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ABSTRACT

Let S and I" be nonempty sets and < a relation on S. Then (S, I, <)
is called an ordered I'-semigroup if (S,T") is a semigroup and (.5, <) is a partially
ordered set such that

a<b = avyc<bycand cya < cyb for all a,b,c € S and v €T

In this thesis, we give isomorphism theorems of I'-semigroups and
ordered I'-semigroups. Moreover, we give some connections between pseudoorder
and ordered I'-semigroups.

Furthermore, we study bi-ideals, minimal bi-ideals, O-minimal bi-

ideals and maximal bi-ideals in ordered I'-semigroups.
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CHAPTER 1

Introduction and Preliminaries

The notion of I'-semigroups was introduced by M. K. Sen in the year
1981 (Sen, 1981). I'-semigroups generalize semigroups. Many classical notions of
semigroups have been extended to ['-semigroups. In fact, any semigroup S can be
considered to be a I'-semigroup, by define aab = ab for all a,b € S and o € T'.
On the other hand, let S be a I'-semigroup and « a fixed element in I'. We define
ab = aab for all a,b € S, then we can see that S is a semigroup.

In this thesis, we give isomorphism theorems of I'-semigroups and or-
dered I'-semigroups, and also give some properties of ordered I'-semigroups. More-
over, we give some connections between pseudoorder and ordered I'-semigroups.

Furthermore, we study bi-ideals, minimal bi-ideals, O-minimal bi-

ideals and maximal bi-ideals in ordered I'-semigroups.

1.1 Semigroups

We will use the notation and terminology of Howie (Howie, 1976)

to introduce the notion of a semigroup as follows :

Definition 1.1. Let S be a nonempty set and * a binary operation on S. (.5, %)

is called a semigroup if * is associative, i.e.,
(axb)xc=ax(bxc) forall a,b,c € S.
Example 1.1. (N, +) and (R, x) are semigroups.

Example 1.2. (Z,—) is not a semigroup since for a, b, ¢ € Z such that ¢ # 0, we

have

a—(b—-—c)=a—-b+c#a-b—c=(a—b)—c



Definition 1.2. Let S be a semigroup. A nonempty subset T of S is called a
subsemigroup of S if T is closed under the binary operation of S, that is, ab €

T forall a,beT.

Definition 1.3. Let A be a nonempty set. An arbitrary subset of A x A is called

a relation on A.

Definition 1.4. Let S be a semigroup. A relation p on S is called an equivalence
relation on S if

(1) apa for all a € S (reflexive) ;

(2) apb implies bpa for all a,b € S (symmetric) ;

(3) apb and bpc imply apc for all a,b, c € S (transitive).

We will use the notation and terminology of Howie (Howie, 1976)

to introduce congruences and isomorphism theorems for semigroups as follows :

Definition 1.5. Let S be a semigroup. An equivalence relation p on S is called

a right congruence on S if

(a,b) € p implies (at,bt) € p for all a,b,t €S,
and an equivalence relation p on S is called a left congruence on S if

(a,b) € p implies (ta,tb) € p for all a,b,t € S.
An equivalence relation p on S is called a congruence on S if p is both a right and
left congruence on S.
Example 1.3. Let p be a relation on a semigroup (N, +) defined by

apb < 4la—0b for all a,b e N.

We have p is a right congruence on N since for a,b,t € N,

(a,b) € p=4la—1b
=4r=a—b forsomex €N
=dr=(a+1t)—(b+1)
= 4l(a+1t) — (b+1)

= (a+t,b+1t) €p.



A similar argument shows that p is a left congruence on N. Hence p is a congruence

on N.

Definition 1.6. Let S be a semigroup and p a congruence on S. Then we have

S/p={ap|ae S}

Theorem 1.1. Let S be a semigroup and p a congruence on S. For ap, bp € S/p,
let (ap)(bp) = (ab)p. Then S/p is a semigroup.

Definition 1.7. Let S be a semigroup. A subsemigroup A of S is called a left
(resp. right) ideal of S if SA C A (resp. AS C A). A is called an ideal of S if A
is both a left and right ideal of S.

Example 1.4. Let Z be the set of all integers and My(Z), the set of all 2 x 2
matrices over Z. We have known that My(Z) is a semigroup under the usual

multiplication. Let

xz 0 Ty
L={ | x,y € Z} and R = { | z,y € Z}.
y 0 00

Then L is a left ideal of M(Z) and R is a right ideal of My(Z).

Definition 1.8. Let S be a semigroup. A subsemigroup B of S is called a bi-ideal
of S'if BSB C B.

Example 1.5. Let S = [0, 1]. Then S is a semigroup under usual multiplication.

1
Let B = 0, 5] Then B is a subsemigroup of S. We have that BSB C B =

1
[0, Z] C B. Therefore B is a bi-ideal of S.

Example 1.6. Let N be the set of all possitive integers. Then N is a semigroup
under the usual multiplication. Let B = 2N. Thus BNB = 4N C 2N = B. Hence
B is a bi-ideal of N.

Definition 1.9. A semigroup S is said to be left (resp. right) simple if S does
not contain proper left (resp. right) ideals of S.

Theorem 1.2. Let S be a semigroup. S is a left (resp. right) simple semigroup
if and only if Sa = S (resp. aS = S) for every a € S.



Theorem 1.3. Let S be a semigroup. The following statements are equivalent:
(1) S is a group.
(2) S has the conditions
(a) Ie€ SVa€ S, ea=a;
(b)VYae S3IbeS, ba=e.
(8) S has the conditions
(a) Je€ SVYae€ S, ae=a ;
(b)VYae S3IbeS, ab=e.

Theorem 1.4. Let S be a semigroup. The following statements are equivalent:
(1) S is a group.
(2) S is a left and right simple semigroup.
(8) Sa =S = aS for everya € S.

Definition 1.10. A semigroup S is called t-simple if S does not contain proper

bi-ideals of S.

Definition 1.11. A semigroup S with zero is called 0-t-simple if S # {0} and S

does not contain nonzero proper bi-ideals of S.

Definition 1.12. Let S and T be semigroups. The mapping ¢ : S — T is called
a homomorphism if ¢(ab) = ¢(a)p(b) for all a,b € S.

Example 1.7. Let R be a semigroup of the set of all real numbers under the usual

addition. Define ¢ : R — R by ¢(a) = 2a for all a € R. Let a,b € R. We have

¢(a+0b) =2(a+Db)
=2a+2b
= ¢(a) + ¢(b).

Hence ¢ is a homomorphism.

Definition 1.13. Let S and T be semigroups. The mapping ¢ : S — T is called

an isomorphism if ¢ is a homomorphism, 1-1 and onto.



Theorem 1.5. The following statements are true.
(1) If p is a congruence on a semigroup S, then S/p is a semigroup

and the mapping p* : S — S/p defined by
p?(z) = xp for all z €S

1s a homomorphism.
(2) Let S and T be semigroups. If ¢ : S — T is a homomorphism,

then the relation

kerg =¢ ' op ={(z,y) € S x S | ¢(z) = ¢(y)}
is a congruence on S and there is a monomorphism « : S/ker¢ — T such that

rana = rang and the diagram

s 2.7

(kere)# J /

S/ker¢
commutes.

Theorem 1.6. (First Isomorphism Theorem) Let S and T be semigroups. If
¢S — T is a homomorphism, then S/kerd = rang.

Theorem 1.7. Let p be a congruence on a semigroup S. If ¢ :+ S — T is a
homomorphism such that p C ker¢, then there is a unique homomorphism (3 :

S/p — T such that ranf = rang and the diagram

s 2.

p#{ %

S/p

commautes.

Let p and o be congruences on a semigroup S with p C ¢. Define

the relation o/p on S/p by



o/p=A{(zp,yp) € S/p x S/p | (z,y) € o}.
The following theorem holds.

Theorem 1.8. (Third Isomorphism Theorem) Let p and o be congruences on a
semigroups S such that p C o. The following statements hold.

(1) o/p is a congruence on S/p.

(2) (S/p)(a/p) = S/o.

1.2 I'-semigroups

In 1981, M. K. Sen (Sen, 1981) introduced the definition of a I'-

semigroup as follows :

Definition 1.14. Let S and I' be nonempty sets. S is called a I'-semigroup if
(1) aab € S, for all a,b € S and a € T ;
(2) (aab)Be = aa(bpc), for all a,b,c € S and «, f € T.

Now, we give some examples of ['-semigroups.

Example 1.8. Let Z be the set of all integers and T' = {n | n € N}. Define
ach =a+a—+bfor all a,b € Z and o € " where + is the usual addition. We have

Z is a I'-semigroup.

Example 1.9. Let Z be the set of all integers and T' = {n | n € N}. Define
aab = a x a x b for all a,b € Z and a € I' where X is the usual multiplication.

We have Z is a I'-semigroup.

1

Example 1.10. Let R be the set of all real numbers and I' = {— | n € N}. Define
n

aab =a x a x b for all a,b € R and a € I" where x is the usual multiplication .

We have R is a I'-semigroup since for a,b,c € R and o, 5 € T’
aab =a x a x b € R and (aab)fc = aa(bfc).

-1

Example 1.11. Let S be a set of all negative rational numbers and I' = {— | p is prime}.
p

Define aab = a x a x b for all a,b € S and o € ' where x is the usual multipli-

cation. We have S is a ['-semigroup since for a,b,c € S and o, € T’



aab =a x a xbe S and (aad)fec = aa(bfc).

Definition 1.15. Let (S,I") be a I'-semigroup and M a nonempty subset of S.
Then M is called a subl'-semigroup of S if ayb € M for all a,b € M and v € T.

