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ชื่อวิทยานิพนธ์ สมบัติบางประการของแกมมากึ่งกรุปอันดับ

ผู้เขียน นายกิตติศักดิ์ ถิ่นพันธุ์

สาขาวิชา คณิตศาสตร์และสถิติ

ปีการศึกษา 2551

บทคัดย่อ

กำหนดให้ S และ Γ เป็นเซตไม่ว่างและ ≤ เป็นความสัมพันธ์บน S เราเรียก

(S,Γ,≤) ว่า แกมมากึ่งกรุปอันดับ ถ้า (S,Γ) เป็นแกมมากึ่งกรุปและ (S,≤) เป็นเซตอันดับ

บางส่วนโดยที่ ถ้า a ≤ b แล้ว aγc ≤ bγc และ cγa ≤ cγb สำหรับทุก a, b, c ∈ S และสำหรับทุก

γ ∈ Γ

ในการทำวิจัยน้ี เราได้ให้ทฤษฎีบทสมสัณฐานของแกมมากึ่งกรุปและแกมมากึ่งกรุป

อันดับ ยิ่งไปกว่าน้ัน เราได้ให้ความสัมพันธ์บางประการระหว่างอันดับเทียมและแกมมากึ่งกรุปอันดับ

นอกจากน้ี เราศึกษาไบไอดีล ไบไอดีลเล็กสุดเฉพาะกลุ่ม 0-ไบไอดีลเล็กสุดเฉพาะกลุ่ม

และไบไอดีลใหญ่สุดเฉพาะกลุ่มในแกมมากึ่งกรุปอันดับ
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ABSTRACT

Let S and Γ be nonempty sets and ≤ a relation on S. Then (S,Γ,≤)

is called an ordered Γ-semigroup if (S,Γ) is a semigroup and (S,≤) is a partially

ordered set such that

a ≤ b ⇒ aγc ≤ bγc and cγa ≤ cγb for all a, b, c ∈ S and γ ∈ Γ.

In this thesis, we give isomorphism theorems of Γ-semigroups and

ordered Γ-semigroups. Moreover, we give some connections between pseudoorder

and ordered Γ-semigroups.

Furthermore, we study bi-ideals, minimal bi-ideals, 0-minimal bi-

ideals and maximal bi-ideals in ordered Γ-semigroups.
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CHAPTER 1

Introduction and Preliminaries

The notion of Γ-semigroups was introduced by M. K. Sen in the year

1981 (Sen, 1981). Γ-semigroups generalize semigroups. Many classical notions of

semigroups have been extended to Γ-semigroups. In fact, any semigroup S can be

considered to be a Γ-semigroup, by define aαb = ab for all a, b ∈ S and α ∈ Γ.

On the other hand, let S be a Γ-semigroup and α a fixed element in Γ. We define

ab = aαb for all a, b ∈ S, then we can see that S is a semigroup.

In this thesis, we give isomorphism theorems of Γ-semigroups and or-

dered Γ-semigroups, and also give some properties of ordered Γ-semigroups. More-

over, we give some connections between pseudoorder and ordered Γ-semigroups.

Furthermore, we study bi-ideals, minimal bi-ideals, 0-minimal bi-

ideals and maximal bi-ideals in ordered Γ-semigroups.

1.1 Semigroups

We will use the notation and terminology of Howie (Howie, 1976)

to introduce the notion of a semigroup as follows :

Definition 1.1. Let S be a nonempty set and ∗ a binary operation on S. (S, ∗)

is called a semigroup if ∗ is associative, i.e.,

(a ∗ b) ∗ c = a ∗ (b ∗ c) for all a, b, c ∈ S.

Example 1.1. (N,+) and (R,×) are semigroups.

Example 1.2. (Z,−) is not a semigroup since for a, b, c ∈ Z such that c 6= 0, we

have

a− (b− c) = a− b+ c 6= a− b− c = (a− b)− c.

1
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Definition 1.2. Let S be a semigroup. A nonempty subset T of S is called a

subsemigroup of S if T is closed under the binary operation of S, that is, ab ∈

T for all a, b ∈ T.

Definition 1.3. Let A be a nonempty set. An arbitrary subset of A×A is called

a relation on A.

Definition 1.4. Let S be a semigroup. A relation ρ on S is called an equivalence

relation on S if

(1) aρa for all a ∈ S (reflexive) ;

(2) aρb implies bρa for all a, b ∈ S (symmetric) ;

(3) aρb and bρc imply aρc for all a, b, c ∈ S (transitive).

We will use the notation and terminology of Howie (Howie, 1976)

to introduce congruences and isomorphism theorems for semigroups as follows :

Definition 1.5. Let S be a semigroup. An equivalence relation ρ on S is called

a right congruence on S if

(a, b) ∈ ρ implies (at, bt) ∈ ρ for all a, b, t ∈ S,

and an equivalence relation ρ on S is called a left congruence on S if

(a, b) ∈ ρ implies (ta, tb) ∈ ρ for all a, b, t ∈ S.

An equivalence relation ρ on S is called a congruence on S if ρ is both a right and

left congruence on S.

Example 1.3. Let ρ be a relation on a semigroup (N,+) defined by

aρb⇔ 4|a− b for all a, b ∈ N.

We have ρ is a right congruence on N since for a, b, t ∈ N,

(a, b) ∈ ρ⇒ 4|a− b

⇒ 4x = a− b for some x ∈ N

⇒ 4x = (a+ t)− (b+ t)

⇒ 4|(a+ t)− (b+ t)

⇒ (a+ t, b+ t) ∈ ρ.
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A similar argument shows that ρ is a left congruence on N. Hence ρ is a congruence

on N.

Definition 1.6. Let S be a semigroup and ρ a congruence on S. Then we have

S/ρ = {aρ | a ∈ S}.

Theorem 1.1. Let S be a semigroup and ρ a congruence on S. For aρ, bρ ∈ S/ρ,

let (aρ)(bρ) = (ab)ρ. Then S/ρ is a semigroup.

Definition 1.7. Let S be a semigroup. A subsemigroup A of S is called a left

(resp. right) ideal of S if SA ⊆ A (resp. AS ⊆ A). A is called an ideal of S if A

is both a left and right ideal of S.

Example 1.4. Let Z be the set of all integers and M2(Z), the set of all 2 × 2

matrices over Z. We have known that M2(Z) is a semigroup under the usual

multiplication. Let

L = {

x 0

y 0

 | x, y ∈ Z} and R = {

x y

0 0

 | x, y ∈ Z}.

Then L is a left ideal of M2(Z) and R is a right ideal of M2(Z).

Definition 1.8. Let S be a semigroup. A subsemigroup B of S is called a bi-ideal

of S if BSB ⊆ B.

Example 1.5. Let S = [0, 1]. Then S is a semigroup under usual multiplication.

Let B = [0,
1

2
]. Then B is a subsemigroup of S. We have that BSB ⊆ B =

[0,
1

4
] ⊆ B. Therefore B is a bi-ideal of S.

Example 1.6. Let N be the set of all possitive integers. Then N is a semigroup

under the usual multiplication. Let B = 2N. Thus BNB = 4N ⊆ 2N = B. Hence

B is a bi-ideal of N.

Definition 1.9. A semigroup S is said to be left (resp. right) simple if S does

not contain proper left (resp. right) ideals of S.

Theorem 1.2. Let S be a semigroup. S is a left (resp. right) simple semigroup

if and only if Sa = S (resp. aS = S) for every a ∈ S.
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Theorem 1.3. Let S be a semigroup. The following statements are equivalent:

(1) S is a group.

(2) S has the conditions

(a) ∃e ∈ S ∀a ∈ S, ea = a ;

(b) ∀a ∈ S ∃b ∈ S, ba = e.

(3) S has the conditions

(a) ∃e ∈ S ∀a ∈ S, ae = a ;

(b) ∀a ∈ S ∃b ∈ S, ab = e.

Theorem 1.4. Let S be a semigroup. The following statements are equivalent:

(1) S is a group.

(2) S is a left and right simple semigroup.

(3) Sa = S = aS for every a ∈ S.

Definition 1.10. A semigroup S is called t-simple if S does not contain proper

bi-ideals of S.

Definition 1.11. A semigroup S with zero is called 0-t-simple if S2 6= {0} and S

does not contain nonzero proper bi-ideals of S.

Definition 1.12. Let S and T be semigroups. The mapping φ : S → T is called

a homomorphism if φ(ab) = φ(a)φ(b) for all a, b ∈ S.

Example 1.7. Let R be a semigroup of the set of all real numbers under the usual

addition. Define φ : R → R by φ(a) = 2a for all a ∈ R. Let a, b ∈ R. We have

φ(a+ b) = 2(a+ b)

= 2a+ 2b

= φ(a) + φ(b).

Hence φ is a homomorphism.

Definition 1.13. Let S and T be semigroups. The mapping φ : S → T is called

an isomorphism if φ is a homomorphism, 1-1 and onto.
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Theorem 1.5. The following statements are true.

(1) If ρ is a congruence on a semigroup S, then S/ρ is a semigroup

and the mapping ρ# : S → S/ρ defined by

ρ#(x) = xρ for all x ∈ S

is a homomorphism.

(2) Let S and T be semigroups. If φ : S → T is a homomorphism,

then the relation

kerφ = φ−1 ◦ φ = {(x, y) ∈ S × S | φ(x) = φ(y)}

is a congruence on S and there is a monomorphism α : S/kerφ → T such that

ranα = ranφ and the diagram

S T

S/kerφ

-
φ

?
(kerφ)#

�
�

��
α

commutes.

Theorem 1.6. (First Isomorphism Theorem) Let S and T be semigroups. If

φ : S → T is a homomorphism, then S/kerφ ∼= ranφ.

Theorem 1.7. Let ρ be a congruence on a semigroup S. If φ : S → T is a

homomorphism such that ρ ⊆ kerφ, then there is a unique homomorphism β :

S/ρ→ T such that ranβ = ranφ and the diagram

S T

S/ρ

-
φ

?
ρ#

�
�

��

β

commutes.

Let ρ and σ be congruences on a semigroup S with ρ ⊆ σ. Define

the relation σ/ρ on S/ρ by
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σ/ρ = {(xρ, yρ) ∈ S/ρ× S/ρ | (x, y) ∈ σ}.

The following theorem holds.

Theorem 1.8. (Third Isomorphism Theorem) Let ρ and σ be congruences on a

semigroups S such that ρ ⊆ σ. The following statements hold.

(1) σ/ρ is a congruence on S/ρ.

(2) (S/ρ)(σ/ρ) ∼= S/σ.

1.2 Γ-semigroups

In 1981, M. K. Sen (Sen, 1981) introduced the definition of a Γ-

semigroup as follows :

Definition 1.14. Let S and Γ be nonempty sets. S is called a Γ-semigroup if

(1) aαb ∈ S, for all a, b ∈ S and α ∈ Γ ;

(2) (aαb)βc = aα(bβc), for all a, b, c ∈ S and α, β ∈ Γ.

Now, we give some examples of Γ-semigroups.

Example 1.8. Let Z be the set of all integers and Γ = {n | n ∈ N}. Define

aαb = a+α+ b for all a, b ∈ Z and α ∈ Γ where + is the usual addition. We have

Z is a Γ-semigroup.

Example 1.9. Let Z be the set of all integers and Γ = {n | n ∈ N}. Define

aαb = a × α × b for all a, b ∈ Z and α ∈ Γ where × is the usual multiplication.

We have Z is a Γ-semigroup.

Example 1.10. Let R be the set of all real numbers and Γ = { 1

n
| n ∈ N}. Define

aαb = a× α× b for all a, b ∈ R and α ∈ Γ where × is the usual multiplication .

We have R is a Γ-semigroup since for a, b, c ∈ R and α, β ∈ Γ

aαb = a× α× b ∈ R and (aαb)βc = aα(bβc).

Example 1.11. Let S be a set of all negative rational numbers and Γ = {−1

p
| p is prime}.

