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ชื่อวิทยานิพนธ การศึกษาเปรยีบเทียบไทเทเนียมไดออกไซดชนิดตาง ๆ ในการสลาย      
สียอมดวยปฏิกิริยาโฟโตคะตะไลติก 

ผูเขียน นางสาวมิกิ  กณัณะ 
สาขาวิชา เคมี  
ปการศึกษา 2551 
  

บทคัดยอ 
 

การเตรียมไทเทเนียมไดออกไซด (TiO2) ในงานนี้มี 2 วิธี วิธีแรกเปนการเตรียมผง
ไทเทเนียมไดออกไซดโดยปราศจากการเผาที่มีปริมาณผสมของไทเทเนียมไดออกไซดอสัณฐาน 
อนาเทส และ รูไทล ตางกัน ดวยกระบวนการโซล-เจล โดยใชกรดเปนคะตะลิสต ศึกษาสมบัติทาง
กายภาพและทางเคมีของไทเทเนียมไดออกไซดที่เตรียมไดโดยใชเทคนิค XRD, SEM, Brunauer-
Emmett-Teller (BET), Fourier-transformed infrared (FT-IR), X-ray energy-dispersive (EDX)  
และ UV-Vis  พบวาเมื่อเตรียมโดยไมเติมกรดและเมื่อเติมกรดไฮโดรคลอริก กรดไนตริกและ 
กรดอะซิติกปริมาณเล็กนอยเปนคะตะลิสต จะไดไทเทเนียมไดออกไซดอสัณฐานที่มีผลึกแบบอนา
เทสและรูไทลปนอยูดวย  ในขณะที่เมื่อใชกรดซัลฟวริกหรือฟอสฟอริกเปนคะตะลิสต จะได
ไทเทเนียมไดออกไซด อสัณฐานที่มีผลึกแบบอนาเทสปนอยูเล็กนอย  รวมทั้งมีการเสนอกลไก
อธิบายการเกิดผลึกไทเทเนียมไดออกไซดขนาดนาโนจากหนวยพื้นฐานของไทเทเนียมไดออกไซด
ดวย  นอกจากนี้ยังไดศึกษาความสามารถในการเปนโฟโตคะตะลิสตของไทเทเนียมไดออกไซดที่
เตรียมไดโดยใชสลายสียอม 3 ชนิด คือ เมทิลีนบลู คริสตัลไวโอเลต และคองโกเรด  และ
เปรียบเทียบกับ Degussa P25 ซ่ึงเปนไทเทเนียมไดออกไซดที่นิยมใชเปนโฟโตคะตะลิสต  พบวา
ไทเทเนียมไดออกไซดที่เตรียมขึ้นสามารถสลายสียอมได นอกจากนี้ไทเทเนียมไดออกไซดที่
สังเคราะหขึ้นบางตัวก็ใหผลดีใกลเคียง กับ Degussa P25 

วิธีที่สองเปนการเตรียมสาร titanium amino-alkoxide เพื่อใชเปนสารตั้งตน 
สําหรับการเตรียมไทเทเนียมไดออกไซดแบบฟลมและอนุภาคระดับนาโน  ปฏิกิริยาที่ใชในการ
เตรียม titanium amino-alkoxide หรือ [Ti(OR)4-n(L)n] โดย R= Et, Pri และ L = bdmap, tdmap คือ 
ปฏิกิริยาระหวาง HOCH(CH2NMe2)2 (Hbdmap) และ HOC(CH2NMe2)3 (Htdmap) กับ [Ti(OR)4]  
ไดสารใหม คือ [Ti(OEt)3(bdmap)]2  โดยนํามาใชเปนสารตั้งตนสําหรับเตรียมฟลม ดวยวิธี 
AACVD (Aerosol-Assisted Chemical Vapour Deposition) ที่อุณหภูมิ 440 องศาเซลเซียส ไดฟลม
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ไทเทเนียมไดออกไซดอสัณฐานเคลือบบนแกว และการเตรียมอนุภาคระดับนาโน โดยการใหความ
รอนในภาชนะที่ปดสนิท ที่อุณหภูมิ 700 องศาเซลเซียส  พบวาไดอนุภาคระดับนาโนของ TiO2@C 
ซ่ึงมีเสนผาศูนยกลางประมาณ 350 นาโนเมตร สวนคารบอนที่เคลือบมีความหนาประมาณ  75    
นาโนเมตร 
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ABSTRACT 
   
 