1
Example 1.12. Let S =[0,1] and I' = {— | n is a positive integer}. Then S is a
n
1
[-semigroup under the usual multiplication. Next, let M = [0, 5] We have that

M is a nonempty subset of S and ayb € M for all a,b € M and v € I'. Then M

is a subI'-semigroup of S.

Example 1.13. Consider the I'-semigroup (Z,I") in Example 1.6. Let N be the
set of all positive integers. We have N is a subl'-semigroup of Z since N C Z and

NI'N C N.

Definition 1.16. Let (S,T") be a [-semigroup. A subl'-semigroup A of S is called
a left (resp. right) ideal of S if STA C A (resp. AT'S C A). A is called an ideal
of S if A is both a left and right ideal of S.

Definition 1.17. Let (S,T") be a I'-semigroup and A a subl-semigroup of S.
Then A is called a bi-ideal of S if AI'STA C A.

1.3 Ordered semigroups

In 1995, N. Kehayopulu and M. Tsingelis (Kehayopulu and Tsin-
gelis, 1995) have studied ordered semigroups and given isomorphism theorems of

ordered semigroups as follows :

Definition 1.18. Let S be a nonempty set and < a relation on S. We call < is
an order on S if

(1) Va € S, a < a (reflexive) ;

(2) Va,b € Sif a < band b < a, then a = b (anti-symmetric) ;

(3) Ya,b,c € S'if a < band b < ¢, then a < ¢ (transitive).

Example 1.14. We have < is an order on R.

(1) (reflexive) Let a € R. By property of < on R, we have a < a.



(2) (anti-symmetric) Let a,b € R, a < b and b < a. By property of
< on R, we have a = b.
(3) (transitive) Let a,b,c € R, a < b and b < ¢. By property of <

on R, we have a < c.

Example 1.15. Let X be any set. We have C is an order on P(X).

(1) (reflexive) Let A € P(X). Clearly, A C A.

(2) (anti-symmetric) Let A, B € P(X) such that A C B and B C A.
By property of C on P(X), we have A = B.

(3) (transitive) Let A, B,C € P(X) such that A C B and B C C.
By property of C on P(X), we have A C C.

Definition 1.19. If < is an order on a nonempty set S, then (5, <) is called a

partially ordered set.

Example 1.16. By Example 1.11 and 1.12, we have (R, <) and (P(X),C) are

partially ordered sets.

Definition 1.20. Let S be a nonempty set, ® a binary operation on S and < a
relation on S. We call (S, e, <) is an ordered semigroup if

(1)
(2)

(3) for all a,b,c € S, a < b implies ac < be and ca < cb.

(S, e) is a semigroup ;
(S, <) is a partially ordered set ;
Example 1.17. (N, +, <) is an ordered semigroup since
(1) (N, +) is a semigroup ;
(2) (N, <) is a partially ordered set ;
(3) Let a, b, ¢ € Nsuch that a < b. Then a+c < b+cand c+a < c+b.

Example 1.18. (P(X),U, C) is an ordered semigroup since
(1) (P(X), U

(2) (P(X), Q) is a partially ordered set ;

(3) Let A,B,C € P(X) such that A C B. We show that AU C C

BUC. Letae AUC. Thena € A and a € C. Since A C B, we have a € B and

) is a semigroup ;



a € C. Thus a € BUC. Therefore AUC C BUC. Since P(x) is commutative
under U, CUA C CUB.

Definition 1.21. Let (S,e,<) be an ordered semigroup. A relation p on S is
called a pseudoorder on S if

(1) <Sp;

(2) for all a,b € S, (a,b) € p and (b,c) € p imply (a,c) € p ;

(3) for all a,b,c € S, (a,b) € p implies (ac,bc) € p and (ca, cb) € p.

Definition 1.22. Let (S,e,<g) and (7, %, <r) be ordered semigroups and
f S — T amapping from S to T. f is said to be isotone if x,y € S, x <g y
implies f(x) <7 f(y). A mapping [ is said to be reverse isotone if x,y € S,

f(z) <r f(y) implies z <g y.
Remark 1.1. Each reverse isotone mapping is 1-1.

Definition 1.23. Let (S,e,<g) and (7, %, <r) be ordered semigroups and
f S — T amapping from S to T. f is called a homomorphism if
(1) f is isotone ;

(2) f(xoy) = f(x)* f(y) forall z,y €S.

Definition 1.24. Let (S, e, <g) and (7, %, <r) be ordered semigroups. A mapping
f S — T is called an isomorphism if f is homomorphism, onto and reverse

isotone.
If p is a pseudoorder on S, let p be a relation on S defined by
p=1{(a,b) € SxS|(ab)€pand (ba) € p}.

Proposition 1.9. Let (S,e,<) be an ordered semigroup and p a pseudoorder on

S. Then p is a congruence on S.

Let S be an ordered semigroup and p a pseudoorder on S. By the
Proposition 1.9, we have that p is a congruence on S. Then the set S/p = {ap | a €
S} with multiplication (ap) e (bp) = (ab)p is a semigroup and an order <, defined
by
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=,={(ap,bp) | 3z € ap,3Jy € bp, (z,y) € p}.

Proposition 1.10. Let S be an ordered semigroup and p a pseudoorder on S.
The following statements hold.

(1) For a,b € S, ap =, bp if and only if (a,b) € p.

(2) =, is an order on S/p.

Proposition 1.11. Let (S, e, <) be an ordered semigroup and p a pseudoorder on

S. Then S/p is an ordered semigroup.

Let p# be a homomorphism of S onto S/p defined by p# : S — S/p
such that p#(a) = ap for all a € S.

Proposition 1.12. Let (S,e,<g) and (T, *, <r) be ordered semigroups and

é: S — T a homomorphism. Define the relation ¢ on S by

¢ ={(a,b) € S x S | $(a) <r ¢(b)}.
Then qg 15 a pseudoorder on S.

Theorem 1.13. Let (S, e, <g) and (T,*,<r) be ordered semigroups and
¢: S — T a homomorphism. If p is a pseudoorder on S such that p C b, then the
mapping ¥ = S/p — T defined by ¥(ap) = ¢(a) is a unique homomorphism of S/p

into T such that rany) = ran¢ and the diagram

s 2.

p#{ %

S/p
commutes (i.e., 1 o p* = ¢).

Let (S,e,<g) and (7, *, <r) be ordered semigroups and ¢ : S — T’
a homomorphism. Define ker¢ = {(a,b) € S x S| ¢(a) = ¢(b)}. It is easy to see



11

that ker¢ is a congruence on S. We have

(a,0) € kerg & ¢(a) = (D)
< ¢(a) <r ¢(b) and ¢(b) <r ¢(a)
& (a,b) € ¢ and (b,a) € ¢
& (a,b) € 5

So kergp = (Z The following theorem holds.

Theorem 1.14. (First Isomorphism Theorem) Let (S, e, <g) and (T,*,<r) be

ordered semigroups and ¢ : S — T a homomorphism. Then S/ker$ = rang.

Theorem 1.15. (Third Isomorphism Theorem) Let (S, e, <g) be an ordered semi-
group, p and o pseudoorders on S such that p C o. The following statements hold.

(1) o/p is a pseudoorder on S/p.
(2) (S/p)/(0/p) = 5/5.

Definition 1.25. Let S be an ordered semigroup, 7" a nonempty subset of S and

H a nonempty subset of T'. Then we denote
(Hlp={teT|3heH, t<h}.
If T'= S, then we alway write (H] instead of (H|g

Example 1.19. Consider an ordered semigroup (N,e, <) and 7" = {3,6,7,8,9},
H, ={6,10} and Hy = {8}. Then we have

(Hi]r ={3,6,7,8,9} ;

(Hy] = (Hi|n ={1,2,3,4,5,6,7,8,9,10} ;

(Hslr =1{3,6,7,8} ;

(Hy] = (Ha|n ={1,2,3,4,5,6,7,8}.

Definition 1.26. Let S be an ordered semigroup and T a nonempty subset of S.
Then T is called a subsemigroup of S if

() zyeT forallz,y e T ;

(2) (T C T



12

Example 1.20. Let X = {4,5,6}, we have

P(X) ={0,{4},{5},{6},{4,5},{4,6},{5,6},{4,5,6}}.

(1) Let Ty = {0, {4}}. We have QU = 0, Du{4} = {4}, {4}u{4} =
{4}. Then (T3] = (0,{4}] = {0,{4}} C T. Hence T; is an subsemigroup of a
ordered semigroup (P(X),U, C).

(2) Let Ty, = {{4,6}}. We have {4,6}U{4,6} = {4,6}. Then (T3] =
({4,6}] = {0,{4},{6},{4,6}} € To. Hence Ty is a subsemigroup of a semigroup
(P(X),U) but T3 is not a subsemigroup of an ordered semigroup (P(X),U, Q).

Theorem 1.16. Let S be an ordered semigroup and T a nonempty subset of S.
Then T is a subsemigroup if and only if (] C T and (zy] C T for all z,y € T.

Theorem 1.17. Let S be an ordered semigroup. The following statements hold.
(1) A C (A] for every A C S.
(2) If AC BC S, then (4] C (B].
(3) (A](B] C (AB] for every A,B C S.
(4) (Al = (A] for every ACS.
(5) If A and B are ideals of S, then (AB] and AU B are ideals of
S.

Definition 1.27. Let (S, e, <) be an ordered semigroup. A nonempty subset A
of S is called a left (resp. right) ideal of S if

(1) SAC A (resp. ASCA) ;

2) (4] € A
A is called an ideal of S if A is both a left and right ideal of S.