Define aαb = a × α × b for all a, b ∈ S and α ∈ Γ where × is the usual multipli-

cation. We have S is a Γ-semigroup since for a, b, c ∈ S and α, β ∈ Γ
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aαb = a× α× b ∈ S and (aαb)βc = aα(bβc).

Definition 1.15. Let (S,Γ) be a Γ-semigroup and M a nonempty subset of S.

Then M is called a subΓ-semigroup of S if aγb ∈M for all a, b ∈M and γ ∈ Γ.

Example 1.12. Let S = [0, 1] and Γ = { 1

n
| n is a positive integer}. Then S is a

Γ-semigroup under the usual multiplication. Next, let M = [0,
1

2
]. We have that

M is a nonempty subset of S and aγb ∈ M for all a, b ∈ M and γ ∈ Γ. Then M

is a subΓ-semigroup of S.

Example 1.13. Consider the Γ-semigroup (Z,Γ) in Example 1.6. Let N be the

set of all positive integers. We have N is a subΓ-semigroup of Z since N ⊆ Z and

NΓN ⊆ N.

Definition 1.16. Let (S,Γ) be a Γ-semigroup. A subΓ-semigroup A of S is called

a left (resp. right) ideal of S if SΓA ⊆ A (resp. AΓS ⊆ A). A is called an ideal

of S if A is both a left and right ideal of S.

Definition 1.17. Let (S,Γ) be a Γ-semigroup and A a subΓ-semigroup of S.

Then A is called a bi-ideal of S if AΓSΓA ⊆ A.

1.3 Ordered semigroups

In 1995, N. Kehayopulu and M. Tsingelis (Kehayopulu and Tsin-

gelis, 1995) have studied ordered semigroups and given isomorphism theorems of

ordered semigroups as follows :

Definition 1.18. Let S be a nonempty set and ≤ a relation on S. We call ≤ is

an order on S if

(1) ∀a ∈ S, a ≤ a (reflexive) ;

(2) ∀a, b ∈ S if a ≤ b and b ≤ a, then a = b (anti-symmetric) ;

(3) ∀a, b, c ∈ S if a ≤ b and b ≤ c, then a ≤ c (transitive).

Example 1.14. We have ≤ is an order on R.

(1) (reflexive) Let a ∈ R. By property of ≤ on R, we have a ≤ a.
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(2) (anti-symmetric) Let a, b ∈ R, a ≤ b and b ≤ a. By property of

≤ on R, we have a = b.

(3) (transitive) Let a, b, c ∈ R, a ≤ b and b ≤ c. By property of ≤

on R, we have a ≤ c.

Example 1.15. Let X be any set. We have ⊆ is an order on P (X).

(1) (reflexive) Let A ∈ P (X). Clearly, A ⊆ A.

(2) (anti-symmetric) Let A,B ∈ P (X) such that A ⊆ B and B ⊆ A.

By property of ⊆ on P (X), we have A = B.

(3) (transitive) Let A,B,C ∈ P (X) such that A ⊆ B and B ⊆ C.

By property of ⊆ on P (X), we have A ⊆ C.

Definition 1.19. If ≤ is an order on a nonempty set S, then (S,≤) is called a

partially ordered set.

Example 1.16. By Example 1.11 and 1.12, we have (R,≤) and (P (X),⊆) are

partially ordered sets.

Definition 1.20. Let S be a nonempty set, • a binary operation on S and ≤ a

relation on S. We call (S, •,≤) is an ordered semigroup if

(1) (S, •) is a semigroup ;

(2) (S,≤) is a partially ordered set ;

(3) for all a, b, c ∈ S, a ≤ b implies ac ≤ bc and ca ≤ cb.

Example 1.17. (N,+,≤) is an ordered semigroup since

(1) (N,+) is a semigroup ;

(2) (N,≤) is a partially ordered set ;

(3) Let a, b, c ∈ N such that a ≤ b. Then a+c ≤ b+c and c+a ≤ c+b.

Example 1.18. (P (X),∪,⊆) is an ordered semigroup since

(1) (P (X),∪) is a semigroup ;

(2) (P (X),⊆) is a partially ordered set ;

(3) Let A,B,C ∈ P (X) such that A ⊆ B. We show that A ∪ C ⊆

B ∪ C. Let a ∈ A ∪ C. Then a ∈ A and a ∈ C. Since A ⊆ B, we have a ∈ B and
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a ∈ C. Thus a ∈ B ∪ C. Therefore A ∪ C ⊆ B ∪ C. Since P (x) is commutative

under ∪, C ∪ A ⊆ C ∪B.

Definition 1.21. Let (S, •,≤) be an ordered semigroup. A relation ρ on S is

called a pseudoorder on S if

(1) ≤⊆ ρ ;

(2) for all a, b ∈ S, (a, b) ∈ ρ and (b, c) ∈ ρ imply (a, c) ∈ ρ ;

(3) for all a, b, c ∈ S, (a, b) ∈ ρ implies (ac, bc) ∈ ρ and (ca, cb) ∈ ρ.

Definition 1.22. Let (S, •,≤S) and (T, ∗,≤T ) be ordered semigroups and

f : S → T a mapping from S to T . f is said to be isotone if x, y ∈ S, x ≤S y

implies f(x) ≤T f(y). A mapping f is said to be reverse isotone if x, y ∈ S,

f(x) ≤T f(y) implies x ≤S y.

Remark 1.1. Each reverse isotone mapping is 1-1.

Definition 1.23. Let (S, •,≤S) and (T, ∗,≤T ) be ordered semigroups and

f : S → T a mapping from S to T . f is called a homomorphism if

(1) f is isotone ;

(2) f(x • y) = f(x) ∗ f(y) for all x, y ∈ S.

Definition 1.24. Let (S, •,≤S) and (T, ∗,≤T ) be ordered semigroups. A mapping

f : S → T is called an isomorphism if f is homomorphism, onto and reverse

isotone.

If ρ is a pseudoorder on S, let ρ̄ be a relation on S defined by

ρ̄ = {(a, b) ∈ S × S | (a, b) ∈ ρ and (b, a) ∈ ρ}.

Proposition 1.9. Let (S, •,≤) be an ordered semigroup and ρ a pseudoorder on

S. Then ρ̄ is a congruence on S.

Let S be an ordered semigroup and ρ a pseudoorder on S. By the

Proposition 1.9, we have that ρ̄ is a congruence on S. Then the set S/ρ̄ = {aρ̄ | a ∈

S} with multiplication (aρ̄) • (bρ̄) = (ab)ρ̄ is a semigroup and an order �ρ defined

by
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�ρ= {(aρ̄, bρ̄) | ∃x ∈ aρ̄,∃y ∈ bρ̄, (x, y) ∈ ρ}.

Proposition 1.10. Let S be an ordered semigroup and ρ a pseudoorder on S.

The following statements hold.

(1) For a, b ∈ S, aρ̄ �ρ bρ̄ if and only if (a, b) ∈ ρ.

(2) �ρ is an order on S/ρ̄.

Proposition 1.11. Let (S, •,≤) be an ordered semigroup and ρ a pseudoorder on

S. Then S/ρ̄ is an ordered semigroup.

Let ρ# be a homomorphism of S onto S/ρ̄ defined by ρ# : S → S/ρ̄

such that ρ#(a) = aρ̄ for all a ∈ S.

Proposition 1.12. Let (S, •,≤S) and (T, ∗,≤T ) be ordered semigroups and

φ : S → T a homomorphism. Define the relation φ̃ on S by

φ̃ = {(a, b) ∈ S × S | φ(a) ≤T φ(b)}.

Then φ̃ is a pseudoorder on S.

Theorem 1.13. Let (S, •,≤S) and (T, ∗,≤T ) be ordered semigroups and

φ : S → T a homomorphism. If ρ is a pseudoorder on S such that ρ ⊆ φ̃, then the

mapping ψ : S/ρ̄→ T defined by ψ(aρ̄) = φ(a) is a unique homomorphism of S/ρ̄

into T such that ranψ = ranφ and the diagram

S T

S/ρ̄

-
φ

?
ρ#

�
�

��

ψ

commutes (i.e., ψ ◦ ρ# = φ).

Let (S, •,≤S) and (T, ∗,≤T ) be ordered semigroups and φ : S → T

a homomorphism. Define kerφ = {(a, b) ∈ S × S | φ(a) = φ(b)}. It is easy to see
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that kerφ is a congruence on S. We have

(a, b) ∈ kerφ⇔ φ(a) = φ(b)

⇔ φ(a) ≤T φ(b) and φ(b) ≤T φ(a)

⇔ (a, b) ∈ φ̃ and (b, a) ∈ φ̃

⇔ (a, b) ∈ ¯̃φ.

So kerφ = ¯̃φ. The following theorem holds.

Theorem 1.14. (First Isomorphism Theorem) Let (S, •,≤S) and (T, ∗,≤T ) be

ordered semigroups and φ : S → T a homomorphism. Then S/kerφ ∼= ranφ.

Theorem 1.15. (Third Isomorphism Theorem) Let (S, •,≤S) be an ordered semi-

group, ρ and σ pseudoorders on S such that ρ ⊆ σ. The following statements hold.

(1) σ/ρ is a pseudoorder on S/ρ̄.

(2) (S/ρ̄)/(σ/ρ) ∼= S/σ̄.

Definition 1.25. Let S be an ordered semigroup, T a nonempty subset of S and

H a nonempty subset of T . Then we denote

(H]T = {t ∈ T | ∃h ∈ H, t ≤ h}.

If T = S, then we alway write (H] instead of (H]S

Example 1.19. Consider an ordered semigroup (N, •,≤) and T = {3, 6, 7, 8, 9},

H1 = {6, 10} and H2 = {8}. Then we have

(H1]T = {3, 6, 7, 8, 9} ;

(H1] = (H1]N = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} ;

(H2]T = {3, 6, 7, 8} ;

(H2] = (H2]N = {1, 2, 3, 4, 5, 6, 7, 8}.

Definition 1.26. Let S be an ordered semigroup and T a nonempty subset of S.

Then T is called a subsemigroup of S if

(1) xy ∈ T for all x, y ∈ T ;

(2) (T ] ⊆ T .
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Example 1.20. Let X = {4, 5, 6}, we have

P (X) = {∅, {4}, {5}, {6}, {4, 5}, {4, 6}, {5, 6}, {4, 5, 6}}.

(1) Let T1 = {∅, {4}}. We have ∅∪∅ = ∅, ∅∪{4} = {4}, {4}∪{4} =

{4}. Then (T1] = (∅, {4}] = {∅, {4}} ⊆ T . Hence T1 is an subsemigroup of a

ordered semigroup (P (X),∪,⊆).

(2) Let T2 = {{4, 6}}. We have {4, 6}∪{4, 6} = {4, 6}. Then (T2] =

({4, 6}] = {∅, {4}, {6}, {4, 6}} * T2. Hence T2 is a subsemigroup of a semigroup

(P (X),∪) but T2 is not a subsemigroup of an ordered semigroup (P (X),∪,⊆).

Theorem 1.16. Let S be an ordered semigroup and T a nonempty subset of S.

Then T is a subsemigroup if and only if (x] ⊆ T and (xy] ⊆ T for all x, y ∈ T .

Theorem 1.17. Let S be an ordered semigroup. The following statements hold.

(1) A ⊆ (A] for every A ⊆ S.

(2) If A ⊆ B ⊆ S, then (A] ⊆ (B].

(3) (A](B] ⊆ (AB] for every A,B ⊆ S.

(4) ((A]] = (A] for every A ⊆ S.

(5) If A and B are ideals of S, then (AB] and A ∪ B are ideals of

S.

Definition 1.27. Let (S, •,≤) be an ordered semigroup. A nonempty subset A

of S is called a left (resp. right) ideal of S if

(1) SA ⊆ A (resp. AS ⊆ A) ;

(2) (A] ⊆ A.

A is called an ideal of S if A is both a left and right ideal of S.

Definition 1.28. Let (S, •,≤) be an ordered semigroup. A subsemigroup A of S

is called a bi-ideal of S if

(1) ASA ⊆ A ;

(2) (A] ⊆ A.