Titanium dioxide (TiO2) has been prepared by 2 methods. The first 

method is a preparation of mixing various amorphous-anatase-rutile contents TiO2 

powders by acid-catalyzed sol-gel method at 80oC without calcinations. The physico-

chemical properties of the powders were investigated by powder XRD, SEM, 

Brunauer-Emmett-Teller (BET), Fourier-transformed infrared (FT-IR), X-ray energy-

dispersive (EDX), and UV-vis techniques.  The results showed that the products were 

mixtures of mainly amorphous TiO2 with small amount of anatase and rutile phases 

when prepared by without using acid catalyst and by adding small amount of acid 

catalyst (hydrochloric acid, nitric acid, and acetic acid).  However, when either 

sulfuric acid or phosphoric acid was used the products obtained were mainly 

amorphous TiO2 with small amount of anatase. Mechanism of growth from basic 

units to nanocrystalline was also proposed. Three dyes, methylene blue, crystal violet, 

and congo red were used in the photocatalytic studies. Positive photocatalytic 

activities of these products were found and some could be compared favorably with 

degussa P25.   

The second method is a preparation of TiO2 films and nanoparticles by 

using a new precursor, titanium amino-alkoxides.  Reaction of the HOCH(CH2NMe2)2 

(Hbdmap) and HOC(CH2NMe2)3 (Htdmap) with [Ti(OR)4] yields a series of 

[Ti(OR)4-n(L)n] (R= Et, Pri; L = bdmap, tdmap) was studied.  New compound: 

[Ti(OEt)3(bdmap)]2 has been used as a precursor in AACVD (Aerosol-Assisted 

Chemical Vapour Deposition) to generate amorphous TiO2 films on glass at 440oC, 

and TiO2@C nanoparticles of approximate diameter 350 nm with a carbon coating of 

width ca. 75 nm on heating in a sealed container at 700oC. 
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THE RELEVANCE OF THE RESEARCH WORK TO THAILAND 
 

 

Treatment of colored wastewater from textile or dye industry is a 

serious problem that attracts the attention of many researchers.  A certain amount of 

dyestuff is lost during the process in the textile industry which causes environmental 

problems.  Heterogeneous photocatalysis has attracted much attention due to its 

potential applications in air clean-up and water purification. TiO2 is generally used a 

photocatalyst for environmental application due to chemical stability, strong oxidizing 

power, nontoxicity, and inexpensive.  However, many researchers have focused on 

the synthesis of TiO2 by annealing to improve its photocatalytic activity and its 

applicability to wastewater treatment.  The purpose of this work is to study a method 

to prepare the TiO2 powder without calcinations at high temperature.  The 

photocatalyst of powder could be used to degrade methylene blue, crystal violet, and 

congo red, a model dye compound, in wastewater.  We deem that this work could be 

used in Thailand as a cheaper material for the destruction of dye pollutants in the 

textile industries before releasing wastewater into the natural system. 
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CHAPTER 1 

INTRODUCTION 
 

 

1.1  Introduction 

 

Titanium dioxide (TiO2) is one of the most important of the ceramic metal 

oxides with diverse applications ranging from catalysis to material chemistry. 

Titanium dioxide (or titania) has been widely studied for applications in a variety of 

problems of environmental interest in addition to water and air purifications.  It has 

considerable advantages over other similar photocatalysts due to its good 

characteristic in terms of chemical stability, endurance, thin film transparency, and 

lower production costs (Hoffmann, et al., 1995; Fox and Dulay, 1993).  Many 

researchers have focused on the preparation of various phase of TiO2 powder to 

improve its photocatalytic activity and its applicability to environmental treatment.  

Good catalytic property is governed by two major opposing physical properties: 

crystallinity and surface area of the catalysts.  The high crystallinity helps prolong the 

recombination rate of the photoexcited electron and positive hole, hence, strong 

reducing of oxidizing power of the catalyst.  The high surface area helps facilitate 

adsorption of the target molecules onto the surface of the catalyst; as higher number 

of molecules are adsorbed the faster the rate of reaction (Ohtani, et al., 1997).  Among 

the two properties, crystallinity and surface area, one has to decide and choose one 

over the other since both cannot be had simultaneously from the syntheses. It has been 

reported that the different methods for the syntheses of TiO2 result in products with 

different structures (anatase or rutile), crystallinity, and contaminants.  As a 

consequence, the surface properties of TiO2 strongly depend on the preparation 

techniques (Zhang, et al., 1999; Reddy, et al., 2001). In preparing oxide materials, the 

sol-gel method can exhibit a number of advantages over conventional methods. 