Definition 1.28. Let (S, e, <) be an ordered semigroup. A subsemigroup A of S
is called a bi-ideal of S if

(1) ASAC A

(2) (A] € A.

Definition 1.29. Let (S, e, <) be an ordered semigroup. A left (resp. right) ideal
or a bi-ideal A of S is said to be proper if A #£ S.
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Definition 1.30. Let (S, e, <) be an ordered semigroup. S is said to be left (resp.

right) simple if S does not contain proper left (resp. right) ideals.

Remark 1.2. Equivalent definition is as follow : for every left (resp. right) ideal A
of S, we have A = 5.

Definition 1.31. Let (S,e,<) be an ordered semigroup. S is called regular if,

for every a € S, there exists x € S such that a < aza.

Remark 1.3. Equivalent definitions are as follow :
(1) A C (ASA] for every A C S or

(2) a € (aSa] for every a € S.

Theorem 1.18. Let S be an ordered semigroup and A a nonempty subset of S.
The following statements hold.

(1) (Sa] is a left ideal of S for everya € S.

(2) (aS] is a right ideal of S for every a € S.

(8) (SaS] is an ideal of S for evry a € S.

Theorem 1.19. An ordered semigroup S is left (resp. right) simple if and only if
(Sal =S (resp. (aS]=S) for everya € S.



CHAPTER 2

Isomorphism theorems

In 1995, N. Kehayopulu and M. Tsingelis (Kehayopulu and Tsinge-
lis, 1995) have given two isomorphism theorems for ordered semigroups. Pseudo-
order played an important role in concepts of congruences and quotient of ordered
semigroups.

In this chapter, we separate into two sections. In the first section,
we give some properties of isomorphisms for I'-semigroups. In the last section,

isomorphisms for ordered I'-semigroups are considered.

2.1 Isomorphism theorems of ['-semigroups

First, we give the definition of congruences of I'-semigroups.

Definition 2.1. Let S be a I'-semigroup. An equivalence relation p on S is
called a right [resp. left] congruence on S if for each a,b € S, (a,b) € p implies
(aye,byc) € p [resp. (cya,cyb) € p| for all ¢ € S and v € . An equivalence
relation p on S is called a congruence on S if p is both a right and left congruence

on S.

Theorem 2.1. Let S be a T'-semigroup and p a congruence on S. Forap,bp € S/p
and v € T, let (ap)y(bp) = (ayb)p. Then the quotient set S/p is a I'-semigroup.

Proof. First, we will show that a binary operation is well-defined.

Let a,a’,b,b' € S and v € I'. Consider
ap=ad'pand bp=Vp = (a,d’),(b,b) € p
= (ayb,a'yb), (a’'vb,d'yb") € p
= (avyb,d'yV') € p
= (

ayb)p = (a'vV)p.

14
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Next, let a,b,c € S and v, u € I'. We have

(apybp)pep = ((avb)p)pcp = ((avb)puc)p = (ay(buc))p = apy(buc)p = apy(bpucp).

Then the quotient set S/p is a I'-semigroup. O

Definition 2.2. Let S and T be I'-semigroups under same I'. The mapping
¢S — T is called a I'-semigroup homomorphism or homomorphism if ¢p(xyy) =

o(z)vo(y) for all x,y € S and vy € T.

Let S and T' be ['-semigroups under same I' and ¢ : S — T a homomorphism. Let

kerg = ¢~ o ={(z,y) € S x S| d(x) = d(y)}.

It is easy to see that ker¢ is a congruence on S.

Then the following theorem holds.

Theorem 2.2. Let S and T be T'-semigroups under same I' and ¢ : S — T
a homomorphism. Then there is a monomorphism ¢ : S/ker¢ — T such that

rany = rang and the diagram

s .7

(kerg)# J /

S/kerd

commutes (i.e., @ o (kerg)* = ¢) where the mapping (ker¢)* : S — S/kere
defined by (ker¢)*(a) = akerd for all a € S.

Proof. Define ¢ : §/ker¢ — T by
p(akerd) = ¢(a) for all a € S.
We have
aker¢ = bker¢ < (a,b) € ker¢ < ¢(a) = ¢(b).

Then ¢ is well-defined and 1-1. Next, we will show that ¢ is a homomorphism.

Let a,b € S and v € I'. Consider
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o ((akerg)y(bkerd)) = p((avb)kerd) = d(arh) = d(a)y6(b) = plakerd)yp(bkerg).
Then ¢ is a homomorphism.

It is easy to see that rang=rany. We have ¢ o (ker¢)# = ¢ since

(oo (kerg)#)(a) = p((kerg)”(a)) = p(akerd) = ¢(a) foralla € S.

Hence the theorem is proved. O

Corollary 2.3. (First Isomophism Theorem) Let S and T be I'-semigroups under
same I' and ¢ : S — T a homomorphism. Then S/ker¢ = rang.

Theorem 2.4. Let S and T be I'-semigroups under same I' and ¢ : S — T a
homomorphism. If p is a congruence on S such that p C ker¢, then there is a

unique homomorphism ¢ : S/p — T such that ranp=rang and the diagram

s 2.

WV

S/p

commute (i.e., pop” = ¢) where the mapping p* : S — S/p defined by p* (a) = ap
foralla € S.

Proof. Defin ¢ : S/p — T by
o(ap) = ¢(a) for all a € S.
We have for all a,b € S.
ap=bp = (a,b) € p = (a,b) € kerp = ¢(a) = ¢(b).
Then ¢ is well-defined. Let a,b € S and v € I'. Consider
e((ap)y(bp)) = ((ayb)p) = d(ayd) = ¢(a)yd(b) = w(ap)ye(bp).

Hence ¢ is a homomorphism.

It is easy to see that ranp=ran¢. For each a € S, we have

(pop*)(a) = e(p*(a)) = wlap) = ¢(a).
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Thus ¢ o p#* = ¢. Next, let ¢ : S/p — T be any homomorphism satisfying
1o p? = ¢. Then for all a € S,

Y(ap) = P(p*(a)) = ¥ o p*(a) = ¢(a) = p(ap).
Therefore v = . O

Let p and o be congruences on a I'-semigroup S with p C o. Define

the relation o/p on S/p by

o/p={(zp,yp) € S/px S/p | (x,y) € o}.

We show that o/p is well-defined. Let xp, ap,yp, bp € S/p such that
xp = ap and yp = bp. So (z,a),(y,b) € p. Since p C o, (x,a),(y,b) € o. This
implies (z,y) € 0 & (a,b) € 0.

The following theorem holds.

Theorem 2.5. (Third Isomorphism Theorem) Let p and o be congruences on a

[-semigroup S with p C o and

a/p=1{(zp,yp) € S/p x S/p | (x,y) € o}.

Then
(1) o/p is a congruence on S/p ;

(2) (S/p)/(a/p) = 5/a.

Proof. (1) Let a € S. Then (a,a) € o, so (ap,ap) € a/p.

Next, let a,b € S such that (ap,bp) € o/p. Then (a,b) € . Since
o is symmetric, (b,a) € 0. Hence (bp,ap) € o/p.

Next, let a, b, ¢ € S such that (ap, bp), (bp, cp) € a/p. So (a,b), (b, c) €
0. Since o is transitive, (a,c) € . Therefore (ap, cp) € o/p.

Finally, let a,b,c € S and v € I". Assume (ap,bp) € o/p. Then
(a,b) € 0. Since o is a congruence on S, (aye, byc) € o. So ((avye)p, (bye)p) € a/p.
Then ((ap)v(cp), (bp)y(cp)) € o/p. Similarly, ((cp)y(ap). (cp)¥(bp)) € o/p.

Therefore o/p is a congruence on S/p.

(2) Define ¢ : (S/p)/(0/p) — S/o by ¢l(ap)(@/p)) = ac for all
a € S. Clearly, ¢ is onto. For all a,b € S, we have
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(ap)(o/p) = (bp)(a/p) < (ap,bp) €a/p < (a,b) €0 & ao =bo.

Therefore ¢ is well-defined and 1-1.
Next, we will show that ¢ is a homomorphism. Let a,b € S and

v € I'. We have

o((ap)(a/p)y(bp)(a/p)) = w((apybp)(a/p))
= ¢((avb)p)(a/p))
= (ayb)o

= aoybo = ¢((ap)(a/p))ve((bp)(a/p)).

Then ¢ is an isomorphism. Therefore (S/p)/(c/p) = S/o. O

2.2 Isomorphism theorems of ordered ['-semigroups

Definition 2.3. Let S and I'" be nonempty sets and < a relation on S. We call
(S,I', <) is an ordered I'-semigroup if

(1) (S,T') is a I'-semigroup ;

(2) (S, <) is a partially ordered set ;

(3) @ < b implies ayc < byc and ¢ya < cyb for all a,b,¢ € S and
vel.

Let S be a I'-semigroup and p a congruence on S, in Section 2.1, we
have that S/p is a I-semigroup. The following question in natural : If (ST, <) is
an ordered I'-semigroup and p is a congruence on S, then is the set S/p an ordered
I'-semigroup? A probable order on S/p could be the relation <, on S/p defined

by means of the order < on §, that is,
ap =, bp & there exists x € ap and y € ap such that (z,y) €<.
But this relation is not an order, in general. We prove it in the following example.

Example 2.1. We consider the ordered I'-semigroup S = {a,b,¢,d,e} and I =
{a, B} defined by the multiplication table and the order < below :



o
IS
Q)
o
Q| & | & | & | &
)

Blal|blc|d]e
alalelc|d]|e
bla|blc|d]|e
clalelc|d]|e
dlale|lc|d]|e
elalelc|d]e

and <= {(a, a), (a,d), (b,b), (c,c), (¢, e), (d,d), (e, e)}.
Let xz,y,z € S and v, € I'. Then we have

Hence S is a I'-semigroup. Since
rya < xvyd, ayr = dyz,ryc < xve,cyr = eyr for all x € S and v € T,

S is an ordered I'-semigroup.