Definition 1.29. Let (S, •,≤) be an ordered semigroup. A left (resp. right) ideal

or a bi-ideal A of S is said to be proper if A 6= S.
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Definition 1.30. Let (S, •,≤) be an ordered semigroup. S is said to be left (resp.

right) simple if S does not contain proper left (resp. right) ideals.

Remark 1.2. Equivalent definition is as follow : for every left (resp. right) ideal A

of S, we have A = S.

Definition 1.31. Let (S, •,≤) be an ordered semigroup. S is called regular if,

for every a ∈ S, there exists x ∈ S such that a ≤ axa.

Remark 1.3. Equivalent definitions are as follow :

(1) A ⊆ (ASA] for every A ⊆ S or

(2) a ∈ (aSa] for every a ∈ S.

Theorem 1.18. Let S be an ordered semigroup and A a nonempty subset of S.

The following statements hold.

(1) (Sa] is a left ideal of S for every a ∈ S.

(2) (aS] is a right ideal of S for every a ∈ S.

(3) (SaS] is an ideal of S for evry a ∈ S.

Theorem 1.19. An ordered semigroup S is left (resp. right) simple if and only if

(Sa] = S (resp. (aS] = S) for every a ∈ S.



CHAPTER 2

Isomorphism theorems

In 1995, N. Kehayopulu and M. Tsingelis (Kehayopulu and Tsinge-

lis, 1995) have given two isomorphism theorems for ordered semigroups. Pseudo-

order played an important role in concepts of congruences and quotient of ordered

semigroups.

In this chapter, we separate into two sections. In the first section,

we give some properties of isomorphisms for Γ-semigroups. In the last section,

isomorphisms for ordered Γ-semigroups are considered.

2.1 Isomorphism theorems of Γ-semigroups

First, we give the definition of congruences of Γ-semigroups.

Definition 2.1. Let S be a Γ-semigroup. An equivalence relation ρ on S is

called a right [resp. left] congruence on S if for each a, b ∈ S, (a, b) ∈ ρ implies

(aγc, bγc) ∈ ρ [resp. (cγa, cγb) ∈ ρ] for all c ∈ S and γ ∈ Γ. An equivalence

relation ρ on S is called a congruence on S if ρ is both a right and left congruence

on S.

Theorem 2.1. Let S be a Γ-semigroup and ρ a congruence on S. For aρ, bρ ∈ S/ρ

and γ ∈ Γ, let (aρ)γ(bρ) = (aγb)ρ. Then the quotient set S/ρ is a Γ-semigroup.

Proof. First, we will show that a binary operation is well-defined.

Let a, a′, b, b′ ∈ S and γ ∈ Γ. Consider

aρ = a′ρ and bρ = b′ρ⇒ (a, a′), (b, b′) ∈ ρ

⇒ (aγb, a′γb), (a′γb, a′γb′) ∈ ρ

⇒ (aγb, a′γb′) ∈ ρ

⇒ (aγb)ρ = (a′γb′)ρ.

14
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Next, let a, b, c ∈ S and γ, µ ∈ Γ. We have

(aργbρ)µcρ = ((aγb)ρ)µcρ = ((aγb)µc)ρ = (aγ(bµc))ρ = aργ(bµc)ρ = aργ(bρµcρ).

Then the quotient set S/ρ is a Γ-semigroup.

Definition 2.2. Let S and T be Γ-semigroups under same Γ. The mapping

φ : S → T is called a Γ-semigroup homomorphism or homomorphism if φ(xγy) =

φ(x)γφ(y) for all x, y ∈ S and γ ∈ Γ.

Let S and T be Γ-semigroups under same Γ and φ : S → T a homomorphism. Let

kerφ = φ−1 ◦ φ = {(x, y) ∈ S × S | φ(x) = φ(y)}.

It is easy to see that kerφ is a congruence on S.

Then the following theorem holds.

Theorem 2.2. Let S and T be Γ-semigroups under same Γ and φ : S → T

a homomorphism. Then there is a monomorphism ϕ : S/kerφ → T such that

ranϕ = ranφ and the diagram

S T

S/kerφ

-
φ

?
(kerφ)#

�
�

��
ϕ

commutes (i.e., ϕ ◦ (kerφ)# = φ) where the mapping (kerφ)# : S → S/kerφ

defined by (kerφ)#(a) = akerφ for all a ∈ S.

Proof. Define ϕ : S/kerφ→ T by

ϕ(akerφ) = φ(a) for all a ∈ S.

We have

akerφ = bkerφ ⇔ (a, b) ∈ kerφ ⇔ φ(a) = φ(b).

Then ϕ is well-defined and 1-1. Next, we will show that ϕ is a homomorphism.

Let a, b ∈ S and γ ∈ Γ. Consider
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ϕ((akerφ)γ(bkerφ)) = ϕ((aγb)kerφ) = φ(aγb) = φ(a)γφ(b) = ϕ(akerφ)γϕ(bkerφ).

Then ϕ is a homomorphism.

It is easy to see that ranφ=ranϕ. We have ϕ ◦ (kerφ)# = φ since

(ϕ ◦ (kerφ)#)(a) = ϕ((kerφ)#(a)) = ϕ(akerφ) = φ(a) for all a ∈ S.

Hence the theorem is proved.

Corollary 2.3. (First Isomophism Theorem) Let S and T be Γ-semigroups under

same Γ and φ : S → T a homomorphism. Then S/kerφ ∼= ranφ.

Theorem 2.4. Let S and T be Γ-semigroups under same Γ and φ : S → T a

homomorphism. If ρ is a congruence on S such that ρ ⊆ kerφ, then there is a

unique homomorphism ϕ : S/ρ→ T such that ranϕ=ranφ and the diagram

S T

S/ρ

-
φ

?
ρ#

�
�

��
ϕ

commute (i.e., ϕ◦ρ# = φ) where the mapping ρ# : S → S/ρ defined by ρ#(a) = aρ

for all a ∈ S.

Proof. Defin ϕ : S/ρ→ T by

ϕ(aρ) = φ(a) for all a ∈ S.

We have for all a, b ∈ S.

aρ = bρ ⇒ (a, b) ∈ ρ ⇒ (a, b) ∈ kerφ ⇒ φ(a) = φ(b).

Then ϕ is well-defined. Let a, b ∈ S and γ ∈ Γ. Consider

ϕ((aρ)γ(bρ)) = ϕ((aγb)ρ) = φ(aγb) = φ(a)γφ(b) = ϕ(aρ)γϕ(bρ).

Hence ϕ is a homomorphism.

It is easy to see that ranϕ=ranφ. For each a ∈ S, we have

(ϕ ◦ ρ#)(a) = ϕ(ρ#(a)) = ϕ(aρ) = φ(a).
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Thus ϕ ◦ ρ# = φ. Next, let ψ : S/ρ → T be any homomorphism satisfying

ψ ◦ ρ# = φ. Then for all a ∈ S,

ψ(aρ) = ψ(ρ#(a)) = ψ ◦ ρ#(a) = φ(a) = ϕ(aρ).

Therefore ψ = ϕ.

Let ρ and σ be congruences on a Γ-semigroup S with ρ ⊆ σ. Define

the relation σ/ρ on S/ρ by

σ/ρ = {(xρ, yρ) ∈ S/ρ× S/ρ | (x, y) ∈ σ}.

We show that σ/ρ is well-defined. Let xρ, aρ, yρ, bρ ∈ S/ρ such that

xρ = aρ and yρ = bρ. So (x, a), (y, b) ∈ ρ. Since ρ ⊆ σ, (x, a), (y, b) ∈ σ. This

implies (x, y) ∈ σ ⇔ (a, b) ∈ σ.

The following theorem holds.

Theorem 2.5. (Third Isomorphism Theorem) Let ρ and σ be congruences on a

Γ-semigroup S with ρ ⊆ σ and

σ/ρ = {(xρ, yρ) ∈ S/ρ× S/ρ | (x, y) ∈ σ}.

Then

(1) σ/ρ is a congruence on S/ρ ;

(2) (S/ρ)/(σ/ρ) ∼= S/σ.

Proof. (1) Let a ∈ S. Then (a, a) ∈ σ, so (aρ, aρ) ∈ σ/ρ.

Next, let a, b ∈ S such that (aρ, bρ) ∈ σ/ρ. Then (a, b) ∈ σ. Since

σ is symmetric, (b, a) ∈ σ. Hence (bρ, aρ) ∈ σ/ρ.

Next, let a, b, c ∈ S such that (aρ, bρ), (bρ, cρ) ∈ σ/ρ. So (a, b), (b, c) ∈

σ. Since σ is transitive, (a, c) ∈ σ. Therefore (aρ, cρ) ∈ σ/ρ.

Finally, let a, b, c ∈ S and γ ∈ Γ. Assume (aρ, bρ) ∈ σ/ρ. Then

(a, b) ∈ σ. Since σ is a congruence on S, (aγc, bγc) ∈ σ. So ((aγc)ρ, (bγc)ρ) ∈ σ/ρ.

Then ((aρ)γ(cρ), (bρ)γ(cρ)) ∈ σ/ρ. Similarly, ((cρ)γ(aρ), (cρ)γ(bρ)) ∈ σ/ρ.

Therefore σ/ρ is a congruence on S/ρ.

(2) Define ϕ : (S/ρ)/(σ/ρ) → S/σ by ϕ((aρ)(σ/ρ)) = aσ for all

a ∈ S. Clearly, ϕ is onto. For all a, b ∈ S, we have
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(aρ)(σ/ρ) = (bρ)(σ/ρ) ⇔ (aρ, bρ) ∈ σ/ρ ⇔ (a, b) ∈ σ ⇔ aσ = bσ.

Therefore ϕ is well-defined and 1-1.

Next, we will show that ϕ is a homomorphism. Let a, b ∈ S and

γ ∈ Γ. We have

ϕ((aρ)(σ/ρ)γ(bρ)(σ/ρ)) = ϕ((aργbρ)(σ/ρ))

= ϕ((aγb)ρ)(σ/ρ))

= (aγb)σ

= aσγbσ = ϕ((aρ)(σ/ρ))γϕ((bρ)(σ/ρ)).

Then ϕ is an isomorphism. Therefore (S/ρ)/(σ/ρ) ∼= S/σ.

2.2 Isomorphism theorems of ordered Γ-semigroups

Definition 2.3. Let S and Γ be nonempty sets and ≤ a relation on S. We call

(S,Γ,≤) is an ordered Γ-semigroup if

(1) (S,Γ) is a Γ-semigroup ;

(2) (S,≤) is a partially ordered set ;

(3) a ≤ b implies aγc ≤ bγc and cγa ≤ cγb for all a, b, c ∈ S and

γ ∈ Γ.

Let S be a Γ-semigroup and ρ a congruence on S, in Section 2.1, we

have that S/ρ is a Γ-semigroup. The following question in natural : If (S,Γ,≤) is

an ordered Γ-semigroup and ρ is a congruence on S, then is the set S/ρ an ordered

Γ-semigroup? A probable order on S/ρ could be the relation �ρ on S/ρ defined

by means of the order ≤ on S, that is,

aρ �ρ bρ ⇔ there exists x ∈ aρ and y ∈ aρ such that (x, y) ∈≤.

But this relation is not an order, in general. We prove it in the following example.

Example 2.1. We consider the ordered Γ-semigroup S = {a, b, c, d, e} and Γ =

{α, β} defined by the multiplication table and the order ≤ below :
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α a b c d e

a a e c d e

b a e c d e

c a e c d e

d a e c d e

e a e c d e

β a b c d e

a a e c d e

b a b c d e

c a e c d e

d a e c d e

e a e c d e

and ≤= {(a, a), (a, d), (b, b), (c, c), (c, e), (d, d), (e, e)}.

