13a : 1-stearyl alcohol

13b : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H} \quad p$-coumaric acid
13c : $\mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{29} \mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$ triacontanyl caffeate
13d : $\mathrm{R}=\mathrm{CH}_{3}$ parvifoliol A
13e : $\mathrm{R}=\mathrm{H} \quad$ parvifoliol B

13f : garcinia lactone

13g : scopoletin

13h : cirsiumaldehyde

13i : 3,3',4-O-trimethylellagic acid

13j : damnacanthal

13k : parvifoliquinone

131 : (2E,6E, 10E)-(+)-4 β-hydroxy-3-methyl- $5 \beta-(3,7,-$ 11,15-tetramethylhexadeca-2,6,10,14-tetraenyl)-cyclohex-2-en-1-one

13m : egonol

13n : macranthol

130 : dulcinone

1.1.3 The Objectives

1.1.3.1 Garcinia hombroniana

Based on the literature search, phytochemical investigation on the stem woods (Ollis, 1969), pericarp (Rukachaisirikul, 2000) and leaves (Rukachaisirikul, 2005) of G. hombroniana resulted in the isolation of triterpenes as a major component. We are interested in investigation of its twigs in order to separate additional chemical constituents. This research involved isolation, purification and structure elucidation of chemical constituents from the twigs of G. hombroniana which were collected at Hat Yai campus, Prince of Songkla University.

Structures of Compounds Isolated from Garcinia hombroniana

(24E)-3 α-hydroxy-17,14-friedolanostan-8,14,24-trien-26-oic acid

garcihombronane B

garcihombronane C

garcihombronane F

garcihombronane G

$$
\begin{array}{ll}
\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{CH}_{3} & \text { garcihombronane } \mathrm{J} \\
\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} & \text { garcihombronane } \mathrm{D} \\
\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} & \text { garcihombronane } \mathrm{E} \\
\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3} & \text { methyl }(25 R) \text {-3 } \beta-(\mathrm{OH}) \text {-23-oxo- } \\
& 9,15 \text {-lanostadien-26-oate }
\end{array}
$$

$\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$ garcihombronane $\mathrm{H} \quad \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\beta$-D-glucose vitexin $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$ garcihombronane $\mathrm{I} \quad \mathrm{R}_{1}=\beta$-D-glucose, $\mathrm{R}_{2}=\mathrm{H}$ isovitexin

blumenol C 9-O- β-D-apiofuranosyl$(1 \longrightarrow 6)$ - β-D-glucopyranoside

vomifoliol 9-O- β-D-apiofuranosyl-
$(1 \rightarrow 6)$ - β-D-glucopyranoside

1.1.3.2 Garcinia prainiana

Based on the literature search, phytochemical investigation on G. prainiana has not been reported. This prompted us to investigate its chemical constituents in order to provide additional information of this plant. This research involved isolation, purification and structure elucidation of chemical constituents from the leaves of G. prainiana which were collected at Narathiwat Province.

CHAPTER 1.2

EXPERIMENTAL

1.2.1 Chemical and instruments

Melting points were determined on an electrothermal melting point apparatus (Electrothermal 9100) and reported without correction. Infrared spectra (IR) were obtained on a Perkin Elmer Spectrum GX FT-IR system and recorded on wavenumber $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) were recorded on a FTNMR, Bruker Avance 300 MHz or 500 MHz spectrometers using tetramethylsilane (TMS) as an internal standard. Spectra were recorded as chemical shift parameter (δ) value in ppm down field from TMS ($\delta 0.00$). Ultraviolet spectra (UV) were measured with UV-160A spectrophotometer (SHIMADSU). Principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. Optical rotations were measured in methanol or chloroform solution with sodium D line (590 nm) on a JASCO P-1020 automatic polarimeter. Quick column chromatography, thin-layer chromatography (TLC) and precoated thin-layer chromatography were performed on silica gel $60 \mathrm{GF}_{254}$ (Merck) or reverse-phase C-18 silica gel. Column chromatography was performed on silica gel (Merck) type 100 (70-230 Mesh ASTM), Sephadex LH-20 or reverse-phase C-18 silica gel. The solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except for petroleum ether (bp. $40-60^{\circ} \mathrm{C}$) and ethyl acetate which were analytical grade reagent.

1.2.2 Plant material

The twigs of G. hombroniana were collected at Prince of Songkla University, Hat Yai, Songkhla, Thailand in 2000 while the leaves of Garcinia prainiana were
collected at Narathiwat Province, Thailand. The voucher specimens were deposited in the Herbarium of the Department of Biology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand.

1.2.3 Chemical investigation from the twigs of G. hombroniana

1.2.3.1 Isolation and extraction

The twigs of G. hombroniana (2.75 kg), cut into small segments, were extracted with $\mathrm{MeOH}(8 \mathrm{~L}$) over the period of seven days at room temperature for three times. After filtration, the filtrate was evaporated to dryness under reduced pressure to give a crude methanol extract as a dark green gum in 170 g .

1.2.3.2 Chemical investigation of the crude methanol extract of the twigs of G. hombroniana

The crude extract was primarily tested for its solubility in various solvents at room temperature. The results were demonstrated in Table 2.

Table 2 Solubility of the crude extract in various solvents at room temperature

Solvent	Solubility at room temperature	
Petroleum ether	-	
Dichloromethane	+	(brown solution mixed with dark green gum)
Ethyl acetate	+	(brown solution mixed with dark green gum)
Acetone	++	(brown solution mixed with dark green gum)
Methanol	+++	(dark brown solution)
Water	++	(pale yellow solution)
$10 \% \mathrm{HCl}$	++	(yellow solution mixed with dark green gum)
$10 \% \mathrm{NaOH}$	+++	(dark brown solution)
$10 \% \mathrm{NaHCO}$	+++	(dark brown solution)

Symbol meaning: + slightly soluble, ++ moderately soluble, +++ well soluble, - insoluble

The crude methanol extract was well soluble in methanol, $10 \% \mathrm{NaOH}, 10 \%$ NaHCO_{3} but it dissolved slightly in dichloromethane, ethyl acetate and acetone. These indicated that the crude extract contained slightly polar constituents. Chromatogram characteristics on normal phase TLC of the crude methanol extract, using $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a mobile phase, showed eight UV-active spots with the R_{f} values of $0.23,0.25,0.35,0.46,0.70,0.72,0.73$ and 0.74 . Further purification by quick column chromatography over silica gel was performed. Elution was conducted initially with pure $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 3.

Table 3 Fractions obtained from the crude methanol extract by quick column chromatography over silica gel

Fraction	Mobile phase	Weight (g)	Physical appearance		
A	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	56.22	$\begin{array}{c}\text { Yellow-green gum mixed } \\ \text { with white solid }\end{array}$		
B	$0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	11.57	$\begin{array}{c}\text { Yellow-brown gum mixed } \\ \text { with white solid }\end{array}$		
C	$2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4.02	$\begin{array}{c}\text { Yellow-green gum mixed } \\ \text { with white solid }\end{array}$		
D	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	3.47	$\begin{array}{c}\text { Yellow-green gum mixed } \\ \text { with yellow-white solid } \\ \text { Yellow-green gum }\end{array}$		
E	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.94	4.04		
F	$7-10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	Yellow-green gum mixed			
with white solid				$\}$	Brown-black gum
:---:					

Fraction A Upon standing at room temperature, a white solid (1.53 g) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed one major spot under ASA reagent with the R_{f} value of 0.33 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of friedelin as a major component.

The filtrate became a yellow green gum (56.7 g) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed seven UV-active spots with the R_{f} values of $0.23,0.35,0.43$, $0.70,0.72,0.73$ and 0.74 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 4.

Table 4 Fractions obtained from the fraction A by column chromatography over Sephadex LH-20

Fraction	Weight (g)	Physical appearance
A1	1.23	Green yellow gum
A2	2.67	Green yellow gum
A3	25.70	Green yellow gum
A4	28.45	Yellow gum
A5	0.56	Yellow gum
A6	0.19	Yellow gun
A7	0.11	Brown gum

Fraction A1 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction A2 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.35 and two brown spots and one purple spot under ASA reagent with the R_{f} values of 0.42 , 0.59 and 0.73 , respectively. It was further separated by column chromatography over
silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with acetone and then with methanol until methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 5.

Table 5 Fractions obtained from the fraction A2 by column chromatography over silica gel

Fraction	Mobile phase	Weight (g)	Physical appearance
A2A	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.28	Green yellow gum
A2B	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.56	Green yellow gum
A2C	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	0.25	Green yellow gum
	$20 \%{\mathrm{Acetone} / \mathrm{CH}_{2} \mathrm{Cl}_{2}}$		
A2D	$30-60 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.69	Yellow gum
A2E	80% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-}$	0.23	Yellow gum
	100% Acetone		
A2F	$1 \% \mathrm{MeOH} /$ Acetone-	0.65	Brown yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A2A Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction A2B Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.72,0.77$ and 0.82 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction A2C Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.25,0.40$ and 0.62 and two brown spots under ASA reagent with the R_{f} values of 0.75 and 0.82 .

Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction A2D Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.35 and 0.40 and one purple spot under ASA reagent with the R_{f} value of 0.62 . Its ${ }^{1} H$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction A2E Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.05 and 0.12 and one brown spot under ASA reagent with the R_{f} value of 0.62 . Its ${ }^{1} H$ NMR data indicated the presence of SK12 as a major component. Further investigation was then not carried out.

Fraction A2F Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. Further investigation was then not carried out.

Fraction A3 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.04,0.19$ and 0.23 and two brown spots under ASA reagent with the R_{f} values of 0.42 and 0.59 . Further purification by quick column chromatography over silica gel was performed. Elution was conducted initially with pure dichloromethane and gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 6.

Table 6 Fractions obtained from the fraction A3 by quick column chromatography over silica gel

Fraction	Mobile phase	Weight (g)	Physical appearance
A3A	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.25	Green yellow gum
A3B	$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.63	Green yellow gum
A3C	$2-7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	11.23	Green yellow gum

Table 6 (continued)

Fraction	Mobile phase	Weight (g)	Physical appearance
A3D	$10-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.08	Yellow gum
A3E	$20-60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.41	Yellow gum
A3F	$80 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	0.26	Brown gum
	$100 \% \mathrm{MeOH}$		

Fraction A3A Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed none of well separated spots under ASA reagent. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction A3B Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three UV-active spots with the R_{f} values of 0.45 , 0.50 and 0.59 and two purple spots under ASA reagent with the R_{f} values of 0.73 and 0.76 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction A3C Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three UV-active spots with the R_{f} values of 0.26 , 0.35 and 0.42 and one brown spot under ASA reagent with the R_{f} value of 0.59 . Its ${ }^{1} H$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction A3D Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three UV-active spots with the R_{f} values of 0.11 , 0.19 and 0.26 and one brown spot under ASA reagent with the R_{f} value of 0.67 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed broad signals. Thus, it was not further studied.

Fraction A3E Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three UV-active spots with the R_{f} values of 0.04 , 0.19 and 0.26 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed broad signals. Thus, it was not further studied.

Fraction A3F Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S and ASA reagent. Thus, it was not further studied.

Fraction A4 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.11,0.16,0.23$ and 0.35 and three brown spots under ASA reagent with the R_{f} values of $0.45,0.47$ and 0.61. Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction A3. Further investigation was then not carried out.

Fraction A5 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.07,0.16,0.23$ and 0.35 and one purple spot under ASA reagent with the R_{f} value of 0.90 . It was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol and finally with pure methanol. Fractions similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 7.

Table 7 Fractions obtained from the fraction A5 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5A	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	103.7	Yellow gum
A5B	$1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	49.7	Yellow gum
A5C	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	21.1	Yellow gum
A5D	$7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	118.7	Yellow gum
A5E	$7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	347.2	Yellow solid
A5F	$10-15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	55.4	Yellow solid
A5G	$20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	57.4	Yellow gum
A5H	$40 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	55.5	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A5A Chromatogram characteristics on normal phase TLC with $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed two UV-active spots with the R_{f} values of 0.52 and 0.66 and two purple spots under ASA reagent with the R_{f} values of 0.87 and 0.95 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of friedelin as a major component.

Fraction A5B Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.25,0.35,0.45$ and 0.62 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5C Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.05,0.10$ and 0.12 . It was further separated by column chromatography over silica gel. Elution was conducted with pure dichloromethane. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 8.

Table 8 Fractions obtained from the fraction A5C by column chromatography over silica gel

Fraction	Weight (mg)	Physical appearance
A5C1	3.0	Pale yellow gum
A5C2	4.0	Pale yellow solid
A5C3	7.5	Yellow solid
A5C4	5.2	Yellow gum

Fraction A5C1 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5C2 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (3 runs) showed two UV-active spots with the R_{f} values of 0.25 and 0.50 . Further purification by precoated TLC with $20 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (7 runs) as a mobile phase afforded two bands.

Band 1 (SK20) was obtained as a yellow gum in 1.0 mg . Chromatogram characteristics on normal phase TLC with 20\%EtOAc/Petrol (3 runs) showed one UV-active spot with the R_{f} value of 0.50 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$222(4.51), 258(5.71), 278(4,18),$
	345 (2.12)
FTIR(neat): $:\left(\mathrm{cm}^{-1}\right)$	3443 (OH stretching),
	1641 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR(Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz}):$	$12.01(s, 1 \mathrm{H}), 11.71(\mathrm{~s}, 1 \mathrm{H}), 6.63(d,$
	$\begin{aligned} & 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.91 \\ & (\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR(Acetone $\left.-d_{6}\right)\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz})$:	
	$159.00,158.53,150.44,128.84$,
	102.55, 102.06, 99.32, 98.36, 93.94
	61.82, 56.66
$\begin{array}{ll}\text { DEPT135 }\end{array}{ }^{\left.\text {(Acetone }-d_{6}\right)\left(\delta_{\text {ppm }}\right)} \mathrm{CH}: 7$	99.32, 98.36, 93.94
	61.82, 56.66
EIMS m/z (\% relative intensity):	304 (57), 289 (100), 261 (60)

Band 2 (SK13) was obtained as a yellow gum in 1.2 mg . Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.25 .

$\mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$221(2.81), 254(2.99), 278(2.41), 346$
	(1.38)
FTIR(neat): $\left(\mathrm{cm}^{-1}\right)$	$3417(\mathrm{OH}$ stretching $)$,
	$1661(\mathrm{C}=\mathrm{O}$ stretching $)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\right.$ Acetone $\left.-d_{6}\right)\left(\delta_{\mathrm{ppm}}\right)(500 \mathrm{MHz}):$	$12.03(\mathrm{~s}, 1 \mathrm{H}), 11.23(\mathrm{~s}, 1 \mathrm{H}), 7.25(d, J$
	$=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(d, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$
	$6.32(\mathrm{~s}, 1 \mathrm{H}), 5.27(t, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$,

	$5.04(m, 1 \mathrm{H}), 3.56(d, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$,
	$2.11(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 2 \mathrm{H}), 1.61(\mathrm{~s}, 3 \mathrm{H})$,
	$1.86(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H})$,
${ }^{13} \mathrm{C}$ NMR $\left(\right.$ Acetone- $\left.d_{6}\right)\left(\delta_{\mathrm{ppm}}\right)(125 \mathrm{MHz}):$	
	$184.79,162.84,161.42,154.24,154.02$,
	$142.91,139.23,135.74,132.22,123.60$,
	$123.31,121.01,110.15,107.21,105.50$,
	$102.79,99.36,39.61,26.36,25.65$,
	$21.93,17.72,16.38$

Fraction A5C3 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.30 and 0.37 . Further purification by precoated TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow solid in 3.2 mg . Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UVactive spot with the R_{f} value of 0.37 . Its ${ }^{1} H$ NMR data indicated the presence of SK13 as a major component. Further investigation was then not carried out.

Band 2 was obtained as a yellow gum in 1.0 mg . Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UVactive spots with the R_{f} values of 0.30 and 0.37 . Because of the minute quantity, it was not further investigated.

Fraction A5C4 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (3 runs) showed two UV-active spots with the R_{f} values of 0.35 and 0.42 . Further purification by precoated TLC with 5% Acetone/Petrol (7 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a yellow gum in 1.0 mg . Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (3 runs) showed one UV-active spot with the R_{f} value of 0.42 . Its ${ }^{1} H$ NMR data indicated the presence of SK13 as a major component. Further investigation was then not carried out.

Band 2 was obtained as a yellow gum in 1.2 mg . Chromatogram characteristics on normal phase TLC with 15\%Acetone/Petrol (3 runs) showed two UV-active spots with the R_{f} values of 0.35 and 0.42 . Because of the minute quantity, it was not further investigated.

Fraction A5D Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.02,0.25,0.37$, 0.42 and 0.52 . It was further separated by column chromatography over silica gel. Elution was conducted initially with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with ethyl acetate until pure ethyl acetate then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 9.

Table 9 Fractions obtained from the fraction A5D by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5D1	$5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.4	Yellow gum
A5D2	$5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.0	Yellow gum
A5D3	$5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	20.4	Yellow gum
A5D4	$5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	20.5	Yellow gum
A5D5	$7 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	21.2	Yellow gum
A5D6	$10-15 \%{\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}}^{36.5}$	Yellow gum	
A5D7	$20-40 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	62.9	Yellow gum
	$100 \% \mathrm{EtOAc}$		
A5D8	$100 \% \mathrm{EtOAc}-100 \% \mathrm{MeOH}$	28.2	Yellow gum

Fraction A5D1 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 runs) showed two brown spots under ASA reagent with the R_{f} values of 0.12 and 0.45 and two purple spots under ASA reagent with the R_{f} values of 0.62 and 0.70 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5D2 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{EtOAc} /$ Petrol (6 runs) showed three UV-active spots with the R_{f} values of 0.57 , 0.37 and 0.32 . Further purification by precoated TLC with $5 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (12 runs) as a mobile phase afforded three bands. They were not further investigated because their chromatograms on normal phase TLC using 5\%EtOAc/Petrol (6 runs) showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.

Fraction A5D3 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 runs) showed three UV-active spots with the R_{f} values of 0.07 , 0.37 and 0.62 and two purple spots under ASA reagent with the R_{f} values of 0.77 and 0.87 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions. They were not further investigated because their chromatograms on normal phase TLC using $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 runs) showed many spots under ASA reagent and they were obtained in low quantity.

Fraction A5D4 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.07,0.12$ and 0.20 and one brown spot under ASA reagent with the R_{f} value of 0.47 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with $50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions. They were not further investigated because their chromatograms on normal phase TLC using $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under ASA reagent and they were obtained in low quantity.

Fraction A5D5 Chromatogram characteristics on normal phase TLC with $15 \% \mathrm{EtOAc} /$ Petrol (4 runs) showed three UV-active spots with the R_{f} values of 0.12 , 0.17 and 0.32 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with $50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions. They were not further investigated because
their chromatograms on normal phase TLC using $15 \% \mathrm{EtOAc} /$ Petrol showed many spots under ASA reagent and they were obtained in low quantity.

Fraction A5D6 Chromatogram characteristics on normal phase TLC with $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.37,0.45$ and 0.47 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5D7 Chromatogram characteristics on normal phase TLC with $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.25 and 0.37 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5D8 Chromatogram characteristics on normal phase TLC with $10 \% \mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. It was not further investigated.

Fraction A5E Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.07,0.20$ and 0.37 . It was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 10.

Table 10 Fractions obtained from the fraction A5E by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5E1	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	15.6	Yellow gum
A5E2	$1-3 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	50.5	Yellow gum
A5E3	$3-7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	74.2	Yellow gum
A5E4	$7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	60.5	Yellow gum
A5E5	$10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	30.5	Yellow gum
A5E6	$12-20 \% \mathrm{MeOH/CH}_{2} \mathrm{Cl}_{2}$	70.6	Yellow gum

Table 10 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5E7	$20-60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	20.8	Yellow gum
A5E8	$60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	24.5	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A5E1 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three purple spots under ASA reagent with the R_{f} values of $0.75,0.87$ and 0.95 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5E2 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.40,0.50,0.55$ and 0.65 and two purple spots under ASA reagent with the R_{f} values of 0.75 and 0.82 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with $50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford three fractions as shown in Table 11.

Table 11 Fractions obtained from the fraction A5E2 by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
A5E2A	10.1	Yellow gum
A5E2B	36.2	Yellow gum
A5E2C	8.1	Yellow gum

Fraction A5E2A Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5E2B Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.45,0.55$ and 0.65 and two purple spots under ASA reagent with the R_{f} values of 0.75 and 0.82 . Its ${ }^{1}$ H NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction A5E2C Chromatogram characteristics on normal phase TLC with $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed two UV-active spots with the R_{f} values of 0.25 and 0.30. Further purification by precoated TLC was carried out with $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 runs) as a mobile phase afforded two bands.

Band 1 (SK17) was obtained as a yellow gum in 3.1 mg . Chromatogram characteristics on normal phase TLC with $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed one UV-active spot with the R_{f} value of 0.30 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$		278 (3.51)
FTIR(neat): $\left(\mathrm{cm}^{-1}\right)$		3338 (OH stretching),
		1690 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(300 \mathrm{MHz}):$		7.59 ($d, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55$ (dd, $J=$
		8.1 and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(d, J=8.1$
		$\mathrm{Hz}, 1 \mathrm{H}), 3.88$ (s, 3H)
${ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(75 \mathrm{MHz}):$		167.00, 148.49, 142.14, 123.90, 123.87,
		116.61, 114.88, 52.05
DEPT135 ${ }^{\circ}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)$	CH:	123.87, 116.61, 114.88
	CH_{3}	52.05

Band 2 (SK18) was obtained as a yellow gum in 3.2 mg . Chromatogram characteristics on normal phase TLC with $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed one UV-active spot with the R_{f} value of 0.25 .

$$
\begin{align*}
& {[\alpha]^{26}} \\
& \mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon) \tag{2.47}
\end{align*}
$$

$$
-5.0^{\circ}(\mathrm{c}=0.04, \mathrm{MeOH})
$$

$$
222 \text { (3.82), } 229 \text { (3.14), } 250 \text { (2.57), } 259
$$

Fraction A5E3 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.12 and 0.25 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major constituents. Further investigation was then not carried out.

Fraction A5E4 Chromatogram characteristics on normal phase TLC with 15% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.07,0.11$, 0.54 and 0.59 and two purple spots under ASA reagent with the R_{f} values of 0.60 and 0.75 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions
with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 12.

Table 12 Fractions obtained from the fraction A5E4 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5E4A	$10-30 \%$ Acetone/Petrol	9.0	Colorless gum
A5E4B	$40-50 \%$ Acetone/Petrol	26.5	Yellow gum
A5E4C	70% Acetone/Petrol	8.3	Colorless gum
A5E4D	$80-90 \%$ Acetone/Petrol	5.1	Colorless gum
A5E4E	100% Acetone-	8.0	Colorless gum
	$10 \% \mathrm{MeOH} /$ Acetone		
A5E4F	$10 \% \mathrm{MeOH} /$ Acetone-	16.1	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A5E4A Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.33 and long tail under UV-S. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 as a major component. Further investigation was then not carried out.

Fraction A5E4B Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.23 and long tail. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK3 as a major component. Further investigation was then not carried out.

Fraction A5E4C Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.50 and 0.54 and one brown spot under ASA reagent with the R_{f} value of 0.59 . It was further subjected to acetylation reaction in acetic anhydride (3 ml) in the presence of pyridine $(1 \mathrm{ml})$. The reaction mixture was stirred at room temperature overnight. After working up, the acetate derivative (A5E4CA) was obtained as a pale yellow gum (5.1 mg). Chromatogram characteristics on normal phase TLC with 10% Aectone/Petrol showed two UV-active spots with the R_{f} values of 0.55 and 0.60 and one purple spot under

ASA reagent with the R_{f} value of 0.63 . Because its ${ }^{1} H$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction A5E4D Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (11 runs) showed two UV-active spots with the R_{f} values of 0.50 and 0.52 . Further purification by precoated TLC with 15% Acetone/Petrol (22 runs) as a mobile phase afforded a colorless gum in 1.5 mg . Chromatogram characteristics on normal phase TLC with 15\%Acetone/Petrol (11 runs) showed two UV-active spots with the R_{f} values of 0.50 and 0.52 . Because its ${ }^{1} H$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction A5E4E Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (9 runs) showed two UV-active spots with the R_{f} values of 0.40 and 0.50 and two purple spots under ASA reagent with the R_{f} values of 0.42 and 0.52 . Further purification by precoated TLC with 15% Acetone/Petrol (18 runs) as a mobile phase afforded two bands. They were not further investigated because their chromatograms on normal phase TLC using 15\%Acetone/Petrol (9 runs) showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.

Fraction A5E4F Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol showed no definite spot under UV-S. It was not further investigated.

Fraction A5E5 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed two UV-active spots with the R_{f} values of 0.35 and 0.62 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of $\mathbf{S K 3}$ as a major compound. Further investigation was then not carried out.

Fraction A5E6 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed five UV-active spots with the R_{f} values of $0.12,0.19$, $0.29,0.34$ and 0.39 . It was further purified by column chromatography over silica gel. Elution was conducted initially with 20% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 13.

Table 13 Fractions obtained from the fraction A5E6 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5E6A	20% Acetone/Petrol	9.0	Colorless gum
A5E6B	$30-60 \%$ Acetone/Petrol	17.1	Colorless gum
A5E6C	$70-90 \%$ Acetone/Petrol-	6.4	Colorless gum
	100% Acetone		
A5E6D	$1-10 \% \mathrm{MeOH} /$ Acetone	8.2	Pale yellow gum
A5E6E	$20 \% \mathrm{MeOH} /$ Acetone-	35.0	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A5E6A Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.04,0.29$ and 0.43 and two purple spots under ASA reagent with the R_{f} values of 0.75 and 0.85 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5E6B Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.29 and 0.34 and one brown spot under ASA reagent with the R_{f} value of 0.60 . Its ${ }^{1} H$ NMR data indicated the presence of SK1 as a major component. Further investigation was then not carried out.

Fraction A5E6C Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed four UV-active spots with the R_{f} values of $0.12,0.19$, 0.34 and 0.39 . Because of low quantity, it was not further investigated.

Fraction A5E6D Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (10 runs) showed three UV-active spots with the R_{f} values of $0.12,0.34$ and 0.39 . Further purification by precoated TLC with 15% Acetone/Petrol (20 runs) as a mobile phase gave three bands. They were not further investigated because their chromatograms on normal phase TLC using 15\%Acetone/Petrol (10 runs) showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed signals of many compounds.

Fraction A5E6E Chromatogram characteristics on normal phase TLC with 20\%Acetone/Petrol showed no definite spot under UV-S and ASA reagent. Thus, it was not further studied.

Fraction A5E7 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed three UV-active spots with the R_{f} values of 0.35 , 0.37 and 0.57 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed broad signals. Thus, it was not further studied.

Fraction A5E8 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed no definite spot under UV-S and ASA reagent. Thus, it was not further studied.

Fraction A5F Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (3 runs) showed four UV-active spots with the R_{f} values of 0.11 , $0.28,0.33$, and 0.38 and one brown spot under ASA reagent with the R_{f} value of 0.54 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 20% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 14.

Table 14 Fractions obtained from the fraction A5F by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A5F1	20-30\%Acetone/Petrol	4.3	Yellow gum
A5F2	40-50\%Acetone/Petrol	12.3	Yellow gum
A5F3	60\%Acetone/Petrol-	8.8	Pale yellow gum
	100% Acetone		
A5F4	$1-10 \% \mathrm{MeOH} /$ Acetone	6.2	Pale yellow gum
A5F5	$10-40 \% \mathrm{MeOH/Acetone}$	18.2	Pale yellow gum
A5F6	$60 \% \mathrm{MeOH} /$ Acetone-	6.7	Pale yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A5F1 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (3 runs) showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus it was not further investigated.

Fraction A5F2 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (8 runs) showed three UV-active spots with the R_{f} values of 0.10 , 0.20 and 0.35 . Further purification by precoated TLC with 15% Acetone/Petrol (17 runs) as a mobile phase afforded three bands. They were not further investigated because their chromatograms on normal phase TLC using 15\%Acetone/Petrol (8 runs) showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed signal of many compounds.

Fraction A5F3 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (3 runs) showed four UV-active spots with the R_{f} values of 0.11 , $0.28,0.33$ and 0.38 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK12 as a major component. Further investigation was then not carried out.

Fraction A5F4 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (8 runs) showed one UV-active spot with the R_{f} value of 0.35 and one brown spot under ASA reagent with the R_{f} value of 0.38 . Further purification by precoated TLC with 15% Acetone/Petrol (17 runs) as a mobile phase afforded a colorless gum in 1.8 mg . Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (8 runs) showed one UV-active spot with the R_{f} value of 0.35 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction A5F5 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (3 runs) showed four UV-active spots with the R_{f} values of 0.04 , $0.11,0.14$ and 0.28 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed broad signals. Thus, it was not further studied.

Fraction A5F6 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (3 runs) showed no definite spot under UV-S and under ASA reagent. Thus, it was not further studied.

Fraction A5G Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.20 .

Its ${ }^{1}$ H NMR data showed SK12 as a major component. Further investigation was then not carried out.

Fraction A5H Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (2 runs) showed two UV-active spots with the R_{f} values of 0.19 and 0.28 and two brown spots under ASA reagent with the R_{f} values of 0.21 and 0.33 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 15% Acetone/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 15.

Table 15 Fractions obtained from the fraction A5H by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A 5 H 1	15% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2-}-$	2.4	Yellow gun
	100% Acetone		
A 5 H 2	$1 \% \mathrm{MeOH} /$ Acetone	2.0	Pale yellow gum
A 5 H 3	$1-20 \% \mathrm{MeOH} /$ Acetone	31.9	Yellow gum
A 5 H 4	$20 \% \mathrm{MeOH} /$ Acetone-	14.2	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction A5H1 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (2 runs) showed four purple spots under ASA reagent with the R_{f} values of $0.21,0.33,0.83$ and 0.95 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A5H2 (SK9) Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (2 runs) showed one UV-active spot with the R_{f} value of 0.28 .

$$
\begin{aligned}
& {[\alpha]_{\mathrm{D}}^{27}} \\
& \mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)
\end{aligned}
$$

$$
-176.3^{\circ}(\mathrm{c}=0.08, \mathrm{MeOH})
$$

$$
257 \text { (2.83) }
$$

FTIR(neat) $:\left(\mathrm{cm}^{-1}\right)$	3404 (OH stretching), 1713 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz}):$	$7.65(t, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(t, J=11.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.98(t, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (brs, 1H), 3.23 (dd, $J=11.0$ and 4.0 Hz , $1 \mathrm{H}), 3.21(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}$, $1 \mathrm{H}), 2.03(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{~m}, 1 \mathrm{H}), 1.97(\mathrm{~s}$, $3 \mathrm{H}), 1.85(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.69(m$, $1 \mathrm{H}), 1.64(m, 1 \mathrm{H}), 1.57(m, 1 \mathrm{H}), 1.53(m$, $2 \mathrm{H}), 1.52(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.40(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~s}$, $3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.93(d, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H}), 0.79(s, 6 \mathrm{H})$
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz}):$	$\begin{aligned} & 172.10,153.30,144.07,134.97,126.05, \\ & 121.90,120.24,78.65,75.48,53.76, \\ & 49.26,44.96,44.19,42.27,39.03,38.77, \\ & 36.96,29.71,29.56,28.95,27.47,27.12, \\ & 24.94,20.71,18.81,17.74,16.43,15.63, \\ & 15.23,12.21 \end{aligned}$
DEPT135 ${ }^{\circ}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right) \quad \mathrm{CH}:$	$\begin{aligned} & 144.07,134.97,121.90,120.24,78.65, \\ & 44.96,39.96,39.03 \\ & 44.19,29.71,29.56,27.47,27.12,24.94, \\ & 20.71 \\ & 28.95,18.81,17.74,16.43,15.43,15.63, \\ & 15.23,12.21 \end{aligned}$
EIMS m/z (\% relative intensity):	$\begin{aligned} & 470(6), 454(12), 452(26), 314(35), 313 \\ & (100), 295(73), 159(69) \end{aligned}$

Fraction A5H3 Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 10:60:30:1 (2 runs) showed two UVactive spots with the R_{f} values of 0.25 and 0.45 and two brown spots under ASA reagent with the R_{f} values of 0.20 and 0.50 . It (10.0 mg) was further purified by
precoated TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 10:60:30:1 (4 runs) as a mobile phase afforded four bands.

Band 1 was obtained as a pale yellow gum in 2.9 mg . Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 10:60:30:1 (2 runs) showed one brown spot under ASA reagent with the R_{f} value of 0.50 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Band 2 (SK12) was obtained as a pale yellow gum in 3.0 mg . Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}$ HCOOH in a ratio of 10:60:30:1 (2 runs) showed one UV-active spot with the R_{f} value of 0.45 .
$[\alpha]_{\mathrm{D}}^{26}$
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$
$\operatorname{FTIR}($ neat $): \cup\left(\mathrm{cm}^{-1}\right)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(500 \mathrm{MHz}):$
$-150.8^{\circ}(\mathrm{c}=0.05, \mathrm{MeOH})$
266 (3.74)
3443 (OH stretching), 1681 ($\mathrm{C}=\mathrm{O}$ stretching)
$7.58(d, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(d, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(d, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 (brs, 1H), 3.31 (brs, 1H), 3.14 (dq, J $=14.0$ and $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30(d d, J=15.0$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(m, 1 \mathrm{H}), 1.94(m$, $1 \mathrm{H}), 1.93(\mathrm{~m}, 1 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~m}$, $2 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~m}$, $1 \mathrm{H}), 1.51(\mathrm{~m}, 2 \mathrm{H}), 1.50(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~m}$, $2 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}$, $3 \mathrm{H}), 0.86(d, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(s$, $3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(125 \mathrm{MHz}): \quad 173.20,153.23,144.05,134.94,126.25$, 121.88, 119.89, 76.10, 75.55, 53.72, 49.26, 44.18, 42.30, 39.16, 39.04, 37.52, 36.96, 29.51, 28.43, 27.55, 25.12, 23.55,

Band 3 was obtained as a pale yellow gum in 2.2 mg . Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 10:60:30:1 (2 runs) showed one UV-active spot with the R_{f} value of 0.25 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Band 4 was obtained as a pale yellow gum in 1.4 mg . Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 10:60:30:1 (2 runs) showed one brown spot under ASA reagent with the R_{f} value of 0.20 . It was not further investigated because its ${ }^{1} \mathrm{H}$ NMR data displayed many compounds.

Fraction A5H4 Chromatogram characteristics on normal phase TLC with 15% Acetonr/Petrol (2 runs) showed two brown spots under ASA reagent with the R_{f} values of 0.11 and 0.21 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further studied.

Fraction A6 Chromatogram characteristics on reverse phase TLC with 50\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed five UV-active spots with the R_{f} values of $0.09,0.18,0.23,0.32$ and 0.45 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 16.

Table 16 Fractions obtained from the fraction A6 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A6A	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	9.6	Yellow gum
A6B	$60-70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	1.8	Yellow gum
A6C	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.8	Yellow gum

Table 16 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
A6D	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	18.8	Yellow gum
A6E	$80-90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	53.0	Yellow gum
A6F	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	16.7	Yellow gum
A6F	$100 \% \mathrm{MeOH}$	70.2	Yellow gum
A6H	$100 \% \mathrm{MeOH}$	17.8	Yellow gum

Fraction A6A Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.12 and 0.27 . It was not further investigated due to the presence of many compounds in the ${ }^{1} \mathrm{H}$ NMR spectrum.

Fraction A6B Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.35 and 0.40 . It was not further investigated because of the minute quantity.

Fraction A6C Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.27 and 0.37 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with $50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford three fractions as shown in Table 17.

Table 17 Fractions obtained from the fraction A6C by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
A6C1	1.1	Pale yellow gum
A6C2	1.2	Pale yellow gum
A6C3	2.1	Pale yellow gum

Fraction A6C1 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.35 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction A6C2 (SK22) Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.25 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$235 \text { (3.47), } 258 \text { (3.91), } 310 \text { (1.83), }$
	369 (1.18)
FTIR(neat): $\mathrm{U}\left(\mathrm{cm}^{-1}\right)$	3343 (OH stretching),
	1641 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR(Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz}):$	$12.87(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 7.19(\mathrm{~s},$
	$\begin{aligned} & 1 \mathrm{H}), 6.29(\mathrm{~s}, 1 \mathrm{H}), 4.07(\mathrm{~s}, 3 \mathrm{H}), 3.91 \\ & (\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR(Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz})$:	180.68, 159.44, 158.73, 155.75, 152.39,
	$150.80,145.36,128.47,114.29,108.91$,
	103.17, 100.76, 98.65, 61.71, 57.03
	108.91, 100.76, 98.65
	61.71, 57.03
EIMS m/z (\% relative intensity):	304 (60), 289 (100), 261 (59), 259
	(32), 231 (29)

Fraction A6C3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S. It was not further investigated.

Fraction A6D Chromatogram characteristics on reverse phase TLC with 60\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.15,0.27$ and 0.42 . It was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions. They were not further investigated because their chromatograms on normal
phase TLC using $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under ASA reagent and they were obtained in low quantity.

Fraction A6E Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol (2 runs) showed five UV-active spots with the R_{f} values of 0.23 , $0.33,0.38,0.47$ and 0.59 . It was further separated by column chromatography over silica gel. Elution was conducted initially with $20 \% \mathrm{EtOAc} / \mathrm{Petrol}$, gradually enriched with ethyl acetate until pure ethyl acetate. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 18.

Table 18 Fractions obtained from the fraction A6E by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A6E1	$20 \% \mathrm{EtOAc} /$ Petrol	4.7	Pale yellow gum
A6E2	$30 \% \mathrm{EtOAc} /$ Petrol	1.5	Pale yellow gum
A6E3	$30 \% \mathrm{EtOAc} /$ Petrol	2.1	Pale yellow gum
A6E4	$30-40 \% \mathrm{EtOAc} /$ Petrol	5.5	Yellow gum
A6E5	$40 \% \mathrm{EtOAc} /$ Petrol	3.5	Yellow gum
A6E6	$40-60 \% \mathrm{EtOAc} /$ Petrol	14.6	Yellow gum
A6E7	$80 \% \mathrm{EtOAc} /$ Petrol	20.0	Yellow gum
A6E8	$100 \% \mathrm{EtOAc}$	19.5	Yellow gum

Fraction A6E1 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol (2 runs) showed one brown spot under ASA reagent with the R_{f} value of 0.47 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A6E2 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol (2 runs) showed two brown spots under ASA reagent with the R_{f} values of 0.47 and 0.52 . Because of the minute quantity, it was not further investigated.

Fraction A6E3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.38 and 0.45 . Because of the minute quantity, it was not further investigated.

Fraction A6E4 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.33 and 0.45 . Further purification by precoated TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 runs) as a mobile phase afforded two bands.

Band 1 (SK10) was obtained as a pale yellow gum in 1.5 mg . Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.45 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$249 \text { (3.52), } 269 \text { (2.27), } 273 \text { (2.04), }$
	329 (1.68)
$\operatorname{FTIR}($ neat $): ~\left(\mathrm{~cm}^{-1}\right)$	3417 (OH stretching),
	1676 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz}):$	$12.01(s, 1 \mathrm{H}), 11.29(s, 1 \mathrm{H}), 7.63(d$
	$J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(d, J=9.0 \mathrm{~Hz}$,
	$1 \mathrm{H}), 7.05(d d, \quad J=2.0$ and 1.0 Hz ,
	$1 \mathrm{H}), 6.97(d, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79$ (d,
	$J=9.0 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz}):$	185.00, 162.20, 159.45, 154.30, 148.00,
	144.72, 144.20, 135.00, 123.95, 110.98,
	110.50, 108.00, 103.50, 102.65, 95.44
DEPT135 ${ }^{\circ}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right) \quad \mathrm{CH}$:	144.72, 123.95, 110.98, 103.50, 95.44
EIMS m/z (\% relative intensity):	284 (100), 268 (7), 255 (4), 228 (5)

Band 2 (SK16) was obtained as a pale yellow gum in 1.3 mg . Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.33 .

$$
\mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)
$$

242 (4.00), 261 (3.88), 322 (2.93), 330 (3.03)

FTIR(neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$	3369 (OH stretching),
	1648 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR(Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(300 \mathrm{MHz})$:	$\begin{aligned} & 13.38(s, 1 \mathrm{H}), 8.03(d, J=10.2 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 6.82(s, 1 \mathrm{H}), 6.34(d, J=2.1 \mathrm{~Hz}, \\ & 1 \mathrm{H}), 6.20(d, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94 \\ & (d, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 6 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR(Acetone- $\left.\mathrm{d}_{6}\right)\left(\delta_{\text {ppm }}\right)(75 \mathrm{MHz}):$	183.12, 165.67, 164.76, 158.22, 154.08, 153.80, 138.93, 133.64, 121.49, 120.95, 108.50, 103.90, 103.50, 98.78, $93.95,76.77$, 27.16
DEPT135 ${ }^{\circ}$ (Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right) \quad \mathrm{CH}$:	133.64, 121.49, 103.90, 98.78, 93.95
CH_{3} :	27.16

Fraction A6E5 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.33 and 0.47 . Further purification by precoated TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 runs) as a mobile phase afforded two bands.

Band 1 was obtained as a pale yellow gum in 1.2 mg . Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.47 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Because of the minute quantity, it was not further investigated.

Band 2 was obtained as a pale yellow gum in 1.5 mg . Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.33 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK16 as a major component. Further investigation was then not carried out.

Fraction A6E6 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol (2 runs) showed two UV-active spots with the R_{f} values of 0.38 and 0.42 and one brown spot under ASA reagent with the R_{f} value of 0.50 . Its ${ }^{1} H$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A6E7 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol (2 runs) showed four UV-active spots with the R_{f} values of 0.11 , $0.19,0.23,0.42$ and 0.47 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A6E8 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol (2 runs) showed three UV-active spots with the R_{f} values of 0.04 , 0.11 and 0.35 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. It was not further investigated.

Fraction A6F Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three UV-active spots with the R_{f} values of 0.27 , 0.52 and 0.72 . It was separated into two fractions by dissolving in dichloromethane. The dichloromethane soluble fraction (8.5 mg) was obtained as a green yellow gum. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Therefore, it was not further investigated. The dichloromethane insoluble fraction (8.2 mg) was obtained as a yellow gum. Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.20 and 0.50 . Further purification by precoated TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 runs) as a mobile phase afforded two bands. They were not further investigated. Because their chromatograms on normal phase TLC using $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.