Let p be the congruence on S defined as follows :

p={(a,a),(0,0),(c;c), (d,d), (e, ¢), (a,e), (¢,a), (¢, d), (d, ) }.

Let <, be an order on S/p defined by means of the order < on S, that is,

19
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ap =, bp & there exist x € ap and y € bp such that (z,y) €<.

We have ap = {a,e}, bp = {b} and c¢p = {c,d}. Also we have ap <, cp and
cp =, ap but ap # cp.

The following question arise : Is there a congruence p on an ordered
[-semigroup S for which S/p is an ordered I'-semigroup? This lead us to the

concept of pseudoorders.

Definition 2.4. Let (S,I', <) be an ordered I'-semigroup. A relation p is called
a pseudoorder if

(1) <Cp;

(2) for all a,b,c € S, (a,b) € p and (b,c) € p imply (a,c) € p;

(3) for all a,b € S, (a,b) € p implies (ayc, byc) € p and (¢ya, cyb) €
p for every c € S and vy € T

If p is a pseudoorder on an ordered I'-semigroup .S, let p be a relation

on S defined by
p=pOpt ={(a,b) €Sx S| (ab)€pand (ba) € p}.

Theorem 2.6. Let (S,T',<) be an ordered I'-semigroup and p a pseudoorder on

S. Then p is a congruence on S.

Proof. Let a € S. Since (a,a) €< and <C p, (a,a) € p. Then (a,a) € p.

Next, let a,b € S such that (a,b) € p. Thus (a,b) € p and (b,a) € p.
This implies that (b,a) € p.

Next, we show that p is transitive. Let a,b, ¢ € S such that (a,b), (b, c) €
p. Then (a,b), (b,a), (b,c), (¢c,b) € p. Thus (a,c),(c,a) € p. Hence (a,c) € p.

Finally, let a,b € S such that (a,b) € p. Then (a,b),(b,a) € p.
Thus (cya, cyd), (aye, bye), (eyb, cya), (bye, avye) € p for all c € S and v € T,
Therefore (ayc, byc), (cya,cyb) € p for all c € S and v € T, O

Let S be an ordered I'-semigroup and p a pseudoorder on S. By
Theorem 2.6, we have that p is a congruence on S. Then S/p is a I'-semigroup.

Next, for each ap,bp € S/p, define the order <; on S/p.
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ap =5 bp & there exist x € ap and y € bp such that (z,y) € p.

Theorem 2.7. Let (S,T',<) be an ordered I'-semigroup and p a pseudoorder on
S. The following statements hold.

(1) For a,b € S, ap =; bp if and only if (a,b) € p.

(2) =5 is an order on S/p.

Proof. (1) If (a,b) € p, then ap < bp.

Conversly, assume that ap <; bp. Then there exist € ap and y €
bp such that (x,y) € p. Since (z,a) € p and (y,b) € p, we have (z,a), (a, ), (b,v)
and (y,b) € p. Since (a,z), (z,y) and (y,b) € p, we have (a,b) € p.

(2) Let a,b,c € S. Since (a,a) €<sC p, ap =; ap. Assume that
ap =; bp and bp <; ap. By (1), (a,b) € p and (b,a) € p. Then (a,b) € p. So
ap = bp.

Finally, assume that ap <; bp and bp <; cp. By (1),(a,b) € p and
(b,c) € p. Therefore (a,c) € p. By (1), ap =; cp. Hence <, is an order on
S/p. O

The following theorem holds.

Theorem 2.8. Let (S,T',<) be an ordered I'-semigroup and p a pseudoorder on

S. Then S/p is an ordered I'-semigroup.

Proof. By Theorem 2.6, we have p is a congruence on S. Then S/p is a I'-
semigroup. By Theorem 2.7, we have <; is an ordered on S/p.

Let z,y € S such that xp <; yp. Then there exist a € xpand b € yp
such that (a,b) € p. Thus (z,a) € p and (y,b) € p. Then (x,a), (a,z), (y,b) and
(b,y) € p. So (x,y) € p. Let ¢ € S and v € I". Therefore

(zve, aye), (avye, zyc), (yye, byc) and (bye, yye) € p.

Then (zyc,ave), (yye,bye) € p. So (zye)p = (ave)p, (yye)p =
(byc)p. Similarly, (cyx)p = (¢ya)p and (cyy)p = (¢yb)p. Since (z,y) € p, we
have (zyc,yyc), (cyz,cvy) € p. Hence (zvc)p =, (yye)p and (cyx)p =5 (cyy)p.
Therefore (5)1(cp) <5 (uP)¥(cB) and (cP)(27) =5 (cP)(yp). Hence S/p is an

ordered ['-semigroup. O
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Definition 2.5. Let (S,I',<g) and (T,T",<r) be ordered I'-semigroups under
same [' and f : S — T a mapping from S into T'. f is called isotone if x <g y
implies f(z) <r f(y) for all z,y € S. f is called reverse isotone if f(z) <r f(y)

implies © <g y for all x,y € S.

Definition 2.6. Let (S,I',<g) and (7,I',<r) be ordered I'-semigroups under
same ' and f : S — T a mapping from S into 7. f is called an ordered I'-
semigroup homomorphism or homomorphism if

(1) f is isotone ;

(2) f(zyy) = f(z)vf(y) for all z,y € S and y € T

Theorem 2.9. Let (S,I', <g) and (T, T', <r) be ordered I'-semigroups under same
I'and f : S — T a mapping from S into T. If f is a reverse isotone mapping,
then f is 1-1.

Proof. Let x,y € S such that f(z) = f(y). Since f(z) <r f(y), z <s v.
Similarly, since f(y) <r f(z), y <g x. Then z = y. ]

Definition 2.7. Let (S,I',<g) and (T,T',<r) be ordered I'-semigroups under
same [' and f : S — T a mapping from S into T'. f is called an isomorphism if f

is a homomorphism, onto and reverse isotone.

Theorem 2.10. Let (S,T', <g) and (T,T', <r) be ordered I'-semigroups under same

I and ¢ : S — T a homomorphism. Define the relation ¢ on S by

¢ ={(a,b) € S x S| ¢(a) <r ¢(b)}.

Then <;~5 is a pseudoorder on S.

Proof. Let (a,b) €<g. Since a <g b and ¢ is isotone, ¢(a) <r ¢(b). Then
(a,b) € ¢. Next, let a,b,c € S such that (a,b),(b,c) € é. So ¢(a) <r ¢(b) and
o(b) <7 ¢(c). Then ¢(a) <r ¢(c). This implies (a,c) € .

Finally, let a,b,c € S and v € I'. Assume that (a,b) € ¢. Since

¢(a) <7 ¢(b), ¢ is a homomorphism and 7" is an ordered I'-semigroup,

P(aye) = ¢pla)yo(c) <r ¢(b)yo(c) = ¢(byc).
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Then (avye, byc) € ¢. Similarly, (cya, eyb) € ®.

Hence gz; is a pseudoorder on S. O

Theorem 2.11. Let (S,T', <g) and (T, T", <r) be ordered I'-semigroups under same
T and ¢ : S — T a homomorphism. If p is a pseudoorder on S such that p C ¢,
then the mapping ¢ : S/p — T defined by p(ap) = ¢(a) is a unique homomorphism
of S/p into T such that rany = rang and the diagram

s 2.

p#{ %

S/p

commuts (i.e., pop” = ¢) where the mapping p* : S — S/p defined by p* (a) = ap
foralla € S.

Proof. Define ¢ : S/p — T by

o(ap) = ¢(a) for all a € S.

We have ¢ is well-defined since for all a,b € S,

ap =bp = (a,b) € p
= (a,b), (b,a) € p
= (a,b),(b,a) € ¢
= ¢(a) <7 ¢(b) and ¢(b) <1 ¢(a)
= ¢(a) = ¢(b).

Let a,b € S and v € I'. We have

p(apybp) = ¢((ayb)p) = ¢p(ayb) = d(a)yd(b) = ¢(ap)ye(p)

and

ap 25 bp = (a,b) €pC ¢ = ¢(a) < o(b).

Hence ¢ is a homomorphism. For each a € S, we have
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(o p™)(a) = (p*(a)) = p(ap) = ¢(a).
Then ¢ o p* = ¢.
Next, let ¢ : S/p — T be any homomorphism such that ¢ o ¢# = ¢.

For a € S, we have

v(ap) = ¥(p*(a)) = (¥ 0 p¥)(a) = d(a) = p(ap).
So 1) = . Finally, we have rany = {p(ap) | a € S} = {¢(a) | a € S} = rang.

Hence the theorem is proved. O

Let (S,T', <g) and (7, T, <7) be ordered I'-semigroups under same
I and ¢ : S — T a homomorphism. Define ker¢ = {(a,b) € S x S | ¢(a) = ¢(b)}.

It is easy to see that ker¢ is a congruence on S. Then we have

(a,b) € kerg < ¢(a) = ¢(b)
& ¢(a) <7 ¢(b) and ¢(b) <r ¢(a)
& (a,b) € ¢ and (b,a) € ¢
& (a,b) € 5

So kergp = ¢.
The following corollary holds.

Theorem 2.12. (First Isomorphism Theorem) Let (S,T',<g) and (T,T',<r) be
ordered T'-semigroups under same I' and ¢ : S — T a homomorphism. Then

S/kerd = rang.