Let x, y, z ∈ S and γ, µ ∈ Γ. Then we have

(xγy)µa = a = xγ(yµa), (xγy)µc = c = xγ(yµc)

(xγy)µd = d = xγ(yµd), (xγy)µe = e = xγ(yµe)

(xγy)αb = e = xγ(yαb)

(xγy)βb = e = xγ(yβb) if y 6= b

(xγb)βb = e = xγ(yβb) if x 6= b

(bαb)βb = e = bα(bβb), (bβb)βb = b = bβ(bβb)

Hence S is a Γ-semigroup. Since

xγa ≤ xγd, aγx = dγx, xγc ≤ xγe, cγx = eγx for all x ∈ S and γ ∈ Γ,

S is an ordered Γ-semigroup.

Let ρ be the congruence on S defined as follows :

ρ = {(a, a), (b, b), (c, c), (d, d), (e, e), (a, e), (e, a), (c, d), (d, c)}.

Let �ρ be an order on S/ρ defined by means of the order ≤ on S, that is,
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aρ �ρ bρ ⇔ there exist x ∈ aρ and y ∈ bρ such that (x, y) ∈≤.

We have aρ = {a, e}, bρ = {b} and cρ = {c, d}. Also we have aρ �ρ cρ and

cρ �ρ aρ but aρ 6= cρ.

The following question arise : Is there a congruence ρ on an ordered

Γ-semigroup S for which S/ρ is an ordered Γ-semigroup? This lead us to the

concept of pseudoorders.

Definition 2.4. Let (S,Γ,≤) be an ordered Γ-semigroup. A relation ρ is called

a pseudoorder if

(1) ≤⊆ ρ ;

(2) for all a, b, c ∈ S, (a, b) ∈ ρ and (b, c) ∈ ρ imply (a, c) ∈ ρ ;

(3) for all a, b ∈ S, (a, b) ∈ ρ implies (aγc, bγc) ∈ ρ and (cγa, cγb) ∈

ρ for every c ∈ S and γ ∈ Γ.

If ρ is a pseudoorder on an ordered Γ-semigroup S, let ρ̄ be a relation

on S defined by

ρ̄ = ρ ∩ ρ−1 = {(a, b) ∈ S × S | (a, b) ∈ ρ and (b, a) ∈ ρ}.

Theorem 2.6. Let (S,Γ,≤) be an ordered Γ-semigroup and ρ a pseudoorder on

S. Then ρ̄ is a congruence on S.

Proof. Let a ∈ S. Since (a, a) ∈≤ and ≤⊆ ρ, (a, a) ∈ ρ. Then (a, a) ∈ ρ̄.

Next, let a, b ∈ S such that (a, b) ∈ ρ̄. Thus (a, b) ∈ ρ and (b, a) ∈ ρ.

This implies that (b, a) ∈ ρ̄.

Next, we show that ρ is transitive. Let a, b, c ∈ S such that (a, b), (b, c) ∈

ρ̄. Then (a, b), (b, a), (b, c), (c, b) ∈ ρ. Thus (a, c), (c, a) ∈ ρ. Hence (a, c) ∈ ρ̄.

Finally, let a, b ∈ S such that (a, b) ∈ ρ̄. Then (a, b), (b, a) ∈ ρ.

Thus (cγa, cγb), (aγc, bγc), (cγb, cγa), (bγc, aγc) ∈ ρ for all c ∈ S and γ ∈ Γ.

Therefore (aγc, bγc), (cγa, cγb) ∈ ρ̄ for all c ∈ S and γ ∈ Γ.

Let S be an ordered Γ-semigroup and ρ a pseudoorder on S. By

Theorem 2.6, we have that ρ̄ is a congruence on S. Then S/ρ̄ is a Γ-semigroup.

Next, for each aρ̄, bρ̄ ∈ S/ρ̄, define the order �ρ̄ on S/ρ̄.
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aρ̄ �ρ̄ bρ̄ ⇔ there exist x ∈ aρ̄ and y ∈ bρ̄ such that (x, y) ∈ ρ.

Theorem 2.7. Let (S,Γ,≤) be an ordered Γ-semigroup and ρ a pseudoorder on

S. The following statements hold.

(1) For a, b ∈ S, aρ̄ �ρ̄ bρ̄ if and only if (a, b) ∈ ρ.

(2) �ρ̄ is an order on S/ρ̄.

Proof. (1) If (a, b) ∈ ρ, then aρ̄ �ρ̄ bρ̄.

Conversly, assume that aρ̄ �ρ̄ bρ̄. Then there exist x ∈ aρ̄ and y ∈

bρ̄ such that (x, y) ∈ ρ. Since (x, a) ∈ ρ̄ and (y, b) ∈ ρ̄, we have (x, a), (a, x), (b, y)

and (y, b) ∈ ρ. Since (a, x), (x, y) and (y, b) ∈ ρ, we have (a, b) ∈ ρ.

(2) Let a, b, c ∈ S. Since (a, a) ∈≤S⊆ ρ, aρ̄ �ρ̄ aρ̄. Assume that

aρ̄ �ρ̄ bρ̄ and bρ̄ �ρ̄ aρ̄. By (1), (a, b) ∈ ρ and (b, a) ∈ ρ. Then (a, b) ∈ ρ̄. So

aρ̄ = bρ̄.

Finally, assume that aρ̄ �ρ̄ bρ̄ and bρ̄ �ρ̄ cρ̄. By (1),(a, b) ∈ ρ and

(b, c) ∈ ρ. Therefore (a, c) ∈ ρ. By (1), aρ̄ �ρ̄ cρ̄. Hence �ρ̄ is an order on

S/ρ̄.

The following theorem holds.

Theorem 2.8. Let (S,Γ,≤) be an ordered Γ-semigroup and ρ a pseudoorder on

S. Then S/ρ̄ is an ordered Γ-semigroup.

Proof. By Theorem 2.6, we have ρ̄ is a congruence on S. Then S/ρ̄ is a Γ-

semigroup. By Theorem 2.7, we have �ρ̄ is an ordered on S/ρ̄.

Let x, y ∈ S such that xρ̄ �ρ̄ yρ̄. Then there exist a ∈ xρ̄ and b ∈ yρ̄

such that (a, b) ∈ ρ. Thus (x, a) ∈ ρ̄ and (y, b) ∈ ρ̄. Then (x, a), (a, x), (y, b) and

(b, y) ∈ ρ. So (x, y) ∈ ρ. Let c ∈ S and γ ∈ Γ. Therefore

(xγc, aγc), (aγc, xγc), (yγc, bγc) and (bγc, yγc) ∈ ρ.

Then (xγc, aγc), (yγc, bγc) ∈ ρ̄. So (xγc)ρ̄ = (aγc)ρ̄, (yγc)ρ̄ =

(bγc)ρ̄. Similarly, (cγx)ρ̄ = (cγa)ρ̄ and (cγy)ρ̄ = (cγb)ρ̄. Since (x, y) ∈ ρ, we

have (xγc, yγc), (cγx, cγy) ∈ ρ. Hence (xγc)ρ̄ �ρ̄ (yγc)ρ̄ and (cγx)ρ̄ �ρ̄ (cγy)ρ̄.

Therefore (xρ̄)γ(cρ̄) �ρ̄ (yρ̄)γ(cρ̄) and (cρ̄)γ(xρ̄) �ρ̄ (cρ̄)γ(yρ̄). Hence S/ρ̄ is an

ordered Γ-semigroup.
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Definition 2.5. Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under

same Γ and f : S → T a mapping from S into T . f is called isotone if x ≤S y

implies f(x) ≤T f(y) for all x, y ∈ S. f is called reverse isotone if f(x) ≤T f(y)

implies x ≤S y for all x, y ∈ S.

Definition 2.6. Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under

same Γ and f : S → T a mapping from S into T . f is called an ordered Γ-

semigroup homomorphism or homomorphism if

(1) f is isotone ;

(2) f(xγy) = f(x)γf(y) for all x, y ∈ S and γ ∈ Γ.

Theorem 2.9. Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under same

Γ and f : S → T a mapping from S into T . If f is a reverse isotone mapping,

then f is 1-1.

Proof. Let x, y ∈ S such that f(x) = f(y). Since f(x) ≤T f(y), x ≤S y.

Similarly, since f(y) ≤T f(x), y ≤S x. Then x = y.

Definition 2.7. Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under

same Γ and f : S → T a mapping from S into T . f is called an isomorphism if f

is a homomorphism, onto and reverse isotone.

Theorem 2.10. Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under same

Γ and φ : S → T a homomorphism. Define the relation φ̃ on S by

φ̃ = {(a, b) ∈ S × S | φ(a) ≤T φ(b)}.

Then φ̃ is a pseudoorder on S.

Proof. Let (a, b) ∈≤S. Since a ≤S b and φ is isotone, φ(a) ≤T φ(b). Then

(a, b) ∈ φ̃. Next, let a, b, c ∈ S such that (a, b), (b, c) ∈ φ̃. So φ(a) ≤T φ(b) and

φ(b) ≤T φ(c). Then φ(a) ≤T φ(c). This implies (a, c) ∈ φ̃.

Finally, let a, b, c ∈ S and γ ∈ Γ. Assume that (a, b) ∈ φ̃. Since

φ(a) ≤T φ(b), φ is a homomorphism and T is an ordered Γ-semigroup,

φ(aγc) = φ(a)γφ(c) ≤T φ(b)γφ(c) = φ(bγc).
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Then (aγc, bγc) ∈ φ̃. Similarly, (cγa, cγb) ∈ φ̃.

Hence φ̃ is a pseudoorder on S.

Theorem 2.11. Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under same

Γ and φ : S → T a homomorphism. If ρ is a pseudoorder on S such that ρ ⊆ φ̃,

then the mapping ϕ : S/ρ̄→ T defined by ϕ(aρ̄) = φ(a) is a unique homomorphism

of S/ρ̄ into T such that ranϕ = ranφ and the diagram

S T

S/ρ̄

-
φ

?
ρ#

�
�

��
ϕ

commuts (i.e., ϕ◦ρ# = φ) where the mapping ρ# : S → S/ρ̄ defined by ρ#(a) = aρ̄

for all a ∈ S.

Proof. Define ϕ : S/ρ̄→ T by

ϕ(aρ̄) = φ(a) for all a ∈ S.

We have ϕ is well-defined since for all a, b ∈ S,

aρ̄ = bρ̄⇒ (a, b) ∈ ρ̄

⇒ (a, b), (b, a) ∈ ρ

⇒ (a, b), (b, a) ∈ φ̃

⇒ φ(a) ≤T φ(b) and φ(b) ≤T φ(a)

⇒ φ(a) = φ(b).

Let a, b ∈ S and γ ∈ Γ. We have

ϕ(aρ̄γbρ̄) = ϕ((aγb)ρ̄) = φ(aγb) = φ(a)γφ(b) = ϕ(aρ̄)γϕ(ρ̄)

and

aρ̄ �ρ̄ bρ̄ ⇒ (a, b) ∈ ρ ⊆ φ̃ ⇒ φ(a) ≤ φ(b).

Hence ϕ is a homomorphism. For each a ∈ S, we have



24

(ϕ ◦ ρ#)(a) = ϕ(ρ#(a)) = ϕ(aρ̄) = φ(a).

Then ϕ ◦ ρ# = φ.

Next, let ψ : S/ρ̄→ T be any homomorphism such that ψ ◦φ# = φ.

For a ∈ S, we have

ψ(aρ̄) = ψ(ρ#(a)) = (ψ ◦ ρ#)(a) = φ(a) = ϕ(aρ̄).

So ψ = ϕ. Finally, we have ranϕ = {ϕ(aρ̄) | a ∈ S} = {φ(a) | a ∈ S} = ranφ.

Hence the theorem is proved.

Let (S,Γ,≤S) and (T,Γ,≤T ) be ordered Γ-semigroups under same

Γ and φ : S → T a homomorphism. Define kerφ = {(a, b) ∈ S×S | φ(a) = φ(b)}.

It is easy to see that kerφ is a congruence on S. Then we have

(a, b) ∈ kerφ⇔ φ(a) = φ(b)

⇔ φ(a) ≤T φ(b) and φ(b) ≤T φ(a)

⇔ (a, b) ∈ φ̃ and (b, a) ∈ φ̃

⇔ (a, b) ∈ ¯̃φ.

So kerφ = ¯̃φ.