Fraction A6G Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV -active spots with the R_{f} values of $0.11,0.28,0.38$ and 0.76 and two purple spots under ASA reagent with the R_{f} values of 0.90 and 0.95 . It was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 19.

Table 19 Fractions obtained from the fraction A6G by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
A6G1	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	14.4	Colorless gum
	$3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$		
A6G2	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	20.2	Yellow gum
A6G3	$5-80 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	26.0	Yellow gum
A6G4	$100 \% \mathrm{MeOH}$	9.1	Brown gum

Fraction A6G1 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three purple spots under ASA reagent with the R_{f} values of $0.76,0.90$ and 0.95 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction A6G2 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.19,0.28,0.38$ and 0.76. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction A6G3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.04 and 0.11 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction A6G4 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S and ASA reagent. Thus, it was not further investigated.

Fraction A6H Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S and ASA reagent. It was not further investigated.

Fraction A7 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S and ASA reagent. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. It was not further investigated.

Fraction B Upon standing at room temperature, a white solid (1.03 g) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed one major purple under ASA reagent with the R_{f} value of 0.33 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of friedelin as a major component.

The filtrate became a yellow brown gum (10.54 g) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.18,0.25,0.46,0.72$ and 0.73 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with $100 \% \mathrm{MeOH}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 20.

Table 20 Fractions obtained from the fraction B by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
B1	11157.9	Green yellow gum
B2	9398.0	Green yellow gum
B3	526.4	Yellow solid
B4	56.4	Yellow gum
B5	46.1	Yellow gum
B6	22.3	Yellow gum
B7	37.1	Brown yellow gum

Fraction B1 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction B2 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.20,0.25$ and 0.37 . It was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol and
finally with pure methanol. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 21.

Table 21 Fractions obtained from the fraction B2 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B2A	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2160.8	Green yellow gum
B2B	$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	338.0	Yellow solid
B2C	$2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1434.7	Green yellow gum
B2D	$3-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4100.4	Green yellow gum
B2E	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	549.3	Yellow gum
B2F	$7-40 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	320.5	Yellow gum
B2G	$60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	149.1	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B2A Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed four UV-active spots with the R_{f} values of 0.07 , $0.30,0.52$ and 0.95 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction B2B Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed three UV-active spots with the R_{f} values of 0.07 , 0.37 and 0.57 . It was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 22.

Table 22 Fractions obtained from the fraction B2B by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B2B1	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	5.7	Colorless gum
B2B2	$1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	77.3	Yellow gum
B2B3	$3-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	23.3	Yellow gum
B2B4	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	25.6	Yellow solid
B2B5	$7-15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	73.8	Yellow solid
B2B6	$20-60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	64.8	Yellow gum
B2B7	$80 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	21.6	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B2B1 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.46 and two brown spots under ASA reagent with the R_{f} values of 0.12 and 0.18 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction B2B2 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed two UV-active spots with the R_{f} values of 0.42 and 0.48. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction B2B3 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (2 runs) showed three UV-active spots with the R_{f} values of 0.10 , 0.28 and 0.48 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 20% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 23.

Table 23 Fractions obtained from the fraction B2B3 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B2B3A	20% Acetone/Petrol	4.8	Colorless gum
B2B3B	30% Acetone/Petrol	16.1	Colorless gum
B2B3C	40% Acetone/Petrol	4.6	Colorless gum
B2B3D	60% Acetone/Petrol	6.0	Colorless gum
B2B3E	80% Acetone/Petrol-	6.1	Colorless gum
	100% Acetone		
B2B3F	100% Acetone-	9.3	Yellow gum
	100% MeOH		

Fraction B2B3A Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (2 runs) showed none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction B2B3B Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (2 runs) showed two UV-active spots with the R_{f} values of 0.25 and 0.37. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B2B3C Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (2 runs) showed two UV-active spots with the R_{f} values of 0.20 and 0.32 . Because of the low quantity, it was not further investigated.

Fraction B2B3D Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (2 runs) showed one UV-active spots with the R_{f} value of 0.15 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B2B3E Chromatogram characteristics on normal phase TLC with $40 \% \mathrm{EtOAc} /$ Petrol (4 runs) showed two UV-active spots with the R_{f} values of 0.52 and 0.54 . Further purification by precoated TLC with $40 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (8 runs) as a mobile phase afforded two bands. They were not further investigated because their chromatograms on normal phase TLC using 40% EtOAc/Petrol showed many spots
under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.

Fraction B2B3F Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol (2 runs) none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction B2B4 Chromatogram characteristics on normal phase TLC with 30% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.45,0.52$ and 0.55 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 30% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions. They were not further investigated because their chromatograms on normal phase TLC using 30% Acetone/Petrol showed many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed proton signals in the high field region.

Fraction B2B5 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed three UV-active spots with the R_{f} values of 0.09 , 0.23 and 0.28. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B2B6 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.35 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK3 as a major component. Further investigation was then not carried out.

Fraction B2B7 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.18 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed broad signals. Thus, it was not further studied.

Fraction B2C Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. It was not further investigated.

Fraction B2D Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed two UV-active spots with the R_{f} values of 0.15
and 0.30. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B2E Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed two UV-active spots with the R_{f} values of 0.12 and 0.25 . It was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 24.

Table 24 Fractions obtained from the fraction B2E by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B2E1	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$	40.5	Yellow gum
B2E2	$1-7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	153.2	Yellow gum
B2E3	$7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	26.6	Yellow gum
B2E4	$7-60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	174.4	Yellow gum
B2E5	$60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2-}$	35.1	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B2E1 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.07 and 0.13 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction B2E2 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.20,0.25,0.30$, 0.35 and 0.40. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B2E3 Chromatogram characteristics on normal phase TLC with 30% Acetone/Petrol (2 runs) showed three UV-active spots with the R_{f} values of 0.37 , 0.45 and 0.50 and two brown spots under ASA reagent with the R_{f} values of 0.20 and
0.30. This fraction was further separated by column chromatography over silica gel. Elution was conducted initially with 30% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone. Fractions the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 25.

Table 25 Fractions obtained from the fraction B2E3 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B2E3A	30% Acetone/Petrol	1.6	Colorless gum
B2E3B	30% Acetone/Petrol	3.4	Colorless gum
B2E3C	30% Acetone/Petrol	4.7	Colorless gum
B2E3D	60% Acetone/Petrol	4.0	Colorless gum
B2E3E	80% Acetone/Petrol-	5.7	Colorless gum
	100% Acetone		

Fraction B2E3A Chromatogram characteristics on normal phase TLC with 30% Acetone/Petrol (2 runs) showed two purple spots under with the R_{f} values of 0.30 and 0.45 . Because of the minute quantity, it was not further investigated.

Fraction B2E3B Chromatogram characteristics on normal phase TLC with 30% Acetone/Petrol (2 runs) showed two brown spots with the R_{f} values of 0.20 and 0.30 . Because of the minute quantity, it was not further investigated.

Fraction B2E3C Chromatogram characteristics on normal phase TLC with 30% Acetone/Petrol (2 runs) showed one UV-active spot with the R_{f} value of 0.50 and two brown spots with the R_{f} values of 0.20 and 0.30 . Because of low quantity, it was not further investigated.

Fraction B2E3D (SK21) Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol (10 runs) showed one UV-active spot with the R_{f} value of 0.48 . Further purification by precoated TLC with 25% Acetone/Petrol (18 runs) as a mobile phase gave a colorless gum in 2.3 mg . Chromatogram characteristics on
normal phase TLC with 25% Acetone/Petrol (10 runs) showed one UV-active spot with the R_{f} value of 0.48 .

$\operatorname{DEPT} 135^{\circ}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right) \quad \mathrm{CH}: \quad 143.91,75.67,66.61,39.66,33.36$
CH_{2} : 52.35, 39.24, 32.82, 29.91, 25.38, 24.79, 24.05, 22.12
CH_{3} : 52.01, 28.75, 22.55, 21.11, 17.46, 16.80, 15.40, 12.77

EIMS m/z (\% relative intensity): 516 (90), 498 (35), 313 (15), 191 (81), 121 (37)

Fraction B2E3E Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S. Thus, it was not further investigated.

Fraction B2E4 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed four UV-active spots with the R_{f} values of 0.25 , $0.35,0.37$ and 0.42 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed broad signals. Thus, it was not further studied.

Fraction B2E5 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S and ASA reagent. Thus, it was not further studied.

Fraction B2F Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 runs) showed two UV-active spots with the R_{f} values of 0.07 and 0.12. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of $\mathbf{S K 3}$ as a major component. Further investigation was then not carried out.

Fraction B2G Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S. Further investigation was then not carried out.

Fraction B3 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.35 and two brown spots under ASA reagent with the R_{f} values of 0.32 and 0.37 . It was separated by column chromatography over Sephadex LH-20. Elution was conducted with $50 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 26.

Table 26 Fractions obtained from the fraction B3 by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
B3A	69.3	Green yellow gum
B3B	215.1	Yellow solid
B3C	213.3	Yellow solid
B3D	104.2	Yellow gum
B3E	32.4	Yellow gum
B3F	40.2	Yellow gum

Fraction B3A Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region, it was not further investigated.

Fraction B3B Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed four UV-active spots with the R_{f} values of 0.12 , $0.22,0.32$ and 0.37 and one brown spot under ASA reagent with the R_{f} value of 0.24 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 27.

Table 27 Fractions obtained from the fraction B3B by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B1	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	68.1	Yellow gum
B3B2	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	34.2	Yellow solid

Table 27 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B3	$20-30 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	156.3	Yellow solid
B3B4	30% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	128.2	Yellow solid
B3B5	40% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	82.3	Yellow solid
B3B6	$50-60 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	72.1	Yellow gum
B3B7	$60-80 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	78.6	Yellow gum
	$40 \% \mathrm{MeOH} /$ Acetone		
B3B8	$60 \% \mathrm{MeOH} /$ Acetone-	102.0	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B3B1 Chromatogram characteristics on normal phase TLC with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed three UV-active spots with the R_{f} values of $0.17,0.27$ and 0.25 and two purple spots under ASA reagent with the R_{f} values of 0.42 and 0.55 . It was further separated by column chromatography over silica gel. Elution was conducted initially with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol, gradually enriched with dichloromethane and finally with pure dichloromethane. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford ten fractions. They were not further investigated because their chromatograms on normal phase TLC using $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR data indicated the presence of friedelin as a major component.

Fraction B3B2 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.27 and three brown spots under ASA reagent with the R_{f} values of $0.12,0.60$ and 0.75 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signal in the high field region, it was not further investigated.

Fraction B3B3 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.35 and three brown spots under ASA reagent with the R_{f} values of $0.55,0.62$ and 0.72 . It was further separated by column chromatography over silica gel. Elution was
conducted initially with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 28.

Table 28 Fractions obtained from the fraction B3B3 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B3A	$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	11.5	Yellow gum
B3B3B	$2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	30.1	Pale yellow solid
B3B3C	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	10.5	Pale yellow solid
B3B3D	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	62.1	Pale yellow solid
B3B3E	$7-15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	47.2	Pale yellow solid
B3B3F	$20-80 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.1	Pale yellow gum
B3B3G	$100 \% \mathrm{MeOH}$	15.1	Yellow gum

Fraction B3B3A Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region, it was not further investigated.

Fraction B3B3B Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.42 and 0.50 and one spot under ASA reagent with the R_{f} value of 0.62 . It was further separated by column chromatography over silica gel. Elution was conducted initially with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 29.

Table 29 Fractions obtained from the fraction B3B3B by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B3B1	$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	4.2	Colorless gum
B3B3B2	$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	8.3	Colorless gum
B3B3B3	$2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.1	Yellow gum
B3B3B4	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-100 \% \mathrm{MeOH}$	9.1	Yellow gum

Fraction B3B3B1 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.50 and 0.52 and two purple spots under ASA reagent with the R_{f} values of 0.32 and 0.62 . Because of the low quantity, it was not further investigated.

Fraction B3B3B2 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (5 runs) showed one UV-active spot with the R_{f} value of 0.27 and one brown spot under ASA reagent with the R_{f} value of 0.29 . Further purification by precoated TLC with 15% Acetone/Petrol (10 runs) as a mobile phase afforded a colorless gum in 5.7 mg . Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (5 runs) showed one UV-active spot with the R_{f} value of 0.27 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3B3B3 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.45 and two brown spots under ASA reagent with the R_{f} values of 0.77 and 0.87 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region, it was not further investigated.

Fraction B3B3B4 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed none of well separated spots under UV-S. The ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of proton signals in the high field region, it was not further investigated.

Fraction B3B3C Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.42 and 0.50
and one brown spot under ASA reagent with the R_{f} value of 0.62 . Its ${ }^{1} H$ NMR data were similar to those of fraction B3B3B. Thus, it was further investigated.

Fraction B3B3D Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed four UV-active spots with the R_{f} values of $0.25,0.35$, 0.45 and 0.52 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 25% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 30.

Table 30 Fractions obtained from the fraction B3B3D by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B3D1	25\%Acetone/Petrol	27.0	Colorless gum
B3B3D2	25\%Acetone/Petrol	17.1	Colorless gum
B3B3D3	25% Acetone/Petrol	20.2	Colorless gum
B3B3D4	30% Acetone/Petrol-	6.1	Colorless gum
	100% Acetone		
B3B3D5	100% Acetone-100\%MeOH	3.5	Yellow gum

Fraction B3B3D1 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.45 and 0.50 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B3B3D2 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.45 . Its ${ }^{1} H$ NMR data indicated the presence of SK3 as a major component. Further investigation was then not carried out.

Fraction B3B3D3 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.45 and 0.50 .

Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B3B3D4 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.25,0.35$ and 0.52 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction B3B3D5 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed no definite spot under UV-S. It was not further investigated.

Fraction B3B3E Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.25 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B3B3F Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.20 and one purple spot with the R_{f} value of 0.70 . Because its ${ }^{1} H$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3B3G Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.20 and one purple spot under ASA reagent with the R_{f} value of 0.72 . Because its ${ }^{1} H$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3B4 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.35 and three brown spots under ASA reagent with the R_{f} values of $0.55,0.62$ and 0.67 . It was further separated by column chromatography over silica gel. Elution was conducted initially with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 31.

Table 31 Fractions obtained from the fraction B3B4 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B4A	$1-5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	48.2	Pale yellow gum
B3B4B	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	49.2	Yellow gum
B3B4C	$5-7 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	17.5	Yellow gum
B3B4D	$10-60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	17.3	Yellow gum
B3B4E	$100 \% \mathrm{MeOH}$	10.4	Yellow gum

Fraction B3B4A Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.20 and 0.37 and one brown spot under ASA reagent with the R_{f} value of 0.37 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 25% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 32.

Table 32 Fractions obtained from the fraction B3B4A by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B4A1	25\%Acetone/Petrol	4.1	Colorless gum
B3B4A2	25% Acetone/Petrol	2.0	Colorless gum
B3B4A3	$25-60 \%$ Acetone/Petrol	21.2	Pale yellow gum
B3B4A4	60% Acetone/Petrol-	18.0	Pale yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B3B4A1 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed none of well separated spots under UV-S. It was not further investigated.

Fraction B3B4A2 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.37 and 0.45 . Because of the minute quantity, it was not further investigated.

Fraction B3B4A3 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.20 and 0.25 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B3B4A4 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction B3B4B Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.20,0.25$ and 0.35 and one brown spot under ASA reagent with the R_{f} value of 0.37 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 30% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 33.

Table 33 Fractions obtained from the fraction B3B4B by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B4B1	30% Acetone/Petrol	9.5	Colorless gum
B3B4B2	$30-60 \%$ Acetone/Petrol	10.1	Pale yellow gum
B3B4B3	60% Acetone/Petrol	10.5	Pale yellow gum
B3B4B4	80% Acetone/Petrol-	25.0	Pale yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B3B4B1 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed three brown spots under ASA reagent with the R_{f} values
of $0.37,0.62$ and 0.77 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of proton signals in the high field region, it was not further investigated.

Fraction B3B4B2 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.35 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3B4B3 Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 40:20:40:1 (2 runs) showed two UVactive spots with the R_{f} values of 0.37 and 0.45 . Further purification by precoated TLC with Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of $40: 20: 40: 1$ (4 runs) as a mobile phase afforded three bands. They were not further investigated because their chromatograms on normal phase TLC using Toluene: $\mathrm{CHCl}_{3}: \mathrm{EtOAc}: \mathrm{HCOOH}$ in a ratio of 40:20:40:1 (8 runs) showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.

Fraction B3B4B4 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed no definite spot under UV-S. Further investigation was then not carried out.

Fraction B3B4C Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed three UV-active spots with the R_{f} values of 0.25 , 0.37 and 0.45. Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction B3B3B. Further investigation was then not carried out.

Fraction B3B4D Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed two UV-active spots with the R_{f} values of 0.30 and 0.35 and three brown spots under ASA reagent with the R_{f} values of $0.20,0.32$ and 0.37 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3B4E Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed no definite spot under UV-S and ASA reagent. It was not further investigated.

Fraction B3B5 Chromatogram characteristics on normal phase TLC with 30% Acetone/Petrol (2 runs) showed three UV-active spots with the R_{f} values of 0.12 , 0.25 and 0.32 and one brown spot under ASA reagent with the R_{f} value of 0.37 . It was
further separated by column chromatography over silica gel. Elution was conducted initially with 30% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 34.

Table 34 Fractions obtained from the fraction B3B5 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3B5A	30% Acetone/Petrol	25.1	Yellow solid
B3B5B	$30-60 \%$ Acetone/Petrol	35.8	Pale yellow solid
B3B5C	60% Acetone/Petrol	8.2	Colorless gum
B3B5D	60% Acetone/Petrol-	16.8	Colorless gum
	$100 \% \mathrm{MeOH}$		

Fraction B3B5A Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol (4 runs) showed one UV-active spot with the R_{f} value of 0.32 and three brown spots under ASA reagent with the R_{f} values of $0.37,0.62$ and 0.77 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 30% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions. They were not further investigated because their chromatograms on normal phase TLC using 30% Acetone/Petrol showed many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed proton signals in the high field region.

Fraction B3B5B Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol (4 runs) showed two UV-active spots with the R_{f} values of 0.32 and 0.37. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK3 as a major component. Further investigation was then not carried out.

Fraction B3B5C Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol (4 runs) showed one UV-active spot with the R_{f} value of 0.05 and one brown spot under ASA reagent with the R_{f} value of 0.25 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction B3B5D Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol (4 runs) showed none of well separate under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction B3B6 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (4 runs) showed three UV-active spots with the R_{f} values of 0.12 , 0.15 and 0.20 and one brown spot under ASA reagent with the R_{f} value of 0.60 . Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction B3C6. Further investigation was then not carried out.

Fraction B3B7 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol (4 runs) showed three UV-active spots with the R_{f} values of 0.20 , 0.22 and 0.37 and one brown spot under ASA reagent with the R_{f} value of 0.72 . Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction B3C7. Further investigation was then not carried out.

Fraction B3B8 Chromatogram characteristics on normal phase TLC with 15% Acetone/Petrol showed no definite spot under UV-S. Further investigation was then not carried out.

Fraction B3C Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed four UV-active spots with the R_{f} values of $0.20,0.25$, 0.50 and 0.60 and three purple spots under ASA reagent with the R_{f} values of 0.50 , 0.72 and 0.82 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 35.

Table 35 Fractions obtained from the fraction B3C by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B 3 C 1	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	14.0	Yellow gum
B 3 C 2	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	16.8	Yellow solid
B 3 C 3	$20-50 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	109.8	Yellow solid
B 3 C 4	60% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	79.1	Yellow gum
	100% Acetone		
B 3 C 5	$1-5 \% \mathrm{MeOH} /$ Acetone	21.9	Yellow gum
B 3 C 6	$10 \% \mathrm{MeOH} /$ Acetone	61.9	Yellow gum
B 3 C 7	$10 \% \mathrm{MeOH} /$ Acetone -	68.9	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B3C1 Chromatogram characteristics on normal phase TLC with $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed three UV-active spots with the R_{f} values of $0.25,0.30$ and 0.40 and two purple spots under ASA reagent with the R_{f} values of 0.50 and 0.62 . It was further investigated together with fraction B3B1.

Fraction B3C2 Chromatogram characteristics on normal phase TLC with $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed three UV-active spots with the R_{f} values of $0.12,0.20$ and 0.25 and two purple spots under ASA reagent with the R_{f} values of 0.52 and 0.62 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction B3C3 Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.20 and 0.25 and one brown spot under ASA reagent with the R_{f} value of 0.50 . Its ${ }^{1} H$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B3C4 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.12,0.15$ and 0.20 and one brown spot under ASA reagent with the R_{f} value of 0.40 . It was further subjected to acetylation reaction in acetic anhydride (3 ml) in the presence of pyridine
$(1 \mathrm{ml})$. The reaction mixture was stirred at room temperature overnight. After working up, the acetate derivative (B3C4A) was obtained as a pale yellow gum (15.1 mg). Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.12,0.25$ and 0.30 and one brown spot under ASA reagent with the R_{f} value of 0.52 . This fraction was further separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone/Petrol, gradually enriched with acetone and finally with pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 36.

Table 36 Fractions obtained from the fraction B3C4A by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3C4A1	$10-30 \%$ Acetone/Petrol	42.8	Pale yellow gum
B3C4A2	40% Acetone/Petrol	5.0	Pale yellow gum
B3C4A3	40% Acetone/Petrol	3.2	Colorless gum
B3C4A4	50% Acetone/Petrol-	18.9	Colorless gum
	$100 \% \mathrm{MeOH}$		

Fraction B3C4A1 Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.26 and 0.36 and one brown spot under ASA reagent with the R_{f} value of 0.56 . This fraction was further separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone and finally with pure acetone. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 37.

Table 37 Fractions obtained from the fraction B3C4A1 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3C4A1A	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	7.4	Colorless gum
B3C4A1B	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.4	Colorless gum
B3C4A1C	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	8.2	Pale yellow gum
B3C4A1D	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	5.0	Pale yellow gum
B3C4A1E	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{-}$	15.6	Pale yellow gum
	100% Acetone		

Fraction B3C4A1A Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed none of well separated spots under UV-S. Further investigation was then not carried out.

Fraction B3C4A1B Chromatogram characteristics on normal phase TLC with Acetone:Petrol: HCOOH in a ratio of 15:85:1 (6 runs) showed one UV-active spot with the R_{f} value of 0.25 and one brown spot under ASA reagent with the R_{f} value of 0.27 . Further purification by precoated TLC with Acetone:Petrol: HCOOH in a ratio of 15:85:1 (12 runs) as a mobile phase gave two bands. They were not further investigated because their chromatograms on normal phase TLC using with Acetone:Petrol:HCOOH in a ratio 15:85:1 of (6 runs) showed many spots under UV-S and they were obtained in low quantity.

Fraction B3C4A1C Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.36 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3C4A1D Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.26 . Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of SK12 except it gave methyl protons of acetate group. Thus, it was acetate derivative of SK12.

Fraction B3C4A1E Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed no definite spot under UV-S. It was not further investigated.

Fraction B3C4A2 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol (2 runs) showed three UV-active spots with the R_{f} values of 0.12 , 0.25 and 0.30 and one purple spot under ASA reagent with the R_{f} value of 0.95 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3C4A3 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol (2 runs) showed two UV-active spots with the R_{f} values of 0.05 and 0.20 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3C4A4 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol (2 runs) showed none of well separated spots under UV-S. It was not further investigated.

Fraction B3C5 Chromatogram characteristics on normal phase TLC with 20% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.37,0.50$ and 0.62 and one brown spot under ASA reagent with the R_{f} value of 0.72 . It was further subjected to acetylation reaction in acetic anhydride (3 ml) in the presence of pyridine (1 ml). The reaction mixture was stirred at room temperature overnight. After working up, the acetate derivative (B3C5A) was obtained as a pale yellow gum (24.5 mg). Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol showed four UV-active spots with the R_{f} values of $0.20,0.30,0.37$ and 0.42 . This fraction was further purified by column chromatography over silica gel. Elution was conducted initially with $20 \% \mathrm{EtOAc} /$ Petrol, gradually enriched with ethyl acetate and finally with pure ethyl acetate then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 38.

Table 38 Fractions obtained from the fraction B3C5A by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3C5A1	$20-40 \% \mathrm{EtOAc} /$ Petrol	11.1	Colorless gum
B3C5A2	$50-70 \% \mathrm{EtOAc} /$ Petrol	10.8	Pale yellow gum
B3C5A3	$70 \mathrm{EtOAc} /$ Petrol	6.6	Pale yellow gum
B3C5A4	$80 \% \mathrm{EtOAc} /$ Petrol-	7.8	Pale yellow gum
	$100 \% \mathrm{EtOAc}$		
B3C5A5	$1-20 \% \mathrm{MeOH} / \mathrm{EtOAc}$	5.9	Pale yellow gum
B3C5A6	$40 \% \mathrm{MeOH} /$ EtOAc-	9.5	Pale yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B3C5A1 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol showed none of well separated spots under UV-S. It was not further investigated.

Fraction B3C5A2 Chromatogram characteristics on normal phase TLC with 5\%Acetone/Petrol (7 runs) showed two UV-active spots with the R_{f} values of 0.11 and 0.23 and two brown spots under ASA reagent with the R_{f} values of 0.09 and 0.25 . Further purification by precoated TLC with 5\%Acetone/Petrol (16 runs) as a mobile phase afforded three bands.

Band 1 was obtained as a colorless gum in 1.0 mg. Chromatogram characteristics on normal phase TLC with 5\%Acetone/Petrol (7 runs) showed one brown spot under ASA reagent with the R_{f} value of 0.25 . Because its ${ }^{1} H$ NMR data indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a colorless gum in 2.4 mg. Chromatogram characteristics on normal phase TLC with 5\%Acetone/Petrol (7 runs) showed two UV-active spots with the R_{f} values of 0.11 and 0.23 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Band 3 (SK19) was obtained as a pale yellow gum in 2.6 mg . Chromatogram characteristics on normal phase TLC with 5\%Acetone/Petrol (7 runs) showed one UV-active spot with the R_{f} value of 0.09 .

$[\alpha]_{\mathrm{D}}^{25}$		$-76.6^{\circ}(\mathrm{c}=0.02, \mathrm{MeOH})$
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$		264 (3.52)
FTIR(neat): $\left(\right.$ (cm^{-1})		3434 (OH stretching),
		1669, 1714 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz}):$		6.90 (t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.35$ (brs, 1H),
		4.49 ($d d, J=9.5$ and $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.24$ (m,
		$1 \mathrm{H}), 2.18(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~m}$,
		$1 \mathrm{H}), 1.95(\mathrm{~m}, 1 \mathrm{H}), 1.92(\mathrm{~m}, 1 \mathrm{H}), 1.85(\mathrm{~s}$,
		$3 \mathrm{H}), 1.78(\mathrm{~m}, 2 \mathrm{H}), 1.73(\mathrm{~m}, 1 \mathrm{H}), 1.71(m$,
		$1 \mathrm{H}), 1.67(m, 3 H), 1.66$ ($\mathrm{m}, 2 \mathrm{H}$), 1.60 (m ,
		$1 \mathrm{H}), 1.50(m, 2 \mathrm{H}), 1.44(m, 1 \mathrm{H}), 1.42(m$,
		$1 \mathrm{H}), 1.39(m, 1 \mathrm{H}), 1.15(\mathrm{~s}, 3 \mathrm{H}), 1.10(m$,
		$1 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.87$ (s ,
		$3 \mathrm{H}), 0.85$ (brs, 3H), 0.76 (s, 3H)
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(125 \mathrm{MHz}):$		171.20, 170.88, 153.01, 145.15, 126.74,
		$120.74,80.63,75.20,54.53,49.13,45.14$,
		44.66, 42.10, 39.11, 37.70, 37.59, 31.14,
		29.92, 29.05, 28.83, 28.10, 27.46, 25.63,
		23.60, 21.26, 20.78, 19.82, 16.52, 16.35,
		15.34, 15.15, 12.05
DEPT135 ${ }^{\circ}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)$	CH :	145.15, 120.74, 80.63, 45.14, 39.11, 37.59
	CH_{2} :	44.66, 31.14, 29.92, 29.05, 28.83, 27.46,
		25.63, 23.60, 20.78
	CH_{3} :	28.10, 21.26, 19.82, 16.52, 16.35, 15.34,
		15.15, 12.05
EIMS m/z (\% relative intensity)		514 (3), 497 (9), 495 (27), 387 (19), 355
		(66), 313 (53), 295 (100), 161 (73), 121 (62)

Fraction B3C5A3 Chromatogram characteristics on normal phase TLC with 20% EtOAc/Petrol showed two UV-active spots with the R_{f} values of 0.37 and 0.42 and two brown spots under ASA reagent with the R_{f} values of 0.15 and 0.50 .

Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3C5A4 Chromatogram characteristics on normal phase TLC with 20% EtOAc/Petrol showed two UV-active spots with the R_{f} values of 0.20 and 0.30 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3C5A5 Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{EtOAc} /$ Petrol showed two UV-active spots with the R_{f} values of 0.07 and 0.20 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3C5A6 Chromatogram characteristics on normal phase TLC with 20% EtOAc/Petrol showed no definite spot under UV-S. It was not further investigated.

Fraction B3C6 Chromatogram characteristics on normal phase TLC with 20% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.25,0.50$ and 0.62 and one brown spot under ASA reagent with the R_{f} value of 0.72 . Its ${ }^{1} H$ NMR data were similar to those of fraction B3C5. Further investigation was then not carried out.

Fraction B3C7 Chromatogram characteristics on normal phase TLC with 20% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S and ASA reagent. Further investigation was then not carried out.

Fraction B3D Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed six UV-active spots with the R_{f} values of 0.07 , $0.19,0.24,0.29,0.43$ and 0.58 and three brown spots under ASA reagent with the R_{f} values of $0.46,0.53$ and 0.61 . Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction B3C. Further investigation was then not carried out.

Fraction B3E Chromatogram characteristics on reverse phase TLC with 30\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.25,0.36$ and 0.40 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics
were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 39.

Table 39 Fractions obtained from the fraction B3E by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3E1	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	5.2	Brown yellow gum
B3E2	$30-40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	14.2	Brown yellow gum
B3E3	$40-80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	8.7	Yellow gum
B3E4	$100 \% \mathrm{MeOH}$	5.2	Yellow gum

Fraction B3E1 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three major UV-active spots with the R_{f} values of $0.26,0.40$ and 0.42 . Further separation by column chromatography over Sephadex LH-20 was performed. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions. No further purification of each fraction was attempted as each fraction was obtained in low quantity.

Fraction B3E2 Chromatogram characteristics on normal phase TLC with 5\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two major UV-active spots with the R_{f} values of 0.33 and 0.35 . Further separation purified by column chromatography over Sephadex LH-20 was performed. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford three fractions. All fractions were obtained in low quantity. They were not further investigated.

Fraction B3E3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed three UV-active spots with the R_{f} values of 0.12 , 0.19 and 0.28 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3E4 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S. It was not further investigated.

Fraction B3F Chromatogram characteristics on reverse phase TLC with 30\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three major UV-active spots with the R_{f} values of $0.42,0.45$ and 0.64 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 40.

Table 40 Fractions obtained from the fraction B3F by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B3F1	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	7.8	Brown yellow gum
B 3 F 2	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	8.2	Brown yellow gum
B 3 F 3	$40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	5.7	Brown yellow gum
B3F4	$40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	3.2	Yellow gum
B3F5	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-$	15.7	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction B3F1 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. It was not further investigated.

Fraction B3F2 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.35 . Its ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction B3E2. It was further investigated with fraction B3E2.

Fraction B3F3 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.59 .

Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3F4 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.71 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B3F5 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. It was not further investigated.

Fraction B4 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.30,0.40$ and 0.57 and two brown spots under ASA reagent with the R_{f} values of 0.77 and 0.87 . Its ${ }^{1}$ H NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction B5 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.12,0.17$ and 0.40 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK4 and SK8 as major components. Further investigation was then not carried out.

Fraction B6 Chromatogram characteristics on reverse phase TLC with 60% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four major UV-active spots with the R_{f} values of $0.22,0.32,0.50$ and 0.64 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 41.

Table 41 Fractions obtained from the fraction B6 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
B6A	$60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.3	Yellow gum
B6B	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	1.3	Yellow gum

Table 41 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
B6C	$70-80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	3.1	Yellow gum
B6D	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-100 \% \mathrm{MeOH}$	10.1	Yellow gum

Fraction B6A Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed four UV-active spots with the R_{f} values of 0.12 , $0.14,0.28$ and 0.33 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK4 as a major component. Further investigation was then not carried out.

Fraction B6B Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed five UV-active spots with the R_{f} values of 0.19 , $0.24,0.28,0.33$ and 0.35 . Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction B6C Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed one UV-active spot with the R_{f} value of 0.21 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK8 as a major component. Further investigation was then not carried out.

Fraction B6D Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed no definite spot under UV-S. It was not further investigated.

Fraction B7 Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. It was not further investigated.
Fraction C (SK1) Upon standing at room temperature, a white solid (0.32 g) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed one brown spot under ASA reagent with the R_{f} value of 0.25 .

Melting point $\left({ }^{\circ} \mathrm{C}\right)$	$221-224{ }^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}^{28}$	$+51.5^{\circ}(\mathrm{c}=0.20, \mathrm{MeOH})$
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$207(2.87)$

FTIR(neat) $: \mathrm{v}\left(\mathrm{cm}^{-1}\right)$	$3365(\mathrm{OH}$ stretching $)$,
	$1696(\mathrm{C}=\mathrm{O}$ stretching $)$
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\mathrm{ppm}}\right)$	$5.28(d, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 3.21$
$(300 \mathrm{MHz}):$	$(d d, J=12.0$ and $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H})$,
	$2.80-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.67(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.61(\mathrm{~m}$,
	$1 \mathrm{H}), 2.49(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.30(\mathrm{~m}$,
	$2 \mathrm{H}), 2.07(d, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.80(\mathrm{~m}, 1 \mathrm{H})$,
	$1.80-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.57-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.18(d$,
	$J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 1.02(d, J=6.6$
	$\mathrm{Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~m}, 1 \mathrm{H}), 0.79(\mathrm{~s}$,
	$6 \mathrm{H}), 0.75(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\mathrm{ppm}}\right)$	$208.49,177.65,155.72,149.52,120.40$,
	$114.44,78.84,52.53,50.98,49.23,46.66$,
$(125 \mathrm{MHz}):$	$46.58,40.78,39.95,39.64,39.13,36.16,34.52$,
	$31.20,28.21,28.04,28.00,27.69,21.24,22.12$,
	$21.05,19.88,19.38,16.97,15.61$

The filtrate became a yellow green gum (3.70 g) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.24,0.36,0.48$, 0.51 and 0.60 . It was further separated by column chromatography over Sephadex LH-20. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 42.

Table 42 Fractions obtained from the fraction C by column chromatography over Sephadex LH-20

Fraction	Weight (g)	Physical appearance
C 1	435.1	Brown solid
C 2	2203.6	Pale yellow solid

Table 42 (continued)

Fraction	Weight (g)	Physical appearance
C3	300.9	Pale yellow solid
C4	58.5	Yellow solid
C5	49.6	Yellow solid
C6	11.2	Yellow solid
C7	18.3	Yellow solid
C8	23.4	Brown yellow solid

Fraction C1 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.07 and 0.13 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Thus, it was not further investigated.

Fraction C2 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed four UV-active spots with the R_{f} values of 0.13 $0.25,0.46$ and 0.56 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction C3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed two UV-active spots with the R_{f} values of 0.13 and 0.38. Its ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of fraction D2. Thus, it was not further investigated.

Fraction C4 Chromatogram characteristics on reverse phase TLC with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.11,0.22$ and 0.42 . It was further separated by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions. They were not further investigated because their ${ }^{1} \mathrm{H}$ NMR spectra showed the absence of aromatic and olefinic protons.

Fraction C5 Chromatogram characteristics on reverse phase TLC with 60% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four major UV -active spots with the R_{f} values of $0.13,0.15,0.43$
and 0.49. It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions. They were not further purified because their chromatograms showed many spots under UV-S and they were obtained in low quantity.

Fraction C6 Chromatogram characteristics on reverse phase TLC with 60% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.21,0.25$ and 0.31 . Further separation by column chromatography over reverse phase C_{18} silica gel was performed. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 43.

Table 43 Fractions obtained from the fraction C6 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
C6A	$60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	1.8	Yellow gum
C6B	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.8	Yellow gum
C 6 C	$80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	1.8	Yellow gum
C 6 D	$80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	1.9	Yellow gum
C6E	$100 \% \mathrm{MeOH}$	7.5	Yellow gum

Fraction C6A Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.11 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds, it was not further investigated.

Fraction C6B Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed six UV-active spots with the R_{f} values of 0.16 , $0.28,0.30,0.34,0.38$ and 0.51 . Because of the low quantity, it was not further investigated.

Fraction C6C (SK8) Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV -active spot with the R_{f} value of 0.30 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$		$239 \text { (4.08), } 254 \text { (4.13), } 3.13 \text { (3.65), }$
		364 (3.65)
FTIR (neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$		3375 (OH stretching),
		1671 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR (Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz})$:		13.70 (s, 1H), 6.83 (s, 1H), 6.29 (brs,
		$1 \mathrm{H}), 6.18$ (brs, 1H), $5.32(\mathrm{mt}, \mathrm{J}=7.0$
		$\mathrm{Hz}, 1 \mathrm{H}), 4.18$ (d, J = 7.0 Hz, 2H),
		$1.83(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR (Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz})$:		$183.11, \quad 165.15,164.89, \quad 158.01,$
		153.71, 153.02, 141.98, 131.28,
		128.90, 124.49, 111.78, 103.87,
		101.25, 98.48, 93.58, 26.36, 26.00,
		18.28
DEPT135 ${ }^{\circ}\left(\right.$ Acetone $\left.-d_{6}\right)\left(\delta_{\text {ppm }}\right)$	CH :	124.49, 101.25, 93.58
	CH_{2}	26.36
	CH_{3}	26.00, 18.28

Fraction C6D Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed three UV-active spots with the R_{f} values of 0.21 , 0.32 and 0.62 . Because of the minute quantity, it was not further investigated.

Fraction C6E Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed no definite spot under UV-S. It was not further investigated.

Fraction C7 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed three UV-active spots with the R_{f} values of 0.05 , 0.18 and 0.28 . It was separated by column chromatography over Sephadex LH-20. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 44.

Table 44 Fractions obtained from the fraction C7 by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
C7A	5.9	Yellow gum
C7B	3.6	Yellow gum
C7C	5.1	Yellow gum
C7D	1.5	Yellow gum

Fraction C7A Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed none of well separated spots under UV-S. It was not further investigated.

Fraction C7B Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed three UV-active spots with the R_{f} values of 0.22 , 0.33 and 0.48 . Because of the low quantity, it was not further investigated.

Fraction C7C Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed two UV-active spots with the R_{f} values of 0.34 and 0.41 . Further purification by precoated TLC was carried out with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (6 runs) as a mobile phase to gave three bands.

Band 1 was obtained as a colorless gum in 1.5 mg . Its chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.41 . Because its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds, it was not further investigated.

Band 2 was obtained as a pale yellow gum in 2.1 mg . Its chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed two UV -active spot with the R_{f} value of 0.34 . It was not further investigated because of the minute quantity.

Band 3 (SK4) was obtained as a yellow solid in 2.3 mg . Its chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.12 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$\begin{aligned} & 235 \text { (5.48), } 253 \text { (5.50), } 312 \text { (5.25), } 362 \\ & (5.16) \end{aligned}$
FTIR(neat): $\left(\mathrm{cm}^{-1}\right)$	3419 (OH stretching), 1655 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR(Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz})$:	$\begin{aligned} & 13.23(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), \\ & 6.37(\text { brs, 1H), } 6.22(\mathrm{brs}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR(Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz})$:	$\begin{array}{llll} 179.59, & 164.68, & 163.58, & 157.99 \\ 153.92, & 151.81, & 143.48, & 112.66 \\ 108.16, & 102.51, & 102.27, & 97.69, \\ \hline \end{array}$
DEPT135 ${ }^{\circ}$ (Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right) \quad \mathrm{CH}:$	108.16, 102.51, 97.69, 93.50

Fraction C7D Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 run) showed one UV-active spot with the R_{f} value of 0.12 . Its ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of SK4. It was not further investigated.

Fraction C8 Chromatogram characteristics on normal phase TLC with 2\% $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons, it was not further investigated.
Fraction D Upon standing at room temperature, a white solid (0.32 g) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed one major spot under ASA reagent with the R_{f} value of 0.25 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK1 as a major component.

The filtrate became a yellow green gum (3.70 g) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.12,0.14,0.24$, 0.33 and 0.74. It was separated by column chromatography over Sephadex LH-20. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 45.

Table 45 Fractions obtained from the fraction D by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
D1	388.6	Brown-yellow gum
D2	1493.2	Brown-yellow gum
D3	538.8	Yellow gum with yellow solid
D4	481.7	Pale-yellow gum
D5	31.0	Yellow solid
D6	29.2	Pale-yellow solid

Fraction D1 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S and ASA reagent. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region, it was not further investigated.

Fraction D2 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.24,0.42,0.51$, 0.73 and 0.83 . This fraction was further separated by column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 46.

Table 46 Fractions obtained from the fraction D2 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
D2A	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	146.8	Dark yellow gum with
D2B	$0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$		white solid
$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	67.2	Dark yellow gum with white solid	

Table 46 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
D2C	$1-2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	552.2	Yellow-brown gum
D2D	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2-}$	400.3	Brown gum
	$100 \% \mathrm{MeOH}$		

Fraction D2A Upon standing at room temperature, a white solid (0.32 g) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed one brown spot under ASA reagent with the R_{f} value of 0.25 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK1 as a major component.

The filtrate became a yellow green gum (127.0 mg) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.30 and 0.50 and long tail. Further separation by column chromatography over silica gel was performed. Elution was conducted initially with $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 47.