Proof. We apply the first part of Theorem 2.11 for p = gz~5 and ker¢ = gziﬁ Then

the mapping ¢ : S/ker¢ — T defined by p(akerg) = ¢(a) is a homomorphism.
Next, we will to show that ¢ is reverse isotone. Let a,b € S such that

¢(a) <1 ¢(b). Then (a,b) € ¢. Since ¢ is a pseudoorder on S, by Theorem 2.7 (1),

akerd =<jery bkerg. Then ¢ is reverse isotone. Therefore ¢ is an isomorphism. [

Theorem 2.13. (Third Isomorphism Theorem) Let (S,T', <) be an ordered I'-

semigroup, p and o pseudooders on S such that p C o. Then
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(1) o/p is a pseudoorder on S/p ;
(2) (S/p)(a/p) = S5

Proof. (1) Let (ap,bp) €=;. Then (a,b) € p. Since p C o, we have (a,b) € 0. So
(ap,bp) € o/p. Therefore <;C o /p.

Next, let a,b,c € S such that (ap,bp) € o/p and (bp,cp) € o /p.
Then (a,b) € o and (b, ¢) € g, so (a,c) € o. Therefore (ap, cp) € a/p.

Finally, let a,b,c € S and v € I'. Assume (ap,bp) € o/p. Then
(a,b) € 0. Since o is a pseudoorder on S, (aye,byc) € o. So ((ayc)p, (byc)p) €
o/p. Similarly, ((cya)p, (c7b)p) € o/p.

(2) Define ¢ : S/p — S/a by

¢(ap) = ac for all a € S.

We have ¢ is well-defined, since for all a,b € S,

ap=>bp = (a,b) €p = (a,b),(bja)ep o = (a,b)€F = ac = bo.
Next, let a,b € S and v € I'. Then we have

¢(apybp) = ¢((ab)p) = (ab)a = (ad)y(bo) = ¢(ap)yd(bp)
and
ap 2;bp = (a,b) €p = (a,b) €0 = ad =<; bo.
Hence ¢ is a homomorphism. By the definition of qg, we have
¢ ={(ap,bp) € S/p x S/p | $lap) =5 ¢(bp)}.

Thus

(ap,bp) € ¢ < dap) =5 d(bp) < ad <5 b5 < (a,b) €0 < (ap,bp).

Then ¢ = a/p, so ker¢ = <Z = m. It is easy to see that ran¢ = S/a. By
Theorem 2.12, (S/p)/(0/p) = S/5. O



CHAPTER 3

Bi-ideals in ordered I'-semigroups

In this chapter, we study bi-ideals in ordered I'-semigroups. We
demonstrate this chapter in three sections. In the first section, we study the
notion of bi-ideals in ordered I'-semigroups. In the second section, we give some
characterizations of minimal and O-minimal bi-ideals in ordered I'-semigroups,
respectively. In the last section, maximal bi-ideals in ordered I'-semigroups are

studied.

3.1 Bi-ideals in ordered I'-semigroups

Let (S,T', <) be an ordered I'-semigroup and 7" a nonempty subset
of S. If H is a nonempty subset of T', we denote the set

(Hlr ={teT |t <hforsomehec H}.
If T =5, then always write (H] by (H|s.

Definition 3.1. Let (5,I', <) be an ordered I'-semigroup. A nonempty subset A
of S is called a subl'-semigroup if

(1) zyy € Aforall z,y € Sand y € T ;

(2) (4] C A

Definition 3.2. Let (5,1, <) be an ordered I'-semigroup. A subl-semigroup A
of S is called a left (resp. right) ideal of S if

(1) STAC A (resp. ASC A) ;

(2) (A] € A.
Definition 3.3. Let (S,I', <) be an ordered I'-semigroup. A subl-semigroup A
of S is called a bi-ideal of S if

(1) ATSTAC A

(2) (4] C A

26



27

Definition 3.4. Let (S,I', <) be an ordered I'-semigroup. A subl'-semigroup A
of S is called left (resp. right) t-simple if an ordered I'-semigroup (A,T, <) does
not contain proper left (resp. right) ideals.

Definition 3.5. Let (S,I', <) be an ordered I'-semigroup. S is said to be left

(resp. right) simple if S does not contain proper left (resp. right) ideals.

Remark 3.1. Equivalent definition is as follow : for every left (resp. right) ideal A
of S, we have A = §.

Definition 3.6. Let (S,T', <) be an ordered I'-semigroup. S is called reqular if,

for every a € S, there exist x € S and v, 3 € I' such that a < ayzfa.

Remark 3.2. Equivalent definitions are as follow :
(1) A C (AI'ST A] for every A C S or
(2) a € (aI'STa] for every a € S.

Theorem 3.1. Let (S,T', <) be an ordered I'-semigroup. The following statements
are true.

(1) (STa] is a left ideal of S for alla € S.

(2) (al'S] is a right ideal of S for all a € S.

(8) (STal'S] is an ideal of S for all a € S.

Proof. (1) First, we will show that ST'(STa] C (STa]. Let € ST'(STa]. Then
x = yab for some y € S, b € (STa] and a € I'. Since b € (STa], b <t for some
t € STa. Thus t = wla for some w € S and # € I'. Hence b < wfa. Since S
is an ordered I'-semigroup, yab < yawfa = (yaw)Ba. Since (yaw)Ba € STa and
x < (yaw)fa, x € (STal.

Next, we show that ((STa]] C (STa]. Let x € ((STa]]. Then x <t
for some ¢ € (STa]. Since t € (STa], we have ¢t < s for some s € STa.
Therefore 2 < s and s € STa. Hence = € (STal.

(2) It is similar to (1).

(3) Claim that ST'(STal'S] C (STal'S]. Let x € ST'(STal'S]. Then
x = yab for some y € S, b € (STal'S] and o € I'. Since b € (STal'S], b < ¢ for
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some t € STal'S. Thus t = w;PBabw, for some wi,wy € S and (,0 € I'. Hence

b < wiBabws. Since S is an ordered I'-semigroup,
yab < yaw, fabwy = (yaw, ) Babws.

Then x = yab < (yaw;)Babws. Since (yaw,)Babw, € STal'S, x € (STal'S].

Next, we show that (STal'S|I'S C (STal'S]. Let x € (STal'S|I'S.
Then x = yab for some y € (STal'S],b € S, and o € I'. Since y € (STal'S], we
have y < t for some t € STal'S. Thus t = w,Babwsy for some wy,ws € S and
6,0 € T'. Hence y < wyabwy. Therefore

yab < (wyfabws)ab = wy fab(wead) and wy fab(wead) € STal'S

because S is an ordered I'-semigroup. Hence = € (STal'S].

Finally, we show that ((STaI'S]] C (STal'S]. Let z € ((STal'S]].
Then = < t for some t € (STal'S]. We have t < s for some s € STal'S because
t € (STal'S]. Hence x < s and s € STal'S, so z € (STal'S]. O

The following theorems give necessary and sufficient condition for

an ordered I'-semigroup to be left (right) simple.

Theorem 3.2. Let (S,T',<) be an ordered I'-semigroup. S is left (resp. right)
simple if and only if (STa] = S (resp. (aI'S] = S) for alla € S.

Proof. Assume that S is left simple and let a € S. By Theorem 3.1(1), we have
(STal is a left ideal of S. Then (STa] = S because S is left simple.
Conversely, suppose that (STa] = S for all a € S. Let L be a left
ideal of S and a € S. Clearly, L C S. Next, we will show that S C L. Consider
S =(STa] C(STL]C (L] C L.

Thus S = L, so S is left simple. m
The following corollary follows by Theorem 3.2.

Corollary 3.3. Let (S,T', <) be an ordered I'-semigroup. A subl'-semigroup T of
S is left (resp. right) simple if and only if (TTa|lr =T (resp. (aI'T|y =T) for all

a€eT.
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Theorem 3.4. Let (S,T',<) be an ordered I'-semigroup. If S is left and right

simple, then S is reqular.

Proof. Assume that S is left and right simple. By theorem 3.2, we have (STa| = S
and (al'S] = S. Let a € S. Consider

a € (aI'S] = (aI'(al'S]] = (aI'(STa]] = (aI'STa].

Hence S is regular. O]

Let S be an ordered I'-semigroup and A a nonempty subset of S.
We denote by L(A), R(A) and B(A) the left ideal, right ideal and bi-ideal of S
generated by A, respectively.

Theorem 3.5. Let (S,T', <) be an ordered I'-semigroup and A a nonempty subset
of S. The following statements hold.

(1) L(A) = (AU ST A].

(2) R(A) = (AU AT'S].

(3) B(A) = (AU ATAU AT'ST A].

Proof. (1) Let A be a nonempty subset of an ordered I'-semigroup S. Let L =
(AU ST A]. Clearly, A C L. We have that

LTL = (AUSTAJI(AU STA] C (STA] C L.

It easy to see that ((L]] C (L]. Hence L is a subI'-semigroup of S.

Claim that STL C L. Let x € SI'L. Then x = yab for some y € S,
be Land a €I'. From b € L, we have b € (A] or b € (ST AJ.

Case 1.1. If b € (A], then b < z for some z € A. Thus x = yab <
yaz. Hence x € (STA] C (AU STA] = L.

Case 1.2. It b € (ST A], then b < m~yn for some m € S, n € A and
v € I'. Thus x = yab < (yam)yn. Hence x € (STA] C (AUSTA| = L. Therefore
B is a left ideal of S.

Let M be any left ideal of S containing A. Since M is a subl'-
semigroup of S and A C M, (A] C (M] C M. Since M is a left ideal of S and
ACM,STACSTM C M and (M] C M. Therefore L = (AUSTA] C (M] C M.
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Hence L is the smallest left ideal of S containing A. Therefore
L(A)=L=(AUSTA].