The following corollary holds.

Theorem 2.12. (First Isomorphism Theorem) Let (S,Γ,≤S) and (T,Γ,≤T ) be

ordered Γ-semigroups under same Γ and φ : S → T a homomorphism. Then

S/kerφ ∼= ranφ.

Proof. We apply the first part of Theorem 2.11 for ρ = φ̃ and kerφ = ¯̃φ. Then

the mapping ϕ : S/kerφ→ T defined by ϕ(akerφ) = φ(a) is a homomorphism.

Next, we will to show that ϕ is reverse isotone. Let a, b ∈ S such that

φ(a) ≤T φ(b). Then (a, b) ∈ φ̃. Since φ̃ is a pseudoorder on S, by Theorem 2.7 (1),

akerφ �kerφ bkerφ. Then ϕ is reverse isotone. Therefore ϕ is an isomorphism.

Theorem 2.13. (Third Isomorphism Theorem) Let (S,Γ,≤) be an ordered Γ-

semigroup, ρ and σ pseudooders on S such that ρ ⊆ σ. Then
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(1) σ/ρ is a pseudoorder on S/ρ̄ ;

(2) (S/ρ̄)(σ/ρ) ∼= S/σ̄.

Proof. (1) Let (aρ̄, bρ̄) ∈�ρ̄. Then (a, b) ∈ ρ. Since ρ ⊆ σ, we have (a, b) ∈ σ. So

(aρ̄, bρ̄) ∈ σ/ρ. Therefore �ρ̄⊆ σ/ρ.

Next, let a, b, c ∈ S such that (aρ̄, bρ̄) ∈ σ/ρ and (bρ̄, cρ̄) ∈ σ/ρ.

Then (a, b) ∈ σ and (b, c) ∈ σ, so (a, c) ∈ σ. Therefore (aρ̄, cρ̄) ∈ σ/ρ.

Finally, let a, b, c ∈ S and γ ∈ Γ. Assume (aρ̄, bρ̄) ∈ σ/ρ. Then

(a, b) ∈ σ. Since σ is a pseudoorder on S, (aγc, bγc) ∈ σ. So ((aγc)ρ̄, (bγc)ρ̄) ∈

σ/ρ. Similarly, ((cγa)ρ̄, (cγb)ρ̄) ∈ σ/ρ.

(2) Define φ : S/ρ̄→ S/σ̄ by

φ(aρ̄) = aσ̄ for all a ∈ S.

We have φ is well-defined, since for all a, b ∈ S,

aρ̄ = bρ̄ ⇒ (a, b) ∈ ρ̄ ⇒ (a, b), (b, a) ∈ ρ ⊆ σ ⇒ (a, b) ∈ σ̄ ⇒ aσ̄ = bσ̄.

Next, let a, b ∈ S and γ ∈ Γ. Then we have

φ(aρ̄γbρ̄) = φ((aγb)ρ̄) = (aγb)σ̄ = (aσ̄)γ(bσ) = φ(aρ̄)γφ(bρ̄)

and

aρ̄ �ρ̄ bρ̄ ⇒ (a, b) ∈ ρ ⇒ (a, b) ∈ σ ⇒ aσ̄ �σ̄ bσ̄.

Hence φ is a homomorphism. By the definition of φ̃, we have

φ̃ = {(aρ̄, bρ̄) ∈ S/ρ̄× S/ρ̄ | φ(aρ̄) �σ̄ φ(bρ̄)}.

Thus

(aρ̄, bρ̄) ∈ φ̃ ⇔ φ(aρ̄) �σ̄ φ(bρ̄) ⇔ aσ̄ �σ̄ bσ̄ ⇔ (a, b) ∈ σ ⇔ (aρ̄, bρ̄).

Then φ̃ = σ/ρ, so kerφ = ¯̃φ = σ/ρ. It is easy to see that ranφ = S/σ̄. By

Theorem 2.12, (S/ρ̄)/(σ/ρ) ∼= S/σ̄.



CHAPTER 3

Bi-ideals in ordered Γ-semigroups

In this chapter, we study bi-ideals in ordered Γ-semigroups. We

demonstrate this chapter in three sections. In the first section, we study the

notion of bi-ideals in ordered Γ-semigroups. In the second section, we give some

characterizations of minimal and 0-minimal bi-ideals in ordered Γ-semigroups,

respectively. In the last section, maximal bi-ideals in ordered Γ-semigroups are

studied.

3.1 Bi-ideals in ordered Γ-semigroups

Let (S,Γ,≤) be an ordered Γ-semigroup and T a nonempty subset

of S. If H is a nonempty subset of T , we denote the set

(H]T = {t ∈ T | t ≤ h for some h ∈ H}.

If T = S, then always write (H] by (H]S.

Definition 3.1. Let (S,Γ,≤) be an ordered Γ-semigroup. A nonempty subset A

of S is called a subΓ-semigroup if

(1) xγy ∈ A for all x, y ∈ S and γ ∈ Γ ;

(2) (A] ⊆ A.

Definition 3.2. Let (S,Γ,≤) be an ordered Γ-semigroup. A subΓ-semigroup A

of S is called a left (resp. right) ideal of S if

(1) SΓA ⊆ A (resp. AΓS ⊆ A) ;

(2) (A] ⊆ A.

Definition 3.3. Let (S,Γ,≤) be an ordered Γ-semigroup. A subΓ-semigroup A

of S is called a bi-ideal of S if

(1) AΓSΓA ⊆ A ;

(2) (A] ⊆ A.

26
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Definition 3.4. Let (S,Γ,≤) be an ordered Γ-semigroup. A subΓ-semigroup A

of S is called left (resp. right) t-simple if an ordered Γ-semigroup (A,Γ,≤) does

not contain proper left (resp. right) ideals.

Definition 3.5. Let (S,Γ,≤) be an ordered Γ-semigroup. S is said to be left

(resp. right) simple if S does not contain proper left (resp. right) ideals.

Remark 3.1. Equivalent definition is as follow : for every left (resp. right) ideal A

of S, we have A = S.

Definition 3.6. Let (S,Γ,≤) be an ordered Γ-semigroup. S is called regular if,

for every a ∈ S, there exist x ∈ S and γ, β ∈ Γ such that a ≤ aγxβa.

Remark 3.2. Equivalent definitions are as follow :

(1) A ⊆ (AΓSΓA] for every A ⊆ S or

(2) a ∈ (aΓSΓa] for every a ∈ S.

Theorem 3.1. Let (S,Γ,≤) be an ordered Γ-semigroup. The following statements

are true.

(1) (SΓa] is a left ideal of S for all a ∈ S.

(2) (aΓS] is a right ideal of S for all a ∈ S.

(3) (SΓaΓS] is an ideal of S for all a ∈ S.

Proof. (1) First, we will show that SΓ(SΓa] ⊆ (SΓa]. Let x ∈ SΓ(SΓa]. Then

x = yαb for some y ∈ S, b ∈ (SΓa] and α ∈ Γ. Since b ∈ (SΓa], b ≤ t for some

t ∈ SΓa. Thus t = wβa for some w ∈ S and β ∈ Γ. Hence b ≤ wβa. Since S

is an ordered Γ-semigroup, yαb ≤ yαwβa = (yαw)βa. Since (yαw)βa ∈ SΓa and

x ≤ (yαw)βa, x ∈ (SΓa].

Next, we show that ((SΓa]] ⊆ (SΓa]. Let x ∈ ((SΓa]]. Then x ≤ t

for some t ∈ (SΓa]. Since t ∈ (SΓa], we have t ≤ s for some s ∈ SΓa.

Therefore x ≤ s and s ∈ SΓa. Hence x ∈ (SΓa].

(2) It is similar to (1).

(3) Claim that SΓ(SΓaΓS] ⊆ (SΓaΓS]. Let x ∈ SΓ(SΓaΓS]. Then

x = yαb for some y ∈ S, b ∈ (SΓaΓS] and α ∈ Γ. Since b ∈ (SΓaΓS], b ≤ t for
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some t ∈ SΓaΓS. Thus t = w1βaθw2 for some w1, w2 ∈ S and β, θ ∈ Γ. Hence

b ≤ w1βaθw2. Since S is an ordered Γ-semigroup,

yαb ≤ yαw1βaθw2 = (yαw1)βaθw2.

Then x = yαb ≤ (yαw1)βaθw2. Since (yαw1)βaθw2 ∈ SΓaΓS, x ∈ (SΓaΓS].

Next, we show that (SΓaΓS]ΓS ⊆ (SΓaΓS]. Let x ∈ (SΓaΓS]ΓS.

Then x = yαb for some y ∈ (SΓaΓS], b ∈ S, and α ∈ Γ. Since y ∈ (SΓaΓS], we

have y ≤ t for some t ∈ SΓaΓS. Thus t = w1βaθw2 for some w1, w2 ∈ S and

β, θ ∈ Γ. Hence y ≤ w1βaθw2. Therefore

yαb ≤ (w1βaθw2)αb = w1βaθ(w2αb) and w1βaθ(w2αb) ∈ SΓaΓS

because S is an ordered Γ-semigroup. Hence x ∈ (SΓaΓS].

Finally, we show that ((SΓaΓS]] ⊆ (SΓaΓS]. Let x ∈ ((SΓaΓS]].

Then x ≤ t for some t ∈ (SΓaΓS]. We have t ≤ s for some s ∈ SΓaΓS because

t ∈ (SΓaΓS]. Hence x ≤ s and s ∈ SΓaΓS, so x ∈ (SΓaΓS].

The following theorems give necessary and sufficient condition for

an ordered Γ-semigroup to be left (right) simple.

Theorem 3.2. Let (S,Γ,≤) be an ordered Γ-semigroup. S is left (resp. right)

simple if and only if (SΓa] = S (resp. (aΓS] = S) for all a ∈ S.

Proof. Assume that S is left simple and let a ∈ S. By Theorem 3.1(1), we have

(SΓa] is a left ideal of S. Then (SΓa] = S because S is left simple.

Conversely, suppose that (SΓa] = S for all a ∈ S. Let L be a left

ideal of S and a ∈ S. Clearly, L ⊆ S. Next, we will show that S ⊆ L. Consider

S = (SΓa] ⊆ (SΓL] ⊆ (L] ⊆ L.

Thus S = L, so S is left simple.

The following corollary follows by Theorem 3.2.

Corollary 3.3. Let (S,Γ,≤) be an ordered Γ-semigroup. A subΓ-semigroup T of

S is left (resp. right) simple if and only if (TΓa]T = T (resp. (aΓT ]T = T ) for all

a ∈ T .
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Theorem 3.4. Let (S,Γ,≤) be an ordered Γ-semigroup. If S is left and right

simple, then S is regular.

Proof. Assume that S is left and right simple. By theorem 3.2, we have (SΓa] = S

and (aΓS] = S. Let a ∈ S. Consider

a ∈ (aΓS] = (aΓ(aΓS]] = (aΓ(SΓa]] = (aΓSΓa].

Hence S is regular.

Let S be an ordered Γ-semigroup and A a nonempty subset of S.

We denote by L(A), R(A) and B(A) the left ideal, right ideal and bi-ideal of S

generated by A, respectively.

Theorem 3.5. Let (S,Γ,≤) be an ordered Γ-semigroup and A a nonempty subset

of S. The following statements hold.

(1) L(A) = (A ∪ SΓA].

(2) R(A) = (A ∪ AΓS].

(3) B(A) = (A ∪ AΓA ∪ AΓSΓA].

Proof. (1) Let A be a nonempty subset of an ordered Γ-semigroup S. Let L =

(A ∪ SΓA]. Clearly, A ⊆ L. We have that

LΓL = (A ∪ SΓA]Γ(A ∪ SΓA] ⊆ (SΓA] ⊆ L.

It easy to see that ((L]] ⊆ (L]. Hence L is a subΓ-semigroup of S.

Claim that SΓL ⊆ L. Let x ∈ SΓL. Then x = yαb for some y ∈ S,

b ∈ L and α ∈ Γ. From b ∈ L, we have b ∈ (A] or b ∈ (SΓA].