Table 47 Fractions obtained from the fraction D2A by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
D2A-1	$0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	38.5	Colorless gum
D2A-2	$0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.0	Colorless gum
D2A-3	$1.0-1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.7	Colorless gum
D2A-4	$2.0-7.0 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	3.3	Colorless gum
D2A-5	$20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	5.1	Colorless gum
D2A-6	$15 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.2	Colorless gum
D2A-7	$20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	98.8	Yellow gum

Table 47 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
D2A-8	$40 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	15.6	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction D2A-1 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.61 and three brown spots under ASA reagent with the R_{f} values of $0.39,0.49$ and 0.73 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol, gradually enriched with dichloromethane until pure dichloromethane then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions. They were not further investigated because their chromatograms on normal phase TLC using $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed proton signals in the high field region.

Fraction D2A-2 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one spot under ASA reagent with the R_{f} value of 0.61 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D2A-3 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.44 and two purple spots under ASA reagent with the R_{f} values of 0.51 and 0.61 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D2A-4 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one brown spot under ASA reagent with the R_{f} value of 0.29 . Its ${ }^{1}$ H NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D2A-5 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.41 and two purple
spots under ASA reagent with the R_{f} values of 0.29 and 0.63 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D2A-6 Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one brown spot under ASA reagent with the R_{f} value of 0.34 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D2A-7 Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV -active spots with the R_{f} values of $0.35,0.45$ and 0.50 . It was further separated by column chromatography over silica gel. Elution was conducted initially with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 48.

Table 48 Fractions obtained from the fraction D2A-7 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
D2A-7A	5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	1.7	Colorless gum
D2A-7B	7% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	5.0	Colorless gum
D2A-7C	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.5	Yellow gum
D2A-7D	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	7.5	Yellow gum
D2A-7E	$15-40 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	13.0	Yellow gum
D2A-7F	60% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	30.6	Yellow gum
D2A-7G	60% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	19.9	Colorless gum
	$100 \% \mathrm{MeOH}$		

Fraction D2A-7A Chromatogram characteristics on normal phase TLC with 2% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction D2A-7B Chromatogram characteristics on normal phase TLC with 2% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.50 and 0.62 .

Because its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction D2A-7C Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.20 and long tail under UV-S. Thus, it was not further investigated because of the minute quantity.

Fraction D2A-7D (SK2) Chromatogram characteristics on normal phase TLC with 2% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV -active spot with the R_{f} value of 0.30 .

$[\alpha]_{\mathrm{D}}^{28}$	$-23.3{ }^{\circ}(\mathrm{c}=0.09, \mathrm{MeOH})$
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	218 (5.02)
FTIR (neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$	3420 (OH stretching), 1704 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(300 \mathrm{MHz}):$	$6.72(q d, J=8.1$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (brs, 1H), 4.57 (ddd, $J=11.0,8.4$ and 2.4 $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.45(t, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.35(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~m}, 1 \mathrm{H}), 2.30$ (brd, $J=16.2 \mathrm{~Hz}, 1 \mathrm{H}) 2.18(m, 1 \mathrm{H}), 2.09$ $(m, 1 H), 2.03(m, 1 H), 1.98(m, 1 H), 1.95$ $(m, 1 H), 1.87(d, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.74(m$, $1 \mathrm{H}), 1.66(m, 1 \mathrm{H}), 1.65(m, 1 \mathrm{H}), 1.62(m$, $1 \mathrm{H}), 1.59(m, 4 \mathrm{H}), 1.49(m, 1 \mathrm{H}), 1.12(m$, $1 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.94(d$, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 3 \mathrm{H})$, $0.76(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(75 \mathrm{MHz}):$	$\begin{aligned} & 168.49,148.79,144.49,142.36,127.09, \\ & 122.85,115.80,75.85,66.89, \\ & 50.02,48.01,45.54,44.75,39.46,37.81, \\ & 37.60,33.40,30.10,29.22,27.99,26.69, \\ & 25.58,22.72,22.19,18.95,18.15,17.08, \\ & 15.65,15.27,12.73 \end{aligned}$

Fraction D2A-7E Chromatogram characteristics on normal phase TLC with 5% Acentone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.30 and two brown spots under ASA reagent with the R_{f} values of 0.45 and 0.52 . Its ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of SK2 as a major component. Thus, it was not further investigated.

Fraction D2A-7F (SK3) Chromatogram characteristics on normal phase TLC with 5% Acentone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.25 .

$[\alpha]^{29}$	$-42.3^{\circ}(\mathrm{c}=0.41, \mathrm{MeOH})$
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	217 (4.28)
$\operatorname{FTIR}($ neat $):\left(\mathrm{cm}^{-1}\right)$	3420 (OH stretching),
	1697 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(300 \mathrm{MHz}):$	$6.71(q d, J=8.1$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32$ (brs,
	$1 \mathrm{H}), 4.54(t, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ ($\mathrm{s}, 3 \mathrm{H})$,
	3.37 (brs, 1H), $2.35(\mathrm{~m}, 1 \mathrm{H}), 2.28(\mathrm{~m}, 1 \mathrm{H})$,
	$2.27(m, 1 H), 1.98(m, 1 H), 1.95(m, 1 \mathrm{H})$,
	$1.90(m, 2 \mathrm{H}), 1.85(d, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.78$
	$(m, 2 \mathrm{H}), 1.69(m, 1 \mathrm{H}), 1.65(m, 2 \mathrm{H}), 1.63$
	$(m, 1 \mathrm{H}), 1.52(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~m}, 1 \mathrm{H}), 1.36$
	$(m, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.16(m, 1 \mathrm{H}), 0.95(\mathrm{~s}$,
	$3 \mathrm{H}), 0.91(d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$,
	$0.84(s, 3 H), 0.75$ (s, 3H)
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(75 \mathrm{MHz}):$	$168.62,153.60,144.79,126.79,120.34$
	76.14, 75.56, 66.68, 53.99, 51.95, 49.07,
	44.71, 42.15, 39.15, 39.02, 38.95, 37.51,
	32.96, 29.58, 28.97, 28.51, 25.59, 25.09,
	23.60, 22.04, 20.78, 19.46, 16.43, 15.34,
	15.09, 12.69

Fraction D2A-7G Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction D2A-8 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds. Thus, it was not further investigated.

Fraction D2B Upon standing at room temperature, a white solid (101.2 mg) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed one brown spot under ASA reagent with the R_{f} value of 0.25 . Its ${ }^{1} H$ NMR data indicated the presence of SK1 as a major component.

The filtrate became a yellow green gum (56.1 mg) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.12,0.30$ and 0.40. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction D2C Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.12,0.30$ and 0.40 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 and SK3 as major components. Further investigation was then not carried out.

Fraction D2D Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction D3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 runs) showed four UV-active spots with the R_{f} values of 0.13 $0.38,0.42$ and 0.51 . Its ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of fraction $\mathbf{D} 2$. Thus, it was not further investigated.

Fraction D4 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.24,0.32,0.47$, and 0.56 . It was further separated by column chromatography over Sephadex LH-20. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 49.

Table 49 Fractions obtained from the fraction D4 by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
D4A	17.5	Colorless gum
D4B	28.6	Yellow gum
D4C	90.1	Yellow gum
D4D	28.6	Yellow gum
D4E	102.6	Yellow-brown gum
D4F	130.6	Yellow gum
D4G	18.2	Yellow gum
D4H	3.6	Yellow gum

Fraction D4A Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Further investigation was then not carried out.

Fraction D4B Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.12,0.19,0.38$ and 0.40 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D4C Chromatogram characteristics on reverse phase TLC with 50\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three major UV-active spots with the R_{f} values of $0.11,0.25$ and 0.55 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford nine fractions. They were not further investigated because their chromatograms on normal phase TLC using $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under UV-S and they were obtain in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed proton signals in the high field region.

Fraction D4D Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.07,0.21$ and
0.38 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed proton signals in the high field region. Thus, it was not further investigated.

Fraction D4E Chromatogram characteristics on reverse phase TLC with 50\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three major UV-active spots with the R_{f} values of $0.25,0.35$ and 0.69. This fraction was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions. They were not further investigated because their chromatograms on normal phase TLC using $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed proton signals in the high field region.

Fraction D4F Chromatogram characteristics on reverse phase TLC with 50\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed six UV-active spots with the R_{f} values of $0.08,0.13,0.25,0.35$, 0.55 and 0.69 . This fraction was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 50.

Table 50 Fractions obtained from the fraction D4F by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
D4F-1	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	38.9	Colorless gum
D4F-2	$60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	10.2	Colorless gum
D4F-3	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	8.4	Yellow gum
D4F-4	$80-90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	33.8	Yellow gum
D4F-5	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	11.0	Yellow gum
D4F-6	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-$	27.2	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction D4F-1 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV -active spots with the R_{f} values of $0.08,0.10,0.15$ and 0.26 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction D4F-2 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.21 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK5 as a major component. Further investigation was then not carried out.

Fraction D4F-3 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.05,0.12$ and 0.55 . Further purification by precoated TLC was carried out with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (7 runs) as a mobile phase afforded three bands.

Band 1 (SK5) was obtained as a yellow gum in 2.4 mg . Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.55 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$\begin{aligned} & 228 \text { (3.34), } 257 \text { (3.31), } 310(2.95), 374 \\ & (2.73) \end{aligned}$
$\operatorname{FTIR}($ neat $): ~\left(\mathrm{~cm}^{-1}\right)$	3666 (OH stretching), 1696 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\right.$ Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz})$:	$\begin{aligned} & 12.98(s, 1 \mathrm{H}), 10.34(b r s, 1 \mathrm{H}), 9.34(\mathrm{~s}, \\ & 1 \mathrm{H}), 7.56(d, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(d, \\ & J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(d d, J=9.0 \text { and } \\ & 3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(d, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), \\ & 6.25(d, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR(Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz})$:	$\begin{array}{llll} 181.25, & 166.57, & 164.63, & 159.03, \\ 154.99, & 150.73, & 125.15, & 121.88, \\ 119.71, & 109.38, & 103.47,98.78, & 94.60 \end{array}$
DEPT135 ${ }^{\circ}\left(\right.$ Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right) \quad \mathrm{CH}:$	125.15, 119.71, 109.38, 98.78, 94.60

Band 2 was obtained as a yellow gum in 1.2 mg . Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active
spot with the R_{f} value of 0.12 . Its ${ }^{1} H$ NMR spectrum indicated the absence of olefinic and aromatic protons. Thus, it was not further studied.

Band 3 (SK6) was obtained as a yellow gum in 2.4 mg . Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.05 .

$$
\begin{array}{ll}
{[\alpha]_{\mathrm{D}}^{29}} & +144.5^{\circ}(\mathrm{c}=0.05, \mathrm{MeOH}) \\
\mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon) & 221(4.04), 288(3.79), 335(3.57) \\
\text { FTIR(neat): } \mathrm{v}\left(\mathrm{~cm}^{-1}\right) & 3420(\mathrm{OH} \text { stretching }), \\
& 1650(\mathrm{C}=\mathrm{O} \text { stretching }) \\
{ }^{1} \mathrm{H} \text { NMR }\left(\mathrm{DMSO}-d_{6}\right)\left(\delta_{\mathrm{ppm}}\right)(300 \mathrm{MHz}): & 13.07(\mathrm{~s}, 1 \mathrm{H}), 12.29(\mathrm{~s}, 1 \mathrm{H}), 7.94(d, \mathrm{~J}= \\
& 8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), \\
& 6.93(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), \\
& 6.35(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), \\
& 6.04(\mathrm{~s}, 1 \mathrm{H}), 5.94(\mathrm{~s}, 1 \mathrm{H}), 5.67(\mathrm{~d}, \mathrm{~J}= \\
& 12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(d, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})
\end{array}
$$

Fraction D4F-4 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.10,0.23$ and 0.41. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK5 as a major component. Further investigation was then not carried out.

Fraction D4F-5 Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two major UV-active spots with the R_{f} values of 0.35 and 0.39. This fraction was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions. They were not further investigated because their chromatograms on normal phase TLC using $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many UV-active spots and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.

Fraction D4F-6 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. It was not further investigated.

Fraction D4G Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.12 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK4 as a major component. Further investigation was then not carried out.

Fraction D4H Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. It was not further investigated.

Fraction D5 Chromatogram characteristics on reverse phase TLC with 50% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two major UV -active spots with the R_{f} values of 0.66 and 0.84 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 51.

Table 51 Fractions obtained from the fraction D5 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
D5A	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	2.6	Yellow gum
D5B	$60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	22.5	Yellow solid
D5C	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	2.4	Yellow gum
D5D	$80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-100 \% \mathrm{MeOH}$	1.9	Yellow gum

Fraction D5A Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.32 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds, it was not further investigated.

Fraction D5B Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.12 . Its ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of SK4, it was not further investigated.

Fraction D5C Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.48 and 0.60 . Because of the minute quantity, it was not further investigated.

Fraction D5D Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.14 and 0.16 . Because of the minute quantity, it was not further investigated.

Fraction D6 Chromatogram characteristics on reverse phase TLC with 50% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two major UV-active spots with the R_{f} values of 0.66 and 0.70 . This fraction was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions. They were not further investigated because their chromatograms on normal phase TLC using $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under UV-S and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed many compounds.
Fraction E Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.24,0.33,0.36$ and 0.50 . This fraction was separated by column chromatography over Sephadex LH-20. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford nine fractions as shown in Table 52.

Table 52 Fractions obtained from the fraction \mathbf{E} by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
E1	114.6	Dark brown gum
E2	620.3	Brown yellow gum

Table 52 (continued)

Fraction	Weight (mg)	Physical appearance
E3	11.4	Yellow gum
E4	17.4	Brown red solid
E5	9.7	Yellow gum
E6	14.2	Yellow red gum
E7	13.2	Brown yellow gum
E8	10.0	Brown yellow gum
E9	29.2	Yellow solid

Fraction E1 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S and ASA reagent. Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of proton signals in the high field region, it was not further investigated.

Fraction E2 Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spots with the R_{f} values of $0.12,0.24$, 0.36 and 0.51 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions as shown in Table 53.

Table 53 Fractions obtained from the fraction E2 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
E2A	5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	6.2	Colorless gum
E2B	7% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.1	Colorless gum
E2C	$7-10 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	3.0	Colorless gum

Table 53 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
E2D	10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	12.3	Colorless gum
E2E	$15-40 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	17.3	Colorless gum
E2F	$60-80 \%$ Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$	171.3	Yellow gum
E2G	100% Acetone	47.3	Yellow gum
E2H	100% Acetone- $100 \% \mathrm{MeOH}$	219.4	Yellow gum

Fraction E2A Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.70 and three brown spots under ASA reagent with the R_{f} values of $0.46,0.48$ and 0.81 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of proton signals in the high field region, it was not further investigated.

Fraction E2B Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.23 and two purple spots under ASA reagent with the R_{f} values of 0.37 and 0.41 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of proton signals in the high field region, it was not further investigated.

Fraction E2C Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.18 and one brown spot under ASA reagent with the R_{f} value of 0.32 . Because of the minute quantity, it was not further investigated.

Fraction E2D Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.48 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 as a major component. Further investigation was then not carried out.

Fraction E2E Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.23 and 0.39 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK3 as a major component. Further investigation was then not carried out.

Fraction E2F Chromatogram characteristics on normal phase TLC with 10% Acentone/Petrol showed three UV-active spots with the R_{f} values of $0.10,0.25$ and 0.34 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 54.

Table 54 Fractions obtained from the fraction E2F by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
E2F1	$10-20 \%$ Acetone/Petrol	4.6	Colorless gum
E2F2	$20-50 \%$ Acetone/Petrol	1.3	Colorless gum
E2F3	50% Acetone/Petrol	1.2	Colorless gum
E2F4	50% Acetone/Petrol	7.2	Colorless gum
E2F5	70% Acetone/Petrol	73.2	Yellow gum
E2F6	$70-90 \%$ Acetone/Petrol	12.0	Yellow gum
E2F7	100% Acetone-100\%MeOH	21.3	Yellow gum

Fraction E2F1 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction E2F2 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.25 and long tail. Thus, it was not further investigated.

Fraction E2F3 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.12 and long tail. Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK2 as a major component. Further investigation was then not carried out.

Fraction E2F4 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.25 and 0.32 .

Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK3 as a major component. Further investigation was then not carried out.

Fraction E2F5 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.10,0.25$ and 0.35 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions. They were not further investigated because their chromatograms on normal phase TLC using 20% Acetone/Petrol showed many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed broad signals.

Fraction E2F6 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed two UV-active spots with the R_{f} values of 0.17 and 0.20 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed broad signals. Thus, it was not further studied.

Fraction E3F7 Chromatogram characteristics on normal phase TLC with 25% Acetone/Petrol showed no definite spot under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed broad signals. Thus, it was not further studied.

Fraction E2G Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed three UV-active spots with the R_{f} values of $0.09,0.25$ and 0.55 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 55.

Table 55 Fractions obtained from the fraction E2G by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
E2G1	$10-40 \%$ Acetone/Petrol	9.4	Colorless gum
E2G2	50% Acetone/Petrol	5.5	Colorless gum
E2G3	80% Acetone/Petrol	10.1	Yellow gum

Table 55 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
E2G4	80% Acetone/Petrol	21.6	Yellow gum
E2G5	100% Acetone-100\%MeOH	24.1	Colorless gum

Fraction E2G1 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed none of well separated spots under UV-S. Thus, it was not further investigated.

Fraction E2G2 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.44 and four brown spots under ASA reagent with the R_{f} values of $0.23,0.25,0.49$ and 0.57 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of proton signals in the high field region, it was not further investigated.

Fraction E3G3 Chromatogram characteristics on normal phase TLC with 10% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.11 and two brown spots under ASA reagent with the R_{f} values of 0.35 and 0.39 . Therefore, it was subjected to acetylation reaction in acetic anhydride (3 ml) in the presence of pyridine $(1 \mathrm{ml})$. The reaction mixture was stirred at room temperature overnight. After working up, the acetate derivative (E3G3Ac) was obtained as a pale yellow gum in 5.1 mg . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds. It was obtained in a minute quantity. Thus, it was not further investigated.

Fraction E2G4 Chromatogram characteristics on normal phase TLC with 20% Acetone/Petrol showed one UV-active spot with the R_{f} value of 0.13 and two purple spots under ASA reagent with the R_{f} values of 0.25 and 0.34 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with 10% Acetone/Petrol, gradually enriched with acetone until pure acetone then enriched with methanol and finally with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions. They were not further investigated because their chromatograms on normal phase TLC using 20\%Acetone/Petrol showed many
spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed broad signals.

Fraction E2H Chromatogram characteristics on reverse phase TLC with 50\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four major UV-active spots with the R_{f} values of $0.13,0.25,0.35$ and 0.40 . This fraction was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with the similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eight fractions. They were not further investigated because their chromatograms on normal phase TLC using 20% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ appeared many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed broad signals.

Fraction E3 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.07,0.19$ and 0.39 . Because of the low quantity, it was not further investigated.

Fraction E4 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.07,0.29$ and 0.39 . This fraction was separated by column chromatography over Sephadex LH-20. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 56.

Table 56 Fractions obtained from the fraction E4 by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
E4A	2.0	Yellow gum
E4B	7.0	Yellow solid
E4C	2.0	Yellow solid
E4D	5.1	Yellow solid

Fraction E4A Chromatogram characteristics on normal phase TLC with 12% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.26 and 0.39 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Because of the minute quantity, it was not further investigated.

Fraction E4B Chromatogram characteristics on normal phase TLC with Toluene: EtOAc: $\mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of $60: 30: 10: 1$ (3 runs) showed two UVactive spots with the R_{f} values of 0.15 and 0.39 . Further purification by precoated TLC with Toluene: EtOAc: $\mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of $60: 30: 10: 1$ (7 runs) as a mobile phase afforded two bands.

Band 1 (SK7) was obtained as a yellow gum in 2.6 mg . Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{EtOAc}: \mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of 60:30:10:1 (2 runs) showed one UV-active spot with the R_{f} value of 0.39 .

$$
\begin{array}{ll}
\mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon) & 251(3.89) \\
\text { FTIR }(\text { neat }): \cup\left(\mathrm{cm}^{-1}\right) & 3442(\mathrm{OH} \text { stretching }), \\
& 1663(\mathrm{C}=\mathrm{O} \text { stretching }) \\
{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\mathrm{ppm}}\right)(300 \mathrm{MHz}): & 7.95(d, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.85 \\
& (d, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})
\end{array}
$$

Band 2 was obtained as a yellow gum in 2.6 mg . Chromatogram characteristics on normal phase TLC with Toluene:EtOAc: $\mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of 60:30:10:1 (2 runs) showed one UV-active spot with the R_{f} value of 0.15 . It was not further investigated because its ${ }^{1} \mathrm{H}$ NMR spectrum the displayed the absence of aromatic and olefinic protons.

Fraction E4C Chromatogram characteristics on normal phase TLC with 12% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.05 and 0.13 . Because of the minute quantity, it was not further investigated.

Fraction E4D Chromatogram characteristics on normal phase TLC with 12% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. It was not further investigated.

Fraction E5 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed four UV-active spot with the R_{f} values of $0.07,0.29,0.36$ and 0.40 . Because of low quantity, it was not further investigated.

Fraction E6 Chromatogram characteristics on reverse phase TLC with 50\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two major UV-active spots with the R_{f} values of 0.35 and 0.55 . This fraction was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 57.

Table 57 Fractions obtained from the fraction E6 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
E6A	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	2.6	Colorless gum
E6B	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	6.7	Yellow gum
E6C	$60-80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	6.2	Yellow gum
E6D	$100 \% \mathrm{MeOH}$	5.2	Colorless gum

Fraction E6A Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed none of well separated spots under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Because of the minute quantity, it was not further investigated.

Fraction E6B Chromatogram characteristics on normal phase TLC with 12% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value 0.14 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds. It was obtained in low quantity. Thus, it was not further investigated.

Fraction E6C Chromatogram characteristics on normal phase TLC with 12% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.24,0.36$ and 0.39. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed the absence of aromatic and olefinic protons. Because of low quantity, it was not further investigated.

Fraction E6D Chromatogram characteristics on normal phase TLC with 5% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. It was not further investigated.

Fraction E7 Chromatogram characteristics on reverse phase TLC with 60% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three major UV-active spots with the R_{f} values of $0.25,0.35$ and 0.40 . This fraction was further purification by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions. They were not further investigated because their chromatograms on normal phase TLC using $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed many spots under ASA reagent and they were obtained in low quantity. Moreover, their ${ }^{1} \mathrm{H}$ NMR spectra displayed broad signals.

Fraction E8 Chromatogram characteristics on normal phase TLC with $3 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.02 and 0.26 . Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds, it was not further investigated.

Fraction E9 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds, it was not further investigated.
Fraction F Upon standing at room temperature, a white solid (0.32 g) precipitated. Its chromatogram on normal phase TLC with $60 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Petrol}$ showed one major brown spot under ASA reagent with the R_{f} value of 0.25 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK1 as a major component.

The filtrate became a yellow green gum (3.33 g) after evaporation to dryness under reduced pressure. Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV -active spots with the R_{f} values of $0.07,0.11,0.22$ and 0.42 . It $(0.48 \mathrm{~g})$ was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 58.

Table 58 Fractions obtained from the fraction \mathbf{F} by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
F1	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.0	Pale yellow gum
F2	$50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	275.6	Yellow gum
F3	$60-70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	71.6	Brown yellow gum
F4	$80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	55.3	Yellow gum
F5	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	39.9	Yellow gum
F6	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	43.3	Yellow gum
F7	$100 \% \mathrm{MeOH}$	76.6	Yellow gum

Fraction F1 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.05 and 0.14 . Because of low quantity, it was not further investigated.

Fraction F2 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.17 . Its ${ }^{1} \mathrm{H}$ NMR spectrum showed only sugar signals. Thus, it was not further investigated.

Fraction F3 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.21 . Its ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK6 as a major component. Further investigation was then not carried out.

Fraction F4 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.24 and one brown spot under ASA reagent with the R_{f} value of 0.85 . Its ${ }^{1} H$ NMR data indicated the presence of SK1 as a major component. Further investigation was then not carried out.

Fraction F5 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.18 and 0.24 and one brown spot under ASA reagent with the R_{f} value of 0.85 . Its ${ }^{1} H$ NMR
spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction F6 Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.18 and 0.23 and one spot under ASA reagent with the R_{f} value of 0.45 . This fraction was separated by column chromatography over silica gel. Elution was conducted initially with $0.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 59.

Table 59 Fractions obtained from the fraction F6 by column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
F6A	$0.5-1.5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	2.5	Colorless gum
F6B	$3-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	6.8	Colorless gum
F6C	$20-40 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	9.0	Colorless gum
F6D	$60 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	17.0	Yellow gum
F6E	$80 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	7.0	Yellow gum
	$100 \% \mathrm{MeOH}$		

Fraction F6A Chromatogram characteristics on normal phase TLC with 2% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two purple spots under ASA reagent with the R_{f} values of 0.39 and 0.48 . Because of low quantity, it was not further investigated.

Fraction F6B Chromatogram characteristics on normal phase TLC with 2% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three purple spots under ASA reagent with the R_{f} values of $0.11,0.39$ and 0.48 . Because of low quantity, it was not further investigated.

Fraction F6C Chromatogram characteristics on normal phase TLC with 10% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.05 and 0.29 and two purple spots under ASA reagent with the R_{f} values of 0.16 and 0.23 . Because of low quantity, it was not further investigated.

Fraction F6D (SK11) Chromatogram characteristics on normal phase TLC with Toluene: $\mathrm{EtOAc}: \mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of $60: 30: 10: 1$ (2 runs) showed one

UV-active spot with the R_{f} value of 0.33 and one brown spot under ASA reagent with the R_{f} value of 0.39 . Further purification by precoated TLC with Toluene:EtOAc: $\mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of $60: 30: 10: 1$ (4 runs) as a mobile phase afforded a yellow gum 2.6 mg . Chromatogram characteristics on normal phase with Toluene:EtOAc: $\mathrm{CHCl}_{3}: \mathrm{HCOOH}$ in a ratio of 60:30:10:1 (2 runs) showed one UV-active spot with the R_{f} value of 0.33 .
$\mathrm{UV} \lambda_{\max }(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$
$\operatorname{FTIR}($ neat $): \mathrm{U}\left(\mathrm{cm}^{-1}\right)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz}):$

217 (4.28)
3420 (OH stretching), 1697 ($\mathrm{C}=\mathrm{O}$ stretching)
$6.84(d, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(d, J=8.0$
Hz, 1H), 5.28 (brs, 1H), 5.27 (brs, 1H), 4.59 ($t, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.45 (brs, 1H), $3.25(d d, J=9.0$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(m$, $2 \mathrm{H}), 2.28(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~m}, 3 \mathrm{H}), 2.08(\mathrm{~m}$, $4 \mathrm{H}), 2.02(\mathrm{~m}, 2 \mathrm{H}), 1.98(d t, J=16.0$ and $3.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 6 \mathrm{H}), 1.77(\mathrm{~m}, 2 \mathrm{H})$,
$1.74(m, 2 \mathrm{H}), 1.67(m, 2 \mathrm{H}), 1.65(m, 1 \mathrm{H})$,
$1.62(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~m}, 1 \mathrm{H})$,
$1.35(m, 3 H), 1.34(m, 1 H) 1.15(m, 2 H)$,
$1.12(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H})$,
$1.01(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.95(d, J=6.0$
$\mathrm{Hz}, 6 \mathrm{H}), 0.89(\mathrm{~s}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}$, $3 \mathrm{H}), 0.76$ ($\mathrm{s}, 3 \mathrm{H}$)
${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right)(125 \mathrm{MHz}): \quad 171.78,171.77,148.79,148.63,146.63$, $142.41,142.09,126.38,123.01,122.58$, 116.73, 115.79, 78.93, 75.93, 67.01, 50.58, 50.22, 50.07, 48.02, 45.57, 44.45, 39.29, $38.87,37.97,37.81,37.60,33.40,31.74$, 30.10, 29.26, 28.64, 28.01, 27.06, 26.70, $25.56,22.77,22.74,22.19,19.15,18.97$, 18.26, 17.10, 15.65, 15.28, 12.46

$$
\begin{array}{lll}
\mathrm{DEPT}^{\circ} 35^{\circ}\left(\mathrm{CDCl}_{3}\right)\left(\delta_{\mathrm{ppm}}\right) \quad \mathrm{CH}: & 148.79,146.63,116.73,115.79,78.93, \\
& 75.93,67.01,50.58,44.45,33.40 \\
& \mathrm{CH}_{2}: & 45.57,39.29,31.74,30.10,29.26,28.64, \\
& 27.06,26.70,25.56,22.77,22.74,18.26 \\
& \mathrm{CH}_{3}: & 28.01,22.19,19.15,18.97,17.10,15.65, \\
& 15.28,12.46
\end{array}
$$

Fraction F7F Chromatogram characteristics on normal phase TLC with 20% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.44 and two purple spots under ASA reagent with the R_{f} values of 0.51 and 0.61 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction G Chromatogram characteristics on normal phase TLC with 20% Acetone $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.09,0.12$ and 0.19. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed sugar as major components. Thus, it was not further investigated.

1.2.4 Chemical investigation from the leaves of G. prainiana

1.2.4.1 Isolation and extraction

The leaves of Garcinia prainiana (0.80 kg), cut into small segments, were extracted with $\mathrm{MeOH}(4 \mathrm{~L})$ for three times over the period of 3, 7 and 30 days at room temperature. After filtration, the filtrate was evaporated to dryness under reduced pressure to give a crude methanol extract as a dark brown gum in 56.25 g .

1.2.4.2 Chemical investigation of the crude methanol extract of the leaves of G. prainiana

The crude methanol extract was primarily tested for its solubility in various solvents at room temperature. The results were demonstrated in Table 60.

Table 60 Solubility of the crude extract in various solvents at room temperature

Solvent	Solubility at room temperature	
Petroleum ether	-	
Dichloromethane	++	(green yellow solution mixed with dark brown gum)
Ethyl acetate	+	(green yellow solution mixed with dark brown gum)
Acetone	+	(green solution mixed with dark brown gum)
Methanol	++++ (brown yellow solution)	
Water	+	(brown solution mixed with dark brown gum)
$10 \% \mathrm{HCl}$	+	(brown yellow solution with dark brown gum)
$10 \% \mathrm{NaOH}$	+++	(brown solution)
$10 \% \mathrm{NaHCO}$	+++	(yellow solution mixed with dark brown gum)

Symbol meaning: + slightly soluble, ++ moderately soluble, +++ well soluble - insoluble
The crude methanol extract was soluble well in methanol, $10 \% \mathrm{NaOH}$, and $10 \% \mathrm{NaHCO}_{3}$. The solubility results indicated that major components were high polar and acidic compounds. Chromatogram characteristics on normal phase TLC with $20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.23,0.26$, $0.39,0.41$ and 0.89 and showed three spots under ASA reagent with the R_{f} values of $0.31,0.36$ and 0.83 . The crude methanol extract was then separated into two fractions by dissolving in dichloromethane. The dichloromethane soluble fraction (26.40 g) was obtained as a green gum. Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed long chain hydrocarbons. Therefore, it was not further investigated. The dichloromethane insoluble fraction (29.85 g) was obtained as a dark brown gum. This fraction was separated into two fractions by dissolving in methanol. The methanol insoluble fraction (1.93 g) was obtained as a dark brown gum. Its ${ }^{1} \mathrm{H}$ NMR displayed the absence of aromatic and olefinic protons. Therefore, it was not further investigated. The methanol soluble fraction (27.91 g) was obtained a brown gum. Chromatogram characteristics on normal reverse phase TLC of the methanol soluble fraction with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV-active spots with the R_{f} values of $0.67,0.83,0.83$ and 0.91 . Further purification by Sephadex LH-20 was performed. Elution was conducted with $100 \% \mathrm{MeOH}$. Fractions with the similar chromatogram characteristics were combined
and evaporated to dryness under reduced pressure to afford five fractions as shown in

Table 61.

Table 61 Fractions obtained from the crude methanol extract by column chromatography over Sephadex LH-20

Fraction	Weight (g)	Physical appearance
H1	12.08	Brown gum
H2	10.40	Brown gum
H3	2.51	Brown yellow gum
H4	2.27	Brown yellow gum
H5	0.65	Brown gum

Fraction H1 Chromatogram characteristics on reverse phase TLC with 20% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed no definite spot under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.
Fraction H2 Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.83,0.87$ and 0.91 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed sugar signals. Thus, it was not further investigated.
Fraction H3 Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.73,0.83$ and 0.91 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford eleven fractions as shown in Table 62.

Table 62 Fractions obtained from the fraction H3 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
H3A	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	526.8	Brown gum
H3B	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	31.0	Yellow gum

Table 62 (continued)

Fraction	Mobile phase	Weight (mg)	Physical appearance
H 3 C	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	9.5	Pale yellow solid
H 3 D	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	59.3	Yellow gum
H 3 E	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	12.8	Pale yellow solid
H 3 F	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.8	Pale yellow gum
H 3 G	$40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	156.7	Brown yellow gum
H 3 H	$40-50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	130.2	Brown yellow gum
H3I	$50-60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	151.1	Brown yellow gum
H 3 J	$60-80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	230.4	Yellow gum
H 3 K	$100 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	609.0	Brown gum

Fraction H3A Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.87 and 0.91 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed sugar signals. Thus, it was not further investigated.

Fraction H3B Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV -active spots with the R_{f} values of $0.67,0.80,0.81$ and 0.88 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford three fractions as shown in Table 63.

Table 63 Fractions obtained from the fraction H3B by column chromatography over reverse phase C_{18} silica gel

Fraction	Weight (mg)	Physical appearance
H3B1	13.9	Pale yellow gum
H3B2	4.3	Pale yellow gum
H3B3	10.5	Pale yellow gum

Fraction H3B1 Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.88 . Because the
${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction H3B2 Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.80 and 0.66 . Because the ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction H3B3 Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.66 . Because the ${ }^{1} \mathrm{H}$ NMR data indicated the presence of many compounds, it was not further investigated.

Fraction H3C (SK24) Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.76 .

Melting point (${ }^{\circ} \mathrm{C}$)	$267-269^{\circ} \mathrm{C}$
$[\alpha]^{28}$	$-42.7^{\circ}(\mathrm{c}=1.00, \mathrm{MeOH})$
UV $\lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \boldsymbol{\varepsilon})$	339 (2.97), 279 (3.07), 224 (4.10)
$\operatorname{FTIR}($ neat $):\left(\mathrm{cm}^{-1}\right)$	3260 (OH stretching),
	1730, 1650 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\mathrm{ppm}}\right)(500 \mathrm{MHz}):$	$6.93 \text { (brs, 1H), } 6.78(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}),$
	$6.23(d, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(d, J=2.4$
	$\mathrm{Hz}, 1 \mathrm{H}), 5.33$ (dd, $J=12.9$ and 3.3 Hz ,
	1H), $5.00(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.50$ (m,
	$3 \mathrm{H}), 3.11$ (dd, $J=17.4$ and $12.9 \mathrm{~Hz}, 1 \mathrm{H})$,
	2.75 (dd, $J=17.4$ and $3.3 \mathrm{~Hz}, 1 \mathrm{H})$
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\mathrm{ppm}}\right)(125 \mathrm{MHz})$:	197.17, 182.00, 165.71, 165.65, 163.14,
	145.52, 145.10, 130.19, 117.91, 114.91,
	113.42, 103.60, 99.75, 96.75, 95.65,
	79.25, 76.22, 75.26, 73.06, 72.04, 42.76
DEPT $135^{\circ}\left(\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\text {ppm }}\right) \quad \mathrm{CH}:$	117.91, 114.91, 113.42, 99.75, 96.75,
	95.65, 79.25, 76.22, 75.26, 73.06, 72.04
	42.76

Fraction H3D Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.55,0.67$ and 0.77 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 64.

Table 64 Fractions obtained from the fraction H3D by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
H3D1	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	10.0	White solid
H3D2	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	23.7	Yellow gum
H3D3	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	8.2	Yellow gum
H3D4	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.2	Yellow gum
H3D5	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-100 \% \mathrm{MeOH}$	11.1	Pale yellow gum

Fraction H3D1 Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed no definite spot under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Thus, it was not further investigated.

Fraction H3D2 Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.80 and 0.86 . Its the ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK24 as a major component. It was not further investigated.

Fraction H3D3 Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.76 and 0.80 . Further purification by Sephadex LH-20 was performed. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford three fractions as shown in Table 65.

Table 65 Fractions obtained from H3D3 by column chromatography over Sephadex LH-20

Fraction	Weight (mg)	Physical appearance
H3D3A	3.5	Pale Yellow gum
H3D3B	1.5	Pale Yellow gum
H3D3C	3.5	Pale yellow gum

Fraction H3D3A Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.50 and 0.68 . Because of the minute quantity, it was not further investigated.

Fraction H3D5B Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.68 . Its the ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 as a major component. It was not further investigated

Fraction H3D3C Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.45,0.54$ and 0.68 . Because of the minute quantity, it was not further investigated.

Fraction H3D4 Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.76 and 0.80 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 as a major component. It was not further investigated.

Fraction H3D5 Chromatogram characteristics on reverse phase TLC with $50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.76 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 as a major component. It was not further investigated.

Fraction H3E (SK23) Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.67 .

Melting point $\left({ }^{\circ} \mathrm{C}\right)$	$252-255^{\circ} \mathrm{C}$
$[\alpha]_{\mathrm{D}}^{28}$	$-80.9^{\circ}(\mathrm{c}=0.68, \mathrm{MeOH})$
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$335(2.11), 282(2.91), 223(3.13)$

FTIR(neat): $\mathrm{U}\left(\mathrm{cm}^{-1}\right)$	3220 (OH stretching),
	1730, 1644 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz})$:	$7.32(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(d, J=8.4$ Hz, 2H), 6.23 (brs, 1H), 6.19 (brs, 1H), $5.39(d d, J=12.6$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(d$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~m}, 2 \mathrm{H}), 3.78(d, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{~m}, 3 \mathrm{H}), 3.17(d d, J=$ 17.1 and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(d d, J=17.1$ and $2.7 \mathrm{~Hz}, 1 \mathrm{H}$)
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\mathrm{ppm}}\right)(125 \mathrm{MHz}):$	$\begin{aligned} & 197.18,182.00,165.73,163.80,163.24, \\ & 157.64,129.51,127.68,114.95,103.58, \\ & 99.77,96.78,95.60,79.25,76.23,75.28, \\ & 73.07,72.04,42.75 \end{aligned}$
DEPT135 ${ }^{\circ}\left(\mathrm{CD}_{3} \mathrm{OD}\right)\left(\delta_{\text {ppm }}\right) \quad \mathrm{CH}$:	$\begin{aligned} & 127.68,114.95,99.77,96.78,95.60,79.25, \\ & 76.23,75.28,73.07,72.04 \end{aligned}$
CH_{2} :	42.75

Therefore, it was subjected to acetylation reaction in acetic anhydride (6 ml) in the presence of pyridine $(2 \mathrm{ml})$. The reaction mixture was stirred at room temperature overnight. After working up, the acetate derivative (H3EAc) was obtained as a pale yellow gum (15.1 mg). Chromatogram characteristics on normal phase TLC with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.62 . Further purification by precoated TLC was carried out with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) as a mobile phase afforded a colorless gum (1.5 mg). Its chromatogram characteristics on normal phase TLC with $10 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 runs) showed one UV-active spot with the R_{f} value of 0.62 . Because the ${ }^{1} \mathrm{H}$ NMR spectrum displayed broad signals, it was not further investigated.

Fraction H3F Chromatogram characteristics on normal reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.67 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 as a major component. It was not further investigated.

Fraction H3G Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV-active spots with the R_{f} values of $0.44,0.67,0.77$ and 0.88. The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 and SK24 as major components. It was not further investigated.

Fraction H3H Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV-active spots with the R_{f} values of $0.17,0.22,0.62$ and 0.67 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford six fractions as shown in Table 66.

Table 66 Fractions obtained from the fraction H3H by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
H 3 H 1	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	12.4	Yellow gum
H 3 H 2	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	18.5	Yellow gum
H 3 H 3	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	17.3	Yellow gum
H 3 H 4	$30-50 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	31.0	Yellow gum
H 3 H 5	$50-70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	24.0	Brown yellow gum
H 3 H 6	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-100 \% \mathrm{MeOH}$	35.8	Brown yellow gum

Fraction H3H1 Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.88 . The ${ }^{1} \mathrm{H}$ NMR data were similar to those of SK24. It was not further investigated.

Fraction H3H2 Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.71 and 0.88 . The ${ }^{1}$ H NMR data indicated the presence of SK23 and SK24 as major components. It was not further investigated.

Fraction H3H3 Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.66,0.71$ and 0.88 . It was further purified by column chromatography over reverse phase C_{18} silica
gel. Elution was conducted initially with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 67.

Table 67 Fractions obtained from the fraction H3H3 by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
H 3 H 3 A	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	4.6	Pale yellow gum
H 3 H 3 B	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	14.1	Pale yellow gum
H 3 H 3 C	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	12.9	Pale yellow gum
H 3 H 3 D	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	6.6	Pale yellow gum
H3H3E	$20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-100 \% \mathrm{MeOH}$	16.1	Brown yellow gum

Fraction H3H3A Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.80 . Its ${ }^{1} \mathrm{H}$ NMR spectrum displayed sugar signals. It was not further investigated.

Fraction H3H3B Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.77 . The ${ }^{1} \mathrm{H}$ NMR data were similar to those SK24. It was not further investigated.

Fraction H3H3C Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.67 and 0.77 . The ${ }^{1} \mathrm{H}$ NMR data were similar to those of SK23 and SK24. It was not further investigated.

Fraction H3H3D Chromatogram characteristics on reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.50 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 as a major component. It was not further investigated.

Fraction H3H3E Chromatogram characteristics on normal reverse phase TLC with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed none of well separated spots under UV-S. It was not further investigated.

Fraction H3H4 Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.66 and 0.71 . The ${ }^{1}$ H NMR data were similar to those of SK23. It was not further investigated.

Fraction H3H5 Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed two UV-active spots with the R_{f} values of 0.22 and 0.62 . The ${ }^{1} \mathrm{H}$ NMR data displayed morelloflavone as a major component (Salae, 2006). It was not further investigated.

Fraction H3H6 Chromatogram characteristics on reverse phase TLC with $30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed none of well separated spots under UV-S. It was not further investigated.