(2) Tt is similar to (1).

(3) Let A be a nonempty subset of an ordered I'-semigroup S. Let
B =(AUAT'AU AT'ST'A]. Clearly, A C B. We have that

BI'B = (AU ATAU ATSTA|T(AU ATA U ATST A] C (ATAU ATSTA] C B.

It easy to see that ((B]] € (B]. Hence B is a subI'-semigroup of S.

Claim that BI'ST'B C B. Then x € BI'ST'B, so x = bam[y for
some b,y € B,me Sand a,3 €T.

Case 3.1. 1f b € (A] and y € (4], then b < k and y < ¢ for some
k.t € A. Thus x = bamfy < kamt. Hence z € (ATSTA] C B.

Case 3.2. If b € (A] and y € (AT'A], then b < k and y < sut for
some k, s,t € Aand p € I'. Thus x = bamfy < kam(B(sut) = ka(mBs)ut. Hence
x € (ATSTA] C B.

Case 3.3. If b € (A] and y € (AI'ST'A], then b < k and y < rfsvyt
for some k,r,t € A, s € S and 0,7 € I'. Thus x = bamfy < kamfB(rfsyt) =
ka(mpBrfs)yt. Hence x € (AI'STA] C B.

Case 3.4. It is similar to case 3.2.

Case 3.5. If b € (AT'A] and y € (AT'A], then b < ¢yd and y < euf
for some ¢,d,e, f € A and v, € T'. Hence x = bamfy < (cyd)ampB(epf) =
cy(dampe)uf. Thus = € (AI'STA] C B.

Case 3.6. If b € (AT'A] and y € (AI'STA], then b < c¢yd and
y < rfsyt for some c,d,r,t € A, s € S and 6,7 € I'. Hence x = bamfy <
(eyd)ampB(rfsyt) = cy(dampPBrs)yt. Thus x € (AT'STA] C B.

Case 3.7. It is similar to case 3.3.

Case 3.8. 1t is similar to case 3.6.

Case 3.9. If b € (AT'STA] and y € (AI'ST'A], then b < c¢ydpe and
y < rfsnt for some c¢,d,r,t € A, d,s € S and v, u,0,n € I'. Hence x = bamfy <
(eydpe)amB(rosnt) = cy(dueamPBros)nt. Thus € (AI'STA] C B.

Then BI'ST'B C B. Therefore B is a bi-ideal of S.
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Let M be any bi-ideal of S containing A. Since M is a bi-ideal of
Sand A C M, ATAC M, ATSTA C MT'STM C M and (M] C M. Therefore
B=(AUATAUATSTA] C (M] C M.

Hence B is the smallest bi-ideal of S containing A. Therefore
B(A)=B=(AUAT AU AT'ST A|. O

Let S be an ordered I'-semigroup and a € S. For A = {a}, we write
L(a), R(a) and B(a) instead of L({a}), R({a}) and B({a}), respectively, and we
call them the principal left ideal, principal right ideal and principle bi-ideal of S,
respectively, generated by a. We have

La)={teS|t<aort<yyaforsomeyecS yel},
R(a)={te S |t<aort<afx for some x € S,3 € '},
B(a)={te S|t<aort<avyaort<afzua for some

r€S,y,0,pel}.

Theorem 3.6. Let (S,T', <) be an ordered I'-semigroup. Then S is left and right

simple if and only if S does not contain proper bi-ideals.

Proof. Assume that S is left and right simple. Let A be a bi-ideal of S. Clearly,
ACS. Toshow S C A, let a € S and b € A. Since S is left simple, S = L(b).
Then a < b or a < zab for some x € S and o € I' because a € S = L(b).

Case 1. a <b. Sincea € Sanda<be A, a € A.

Case 2. a < xab for some x € S and a € I". Since S is right simple,
we have S = R(b). Then x < b or z < by for some y € S and [ € T because
x € R(b).

Case 2.1. x <b. Then a < zab < bab. Since a < bab and bab € A,
a € A.

Case 2.2. © < bPBy for some y € S and f € I'. Then a < zab <
(bBy)ab. Since (bBy)ab € AT'STA C A, this implies a € A.

Thus S = A. Hence S does not contain proper bi-ideals.

Conversely, let L be a left ideal of S. So (L] € L. We have LI'ST'L =



32

LI'(STL) € LT'L € L. Then L is a bi-ideal of S. By assumption, L = S.
Therefore S is left simple. Similarly, S is right simple.

Definition 3.7. An ordered I'-semigroup (5,T", <) is called an ordered I'-group if
(S,7) is a group for some v € I.

The following theorem is true.

Theorem 3.7. Let (S,I',<) be an ordered I'-group. Then S does not contain

proper bi-ideals.

Proof. Let S be an ordered I'-group and A a bi-ideal of S. Then (5, a) is a group
for some a € T'. Clearly, A C S. Let a € S and b € A. Since (S, ) is a group,

there exists b1 € S such that bab™! = e = b~tab for some o € T'. Then
a = efabe = (bab™1)Bab(b~ ab) = ba(b~'Babdb=1)ab € ATSTA C A.

Thus a € A. Therefore S = A. Hence S does not contain proper bi-ideals. n

3.2 Minimal and 0-minimal bi-ideals in ordered I'-semigroups

In this section, we study minimal and 0-minimal bi-ideals in ordered

['-semigroups.
Definition 3.8. Let (S,I', <) be an ordered I'-semigroup. A bi-ideal B of S is

called a minimal bi-ideal of S if B does not contain proper bi-ideals of S.

Remark 3.3. Equivalent definition is as follow : for any bi-ideal A of S such that
A C B, we have A = B.

Definition 3.9. Let (S,T', <) be an ordered I'-semigroup. A subI-semigroup 7'
of S is called t-simple if an ordered I'-semigroup (7, T", <) does not contain proper

bi-ideals.
The following theorem holds.

Theorem 3.8. Let (S,T', <) be an ordered T'-semigroup and B a subl'-semigroup
of S. If B is a bi-ideal of S, then (uI'BT'v| is a bi-ideal of S for every u,v € S.
In particular, (uI'ST| is a bi-ideal of S for every u,v € S.
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Proof. Let z,y € (uI'BT'v],v,6 € ' and s € S. Then 2 < ¢ and y < d for some
¢,d € ul'BT'v. Then there exist a,b € B and 0,v,a, 3 € I such that

¢ = ubavv and d = uabfv.
Then avvyuab = av(vyu)ab € BI'STB C B and
vy < cyd = (ubavv)y(uabfv) = ub(avvyuab)fu.

Thus vy € (uI'BI'v]. This shows that (uI'BI'v] is a subI'-semigroup of S.
We have

zys0y < eysdd = (ubavv)ysd(uabfv) = ub(avvysduad) v

and avvysduab = av(vyséuab)fv € BT'STB C B, this implies zysdy € (ul' BT'v].
Thus (uI' BI'v|I'ST (uI' BT'v] C (ul' BI'v).

Next, we show that ((uI'BI'v]] C (uI'BI'v]. Let x € ((ul' BT'v]].
Then we have < t for some ¢t € (uI'BI'v]. Since ¢t € (ul'BT'v], t < s for some
s € ul’'BI'v. Hence z € (ul'BI'v].

Therefore (uI'BI'v] is a bi-ideal of S, and consequently (uI'STv] is
a bi-ideal of S because S is a bi-ideal of itself. O

Corollary 3.9. Let (S,T', <) be an ordered I'-semigroup. For anya € S, (aI'STq]
1s a bi-ideal of S.

Proof. 1t follows by Theorem 3.8. O

We now characterize the t-simple subl'-semigroup in ordered I'-

semigroup.

Theorem 3.10. Let (S,I', <) be an ordered I'-semigroup and T a subl'-semigroup
of S. The following statements are equivalent :

(1) T is t-simple.

(2) (tI'TTtlp =T forallt €T.

(3) T is a left and right simple subl'-semigroup of S.
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Proof. (1) = (2) : Let t € T. By Theorem 3.8, we have (tI'TT't|r is a bi-ideal of
S. Since T is t-simple, (tI'TTt)y =T
(2) = (3) : For every t € T, we have

(tL'TTt)r C (TTtr € T and ((TTTt)r C (tT'T)p C T.

By our hypothesis, we have (TTt] =T and (tI'T] =T for all t € T. By Corollary
3.3, T is both left and right simple.

(3) = (1) : Let B be a bi-ideal of T'. By our hypothesis, for each
a € B, we have (al'T|r =T = (TTa|y. Thus we have

T = (aI'T)y = (aI'(TTdl7)r € (aI'TTa]y € (BTTTB)y C (B]r C B.

Therefore B =T and hence T' is t-simple. O]

Theorem 3.11. Let (S,I', <) be an ordered I'-semigroup. The following state-
ments are equivalent :

(1) S is t-simple.

(2) (al'STa] = S for alla € S.

(8) B(a) =S for alla € S.

Proof. (1) = (2) : Assume that S is t-simple and let a € S. Since (aI'STq] is a
bi-ideal of S, we have (aI'STa] = S.

(2) = (3) : Assume that (aI'STa] = S for all a € S. Consider the
set

B(a) = (aI'STa U al’'a U a] = (al'STa] U (al'a] U (a] = SU (al'a] U (a] = S.

Therefore B(a) = S for alla € S.
(3) = (1) : Assume that B(a) = S for all a € S. Let B be an
bi-ideal of S and let @ € B. Clearly, B C S. Since B(a) = S, we have

S = B(a) = (al'STaUal'aUa] C (BI'STBUBI'BUB] C B.
Then B = S5, that is, S is t-simple. m

Theorem 3.12. Let (S,T',<) be an ordered I'-semigroup and B a bi-ideal of S.