Case 1.1. If b ∈ (A], then b ≤ z for some z ∈ A. Thus x = yαb ≤

yαz. Hence x ∈ (SΓA] ⊆ (A ∪ SΓA] = L.

Case 1.2. If b ∈ (SΓA], then b ≤ mγn for some m ∈ S, n ∈ A and

γ ∈ Γ. Thus x = yαb ≤ (yαm)γn. Hence x ∈ (SΓA] ⊆ (A∪SΓA] = L. Therefore

B is a left ideal of S.

Let M be any left ideal of S containing A. Since M is a subΓ-

semigroup of S and A ⊆ M , (A] ⊆ (M ] ⊆ M . Since M is a left ideal of S and

A ⊆M , SΓA ⊆ SΓM ⊆M and (M ] ⊆M . Therefore L = (A∪SΓA] ⊆ (M ] ⊆M .
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Hence L is the smallest left ideal of S containing A. Therefore

L(A) = L = (A ∪ SΓA].

(2) It is similar to (1).

(3) Let A be a nonempty subset of an ordered Γ-semigroup S. Let

B = (A ∪ AΓA ∪ AΓSΓA]. Clearly, A ⊆ B. We have that

BΓB = (A ∪ AΓA ∪ AΓSΓA]Γ(A ∪ AΓA ∪ AΓSΓA] ⊆ (AΓA ∪ AΓSΓA] ⊆ B.

It easy to see that ((B]] ⊆ (B]. Hence B is a subΓ-semigroup of S.

Claim that BΓSΓB ⊆ B. Then x ∈ BΓSΓB, so x = bαmβy for

some b, y ∈ B, m ∈ S and α, β ∈ Γ.

Case 3.1. If b ∈ (A] and y ∈ (A], then b ≤ k and y ≤ t for some

k, t ∈ A. Thus x = bαmβy ≤ kαmβt. Hence x ∈ (AΓSΓA] ⊆ B.

Case 3.2. If b ∈ (A] and y ∈ (AΓA], then b ≤ k and y ≤ sµt for

some k, s, t ∈ A and µ ∈ Γ. Thus x = bαmβy ≤ kαmβ(sµt) = kα(mβs)µt. Hence

x ∈ (AΓSΓA] ⊆ B.

Case 3.3. If b ∈ (A] and y ∈ (AΓSΓA], then b ≤ k and y ≤ rθsγt

for some k, r, t ∈ A, s ∈ S and θ, γ ∈ Γ. Thus x = bαmβy ≤ kαmβ(rθsγt) =

kα(mβrθs)γt. Hence x ∈ (AΓSΓA] ⊆ B.

Case 3.4. It is similar to case 3.2.

Case 3.5. If b ∈ (AΓA] and y ∈ (AΓA], then b ≤ cγd and y ≤ eµf

for some c, d, e, f ∈ A and γ, µ ∈ Γ. Hence x = bαmβy ≤ (cγd)αmβ(eµf) =

cγ(dαmβe)µf . Thus x ∈ (AΓSΓA] ⊆ B.

Case 3.6. If b ∈ (AΓA] and y ∈ (AΓSΓA], then b ≤ cγd and

y ≤ rθsγt for some c, d, r, t ∈ A, s ∈ S and θ, γ ∈ Γ. Hence x = bαmβy ≤

(cγd)αmβ(rθsγt) = cγ(dαmβrθs)γt. Thus x ∈ (AΓSΓA] ⊆ B.

Case 3.7. It is similar to case 3.3.

Case 3.8. It is similar to case 3.6.

Case 3.9. If b ∈ (AΓSΓA] and y ∈ (AΓSΓA], then b ≤ cγdµe and

y ≤ rθsηt for some c, d, r, t ∈ A, d, s ∈ S and γ, µ, θ, η ∈ Γ. Hence x = bαmβy ≤

(cγdµe)αmβ(rθsηt) = cγ(dµeαmβrθs)ηt. Thus x ∈ (AΓSΓA] ⊆ B.

Then BΓSΓB ⊆ B. Therefore B is a bi-ideal of S.
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Let M be any bi-ideal of S containing A. Since M is a bi-ideal of

S and A ⊆ M , AΓA ⊆ M , AΓSΓA ⊆ MΓSΓM ⊆ M and (M ] ⊆ M . Therefore

B = (A ∪ AΓA ∪ AΓSΓA] ⊆ (M ] ⊆M .

Hence B is the smallest bi-ideal of S containing A. Therefore

B(A) = B = (A ∪ AΓA ∪ AΓSΓA].

Let S be an ordered Γ-semigroup and a ∈ S. For A = {a}, we write

L(a), R(a) and B(a) instead of L({a}), R({a}) and B({a}), respectively, and we

call them the principal left ideal, principal right ideal and principle bi-ideal of S,

respectively, generated by a. We have

L(a) = {t ∈ S | t ≤ a or t ≤ yγa for some y ∈ S, γ ∈ Γ},

R(a) = {t ∈ S | t ≤ a or t ≤ aβx for some x ∈ S, β ∈ Γ},

B(a) = {t ∈ S | t ≤ a or t ≤ aγa or t ≤ aβxµa for some

x ∈ S, γ, β, µ ∈ Γ}.

Theorem 3.6. Let (S,Γ,≤) be an ordered Γ-semigroup. Then S is left and right

simple if and only if S does not contain proper bi-ideals.

Proof. Assume that S is left and right simple. Let A be a bi-ideal of S. Clearly,

A ⊆ S. To show S ⊆ A, let a ∈ S and b ∈ A. Since S is left simple, S = L(b).

Then a ≤ b or a ≤ xαb for some x ∈ S and α ∈ Γ because a ∈ S = L(b).

Case 1. a ≤ b. Since a ∈ S and a ≤ b ∈ A, a ∈ A.

Case 2. a ≤ xαb for some x ∈ S and α ∈ Γ. Since S is right simple,

we have S = R(b). Then x ≤ b or x ≤ bβy for some y ∈ S and β ∈ Γ because

x ∈ R(b).

Case 2.1. x ≤ b. Then a ≤ xαb ≤ bαb. Since a ≤ bαb and bαb ∈ A,

a ∈ A.

Case 2.2. x ≤ bβy for some y ∈ S and β ∈ Γ. Then a ≤ xαb ≤

(bβy)αb. Since (bβy)αb ∈ AΓSΓA ⊆ A, this implies a ∈ A.

Thus S = A. Hence S does not contain proper bi-ideals.

Conversely, let L be a left ideal of S. So (L] ⊆ L. We have LΓSΓL =
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LΓ(SΓL) ⊆ LΓL ⊆ L. Then L is a bi-ideal of S. By assumption, L = S.

Therefore S is left simple. Similarly, S is right simple.

Definition 3.7. An ordered Γ-semigroup (S,Γ,≤) is called an ordered Γ-group if

(S, γ) is a group for some γ ∈ Γ.

The following theorem is true.

Theorem 3.7. Let (S,Γ,≤) be an ordered Γ-group. Then S does not contain

proper bi-ideals.

Proof. Let S be an ordered Γ-group and A a bi-ideal of S. Then (S, α) is a group

for some α ∈ Γ. Clearly, A ⊆ S. Let a ∈ S and b ∈ A. Since (S, α) is a group,

there exists b−1 ∈ S such that bαb−1 = e = b−1αb for some α ∈ Γ. Then

a = eβaθe = (bαb−1)βaθ(b−1αb) = bα(b−1βaθb−1)αb ∈ AΓSΓA ⊆ A.

Thus a ∈ A. Therefore S = A. Hence S does not contain proper bi-ideals.

3.2 Minimal and 0-minimal bi-ideals in ordered Γ-semigroups

In this section, we study minimal and 0-minimal bi-ideals in ordered

Γ-semigroups.

Definition 3.8. Let (S,Γ,≤) be an ordered Γ-semigroup. A bi-ideal B of S is

called a minimal bi-ideal of S if B does not contain proper bi-ideals of S.

Remark 3.3. Equivalent definition is as follow : for any bi-ideal A of S such that

A ⊆ B, we have A = B.

Definition 3.9. Let (S,Γ,≤) be an ordered Γ-semigroup. A subΓ-semigroup T

of S is called t-simple if an ordered Γ-semigroup (T,Γ,≤) does not contain proper

bi-ideals.

The following theorem holds.

Theorem 3.8. Let (S,Γ,≤) be an ordered Γ-semigroup and B a subΓ-semigroup

of S. If B is a bi-ideal of S, then (uΓBΓv] is a bi-ideal of S for every u, v ∈ S.

In particular, (uΓSΓv] is a bi-ideal of S for every u, v ∈ S.
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Proof. Let x, y ∈ (uΓBΓv], γ, δ ∈ Γ and s ∈ S. Then x ≤ c and y ≤ d for some

c, d ∈ uΓBΓv. Then there exist a, b ∈ B and θ, ν, α, β ∈ Γ such that

c = uθaνv and d = uαbβv.

Then aνvγuαb = aν(vγu)αb ∈ BΓSΓB ⊆ B and

xγy ≤ cγd = (uθaνv)γ(uαbβv) = uθ(aνvγuαb)βv.

Thus xγy ∈ (uΓBΓv]. This shows that (uΓBΓv] is a subΓ-semigroup of S.

We have

xγsδy ≤ cγsδd = (uθaνv)γsδ(uαbβv) = uθ(aνvγsδuαb)βv

and aνvγsδuαb = aν(vγsδuαb)βv ∈ BΓSΓB ⊆ B, this implies xγsδy ∈ (uΓBΓv].

Thus (uΓBΓv]ΓSΓ(uΓBΓv] ⊆ (uΓBΓv].

Next, we show that ((uΓBΓv]] ⊆ (uΓBΓv]. Let x ∈ ((uΓBΓv]].

Then we have x ≤ t for some t ∈ (uΓBΓv]. Since t ∈ (uΓBΓv], t ≤ s for some

s ∈ uΓBΓv. Hence x ∈ (uΓBΓv].

Therefore (uΓBΓv] is a bi-ideal of S, and consequently (uΓSΓv] is

a bi-ideal of S because S is a bi-ideal of itself.

Corollary 3.9. Let (S,Γ,≤) be an ordered Γ-semigroup. For any a ∈ S, (aΓSΓa]

is a bi-ideal of S.

Proof. It follows by Theorem 3.8.

We now characterize the t-simple subΓ-semigroup in ordered Γ-

semigroup.

Theorem 3.10. Let (S,Γ,≤) be an ordered Γ-semigroup and T a subΓ-semigroup

of S. The following statements are equivalent :

(1) T is t-simple.

(2) (tΓTΓt]T = T for all t ∈ T .

(3) T is a left and right simple subΓ-semigroup of S.
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Proof. (1) ⇒ (2) : Let t ∈ T . By Theorem 3.8, we have (tΓTΓt]T is a bi-ideal of

S. Since T is t-simple, (tΓTΓt]T = T .

(2) ⇒ (3) : For every t ∈ T , we have

(tΓTΓt]T ⊆ (TΓt]T ⊆ T and (tΓTΓt]T ⊆ (tΓT ]T ⊆ T .

By our hypothesis, we have (TΓt] = T and (tΓT ] = T for all t ∈ T . By Corollary

3.3, T is both left and right simple.

(3) ⇒ (1) : Let B be a bi-ideal of T . By our hypothesis, for each

a ∈ B, we have (aΓT ]T = T = (TΓa]T . Thus we have

T = (aΓT ]T = (aΓ(TΓa]T ]T ⊆ (aΓTΓa]T ⊆ (BΓTΓB)T ⊆ (B]T ⊆ B.

Therefore B = T and hence T is t-simple.

Theorem 3.11. Let (S,Γ,≤) be an ordered Γ-semigroup. The following state-

ments are equivalent :

(1) S is t-simple.

(2) (aΓSΓa] = S for all a ∈ S.

(3) B(a) = S for all a ∈ S.

Proof. (1) ⇒ (2) : Assume that S is t-simple and let a ∈ S. Since (aΓSΓa] is a

bi-ideal of S, we have (aΓSΓa] = S.