Fraction H3I Chromatogram characteristics on normal phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV-active spots with the R_{f} values of $0.17,0.22,0.50$ and 0.62 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $20 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford four fractions as shown in Table 68.

Table 68 Fractions obtained from the fraction H3I by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
H3I1	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	11.8	Pale yellow gum
H3I2	$30 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	13.3	Pale yellow gum
H3I3	$40-60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	68.5	Yellow gum
H3I4	$60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}-100 \% \mathrm{MeOH}$	9.1	Brown yellow gum

Fraction H3I1 Chromatogram characteristics on reverse phase TLC with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.71,0.77$ and 0.84 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK23 and SK24 as major components. It was not further investigated.

Fraction H3I2 Chromatogram characteristics on reverse phase TLC with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed one UV-active spot with the R_{f} value of 0.75 . The ${ }^{1} \mathrm{H}$ NMR data were similar to those of SK24. It was not further investigated.

Fraction H3I3 Chromatogram characteristics on reverse phase TLC with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV-active spots with the R_{f} values of $0.22,0.33,0.44$ and 0.55. The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of fraction H3H5. It was not further investigated.

Fraction H3I4 Chromatogram characteristics on reverse phase TLC with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed none of well separated spots under UV-S. It was not further investigated.

Fraction H3J Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three UV-active spots with the R_{f} values of $0.11,0.17$ and 0.22 . The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of fraction $\mathbf{H} 3 \mathbf{H} 5$. It was not further investigated.

Fraction H3K Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed none of well separated spots under UV-S. It was not further investigated.
Fraction H4 Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed four UV-active spots with the R_{f} values of $0.22,0.38,0.45$ and 0.73. The ${ }^{1} \mathrm{H}$ NMR data were similar to those of fraction H3H5. It was not further investigated.
Fraction H5 Chromatogram characteristics on reverse phase TLC with 20\% $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed none of well separated spots under UV-S. It was not further investigated.

CHAPTER 1.3

RESULTS AND DISSCUSSION

The crude methanol extract from the twigs of G. hombroniana was separated by chromatographic methods to yield eight triterpenes (SK1, SK2, SK3, SK9, SK11, SK12, SK19 and SK21), nine xanthones (SK4, SK5, SK8, SK10, SK13, SK16, SK18, SK20 and SK22), two benzoic acid derivatives (SK7 and SK17) and one biflavone (SK6) while that from the leaves of G. prainiana afforded two flavonone glucosides (SK23 and SK24). Their structures were determined by analysis of 1D and 2D NMR spectroscopic data and comparison of the NMR data with those reported in the literatures.

1.3.1 Triterpenes

1.3.1.1 Compound SK1

Compound SK1 was obtained as a white solid, melting at $221-224^{\circ} \mathrm{C}$. Its UV showed an absorption band at $\lambda_{\max } 207 \mathrm{~nm}$ while its IR spectrum exhibited absorption bands at 3365 and $1696 \mathrm{~cm}^{-1}$ due to hydroxyl and carbonyl groups. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 69) (Figures 1 and 2) contained signals of olefinic protons [$\delta_{H} 5.28$ $(d, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$, and $5.21(s, 1 \mathrm{H})]$, one oxymethine $\operatorname{proton}\left(\delta_{\mathrm{H}} 3.21, d d, J=12.0\right.$ and $6.0 \mathrm{~Hz}, 1 \mathrm{H})$ and seven methyl groups $\left[\delta_{\mathrm{H}} 1.18(d, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(s, 3 \mathrm{H})\right.$, $1.02(d, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}), 0.79(\mathrm{~s}, 6 \mathrm{H})$ and $0.75(\mathrm{~s}, 3 \mathrm{H})]$. Comparison of its NMR data, TLC chromatogram and optical rotation $\left([\alpha]_{\mathrm{D}}^{28}+51.5^{\circ}(\mathrm{c}=0.20\right.$, $\mathrm{MeOH})$) with those of garcihombronane $\mathrm{D}\left([\alpha]_{\mathrm{D}}^{29}+58^{\circ}(\mathrm{c}=0.34, \mathrm{MeOH})\right)$ which was isolated from the pericarps of G. hombroniana (Rukachaisirikul, 2000) indicated that SK1 was garcihombronane D.

(SK1)
Table 69 The NMR data of compound SK1 and garcihombronane D in $\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$

Position	SK1		garcihombronane D	
	$\delta_{\mathrm{H}}(\mathrm{mult}, J \mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	$\delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz})$	δ_{C}
1	$1.57-1.29(m, 2 \mathrm{H})$	$36.16\left(\mathrm{CH}_{2}\right)$	$1.57-1.28(m, 2 \mathrm{H})$	36.1
2	$1.80-1.60(m, 2 \mathrm{H})$	$27.69\left(\mathrm{CH}_{2}\right)$	$1.78-1.57(m, 2 \mathrm{H})$	27.6
3	$3.21(d d, 12.0,5.0,1 \mathrm{H})$	$78.84(\mathrm{CH})$	$3.20(d d, 9.6,4.0,1 \mathrm{H})$	77.4
4	-	$39.13(\mathrm{C})$	-	39.0
5	$0.89(m, 1 \mathrm{H})$	$52.53(\mathrm{CH})$	$0.82(d d, 6.2,2.0,1 \mathrm{H})$	52.4
6	$1.80-1.60(m, 1 \mathrm{H})$	$21.05\left(\mathrm{CH}_{2}\right)$	$1.78-1.28(m, 1 \mathrm{H})$	21.0
	$1.57-1.29(m, 1 \mathrm{H})$		$1.57-1.28(m, 1 \mathrm{H})$	
7	$1.57-1.29(m, 1 \mathrm{H})$	$28.04(\mathrm{CH})$	$1.57-1.28(m, 1 \mathrm{H})$	27.8
8	$2.39-2.30(m, 1 \mathrm{H})$	$39.95(\mathrm{CH})$	$2.40-2.28(m, 1 \mathrm{H})$	39.7
9	-	$149.52(\mathrm{C})$	-	149.5
10	-	$39.64(\mathrm{C})$	-	39.4
11	$5.28(d, 6.0,1 \mathrm{H})$	$114.44(\mathrm{CH})$	$5.30(d, 6.4,1 \mathrm{H})$	113.9
12	$2.39-2.30(m, 1 \mathrm{H})$	$31.20\left(\mathrm{CH}_{2}\right)$	$2.40-2.28(m, 1 \mathrm{H})$	31.0
	$1.80-1.60(m, 1 \mathrm{H})$		$1.78-1.57(m, 1 \mathrm{H})$	
13	-	$50.98(\mathrm{C})$	-	50.7
14	-	$46.66(\mathrm{C})$	-	46.4
15	$2.07(d, 14.0,1 \mathrm{H})$	$\left.40.78(\mathrm{CH})_{2}\right)$	$2.07(b r d, 15.2,1 \mathrm{H})$	40.5
	$1.80(m, 1 \mathrm{H})$		$1.82(d d, 15.2,3.6,1 \mathrm{H})$	
16	$5.21(s, 1 \mathrm{H})$	$120.40(\mathrm{CH})$	$5.29(s, 1 \mathrm{H})$	120.1
17	-	$155.72(\mathrm{C})$	-	155.4
18	$0.75(s, 3 \mathrm{H})$	$\left.19.38(\mathrm{CH})_{3}\right)$	$0.75(s, 3 \mathrm{H})$	19.2

Table 71 (continued)

Position	SK1		garcihombronane D	
	$\delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	$\delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz})$	δ_{C}
19	$1.05(\mathrm{~s}, 3 \mathrm{H})$	$22.12\left(\mathrm{CH}_{3}\right)$	$1.04(\mathrm{~s}, 3 \mathrm{H})$	22.1
20	$2.66-2.61(m, 1 \mathrm{H})$	$28.21(\mathrm{CH})$	$2.65-2.62(m, 1 \mathrm{H})$	27.7
21	$1.02(d, 6.6,3 \mathrm{H})$	$21.24\left(\mathrm{CH}_{3}\right)$	$1.02(d, 7.0,3 \mathrm{H})$	20.9
22	$2.67(m, 1 \mathrm{H})$	$49.23\left(\mathrm{CH}_{2}\right)$	$2.68(d d, 18.0,6.0,1 \mathrm{H})$	49.2
	$2.49(m, 1 \mathrm{H})$		$2.49(d d, 18.0,10.0,1 \mathrm{H})$	
23	-	$208.49(\mathrm{C}=\mathrm{O})$	-	207.8
24	$2.85(m, 1 \mathrm{H})$	$46.58\left(\mathrm{CH}_{2}\right)$	$2.85(d d, 20.0,8.0,1 \mathrm{H})$	46.3
25	$2.45(m, 1 \mathrm{H})$	$2.46(d d, 20.0,10.0,1 \mathrm{H})$		
26	$2.80-2.70(m, 1 \mathrm{H})$	$34.52\left(\mathrm{CH}^{2}\right)$	$2.80-2.75(m, 1 \mathrm{H})$	34.3
27	$1.18(d, 6.9,3 H)$	$177.65(\mathrm{C}=\mathrm{O})$	-	177.1
28	$0.99(\mathrm{~s}, 3 \mathrm{H})$	$28.97\left(\mathrm{CH}_{3}\right)$	$1.16(d, 7.0,3 \mathrm{H})$	17.0
29	$0.79(\mathrm{~s}, 3 \mathrm{H})$	$15.61\left(\mathrm{CH}_{3}\right)$	$0.79(\mathrm{~s}, 3 \mathrm{H})$	28.4
30	$0.79(\mathrm{~s}, 3 \mathrm{H})$	$19.88\left(\mathrm{CH}_{3}\right)$	$0.79(\mathrm{~s}, 3 \mathrm{H})$	15.9

1.3.1.2 Compound SK2

Compound SK2 was obtained as a pale yellow gum. The IR spectrum showed the presence of a hydroxyl group ($3420 \mathrm{~cm}^{-1}$) and a carbonyl group of an α, β unsaturated ester $\left(1704 \mathrm{~cm}^{-1}\right)$. In the UV spectrum, an absorption band at $\lambda_{\max } 218 \mathrm{~nm}$ indicated that SK2 had an α, β-unsaturated ester chromorphore. SK2 was identified as garcihombronane C by direct comparison of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Table 70) data and TLC chromotogram with those of garcihombronane C which was obtained from the pericarps of G. hombroniana (Rukachairisikul, 2000).

(SK2)

Table 70 The NMR data of compound SK2 and garcihombronane C in CDCl_{3}

Position	SK2		garcihombronane C	
	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	$\delta_{\text {C }}$
1	1.59 (m, 2H)	$29.22\left(\mathrm{CH}_{2}\right)$	1.57 (m, 2H)	29.19
2	1.66 (m, 1H)	$25.58\left(\mathrm{CH}_{2}\right)$	1.64 (m, 1H)	25.55
	1.98 (m, 1H)		1.97 (m, 1H)	
3	3.45 (t, 2.4, 1H)	75.85 (CH)	3.45 (t, 2.5, 1H)	75.83
4	-	37.60 (C)		37.57
5	1.62 (m, 1H)	44.75 (CH)	1.60 ($\mathrm{m}, 1 \mathrm{H}$)	44.41
6	1.65 (m, 1H)	$18.15\left(\mathrm{CH}_{2}\right)$	1.65 (m, 1H)	18.11
	1.49 (m, 1H)		1.49 (dt, 11.5, 6.5, 1H)	
7	2.30 (m, 1H)	$26.69\left(\mathrm{CH}_{2}\right)$	2.33 ($\mathrm{m}, 1 \mathrm{H}$)	26.66
	2.35 (m, 1H)		2.36 ($\mathrm{m}, 1 \mathrm{H}$)	
8	-	122.85 (C)		122.82
9	-	142.36 (C)		142.37
10	-	37.81 (C)		37.78
11	2.18 (m, 1H)	$22.72\left(\mathrm{CH}_{2}\right)$	2.19 ($\mathrm{m}, 1 \mathrm{H}$)	22.70
	2.09 (m, 1H)		2.06 ($\mathrm{m}, 1 \mathrm{H}$)	
12	1.59 (m, 2H)	$30.10\left(\mathrm{CH}_{2}\right)$	1.57 (m, 2H)	30.06
13	-	48.01 (C)		47.97
14	-	148.79 (C)		148.76
15	5.27 (brs, 1H)	115.80 (CH)	5.27 (brs, 1H)	115.78

Table 70 (continued)

Position	SK2		garcihombronane C	
	$\delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	$\delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz})$	δ_{C}
16	$1.95(m, 1 \mathrm{H})$	$45.54\left(\mathrm{CH}_{2}\right)$	$1.95(m, 1 \mathrm{H})$	45.52
	$2.30(b r d, 16.2,1 \mathrm{H})$		$2.33(b r d, 15.5,1 \mathrm{H})$	
17		$50.02(\mathrm{C})$		49.99
18	$0.76(\mathrm{~s}, 3 \mathrm{H})$	$15.65\left(\mathrm{CH}_{3}\right)$	$0.75(\mathrm{~s}, 3 \mathrm{H})$	15.62
19	$1.01(\mathrm{~s}, 3 \mathrm{H})$	$18.95\left(\mathrm{CH}_{3}\right)$	$1.01(\mathrm{~s}, 3 \mathrm{H})$	18.92
20	$2.03(m, 1 \mathrm{H})$	$33.40\left(\mathrm{CH}^{2}\right)$	$2.02(m, 1 \mathrm{H})$	33.37
21	$0.94(d, 6.6,3 \mathrm{H})$	$15.27\left(\mathrm{CH}_{3}\right)$	$0.95(d, 7.0,3 \mathrm{H})$	15.25
22	$1.74(m, 1 \mathrm{H})$	$39.46\left(\mathrm{CH}_{2}\right)$	$1.74(d d d, 14.0,11.5$,	39.41
			$1.5,1 \mathrm{H})$	
	$1.12(m, 1 \mathrm{H})$		$1.12(d d d, 14.0,11.5$,	
			$2.5,1 \mathrm{H})$	
23	$4.57(d d d, 11.0,8.4$,	$66.89\left(\mathrm{CH}^{2}\right)$	$4.57(d d d, 11.5,8.0$,	66.87
	$2.4,1 \mathrm{H})$		$2.5,1 \mathrm{H})$	
24	$6.72(q d, 8.1,1.5,1 \mathrm{H})$	$144.49\left(\mathrm{CH}^{2}\right)$	$6.72(q d, 8.0,1.5,1 \mathrm{H})$	144.42
25	-	$127.09(\mathrm{C})$	-	127.06
26	-	$168.49(\mathrm{C}=\mathrm{O})$	-	168.46
27	$1.87(d, 1.5,3 \mathrm{H})$	$12.73\left(\mathrm{CH}_{3}\right)$	$1.87(d, 1.5,3 \mathrm{H})$	12.72
28	$0.89(\mathrm{~s}, 3 \mathrm{H})$	$22.19\left(\mathrm{CH}_{3}\right)$	$0.89(\mathrm{~s}, 3 \mathrm{H})$	22.17
29	$0.99(\mathrm{~s}, 3 \mathrm{H})$	$27.99\left(\mathrm{CH}_{3}\right)$	$0.99(\mathrm{~s}, 3 \mathrm{H})$	27.98
30	$0.90(\mathrm{~s}, 3 \mathrm{H})$	$17.08\left(\mathrm{CH}_{3}\right)$	$0.90(s, 3 \mathrm{H})$	17.06
31	$3.76(\mathrm{~s}, 3 \mathrm{H})$	$51.95\left(\mathrm{CH}_{3}\right)$	$3.76(s, 3 \mathrm{H})$	51.94

1.3.1.3 Compound SK3

Compound SK3 was obtained as a pale yellow gum. Its IR and UV spectral data were similar to those of SK2. Their NMR data were also similar except for the fact that two olefinic carbons of a tetrasubstituted double bond were replaced by signals of methine and oxymethine carbons ($\delta_{\mathrm{C}} 39.15$ and 75.56). Comparison of its ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data, TLC chromatogram and optical rotation $\left([\alpha]_{\mathrm{D}}^{29}-42.3^{\circ}(\mathrm{c}=0.41\right.$,
$\mathrm{MeOH})$) with the previously reported data of garcihombronane $\mathrm{B}\left([\alpha]_{\mathrm{D}}^{29}-48^{\circ}(\mathrm{c}=0.42\right.$, $\mathrm{MeOH})$) (Rukachaisirikul, 2000) indicated that SK3 was garcihombronane B.

(SK3)
Table 71 The NMR data of compound SK3 and garcihombronane B in CDCl_{3}

Position	SK3		garcihombronane B	
	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J} \mathrm{Hz})$	$\delta_{\text {C }}$
1	1.90 (m, 1H)	$23.60\left(\mathrm{CH}_{2}\right)$	1.90 (m, 1H)	23.54
	1.16 (m, 1H)		1.16 ($\mathrm{m}, 1 \mathrm{H}$)	
2	1.63 (m, 1H)	$25.09\left(\mathrm{CH}_{2}\right)$	1.64 ($\mathrm{m}, 1 \mathrm{H}$)	25.05
	1.90 (m, 1H)		1.92 (m, 1H)	
3	3.37 (brs, 1H)	76.14 (CH)	3.39 (brs, 1H)	76.09
4	-	37.51 (C)	-	37.48
5	1.98 (m, 1H)	38.95 (CH)	1.98 (m, 1H)	38.93
6	1.52 (m, 1H)	$20.78\left(\mathrm{CH}_{2}\right)$	1.55 (m, 1H)	20.73
	1.36 (m, 1H)		1.36 (m, 1H)	
7	1.39 (m, 1H)	$25.59\left(\mathrm{CH}_{2}\right)$	1.41 (m, 1H)	25.55
	1.95 (m, 1H)		1.96 (m, 1H)	
8	2.35 (m, 1H)	39.15 (CH)	2.35 (m, 1H)	39.09
9	-	75.56 (C)	-	75.4
10	-	42.15 (C)	-	42.11
11	1.78 (m, 1H)	$29.58\left(\mathrm{CH}_{2}\right)$	1.80 (m, 1H)	29.55
	1.65 (m, 1H)		1.66 (m, 1H)	

Table 71 (continued)

Position	SK3		garcihombronane B	
	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J} \mathrm{Hz})$	δ_{C} (C-Type)	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	δ_{C}
12	1.65 (m, 1H)	$28.97\left(\mathrm{CH}_{2}\right)$	1.66 (m, 1H)	28.95
	1.52 (m, 1H)		1.53 (m, 1H)	
13	-	49.07 (C)	-	49.03
14	-	153.60 (C)	-	153.52
15	5.32 (brs, 1H)	120.34 (CH)	5.34 (brs, 1H)	120.36
16	2.27 (m, 1H)	$44.71\left(\mathrm{CH}_{2}\right)$	2.30 ($m, 1 \mathrm{H}$)	44.68
	1.78 (m, 1H)		1.80 (m, 1H)	
17	-	53.99 (C)	-	53.95
18	0.75 (s, 3H)	$15.34\left(\mathrm{CH}_{3}\right)$	0.76 (s, 3H)	15.30
19	0.90 (s, 3H)	$16.43\left(\mathrm{CH}_{3}\right)$	0.91 (s, 3H)	16.37
20	2.28 (m, 1H)	32.96 (CH)	2.26 (m, 1H)	32.91
21	0.91 (d, 6.6, 3H)	$15.09\left(\mathrm{CH}_{3}\right)$	0.92 (d, 6.5, 3H)	15.05
22	1.69 (m, 1H)	39.02 (CH)	1.70 (m, 1H)	39.07
23	$4.54(t, 8.4,1 \mathrm{H})$	66.68 (CH)	4.56 (ddd, 10.5, 8.0,	66.69
			$2.0,1 \mathrm{H})$	
24	6.71 (qd, 8.1, 1.5, 1H)	144.79 (CH)	6.70 (qd, 8.0, 1.5, 1H)	144.58
25	-	126.79 (C)	-	126.9
26	-	168.62 ($\mathrm{C}=\mathrm{O}$)	-	168.51
27	1.85 (d, 1.5, 3H)	$12.69\left(\mathrm{CH}_{3}\right)$	1.87 (d, 1.5, 3H)	12.68
28	0.84 (s, 3H)	$22.04\left(\mathrm{CH}_{3}\right)$	0.85 (s, 3H)	21.99
29	0.95 (s, 3H)	$28.51\left(\mathrm{CH}_{3}\right)$	0.96 (s, 3H)	28.47
30	1.23 (s, 3H)	$19.46\left(\mathrm{CH}_{3}\right)$	1.24 (s, 3H)	19.36
31	3.77 (s, 3H)	$51.95\left(\mathrm{CH}_{3}\right)$	3.75 (s, 3H)	51.93

1.3.1.4 Compound SK12

Compound SK12 was obtained as a colorless gum. The UV spectrum ($\lambda_{\max }$ 266 nm) showed the presence of an α, β-unsaturated carboxylic acid chromophore. Its IR spectrum exhibited absorption bands at $3443 \mathrm{~cm}^{-1}$ (a hydroxyl group) and 1681 cm^{-1} (a carbonyl group of carboxylic acid). The ${ }^{1} \mathrm{H}$ NMR data (Table 72) (Figure 7)
contained signals of olefinic protons $\left[\delta_{\mathrm{H}}, 7.58(d, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.14(d, J=11.5\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.90(d, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $5.27(b r s, 1 \mathrm{H})$], one oxymethine proton $\left(\delta_{\mathrm{H}}\right.$ 3.31, brs, 1 H) and seven methyl groups [$\delta_{\mathrm{H}} 1.87(s, 3 \mathrm{H}), 1.03(s, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H})$, $0.86(d, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.78(\mathrm{~s}, 3 \mathrm{H})]$. Comparison of the ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR data, TLC chromatogram and optical rotation $\left([\alpha]_{\mathrm{D}}^{26}-150.8^{\circ}(\mathrm{c}=0.05\right.$, $\mathrm{MeOH})$) with the previously reported data of garcihombronane $\mathrm{F}\left([\alpha]_{\mathrm{D}}^{27}-153.8^{\circ}(\mathrm{c}=0.03\right.$, $\mathrm{MeOH})$), isolated from the leaves of G. hombroniana (Rukachaisirikrul, 2005), suggested that SK12 was garcihombronane F.

(SK12)

Table 72 The NMR data of compound SK12 and garcihombronane F in CDCl_{3}

Position	SK12		garcihombronane F	
	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	δ_{C}
1	$1.85(\mathrm{~m}, 1 \mathrm{H})$	$23.55\left(\mathrm{CH}_{2}\right)$	$1.88(\mathrm{~m}, 1 \mathrm{H})$	23.47
	$1.12(\mathrm{~m}, 1 \mathrm{H})$		$1.15(\mathrm{~m}, 1 \mathrm{H})$	
2	$1.94(\mathrm{~m}, 1 \mathrm{H})$	$25.12\left(\mathrm{CH}_{2}\right)$	$\alpha: 2.00(\mathrm{~m}, 1 \mathrm{H})$	24.98
	$1.85(\mathrm{~m}, 1 \mathrm{H})$		$\beta: 1.90(\mathrm{~m}, 1 \mathrm{H})$	
3	$3.31($ brs, 1H)	$76.10(\mathrm{CH})$	$3.38(b r s, 1 \mathrm{H})$	76.10
4	-	$37.52(\mathrm{C})$	-	37.48
5	$1.93(\mathrm{~m}, 1 \mathrm{H})$	$39.04(\mathrm{CH})$	$1.97(\mathrm{~m}, 1 \mathrm{H})$	38.94

Table 72 (continued)

Position	SK12		garcihombronane F	
	$\delta_{\mathrm{H}}($ mult, JHz$)$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$
6	1.56 ($\mathrm{m}, 1 \mathrm{H}$)	$25.12\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & \alpha: 1.62(\mathrm{~m}, 1 \mathrm{H}) \\ & \beta: 1.42(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	25.02
	1.38 (m, 1H)			
7	1.51 (m, 1H)	$20.71\left(\mathrm{CH}_{2}\right)$	$\alpha: 1.55$ (m, 1H)	20.63
	1.38 (m, 1H)		$\beta: 1.36$ (m, 1H)	
8	2.25 (m, 1H)	39.16 (CH)	2.31 (m, 1H)	39.06
9	-	75.55 (C)	-	75.62
10		42.30 (C)	-	42.24
11	1.50 ($\mathrm{m}, 1 \mathrm{H}$)	$29.51\left(\mathrm{CH}_{2}\right)$	$\alpha: 1.54(\mathrm{~m}, 1 \mathrm{H})$	29.48
	1.78 (m, 1H)		$\beta: 1.83$ (m, 1H)	
12	1.51 (m, 1H)	$27.55\left(\mathrm{CH}_{2}\right)$	1.55 (m, 1H)	27.48
	1.78 (m, 1H)		1.37 (m, 1H)	
13	-	49.26 (C)	-	49.20
14	-	153.23 (C)	-	153.52
15	5.27 (brs, 1H)	119.89 (CH)	5.34 (brs, 1H)	119.87
16	2.30 (dd, 15.0, 4.5, 1H)	$44.18\left(\mathrm{CH}_{2}\right)$	$\alpha: 2.37$ (dd, 15, 3.5, 1H)	44.14
	1.80 (m, 1H)		$\beta: 1.85(m, 1 \mathrm{H})$	
17	-	53.72 (C)	-	53.66
18	0.82 ($s, 3 \mathrm{H})$	$15.63\left(\mathrm{CH}_{3}\right)$	0.89 (s, 3H)	15.59
19	0.84 ($s, 3 \mathrm{H}$)	$16.37\left(\mathrm{CH}_{3}\right)$	0.90 ($s, 3 \mathrm{H}$)	16.34
20	3.14 (dq, 14.0, 7.0, 1H)	36.96 (CH)	3.21 (dq, 12.0, 7.5, 1H)	36.89
21	0.86 (d, 7.0, 3H)	$17.71\left(\mathrm{CH}_{3}\right)$	0.93 (d, 7.5, 1H)	17.73
22	5.90 (d, 11.5, 1H)	144.05 (CH)	5.97 (t, 12.0, 1H)	144.09
23	6.14 (d, 11.5, 1H)	121.88 (CH)	$6.21(t, 12.0,1 \mathrm{H})$	121.86
24	7.58 (d, 12.0, 1H)	134.94 (CH)	7.66 (d, 12.0, 1H)	134.97
25	-	126.25 (C)	-	126.24
26	-	173.20 (C=O)	-	173.12
27	1.87 (s, 3H)	$12.17\left(\mathrm{CH}_{3}\right)$	1.94 (s, 3H)	12.13
28	0.78 ($s, 3 \mathrm{H}$)	$22.02\left(\mathrm{CH}_{3}\right)$	0.84 ($s, 3 \mathrm{H}$)	22.00
29	0.90 ($s, 3 \mathrm{H}$)	$28.43\left(\mathrm{CH}_{3}\right)$	0.96 ($s, 3 \mathrm{H}$)	28.44
30	1.03 ($\mathrm{s}, 3 \mathrm{H}$)	$18.82\left(\mathrm{CH}_{3}\right)$	1.10 (s, 3H)	18.69

1.3.1.5 Compound SK9

Compound SK9 was obtained as a colorless gum. It showed the molecular formula $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{4}$ by EI-MS (Figure 11). The IR spectrum showed similar absorption bands to those of SK12: a hydroxyl group ($3404 \mathrm{~cm}^{-1}$) and a carbonyl group of an α, β-unsaturated carboxylic acid ($1713 \mathrm{~cm}^{-1}$). In the UV spectrum, an absorption band at $\lambda_{\text {max }} 257 \mathrm{~nm}$ indicated that SK9 had the same chromophore as SK12. The ${ }^{1} \mathrm{H}$ NMR spectrum was also similar to that of SK12: two trisubstituted double bonds $\left[\delta_{\mathrm{H}} 7.65(t\right.$, $J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, and $5.35($ brs, 1 H$)$], one disubstituted double bond [$\delta_{\mathrm{H}} 6.22$ and $5.98(t, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}$ each $)$, one oxymethine proton ($\delta_{\mathrm{H}} 3.23, d d, J=11.0$ and 4.0 $\mathrm{Hz}, 1 \mathrm{H}$) and seven methyl groups [$\delta_{\mathrm{H}} 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.08(s, 3 \mathrm{H}), 0.99(s, 3 \mathrm{H}), 0.89(s$, $3 \mathrm{H}), 0.93(d, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$, and $0.79(s, 6 \mathrm{H})]$. The ${ }^{13} \mathrm{C}$ NMR (Figure 10) and DEPT experiment showed the same numbers and type of carbons as those of SK12. Thus, SK9 was initially assigned to have the same core structure as SK12 with one trisubstituted double bond at $\mathrm{C}-14 / \mathrm{C}-15$ and the same side chain at $\mathrm{C}-17$. This result was confirmed by HMBC data (Table 73). The positions of the seven methyl groups were established using the data from HMBC spectrum.

The relative stereochemistry was established based on the following ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY data. In the side chain, $\mathrm{H}-22\left(\delta_{\mathrm{H}} 5.38\right)$ showed correlation with $\mathrm{H}-23\left(\delta_{\mathrm{H}}\right.$ 6.22) while $\mathrm{H}-24$ did not give a cross peak with $\mathrm{Me}-27$ ($\delta_{\mathrm{H}} 1.97$). Therefore, the configurations of double bonds at $\mathrm{C}-22 / \mathrm{C}-23$ and $\mathrm{C}-24 / \mathrm{C}-25$ were Z - and E-, respectively. Since the oxymethine proton, H-3 ($\delta_{\mathrm{H}} 3.23$), appeared as doublet of doublet, it was located at an α-position. $\mathrm{Me}-29$ ($\delta_{\mathrm{H}} 0.99$) showed correlations with both axial H-3 and $\mathrm{H}-5$ ($\delta_{\mathrm{H}} 1.52$), suggesting that Me-29 was cis to H-3 and H-5. Me19 gave a cross peak with $\mathrm{H}-8\left(\delta_{\mathrm{H}} 2.28\right)$, but not $\mathrm{H}-5$, indicating that Me-19 ($\delta_{\mathrm{H}} 0.89$) was cis to $\mathrm{H}-8$ and trans to $\mathrm{H}-5$. These results also established a trans-fused ring. Thus, $9-\mathrm{OH}$ was located at an α-axial position. In addition, $\mathrm{Me}-30$ ($\delta_{\mathrm{H}} 1.08$) did not give cross peaks with $\mathrm{H}-8$ and $\mathrm{Me}-18\left(\delta_{\mathrm{H}} 0.79\right)$, indicating Me-30 was trans to both $\mathrm{H}-8$ and $\mathrm{Me}-18$. Me-18 did not show a correlation with Me-21, suggesting that Me-18 and Me-21 were located at different side of the molecule. Thus, SK9 had the relative stereochemistry as shown and was $\mathrm{H}-3 \alpha$ epimer of SK12. On the basis of these
spectral data, SK9 was (22Z,24E)-3 $\beta, 9 \alpha$-dihydroxy-17,14-friedolanostan-14,22,-24-trien-26-oic acid, a new naturally occurring 17,14-friedolanostane.

(SK9)
Table 73 The NMR data of compound SK9 in CDCl_{3}

Position	$\delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	HMBC	NOESY
1	$\alpha: 1.53(m, 1 \mathrm{H})$	$29.56\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-3$	-
	$\beta: 1.40(m, 1 \mathrm{H})$			Me-19
2	$\alpha: 1.69(m, 1 \mathrm{H})$	$27.12\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-3$	-
	$\beta: 1.53(m, 1 \mathrm{H})$			$\mathrm{Me}-19$
3	$3.23(d d, 11.0,4.0$,	$78.65(\mathrm{CH})$	$\mathrm{C}-5, \mathrm{C}-28, \mathrm{C}-29$	$\mathrm{Me}-29$
	$1 \mathrm{H})$			
4	-	$38.77(\mathrm{C})$	-	-
5	$1.52(m, 1 \mathrm{H})$	$44.96(\mathrm{CH})$	$\mathrm{C}-3 . \mathrm{C}-6, \mathrm{C}-19$	$\mathrm{Me}-29$
6	$\alpha: 1.98(m, 1 \mathrm{H})$	$20.71\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-5, \mathrm{C}-8$	-
	$\beta: 1.64(m, 1 \mathrm{H})$			$\mathrm{Me}-19$
7	$1.34(m, 1 \mathrm{H})$	$24.94\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-9$	-
	$2.03(m, 1 \mathrm{H})$			
8	$2.28(m, 1 \mathrm{H})$	$39.03\left(\mathrm{CH}^{2}\right)$	$\mathrm{C}-14$	$\mathrm{Me}-19$
9	-	$75.48(\mathrm{C})$	-	-
10	-	$42.27(\mathrm{C})$	-	-
11	$\alpha: 1.50(m, 1 \mathrm{H})$	$29.71\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-13$	-
	$\beta: 1.84(m, 1 \mathrm{H})$			$\mathrm{Me}-19$

Table 73 (continued)

Position	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)	HMBC	NOESY
12	$\alpha: 1.51(\mathrm{~m}, 1 \mathrm{H})$	$27.47\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & \mathrm{C}-9, \mathrm{C}-13, \mathrm{C}-17, \\ & \mathrm{C}-30 \end{aligned}$	Me-30
	$\beta: 1.57(m, 1 \mathrm{H})$			-
13	-	49.26 (C)	-	-
14	-	153.30 (C)	-	-
15	5.35 (brs, 1H)	120.24 (CH)	C-13, C-16	-
16	2.37 ($\mathrm{m}, 1 \mathrm{H}$)	$44.19\left(\mathrm{CH}_{2}\right)$	C-20	-
	1.85 (m, 1H)			
17	-	53.76 (C)	-	-
18	0.79 (s, 3H)	$15.23\left(\mathrm{CH}_{3}\right)$	C-13, C-17	H-20
19	0.89 (s, 3H)	$16.43\left(\mathrm{CH}_{3}\right)$	C-5, C-9, C-10	H-1 $\beta, \mathrm{H}-2 \beta, \mathrm{H}-6 \beta$,
				H-8, H-11 β,
				Me-28
20	3.21 (m, 1H)	36.96 (CH)	C-17, C-22, C-23	-
21	0.93 (d, 7.0, 3H)	$17.74\left(\mathrm{CH}_{3}\right)$	C-13, C-17, C-20	-
22	$5.98(t, 11.5,1 \mathrm{H})$	144.07 (CH)	C-17, C-20, C-24	H-23
23	$6.22(t, 11.5,1 \mathrm{H})$	121.90 (CH)	C-20, C-24, C-25	H-22, Me-27
24	7.65 (t, 11.5, 1H)	134.97 (CH)	C-25, C-26, C-27	-
25	-	126.05 (C)	-	-
26	-	172.10 (C=O)	-	-
27	1.97 (s, 3H)	$12.21\left(\mathrm{CH}_{3}\right)$	C-24, C-25, C-26	-
28	0.79 (s, 3H)	$15.63\left(\mathrm{CH}_{3}\right)$	C-3, C-4, C-5,	-
			C-29	
29	0.99 (s, 3H)	$28.95\left(\mathrm{CH}_{3}\right)$	C-3, C-4, C-5,	H-3, H-5, H-
30	1.08 (s, 3H)	$18.81\left(\mathrm{CH}_{3}\right)$	C-12, C-13, C-17	H-12 α

1.3.1.6 Compound SK19

Compound SK19 was obtained as a colorless gum and identified as its monoacetated derivative (SK19-Ac). SK19-Ac showed the molecular formula $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{5}$ by EI-MS, which gave $m / z 514$. The IR spectrum displayed the presence of a hydroxyl group ($3434 \mathrm{~cm}^{-1}$), a carbonyl group of an α, β-unsaturated carboxylic acid
($1669 \mathrm{~cm}^{-1}$) and a saturated ester $\left(1714 \mathrm{~cm}^{-1}\right)$. The UV spectrum gave an absorption band at $\lambda_{\max } 264 \mathrm{~nm}$, indicating that SK19-Ac possessed the α, β-unsaturated carboxylic acid chromophore. The ${ }^{1} \mathrm{H}$ NMR spectrum was similar to that of SK9 except that no trans-olefinic protons. SK19-Ac displayed two sets of nonequivalent methylene protons ($\delta_{\mathrm{H}} 2.18,1.10,1.71$ and 2.04) instead of two trans-olefinic protons ($\delta_{\mathrm{H}} 5.98$ and 6.22) in SK9. These results indicated that SK19-Ac contained a $-\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{C}(\mathrm{Me}) \mathrm{COOH}$ side chain. It was confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC data as follow. In ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY data, the methine $\mathrm{H}-20\left(\delta_{\mathrm{H}} 1.92\right)$ showed correlation with $\mathrm{Me}-21\left(\delta_{\mathrm{H}} 0.85\right)$ and the methylene $\mathrm{H}-22\left(\delta_{\mathrm{H}} 1.73\right.$ and 1.60$)$ which was further coupled with $\mathrm{H}-23$ ($\delta_{\mathrm{H}} 2.04$ and 1.70). In addition, the methylene $\mathrm{H}-23$ showed correlation with olefinic $\mathrm{H}-24$ ($\delta_{\mathrm{H}} 6.90$). The olefinic $\mathrm{H}-24$ showed HMBC correlations with $\mathrm{Me}-27$ ($\delta_{\mathrm{C}} 12.50$) and the carbonyl of carboxylic group (δ_{C} 171.20). The olefinic proton, $\mathrm{H}-24$ ($\delta_{\mathrm{H}} 6.90$), did not display a cross peak, in the NOESY spectrum, with the vinyl methyl protons, $\mathrm{Me}-27$ ($\delta_{\mathrm{H}} 1.85$), indicating that the configuration of C -24/C-25 double bond in the side chain was E. According to the NOESY data, the relative stereochemistry of SK19-Ac in the tetracyclic system was identical to that SK9. Thus, SK-19Ac was the 3-acetoxy derivative of (24E)-3 β-hydroxy- 9α-hydroxy-17,14-friedolanstan-14,24-dien-26-oic acid.