Then B is minimal if and only if B is t-simple.
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Proof. Let B be a minimal bi-ideal of S and a € B. We let J = (al'BTl'a]p.
Let ¢1,c0 € J. Then ¢; < aaqbifra and ¢y < acsbyfBaa for some by, by € B and
a1, o, 1,0 € I'. Let x € S and ~,60 € I". Since byf1ayxfasasby € BI'STB C B

and

c1yzbey < (aoqbfra)yrl(acsbefaa) = acy (b frayzrhacsbs)faa,

c1yxlcy € J. This shows that JT'STJ C J. Let y € (J]. Then y < z for some
z€J. Since z € J,z€ B. Soy € B. Since z € J, there exist b € B and o, € I’
such that z < aabfa. Thus y < aabfa, hence y € J. Therefore J is a bi-ideal of
S.

Since B is minimal and J is a bi-ideal of S contained in B, B =
J = (aI'BTa] g for all a € B. Hence by Theorem 3.10, B is t-simple.

Conversely, let B be a t-simple bi-ideal of S and N a bi-ideal of S
satisfying N C B and ¢ € N. By Theorem 3.10, B = (¢cI'BI'¢|g. Then

B C (NTBT'N]p C (NT'STN] C (N] C N.

Thus N = B. This shows that B is a minimal bi-ideal of S. OJ

Theorem 3.13. Let M be a minimal bi-ideal of an ordered I'-semigroup S and B
a bi-ideal of S. Then M = (uI' BT'v] for every u,v € M.

Proof. By Theorem 3.8, (ul'BT'v] is a bi-ideal of S for every u,v € S. Since M is

minimal and
(ul'BT'v] € (MTBI'M] C (MT'STM] C (M] C M.

Hence M = (ul'BI'v)]. O
By Theorem 3.8 and Theorem 3.13, we obtain the following theorem.

Theorem 3.14. Let M be a minimal bi-ideal of an ordered I'-semigroup S. Then
(sI'MTt] is a minimal bi-ideal of S for every s,t € S.

Proof. By Theorem 3.8, (sI'MT't] is a bi-ideal of S. Let N be a bi-ideal of S such
that N C (sI'MTt|. Consider the set H = {h € M | (sahft] C N for some «, 3 €
['}. It is obvious that H C M.
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Let x € S, hy,hs € H and «a,v,n, 1, 0,8 € I'. Since N and M are
bi-ideals of S,

(sahyytnzusfhyft] C ((sahiyt|nzp(sbheft]] C (NTSTN] C (N] C N
and
hiytnzuslhe = hyy(tnzus)fhy € MTSTM C M.
Then hivtnxzusbhs € H. Hence hI'tI'ST's'hy C H. Since M is minimal and
(tI'ST's] is a bi-ideal of S by Theorem 3.8, it follows from Theorem 3.13 that

Now, let y € (H]. Then y < h for some h € M such that (sahyt] C
N for some a,y € I'. From (H] C (M] C M and sayyt < sahvyt, we obtain
y € M and (sayyt] C (sahvyt] C N, that is, y € H. Then (H] C H. This show
that M C H and H = M. Therefore

(sTMTt] = U (sah~yt] = U (sah~vyt] C N.

heM, heH,
a,yel a,yel
Thus N = (sI'MT't], that is, (s’ MT't] is a minimal bi-ideal of S. O

By Theorem 3.13 and 3.14, we observe the following result.

Theorem 3.15. Let M be a minimal bi-ideal of an ordered I'-semigroup S. Then
every minimal bi-ideal of S is of the form (s MTt|, where s,t € S.

Definition 3.10. Let (S,I',<) be an ordered I'-semigroup. Let K(S) be the
intersection of all ideals of S. If K(S) # 0, then K(S) is called the kernel of S.

It easy to see that K(S) is the smallest ideals of S. We now study

the kernel of an ordered I'-semigroup.

Theorem 3.16. Let (S,T', <) be an ordered I'-semigroup. The union of all mini-
mal bi-ideals of S is the kernel of S.

Proof. Let M be a minimal bi-ideal of S and K = (STMT'S]. Then, it is clear
that K is an ideal of S. Since
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K = (STMTS] = | J (sTMT1].

s,teS

Then K is the union of all the minimal bi-ideal of S by Theorem
3.15. Let a € K. Then a € B for some minimal bi-ideal B of S. Since K is an
ideal of S, by Theorem 3.10 and Theorem 3.12, there exist x € B and o, 3 € I’
such that a < aaxfa and so a < (aczxfa)axfa € KTal'K.

Hence, we have
K C (KTal'K] C (KT'STK] C (KT'S] C (K] C K.

Then K = (KTal'K] for all @ € K. Let I be an ideal of S. Thus ITK C INK
and INK # (. Let c€ INK. Then K = (KT'cI'K]| because ¢ € K. Since [ is an

ideal of S and ¢ € I, we have
K = (KTcI'K] C (KTITK] C (STITS| C (I] C 1.

Therefore K = K (S) which is the kernel of S. O
By Theorem 3.12 and Theorem 3.16, we deduce the following result.

Theorem 3.17. Let (S,I',<) be an ordered T'-semigroup. If S has a minimal
bi-ideal M, then K(S) = (STMTS] which is a union of t-simple subl'-semigroups
of S.

Theorem 3.18. If a bi-ideal B of an ordered I'-semigroup S is a t-simple subl'-
semigroup of S which e € B satisfying e < eae for some a € ', then B = (eI'STe]

and (STel'S] is the kernel of S which is a union of t-simple subl'-semigroup of S.

Proof. Since B is t-simple, it follows from Theorem 3.12 that B is a minimal
bi-ideal of S. By Theorem 3.8, (eI'STe] is a bi-ideal of S. Since (eI'STe] C
(BI'ST'B] C B, we have B = (e'ST¢].

Also, e < eae < eaeae for some « € T" implies e € (eI'STe|. Thus
by Theorem 3.17, we have that K (5) is a union of t-simple subI'-semigroups of S.

Consequently, we have
K(S) = (ST'(eI'STe]l'S] C (STel'STel'S| C (STel'S] C (ST (eI'STe]I'S],

since e € (eI'STe]. This show that K(S) = (STel'S]. O
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In the remainder in this section, we study minimal and O-minimal
bi-ideals of ordered I'-semigroups analogous to minimal and 0-minimal bi-ideals

of semigroups considered by A. Iampan (lampan, 2008)

Definition 3.11. Let (S,T', <) be an ordered I'-semigroup. An element a of S
with at least two element is called zero element of S if xava = a = aax for all

xr € S and a € I' and is denoted by 0.

Definition 3.12. Let (S,I', <) be an ordered I'-semigroup with zero. S is called

0-t-simple if it does not contain nonzero proper bi-ideals of S and ST'S # {0}.
Lemma 3.19. Let (S,T', <) be an ordered I'-semigroup and a € S. Then

B(a) = (aT'S'Ta U {a}] = (aI'STa U al'a U {a}].
Proof. 1t follows by Theorem 3.5(3). O

Lemma 3.20. Let (S,T', <) be an ordered I'-semigroup with zero. The following
statements hold.

(1) If S is 0-t-simple, then B(a) = S for all a € S\ {0}.

(2) If B(a) = S for all a € S\ {0}, then either ST'S = {0} or S is
0-t-simple.

Proof. (1) Assume that S is 0-t-simple. Then for any a € S\ {0}, B(a) is a
nonozero bi-ideal of S. Hence B(a) = S.

(2) Assume that B(a) = S for all a € S'\ {0} and ST'S # {0}.
Let B be a nonzero bi-ideal of S and a € B\ {0}. Clearly, B C S. By assumption,

we have
S = B(a) = (al'STaUal'aU{a}] C (BI'STBU BI'BU B] C B.

Therefore B = 5, that is, S is 0-t-simple. O

Lemma 3.21. Let (S,I', <) be an ordered I'-semigroup and {By | A € A} a family

of bi-ideals of S. Then (7] By is a bi-ideal of S if () By # 0.
AEA AEA
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Proof. Assume that m By # 0. Let a,b € ﬂ By, © € S, v,u € T. Then

AEA AEA
a,b € By for all A € A. Since B, is a bi-ideal of S for all A € A, ayb € B, and

ayrub € B,y for all A € A. Then avb € ﬂ By and ayzub € m B,. Clearly,
AEA AEA

((ﬂ B,]] C (ﬂ B,]. Therefore ﬂ B, is a bi-ideal of S. O
AeA AeA AeA

Lemma 3.22. Let (S,T, <) be an ordered I'-semigroup, B a bi-ideal of S and K
a subl'-semigroup of S. The following statements hold.

(1) If K is t-simple such that K N B # (), then K C B.

(2) If K is 0-t-simple such that (K \ {0}) N B # ), then K C B.

Proof. (1) Assume that K is ¢-simple such that K N B # (). Then there exists
a € KN B. By Theorem 3.11(2), K = (aI'KT'a]. We have

K = (al'KTa] C (aI'KTa] C (BI'ST'B] C (B] C B.

Hence K C B.

(2) Assume that K is 0-t-simple such that (K \ {0})N B # (). Then
B(a) # {0}. It is easy to show that B(a) N K is a nonzero bi-ideal of K. Then
K = B(a) N K. We have

K =B(a)NK = (al'KT'aUal'aU{a}]N K C (aI'KT'a U al'a U {a}]
C (aI’'STaUal'a U {a}]

= B(a) C B.