(2) ⇒ (3) : Assume that (aΓSΓa] = S for all a ∈ S. Consider the

set

B(a) = (aΓSΓa ∪ aΓa ∪ a] = (aΓSΓa] ∪ (aΓa] ∪ (a] = S ∪ (aΓa] ∪ (a] = S.

Therefore B(a) = S for all a ∈ S.

(3) ⇒ (1) : Assume that B(a) = S for all a ∈ S. Let B be an

bi-ideal of S and let a ∈ B. Clearly, B ⊆ S. Since B(a) = S, we have

S = B(a) = (aΓSΓa ∪ aΓa ∪ a] ⊆ (BΓSΓB ∪BΓB ∪B] ⊆ B.

Then B = S, that is, S is t-simple.

Theorem 3.12. Let (S,Γ,≤) be an ordered Γ-semigroup and B a bi-ideal of S.

Then B is minimal if and only if B is t-simple.
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Proof. Let B be a minimal bi-ideal of S and a ∈ B. We let J = (aΓBΓa]B.

Let c1, c2 ∈ J . Then c1 ≤ aα1b1β1a and c2 ≤ aα2b2β2a for some b1, b2 ∈ B and

α1, α2, β1, β2 ∈ Γ. Let x ∈ S and γ, θ ∈ Γ. Since b1β1aγxθa2α2b2 ∈ BΓSΓB ⊆ B

and

c1γxθc2 ≤ (aα1b1β1a)γxθ(aα2b2β2a) = aα1(b1β1aγxθaα2b2)β2a,

c1γxθc2 ∈ J . This shows that JΓSΓJ ⊆ J . Let y ∈ (J ]. Then y ≤ z for some

z ∈ J . Since z ∈ J , z ∈ B. So y ∈ B. Since z ∈ J , there exist b ∈ B and α, β ∈ Γ

such that z ≤ aαbβa. Thus y ≤ aαbβa, hence y ∈ J . Therefore J is a bi-ideal of

S.

Since B is minimal and J is a bi-ideal of S contained in B, B =

J = (aΓBΓa]B for all a ∈ B. Hence by Theorem 3.10, B is t-simple.

Conversely, let B be a t-simple bi-ideal of S and N a bi-ideal of S

satisfying N ⊆ B and c ∈ N . By Theorem 3.10, B = (cΓBΓc]B. Then

B ⊆ (NΓBΓN ]B ⊆ (NΓSΓN ] ⊆ (N ] ⊆ N .

Thus N = B. This shows that B is a minimal bi-ideal of S.

Theorem 3.13. Let M be a minimal bi-ideal of an ordered Γ-semigroup S and B

a bi-ideal of S. Then M = (uΓBΓv] for every u, v ∈M .

Proof. By Theorem 3.8, (uΓBΓv] is a bi-ideal of S for every u, v ∈ S. Since M is

minimal and

(uΓBΓv] ⊆ (MΓBΓM ] ⊆ (MΓSΓM ] ⊆ (M ] ⊆M .

Hence M = (uΓBΓv].

By Theorem 3.8 and Theorem 3.13, we obtain the following theorem.

Theorem 3.14. Let M be a minimal bi-ideal of an ordered Γ-semigroup S. Then

(sΓMΓt] is a minimal bi-ideal of S for every s, t ∈ S.

Proof. By Theorem 3.8, (sΓMΓt] is a bi-ideal of S. Let N be a bi-ideal of S such

that N ⊆ (sΓMΓt]. Consider the set H = {h ∈M | (sαhβt] ⊆ N for some α, β ∈

Γ}. It is obvious that H ⊆M .
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Let x ∈ S, h1, h2 ∈ H and α, γ, η, µ, θ, β ∈ Γ. Since N and M are

bi-ideals of S,

(sαh1γtηxµsθh2βt] ⊆ ((sαh1γt]ηxµ(sθh2βt]] ⊆ (NΓSΓN ] ⊆ (N ] ⊆ N

and

h1γtηxµsθh2 = h1γ(tηxµs)θh2 ∈MΓSΓM ⊆M.

Then h1γtηxµsθh2 ∈ H. Hence h1ΓtΓSΓsΓh2 ⊆ H. Since M is minimal and

(tΓSΓs] is a bi-ideal of S by Theorem 3.8, it follows from Theorem 3.13 that

M = (h1Γ(tΓSΓs]Γh2] ⊆ (h1ΓtΓSΓsΓh2] ⊆ (H].

Now, let y ∈ (H]. Then y ≤ h for some h ∈M such that (sαhγt] ⊆

N for some α, γ ∈ Γ. From (H] ⊆ (M ] ⊆ M and sαyγt ≤ sαhγt, we obtain

y ∈ M and (sαyγt] ⊆ (sαhγt] ⊆ N , that is, y ∈ H. Then (H] ⊆ H. This show

that M ⊆ H and H = M . Therefore

(sΓMΓt] =
⋃
h∈M,
α,γ∈Γ

(sαhγt] =
⋃
h∈H,
α,γ∈Γ

(sαhγt] ⊆ N.

Thus N = (sΓMΓt], that is, (sΓMΓt] is a minimal bi-ideal of S.

By Theorem 3.13 and 3.14, we observe the following result.

Theorem 3.15. Let M be a minimal bi-ideal of an ordered Γ-semigroup S. Then

every minimal bi-ideal of S is of the form (sΓMΓt], where s, t ∈ S.

Definition 3.10. Let (S,Γ,≤) be an ordered Γ-semigroup. Let K(S) be the

intersection of all ideals of S. If K(S) 6= ∅, then K(S) is called the kernel of S.

It easy to see that K(S) is the smallest ideals of S. We now study

the kernel of an ordered Γ-semigroup.

Theorem 3.16. Let (S,Γ,≤) be an ordered Γ-semigroup. The union of all mini-

mal bi-ideals of S is the kernel of S.

Proof. Let M be a minimal bi-ideal of S and K = (SΓMΓS]. Then, it is clear

that K is an ideal of S. Since
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K = (SΓMΓS] =
⋃
s,t∈S

(sΓMΓt].

Then K is the union of all the minimal bi-ideal of S by Theorem

3.15. Let a ∈ K. Then a ∈ B for some minimal bi-ideal B of S. Since K is an

ideal of S, by Theorem 3.10 and Theorem 3.12, there exist x ∈ B and α, β ∈ Γ

such that a ≤ aαxβa and so a ≤ (aαxβa)αxβa ∈ KΓaΓK.

Hence, we have

K ⊆ (KΓaΓK] ⊆ (KΓSΓK] ⊆ (KΓS] ⊆ (K] ⊆ K.

Then K = (KΓaΓK] for all a ∈ K. Let I be an ideal of S. Thus IΓK ⊆ I ∩K

and I ∩K 6= ∅. Let c ∈ I ∩K. Then K = (KΓcΓK] because c ∈ K. Since I is an

ideal of S and c ∈ I, we have

K = (KΓcΓK] ⊆ (KΓIΓK] ⊆ (SΓIΓS] ⊆ (I] ⊆ I.

Therefore K = K(S) which is the kernel of S.

By Theorem 3.12 and Theorem 3.16, we deduce the following result.

Theorem 3.17. Let (S,Γ,≤) be an ordered Γ-semigroup. If S has a minimal

bi-ideal M , then K(S) = (SΓMΓS] which is a union of t-simple subΓ-semigroups

of S.

Theorem 3.18. If a bi-ideal B of an ordered Γ-semigroup S is a t-simple subΓ-

semigroup of S which e ∈ B satisfying e ≤ eαe for some α ∈ Γ, then B = (eΓSΓe]

and (SΓeΓS] is the kernel of S which is a union of t-simple subΓ-semigroup of S.

Proof. Since B is t-simple, it follows from Theorem 3.12 that B is a minimal

bi-ideal of S. By Theorem 3.8, (eΓSΓe] is a bi-ideal of S. Since (eΓSΓe] ⊆

(BΓSΓB] ⊆ B, we have B = (eΓSΓe].

Also, e ≤ eαe ≤ eαeαe for some α ∈ Γ implies e ∈ (eΓSΓe]. Thus

by Theorem 3.17, we have that K(S) is a union of t-simple subΓ-semigroups of S.

Consequently, we have

K(S) = (SΓ(eΓSΓe]ΓS] ⊆ (SΓeΓSΓeΓS] ⊆ (SΓeΓS] ⊆ (SΓ(eΓSΓe]ΓS],

since e ∈ (eΓSΓe]. This show that K(S) = (SΓeΓS].
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In the remainder in this section, we study minimal and 0-minimal

bi-ideals of ordered Γ-semigroups analogous to minimal and 0-minimal bi-ideals

of semigroups considered by A. Iampan (Iampan, 2008)

Definition 3.11. Let (S,Γ,≤) be an ordered Γ-semigroup. An element a of S

with at least two element is called zero element of S if xαa = a = aαx for all

x ∈ S and α ∈ Γ and is denoted by 0.

Definition 3.12. Let (S,Γ,≤) be an ordered Γ-semigroup with zero. S is called

0-t-simple if it does not contain nonzero proper bi-ideals of S and SΓS 6= {0}.

Lemma 3.19. Let (S,Γ,≤) be an ordered Γ-semigroup and a ∈ S. Then

B(a) = (aΓS1Γa ∪ {a}] = (aΓSΓa ∪ aΓa ∪ {a}].

Proof. It follows by Theorem 3.5(3).

Lemma 3.20. Let (S,Γ,≤) be an ordered Γ-semigroup with zero. The following

statements hold.

(1) If S is 0-t-simple, then B(a) = S for all a ∈ S \ {0}.

(2) If B(a) = S for all a ∈ S \ {0}, then either SΓS = {0} or S is

0-t-simple.

Proof. (1) Assume that S is 0-t-simple. Then for any a ∈ S \ {0}, B(a) is a

nonozero bi-ideal of S. Hence B(a) = S.

(2) Assume that B(a) = S for all a ∈ S \ {0} and SΓS 6= {0}.

Let B be a nonzero bi-ideal of S and a ∈ B \{0}. Clearly, B ⊆ S. By assumption,

we have

S = B(a) = (aΓSΓa ∪ aΓa ∪ {a}] ⊆ (BΓSΓB ∪BΓB ∪B] ⊆ B.

Therefore B = S, that is, S is 0-t-simple.

Lemma 3.21. Let (S,Γ,≤) be an ordered Γ-semigroup and {Bλ | λ ∈ Λ} a family

of bi-ideals of S. Then
⋂
λ∈Λ

Bλ is a bi-ideal of S if
⋂
λ∈Λ

Bλ 6= ∅.
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Proof. Assume that
⋂
λ∈Λ

Bλ 6= ∅. Let a, b ∈
⋂
λ∈Λ

Bλ, x ∈ S, γ, µ ∈ Γ. Then

a, b ∈ Bλ for all λ ∈ Λ. Since Bλ is a bi-ideal of S for all λ ∈ Λ, aγb ∈ Bλ and

aγxµb ∈ Bλ for all λ ∈ Λ. Then aγb ∈
⋂
λ∈Λ

Bλ and aγxµb ∈
⋂
λ∈Λ

Bλ. Clearly,

((
⋂
λ∈Λ

Bλ]] ⊆ (
⋂
λ∈Λ

Bλ]. Therefore
⋂
λ∈Λ

Bλ is a bi-ideal of S.

Lemma 3.22. Let (S,Γ,≤) be an ordered Γ-semigroup, B a bi-ideal of S and K

a subΓ-semigroup of S. The following statements hold.

(1) If K is t-simple such that K ∩B 6= ∅, then K ⊆ B.

(2) If K is 0-t-simple such that (K \ {0}) ∩B 6= ∅, then K ⊆ B.

Proof. (1) Assume that K is t-simple such that K ∩ B 6= ∅. Then there exists

a ∈ K ∩B. By Theorem 3.11(2), K = (aΓKΓa]. We have

K = (aΓKΓa] ⊆ (aΓKΓa] ⊆ (BΓSΓB] ⊆ (B] ⊆ B.