Table 74 The NMR data of compound SK19-Ac in CDCl_{3}

Position	$\delta_{\mathrm{H}}($ mult, J Hz)	$\delta_{\text {C }}$ (C-Type)	HMBC	NOESY
1	$\alpha: 1.73$ (m, 1H)	$23.60\left(\mathrm{CH}_{2}\right)$	C-3, C-9	H-3
	$\beta: 1.60$ (m, 1H)			-
2	1.66 ($m, 1 \mathrm{H}$)	$28.83\left(\mathrm{CH}_{2}\right)$	-	-
	1.44 (m, 1H)			-
3	4.49 (dd, 9.5, 4.0,	80.63 (CH)	C-5	H-1 $\alpha, \mathrm{H}-5$,
	1H)			Me-29
4	-	37.70 (C)	-	-
5	1.67 (m, 1H)	45.14 (CH)	C-3, C-7, C-28	Me-29
6	$\alpha: 1.67$ (m, 1H)	$20.78\left(\mathrm{CH}_{2}\right)$	C-7, C-28	Me-29
	$\beta: 1.39$ (m, 1H)			-
7	$\alpha: 1.95$ (m, 1H)	$25.63\left(\mathrm{CH}_{2}\right)$	C-6	Me-30
	$\beta: 1.42$ (m, 1H)			-
8	1.67 (m, 1H)	39.11 (CH)	C-11	Me-19
9	-	75.20 (C)	-	-
10	-	42.10 (C)	-	-
11	$\alpha: 1.50$ (m, 1H)	$29.92\left(\mathrm{CH}_{2}\right)$	C-8, C-9, C-13	-
	$\beta: 1.78$ (m, 1H)			-
12	1.66 (m, 1H)	$29.05\left(\mathrm{CH}_{2}\right)$	C-8, C-9, C-11	-
	1.50 (m, 1H)			-
13	-	49.13 (C)	-	-
14	-	153.01 (C)	-	-
15	5.35 (brs, 1H)	120.74 (CH)	C-13, C-16	-
16	2.24 (m, 1H)	$44.66\left(\mathrm{CH}_{2}\right)$	C-14, C-17, C-20	-
	1.78 (m, 1H)			-
17	-	54.53 (C)	-	-
18	0.76 ($s, 3 \mathrm{H})$	$15.34\left(\mathrm{CH}_{3}\right)$	C-16, C-17, C-20	H-20
19	0.92 ($\mathrm{s}, 3 \mathrm{H})$	$16.52\left(\mathrm{CH}_{3}\right)$	C-2, C-9	H-8, H-11 β
20	1.92 (m, 1H)	37.59 (CH)	C-17	-
21	0.85 (brs, 3H)	$15.15\left(\mathrm{CH}_{3}\right)$	C-17, C-22	-

Table 74 (continued)

Position	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	HMBC	NOESY
22	$2.18(m, 1 \mathrm{H})$	$31.14\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-17$	-
	$1.10(m, 1 \mathrm{H})$			-
23	$1.71(m, 1 \mathrm{H})$	$27.46\left(\mathrm{CH}_{2}\right)$	-	-
	$2.04(m, 1 \mathrm{H})$			-
24	$6.90(t, 4.5,1 \mathrm{H})$	$145.15(\mathrm{CH})$	$\mathrm{C}-23, \mathrm{C}-26, \mathrm{C}-27$	-
25	-	$126.74(\mathrm{C})$	-	-
26	-	$171.20(\mathrm{C}=\mathrm{O})$	-	-
27	$1.85(\mathrm{~s}, 3 \mathrm{H})$	$12.05\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-23, \mathrm{C}-25, \mathrm{C}-26$	-
28	$0.87(\mathrm{~s}, 3 \mathrm{H})$	$16.35\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$	$\mathrm{H}-3$
29	$0.88(\mathrm{~s}, 3 \mathrm{H})$	$28.10\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-5, \mathrm{C}-28$	$\mathrm{H}-3, \mathrm{H}-5$
30	$1.15(\mathrm{~s}, 3 \mathrm{H})$	$19.82\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-14, \mathrm{C}-17$	$\mathrm{H}-7 \alpha$
31	-	$170.88(\mathrm{C}=\mathrm{O})$	-	-
32	$2.05(\mathrm{~s}, 3 \mathrm{H})$	$21.26\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-31$	-

1.3.1.7 Compound SK21

Compound SK21 was obtained as a colorless gum. It showed the molecular formula $\mathrm{C}_{31} \mathrm{H}_{48} \mathrm{O}_{6}$. The IR spectrum revealed the presence of a hydroxyl group (3443 cm^{-1}), a carbonyl group of an α, β-unsaturated ester $\left(1698 \mathrm{~cm}^{-1}\right)$ and a carbonyl group of a ketone ($1742 \mathrm{~cm}^{-1}$). In ${ }^{13} \mathrm{C}$ NMR spectrum, two carbonyl carbon signals at δ_{C} 168.32 and 207.75 supported the presence of the α, β-unsaturated ester and the α, β unsaturated ketone. The UV spectrum with an absorption band at $\lambda_{\max } 258 \mathrm{~nm}$ indicated that SK21 contained the α, β-unsaturated ester chromophore. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 75) (Figure 15) showed the presence of five methyl singlets (δ_{H} $1.21,1.00,0.92,0.87$ and $0.86,3 \mathrm{H}$ each), two methyl doublets $\left[\delta_{\mathrm{H}} 0.95(d, J=7.0 \mathrm{~Hz}\right.$, $3 \mathrm{H})$ and $\left.\delta_{\mathrm{H}} 1.87(d, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})\right]$ and one oxymethine proton $\left(\delta_{\mathrm{H}} 3.41, t, J=2.5\right.$ $\mathrm{Hz}, 1 \mathrm{H})$. These signals were regarded as being due to a tetracyclic triterpene (Rukachaisirikul, 2005), having a hydroxyl group at $\mathrm{C}-3 \alpha$-axial position. The signals in the ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 16) and DEPT experiment indicated the presence of two carbonyl carbons ($\delta_{\mathrm{C}} 207.75$ and 168.32), eight quaternary carbons ($\delta_{\mathrm{C}} 151.65$,
$140.18,127.52,74.93,45.99,44.58,44.41$ and 37.80), five methine carbons (δ_{C} $143.91,5.67,66.61,39.66$ and 33.36), eight methylene carbons ($\delta_{\mathrm{C}} 52.35,39.24$, $32.82,29.91,25.38,24.79,24.05$ and 22.12) and seven methyl carbons ($\delta_{\mathrm{C}} 28.75$, $22.55,21.11,17.46,16.80,15.40$ and 12.77). In addition, the ${ }^{1} \mathrm{H}$ NMR spectrum displayed signals at $\delta_{\mathrm{H}} 2.26(m, 1 \mathrm{H}), 0.95(d, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.79(\mathrm{~m}, 1 \mathrm{H}), 1.10$ $(m, 1 \mathrm{H}), 4.57(t d, J=10.5$ and $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(d q, J=8.0$ and $1.5 \mathrm{~Hz}, 1 \mathrm{H})$ and 1.87 $(d, J=1.5 \mathrm{~Hz}, 3 \mathrm{H})$. These NMR spectral data indicated that SK21 contained a $-\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}(\mathrm{Me}) \mathrm{COOCH}_{3}$ side chain which was the same as $\mathbf{S K 2}$. It was in agreement with the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC data. In HMBC spectrum, Me-21 [$\delta_{\mathrm{H}} 0.95(d, J=7.0 \mathrm{~Hz}, 1 \mathrm{H})$] gave a cross peak with quaternary carbon, $\mathrm{C}-17\left(\delta_{\mathrm{C}}\right.$ 44.58), indicating the attachment of the side chain at $\mathrm{C}-17$. Moreover, the ${ }^{13} \mathrm{C}$ NMR spectrum displayed the carbon signals of the α, β-unsaturated ketone at $\delta_{\mathrm{C}} 207.75$, 140.18 and 151.65 which was expected to be in the tetracyclic system. The methylene protons $\left(\mathrm{H}_{\alpha, \beta-}-16\right)$ showed cross peaks, in the HMBC spectrum, with C-14 ($\delta_{\mathrm{C}} 140.18$), $\mathrm{C}-15\left(\delta_{\mathrm{C}} 207.75\right)$ and $\mathrm{C}-17\left(\delta_{\mathrm{C}} 44.58\right)$. The methylene protons ($\left.\mathrm{H}-7 \beta, \delta_{\mathrm{H}} 4.09\right)$ gave HMBC correlations with $\mathrm{C}-13$ and $\mathrm{C}-14$. These data suggested that the α, β unsaturated ketone was located at $\mathrm{C}-15$ and $\mathrm{C}-8 / \mathrm{C}-14$. This assignment was in accordance with observation of one of the methylene protons at C-7 ($\delta_{\mathrm{C}} 24.05$) at downfield ($\delta_{\mathrm{H}} 4.09$) because of deshielding effect of a carbonyl group (Vieira, 2004). The position of all tertiary methyl groups was established using the data from the HMBC spectrum. A hydroxyl group was located at C-9 ($\delta_{\mathrm{C}} 74.93$) according to the chemical shift value of C-9.

The relative stereochemistry was deduced by NOEDIFF data (Table 75). Irradiation of the olefinic proton, H-24 ($\delta_{\mathrm{H}} 6.69$) did not affect signal intensity of the vinylic Me-27 ($\delta_{\mathrm{H}} 1.87$), suggesting that the configuration of double bond at $\mathrm{C}-24 / \mathrm{C}-25$ of the side chain was E. Since the oxymethine H-3 appeared as triplet with a small coupling constant, it was assigned at β-equatorial position (Rukachaisirikul, 2005). Irradiation at Me-28 ($\delta_{\mathrm{H}} 0.87$) enhanced the signal intensity of the equatorial $\mathrm{H}-3$ while the signal of $\mathrm{H}-5$ was affected by irradiation of $\mathrm{Me}-29$ ($\delta_{\mathrm{H}} 1.10$). These results implied that the $\mathrm{H}-3$ was cis to Me-28 and trans to both $\mathrm{H}-5$ and Me-29. Irradiation at Me-19 ($\delta_{\mathrm{H}} 0.92$) did not affect signal intensity of $\mathrm{H}-5$, indicating that $\mathrm{H}-5$ was trans to

Me-19. $9-\mathrm{OH}$ was located at α-axial position in order to avoid the steric interaction between $\mathrm{Me}-19$ and this hydroxyl group. The hydroxyl group $(9-\mathrm{OH})$ of other compounds was also at α-axial, supporting above conclusion. Irradiation at Me-18 (δ_{H} 0.85) did not affect signal intensities of both Me-30 and Me-21, indicating that Me-18 was located at the opposite side of both Me-30 and Me-21. On the basis of these spectral data, SK21 was methyl (24E)-3 $\alpha, 9 \alpha, 23$-trihydroxy-15-oxo-17,14-friedolanostan-8(14),24-dien-26-oate, a new 17,14-friedolanostane.

(SK21)
Table 75 The NMR data of compound SK21 in CDCl_{3}

Position	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)	HMBC	NOE
1	1.32 (m, 1H)	$24.79\left(\mathrm{CH}_{2}\right)$	C-10, Me-19	-
	2.18 (m, 1H)			
2	$\alpha: 1.70$ (m, 1H)	$25.38\left(\mathrm{CH}_{2}\right)$	C-10	$\begin{aligned} & \mathrm{H}-3 \\ & \mathrm{H}-3 \end{aligned}$
	$\beta: 1.94$ (m, 1H)			
3	3.41 (t, 2.5, 1H)	75.67 (CH)	C-2, C-5	H-2 $\alpha, \mathrm{H}-2 \beta$,
				$\mathrm{Me}-28$
4	-	37.80 (C)	-	-
5	2.20 (m, 1H)	39.66 (CH)	$\begin{aligned} & \mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \\ & \mathrm{C}-10, \mathrm{Me}-29 \end{aligned}$	Me-29
6	1.57 (m, 1H)	$22.12\left(\mathrm{CH}_{2}\right)$	C-8, C-10	-
	1.28 (m, 1H)			-
7	$\alpha: 2.20$ (m, 1H)	$24.05\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & \mathrm{C}-6, \mathrm{C}-9, \mathrm{C}-13, \\ & \mathrm{C}-14 \end{aligned}$	-
	$\beta: 4.09$ (ddd, 15.0, 4.0,			
	$2.0,1 \mathrm{H})$			
8	-	151.65 (C)	-	-
9	-	74.93 (C)	-	-

Table 75 (continued)

Position	$\delta_{\mathrm{H}}($ mult,,$J \mathrm{~Hz})$	δ_{C} (C-Type)	HMBC	NOE
10	-	44.41 (C)	-	-
11	2.31 (m, 1H)	$29.91\left(\mathrm{CH}_{2}\right)$	C-9, C-10, C-12,	-
	1.66 (m, 1H)		C-13	-
12	1.75 (m, 1H)	$32.82\left(\mathrm{CH}_{2}\right)$	C-9, C-11, C-13,	-
	1.94 (m, 1H)		C-14, C-17, C-30	-
13	-	45.99 (C)	-	-
14	-	140.18 (C)	-	-
15	-	207.75 (C=O)	-	-
16	$\alpha: 2.39$ (d, 18.5,1H)	$52.35\left(\mathrm{CH}_{2}\right)$	C-13, C-14, C-15,	$\mathrm{Me}-21, \mathrm{Me}-30$
	$\beta: 2.09(d, 18.5,1 \mathrm{H})$		C-17, C-18, C-20	-
17	-	44.58 (C)	-	-
18	0.86 (s, 3H)	$16.80\left(\mathrm{CH}_{3}\right)$	C-13, C-16, C-17,	H-20
			C-20	
19	0.92 (s, 3H)	$17.46\left(\mathrm{CH}_{3}\right)$	C-1, C-5, C-9,	H-3, H-2 β
			C-10	
20	2.26 (m, 1H)	33.36 (CH)	C-13, C-16	
21	0.95 (d, 7.0, 3H)	$15.40\left(\mathrm{CH}_{3}\right)$	C-17, C-20,	H-16 α
			C-22	
22	1.79 (m, 1H)	$39.24\left(\mathrm{CH}_{2}\right)$	C-17, C-21,	-
			C-23	
	1.10 (m, 1H)			-
23	4.57 (td, 10.5, 2.0, 1H)	66.61 (CH)	C-20, C-22,	Me-27
			C-24, C-25	
24	6.70 (dq, 8.0, 1.5, 1H)	143.91 (CH)	C-22, C-25,	-
			C-26, C-27	
25	-	127.52 (C)	-	-
26	-	168.32 (C=O)	-	-
27	1.87 (d, 1.5, 3H)	$12.77\left(\mathrm{CH}_{3}\right)$	C-24, C-25,	-
			C-26	
28	0.87 (s, 3H)	$22.55\left(\mathrm{CH}_{3}\right)$	C-3, C-4, C-5	H-3, H-6 β

Table 75 (continued)

Position	$\delta_{\mathrm{H}}($ mult, J Hz)	$\delta_{\mathrm{C}}(\mathrm{C}-$ Type $)$	HMBC	NOE
29	$1.00(\mathrm{~s}, 3 \mathrm{H})$	$28.75\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5$	$\mathrm{H}-3, \mathrm{H}-5$
30	$1.21(\mathrm{~s}, 3 \mathrm{H})$	$21.11\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-12, \mathrm{C}-13$,	$\mathrm{H}-16 \alpha$
31	$3.76(\mathrm{~s}, 3 \mathrm{H})$		$\mathrm{C}-17$	

1.3.1.8 Compound SK11

Compound SK11 was obtained as a colorless gum. The IR spectrum exhibited absorption bands at 3420 (a hydroxyl group) and 1697 (a carbonyl group of an α, β unsaturated carboxylic acid) cm^{-1}. The UV spectrum with an absorption band at $\lambda_{\max }$ 217 nm indicated that SK11 contained the α, β-unsaturated carboxylic acid moiety. The ${ }^{1} \mathrm{H}$ NMR data demonstrated signals of two oxymethine protons at $\delta_{\mathrm{H}} 3.45$ (brs, 1 H) and $3.25(d d, J=9.0$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H})$. These data implied that SK11 was a mixture of two C-3 epimer triterpenes in a ratio of 1 to 1 . In addition, the presence of two sets of carbons in the ${ }^{13} \mathrm{C}$ NMR spectrum supported this conclusion. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 76) (Figures 18 and 19) were similar to those of SK2 except that SK11 contained no signals of a methoxy group. These results indicated that the $-\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}(\mathrm{Me}) \mathrm{COOCH}_{3}$ unit of the side chain in SK2 was replaced by a $-\mathrm{CH}(\mathrm{Me}) \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}=\mathrm{C}(\mathrm{Me}) \mathrm{COOH}$ moiety in $\mathbf{S K 1 1}$. The position of the side chain was located at C-17 by a HMBC correlation of Me-21 ($\delta_{\mathrm{H}} 0.95$) of the side chain with C-17 ($\delta_{\mathrm{C}} 50.22,50.07$). Thus, SK11 was assigned to have the same core structure as SK2 with one tetrasubstituted double bond and one trisubstituted one at $\mathrm{C}-8 / \mathrm{C}-9$ and $\mathrm{C}-14 / \mathrm{C}-15$, respectively, according the HMBC correlations of olefinic protons, $\mathrm{H}-15$ ($\delta_{\mathrm{H}} 5.27,5.28$), with $\mathrm{C}-8\left(\delta_{\mathrm{C}} 123.01,122.58\right)$ and C-17 and that of Me-19 ($\delta_{\mathrm{H}} 1.01$) with C-9 ($\delta_{\mathrm{C}} 148.79,148.63$). The position of all methyl groups was established using HMBC data (Table 77). Thus, SK11 was a mixture of 3α and 3β-(24E)-9,23-dihydroxy-17,14-friedolanostan-8,14,24-trien-26oicacid, two new epimers of 17,14-friedolanostane.

Table 76 The NMR data of SK11 and Epimer-SK11 in CDCl_{3}

Position	$\begin{gathered} \text { SK11 } \\ \delta_{\mathrm{H}}(m u l t, J \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { SK11 } \\ \delta_{\mathrm{C}} \text { (C-Type) } \end{gathered}$	Epimer-SK11 δ_{H} (mult, $J \mathrm{~Hz}$)	$\begin{array}{r} \text { Epimer-SK11 } \\ \delta_{\mathrm{C}}(\mathrm{C}-\text { Type }) \end{array}$
1	1.58 (m, 2H)	$29.26\left(\mathrm{CH}_{2}\right)$	1.74 ($m, 1 \mathrm{H}$)	$27.06\left(\mathrm{CH}_{2}\right)$
2			1.64 (m, 1H)	
	2.02 ($m, 1 \mathrm{H}$)	$25.56\left(\mathrm{CH}_{2}\right)$	1.35 (m, 2H)	$26.70\left(\mathrm{CH}_{2}\right)$
	1.67 (m, 1H)			
3	3.45 (brs, 1H)	75.93 (CH)	3.25 (dd, 9.0, 4.5, 1H)	78.93 (CH)
4	-	37.97 (C)	-	37.81 (C)
5	1.62 (m, 1H)	44.45 (CH)	1.12 ($m, 1 \mathrm{H}$)	50.58 (CH)
6	1.74 (m, 1H)	$18.26\left(\mathrm{CH}_{2}\right)$	1.34 (m, 1H)	$26.70\left(\mathrm{CH}_{2}\right)$
	1.47 (m, 1H)			
7	1.74 (m, 1H)	$28.64\left(\mathrm{CH}_{2}\right)$	2.02 ($\mathrm{m}, 1 \mathrm{H}$)	$25.56\left(\mathrm{CH}_{2}\right)$
	1.65 (m, 1H)		1.67 (m, 1H)	
8	-	123.01 (C)	-	122.58 (C)
9	-	148.79 (C)	-	148.63 (C)
10	-	37.60 (C)	-	38.87 (C)
11	2.08 (m, 2H)	$22.77\left(\mathrm{CH}_{2}\right)$	2.08 ($\mathrm{m}, 2 \mathrm{H}$)	$22.74\left(\mathrm{CH}_{2}\right)$
12	2.23 ($m, 1 \mathrm{H}$)	$30.10\left(\mathrm{CH}_{2}\right)$	2.28 (m, 2H)	$31.74\left(\mathrm{CH}_{2}\right)$
	1.35 (m, 1H)			
13	-	48.02 (C)	-	48.02 (C)
14	-	142.41 (C)	-	142.09 (C)

Table 76 (continued)

Position	$\begin{gathered} \text { SK11 : } \\ \delta_{\mathrm{H}}(\text { mult, } J \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \text { SK11 : } \\ \delta_{\mathrm{C}} \text { (C-Type) } \end{gathered}$	Epimer-SK11 : δ_{H} (mult, J Hz)	$\begin{gathered} \text { Epimer-SK11: } \\ \delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type}) \end{gathered}$
15	5.27 (brs, 1H)	116.73 (CH)	5.28 (brs, 1H)	115.79 (C)
16	$\begin{aligned} & 1.98 \quad(d t, \quad 16.0, \\ & 3.5,1 \mathrm{H}) \\ & 2.34(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$45.57\left(\mathrm{CH}_{2}\right)$	$\begin{aligned} & 1.98(d t, 16.0,3.5, \\ & 1 \mathrm{H}) \\ & 2.34(\mathrm{~m}, 1 \mathrm{H}) \end{aligned}$	$45.57\left(\mathrm{CH}_{2}\right)$
17	-	50.22 (C)	-	50.07 (C)
18	0.76 ($\mathrm{s}, 3 \mathrm{H})$	$15.65\left(\mathrm{CH}_{3}\right)$	0.82 (s, 3H)	$15.65\left(\mathrm{CH}_{3}\right)$
19	1.01 (s, 3H)	$19.15\left(\mathrm{CH}_{3}\right)$	1.01 (s, 3H)	$18.97\left(\mathrm{CH}_{3}\right)$
20	2.23 ($\mathrm{m}, 1 \mathrm{H}$)	33.40 (CH)	2.23 (m, 1H)	33.40 (CH)
21	0.95 (d, 6.0, 3H)	$15.28\left(\mathrm{CH}_{3}\right)$	0.95 (d, 6.0, 3H)	$15.28\left(\mathrm{CH}_{3}\right)$
22	1.77 (m, 1H)	$39.29\left(\mathrm{CH}_{2}\right)$	1.77 (m, 1H)	$39.29\left(\mathrm{CH}_{2}\right)$
	1.15 (m, 1H)		1.15 (m, 1H)	
23	4.59 (t, 8.5, 1H)	67.01 (CH)	4.59 (t, 8.5, 1H)	67.01 (CH)
24	$6.84(d, 8.0,1 \mathrm{H})$	146.63 (CH)	6.82 (d, 8.0, 1H)	148.79 (CH)
25	-	126.38 (C)	-	123.01 (C)
26	-	171.78 ($\mathrm{C}=\mathrm{O}$)	-	171.77 ($\mathrm{C}=\mathrm{O}$)
27	1.87 ($s, 3 \mathrm{H})$	$12.46\left(\mathrm{CH}_{3}\right)$	1.87 (s, 3H)	$12.46\left(\mathrm{CH}_{3}\right)$
28	1.03 ($\mathrm{s}, 3 \mathrm{H})$	$22.19\left(\mathrm{CH}_{3}\right)$	0.83 (s, 3H)	$15.65\left(\mathrm{CH}_{3}\right)$
29	$0.99(s, 3 H)$	$28.01\left(\mathrm{CH}_{3}\right)$	1.02 (s, 3H)	$28.01\left(\mathrm{CH}_{3}\right)$
30	0.89 ($s, 3 \mathrm{H}$)	$17.10\left(\mathrm{CH}_{3}\right)$	0.89 (s, 3H)	$17.10\left(\mathrm{CH}_{3}\right)$

Table 77 The HMBC correlations of compound SK11 and Epimer-SK11

Proton	HMBC correlations, $\mathrm{C}_{\mathrm{n}}\left(\delta_{\mathrm{C}}\right)$
H-3	C-4 (37.97, 37.81), C-29 (28.01)
H-5	C-10 (37.60, 38.87), C-28 (22.19, 15.65), C-29 (28.01)
H-15	C-8 (123.01, 122.58), C-13 (48.02), C-17 (50.22, 50.07)
H-16a,b	C-8, C-15 (116.73, 115.79), C-20
Me-19	C-9, C-10 (148.79, 148.63)
H-21	C-17, C-20 (33.40), C-23 (67.01)
H-23	C-22 (39.29), C-27 (12.46)

Table 77 (continued)

Proton	HMBC correlations, $\mathrm{C}_{\mathrm{n}}\left(\delta_{\mathrm{C}}\right)$
$\mathrm{H}-24$	$\mathrm{C}-25(126.38,123.01), \mathrm{C}-26(171.78,171.77)$
$\mathrm{H}-27$	$\mathrm{C}-24(146.63,148.79), \mathrm{C}-25$
$\mathrm{Me}-28$	$\mathrm{C}-3(75.93,78.93)$
$\mathrm{Me}-29$	$\mathrm{C}-3$
$\mathrm{Me}-30$	$\mathrm{C}-15$

1.3.2 Xanthones

1.3.2.1 Compound SK4

Compound SK4 was isolated as a yellow solid, melting at $212-215{ }^{\circ} \mathrm{C}$. Its exhibited UV absorption bands of a xanthone chromophore at $\lambda_{\text {max }} 235,253,312$ and 362 nm while hydroxyl and conjugated carbonyl absorption bands were found at 3419 and $1655 \mathrm{~cm}^{-1}$, respectively, in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 78) (Figure 20) contained signals of one chelated hydroxy proton ($\delta_{\mathrm{H}} 13.23, s, 1 \mathrm{H}$), two singlet aromatic protons ($\delta_{\mathrm{H}} 7.53$ and 6.92) and two meta-coupled aromatic protons [$\delta_{\mathrm{H}} 6.37$ (s) and $6.22(\mathrm{~s})$]. The ${ }^{13} \mathrm{C}$ NMR (Table 78) (Figure 21) and HMQC data indicated that compound SK4 consisted of 13 carbons: 9 quarternary and 4 methine carbons. The chelated hydroxy proton, which was located at the peri-position to the xanthone carbonyl group, showed HMBC correlations with C-1 ($\delta_{\mathrm{C}} 163.58$), $\mathrm{C}-2\left(\delta_{\mathrm{C}}\right.$ 97.69), C-9 ($\delta_{\mathrm{C}} 179.59$) and C-9a ($\delta_{\mathrm{C}} 102.27$). Two meta-coupled aromatic protons ($\delta_{\mathrm{H}} 6.22$ and 6.37) were assigned as $\mathrm{H}-2$ and $\mathrm{H}-4$, respectively, according to a HMQC correlation of $\mathrm{H}-2 / \mathrm{C}-2$ and HMBC cross peaks of $\mathrm{H}-2 / \mathrm{C}-1, \mathrm{C}-3\left(\delta_{\mathrm{C}} 157.99\right), \mathrm{C}-4\left(\delta_{\mathrm{C}}\right.$ 93.50) and C-9a as well as those of H-4/C-2, C-3, C-4a ($\delta_{\mathrm{C}} 164.68$) and C-9a. The aromatic proton at $\delta_{\mathrm{H}} 7.53$ was attributed to $\mathrm{H}-8$ on the basis of the chemical shift value and HMBC correlations of H-8/C-6 ($\delta_{C} 153.92$) and C-10a (δ_{C} 151.81). The aromatic proton at $\delta_{\mathrm{H}} 6.92$ was then attributed to $\mathrm{H}-5$ and gave ${ }^{3} \mathrm{~J} \mathrm{HMBC}$ correlations with C-7 and C-8a ($\delta_{\mathrm{C}} 112.66$). The chemical shift values of C-3, C-6 and C-7 suggested the substituents to be hydroxyl groups. Thus, SK4 was determined as
norathyriol which was isolated from the twigs of G. parvifolia (Rukachaisirikul, 2006).

Table 78 The NMR data of compound SK4 and norathyriol

Position	SK4 (Acetone- d_{6})		HMBC	norathyriol ($\mathrm{DMSO}-d_{6}{ }^{*}$	
	δ_{H} (mult, J Hz)	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}(\mathrm{mult}, J \mathrm{~Hz})$	$\delta_{\text {C }}$
OH-1	13.23 ($\mathrm{s}, 1 \mathrm{H}$)	163.58 (C)	$\begin{aligned} & \mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-9, \\ & \mathrm{C}-9 \mathrm{a} \end{aligned}$	13.26 (brs, 1H)	162.5
2	6.22 ($s, 1 \mathrm{H})$	97.69 (CH)	$\begin{aligned} & \mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-4, \\ & \mathrm{C}-9 \mathrm{a} \end{aligned}$	6.18 (d, 1.7, 1H)	97.7
3	-	157.99 (C)	-	-	157.3
4	6.37 (s, 1H)	93.50 (CH)	$\begin{aligned} & \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-4 \mathrm{a}, \\ & \mathrm{C}-9 \mathrm{a} \end{aligned}$	6.34 (d, 1.7, 1H)	93.5
4a	-	164.68 (C)	-	-	164.6
5	6.92 ($\mathrm{s}, 1 \mathrm{H}$)	102.51 (CH)	$\begin{aligned} & \text { C-6, C-7, C-8a, } \\ & \text { C-10a } \end{aligned}$	6.85 ($\mathrm{s}, 1 \mathrm{H})$	102.8
6	-	153.92 (C)	-	-	155.0
7	-	143.48 (C)	-	-	144.0
8	7.53 (s, 1H)	108.16 (CH)	$\begin{aligned} & \text { C-6, C-7, C-8a, } \\ & \text { C-10a } \end{aligned}$	7.39 (s,1H)	107.6
8 a	-	112.66 (C)	-	-	111.3
9	-	179.59 (C=0)	-	-	178.7
9 a	-	102.27 (C)	-	-	101.5
10a	-	151.81 (C)	-	-	151.2

(Noro, 1984)

1.3.2.2 Compound SK5

Compound SK5 was isolated as a yellow gum. The UV and IR absorption bands were similar to those of SK4. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 79) (Figure 22) contained signals of one chelated hydroxyl group ($\delta_{\mathrm{H}} 12.98, \mathrm{~s}, 1 \mathrm{H}$), two meta-coupled aromatic protons [$\delta_{\mathrm{H}} 6.41$ and $6.25(d, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}$, each)], three aromatic protons of a $1,2,4$-trisubstituted benzene $\left[\delta_{\mathrm{H}} 7.56(d, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(d, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})\right.$ and 7.34, $(d d, J=9.0$ and $3.0 \mathrm{~Hz}, 1 \mathrm{H})$]. The ${ }^{1} \mathrm{H}$ NMR data and HMBC correlations on the right-hand ring were similar to those of SK4. The aromatic protons of the 1,2,4-trisubstituted benzene at $\delta_{\mathrm{H}} 7.56,7.34$ and 7.44 were attributed to $\mathrm{H}-8, \mathrm{H}-6$ and $\mathrm{H}-5$, respectively, on the basis of the chemical shift value of $\mathrm{H}-8$ and HMBC correlations of H-8/C-6 ($\delta_{\mathrm{C}} 125.15$), C-7 ($\delta_{\mathrm{C}} 154.99$), C-9 ($\delta_{\mathrm{C}} 181.25$) and C-10a (δ_{C} 150.73), $\mathrm{H}-6 / \mathrm{C}-7, \mathrm{C}-8\left(\delta_{\mathrm{C}} 109.38\right)$ and $\mathrm{C}-10 \mathrm{a}$ and those of $\mathrm{H}-5 / \mathrm{C}-7, \mathrm{C}-8 \mathrm{a}$ and $\mathrm{C}-9$. Thus, SK5 was identified as 1,3,7-trihydroxyxanthone which was isolated from the bark of G. xanthochymus (Zhong, 2008).

(SK5)
Table 79 The NMR data of compound SK5 and 1,3,7-trihydroxyxanthone

Position	$\begin{gathered} \text { SK5 } \\ \text { (Acetone- } d_{6} \text {) } \end{gathered}$		HMBC	1,3,7-trihydroxyxanthone (DMSO- d_{6}) ${ }^{*}$	
	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J} \mathrm{Hz})$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult, J Hz)	δ_{C}
OH-1	$12.98(s, 1 \mathrm{H})$	164.63 (C)	C-1, C-2, C-9a	12.88 (s, 1H)	162.7
2	6.25 (d, 2.5, 1H)	98.78 (CH)	C-1, C-3, C-4,	6.18 (d, 1.9, 1H)	98.0
			C-9a		
OH-3	10.34 (brs, 1H)	166.57 (C)	-	11.04 (s, 1H)	163.0
4	6.41 (d, 2.5, 1H)	94.60 (CH)	C-2, C-3, C-4a,	6.35 (d, 2.1, 1H)	93.9
			C-9, C-9a		
4 a	-	159.03 (C)	-	-	154.1

Table 79 (continued)

Position	$\begin{gathered} \text { SK5 } \\ \left(\text { Acetone- } d_{6}\right) \end{gathered}$		HMBC	1,3,7-trihydroxyxanthone (DMSO- $d_{6}{ }^{*}$	
	$\delta_{\mathrm{H}}($ mult, J Hz)	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$
5	7.44 (d, 9.0, 1H)	119.71 (CH)	$\begin{aligned} & \text { C-7, C-8a, } \\ & \text { C-9, C-10a } \end{aligned}$	7.45 (d, 9.0, 1H)	119.1
6	$\begin{aligned} & 7.34 \quad(d d, \quad 9.0, \\ & 3.0,1 \mathrm{H}) \end{aligned}$	125.15 (CH)	$\begin{array}{ll} \mathrm{C}-7, & \mathrm{C}-8, \\ \mathrm{C} 10 \mathrm{a} \end{array}$	$\begin{aligned} & 7.27 \text { (dd, 9.0, 3.0, } \\ & 1 \mathrm{H}) \end{aligned}$	124.6
OH-7	9.34 ($s, 1 \mathrm{H}$)	154.99 (C)	-	10.00 (s, 1H)	149.2
8	7.56 (d, 3.0, 1H)	109.38 (CH)	$\begin{aligned} & \text { C-6, C-7, C-9, } \\ & \text { C-10a } \end{aligned}$	7.40 (d, 3.0, 1H)	108.2
8 a	-	121.88 (C)	-	-	120.6
9	-	181.25 (C=O)	-	-	179.9
9 a	-	103.47 (C)	-		102.1
10a	-	150.73 (C)	-	-	157.7

*(Mukulesh, 2006).

1.3.2.3 Compound SK8

Compound SK8 was isolated as a yellow gum. The UV and IR absorption bands were similar to those of SK4. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 80) (Figure 24) contained signals of one chelated hydroxyl group (δ_{H} 13.70, s), two meta-coupled aromatic protons [$\delta_{\mathrm{H}} 6.29$ and 6.18 (brs, 1 H each)], one singlet aromatic proton (δ_{H} $6.83,1 \mathrm{H})$ and one prenyl unit $\left[\delta_{\mathrm{H}} 5.32(m t, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(d, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})\right.$, $1.84(s, 3 \mathrm{H})$ and $1.64(\mathrm{~s}, 3 \mathrm{H})$]. The ${ }^{1} \mathrm{H}$ NMR data and HMBC correlations on the right-hand ring were similar to those of SK4, but they were different in the replacement of one aromatic proton with the prenyl group in the left-hand ring. The HMBC correlations between the methylene protons [$\mathrm{H}_{2}-1^{\prime},\left(\delta_{\mathrm{H}} 4.18\right)$] of the prenyl group and $\mathrm{C}-7\left(\delta_{\mathrm{C}} 141.98\right)$ and $\mathrm{C}-8 \mathrm{a}\left(\delta_{\mathrm{C}} 111.78\right)$ and the olefinic proton $\left[\mathrm{H}-2^{\prime},\left(\delta_{\mathrm{H}}\right.\right.$ $5.32)$] and $\mathrm{C}-8\left(\delta_{\mathrm{C}} 128.90\right)$ established the attachment of the prenyl unit at $\mathrm{C}-8$. The singlet aromatic proton ($\delta_{\mathrm{H}} 6.83$) was located at C-5 ($\delta_{\mathrm{C}} 101.05$) and gave HMBC cross peaks with C-7 and C-8a ($\delta_{\mathrm{C}} 111.78$). Thus, SK8 was determined as $1,3,6,7-$
tetrahydroxy-8-prenylxanthone which was isolated from Hypericum patunlum (Ishiguro, 1995).

(SK8)

Table 80 The NMR data of compound SK8 and 1,3,6,7-tetrahydroxy-8-prenyl xanthone in Acetone- d_{6}

Position	SK8		HMBC	1,3,6,7-tetrahydroxy-8prenylxanthone	
	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	$\delta_{\text {C }}$
OH-1	13.70 (s, 1H)	165.15 (C)	C-1, C-2, C-9a	-	164.6
2	6.18 (brs, 1H)	98.48 (C)	C-1, C-3, C-4,	6.17 (d, 1.8, 1H)	98.5
			C-9a		
3	-	164.89 (C)	-	-	165.0
4	6.29 (brs, 1H)	93.58 (CH)	C-2, C-3, C-4a,	6.28 (d, 1.8, 1H)	93.7
			C-9a,		
4a	-	158.01 (C)	-	-	158.1
5	6.83 ($s, 1 \mathrm{H})$	101.25 (CH)	C-7, C-8a	6.79 (s, 1H)	101.2
6	-	153.02 (C)	-	-	154.0
7	-	141.98 (C)	-	-	142.3
8	-	128.90 (C)	-	-	128.3
8 a	-	111.78 (C)	-	-	111.4
9	-	183.11 (C=O)	-	-	183.1
9 a	-	103.87 (C)	-	-	103.9
10a	-	153.71 (C)	-	-	154.0
1^{\prime}	4.18 (d, 7.0, 2H)	$26.36\left(\mathrm{CH}_{2}\right)$	C-7, C-8a, C-2',	4.18 (d, 6.7, 2H)	26.4
			C-3', C-4'		

Table 80 (continued)

Position	SK8		HMBC	1,3,6,7-tetrahydroxy-8- prenylxanthone	
	$\delta_{\mathrm{H}}($ mult, J Hz$)$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult, J Hz)	δ_{C}
2^{\prime}	$\begin{aligned} & \text { 5.32(t, 7.0, } \\ & 1 \mathrm{H}) \end{aligned}$	124.49 (CH)	C-8, C-4', C-5'	5.33 (t, 6.7, 1H)	124.7
3^{\prime}	-	131.28 (C)	-	-	131.2
4^{\prime}	1.64 (s, 3H)	$26.00\left(\mathrm{CH}_{3}\right)$	C-2', C-3',	1.64 (s, 3H)	26.0
			C-5'		
5^{\prime}	1.83 (s, 3H)	$18.28\left(\mathrm{CH}_{3}\right)$	C-2', C-3',	1.84 (s, 3H)	18.3

1.3.2.4 Compound SK16

Compound SK16 was obtained as a yellow gum. The UV and IR absorption bands were similar to those of SK8, indicating that SK16 was a xanthone derivative. Its NMR data (Table 81) (Figure 26) were similar to those of SK8 which contained one chelated hydroxy proton ($\delta_{\mathrm{H}} 13.38, \mathrm{~s}, 1 \mathrm{H}$), two meta-coupled protons [$\delta_{\mathrm{H}} 6.34$ and $6.20(d, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$ each $)$] and one singlet aromatic proton $\left(\delta_{\mathrm{H}} 6.82, s, 1 \mathrm{H}\right)$. The differences in ${ }^{1} \mathrm{H}$ NMR spectrum were signals of a chromene ring [$\delta_{\mathrm{H}} 8.03$ and $5.94(d, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}$ each $)$ and $1.45(\mathrm{~s}, 3 \mathrm{H})$] which were replaced by signals of the prenyl group in SK8. The appearance of one of cis-olefinic protons of a chromene ring at low field ($\delta_{\mathrm{H}} 8.03, \mathrm{H}-1^{\prime}$) indicated that the chromene ring was fused at $\mathrm{C}-7$ (δ_{C} 138.93) and C-8 ($\delta_{\mathrm{C}} 120.95$). This proton showed cross peak, in the HMBC spectrum, with an oxyaromatic carbon (C-7) while the other olefinic proton ($\delta_{\mathrm{H}} 5.94, \mathrm{H}-2^{\prime}$) gave a cross peak with a quaternary carbon (C-8). These data confirmed that the chromene ring was fused to C-7 and C-8 with an ether linkage at C-7. Thus, SK16 was assigned as toxyloxanthone B which was isolated from G. dulcis (Iinuma, 1996).

Table 81 The NMR data of compound SK16 and toxyloxanthone B in Acetone- d_{6}

Position	SK16		HMBC	toxyloxanthone B^{*}	
	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	$\delta_{\text {C }}$ (C-type)		$\delta_{\mathrm{H}}($ mult, JHz$)$	$\delta_{\text {C }}$
OH-1	13.38 (s, 1H)	165.67 (C)	C-1, C-2,	13.36 (s, 1H,	165.6
			C-9a		
2	6.20 (d, 2.1, 1H)	98.78 (CH)	C-3, C-4,	6.20 (d, 2.4, 1H)	98.8
			C-9a		
3	-	164.76 (C)		-	164.8
4	6.34 (d, 2.1, 1H)	93.95 (CH)	C-2, C-3,	6.33 (d, 1.8, 1H)	94.0
			C-9		
4a	-	154.08 (C)		-	154.1
5	6.82 ($\mathrm{s}, 1 \mathrm{H})$	103.90 (CH)	$\begin{array}{lr} \mathrm{C}-7, & \mathrm{C}-9, \\ \mathrm{C}-8 \mathrm{a}, & \mathrm{C}-10 \mathrm{a} \end{array}$	$6.81(s, 1 H)$	103.5
6	-	158.22 (C)	-	-	158.3
7	-	138.93 (C)	-	-	138.9
8	-	120.95 (C)	-	-	121.0
8 a	-	108.50 (C)	-	-	108.5
9	-	183.12 (C)	-	-	183.1
9 a	-	103.50 (C)	-	-	104.0
10a	-	153.80 (C)	-	-	153.8
1^{\prime}	8.03 (d, 10.2, 1H)	121.49 (CH)	C-7, C-3'	8.05 (d, 10.4, 1H)	121.5
2^{\prime}	5.94 (d, 10.2, 1H)	133.64 (CH)	C-8, C-1',	5.94 (d, 10.4, 1H)	133.6
			C-3'		
3^{\prime}	-	76.77 (C)	-	-	76.8
Me-4', 5^{\prime}	1.45 ($s, 6 \mathrm{H})$	$27.16\left(\mathrm{CH}_{3}\right)$	C-7, C-3',	1.46 (s, 6H)	27.2
			Me-4', 5^{\prime}		

Ishiguro, 1993

1.3.2.5 Compound SK18

Compound SK18 was obtained as a pale yellow gum. It showed a molecular ion at $m / z 412$, which was corresponded to the molecular formula $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}_{7}$. The IR spectrum exhibited absorption bands at $3541 \mathrm{~cm}^{-1}$ (a hydroxyl group) and $1698 \mathrm{~cm}^{-1}$ (a carbonyl group). The UV spectrum with absorption bands at 222, 229, 250, 259 and 277 nm indicated that SK18 was a xanthone derivative. Its ${ }^{1}$ H NMR spectrum (Table 82) (Figure 28) showed the signals of two chelated hydroxy protons [$\delta_{\mathrm{H}} 11.98$ and 11.30 ($s, 1 \mathrm{H}$ each)], two ortho-coupled aromatic protons [$\delta_{\mathrm{H}} 7.32$ and $6.62(d, J=8.7$ $\mathrm{Hz}, 1 \mathrm{H}$ each)] and one singlet aromatic proton ($\delta_{\mathrm{H}} 6.40, \mathrm{~s}, 1 \mathrm{H}$). In addition, it contained signal of a 3,7-dimethyl-6-hydroxyocta-2,7-diene moiety [$\delta_{\mathrm{H}} 5.39$ ($\mathrm{mt}, \mathrm{J}=$ $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (brs, 1H), 4.69 (brs, 1H), $3.94(t, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.58 ($d, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 2.20(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~s}, 3 \mathrm{H})$ and $1.60(\mathrm{~m}, 2 \mathrm{H})]$. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 82) (Figure 29) showed twenty three carbons: eleven quaternary carbons ($\delta_{\mathrm{C}} 185.86,165.25,161.86,155.78,154.23,149.35,145.20,138.24,135.94$, 108.03 and 102.65), five methine carbons ($\delta_{\mathrm{C}} 124.81,123.02,110.07,99.05$ and 75.36), four methylene carbons ($\delta_{\mathrm{C}} 110.31,36.59,34.61$ and 22.05) and two methyl carbons ($\delta_{\mathrm{C}} 17.81$ and 16.48). Two chelated hydroxy protons ($\delta_{\mathrm{H}} 11.98$ and 11.30) were attributed to $\mathrm{OH}-1$ and $\mathrm{OH}-8$, respectively, according to the HMBC correlations of OH-1/C-1 ($\delta_{\mathrm{C}} 161.86$), C-2 ($\delta_{\mathrm{C}} 99.05$) and C-9a (102.65) and those of OH-8/C-7 ($\delta_{\mathrm{C}} 110.07$), $\mathrm{C}-8$ (154.23) and C-8a (108.03). In the HMQC spectrum, the singlet aromatic proton ($\delta_{\mathrm{H}} 6.40$) showed correlation with $\mathrm{C}-2$ ($\delta_{\mathrm{C}} 99.05$), suggesting its attachment at C-2. In addition, the ortho-aromatic protons were located at C-6 and C7 by a HMQC correlation of $\mathrm{H}-7\left(\delta_{\mathrm{H}} 6.62\right) / \mathrm{C}-7$ and HMBC correlations of $\mathrm{H}-6\left(\delta_{\mathrm{H}}\right.$ $7.32) / \mathrm{C}-5\left(\delta_{\mathrm{C}} 138.24\right)$, $\mathrm{C}-8$ and $\mathrm{C}-10 \mathrm{a}$ ($\delta_{\mathrm{C}} 145.20$). The methylene protons ($\mathrm{H}-1^{\prime}$) of the 3,7-dimethyl-6-hydroxyocta-1,7-diene group showed HMBC correlations with C3 and $\mathrm{C}-4 \mathrm{a}$ ($\delta_{\mathrm{C}} 155.78$), indicating the attachment of this group at C-4. According to the chemical shift values of C-3 and C-5, they contained hydroxyl groups as substituents. The E-configulation of side chain was deduced from the NOEDIFF spectrum since irradiation of Me-10' $\left(\delta_{\mathrm{H}} 1.86\right)$ did not enhance signal intensity of an olefinic proton, $\mathrm{H}-2^{\prime}\left(\delta_{\mathrm{H}} 5.39\right)$. Upon irradiation of Me-9' ($\delta_{\mathrm{H}} 1.63$), enhancement of
the signal of $\mathrm{H}-8_{\mathrm{b}}{ }^{\prime}$ was observed. Therefore, this methyl group was cis to $\mathrm{H}-8_{\mathrm{b}}{ }^{\prime}$. Thus, SK18 was assigned to have the structure as shown, a new naturally occurring xanthone.