Hence K C B. O

Definition 3.13. Let (S,I', <) be an ordered I'-semigroup with zero. A nonzero
bi-ideal B of S is called a 0-minimal bi-ideal of S if there is no nonzero bi-ideal A

of S such that A C B.

Remark 3.4. Equivalent definition are as follow :
(1) For any nonzero bi-ideal A of S such that A C B, we have A = B
or

(2) For any bi-ideal A of S such that A C B, we have A = {0}.
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Theorem 3.23. Let (S,I', <) be an ordered I'-semigroup with zero and B a bi-
ideal of S. If B is a 0-minimal bi-ideal of S, then either BI'B = {0} or B is

0-t-simple.

Proof. Tt is similar to the proof of Theorem 3.12. O
Using the same proof of Theorem 3.23 and Lemma 3.22(2), we have

theorem.

Theorem 3.24. If ordered I'-semigroup S has a zero element and B is a nonzero
bi-ideal of S, then the following statements hold.

(1) If B is a 0-minimal bi-ideal of S, then either AT BT'A = {0} for
some nonzero bi-ideal A of B or B is 0-t-simple.

(2) If B is 0-t-simple, then B is a 0-minimal bi-ideal of S.

Theorem 3.25. If ordered I'-semigroup S has no zero element but it has proper
bi-ideals, then every proper bi-ideals of S is minimal if and only if the intersection

of any two distinct proper bi-ideals is empty.

Proof. Assume that every proper bi-ideals of S is minimal. Let B; and By be two
distinct proper bi-ideals of S. Then B; and B, are minimal. If B; N By # (), then
BN By is a bi-ideal of S by Lemma 3.21. Since By and B, are minimal, By = Bs.
It is a contradiction. Therefore B; N By = (.

The converse is obvious. O
Using the same proof of Theorem 3.25, we have Theorem 3.26.

Theorem 3.26. If ordered I'-semigroup S has a zero element but it has nonzero
proper bi-ideals, then every nonzero proper bi-ideals of S is 0-minimal if and only

if the intersection of any two distinct nonzero proper bi-ideals is {0}.

Proof. 1t is similar to the proof of Theorem 3.25. O
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3.3 Maximal bi-ideals in ordered I['-semigroups

In this section, we study maximal bi-ideals of ordered I'-semigroups

analogous to maximal bi-ideals of semigroups considered by A. lampan (lampan,

2008)

Definition 3.14. A proper bi-ideal B of an ordered I'-semigroup S is called a
maximal bi-ideal of S if for any bi-ideal A of S such that B C A, we have A = S.

Remark 3.5. Equivalent definition is as follow : for any proper bi-ideal A of §
such that B C A, we have A = B.

Theorem 3.27. Let (S,T',<) be an ordered I'-semigroup and B a bi-ideal of S.
If

(1) S\ B ={a} for somea € S or

(2) S\ B C (bI'STb] for allb e S\ B,

then B is a maximal bi-ideal of S.

Proof. Let A be a bi-ideal of S such that B C A. Then A\ B # 0.
Case 1. S\ B = {a} for some a € S.
Then

BU{a} =BU(S\B)=BU(SNBY =(BUS)N(BUB®) =8S.
Since BC Aand A\ B#0, A\ BC S\ B ={a}. Then A\ B = {a}. Consider
BU{a}=BU(A\B)=(BUA)N(BUBY) =AnS=A.

Then A = S because BU {a} = S. Hence B is a maximal bi-ideal of S.
Case 2. S\ B C (bI'STb] for all b e S\ B. Let b€ A\ B.
We have

be A\BC S\ BC (bI'STh C (AI'STA] C A.

Hence S=BUS\BC BUACACS,s0 A=S. Then B is a maximal bi-ideal
of S. ]
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Theorem 3.28. Let (ST, <) be an ordered I'-semigroup. If B is a mazximal bi-
ideal of S and B U B(a) is a bi-ideal of S for all a € S\ B, then either

(1) S\ B C (al'aU a] and (al'al'a] C B for some a € S\ B, and
(bI'STb) C B for allbe S\ B, or

(2) S\ B C B(a) foralla € S\ B.

Proof. Assume that B is a maximal bi-ideal of S and B U B(a) is a bi-ideal of S
for all @ € S\ B. Then we have the following two case :

Case (1). (aI'STa] C B for some a € S\ B. Then (al'al'a] C
(aI'STa] C B, so al'al'a C B. Consider

BU(al'aUa] = (BU (al'STa]) U (al'aUa] = BU (al'STaUal’aUa] = BU B(a).

Then B U (al'aUa] is a bi-ideal of S because B U B(a) is a bi-ideal
of S. Since B is a maximal bi-ideal of S and B C BU (al'aUal, BU(al'aUa] = S.
Hence S'\ B C (al'a U a].

Let b€ S\ B. Then b € (al'aUa). Hence b € (a] or b € (al'al.

Case 1. b € (a]. Then b < a. Let x € (bI'STb]. Then = < y
for some y € bI'STb. Hence y = blcyb for some ¢ € S and 0,7 € I'. We have
x <y ="0blcyb < abcya. Then x € al'STa C (al'STa| C B

Case 2. b € (al'a]. Then b < ana for some n € I'. Let x € (bI'STH).
Then x < y for some y € bI'STh. Hence y = burdb for some r € S and u,0 € T,

we have
x <y =burdb < (ana)urd(ana) = an(aprfa)na.

Then z € al'STa C (al'STa] C B. Therefore (bI'STH] C B for all b€ S\ B.

Case (2). (al'STa] € B for all @ € S\ B. Let a € S\ B. Then
B C BU(al'STa] € BUB(a). Since BUB(a) is a bi-ideal of S and B is a maximal
bi-ideal of S, we get BU B(a) = S. Then S\ B C B(a) for alla € S\ B. O

Let (S,I', <) be an ordered I'-semigroup. Define U is the union of
all nonzero proper bi-ideals of S if S has a zero element and I/ is the union of all

proper bi-ideals if S has no a zero element. In the other words, if
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R = {B | B is a proper bi-ideal of S},
then U = J{B | B € R}.
Lemma 3.29. S =U if and only if B(a) # S for alla € S.

Proof. Suppose that there exist a € S such that S = B(a). Since a € S = U, it
follows that a € B for some proper bi-ideal B of S and so S = B(a) C B. Since
B is a proper bi-ideal of .9, it is a contradiction.

Conversly, let a € S. By hypothesis, B(a) # S. Then B(a) is a
proper bi-ideal of S such that a € B(a). Since B(a) € R, a € R, we have a € U.
Therefore S =U. [

Theorem 3.30. Let (S,I', <) be an ordered I'-semigroup without zero. Then one
of the following four conditions is satisfied.

(1) U is not a bi-ideal of S.

(2) B(a) # S foralla € S.

(3) There exists a € S such that B(a) = S, (aT'aUa] € (aI'STd]
and (al'al’a] C U, S is not t-simple, S\U = {x € S | B(x) = S}, and U is the
unique maximal bi-ideal of S.

(4) S\U C B(a) for alla € S\U, S is not t-simple, S\U = {z €
S| B(x) =S}, and U is the unique mazimal bi-ideal of S.

Proof. Assume that U is a bi-ideal of S. Then U # (). Now, we have consider the
following two cases :

Case 1. U = S. By Lemma 3.29, B(a) # S for all a € S. In this
case, the condition (2) is satisfied.

Case 2. U # S. Then S is not t-simple. We want to show that U
is the unique maximal bi-ideal of S, let A be a bi-ideal of S such that Y C A. If
A # S, then A is a proper bi-ideal of S. Thus A C U, so it is a contradiction,
that is, A = S. Hence U is a maximal bi-ideal of S.

Next, assume that B is a maximal bi-ideal of S. Then B CU C S
because B is a proper bi-ideal of S. Since B is a maximal bi-ideal of S, we have

B =U. Then U is the unique maximal bi-ideal of S.
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Since U # S, it follows from Lemma 3.29 that B(a) = S for all
a € S. Clearly, B(a) = S for alla € S\U. Thus S\U = {z € S| B(z) =S}. So
UU B(a) = S is a bi-ideal of S for all @ € S\ Y. By Theorem 3.28, we have the
following two case :

(2.1) S\U C (al'a U a] and (al'al’a] C U for some a € S\ U and
(bI'STb] CU for allbe S\ U

(2.2) S\U C B(a) for all a € S\ U.

Assume that S\U C (al'aUa] and (al'al'a] C U for some a € S\U
and (bI'STH] C U for all b € S\ U. If (al'aUa] C (aI'STa], then S = B(a) =
(al'STa U al’'a U a] = (aI'STa]. By hypothesis, S = (al'STa] C U and so U = S.
It is a contradiction.

Therefore (al'a U a] € (al'STa]. In this case, condition (3) is satis-
fied. Now, assume S\ U C B(a) for all @ € S\ U. In this case, condition (4) is
satisfied. O

Using the same proof of Theorem 3.30, we have Theorem 3.31.

Theorem 3.31. Let (S,I', <) be an ordered I'-semigroup with zero and ST'S #
{0}. Then one of the following five conditions is satisfied.

(1) U is not a bi-ideal of S.

(2) B(a) # S for alla € S.

(8) U = {0}, S\U ={x € S| B(x) =S}, and U is the unique
maximal bi-ideal of S.

(4) There exists a € S such that B(a) = S, (aT'aUa] € (al'STd]
and (al'al'a]l CU, S is not 0-t-simple, S\U = {x € S | B(x) = S}, and U is the
unique maximal bi-ideal of S.

(5) S\U C Bla) for alla € S\U, S is not 0-t-simple, S\ U =
{r €S| B(x) =S}, and U is the unique mazimal bi-ideal of S.
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