Hence K ⊆ B.

(2) Assume that K is 0-t-simple such that (K \ {0})∩B 6= ∅. Then

B(a) 6= {0}. It is easy to show that B(a) ∩K is a nonzero bi-ideal of K. Then

K = B(a) ∩K. We have

K = B(a) ∩K = (aΓKΓa ∪ aΓa ∪ {a}] ∩K ⊆ (aΓKΓa ∪ aΓa ∪ {a}]

⊆ (aΓSΓa ∪ aΓa ∪ {a}]

= B(a) ⊆ B.

Hence K ⊆ B.

Definition 3.13. Let (S,Γ,≤) be an ordered Γ-semigroup with zero. A nonzero

bi-ideal B of S is called a 0-minimal bi-ideal of S if there is no nonzero bi-ideal A

of S such that A ⊂ B.

Remark 3.4. Equivalent definition are as follow :

(1) For any nonzero bi-ideal A of S such that A ⊆ B, we have A = B

or

(2) For any bi-ideal A of S such that A ⊂ B, we have A = {0}.
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Theorem 3.23. Let (S,Γ,≤) be an ordered Γ-semigroup with zero and B a bi-

ideal of S. If B is a 0-minimal bi-ideal of S, then either BΓB = {0} or B is

0-t-simple.

Proof. It is similar to the proof of Theorem 3.12.

Using the same proof of Theorem 3.23 and Lemma 3.22(2), we have

theorem.

Theorem 3.24. If ordered Γ-semigroup S has a zero element and B is a nonzero

bi-ideal of S, then the following statements hold.

(1) If B is a 0-minimal bi-ideal of S, then either AΓBΓA = {0} for

some nonzero bi-ideal A of B or B is 0-t-simple.

(2) If B is 0-t-simple, then B is a 0-minimal bi-ideal of S.

Theorem 3.25. If ordered Γ-semigroup S has no zero element but it has proper

bi-ideals, then every proper bi-ideals of S is minimal if and only if the intersection

of any two distinct proper bi-ideals is empty.

Proof. Assume that every proper bi-ideals of S is minimal. Let B1 and B2 be two

distinct proper bi-ideals of S. Then B1 and B2 are minimal. If B1 ∩B2 6= ∅, then

B1∩B2 is a bi-ideal of S by Lemma 3.21. Since B1 and B2 are minimal, B1 = B2.

It is a contradiction. Therefore B1 ∩B2 = ∅.

The converse is obvious.

Using the same proof of Theorem 3.25, we have Theorem 3.26.

Theorem 3.26. If ordered Γ-semigroup S has a zero element but it has nonzero

proper bi-ideals, then every nonzero proper bi-ideals of S is 0-minimal if and only

if the intersection of any two distinct nonzero proper bi-ideals is {0}.

Proof. It is similar to the proof of Theorem 3.25.
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3.3 Maximal bi-ideals in ordered Γ-semigroups

In this section, we study maximal bi-ideals of ordered Γ-semigroups

analogous to maximal bi-ideals of semigroups considered by A. Iampan (Iampan,

2008)

Definition 3.14. A proper bi-ideal B of an ordered Γ-semigroup S is called a

maximal bi-ideal of S if for any bi-ideal A of S such that B ⊂ A, we have A = S.

Remark 3.5. Equivalent definition is as follow : for any proper bi-ideal A of S

such that B ⊆ A, we have A = B.

Theorem 3.27. Let (S,Γ,≤) be an ordered Γ-semigroup and B a bi-ideal of S.

If

(1) S \B = {a} for some a ∈ S or

(2) S \B ⊆ (bΓSΓb] for all b ∈ S \B,

then B is a maximal bi-ideal of S.

Proof. Let A be a bi-ideal of S such that B ⊂ A. Then A \B 6= ∅.

Case 1. S \B = {a} for some a ∈ S.

Then

B ∪ {a} = B ∪ (S \B) = B ∪ (S ∩BC) = (B ∪ S) ∩ (B ∪BC) = S.

Since B ⊂ A and A \B 6= ∅, A \B ⊆ S \B = {a}. Then A \B = {a}. Consider

B ∪ {a} = B ∪ (A \B) = (B ∪ A) ∩ (B ∪BC) = A ∩ S = A.

Then A = S because B ∪ {a} = S. Hence B is a maximal bi-ideal of S.

Case 2. S \B ⊆ (bΓSΓb] for all b ∈ S \B. Let b ∈ A \B.

We have

b ∈ A \B ⊆ S \B ⊆ (bΓSΓb] ⊆ (AΓSΓA] ⊆ A.

Hence S = B ∪ S \B ⊆ B ∪A ⊆ A ⊆ S, so A = S. Then B is a maximal bi-ideal

of S.
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Theorem 3.28. Let (S,Γ,≤) be an ordered Γ-semigroup. If B is a maximal bi-

ideal of S and B ∪B(a) is a bi-ideal of S for all a ∈ S \B, then either

(1) S \ B ⊆ (aΓa ∪ a] and (aΓaΓa] ⊆ B for some a ∈ S \ B, and

(bΓSΓb] ⊆ B for all b ∈ S \B, or

(2) S \B ⊆ B(a) for all a ∈ S \B.

Proof. Assume that B is a maximal bi-ideal of S and B ∪ B(a) is a bi-ideal of S

for all a ∈ S \B. Then we have the following two case :

Case (1). (aΓSΓa] ⊆ B for some a ∈ S \ B. Then (aΓaΓa] ⊆

(aΓSΓa] ⊆ B, so aΓaΓa ⊆ B. Consider

B ∪ (aΓa ∪ a] = (B ∪ (aΓSΓa]) ∪ (aΓa ∪ a] = B ∪ (aΓSΓa ∪ aΓa ∪ a] = B ∪B(a).

Then B ∪ (aΓa∪ a] is a bi-ideal of S because B ∪B(a) is a bi-ideal

of S. Since B is a maximal bi-ideal of S and B ⊂ B∪ (aΓa∪a], B∪ (aΓa∪a] = S.

Hence S \B ⊆ (aΓa ∪ a].

Let b ∈ S \B. Then b ∈ (aΓa ∪ a]. Hence b ∈ (a] or b ∈ (aΓa].

Case 1. b ∈ (a]. Then b ≤ a. Let x ∈ (bΓSΓb]. Then x ≤ y

for some y ∈ bΓSΓb. Hence y = bθcγb for some c ∈ S and θ, γ ∈ Γ. We have

x ≤ y = bθcγb ≤ aθcγa. Then x ∈ aΓSΓa ⊆ (aΓSΓa] ⊆ B

Case 2. b ∈ (aΓa]. Then b ≤ aηa for some η ∈ Γ. Let x ∈ (bΓSΓb].

Then x ≤ y for some y ∈ bΓSΓb. Hence y = bµrθb for some r ∈ S and µ, θ ∈ Γ,

we have

x ≤ y = bµrθb ≤ (aηa)µrθ(aηa) = aη(aµrθa)ηa.

Then x ∈ aΓSΓa ⊆ (aΓSΓa] ⊆ B. Therefore (bΓSΓb] ⊆ B for all b ∈ S \B.

Case (2). (aΓSΓa] * B for all a ∈ S \ B. Let a ∈ S \ B. Then

B ⊂ B∪(aΓSΓa] ⊆ B∪B(a). Since B∪B(a) is a bi-ideal of S and B is a maximal

bi-ideal of S, we get B ∪B(a) = S. Then S \B ⊆ B(a) for all a ∈ S \B.

Let (S,Γ,≤) be an ordered Γ-semigroup. Define U is the union of

all nonzero proper bi-ideals of S if S has a zero element and U is the union of all

proper bi-ideals if S has no a zero element. In the other words, if
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R = {B | B is a proper bi-ideal of S},

then U =
⋃
{B | B ∈ R}.

Lemma 3.29. S = U if and only if B(a) 6= S for all a ∈ S.

Proof. Suppose that there exist a ∈ S such that S = B(a). Since a ∈ S = U , it

follows that a ∈ B for some proper bi-ideal B of S and so S = B(a) ⊆ B. Since

B is a proper bi-ideal of S, it is a contradiction.

Conversly, let a ∈ S. By hypothesis, B(a) 6= S. Then B(a) is a

proper bi-ideal of S such that a ∈ B(a). Since B(a) ∈ R, a ∈ R, we have a ∈ U .

Therefore S = U .

Theorem 3.30. Let (S,Γ,≤) be an ordered Γ-semigroup without zero. Then one

of the following four conditions is satisfied.

(1) U is not a bi-ideal of S.

(2) B(a) 6= S for all a ∈ S.

(3) There exists a ∈ S such that B(a) = S, (aΓa ∪ a] * (aΓSΓa]

and (aΓaΓa] ⊆ U , S is not t-simple, S \ U = {x ∈ S | B(x) = S}, and U is the

unique maximal bi-ideal of S.

(4) S \ U ⊆ B(a) for all a ∈ S \ U , S is not t-simple, S \ U = {x ∈

S | B(x) = S}, and U is the unique maximal bi-ideal of S.

Proof. Assume that U is a bi-ideal of S. Then U 6= ∅. Now, we have consider the

following two cases :

Case 1. U = S. By Lemma 3.29, B(a) 6= S for all a ∈ S. In this

case, the condition (2) is satisfied.

Case 2. U 6= S. Then S is not t-simple. We want to show that U

is the unique maximal bi-ideal of S, let A be a bi-ideal of S such that U ⊆ A. If

A 6= S, then A is a proper bi-ideal of S. Thus A ⊂ U , so it is a contradiction,

that is, A = S. Hence U is a maximal bi-ideal of S.

Next, assume that B is a maximal bi-ideal of S. Then B ⊆ U ⊂ S

because B is a proper bi-ideal of S. Since B is a maximal bi-ideal of S, we have

B = U . Then U is the unique maximal bi-ideal of S.
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Since U 6= S, it follows from Lemma 3.29 that B(a) = S for all

a ∈ S. Clearly, B(a) = S for all a ∈ S \ U . Thus S \ U = {x ∈ S | B(x) = S}. So

U ∪ B(a) = S is a bi-ideal of S for all a ∈ S \ U . By Theorem 3.28, we have the

following two case :

(2.1) S \ U ⊆ (aΓa ∪ a] and (aΓaΓa] ⊆ U for some a ∈ S \ U and

(bΓSΓb] ⊆ U for all b ∈ S \ U

(2.2) S \ U ⊆ B(a) for all a ∈ S \ U .

Assume that S \U ⊆ (aΓa∪a] and (aΓaΓa] ⊆ U for some a ∈ S \U

and (bΓSΓb] ⊆ U for all b ∈ S \ U . If (aΓa ∪ a] ⊆ (aΓSΓa], then S = B(a) =

(aΓSΓa ∪ aΓa ∪ a] = (aΓSΓa]. By hypothesis, S = (aΓSΓa] ⊆ U and so U = S.

It is a contradiction.

Therefore (aΓa ∪ a] * (aΓSΓa]. In this case, condition (3) is satis-

fied. Now, assume S \ U ⊆ B(a) for all a ∈ S \ U . In this case, condition (4) is

satisfied.

Using the same proof of Theorem 3.30, we have Theorem 3.31.

Theorem 3.31. Let (S,Γ,≤) be an ordered Γ-semigroup with zero and SΓS 6=

{0}. Then one of the following five conditions is satisfied.

(1) U is not a bi-ideal of S.

(2) B(a) 6= S for all a ∈ S.

(3) U = {0}, S \ U = {x ∈ S | B(x) = S}, and U is the unique

maximal bi-ideal of S.

(4) There exists a ∈ S such that B(a) = S, (aΓa ∪ a] * (aΓSΓa]

and (aΓaΓa] ⊆ U , S is not 0-t-simple, S \ U = {x ∈ S | B(x) = S}, and U is the

unique maximal bi-ideal of S.

(5) S \ U ⊆ B(a) for all a ∈ S \ U , S is not 0-t-simple, S \ U =

{x ∈ S | B(x) = S}, and U is the unique maximal bi-ideal of S.
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