Table 82 The NMR data of compound SK18 in Acetone-d d_{6}

Position	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-type)	HMBC	NOE
OH-1	11.98 ($s, 1 \mathrm{H})$	161.86 (C)	C-1,C-2, C-9a	-
2	6.40 ($s, 1 \mathrm{H})$	99.05 (CH)	C-3, C-4, C-9a	-
3	-	165.25 (C)	-	-
4	-	108.03 (C)	-	-
4 a	-	155.78 (C)	-	-
5	-	138.24 (C)	-	-
6	7.32 (d, 8.7, 1H)	124.81 (CH)	C-5, C-8, C-10a	H-7
7	6.62 (d, 8.7, 1H)	110.07 (CH)	C-5, C-8, C-8a	H-6
OH-8	11.30 (s, 1H)	154.23 (C)	C-7, C-8, C-8a	-
8 a	-	108.03 (C)	-	-
9	-	185.86 (C=O)	-	-
9 a	-	102.65 (C)	-	-
10a	-	145.20 (C)	-	-
1^{\prime}	3.58 (d, 7.0, 2H)	$22.05\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$	H-10'
2^{\prime}	5.39 (mt, 7.0, 1H)	123.02 (CH)	C-4', C-10'	-
3^{\prime}	-	135.94 (C)	-	-
4^{\prime}	2.20 (m, 2H)	$36.59\left(\mathrm{CH}_{2}\right)$	C-2', C-5'	-

Table 82 (continued)

Position	$\delta_{\mathrm{H}}($ mult, J Hz)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC	NOE
5^{\prime}	$1.60(m, 2 \mathrm{H})$	$34.56\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-4^{\prime}$	-
6^{\prime}	$3.94(t, 6.6,1 \mathrm{H})$	$75.32(\mathrm{CH})$	$\mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}, \mathrm{Me}-9^{\prime}$	-
7^{\prime}	-	$149.35(\mathrm{C})$	-	-
8^{\prime}	$\mathrm{a}: 4.83($ brs, $1 \mathrm{H})$	$110.31\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-6^{\prime}, \mathrm{Me}-9^{\prime}$	$\mathrm{H}-6^{\prime}$
	$\mathrm{b}: 4.69($ brs, 1H)			$\mathrm{H}-9^{\prime}$
$\mathrm{Me}-9^{\prime}$	$1.64(\mathrm{~s}, 3 \mathrm{H})$	$17.81\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-6^{\prime}, \mathrm{C}-7^{\prime}, \mathrm{C}-8^{\prime}$	$\mathrm{H}-8_{\mathrm{b}^{\prime}}$
$\mathrm{Me}-10^{\prime}$	$1.86(\mathrm{~s}, 3 \mathrm{H})$	$16.48\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}$	$\mathrm{C}-1^{\prime}$

1.3.2.6 Compound SK13

Compound SK13 was obtained as a yellow gum. The UV and IR absorption bands were similar to those of SK18, indicating that SK13 was a xanthone derivative. Its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR (Figure 31 and 32) data were similar to those SK18 except that SK13 contained none of signals for a 3,7-dimethyl-6-hydroxyocta-2,7-diene substitutent. These signals were replaced by signals for a geranyl group $\left[\delta_{\mathrm{H}} 3.56(d, J\right.$ $\left.=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right), 5.27\left(t, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 2.11\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 2.09(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime}\right), 5.04$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}$), 1.61 ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-8^{\prime}\right), 1.58$ ($\left.\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-9^{\prime}\right)$ and 1.86 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{H}-$ $\left.\left.10^{\prime}\right)\right]$. This substituent was assigned to be at C-4 ($\delta_{\mathrm{C}} 105.50$) by HMBC correlations (Table 83) of its methylene protons $\left(\mathrm{H}_{\mathrm{ab}}-1^{\prime}\right)$ with $\mathrm{C}-3$ ($\delta_{\mathrm{C}} 162.84$) and $\mathrm{C}-4 \mathrm{a}\left(\delta_{\mathrm{C}}\right.$ 154.24). The attachment of other substituents was identical to SK18 by HMBC data. The configuration of the $\mathrm{C}-2^{\prime} / \mathrm{C}-3^{\prime}$ and $\mathrm{C}-6^{\prime} / \mathrm{C}-7^{\prime}$ double bonds in geranyl group was deduced from the NOEDIFF data. Irradiation of H-6' (δ_{H} 5.04) affected signal intensity of Me-9', while $\mathrm{H}-2^{\prime}\left(\delta_{\mathrm{H}} 5.04\right)$ did not enhance signal intensity of Me-10'. Therefore, the configuration of C-2'/C-3' double bond was E. Thus, SK13 was assigned as cheffouxanthone which was isolated from root barks of G. smeathmannii (Lannang, 2006).

(SK13)
Table 83 The NMR data of compound SK13 and cheffouxanthone

Position	$\begin{gathered} \text { SK13 } \\ \left(\mathrm{CDCl}_{3}\right) \end{gathered}$		HMBC	NOE	cheffouxanthone (Acetone- d_{6})	
	$\begin{gathered} \delta_{\mathrm{H}} \\ (\text { mult, } J \mathrm{~Hz}) \\ \hline \end{gathered}$	δ_{C} (C-type)			$\begin{gathered} \delta_{\mathrm{H}} \\ (m u l t, J \mathrm{~Hz}) \end{gathered}$	$\delta_{\text {C }}$
OH-1	12.03 (s, 1H)	161.42 (C)	$\begin{aligned} & \mathrm{C}-1, \mathrm{C}-2, \\ & \mathrm{C}-9 \mathrm{a} \end{aligned}$	-	12.01 (s, 1H)	161.4
2	$6.32(s, 1 \mathrm{H})$	99.36 (CH)	$\begin{array}{ll} \mathrm{C}-3, & \mathrm{C}-4, \\ \mathrm{C}-9 \mathrm{a} \end{array}$	-	6.38 ($\mathrm{s}, 1 \mathrm{H})$	98.4
3	-	162.84 (C)	-	-	-	164.4
4	-	105.50 (C)	-	-	-	115.7
4a	-	154.24 (C)	-	-	-	144.6
5	-	135.74 (C)	-	-	-	137.7
6	7.25 (d, $8.5,1 \mathrm{H})$	123.60 (CH)	$\begin{aligned} & \text { C-5, C-8, } \\ & \text { C-10a } \end{aligned}$	H-7	7.32 (d, 8.8,1H)	124.2
7	$6.69(d, 8.5,1 \mathrm{H})$	110.15 (CH)	$\begin{array}{ll} \mathrm{C}-5, \quad \mathrm{C}-8, \\ \mathrm{C}-8 \mathrm{a} \end{array}$	H-6	6.63 (d, 8.8, 1H)	109.5
OH-8	11.23 (s, 1H)	154.02 (C)	$\begin{aligned} & \text { C-7, C-8, } \\ & \text { C-8a } \end{aligned}$	-	11.30 (s, 1H)	153.7
8 a	-	107.21 (C)	-	-	-	107.7
9	-	$\begin{aligned} & 184.79 \\ & (\mathrm{C}=\mathrm{O}) \end{aligned}$	-	-	-	185.4
9 a	-	102.79 (C)	-	-	-	102.2
10a	-	142.91 (C)	-	-	-	155.2

Table 83 (continued)

Position	$\begin{gathered} \text { SK13 } \\ \left(\mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$		HMBC	NOE	cheffouxanthone (Acetone- d_{6})	
	$\begin{gathered} \delta_{\mathrm{H}} \\ (\text { mult, } \mathrm{J} \mathrm{~Hz}) \end{gathered}$	$\begin{gathered} \delta_{\mathrm{C}} \\ \text { (C-type) } \end{gathered}$			$\begin{gathered} \delta_{\mathrm{H}} \\ (\text { mult, } \mathrm{J} \mathrm{~Hz}) \end{gathered}$	$\delta_{\text {C }}$
1^{\prime}	3.56 (d, 7.0, 2H)	$21.93\left(\mathrm{CH}_{2}\right)$	$\begin{array}{ll} \hline \mathrm{C}-3, & \mathrm{C}-4, \\ \mathrm{C}-4 \mathrm{a}, & \mathrm{C}-2^{\prime}, \\ \mathrm{C}-3^{\prime} & \\ \hline \end{array}$	H-2'	3.59 (d, 7.2, 2H)	21.5
2^{\prime}	$5.27(t, 7.0,1 \mathrm{H})$	121.01 (CH)	$\begin{aligned} & \mathrm{C}-4, \quad \mathrm{C}-4^{\prime}, \\ & \mathrm{C}-10^{\prime} \end{aligned}$	$\begin{aligned} & \mathrm{H}-1^{\prime}, \\ & \mathrm{H}-4^{\prime} \end{aligned}$	5.38 (d, 7.2, 1H)	122.6
3^{\prime}	-	139.23 (C)	-	-	-	135.2
4^{\prime}	2.11 (m, 2H)	$39.61\left(\mathrm{CH}_{2}\right)$	$\begin{array}{ll} \mathrm{C}-2^{\prime}, & \mathrm{C}-6^{\prime}, \\ \mathrm{C}-10^{\prime} & \end{array}$	H-2'	1.98 (t, 7.2, 2H)	40.0
5^{\prime}	2.09 (m, 2H)	$26.36\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-3^{\prime}, \mathrm{C}-7^{\prime}$	H-6'	2.02 (m, 2H)	26.8
6^{\prime}	5.04 (m, 1H)	123.31 (CH)	C-5', C-9	$\begin{aligned} & \text { H-5', } \\ & \text { Me-9' } \end{aligned}$	5.15 (m, 1H)	124.5
$7{ }^{\prime}$	-	132.22 (C)				131.1
Me-8'	1.61 (s, 3H)	$25.65\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & \mathrm{C}-6^{\prime}, \mathrm{C}-7^{\prime}, \\ & \mathrm{C}-9^{\prime} \end{aligned}$		1.54 (s, 3H)	25.2
Me-9'	1.58 (s, 3H)	$17.72\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & \text { C-6', C-7', } \\ & \text { C-8' } \end{aligned}$	H-6'	1.56 (s, 3H)	17.2
Me-10'	1.86 (s, 3H)	$16.38\left(\mathrm{CH}_{3}\right)$	$\begin{aligned} & \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \\ & \mathrm{C}-4^{\prime} \end{aligned}$		1.86 (s, 3H)	15.9

1.3.2.7 Compound SK20

Compound SK20 was obtained as a pale yellow gum. It showed molecular ion at $\mathrm{m} / \mathrm{z} 304$, which corresponded to a molecular formula $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{7}$. The IR spectrum exhibited absorption bands at 3443 and $1641 \mathrm{~cm}^{-1}$ (a hydroxyl group and a carbonyl group). The UV spectrum with absorption bands at 222, 258, 278 and 345 nm indicated that SK20 had a xanthone chromophore. The ${ }^{1}$ H NMR spectrum (Table 84) (Figure 33) showed the presence of two chelated hydroxy protons [$\delta_{\mathrm{H}} 12.01$ and $11.71(1 \mathrm{H}$ each $)$], two meta-aromatic protons [$\delta_{\mathrm{H}} 6.63$ and $6.36(d, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$
each)], one singlet aromatic proton ($\delta_{\mathrm{H}} 6.32, \mathrm{~s}, 1 \mathrm{H}$) and two sets of methoxy protons [$\delta_{\mathrm{H}} 3.97$ and 3.91 ($s, 3 \mathrm{H}$ each)]. The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 84) (Figure 34) showed fifteen carbons: ten quaternary carbons ($\delta_{\mathrm{C}} 184.34,168.20,163.72,159.72$, $159.00,158.53,150.44,128.84,102.55$ and 102.06), three methine carbons ($\delta_{\mathrm{C}} 99.32$, 98.36 and 93.94) and two methoxy carbons ($\delta_{\mathrm{C}} 61.82$ and 56.66). The location of all substitutents was established by HMBC data (Table 84). Two chelated hydroxy protons at C-1 ($\delta_{\mathrm{C}} 159.72$) and C-8 ($\delta_{\mathrm{C}} 163.72$), peri-position of the xanthone carbonyl group, gave ${ }^{3} J$ cross peaks of $\mathrm{OH}-1 / \mathrm{C}-2\left(\delta_{\mathrm{C}} 99.32\right)$ and $\mathrm{C}-9 \mathrm{a}\left(\delta_{\mathrm{C}} 102.55\right)$ and OH-8/C-7 ($\delta_{\mathrm{C}} 98.36$) and C-8a ($\delta_{\mathrm{C}} 102.55$). A HMQC correlation of the singlet aromatic proton ($\delta_{\mathrm{H}} 6.32$) with $\mathrm{C}-2$ and HMBC correlations between the singlet aromatic proton ($\delta_{\mathrm{H}} 6.32$) and $\mathrm{C}-4\left(\delta_{\mathrm{C}} 128.84\right)$ and $\mathrm{C}-9 \mathrm{a}$ established the attachment of the singlet aromatic proton at C-2, ortho to the chelated hydroxyl group. Two metaaromatic protons ($\delta_{\mathrm{H}} 6.63$ and 6.36) were attributed to $\mathrm{H}-5$ and H-7, respectively, according to a HMQC correlation of $\mathrm{H}-7\left(\delta_{\mathrm{H}} 6.36\right) / \mathrm{C}-7$ and the HMBC correlations of $\mathrm{H}-7 / \mathrm{C}-6\left(\delta_{\mathrm{C}} 168.20\right)$ and $\mathrm{C}-5\left(\delta_{\mathrm{C}} 93.94\right)$ and those of $\mathrm{H}-5 / \mathrm{C}-7$ and $\mathrm{C}-8 \mathrm{a}$. Two methoxyl groups ($\delta_{\mathrm{H}} 3.97$ and 3.91) were assigned at C-6 and C-4, respectively, by ${ }^{3} J$ correlation of OMe-6/C-6 and that of OMe-4/C-4. In the NOEDIFF experiments (Table 84), irradiation at OMe-6 enhanced signal intensities of both H-5 and H-7, supporting above assignment. According to the chemical shift value of C-3, the substituent at C-3 was a hydroxyl substituent. Thus, SK20 had the structure as shown, a new naturally occurring xanthone.

(SK20)

Table 84 The NMR data of compound SK20 in Acetone- d_{6}

Position	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-type)	HMBC	NOE
OH-1	11.71 (s, 1H)	159.72 (C)	C-1, C-2, C-9a	-
2	6.32 (s, 1H)	99.32 (CH)	C-1, C-4, C-9a	-
3	-	159.00 (C)	-	-
4	-	128.84 (C)	-	-
4a	-	150.44 (C)	-	-
5	6.63 (d, 2.0, 1H)	93.94 (CH)	C-6, C-7, C-8a, C-10a	OMe-6
6	-	168.20 (C)	-	-
7	6.36 (d, 2.0, 1H)	98.36 (CH)	C-5, C-6	OMe-6
OH-8	12.01 (s, 1H)	163.72 (C)	C-7, C-8, C-8a	-
8 a	-	102.55 (C)	-	-
9	-	184.38 (C=O)	-	-
9a	-	102.06 (C)	-	-
10a	-	158.53 (C)	-	-
OMe-4	3.91 (s, 3H)	$61.82\left(\mathrm{CH}_{3}\right)$	C-4	-
OMe-6	3.97 (s, 3H)	$56.66\left(\mathrm{CH}_{3}\right)$	C-6	H-5, H-7

1.3.2.8 Compound SK22

Compound SK22 was obtained as a pale yellow gum. It showed molecular ion at $\mathrm{m} / \mathrm{z} 304$, which corresponded to a molecular formula $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{O}_{7}$. The IR and UV spectra were similar to those of SK20, indicating that SK22 had a xanthone derivative. The ${ }^{1} \mathrm{H}$ NMR data of the right-hand ring were similar to those of SK20. It showed a chelated hydroxy proton ($\delta_{\mathrm{H}} 12.87, \mathrm{~s}, 1 \mathrm{H}$), one singlet aromatic proton (δ_{H} $6.29, \mathrm{~s}, 1 \mathrm{H}$) and one methoxy protons ($\delta_{\mathrm{H}} 3.91, \mathrm{~s}, 3 \mathrm{H}$). The location of these substituents on the right-hand ring of the xanthone nucleus was established by the HMBC data (Table 85). In addition, the ${ }^{1} \mathrm{H}$ NMR spectrum exhibited two paraaromatic protons $\left[\delta_{\mathrm{H}} 7.19\right.$ and $7.52(s, 1 \mathrm{H}$ each $)$] and methoxy protons ($\delta_{\mathrm{H}} 4.07, s$, $3 \mathrm{H})$. The para-aromatic protons were attributed to $\mathrm{H}-5$ and $\mathrm{H}-8$, respectively, according to the ${ }^{1} \mathrm{H}$ chemical shift of $\mathrm{H}-8$ and HMBC correlations of H-5/C-7 (δ_{C} 145.36) and $\mathrm{C}-8 \mathrm{a}\left(\delta_{\mathrm{C}} 114.29\right)$ and those of $\mathrm{H}-8 / \mathrm{C}-6\left(\delta_{\mathrm{C}} 155.75\right)$ and $\mathrm{C}-10 \mathrm{a}\left(\delta_{\mathrm{C}}\right.$
152.39). A HMBC correlation between the methoxy protons ($\delta_{\mathrm{H}} 4.07$) and C-6 established the attachment of the methoxyl group at C-6. The NOEDIFF enhancement of methoxy protons, upon irradiation at $\mathrm{H}-5$, confirmed this assignment. According to the chemical shift value of C-7 ($\delta_{\mathrm{C}} 145.36$), C-7 carried a hydroxyl group. Thus, SK22 had the structure as shown, a new naturally occurring xanthone.

(SK22)
Table 85 The NMR data of compound SK22 in Acetone-d ${ }_{6}$

Position	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{JHz})$	$\delta_{\text {C }}$ (C-type)	HMBC	NOE
$1-\mathrm{OH}$	12.87 (s, 1H)	159.44 (C)	C-1, C-2, C-9a	-
2	6.29 (s, 1H)	98.65 (CH)	C-1, C-3, C-4, C-9a	-
3	-	158.73 (C)	-	-
4	-	128.47 (C)	-	-
4 a	-	150.80 (C)	-	-
5	7.19 (s, 1H)	100.76 (CH)	C-6, C-7, C-9, C-8a, C-10a	OMe-6
6	-	155.75 (C)	-	-
7	-	145.36 (C)	-	-
8	7.52 (s, 1H)	108.91 (CH)	C-6, C-7, C-9, C-8a, C-10a	-
8 a	-	114.29 (C)	-	-
9	-	180.68 (C=O)	-	-
9 a	-	103.17 (C)	-	-
10a	-	152.39 (C)	-	-
OMe-4	3.91 (s, 3H)	$61.71\left(\mathrm{CH}_{3}\right)$	C-4	-
OMe-6	4.07 (s, 3H)	$57.03\left(\mathrm{CH}_{3}\right)$	C-6	H-5

1.3.1.9 Compound SK10

Compound SK10 was obtained as a pale yellow gum. It showed molecular ion at $m / z 284$, which corresponded to the molecular formula $\mathrm{C}_{15} \mathrm{H}_{8} \mathrm{O}_{6}$. The IR spectrum
exhibited absorption bands at $3417 \mathrm{~cm}^{-1}$ (a hydroxyl group) and $1676 \mathrm{~cm}^{-1}$ (a carbonyl group). The UV spectrum with absorptions bands at 249, 269, 273 and 329 indicated that SK10 possessed a xanthone chromophore. Its ${ }^{1} \mathrm{H}$ NMR spectrum (Table 86) (Figure 39) showed signals of two chelated hydroxy protons [$\delta_{\mathrm{H}} 12.01$ and 11.29 (s, 1 H each)], two ortho-couple aromatic protons [$\delta_{\mathrm{H}} 7.35$ and $6.79(d, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$ each)] and one doublet aromatic proton ($\delta_{\mathrm{H}} 6.97, d, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}$). In addition, it contained signals of aromatic protons of a furan ring [$\delta_{\mathrm{H}} 7.63(d, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $7.05(d d, J=2.0$ and $1.0 \mathrm{~Hz}, 1 \mathrm{H})$] (Inuma, 1996). The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 86)
(Figure 40) showed fifteen carbons: ten quaternary carbons (δ_{C} 185.0, 162.00, $159.45,154.30,148.00,144.20,135.00,110.00,108.00$ and 107.00) and five methine carbons ($\delta_{\mathrm{C}} 144.72,123.95,110.81,103.56$ and 95.44). Two chelated hydroxy protons ($\delta_{\mathrm{H}} 12.01$ and 11.29) were attributed to $\mathrm{OH}-1$ and $\mathrm{OH}-8$, respectively, according to the HMBC correlations of OH-1/C-1 ($\delta_{\mathrm{C}} 159.45$), C-2 ($\delta_{\mathrm{C}} 99.44$) and C9a ($\delta_{\mathrm{C}} 102.65$) and those of $\mathrm{OH}-8 / \mathrm{C}-7\left(\delta_{\mathrm{C}} 110.98\right)$, $\mathrm{C}-8\left(\delta_{\mathrm{C}} 154.30\right)$ and $\mathrm{C}-8 \mathrm{a}\left(\delta_{\mathrm{C}}\right.$ 108.00). In the HMBC spectrum, the ortho-aromatic protons were located at $\mathrm{C}-6$ and C-7 by their HMBC correlations with C-5 ($\delta_{\mathrm{C}} 135.00$), C-8, C-8a and C-10a (δ_{C} 144.20). In addition, the singlet aromatic proton ($\delta_{\mathrm{H}} 6.97$) showed HMBC correlations with C-3 ($\delta_{\mathrm{C}} 162.20$), C-4 ($\delta_{\mathrm{C}} 110.50$) and C-9a, suggesting that this proton was at $\mathrm{C}-2$. The olefinic protons of a furan ring ($\delta_{\mathrm{H}} 7.63, \mathrm{H}-1^{\prime}$ and $7.05, \mathrm{H}-2^{\prime}$) gave cross peaks of $\mathrm{H}-1^{\prime} / \mathrm{C}-3$ and $\mathrm{C}-4$ and $\mathrm{H}-2^{\prime} / \mathrm{C}-3$ and $\mathrm{C}-4 \mathrm{a}$ ($\delta_{\mathrm{C}} 148.00$). In NOEDIFF data, irradiation of $\mathrm{H}-2$ did not affect signal intensities of both $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-2^{\prime}$. These data implied that the furan ring was fused to $\mathrm{C}-3$ and $\mathrm{C}-4$ with an ether linkage at $\mathrm{C}-3$. Thus, SK10 had the structure as shown, a new naturally occurring xanthone.

(SK10)

Table 86 The NMR data of compound SK10 in CDCl_{3}

Position	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-type)	HMBC	NOE
OH-1	$12.01(\mathrm{~s}, 1 \mathrm{H})$	159.45 (C)	C-1, C-2, C-9a	-
2	6.97 (d, 1.0, 1H)	95.44 (CH)	C-3, C-4, C-1', C-9a	-
3	-	162.20 (C)	-	-
4	-	110.50 (C)	-	-
4a	-	148.00 (C)	-	-
5	-	135.00 (C)	-	-
6	6.79 (d, 9.0, 1H)	123.95 (CH)	C-5, C-8, C-10a	H-7
7	7.35 (d, 9.0, 1H)	110.98 (CH)	C-5, C-8, C-8a	H-6
OH-8	11.29 (s, 1H)	154.30 (C)	C-7, C-8, C-8a	-
8 a	-	108.00 (C)	-	-
9	-	185.00 (C=O)	-	-
9 a	-	102.65 (C)	-	
10a	-	144.20 (C)	-	-
1^{\prime}	7.63 (d, 2.0, 1H)	144.72 (CH)	C-3, C-4	-
2^{\prime}	7.05 (dd, 2.0, 1.0, 1H)	103.50 (CH)	C-3, C-4, C-4a	-

1.3.3 Benzoic acid derivatives

1.3.3.1 Compound SK17

Compound SK17 was obtained as a pale yellow gum. The IR spectrum showed absorption bands at 3338 and $1690 \mathrm{~cm}^{-1}$ for a hydroxyl group and a carbonyl group, respectively. The UV spectrum exhibited absorption band at $\lambda_{\text {max }} 278 \mathrm{~nm}$, indicating that SK17 possessed an aromatic chromophore. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 87) (Figure 42) showed a presence of a 1,3,4-trisubstituted benzene $\left[\delta_{\mathrm{H}} 7.59\right.$ $(d, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(d d, J=8.1$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $6.90(d, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$ and methoxy protons ($\delta_{\mathrm{H}} 3.88, \mathrm{~s}, 3 \mathrm{H}$). The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 87) (Figure 43) showed the presence of one carbonyl carbon ($\delta_{\mathrm{C}} 167.00$), three quaternary carbons ($\delta_{\mathrm{C}} 148.49,142.14$ and 123.90), three methine carbons ($\delta_{\mathrm{C}} 123.87,116.61$ and 114.88) and one methoxy carbon ($\delta_{\mathrm{C}} 52.05$). The methoxy protons together with its HMBC correlation with the carbon signal at $\delta_{\mathrm{C}} 167.00$ (C-7) indicated the presence of
the methyl ester group. The two aromatic protons at $\delta_{\mathrm{H}} 7.59$ and 7.55 were located at ortho-position of an ester carbonyl, on the basis of HMBC correlations between these protons and the carbonyl carbon. The remaining proton was then assigned as $\mathrm{H}-5$. Because no other signals were observed in the ${ }^{1} \mathrm{H}$ NMR spectrum, the substituents at C-3 and C-4 were hydroxyl groups. Thus, SK17 was determined as protocatechic acid methyl ester which was isolated from fruits of Euterpe oleracea (Chin, 2008a).

(SK17)
Table 87 The NMR data of compound SK17 and protocatechic acid methyl ester

Position	$\begin{gathered} \mathbf{S K 1 7} \\ \left(\mathrm{CDCl}_{3}\right) \\ \hline \end{gathered}$		HMBC	protocatechic acid methyl ester (Acetone- d_{6}) ${ }^{*}$	
	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$
1	-	123.90 (C)	-	-	122
2	7.59 (d, 1.8, 1H)	116.61 (CH)	C-4, C-6, C-7	7.39 (d, 2.0, 1H)	117
3	-	142.14 (C)	-	-	144
4	-	148.49 (C)	-	-	150
5	6.90 (d, 8.1, 1H)	114.88 (CH)	C-1, C-3, C-7	6.80 (d, 8.3, 1H)	115
6	$\begin{aligned} & 7.55 \quad(d d, 8.1, \\ & 1.8,1 \mathrm{H}) \end{aligned}$	123.87 (CH)	C-4, C-5, C-7	$\begin{aligned} & 7.34 \quad(d d, \quad 8.3, \\ & 2.0,1 \mathrm{H}) \end{aligned}$	123
7	-	$167.00(\mathrm{C}=\mathrm{O})$	-	-	166
8	3.88 (s, 3H)	$52.05\left(\mathrm{CH}_{3}\right)$	C-7	3.80 (s, 3H)	57

*Miyazawa, 2003

1.3.3.2 Compound SK7

Compound SK7 was obtained as a yellow gum. Its UV spectrum showed an absorption band at $\lambda_{\max } 251 \mathrm{~nm}$ while its IR spectrum exhibited absorption bands at 3442 and $1663 \mathrm{~cm}^{-1}$ due to a hydroxyl group of carboxylic acid and a conjugated carbonyl group. Its ${ }^{1} \mathrm{H}$ NMR spectrum (Table 88) (Figure 44) contained signals for
aromatic protons of a para-disubstituted benzene $\left[\delta_{\mathrm{H}} 7.95(d, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})\right.$ and $6.85(d, J=6.9 \mathrm{~Hz}, 2 \mathrm{H})$]. Comparison of the ${ }^{1} \mathrm{H}$ NMR data suggested that SK7 was 4hydroxybenzoic acid which was isolated from fruits of G. mangostana (Zadernowski, 2009).

(SK7)
Table 88 The NMR data of compound SK7 and 4-hydroxybenzoic acid

Position	$\mathbf{S K 7}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ $\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	4-hydroxybenzoic acid $\left(\mathrm{CDCl}_{3}\right)^{*}$ $\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$
2,6	$7.95(d, 6.9,2 \mathrm{H})$	$7.96(d, 8.6,2 \mathrm{H})$
3,5	$6.85(d, 6.9,2 \mathrm{H})$	$6.86(d, 8.6,2 \mathrm{H})$

(Hsieh, 2005)

1.3.4 Biflavone

1.3.4.1 Compound SK6

Compound SK6 was obtained as a yellow gum. Its UV spectrum showed absorption bands at $\lambda_{\text {max }} 221,288$ and 335 nm while its IR spectrum exhibited absorption bands at 3420 and $1650 \mathrm{~cm}^{-1}$ due to hydroxyl and conjugated carbonyl groups. Its ${ }^{1} \mathrm{H}$ NMR spectrum (Table 89) (Figure 45) contained signals of two chelated hydroxy protons [$\delta_{\mathrm{H}} 13.07$ and 12.29)], two para-disubstituted benzenes [δ_{H} $7.09(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.35(d, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$ and 6.93 $(d, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$], a 1,2,3,5-tetrasubstituted benzene [$\delta_{\mathrm{H}} 6.04(\mathrm{~s}, 1 \mathrm{H})$ and $5.94(\mathrm{~s}$, $1 \mathrm{H})$], a singlet aromatic proton ($\delta_{\mathrm{H}} 6.22$) and two methine protons [$\delta_{\mathrm{H}} 5.67(d, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.99(d, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})]$. Comparison of the ${ }^{1} \mathrm{H}$ NMR data and the optical rotation of SK6 $\left([\alpha]_{\mathrm{D}}^{29}+114.5^{\circ}(\mathrm{c}=0.05, \mathrm{MeOH})\right)$ with those of $(+)$ volkensiflavone $\left([\alpha]_{\mathrm{D}}^{29}+133^{\circ}(\mathrm{c}=0.05, \mathrm{MeOH})\right)$, suggested that SK6 was $(+)$ volkensiflavone (Sukpondma, 2005).

(SK6)
Table 89 The NMR data of compound SK6 and (+)-volkensiflavone

Position	$\begin{gathered} \hline \text { SK6 }\left(\text { DMSO- }_{6}\right) \\ \delta_{\mathrm{H}}(\text { mult }, J \mathrm{~Hz}) \end{gathered}$	$(+)$-volkensiflavone (DMSO- d_{6}) $\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$
2	5.67 (d, 12.0, 1H)	5.82 (d, 12.0, 1H)
3	4.99 (d, 12.0, 1H)	5.16 (d, 12.0, 1H)
OH-5	12.29 (s, 1H)	12.48 ($\mathrm{s}, 1 \mathrm{H})$
6	6.04 ($s, 1 \mathrm{H})$	6.15 ($s, 1 \mathrm{H})$
8	5.94 ($\mathrm{s}, 1 \mathrm{H}$)	6.09 ($s, 1 \mathrm{H})$
$2^{\prime}, 6^{\prime}$	7.09 (d, 7.8, 2H)	7.25 (d, 8.5, 2H)
$3^{\prime}, 5^{\prime}$	6.35 (d, 7.8, 2H)	6.49 (d, 8.5, 2H)
3 "	6.64 ($s, 1 \mathrm{H})$	6.80 ($s, 1 \mathrm{H})$
OH-5"	13.07 (s, 1H)	13.20 (s, 1H)
6 "	6.22 (s, 1H)	6.37 (s, 1H)
$2^{\prime \prime \prime}, 6^{\prime \prime \prime}$	7.94 (d, 8.1, 2H)	8.10 (d, 9.0, 2H)
3'', 5 "'	6.93 (d, 8.1, 2H)	7.09 (d, 9.0, 2H)

1.3.5 Flavanone glucosides

1.3.5.1 Compound SK23

Compound SK23 was obtained as a yellow solid, melting at $252-255{ }^{\circ} \mathrm{C}$. The IR spectrum exhibited absorption bands at $3220 \mathrm{~cm}^{-1}$ (a hydroxyl of carboxylic acid), 1730 and $1644 \mathrm{~cm}^{-1}$ (carbonyl groups). The UV spectrum with absorption bands at 222, 282 and 335 nm indicated that SK23 had a flavanone chromophore (Cui, 1990).

The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 90) (Figure 46) contained signals of a flavanone moiety $\left[\delta_{\mathrm{H}} 5.39(d d, J=12.6\right.$ and $2.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(d d, J=17.1$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.74(d d, J=17.1$ and $12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23$ (brs, 1H), 6.19 (brs, 1H), 7.32 ($d, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H})$ and $6.81(d, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})]$ and signals of glucuronide moiety $\left[\delta_{\mathrm{H}} 5.00(d, J\right.$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81,(m, 1 \mathrm{H}), 3.80(m, 1 \mathrm{H})$ and $3.78(d, J=9.0 \mathrm{~Hz}, 1 \mathrm{H})]$. The presence of the flavanone and glucuronide units was confirmed by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and HMBC data (Table 90). The ${ }^{13} \mathrm{C}$ NMR spectrum (Table 90) (Figure 47) consisted of eighteen signals for twenty one carbons, containing two carbonyl ($\delta_{\mathrm{C}} 197.18$ and 182.00), six quaternary carbons ($\delta_{\mathrm{C}} 165.73,163.80,163.24,157.64,129.51$ and 103.58), ten methine carbons ($\delta_{\mathrm{C}} 127.68,114.95,99.77,96.78,95.00,79.25,76.23$, $75.28,73.07$ and 72.04) and one methylene carbon ($\delta_{\mathrm{C}} 42.75$). The anomeric proton ($\delta_{\mathrm{H}} 5.00, \mathrm{H}-2^{\prime \prime}$) showed HMBC correlation with C-7 ($\delta_{\mathrm{C}} 163.60$), while two methine protons ($\delta_{\mathrm{H}} 6.23$, H-6 and $6.19, \mathrm{H}-8$) gave a cross peak with $\mathrm{C}-2^{\prime \prime}$ ($\delta_{\mathrm{C}} 99.77$). These results indicated that glucuronide unit was attached at $\mathrm{C}-7$ of the flavonone unit through an O-glycosidic bond.

The relative stereochemistry of the glycuronide moiety was established based on the following NOEDIFF data. The appearance of the anomeric proton as a doublet with the large coupling constant $(J=7.2 \mathrm{~Hz})$, indicated that it was assigned as a β-glucuronide (Cui, 1990). Irradiation of $\mathrm{H}-3^{\prime \prime}\left(\delta_{\mathrm{H}} 3.81\right)$ affected signal intensity of $\mathrm{H}-5^{\prime \prime}\left(\delta_{\mathrm{H}} 3.80\right)$ while irradiation of $\mathrm{H}-6^{\prime \prime}$ affected signal intensities of both $\mathrm{H}-2^{\prime \prime}$ and $\mathrm{H}-4^{\prime \prime}$. These data confirmed the stereochemistry of the glucuronide moiety. Thus, SK23 was determined as naringenin 7-O- β-D-glucuronide (Silberberg, 2006).

(SK23)

Table 90 The NMR data of compound SK23 in $\mathrm{CD}_{3} \mathrm{OD}$

Position	$\delta_{\text {H }}(m u l t, J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)	HMBC	COSY	NOE
2	5.39 (dd, 12.6, 2.7, 1H)	79.25 (CH)	$\begin{array}{ll} \hline \mathrm{C}-4, & \mathrm{C}-1^{\prime}, \\ \mathrm{C}-2^{\prime} \end{array}$	H-3	$\begin{aligned} & \mathrm{H}-3, \mathrm{H}-2^{\prime}, \\ & \mathrm{H}-6 \end{aligned}$
3	a: 3.17 (dd, 17.1, 12.6, 1H)	$42.75\left(\mathrm{CH}_{2}\right)$	C-2, C-4,	H-2	H-2
	b: 2.74 (dd, 17.1, 2.7, 1H)		$\mathrm{C}-4 \mathrm{a}, \mathrm{C}-1{ }^{\prime}$		
4	-	197.18	-	-	-
		(C=O)			
4a	-	103.58 (C)	-	-	-
5	-	163.80 (C)	-	-	-
6	6.23 (brs, 1H)	95.60 (CH)	C-7, C-8,	-	H-2"
			C-4a, C-2"		
7	-	165.73 (C)		-	-
8	6.19 (brs, 1H)	96.78 (CH)	C-6, C-7,	-	H-2"
			C-4a, C-2"		
8 a	-	163.24 (C)	-	-	-
$1 '$	-	129.51 (C)	-	-	-
$2^{\prime}, 6^{\prime}$	7.32 (d, 8.4, 2H)	127.68 (CH)	C-2, C-3',	-	$\begin{aligned} & \mathrm{H}-3^{\prime}, \\ & \mathrm{H}-5 \text {, } \end{aligned}$
			C-4', C-5'		
3',5'	6.81 (d, 8.4, 2H)	114.95 (CH)	C-1', C-2',	-	H-2', H-6'
			C-4', C-6'		
4^{\prime}	-	157.64 (C)		-	-
2 "	5.00 (d, 7.2, 1H)	99.77 (CH)	C-7, C-2",	H-3',	H-6, H-8
			C-4"	H-5'	
$3 "$	3.80 (m, 1H)	76.23 (CH)	C-2", C-3",	H-2',	H-5"
			C-5"	H-6'	
4"	3.50 (m, 1H)	73.07 (CH)	-	H-3"	-
$5 "$	3.80 ($\mathrm{m}, 1 \mathrm{H}$)	72.04 (CH)	-	-	-
$6 "$	3.78 (d, 9.0, 1H)	75.28 (CH)	-	H-3",	H-2"
				H-5"	
7"	-	182.00	-	H-4"	-
		($\mathrm{C}=0$)			

1.3.5.2 Compound SK24

Compound SK24 was obtained as a yellow solid, melting at 267-269 ${ }^{\circ} \mathrm{C}$. The UV and IR spectra were similar to those of SK23, indicating that SK24 had the same chromophore as SK23. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 91) (Figures 48 and 49) were similar to those of SK23 except that SK24 contained none of signals for a paradisubstituted benzene. These signals were replaced by signals of a 1,2,4-trisubstituted benzene $\left[\delta_{\mathrm{H}} 6.93(\right.$ brs, 1 H$), 6.78(d d, J=8.4$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H})$ and $6.79(d, J=8.4 \mathrm{~Hz}$, 1 H). The location of substituent at C-2 was confirmed by HMBC data (Table 92). Comparison of the optical rotation of SK24 $\left([\alpha]_{\mathrm{D}}^{26}-42.7^{\circ}(\mathrm{c}=1.00, \mathrm{MeOH})\right)$ with that of the 7-O- β-glucuronide of eriodictyol $\left([\alpha]_{D}^{30}-45.2^{\circ}(\mathrm{c}=1.00, \mathrm{MeOH})\right.$), indicated that they had the same relative configuration of glucuronide moeity. Thus, SK24 was determined as $7-O-\beta$-glucuronide of eriodictyol which was isolated from Devallia mariesii (Cui, 1990).

(SK24)
Table 91 The NMR data of compound SK24 and 7-O- β-glucuronide of eriodictyol

Position	$\begin{gathered} \text { SK25 } \\ \left(\mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$		7-O- β-glucuronide of eriodictyol (DMSO- d_{6})	
	$\delta_{\mathrm{H}}(\mathrm{mult}, \mathrm{J} \mathrm{Hz})$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$
2	5.33 (dd, 12.9, 3.3, 1H)	79.25 (CH)	5.28 (dd, 12.8, 3.1, 1H)	79.0
3	a: 3.11 (dd, 17.4, 12.9, 1H)	$42.76\left(\mathrm{CH}_{2}\right)$	a: 3.10 (dd, 17.0, 12.8, 1H)	42.4
	b: 2.75 (dd, 17.4, 3.3, 1H)		b: 2.72 (dd, 17.0, 3.1, 1H)	
4	-	197.17	-	197.4
		(C=O)		
4a	-	103.60 (C)	-	103.6
5	-	165.65 (C)	-	163.1

Table 91 (continued)

Position	$\begin{gathered} \text { SK25 } \\ \left(\mathrm{CD}_{3} \mathrm{OD}\right) \end{gathered}$		7-O- β-glucuronide of eriodictyol (DMSO-d d_{6})	
	$\delta_{\mathrm{H}}($ mult, $J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}}\left(\right.$ mult, ${ }^{\text {J Hz) }}$	$\delta_{\text {C }}$
6	6.19 (d, 2.4, 1H)	96.75 (CH)	6.16 (d, 2.1, 1H)	96.5
7	-	165.71 (C)	-	165.0
8	6.23 (d, 2.4, 1H)	95.65 (CH)	6.17 (d, 2.1, 1H)	95.5
8 a	-	163.14 (C)	-	163.0
1^{\prime}	-	130.19 (C)	-	129.4
2^{\prime}	6.93 (brs, 1H)	113.42 (CH)	6.92 (brs, 1H)	114.6
3'	-	145.10 (C)	-	145.4
$4 '$	-	145.52 (C)	-	146.0
$5 '$	6.79 (d, 8.4, 1H)	114.91 (CH)	6.78 (brs, 1H)	115.6
6^{\prime}	6.78 (dd, $8.4,1.8,1 \mathrm{H})$	117.91 (CH)	6.78 (brs, 1H)	118.3
2 "	5.00 (m, 1H)	99.75 (CH)	5.07 (d, 8.0, 7.5, 1H)	99.1
$3 "$	3.50 (m, 1H)	76.22 (CH)	$3.51(t, 5.3,1 \mathrm{H})$	72.9
$4 "$	3.50 (m, 1H)	73.06 (CH)	3.53 (t, 8.00, 1H)	75.7
5"	3.50 (m, 1H)	72.04 (CH)	3.62 (dd, 9.5, 8.0, 1H)	71.4
$6 "$	3.78 (m, 1H)	75.26 (CH)	4.05 (d, 9.5, 1H)	75.5
$7{ }^{\prime \prime}$	-	$\begin{aligned} & 182.00 \\ & (\mathrm{C}=\mathrm{O}) \end{aligned}$	-	170.2

Table 92 Major HMBC, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY and NOEDIFF data of compound SK24

Proton	HMBC	COSY	NOE
H-2	C-4, C-1', C-8a	H-3	H-2', H-6'
H-3	C-2, C-4, C-4a, C-1'	H-2	H-2, H-2'
H-6	C-5, C-7, C-8, C-4a	-	H-2'
H-8	C-6, C-7, C-4a	-	H-2'
H-2'	C-2, C-1', C-4', C-6'	H-6'	H-2
H-5'	C-1', C-3'	H-6'	-
H-6'	C-2, C-1', C-2', C-4'	H-2', H-5'	H-2

Table 92 (continued)

Proton	HMBC	COSY	NOE
H-2"	-	H-3"	H-6, H-8, H-4", H-6"
H-3"	C-4", C-6"	-	-
H-4"	C-5", C-6"	-	-
H-5"	C-6"	-	-
H-6"	C-4", C-5"	H-5"	H-2"

PART II

CHEMICAL CONSTITUENTS FROM THE ROOTS OF CLERODENDRUM PETASITES S. MOORE

CHAPTER 2.1

INTRODUCTION

2.1.1 Introduction

Clerodendrum petasites S. Moore, belongs to the family Verbenaceae. C. petasites is erect, shrub or herb, 1-2 m high, dark brown color, and is widely spread over topics long roadside in hill of evergreen forest. Flowers are long tubes with red color, calyx is cup shaped, typically 5 lobes. Leaves whorled with $3-5$ per node or opposite, sessile or subsessile, 3-4 inch long. Flowers grow in Aug-Nov. The Thai name is Thao Yaai Mom (วุฒิ, 2540). Leaves are smoked to relieve asthma. Its roots are used as expectorant, antipyretic and antidote against venom and treat insect bites and fever (Upo, 2005).

2.1.2 Review of Literatures

Chemical constituents from the genus Clerodendrum

Plant in the genus Clerodendrum (verbenaceae) is well known to be rich in variety of compounds, e.g., triterpenes (Jia, 2007; Vu, 2006; Nan, 2006), steroids (Vu, 2006; Shehata, 2001), phenylethanoid glycosides (Li, 2005; Nan, 2005b), diterpenes (Sultana, 2005; Pandey, 2005; Hosny, 2003), flavoniods (Nan, 2005a; Hazekamp, 2001; Rahman, 2000) and iridiod glycosides (Kanchanapoom, 2005), hydrobenzofuran (Yang, 2002). Some of these compounds showed interesting biological and pharmacological activities such as anthelmintic activity (Pal, 2007), antioxidant activity (Chae, 2007; Nyegue, 2007; Hwang, 2007; Le, 2006; Chae, 2006), antifungal activity (Nyegue, 2007; Roy, 1996, 1995), anti-inflammatory (Hwang, 2007; Park, 2007), hepatoprotective activity (Vidya, 2007), antisnake venom activity (Lobo, 2006) and cytotoxic activity (Hosny, 2003).

Chemical constituents isolated from the genus Clerodendrum up to the year 2001 have been reported (Boonsri, 2004). The continuing search using SciFinder database revealed additional chemical constituents in the year 2005 up to 2008 which were summarized in Table 93.

Table 93 Compounds from the Clerodendrum genus

Scientific name	Investigated part	Compounds	Structures	References
C. buchholzii	leaves	benzaldehyde octen-3-ol	$\begin{aligned} & 7 \mathrm{a} \\ & 2 \mathrm{c} \end{aligned}$	Nyegue, M. A., et al., $2005,2007$
C. bungei	aerial parts	clerodendronoside acteoside isoacteoside cistanoside C jionoside C leucosceptoside A cistanoside D campneoside I campneoside II cistanoside F β-sitosterol taraxerol glochidone glochidonol glochidiol 5-O-ethylcleroindicin D bungein A betulinic acid hispidulin	$24 p$ $24 a$ $24 k$ $24 b$ 240 $24 d$ $24 c$ $24 e$ $24 f$ $24 n$ $25 c$ $27 k$ $27 j$ $27 f$ $27 e$ $21 a$	Li, Y. et al, 2005 Gao, L. et al., 2003a Yang, H. et al., 2002

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
		pentacosane clerosterol acteoside clerosterol 3-O- β - D-glucopyranoside cleroindicin A cleroindicin C cleroindicin E cleroindicin F martinoside	2b 25a 24a 26b 3a 21b 21d 21c 24g	
C. calamitosum	leaves and stems	phaeophorbide a vincristine camptothecin pheophytin a O allomer methyl 10-hydroxypheophorbide a 10-hydroxy pheophorbide a 13-ethenyl-18-ethyl-7,8-dihydro-3-(me-thoxycarbonyl)-5-(methoxyoxoace-tyl)-2,8,12,17-tetramethylpheophorbide	23e 6c 6a 23a 23b 23c $23 f$	$\begin{aligned} & \text { Cheng, H.-H., } \\ & \text { et al., } 2001 \end{aligned}$

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
		methylpheo- phorbide a purpurin-7-trime- thyl ester	$\begin{aligned} & \hline 23 d \\ & 23 g \end{aligned}$	
C. canesens	whole plant	lupeol α-amyrin 3-undeca- noate lupeol acetate lupeol 3-palmitate melastomic acid β-amyrin acetate betulinic acid	27b 27i 27c 27d 27m 27h 271	$\begin{aligned} & \text { Jia, L., et al., } \\ & 2007 \end{aligned}$
C. chinense	aerial part	5-O- β-glucopy ranosylharpagide harpagide melittoside monomelittoside cornoside rengyoxide rengyolone rengyoside B	$\begin{gathered} \hline 18 \mathrm{c} \\ \text { 18b } \\ \text { 18d } \\ 18 \mathrm{a} \\ 9 \mathrm{~b} \\ 3 \mathrm{~b} \\ 21 \mathrm{e} \\ 9 \mathrm{aa} \end{gathered}$	Kanchana- poom, Y., et al., 2005
C. cyrtophyllum	roots	friedelin uncinatone 22-dehydroclerosterol	$\begin{aligned} & 27 a \\ & 17 a \\ & 25 b \end{aligned}$	$\begin{aligned} & \text { Vu, D. H., } \\ & \text { et al., } 2006 \end{aligned}$

Table 3 (continued)

Scientific name	Investigated part	Compounds	Structures	References
C. cyrtophyllum	twigs and leaves leaves	cirsilineol cirsilineol-4'-O- β - D-glucopyranoside phaeophorbide a vincristine camptothecin pheophytin a O - allomer methyl 10-hydroxy- pheophorbide a 10-hydroxy- pheophorbide a 13-ethenyl-18-ethyl- 7,8-dihydro-3-(me-thoxycarbonyl)-5-(methoxyoxoacetyl)-2,8,12,17-tetramethylpheophorbide methylpheophorbide a purpurin-7-trimethyl ester	12a 13a $23 e$ 6c 6a 23a 23b 23c $23 f$ 23d 23g	Le, C. N., et al., 2006 Cheng, H.-H., et al., 2001
C. fragrans	leaves	β-sitosterol clerosterol daucosterol caffeic acid	$\begin{gathered} \hline 25 c \\ 25 a \\ 26 a \\ 7 d \end{gathered}$	$\begin{aligned} & \text { Gao, L., et al., } \\ & \text { 2003b } \end{aligned}$

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
		kaempferol 5,4'-dihydroxy- kaempferol-7-O- β - rutinoside acteoside leucoseceptoside A	14a 15a 24a 24d	
C. grayi	leaves	prunasin lucumin	8a 8b	Miller, R. E., et al., 2006
C. indicum	-	clerodendrone hispidulin	$\begin{aligned} & \hline \text { 17b } \\ & \text { 12c } \end{aligned}$	Ravindranath, N., et al., 2003
C. inerme	aerial parts aerial parts	4α-methyl- 24β -ethyl-5 α-cholesta-14,25-dien-3 β-ol 24β-ethylcholesta- 5,9(11),22E-trien- 3β-ol betulinic acid lupeol magnificol glutinone glutinol 3-O-acetyloleanolic aldehyde uncinatone pentadecanoic acid β-D-glucoside	25f 25e 271 27b 27n 10b 27p 270 17a 5a	Pandey, R., et al., 2007 Nan, H., et al., 2006 Pandey, R., et al., 2006

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
	aerial parts aerial parts	stigmasterol glucoside acacetin apigenin stigmasterol betulinic acid acacetin syringic acid p-methoxybenzoic acid apigenin daucosterol 2-(3-methoxy-4-hy-droxylphenyl)ethyl-$O-2 ", 3 "-$ diacetyl- α -L-rhamnopyrano-syl-($1 \rightarrow 3$)-4-O-(E)-feruloyl- β-D-glucopyranoside monomelittoside melittoside inerminoside A1 verbascoside isoverbascoside campneoside I	18d 18e 24a 24k 24e	Nan, H., et al., 2005a Nan, H., et al., 2005b

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
C. inerme	leaves	inerme A inerme B 14,15-dihydro- 15β -methoxy-3-epicaryoptin	$\begin{aligned} & \text { 20c } \\ & \text { 20d } \\ & 20 g \end{aligned}$	Pandey, R., et al., 2005
	aerial parts	$\begin{aligned} & 4 \alpha \text {-methyl- } 24 \beta \text { - } \\ & \text { ethyl- } 5 \alpha \text {-cholesta- } \\ & 14,25 \text {-dien- } 3 \beta \text {-ol } \end{aligned}$	$25 f$	Pandey, R., et al., 2003
		24β-ethylcholesta- 5,9(11),22E-trien- 3β-ol	25e	
		11-pentacosanone		
		6-nonacosanone	4b	
		clerodermic acid	10c	
	aerial parts	sammangaoside A	19a	Kanchana-
		sammangaoside B	19b	poom, T.,
		sammangaoside C	18 f	et al., 2001
		benzyl-O- β-D-glu- copyranoside	16d	
		salidroside	16e	
		melittoside	18d	
		monomelittoside	18a	
		acteoside	24a	
		isoacteoside	24k	
		descaffeoylverbas-	16b	

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
		leukoceptoside A darendoside B (Z)-3-hexenyl- β - glucopyranoside leonuriside A seguinoside K dehydrodiconiferyl- 4-O- β-D-glucopy- ranoside alcohol phenylmethyl 2-O- β-D-xylopyranosyl- β-D-glucopyrano- side [2S-[2 $\alpha, 3 \beta, 5(E)]]-$ [2,3-dihydro-2-(4- hydroxy-3,5-dime- thoxyphenyl)-5-(3- hydroxy-1-prope- nyl-7-methoxy-3- benzofuranyl]me- thyl- β-D-glucopy- ranoside	24d 16c 5b 16j $16 f$ 16h $16 i$ 16g	
C. infortunatum	leaves	daucosterol tetratriacontanol	26a 2a	Pal, D. K., et al., 2007

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
		melissic acid lupeyl ester	27g	
C. myricoides	-	myricoidine	6b	Kebenei, J. S., et al., 2004
C. petasites	aerial parts aerial parts	arbutin hispidulin	$\begin{aligned} & 16 a \\ & 12 \mathrm{c} \end{aligned}$	Thongchai, W., et al., 2007 Hazekamp, A., et al., 2001
C. phlomidis	aerial parts	clerosterol tetratriacontanol	$\begin{gathered} 25 a \\ 2 a \end{gathered}$	Pandey, R., et al., 2008
C. serratum	roots leaves	ursolic acid 5-hydroxyl-10-O- cinnamoyloxy- tarennoside 17-aldehydedeyl- oxy-19- β-D-glu- copyranosyloxy- lab-8,13(E)-dien- 15-ol	27q 11a 11b	Vidya, S. M., et al., 2007 Chen, J.-C., et al., 2001
C. splendens	aerial parts	splendensin A splendensin B	$\begin{aligned} & \text { 20a } \\ & \text { 20b } \end{aligned}$	Hosny, M., et al., 2003
C. splendens	leaves	22-dehydroclero- sterol apigenin	$\begin{aligned} & \text { 25b } \\ & 12 d \end{aligned}$	Shehata, A. H., et al., 2001

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
		apigenin-7-O-glucoside 3',4',7-trihydroxy- flavone-7-O-glucoside	13b 13c	
C. trichotomum	-	2"-acetylmartynoside 3"-acetylmartynoside	1b	$\begin{aligned} & \text { Chae, S., et al., } \\ & 2007 \end{aligned}$
	leaves	acteoside	24a	$\begin{aligned} & \text { Hwang, W. G., } \\ & \text { et al., } 2007 \end{aligned}$
	-	trichotomoside	24m	$\begin{aligned} & \text { Chae, S., et al., } \\ & 2006 \end{aligned}$
	-	isoacteoside	24k	$\begin{aligned} & \text { Chae, S., et al., } \\ & 2005 \end{aligned}$
		jionoside D	24i	$\begin{aligned} & \text { Chae, S., et al., } \\ & 2004 \end{aligned}$
	stems	acteoside	24a	$\begin{aligned} & \text { Kang, D. G., } \\ & \text { et al., } 2003 \end{aligned}$
		leucosceptoside A	24d	
		martynoside	24h	
		isoacteoside	24k	
		isomartynoside	1a	
	leaves	apigenin-7-O- β-D- glucuronide	13d	Sohn U.-D., et al., 2003

Table 93 (continued)

Scientific name	Investigated part	Compounds	Structures	References
	stems	acteoside isoacteoside leucosceptoside A plantainoside C jionoside D martynoside isomartynoside	$\begin{gathered} \hline 24 a \\ 24 k \\ 24 d \\ 24 \mathrm{l} \\ 24 \mathrm{i} \\ 24 \mathrm{~h} \\ 1 \mathrm{a} \end{gathered}$	Kim, H. J., et al., 2001
C. viscosum	leaves	$\begin{aligned} & \text { 8-(acetyloxy)-5- } \\ & {[(2 S, 5 R) \text {-hexahy- }} \\ & \text { dro-5-hydroxyfuro- } \\ & \text { [2,3-b]furan-2-yl]- } \\ & \text { octahydro-5,6-di- } \\ & \text { methylneoclerodane } \\ & \text { 8-(acetyloxy)-5- } \\ & \text { [(2S,5S)-hexahy- } \\ & \text { dro-5-hydroxyfuro- } \\ & \text { [2,3-b]furan-2-yl] } \\ & \text { octahydro-5,6-di- } \\ & \text { methylneoclerodane } \end{aligned}$	20f 20e	Sultana, N., et al., 2005

Structures of Compounds Isolated from Plants of the genus Clerodendrum

1. Acetylmartynosides

1a : isomartynoside

1b: $\mathrm{R}_{1}=\mathrm{Ac}, \mathrm{R}_{2}=\mathrm{H}$ 2"-acetylmartynoside
1c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Ac} 3$ "-acetylmartynoside

2. Alkanes

3. Alicyclics

4. Aliphatic ketones

$$
\begin{gathered}
\mathrm{H}_{3} \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 1}-\stackrel{\mathrm{C}}{\mathrm{C}}-\left(\mathrm{CH}_{2}\right)_{\mathrm{n} 2}-\mathrm{CH}_{3} \\
\mathbf{4 a}: \mathrm{n} 1=9, \mathrm{n} 2=13 \quad \text { 11-pentacosanone } \\
\mathbf{4 b}: \mathrm{n} 1=4, \mathrm{n} 2=22 \text { 6-nonacosanone }
\end{gathered}
$$

5. Aliphatic glycosides

5a : pentadecanoic acid β-D-glucoside

5b : (Z)-3-hexenyl- β-glucopyranoside

6. Alkaloids

6a: camptothecin

6b : myricoidine

6c: vincristine

7. Benzenoids

7a : benzaldehyde

7b : syringic acid

7c : p-methoxybenzoic acid

7d : caffeic acid

8. Cyanogenic derivertives

8a : prunasin

8b : lucumin

9. Cyclohexyl ethanosides

9a : rengyoside B

9b : cornoside
10. Diterpenes

10a : clerodermic acid

10b : glutinone

10c: clerodermic acid

11. Diterpene glycosides

11a : 5-hydroxyl-10-O-cinna moyloxy-tarennoside

11b : 17-aldehydedeyloxy-19- β-D-glucopy-ranosyl-oxylab-8,13(E)-dien-15-iol

12. Flavones

12a: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{4}=\mathrm{OCH}_{3}$ cirsilineol
12b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{4}=\mathrm{OH}$ pectolinarigenin
12c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{OCH}_{3}, \mathrm{R}_{4}=\mathrm{OH}$ hispidulin
12d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{OH} \quad$ apigenin
12e : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{OH} \quad$ acacetin

13. Flavone glycosides

13a : $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=O$-glu, $\mathrm{R}_{3}=\mathrm{OH}, \quad$ cirsilineol-4'-O- β-D$\mathrm{R}_{4}=\mathrm{OCH}_{3}, \mathrm{R}_{5}=\mathrm{OCH}_{3}$
glucopyranoside
13b : $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{OH}, \mathrm{R}_{4}=\mathrm{H}, \quad$ apigenin-7-O-glucoside $\mathrm{R}_{5}=\mathrm{O}$-glu

13c: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{H}$, $\mathrm{R}_{5}=\mathrm{O}$-glu

3',4',7-trihydroxy-
flavone-7-O-glucoside

13d : apigenin-7- β-D-glucuronide

14. Flavonol

14a : kaempferol

15. Flavonol glycoside

15a : 5,4'-dihydroxy-kaempferol-7-O- β-rutinoside

16. Glycosides

16a : arbutin

16b: $\mathrm{R}=\mathrm{H} \quad$ descaffeoylverbascoside 16c : $\mathrm{R}=\mathrm{CH}_{3}$ darendoside B

16d : benzyl-O- β-D-glucopyranoside

16e : salidroside

16f : seguinoside K

16g : [2S-[2 $\alpha, 3 \beta, 5(E)]]-[2,3$-dihydro-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-(3-hydroxy-1-pro-penyl)-7-methoxy-3-benzofuranyl]methyl, β-D-glucopyranoside

16h : dehydrodiconiferyl 4-O- β -D-glucopyranoside alcohol

16i : phenylmethyl 2-O- β-D-xylo-pyranosyl- β-D-glucopyranoside

$\mathbf{1 6 j}$: leonuriside A

17. Hydroquinone diterpenes

17a : uncinatone

17b : clerodendrone

18. Iridoid glycosides

18a : monomelittoside

18c: 5-O- β-glucopyranosylharpagide

18e : inerminoside A1

18b : harpagide

18d : melittoside

18f : sammangaoside C

19. Megastigmane glycosides

19a : sammangaoside A

19b : sammangaoside B
20. Neo-clerodane diterpenes

20a : splendensin A

20b : splendensin B

$\begin{array}{lr}\text { 20c }: R=H & \text { inerme } A \\ \text { 20d }: R=\mathrm{OCH}_{3} & \\ \text { inerme } B\end{array}$

$$
\begin{array}{ll}
\mathbf{2 0 e}: \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H} & \begin{array}{l}
\text { 8-(acetyloxy)-5-[(2S,5S)-hexahydro-5-hydroxyfuro[2,3- } \\
\text { b]furan-2-yl }] \text { octahydro-5,6-dimethylneoclerodane }
\end{array} \\
\mathbf{2 0 f}: \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} & \begin{array}{l}
\text { 8-(acetyloxy)-5-[(2S,5R)-hexahydro-5-hydroxyfuro[2,3- } \\
\text { b]furan-2-yl]octahydro-5,6-dimethylneoclerodane }
\end{array}
\end{array}
$$

20g : 14,15-dihydro-15 β-methoxy-3-epicaryoptin

21. Perhydrozofurans

21a: 5-O-ethylcleroindicin D

21d : cleroindicin E

21b : cleroindicin C

21c : cleroindicin F

21e : rengyolone

22. Peroxide dimer

22a : bungein A

23. Peptides

23a: $\mathrm{R}_{1}=\mathrm{OH}$

23b : $\mathrm{R}_{1}=\mathrm{OH} \mathrm{R}_{2}=\mathrm{COOCH}_{3}$
23c: $\mathrm{R}_{1}=\mathrm{OH} \quad \mathrm{R}_{2}=\mathrm{COOH}$
23d : $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{COOCH}_{3}$
23e: $\mathrm{R}_{1}=\mathrm{H} \quad \mathrm{R}_{2}=\mathrm{COOH}$
methyl 10-hydroxypheophorbide a
10-hydroxypheophorbide a
methyl pheophorbide a
phaeophorbide a

$23 f: \mathrm{R}=\mathrm{OH} \quad$ 13-ethenyl-18-ethyl-7,8-dihydro-3-(metho-xycarbonyl)-5-(methoxyoxoacetyl)-2,8,12, 17-tetramethylpheophorbide
23g : $\mathrm{R}=\mathrm{OCH}_{3}$ purpurin-7-trimethyl ester

24. Phenylethanoid glycosides

24a: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}$
24b: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3}$
24c: $\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3}$
24d : $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$
24e: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{OCH}_{3}$
24f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{4}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{5}=\mathrm{OH}$
24g: $\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}$
martinoside
24h: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{4}=\mathrm{CH}_{3}$
martynoside
24i: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{5}=\mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{CH}_{3}$ jionoside D
24j : $\mathrm{R}_{1}=\mathrm{R}_{4}=\mathrm{R}_{5}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{6}=\mathrm{R}_{7}=\mathrm{Ac}$ 2-(3-methoxy-4-hydroxylphe-nyl)ethyl-O-2",3"-diacetyl- α-L-rhamnopyranosyl-(1-3)-4-O-(E)-feruloyl- β-D-glucopyranoside

24k : $\mathrm{R}=\mathrm{H} \quad$ isoacteoside (isoverbascoside)
241: $\mathrm{R}=\mathrm{CH}_{3}$ plantainoside C

24m : trichotomoside

24n : cistanoside F

25. Steroids

25a : double bond clerosterol
25b : single bond 22-dehydroclerosterol

25c : single bond β-sitosterol
25d : double bond stigmasterol

25e: 24β-ethylcholesta-5, $9(11), 22 E$-trien- 3β-ol

$25 f$: 4α-methyl- 24β-ethyl- 5α-cholesta-14,25-dien- 3β-ol

26. Steroid glycosides

27. Triterpenes

27a : friedelin

27b : R = H lupeol
27c: $\mathrm{R}=\mathrm{Ac} \quad$ lupeol acetate
27d : $\mathrm{R}=\underbrace{\left(\mathrm{CH}_{2}\right)_{4}^{\prime}}_{\text {呆 }}$ lupeol 3-palmitate

27h : β-amyrin acetate

27j : glochidone

27i: α-amyrin 3-undecanoate

27k : taraxerol

271 : betulinic acid

27m : melastomic acid

27n : magnificol

270:3-O-acetyloleanolic aldehyde

27p : glutinol

$\mathbf{2 7 q}$: ursolic acid

2.1.3 The Objectives

Based on the literature search, phytochemical investigation on the aerial part (Hazekamp, 2001) and (Thongchai, 2007) of C. petasites resulted in the isolation of flavonoids and glycoside derivatives. We are interested in investigation of its roots in order to separate additional chemical constituents. This research involved isolation, purification and structure elucidation of chemical constituents from the roots of C. petasites which were collected at Songkhla province.

CHAPTER 2.2

EXPERIMENTAL

2.2.1 Chemical and instrument

Melting points were determined on an electrothermal melting point apparatus (Electrothermal 9100) and reported without correction. Infrared spectra (IR) were obtained on a Perkin Elmer Spectrum GX FT-IR system and recorded on wavenumber $\left(\mathrm{cm}^{-1}\right) .{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-Nuclear magnetic resonance spectra (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) were recorded on a FTNMR, Bruker Avance 300 MHz or 500 MHz spectrometers using tetramethylsilane (TMS) as an internal standard. Spectra were recorded as chemical shift parameter (δ) value in ppm down field from TMS ($\delta 0.00$). Ultraviolet spectra (UV) were measured with UV-160A spectrophotometer (SHIMADSU). Principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. Optical rotations were measured in methanol or chloroform solution with sodium D line (590 nm) on a JASCO P-1020 automatic polarimeter. Quick column chromatography, thin-layer chromatography (TLC) and precoated thin-layer chromatography were performed on silica gel $60 \mathrm{GF}_{254}$ (Merck) or reverse-phase C-18 silica gel. Column chromatography was performed on silica gel (Merck) type 100 (70-230 Mesh ASTM), Sephadex LH-20 or reverse-phase C-18 silica gel. The solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except for petroleum ether, chloroform, ethanol and ethyl acetate which were analytical grade reagent.

2.2.2 Plant material

The roots of Clerodendrum petasites were collected at Kaorubchang, Maung, Songkhla, Thailand in May in the year 2007.

2.2.3 Chemical investigation from the roots of C. petasites

2.2.3.1 Isolation and extraction

The roots of Clerodendrum petasites S. Moore (1.20 kg), cut into small segments, were extracted with $\mathrm{MeOH}(6 \mathrm{~L})$ for three time over the period of 3, 7 and 30 days at room temperature. After filtration, the filtrate was evaporated to dryness under reduced pressure to give a crude methanol extract as a dark brown gum in 46.43 g .

2.2.3.2 Chemical investigation of the crude methanol extract of the roots of C. petasites

The crude methanol extract was primarily tested for its solubility in various solvents at room temperature. The results were demonstrated in Table 94.

Table 94 Solubility of the crude extract in various solvents at room temperature

Solvent	Solubility at room temperature	
Petroleum ether	-	
Dichloromethane	+	(pale yellow solution mixed with dark brown gum)
Ethyl acetate	+	(pale yellow solution mixed with dark brown gum)
Acetone	+	(yellow solution mixed with dark brown gum)
Methanol	++	(dark yellow solution mixed with dark brown gum)
Water	++	(brown yellow solution mixed with dark brown gum)
$10 \% \mathrm{HCl}$	+++	(brown yellow solution)
$10 \% \mathrm{NaOH}$	+++	(yellow solution mixed with dark brown gum)
$10 \% \mathrm{NaHCO}_{3}$	+++	(yellow solution mixed with dark brown gum)

Symbol meaning: + slightly soluble, ++ moderately soluble, +++ well soluble - insoluble

The crude methanol extract was well soluble in methanol, $10 \% \mathrm{NaOH}, 10 \%$ $\mathrm{HCl}, 10 \% \mathrm{NaHCO}_{3}$. The solubility results indicated that major components were moderately polar compounds.

Chromatogram characteristics on normal phase TLC with $5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed five UV-active spots with the R_{f} values of $0.24,0.40,0.42,0.73$ and 0.85 and four purple spots under ASA reagent with the R_{f} values of $0.19,0.26,0.50$ and 0.86 . Further purification by Sephadex LH-20 was performed. Elution was conducted with pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 95.

Table 95 Fractions obtained from the crude methanol extract by column chromatography over Sephadex LH-20

Fraction	Weight (g)	Physical appearance
T1	1.52	Brown gum
T2	30.08	Brown gum
T3	9.33	Dark yellow solid
T4	3.09	Dark yellow gum
T5	2.41	Brown gum

Fraction T1 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Therefore, it was not further investigated.

Fraction T2 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.36 and 0.55 and six purple spots under ASA reagent with the R_{f} values of $0.12,0.26,0.52,0.64$, 0.73 and 0.92 . The ${ }^{1} \mathrm{H}$ NMR spectrum displayed sugar signals. Therefore, it was not further investigated.

Fraction T3 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.34,0.40$ and 0.52 and two purple spots under ASA reagent with the R_{f} values of 0.09 and 0.28 . This fraction was then separated into two fractions by dissolving in methanol; the methanol soluble fraction T3M and the methanol insoluble fraction T3N.

Fraction T3M (5.59 g) Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.34,0.40$ and 0.52 and two purple spots under ASA reagent with the R_{f} values of 0.09 and 0.28 . It was separated by flash column chromatography over silica gel. Elution was conducted initially with pure dichloromethane, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford five fractions as shown in Table 96.

Table 96 Fractions obtained from the fraction T3M by flash column chromatography over silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
T3MA	$100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	64.1	Yellow gum
	$1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$		
T3MB	$2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	122.3	Yellow gum
T3MC	$5 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	164.2	Yellow gum mixed
			with pale yellow solid
T3MD	$10-20 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$	37.2	Brown yellow gum
T3ME	$40 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}-$	5102.4	Brown gum
	$100 \% \mathrm{MeOH}$		

Fraction T3MA Chromatogram characteristics on normal phase TLC with $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed three purple spots under ASA reagent with the R_{f} values of $0.61,0.71$ and 0.80 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Therefore, it was not further investigated.

Fraction T3MB Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.40 and 0.47 and three purple spots under ASA reagent with the R_{f} values of $0.19,0.51$ and 0.68 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK14 as a major component. Further investigation was then not carried out.

Fraction T3MC (SK14) Upon standing at room temperature, the yellow solid $(15.1 \mathrm{mg})$ precipitated. Its chromatogram on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.40 .

Melting point (${ }^{\circ} \mathrm{C}$)	219-222
$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \varepsilon)$	$\begin{aligned} & 204 \text { (4.30), } 224(3.31), 238 \text { (2.76), } 261 \\ & (2.14), 281(2.21) \end{aligned}$
FTIR(neat): $\mathrm{v}\left(\mathrm{cm}^{-1}\right)$	3348 (OH stretching), 1668 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR(Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(300 \mathrm{MHz}):$	$\begin{aligned} & 13.22(\mathrm{~s}, 1 \mathrm{H}), 8.03(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), \\ & 7.12(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), \\ & 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR(Acetone- $\left.d_{6}\right)\left(\delta_{\text {ppm }}\right)(75 \mathrm{MHz}):$	$\begin{aligned} & 183.60,164.96,163.78,157.74,154.05 \text {, } \\ & 154.00,132.25,129.10,124.42,115.44, \\ & 105.81,104.06,94.80,60.69,56.01 \end{aligned}$
	$\begin{aligned} & 129.10,115.44,104.06,94.80 \\ & 60.69,56.01 \end{aligned}$

The filtrate becomes a yellow gum (148.7 mg) after evaporation to dryness under reduced pressure. Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.40 and 0.47 and two purple spots under ASA reagent with the R_{f} values of 0.51 and 0.68 . The ${ }^{1} H$ NMR data indicated the presence of SK14 as a major component. Further investigation was then not carried out.

Fraction T3MD Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.47 and four purple spots under ASA reagent with the R_{f} values of $0.09,0.19,0.51$ and 0.68 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK14 as a major component. Further investigation was then not carried out.

Fraction T3ME Chromatogram characteristics on normal phase TLC with $100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.02 and three purple
spots under ASA reagent with the R_{f} values of $0.19,0.24$ and 0.63 . The ${ }^{1} \mathrm{H}$ NMR spectrum showed sugar signals. Therefore, it was not further investigated.

Fraction T3N (3.73 g) Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two purple spots under ASA reagent with the R_{f} values of 0.09 and 0.28 . The ${ }^{1} \mathrm{H}$ NMR spectrum showed sugar signals. Therefore, it was not further investigated.

Fraction T4 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three UV-active spots with the R_{f} values of $0.12,0.40$ and 0.52 and three purple spots under ASA reagent with the R_{f} values of $0.09,0.28$ and 0.81 . It was then separated into two fractions by dissolving in methanol; the methanol soluble fraction $\mathbf{T 4 M}$ and the methanol insoluble fraction T4N.

Fraction T4M (1.38 g) Chromatogram characteristics on reverse phase TLC with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ showed three major UV-active spots with the R_{f} values of $0.20,0.25$ and 0.55 . It was further purified by column chromatography over reverse phase C_{18} silica gel. Elution was conducted initially with $40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$, gradually enriched with methanol until pure methanol. Fractions with similar chromatogram characteristics were combined and evaporated to dryness under reduced pressure to afford seven fractions as shown in Table 97.

Table 97 Fractions obtained from the fraction T4M by column chromatography over reverse phase C_{18} silica gel

Fraction	Mobile phase	Weight (mg)	Physical appearance
T4MA	$40 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	1205.5	Brown gum
T4MB	$50-60 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	49.1	Brown yellow gum
T4MC	$70 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	12.4	Yellow gum
T4MD	$80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	8.8	Yellow gum
T4ME	$80 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	43.2	Yellow gum
T4MF	$90 \% \mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$	27.6	Yellow gum
T4MG	$100 \% \mathrm{MeOH}$	47.6	Yellow gum

Fraction T4MA Chromatogram characteristics on normal phase TLC with $4 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.22 and four purple spots under ASA reagent with the R_{f} values of $0.19,0.51,0.55$ and 0.63 . The ${ }^{1} \mathrm{H}$ NMR spectrum showed sugar signals. Therefore, it was not further investigated.

Fraction T4MB Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.48 and two purple spots under ASA reagent with the R_{f} values of 0.50 and 0.61 . The ${ }^{1} H$ NMR data indicated the presence of SK15 as a major component. Further investigation was then not carried out.

Fraction T4MC Chromatogram characteristics on normal phase TLC with $30 \% \mathrm{EtOAc} /$ Petrol (4 runs) showed two UV-active spots with the R_{f} values of 0.28 and 0.35 . Further purification by precoated TLC with $30 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (8 runs) as a mobile phase afforded two bands.

Band 1 (SK15) was obtained as a yellow gum in 4.2 mg . Chromatogram characteristics on normal phase TLC with $30 \% \mathrm{EtOAc} / \mathrm{Petrol}$ (4 runs) showed one UV-active spot with the R_{f} value of 0.35 .

$\mathrm{UV} \lambda_{\text {max }}(\mathrm{nm})(\mathrm{MeOH})(\log \boldsymbol{\varepsilon})$	214 (2.18), 273 (1.24), 334 (1.25)
$\operatorname{FTIR}($ neat $): ~\left(\mathrm{~cm}^{-1}\right)$	3348 (OH stretching), 1668 ($\mathrm{C}=\mathrm{O}$ stretching)
${ }^{1} \mathrm{H}$ NMR (Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(500 \mathrm{MHz})$:	$\begin{aligned} & 13.22(s, 1 \mathrm{H}), 7.94(d, J=9.0 \mathrm{~Hz} \\ & 2 \mathrm{H}), 7.03(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.65 \\ & (\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}) \end{aligned}$
${ }^{13} \mathrm{C}$ NMR (Acetone- d_{6}) $\left(\delta_{\text {ppm }}\right)(125 \mathrm{MHz})$:	$\begin{array}{llll} 182.79, & 164.34, & 161.25, & 156.90, \\ 153.16, & 153.05, & 131.35, & 128.35, \\ 122.24, & 116.01, & 104.78, & 102.60, \\ 93.89, & 59.76 & & \end{array}$
	$\begin{aligned} & 128.35,116.01,102.60,93.89 \\ & 59.76 \end{aligned}$

Band 2 was obtained as a yellow gum in 3.2 mg . Chromatogram characteristics on normal phase TLC with 30\%EtOAc/Petrol showed two UV-active spots with the R_{f} values of 0.28 and 0.35 and two purple spots under ASA reagent with the R_{f} values of 0.04 and 0.61 . The ${ }^{1} \mathrm{H}$ NMR spectrum indicated the presence of many compounds. It was not further investigated.

Fraction T4MD Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed one UV-active spot with the R_{f} value of 0.48 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK14 as a major component. Further investigation was then not carried out.

Fraction T4ME Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.12 and 0.48 and three purple spots under ASA reagent with the R_{f} values of $0.28,0.52$ and 0.61 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK14 as a major component. Further investigation was then not carried out.

Fraction T4MF Chromatogram characteristics on normal phase TLC with $1 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed two UV-active spots with the R_{f} values of 0.42 and 0.48 and two purple spots under ASA reagent with the R_{f} values of 0.05 and 0.12 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of SK14 as a major component. Further investigation was then not carried out.

Fraction T3MG Chromatogram characteristics on normal phase TLC with $80 \% \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Petrol showed three purple spots under ASA reagent with the R_{f} values of $0.61,0.71$ and 0.80 . The ${ }^{1} \mathrm{H}$ NMR data indicated the presence of long chain hydrocarbons. Therefore, it was not further investigated.

Fraction T4N (1.70 g) Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed three purple spots under ASA reagent with the R_{f} values of $0.09,0.28$ and 0.81 . The ${ }^{1} \mathrm{H}$ NMR spectrum showed sugar signals. Therefore, it was not further investigated.

Fraction T5 Chromatogram characteristics on normal phase TLC with $2 \% \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ showed no definite spot under UV-S. Its ${ }^{1} \mathrm{H}$ NMR spectrum showed the absence of aromatic and olefinic protons. Therefore, it was not further investigated.

CHAPTER 2.3

RESULTS AND DISCUSSION

The crude methanol extract from the roots of C. petasites was separated by chromatographic methods to yield two flavoniods (SK14 and SK15). The structures were elucidated by analysis of 1D and 2D NMR spectroscopic data and/or comparison of the spectroscopic data, especially ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data with those previously reported in the literatures. In addition, the ${ }^{13} \mathrm{C}$ NMR signals were assigned from DEPT, HMQC and HMBC spectra.

2.3.1 Compound SK15

Compound SK15 was isolated as a yellow gum. It exhibited UV absorption bands of a flavone chromophore at 214, 273 and 334 nm while the hydroxyl and conjugated carbonyl absorption bands were found at 3348 and $1668 \mathrm{~cm}^{-1}$, respectively, in the IR spectrum. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 50) contained signals of chelated hydroxy proton ($\delta_{\mathrm{H}} 13.22, \mathrm{~s}, 1 \mathrm{H}$), para-disubstituted aromatic protons [$\delta_{\mathrm{H}} 7.94$ and $7.03(d, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}$ each $)$], singlet aromatic proton $\left(\delta_{\mathrm{H}} 6.64,1 \mathrm{H}\right)$, singlet olefinic proton ($\delta_{\mathrm{H}} 6.65,1 \mathrm{H}$) and one methoxyl group ($\delta_{\mathrm{H}} 3.88,3 \mathrm{H}$). The ${ }^{13} \mathrm{C}$ NMR (Table 98) (Figure 51) and HMQC data indicated that compound SK15 consisted of sixteen carbons: nine quarternary, six methine and one methoxy carbons. The location of all substituents was established by HMBC data as follows. The chelated hydroxy proton, $\delta_{\mathrm{H}} 13.22$, which was located at the periposition to the flavone carbonyl group, showed HMBC correlations with C-5 (δ_{C} $153.16)$, $\mathrm{C}-6\left(\delta_{\mathrm{C}} 131.35\right)$ and $\mathrm{C}-10\left(\delta_{\mathrm{C}} 104.78\right)$. The singlet aromatic proton was then attributed to $\mathrm{H}-8$ based on the HMBC correlations of $\mathrm{C}-6$ and $\mathrm{C}-10$. The singlet olefinic proton was assigned as $\mathrm{H}-3$ of the flavone moiety and gave cross peaks with C-2 ($\delta_{\mathrm{C}} 164.34$), C-4, C-10 and C-1'($\delta_{\mathrm{C}} 122.24$). HMBC correlations
between the aromatic protons [$\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}\left(\delta_{\mathrm{H}} 7.94\right.$)] of the para-disubstituted benzene and C-2 established the attachment of the para-disubstituted benzene at $\mathrm{C}-2$. In addition, the methoxyl group, $\delta_{\mathrm{H}} 3.88$, was located at $\mathrm{C}-6$ on the basis of a HMBC correlation of $6-\mathrm{OCH}_{3} / \mathrm{C}-6\left(\delta_{\mathrm{C}}\right.$ 131.35). Thus, SK15 was determined as 6methoxyscutellarin which was previously isolated from the roots of C. indicum (Rahman, 2000).

(SK15)

Table 98 The NMR data of compound SK15 and 6-methoxyscutellarin

Position	$\begin{gathered} \text { SK15 } \\ \text { (Acetone- } d_{6} \text {) } \end{gathered}$		HMBC	6-methoxyscutellarin $\left(\mathrm{CDCl}_{3}\right)^{*}$	
	$\delta_{\mathrm{H}}($ mult , J Hz$)$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult, JHz$)$	$\delta_{\text {C }}$
2	-	164.34 (C)	-	-	164.8
3	6.65 (s, 1H)	102.60 (CH)	C-2, C-	6.62 (s, 1H)	103.1
			4, C10, C-1		
4	-	182.79 (C=O)		-	183.1
$\mathrm{OH}-5$	13.22 (s, 1H)	153.16 (C)	C-5, C-	13.22 (s, 1H)	153.5
			6, C-10		
6	-	131.35 (C)	-	-	131.8
7	-	153.05 (C)	-	-	154.2
8	6.64 (s, 1H)	93.89 (CH)	C-6, C-	6.61 (s, 1H)	94.4
9	-	156.90 (C)	-		157.8
10	-	104.78 (C)	-	-	105.3
1^{\prime}	-	122.24 (C)	-	-	122.7

Table 100 (continued)

Position	$\begin{gathered} \text { SK15 } \\ \left(\text { Acetone- } d_{6}\right) \end{gathered}$		HMBC	6-methoxyscutellarin $\left(\mathrm{CDCl}_{3}\right)^{*}$	
	$\delta_{\mathrm{H}}(\mathrm{mult}, J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult,$J \mathrm{~Hz})$	$\delta_{\text {C }}$
$2^{\prime}, 6^{\prime}$	7.94 (d, 9.0, 2H)	128.35 (CH)	C-2, C-	7.92 (d, 8.9, 2H)	128.9
			4^{\prime}		
$3^{\prime}, 5^{\prime}$	7.03 (d, 9.0, 2H)	116.01 (CH)	C-1', C-	7.00 (d, 8.9, 2H)	116.4
4^{\prime}	-	161.25 (C)	-	-	161.7
$6-\mathrm{OCH}_{3}$	3.88 (s, 3H)	$59.76\left(\mathrm{CH}_{3}\right)$	C-6	3.84 (s, 3H)	60.3

2.3.2 Compound SK14

Compound SK14 was obtained as a pale yellow solid and decomposed at 219$222{ }^{\circ} \mathrm{C}$. The UV and IR absorption bands were similar to those of SK15. The ${ }^{1} \mathrm{H}$ NMR spectrum contained signals of a chelated hydroxy proton ($\delta_{\mathrm{H}} 13.22, \mathrm{~s}, 1 \mathrm{H}$), para-disubstituted aromatic protons, [$\delta_{\mathrm{H}} 8.03$ and $7.12(d, J=9.0 \mathrm{~Hz}), 2 \mathrm{H}$ each $)$], singlet aromatic proton $\left(\delta_{\mathrm{H}} 6.64,1 \mathrm{H}\right)$, singlet olefinic proton $\left(\delta_{\mathrm{H}} 6.69,1 \mathrm{H}\right)$ and two methoxy groups [$\delta_{\mathrm{H}} 3.88$ and $3.92,3 \mathrm{H}$ each)]. The ${ }^{1} \mathrm{H}$ NMR data were similar to those of SK15 except for an additional signal of the methoxyl group ($\delta_{\mathrm{H}} 3.92$) in SK14. The methoxyl group was located at C-4' ($\delta_{\mathrm{C}} 163.78$) on the basis of a HMBC correlation between the methoxy protons with $\mathrm{C}-\mathbf{4}^{\prime}$ (Table 99). The remaining HMBC correlations were similar to those found in SK15. Thus, SK14 was determined as 6,4'dimethoxyscutellarin which was previously isolated from the roots of C. indicum (Rahman, 2000).

Table 99 The NMR data of compound SK14 and 6,4'-dimethoxyscutellarin

Position	$\begin{gathered} \text { SK14 } \\ \left(\text { Acetone- } d_{6}\right) \end{gathered}$		HMBC	6,4'-dimethoxyscutellarin $\left(\mathrm{CDCl}_{3}\right)^{*}$	
	$\delta_{\mathrm{H}}($ mult,$J \mathrm{~Hz})$	$\delta_{\text {C }}$ (C-Type)		$\delta_{\mathrm{H}}($ mult,$J \mathrm{~Hz})$	$\delta_{\text {C }}$
2	-	164.96 (C)	-	-	164.0
3	6.69 (s, 1H)	104.06 (CH)	C-2, C-4,	6.66 (s, 1H)	103.1
			C-10, C-1'		
4	-	183.60 (C=O)	-	-	182.7
OH-5	13.22 ($s, 1 \mathrm{H})$	154.05 (C)	C-5, C-6,	13.22 (s, 1H)	153.0
			C-10		
6	-	132.25 (C)	-	-	131.8
7	-	154.00 (C)	-	-	153.7
8	6.64 (s, 1H)	94.80 (CH)	C-6, C-9,	6.62 (s, 1H)	94.4
			C-10		
9	-	157.74 (C)	-	-	157.8
10	-	105.81 (C)	-	-	104.5
1^{\prime}	-	124.42 (C)	-	-	123.2
$2^{\prime}, 6^{\prime}$	8.03 (d, 9.0, 2H)	129.10 (CH)	C-2, C-4'	7.99 (d, 8.8, 2H)	128.4
$3^{\prime}, 5^{\prime}$	7.12 (d, 9.0, 2H)	115.44 (CH)	C-1', C-4'	7.10 (d, 8.8, 2H)	114.7
4^{\prime}	-	163.78 (C)	-	-	162.8
$6-\mathrm{OCH}_{3}$	3.88 (s, 3H)	$60.69\left(\mathrm{CH}_{3}\right)$	C-6	3.84 (s, 3H)	60.3
$4^{\prime}-\mathrm{OCH}_{3}$	3.92 (s, 3H)	$56.01\left(\mathrm{CH}_{3}\right)$	C-4'	3.89 (s, 3H)	55.4

(Lou, et al., 2002).

REFERENCES

วุฒิ วุฒิธรรมเวช, 2540. สารานุกรมสมุนไพร รวมหลักเภสัชกรรมไทย โอ.เอส. พริ้นติ้งเฮ้า, กรุงเทพฯ

Akao, Y., Nakagawa, Y., Iinuma, M. and Nozawa, Y. 2008. Anti-cancer effects of xanthones from pericarps of mangosteen. Int. J. Mol. Sci. 9 (3), 355-370.

Balunas, M. J., Su, B., Brueggemeier, R. W. and Kinghorn, A. D. 2008. Xanthones from the Botanical Dietary Supplement Mangosteen (Garcinia mangostana) with Aromatase Inhibitory Activity. J. Nat. Prod. 71 (7), 1161-1166.

Boonsri, S. 2004. Chemical constituents of Clerodendrum serratum and Mesua kunstleri. Master of Science Thesis, Prince of Songkla University, Songkhla, Thailand.

Castardo, J. C., Prudente, A. S., Ferreira, J., Guimaraes, C. L., Delle Monache, F., Cechinel Filho, V., Otuki, M. F. and Cabrini, D. A. 2008. Anti-inflammatory effects of hydroalcoholic extract and two biflavonoids from Garcinia gardneriana leaves in mouse paw oedema. J. Ethnopharmacol. 118 (3), 405411.

Chae, S., Kang, K. A., Kim, J. S., Kim, H. K., Lee, E. J., Hyun, J. W. and Kang, S. S. 2007. Antioxidant activities of acetylmartynosides from Clerodendrum trichotomum. J. Appl. Biol. Chem. 50 (4), 270-274.

Chae, S., Kang, K. A., Kim, J. S., Hyun, J. W. and Kang, S. S. 2006. Trichotomoside: a new antioxidative phenylpropanoid glycoside from Clerodendron trichotomum. Chem. Biodivers. 3 (1), 41-48.

Chae, S., Kim, J. S., Kang, K. A., Bu, H. D., Lee, Y., Seo, Y. R., Hyun, J. W. and Kang, S. S. 2005. Antioxidant activity of isoacteoside from Clerodendron trichotomum. J. Toxicol. Environ. Health Part A 68 (5), 389-400.

Chae, S., Kim, J. S., Kang, K. A., Bu, H. D., Lee, Y., Hyun, J. W. and Kang, S. S. 2004. Antioxidant activity of jionoside D from Clerodendron trichotomum. Biol. Pharm. Bull. 27 (10), 1504-1508.

Chen, L.-G., Yang, L.-L. and Wang, C.-C. 2008. Anti-inflammatory activity of mangostins from Garcinia mangostana. Food Chem. Toxicol. 46 (2), 688-693.

Chen, J.-J., Peng, C.-F., Huang, H.-Y. and Chen, I.-S. 2006. Benzopyrans, biphenyls and xanthones from the root of Garcinia linii and their activity against Mycobacterium tuberculosis. Planta Med. 72 (5), 473-477.

Chen, J.-C. and Zhu, Q.-X. 2001. Two new terpenoid glucosides from Clerodendrum serratum. Pharmazie 56 (3), 270-271.

Cheng, H.-H., Wang, H.-K., Ito, J., Bastow, K. F., Tachibana, Y., Nakanishi, Y., Xu, Z., Luo, T.-Y. and Lee, K.-H. 2001. Cytotoxic pheophorbide-related compounds from Clerodendrum calamitosum and Clerodendrum cyrtophyllum. J. Nat. Prod. 64 (7), 915-919.

Chien, S.-C., Chyu, C.-F., Chang, I.-S., Chiu, H.-L. and Kuo, Y.-H. 2008. A novel polyprenylated phloroglucinol, garcinialone, from the roots of Garcinia multiflora. Tetrahedron Lett. 49 (36), 5276-5278.

Chin, Y.-W., Chai, H.-B., Keller, W. J. and Kinghorn, A. D. 2008a. Lignans and Other Constituents of the Fruits of Euterpe oleracea (Acai) with Antioxidant and Cytoprotective Activities. J. Agric. Food. Chem. 56 (17), 7759-7764.

Chin, Y.-W., Jung, H.-A., Chai, H., Keller, W. J. and Kinghorn, A. D. 2008 b. Xanthones with quinone reductase-inducing activity from the fruits of Garcinia mangostana (Mangosteen). Phytochemistry 69 (3), 754-758.

Cui, C.-B., Tezuka, Y., Kikuchi, T., Nakano, H., Tamaoki, T. and Park, J.-H. 1990. Constituents of Fern, Davallia mariesii Moore. I. Isolation and structures of Davallialactone and a New Flavonone Glucuronide. Chem. Pharm. Bull., 38 (12), 3218-3225.

Deachathai, S., Mahabusarakam, W., Phongpaichit, S., Taylor, W. C., Zhang, Y.-J. and Yang, C.-R. 2006. Phenolic compounds from the flowers of Garcinia dulcis. Phytochemistry 67 (5), 464-469.

Ee, G. C. L., Daud, S., Taufiq-Yap, Y. H., Ismail, N. H. and Rahmani, M. 2006. Xanthones from Garcinia mangostana (Guttiferae). Nat. Prod. Res., Part A: Structure and Synthesis 20 (12), 1067-1073.

Elya, B., He, H. P., Kosela, S., Hanafi, M. and Hao, X. J. 2008. A new cytotoxic xanthone from Garcinia rigida. Fitoterapia 79 (3), 182-184.

Elya, B., He, H. P., Kosela, S., Hanafi, M., Hao and X. J. 2006a. Two new xanthons from Garcinia rigida leaves. Nat. Prod. Res., Part A. Structure and Synthesis 20 (9), 788-791.

Elya, B., He, H. P., Kosela, S., Hanafi, M. and Hao, X. J. 2006b. A new benzophenone from the stem bark of Garcinia benthami. Nat. Prod. Res., Part A. Structure and Synthesis 20 (12), 1059-1062.

Feng, F., Liu, W.-Y., Chen, Y.-S., Guo, Q.-L. and You, Q.-D. 2007. Five novel prenylated xanthones from Resina Garcinia. J. Asian Nat. Prod. Res. 9 (8), 735-741.

Fotie, J., Bohle, D. S., Olivier, M., Gomez, M. A. and Nzimiro, S. 2007. Trypanocidal and Antileishmanial Dihydrochelerythrine Derivatives from Garcinia lucida. J. Nat. Prod. 70 (10), 1650-1653.

Gao, L., Wei, X. and He, Y. 2003a. Studies on chemical constituents in of Clerodendrum bungei. Zhongguo Zhongyao Zazhi 28 (11), 1042-1044.

Gao, L., Wei, X. and He, Y. 2003b. Studies on chemical constituents in leaves of baihuamudan Clerodendron fragrans. Zhongguo Zhongyao Zazhi 28 (10), 948-951.

Hamed, W., Brajeul, S., Mahuteau-Betzer, F., Thoison, O., Mons, S., Delpech, B., Nguyen, V. H., Sevenet, T. and Marazano, C. 2006. Oblongifolins A-D, Polyprenylated benzoylphloroglucinol derivatives from Garcinia oblongifolia. J. Nat. Prod. 69 (5), 774-777.

Han, Q.-B., Yang, N.-Y., Tian, H.-L., Qiao, C.-F., Song, J.-Z., Chang, D. C., Chen, S.-L., Luo, K. Q. and Xu, H.-X. 2008. Xanthones with growth inhibition against HeLa cells from Garcinia xipshuanbannaensis. Phytochemistry 69 (11), 2187-2192.

Han, Q.-B., Qiao, C.-F., Song, J.-Z., Yang, N.-Y., Cao, X.-W.; Peng, Y., Yang, D.-J., Chen, S.-L. and Xu, H.-X. 2007. Cytotoxic prenylated phenolic compounds from the twig bark of Garcinia xanthochymus. Chem. Biodivers. 4 (5), 940946.

Han, Q.-B., Wang, Y.-L., Yang, L., Tso, T.-F., Qiao, C.-F., Song, J.-Z., Xu, L.-J., Chen, S.-L., Yang, D.-J. and Xu, H.-X. 2006a. Cytotoxic polyprenylated xanthones from the resin of Garcinia hanburyi. Chem. Pharm. Bull. 54 (2), 265-267.

Han, Q.-B., Yang, L., Wang, Y.-L., Qiao, C.-F., Song, J.-Z., Sun, H.-D. and Xu, H.-X. 2006b. A pair of novel cytotoxic polyprenylated xanthone epimers from gamboges. Chem. Biodivers. 3 (1), 101-105.

Hartati, S., Soemiati, A., Wang, H.-B., Kardono, L. B. S., Hanafi, M., Kosela, S. and Qin, G.-W. 2008a. A novel polyisoprenyl benzophenone derivative from Garcinia eugeniaefolia. J. Asian Nat. Prod. Res. 10 (5-6), 509-513.

Hartati, S., Kadono, L. B. S., Kosela, S. and Harrison, L. J. 2008b. A new pyrano xanthone from the stem barks of Garcinia tetrandra Pierre. Pak. J. Bio. Sci. 8 (1), 137-142.

Hartati, S., Wang, H.-B., Kardono, L. B. S., Kosela, S. and Qin, G.-W. 2007. Chemical constituents of Garcinia maingayii. Zhongguo Tianran Yaowu 5 (4), 272-276.

Hay, A.-E., Merza, J., Landreau, A., Litaudon, M., Pagniez, F., Le Pape, P. and Richomme, P. 2008. Antileishmanial polyphenols from Garcinia vieillardii. Fitoterapia 79 (1), 42-46.

Hazekamp, A., Verpoorte, R. and Panthong, A. 2001. Isolation of a bronchodilator flavonoid from the Thai medicinal plant Clerodendrum petasites. J. Ethnopharmacol. 78 (1), 45-49.

Hosny, M. 2003. Cytotoxic neoclerodane diterpenoids from Clerodendrum splendens. Egyp. J. Biomed. Sci. 11, 285-296.

Hsieh, T.J., Su, C.C., Chen, C.Y., Liou, C.H. and Lu, L.H. 2005. Using experimental studies and theoretical calculations to analyze the molecular mechanism of coumarin, p-hydroxybenzoic acid and cinnamic acid. J. Mol. Struc. 741, 193199.

Hu, J., Chen, J., Zhao, Y., Wang, R., Zheng, Y. and Zhou, J. 2006. Chemical constituents from fruit hulls of Garcinia mangostana (Cuttiferae). Yunnan Zhiwu Yanjiu 28 (3), 319-322.

Huang, M.-T., Liu, Y., Badmaev, V. and Ho, C.-T. 2008. Antiinflammatory and anticancer activities of garcinol. ACS Sym. Ser. 987, 293-303.

Hutadilok-Towatana, N., Kongkachuay, S. and Mahabusarakam, W. 2007. Inhibition of human lipoprotein oxidation by morelloflavone and camboginol from Garcinia dulcis. Nat. Prod. Res., Part B. 21 (7), 655-662.

Hwang, W. G. and Cho, H. G. 2007. Method for extracting acteoside from Clerodendron trichotomum leaf and antioxidant and anti-inflammatory agent containing acteoside. Repub. Korean Kongkae Taeho Kongbo 36pp. August, 1.

Iinuma, M., Ito, T., Tosa, H., Tanaka, T. and Riswan, S. 1996. Five New Xanthones from Garcinia dulcis. J. Nat. Prod. 59 (5), 472-475.

Ishiguro, K., Nakajima, M., Fukumoto, H. and Isoi, K. 1995. Co-occurrence of prenylated xanthones and their cyclization products in cell suspension cultures of Hypericium patulum. Phytochemistry 38, 867-869.

Ishiguro, K., Nakajima, M., Fukumoto, H. and Isoi, K. 1993. Xanthone in cell suspansion culture of Hypatum patulum. Phytochemistry 33, 839-840.

Jabit, M. L., Khalid, R., Abas, F., Shaari, K., Hui, L. S., Stanslas, J. and Lajis, N. H. 2007. Cytotoxic xanthones from Garcinia penangiana Pierre. J. Biosci. 62 (11/12), 786-792.

Jia, L. and Min, Z. 2007. Chemical constituents from Clerodendrum canescens. Zhongcaoyao 38 (2), 161-163.

Jung, H.-A., Su, B.-N., Keller, W. J., Mehta, R. G. and Kinghorn, A. D. 2006. Antioxidant Xanthones from the Pericarp of Garcinia mangostana (Mangosteen). J. Agric. Food. Chem. 54 (6), 2077-2082.

Kamdem, W., Alain, F., Mulholland, D., Wansi, J. D., Mbaze, Luc. M., Powo, R., Mpondo, T. N., Fomum, Z. T., Konig, W. and Nkengfack, A. E. 2006. Afzeliixanthones A and B, 2 new prenylated xanthones from Garcinia afzelii ENGL. (Guttiferae). Chem. Pharm. Bull. 54 (4), 448-451.

Kanchanapoom, T., Chumsri, P., Kasai, R., Otsuka, H. and Yamasaki, K. 2005. A new iridoid diglycoside from Clerodendrum chinense. J. Asian Nat. Prod. Res. 7 (3), 269-272.

Kanchanapoom, T., Kasai, R., Chumsri, P., Hiraga, Y. and Yamasaki, K. 2001. Megastigmane and iridoid glucosides from Clerodendrum inerme. Phytochemistry 58 (2), 333-336.

Kang, D. G., Lee, Y. S., Kim, H. J., Lee, Y. M. and Lee, H. S. 2003. Angiotensin converting enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. J. Ethnopharmacol. 89 (1), 151-154.

Kardono, L. B. S., Hanafi, M., Sherley, G., Kosela, S. and Harrison, L. J. 2006. Bioactive constituents of Garcinia porrecta and G. parvifolia grown in Indonesia. Pak. J. Biol. Sci. 9 (3), 483-486.

Kebenei, J. S., Ndalut, P. K. and Kiprono, C. P. 2004. Larvicidal activity of myricoidine from Clerodendrum myricoides. Bull. Chem. Soc. Ethiop. 18 (2), 225-227.

Kijjoa, A., Gonzalez, M. J., Pinto, M. M., Nascimento, M. S. J., Campos, N., Mondranondra, I-O. Silva, A. M. S., Eaton, G. and Herz, W. 2008.

Cytotoxicity of prenylated xanthones and other constituents from the wood of Garcinia merguensis. Planta Med. 74 (8), 864-866.

Kim, H. J., Woo, E.-R., Shin, C.-G., Hwang, D. J., Park, H. and Lee, Y. S. 2001. HIV-1 integrase inhibitory phenylpropanoid glycosides from Clerodendron trichotomum. Arch. Pharmacal Res. 24 (6), 618.

Komguem, J., Lannang, A. M., Tangmouo, J. G., Louh, G. N., Ngounou, F. N., Lontsi, D., Choudhary, M. I. and Sondengam, B. L. 2006. Polyanxanthone, a xanthone from the stem bark of Garcinia polyantha. Nat. Prod. Commun. 1 (5), 363-365.

Kuete, V., Komguem, J., Beng, V. P., Meli, A. L., Tangmouo, J. G., Etoa, F.-X. and Lontsi, D. 2007. Antimicrobial components of the methanolic extract from the stem bark of Garcinia smeathmannii Oliver (Clusiaceae). S. Afr. J. Bot. 73 (3), 347-354.

Kumar, S. and Chattopadhyay, S. K. 2007a. High-performance liquid chromatography and LC-ESI-MS method for the identification and quantification of two biologically active polyisoprenylated benzophenones xanthochymol and isoxanthochymol in different parts of Garcinia indica. Biomed. Chromatogr. 21 (2), 139-163.

Kumar, S., Chattopadhyay, S. K., Darokar, M. P., Garg, A. and Khanuja, S. P. S. 2007b. Cytotoxic activities of xanthochymol and isoxanthochymol substantiated by LC-MS/MS. Planta Med. 73 (14), 1452-1456.

Lannang, A. M., Komguem, J., Ngninzeko, N. N., Tangmouo, J. G., Lontsi, D., Ajaz, A., Choudhary, M. I., Sondengam, B. L. and Atta-ur-Rahman. 2006a. Antioxidant benzophenones and xanthones from the root bark of Garcinia smeathmannii. Bull. Chem. Soc. Ethiop. 20(2), 247-252.

Le, C. N., Nguyen, V. L., Nguyen, D. H. and Le, M. U. 2006. Chemical constituents and antioxidant activity of flavonoids from Clerodendron cyrtophyllum Turcz. Tap Chi Duoc Hoc. 46 (11), 30-33.

Li, Y., Li, J., Li, P. and Tu, P. 2005. Isolation and characterization of phenylethanoid glycosides from Clerodendron bungei. Yaoxue Xuebao 40 (8), 722-727.

Lin, C.-N., Wang, J.-P. and Weng, J.-R. 2006. Anti-inflammatory and cure for ageing and Alzheimer's disease based on phloroglucinol derivatives. U.S. Pat. Appl. Publ., 11pp. Setember, 14.

Lobo, R., Punitha, I. S. R., Rajendran, K., Shirwaikar, A. and Shirwaikar, A. 2006. Preliminary study on the antisnake venom activity of alcoholic root extract of Clerodendrum viscosum (Vent.) in naja naja venom. Nat. Prod. Sci. 12 (3), 153-156.

Lou, H.-X., Li, G.-Y. and Wang, F.-Q. 2002. A Cytotoxic Diterpenoid and Antifungul Phenolic Compounds from Frullania Muscicola Steph. J. Asian Nat. Prod. Res. 4 (2), 87-94.

Louh, G. N., Lannang, A. M., Mbazoa, C. D., Tangmouo, J. G., Komguem, J., Castilho, P., Ngninzeko, F. N., Qamar, N., Lontsi, D., Choudhary, M. I. and Sondengam, B. L. 2008. Polyanxanthone A, B and C, three xanthones from the wood trunk of Garcinia polyantha Oliv. Phytochemistry 69 (4), 10131017.

Lu, Y.-H., Wei, B.-L., Ko, H.-H. and Lin, C.-N. 2008. DNA strand-scission by phloroglucinols and lignans from heartwood of Garcinia subelliptica Merr. and Justicia plants. Phytochemistry 69 (1), 225-233.

Mahapatra, S., Mallik, S. B., Rao, G. V., Reddy, G. C. and Guru Row, T. N. 2007. Garcinia lactone. Acta Crystallogr., Sect. E: Struct. Rep. Online E63 (9), o3869.

Martins, F. T., Camps, I., Doriguetto, A. C., dos Santos, M. H., Ellena, J. and Barbosa, L. C. A. 2008. Crystal structure of garciniaphenone and evidences on the relationship between keto-enol tautomerism and configuration. Helv. Chim. Acta. 91 (7), 1313-1325.

Martins, F. T., Cruz, J. W. Jr., Derogis, P. B. M. C., dos Santos, M. H., Veloso, M. P.; Ellena, J. and Doriguetto, A. C. 2007. Natural polyprenylated benzophenones: keto-enol tautomerism and stereochemistry. J. Braz. Chem. Soc. 18 (8), 15151523.

Masullo, M., Bassarello, C., Suzuki, H., Pizza, C. and Piacente, S. 2008. Polyisoprenylated benzophenones and an unusual polyisoprenylated tetracyclic xanthone from the fruits of Garcinia cambogia. J. Agric. Food Chem. 56 (13), 5205-5210.

Mbwambo, Z. H., Kapingu, M. C., Moshi, M. J., Machumi, F., Apers, S., Cos, P., Ferreira, D., Marais, J. P. J., Vanden Berghe, D., Maes, L., Vlietinck, A. and Pieters, Luc. 2006. Antiparasitic activity of some xanthones and biflavonoids from the root bark of Garcinia livingstonei. J. Nat. Prod. 69 (3), 369-372.

Merza, J., Mallet, S., Litaudon, M., Dumontet, V., Seraphin, D. and Richomme, P. 2006. New cytotoxic guttiferone analogues from Garcinia virgata from New Caledonia. Planta Med. 72 (1), 87-89.

Miller, R. E., McConville, M, J. and Woodrow, L. E. 2006. Cyanogenic glycosides from the rare Australian endemic rainforest tree Clerodendrum grayi (Lamiaceae). Phytochemistry 67 (1), 43-51.

Miyazawa, M., Oshima, T. and Koshio, K. 2003. Tyrosinase Inhibitor from Black Rice Bran. J. Agric. Food Chem. 51 6553-6956.

Mohd Khalid, R., Jabit, Md. L., Abas, F., Stanslas, J., Shaari, K. and Lajis, N. H. 2007. Cytotoxic xanthones from the leaves of Garcinia urophylla. Nat. Prod. Commun. 2 (3), 271-276.

Mondal, M., Puranik, V. G. and Argade, N. P. 2006. Facile synthesis of 1,3,7trihydroxyhanthone and its regioselective coupling reaction with prenal: simple and efficient access to Osajaxanthone and Nigrolinexanthone F. J. Org. Chem. 71, 4992-4995.

Naklue, W. 2006. Chemical Constituents from the Twigs of Garcinia parvifolia, Master of Science Thesis, Prince of Songkla University, Songkhla, Thailand.

Nan, H., Wu, J., Yin, H. and Zhang, C. 2006. Terpene compounds in Clerodendrum inerme (L.) Gaertn. Zhongcaoyao 37 (4), 508-509.

Nan, H., Zhang, S. and Wu, J. 2005a. Chemical constituents from Clerodendrum inerme. Zhongcaoyao 36 (4), 492-494.

Nan, H., Wu, J. and Zhang, S. 2005b. A new phenylethanoid glycoside from Clerodendrum inerme. Pharmazie 60 (10), 798-799.

Neves, J. S., Coelho, L. P., Cordeiro, R. S. B., Veloso, M. P., Rodrigues e Silva, P. M., dos Santos, M. H. and Martins, M. A. 2007. Antianaphylactic properties of 7-epiclusianone, a tetraprenylated benzophenone isolated from Garcinia brasiliensis. Planta Med. 73 (7), 644-649.

Ngoupayo, J., Noungoue, D. T., Lenta, B. N., Tabopda, T. K., Khan, S. N., Ngouela, S., Shaiq, M. A. and Tsamo, E. 2007. Brevipsidone, a new depsidone and
other α-glucosidase inhibitors from Garcinia brevipedicellata (Clusiaceae). Nat. Prod. Commun. 2 (11), 1141-1144.

Noro, T., Ueno, A., Mizotani, M., Hashimoto, T., Miyase, T., Kuroyangi, M. and Fukushima, S. 1984. Inhibitor of Xanthine Oxidase from Athyrium mesosorum. Chem. Pharm. Bull. 32, 4455-4459.

Nyegue, M. A., Belinga-Ndoye, C. F., Zollo, P.-H. A., Agnaniet, H., Menut, C. and Bessiere, J. M. 2005. Aromatic plants of tropical central Africa. Part L. volatile components of Clerodendrum buchholzii Gurke from Cameroon. Flavour Frag J. 20 (3), 321-323.

Nyegue, M., Kwanga, S. N., Ndoye, F., Zollo, P.-H. A., Etoa, F.-X., Agnaniet, H. and Menut, C. 2007. Chemical composition, antiradical and antifungal activities of essential oil of fresh leaves of Clerodendrum buchholzii (Gurke) from Cameroon. J. Essent. Oil-Bear. Plants. 10 (6), 510-518.

Okwu, D. E. and Morah, F. N. I. 2007. Isolation and characterization of flavanone glycoside 4',5,7-trihydroxy flavanone rhamnoglucose from Garcinia kola seeds. J. Appl. Sci. 7 (2), 306-309.

Ollis, W. D., Redmen, B. T., Sutherland, I. O. and Jewers, K., 1969. Constituent of bronianone. J. Chem. Soc. (D). 15, 879-880.

Pal, D. K., Sannigrahi, S. and Dutta, A. 2007. Anthelmintic activity of leaves of Clerodendrum infortunatum. Indian J. Nat. Prod., 23 (2), 22-25.

Pandey, R., Kaur, R., Malasoni, R. and Gupta, M. M. 2008. Lupeol ester from Clerodendrum phlomidis. Indian J. Chem., Sect B., 47B (3), 470-472.

Pandey, R., Verma, R. K. and Gupta, M. M. 2007. High-performance thin-layer chromatographic method for quantitative determination of 4α-methyl- 24β -
ethyl-5 α-cholesta-14,25-dien-3 β-ol, $\quad 24 \beta$-ethylcholesta-5,9(11),22E-trien- 3β-ol and betulinic acid in Clerodendrum inerme. J. Sep. Sci. 30 (13), 2086-2091.

Pandey, R., Verma, R. K. and Gupta, M. M. 2006. Pentadecanoic acid β-D-glucoside from Clerodendrum inerme. Indian J. Chem., Sect B. 45B (9), 2161-2163.

Pandey, R., Verma, R. K. and Gupta, Madan M. 2005. Neo-clerodane diterpenoids from Clerodendrum inerme. Phytochemistry 66 (6), 643-648.

Pandey, R., Verma, R. K., Singh, S. C. and Gupta, M. M. 2003. 4α-Methyl-24 β-ethyl5α-cholesta-14,25-dien-3 β-ol and 24β-ethylcholesta-5,9(11), 22E-trien-3 β-ol, sterols from Clerodendrum inerme. Phytochemistry 63 (4), 415-420.

Panthong, K., Pongcharoen, W., Phongpaichit, S. and Taylor, W. C. 2006. Tetraoxygenated xanthones from the fruits of Garcinia cowa. Phytochemistry 67 (10), 999-1004.

Park, M.-A. and Kim, H.-J. 2007. Anti-inflammatory constituents isolated from Clerodendron trichotomum tunberg leaves (CTL) inhibits pro-inflammatory gene expression in LPS-stimulated RAW 264.7 macrophages by suppressing NF-кB activation. Arch. Pharmacal Res. 30 (6), 755-760.

Rahman, M. A. A., Zafrul Azam, A. T. M. and Gafur, M. A. 2000. In vivo Antibacterial Principle of Extract and Two Flavonoids from Clerodendrum indicum Linn. Pak. J. Biol. Sci., 3 (10), 1769-1771.

Rao, D. R., Gurudutt, K. N., Mamatha, S. and Rao, L. J. M. 2007. Guttiferic acid, a novel rearrangement product from minor chromenoxanthone pigments of Garcinia morella Desr. Magn. Reson. Chem. 45 (7), 578-582.

Ravindranath, N., Ramesh, C., Hara Kishore, K., Murty, U. S. N. and Das, B. 2003. Clerodendrone, a novel hydroquinone diterpenoid from Clerodendrum indicum. J. Chem. Res., Synop. 7, 440-441.

Reutrakul, V., Anantachoke, N., Pohmakotra, M., Jaipetch, T., Sophasan, S., Yoosook, C., Kasisit, J., Napaswat, C., Santisuk, T. and Tuchinda, P. 2007. Cytotoxic and anti-HIV-1 caged xanthones from the resin and fruits of Garcinia hanburyi. Planta Med. 73 (1), 33-40.

Roy, R., Pandey, V. B., Singh, U. P. and Prithiviraj, B. 1996. Antifungal activity of the flavonoids from Clerodendron infortunatum roots. Fitoterapia 67 (5), 473474.

Roy, R., Singh, U. P. and Pandey, V. B. 1995. Antifungal activity of some naturally occurring flavonoids. Orient. J. Chem. 11 (2), 145-148.

Rukachaisirikul, V., Trisuwan, K., Sukpondma, Y. and Phongpaichit, S. 2008. A new benzoquinone derivative from the leaves of Garcinia parvifolia. Arch. Pharmacal Res. 31 (1), 17-20.

Rukachaisirikul, V., Naklue, W., Phongpaichit, S., Towatana, N. H. and Maneenoon, K. 2006. Phloroglucinols, depsidones and xanthones from the twigs of Garcinia parvifolia. Tetrahedron 62 (36), 8578-8585.

Rukachaisirikul, V., Saelim, S., Karnsomchoke, P. and Phongpaichit, S. 2005. Friedolanostanes and Lanostanes from the leaves of Garcinia hombroniana. J. Nat. Prod. 68, 1222-1225.

Rukachaisirikul, V., Adir, A., Dampawan, P., Taylor, W.C. and Turner, T.C. 2000. Lanostanes and friedolanostanes from the pericarp of Garcinia hombroniana. Phytochemistry 55, 183-188.

Salae, S. 2006. Chemical Constituents from the twigs, seeds and fruits of Garcinia nervosa, Master of Science Thesis, Prince of Songkla University, Songkhla, Thailand.

Saelim, S. 2005. Chemical Constituents from the leaves of Garcinia hombroniana, Master of Science Thesis, Prince of Songkla University, Songkhla, Thailand.

Shadid, K. A., Shaari, K., Abas, F., Israf, D. A., Hamzah, A. S., Syakroni, N., Saha, K. and Lajis, N. H. 2007. Cytotoxic caged-polyprenylated xanthonoids and a xanthone from Garcinia cantleyana. Phytochemistry 68 (20), 2537-2544.

Shehata, A. H., Yousif, M. F. and Soliman, G. A. 2001. Phytochemical and pharmacological investigations of Clerodendron splendens Don growing in Egypt. Egyp. J. Biomed. Sci. 7, 145-163.

Shen, J. and Yang, J.-S. 2007a. A novel benzophenone from Garcinia cowa. Huaxue Xuebao 65 (16), 1675-1678.

Shen, J., Tian, Z. and Yang, J.-S. 2007b. The constituents from the stems of Garcinia cowa Roxb. and their cytotoxic activities. Pharmazie 62 (7), 549-551.

Shen, J. and Yang, J. 2006a. Chemical constituents from fruit of Garcinia cowa. Zhongguo Yaoxue Zazhi (Beijing, China) 41 (9), 660-661.

Shen, J., Yang, J.-S. and Zhou, S.-X. 2006b. Chemical constituents of fruit of Garcinia xishuanbannanensis. Zhongguo Tianran Yaowu 4 (6), 440-443.

Shen, J. and Yang, J.-S. 2006c. Two new xanthones from the stems of Garcinia cowa. Chem. Pharm. Bull. 54 (1), 126-128.

Silberberg, M., Gil-Izquierdo, A., Combaret, L., Remesy, C., Scalbert, A. and Morand, C. 2006. Flavanone metabolism in healthy and tumor-bearing rats. Biomed. Pharmacother. 60 (9), 529-535.

Soemiati, A., Kosela, S., Hanafi, M. and Harrison, L. J. 2006. Garcinopicrobenzophenone, a novel polyprenylbenzophenone from the bark of Indonesian Garcinia picrorrhiza Miq. ACGC Chem. Res. Commun. 20, 1-5.

Sohn, U.-D., Whang, W.-K., Ham, I.-H, Min, Y-S., Bae, K.-L., Yim, S.-H. and Lee, Y.-P. 2003. Process for preparing apigenin-7-O- β-D-glucuronide from Clerodendron trichotomum leaves. PCT Int. Appl. 27 pp. December, 4.

Sukpondma, Y., Rukachaisirikul, V. and Phongpaichit, S. 2005. Xanthone and sesquiterpene derivatives from the fruits of Garcinia scortechinii. J. Nat. Prod. 68 (7), 1010-1017.

Suksamrarn, S., Komutiban, O., Ratananukul, P., Chimnoi, N., Lartpornmatulee, N. and Suksamrarn, A. 2006. Cytotoxic prenylated xanthones on the young fruit of Garcinia mangostana. Chem. Pharm. Bull. 54 (3), 301-305.

Sultana, N., Akanda, S. I., Bhuiyan, R. A., Bagum, S. A., Kazi, M. A. I. and Sharkar, A. M. 2005. A neo-clerodane diterpenoid from Clerodendrum viscosum leaves Bangladesh. J. Sci. Ind. Res. 40 (3-4), 337-341.

Taher, M., Idris, M. S. and Arbain, D. 2007. Antimicrobial, antioxidant and cytotoxic activities of Garcinia eugenifolia and Calophyllum enervosum. Iran. J. Pharm. Ther. 6 (1), 93-98.

Terashima, K., Ishida, T., Furukawa, T., Takaya, Y. and Niwa, M. 2008. Constituents of green and ripened fruit of Garcinia subelliptica. Heterocycles 75 (2), 407413.

Thongchai, W., Liawruangrath, B. and Liawruangrath, S. 2007. High-performance liquid chromatographic determination of arbutin in skin-whitening creams and medicinal plant extracts. J. Cosmet. Sci. 58 (1), 35-44.

Upo, U. 2005. Ethnobotany of Buddhist and Muslin Thais inn the some locations in the lower part of southern Thailand. Doctor Of Philosophy in Biology, Chiang Mai University.

Vidya, S. M., Krishna, V., Manjunatha, B. K., Mankani, K. L., Ahmed, M. and Singh, S. D. J. 2007. Evaluation of hepatoprotective activity of Clerodendrum serratum L. Indian J. Exp. Biol., 45 (6), 538-542.

Vieira, L. M. M., Kijjoa, A., Silva, A. M. S., Mondranondra, I.-O., Kengthong, S., Gales, L., Damas, A. M. and Herz, W. 2004. Lanostanes and friedolanostanes from the bark of Garcinia speciosa. Phytochemistry 65 (4), 393-398.

Vu, D. H., Ba, T. C., Luu, H. and Pham, G. D. 2006. Chemical study of Clerodendron cyrtophyllum Turcz. Part I - chemical constituents of n-hexane extract of the roots. Tap Chi Hoa Hoc, 44 (6), 704-706.

Wu, C.-C., Lu, Y.-H., Wei, B.-L., Yang, S.-C., Won, S.-J. and Lin, C.-N. 2008a. Phloroglucinols with Prooxidant Activity from Garcinia subelliptica. J. Nat. Prod. 71(2), 246-250.

Wu, X., Ke, C.-Q., Yang, Y.-P. and Ye, Y. 2008b. New biphenyl constituents from Garcinia oblongifolia. Helv. Chim. Acta 91 (5), 938-943.

Yang, N.-Y., Han, Q.-B., Cao, X.-W., Qiao, C.-F., Song, J.-Z., Chen, S.-L., Yang, D.J., Yiu, H. and Xu, H.-X. 2007. Two new xanthones isolated from the stem bark of Garcinia lancilimba. Chem. Pharm. Bull. 55 (6), 950-952.

Yang, H., Hou, A.-J., Mei, S.-X, Sun, H.-D. and Che, C.-T. 2002. Constituents of Clerodendrum bungei. J. Asian Nat. Prod. Res., 4 (3), 165-169.

Yu, L., Zhao, M., Yang, B., Zhao, Q. and Jiang, Y. 2007. Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food. Chem. 104 (1), 176-181.

Zadernowski, R., Czaplicki, S. and Naczk, M. 2009. Phenolic acid profiles of mangosteen fruits (Garcinia mangostana). Food. Chem. 112 (3), 685-689.

Zhong, F. F., Chen, Y., Mei, Z. N. and Yang, G. Z. 2007. Xanthones from the bark of Garcinia xanthochymus. Chin. Chem. Lett. 18 (7), 849-851.

Zhong, F.-F., Chen, Y. and Yang, G.-Z. 2008. Chemical constituents from the bark of Garcinia xanthochymus and their 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities. Helv. Chim. Acta. 91(9), 1695-1703.

APPENDIX

Figure $2{ }^{13} \mathrm{C}$ NMR (125 MHz) ($\left.\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound SK1

Figure $4{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK2

Figure $5{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK3

Figure $8{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK12

Figure $10{ }^{13} \mathrm{C}$ NMR (125 MHz) (CDCl_{3}) spectrum of compound SK9

Figure 11 Mass spectrum of compound SK9

Figure $13{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK19

Figure 14 Mass spectrum of compound SK19

Figure $16{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK21

Figure 17 Mass spectrum of compound SK21

Figure $18{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK11

Figure $19{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK11

Figure $21{ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK4

Figure $23{ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK5

Figure $25{ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK8

Figure $27{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK16

Figure $29{ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK18

Figure 30 Mass spectrum of compound SK18

Figure $32{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK13

Figure 35 Mass spectrum of compound SK20

Figure $36{ }^{1} \mathrm{H}$ NMR (500 MHz) (Acetone- d_{6}) spectrum of compound SK22

Figure $37{ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK22

Figure 38 Mass spectrum of compound SK22

Figure $40{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK10

Figure 41 Mass spectrum of compound SK10

Figure $43{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound SK17

Figure $45{ }^{1} \mathrm{H}$ NMR (300 MHz) ($\mathrm{DMSO}-d_{6}$) spectrum of compound SK6

Figure $46{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound SK23

Figure $47{ }^{13} \mathrm{C}$ NMR (75 MHz) (CD ${ }_{3} \mathrm{OD}$) spectrum of compound SK23
$\underbrace{}_{7.5}$
Figure $48{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound SK24

Figure $49{ }^{13} \mathrm{C}$ NMR (75 MHz) (CD ${ }_{3} \mathrm{OD}$) spectrum of compound SK24

Figure $51{ }^{13} \mathrm{C}$ NMR (125 MHz) (Acetone- d_{6}) spectrum of compound SK15

Figure $52{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\right.$ Acetone- $\left.d_{6}\right)$ spectrum of compound SK14

Figure $53{ }^{13} \mathrm{C}$ NMR (75 MHz) (Acetone- d_{6}) spectrum of compound SK14

VITAE

Name	Mr. Saranyoo Klaiklay
Student ID	5010220132

Educational Attainment

Degree	Name of Institution	Year of Graduation
B.Sc $\left(2^{\text {nd }}\right.$ Hons. $)$	Prince of Songkla University	2007

(Chemistry)

Scholarship Awards during Enrolment

The Center for Innovation in Chemistry (PERCH-CIC)

List of Publication and Proceedings

Proceeding

1. Klaiklay, S., Sukpondma, Y. and Rukachaisirikul, V. 2007. Chemical constituents from the twigs of Garcinia hombroniana. Proceeding of the $33^{\text {rd }}$ Congress on Science and Technology of Thailand. Walailak University, October 18-20, 2007. pp. 171.
2. Klaiklay, S., Sukpondma, Y. and Rukachaisirikul, V. 2008. Chemical constituents from the twigs of Garcinia hombroniana. Proceeding of the $6^{\text {th }}$ Regional IMT-GT Uninet Conference. The Gurney Resort Hotel \& Residences Penang, Malaysia, August 28-30, 2008. pp. 534-535.
3. Klaiklay, S., Sukpondma, Y. and Rukachaisirikul, V. 2008. Flavonoids from the roots of Clerodendrum petasites S . Moore. Proceeding of the $10^{\text {th }}$ the National Graduate Research Conference. Sukhothai Thammathirat Open University, September 11-12, 2008. pp. 237.
4. Klaiklay, S., Sukpondma, Y. and Rukachaisirikul, V. 2007. Chemical constituents from the twigs of Garcinia hombroniana. Proceeding of the international congress for innovation in chemistry (PERCH-CIC Congress VI). Jomtein Palm Beach Resort Pattaya, Chonburi, May 3-6, 2009. pp. 236.