In our earlier work (Randorn, et al., 2004) we found that the amorphous form, 

previously thought rather inactive, with small amount of crystalline anatase form also 

showed photocatalytic properties.  This amorphous form could be synthesized by a 
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simple precipitation method to produce TiO2, however, the subsequent calcination 

was excluded.  Since no calcination was employed, the product powder was mostly 

present in an amorphous form with some hydrated water molecules.  Its surface area 

was also significantly higher than that of commercially available anatase/rutile or P25 

due to its amorphous morphology.   

This work focused on the preparation of TiO2 powder in various amorphous-

anatase-rutile contents by using sol-gel method under different acids as hydrolysis 

catalysts without annealing at high temperature. Hopefully, this method simplification 

leads to lower production costs, energy saving and no pollution. 

In addition, this work encompasses the synthesis of a titanium amino-alkoxides: 

precursors for the formation of both TiO2 films and nanoparticles. 

 

1.2  Review of literatures 

 

1.2.1  Titanium dioxide  

(1)  General background 

 Titanium dioxide (TiO2) belongs to the family of transition metal 

oxides. In the beginning of the 20th century, industrial production started with 

titanium dioxide replacing toxic lead oxides as pigments for white paint.  At present, 

the annual production of TiO2 exceeds 4 million tons.  It is used as a white pigment in 

paints (51% of total production), plastic (19%), and paper (17%), which represent the 

major end-use sectors of TiO2.  The consumption of TiO2 as a pigment increased in 

the last few years in a number of minor end-use sectors such as textiles, food (it is 

approved in food-contact applications and as food coloring) under a EU legislation on 

the safety of the food additives, leather, pharmaceuticals (tablet coatings, toothpastes, 

and as a UV absorber in sunscreen cream with high sun protection factors and other 

cosmetic products), and various titanate pigments (mixed oxides such as ZnTiO3, 

ZrTiO4, etc). (Carp, et al., 2004) 
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(2)  Crystal structures and properties 

 Titanium dioxide exists naturally in three distinct crystallographic 

modifications, namely, anatase, rutile, and brookite (Figure 1).  The structures of 

rutile, anatase and brookite can be discussed in terms of (TiO6
2-) octahedrals.  The 

three crystal structures differ by the distortion of each octahedral and by the assembly 

patterns of the octahedral chains.  Anatase can be regarded to be built up from 

octahedrals that are connected by their vertices, in rutile the edges are connected, and 

in brookite both vertices and edges are connected. Some of the most important bulk 

properties of TiO2 are given in Table 1. 

 

 

(a) Anatase  (b) Rutile   (c) Brookite  

Figure 1.  Crystal structures of anatase (a), rutile (b), and brookite (c). 

 

Titania is widely used as a white pigment for paint, coating ink, 

paper, plastic, cosmetic products, catalyst supports, photoconductors, dielectric 

materials and so on because of its whiteness, outstanding hiding property and non-

toxicity.   The brookite form cannot be used in industries because of its instability at 

room temperature.  The anatase form has the problems of poor light and heat 

resistance and of gradually decreasing whiteness due to weathering.  The anatase form 

also has drawbacks for applications involving adsorption technology owing to its low 
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surface energy.  The rutile form has outdoor applicability because of its good light 

resistance and can be applied to surfaces by the use of adsorption technology without 

advanced skills or sophisticated equipment (Hadjiivanov and Klissurski, 1996; Wang, 

et al., 2001; Yanqing, et al., 2001). 

 

Table 1.  Some bulk properties of the three main polymorphs of titanium dioxide. 

(Carp, et al., 2004) 
Crystal structure System Point group- Lattice constants (nm) 

  Space group a b c c/a 

Rutile Tetragonal 14
4hD  -P4/mmm 0.4584 - 0.2953 0.644 

Anatase Tetragonal 19
4hD -I41/amd 0.3733 - 0.937 2.51 

Brookite Orthorhombic 15
2hD  -Pbca 0.5456 0.9182 0.5143 0.943 

 

Density (kg/m3)    

Rutile 4240   

Anatase 3830   

Brookite 4170   
 

Melting Point (oC)    

Rutile 1840±10   

Anatase Change to rutile   

Brookite Change to rutile   
 

Dielectric properties Frequency (Hz) Temperature (K) Dielectric constant 

Rutile, perpendicular to 108 290-295 86 

optical c-axis    

Rutile, parallel to optical - 290-295 170 

c-axis    

Rutile, along c-axis 107 303 100 

Anatase, average 104 298 55 

 

Refractive index ng np  

Rutile 2.9467 2.6506  

Anatase 2.5688 2.6584  

Brookite 2.809 2.677  
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(3)  Synthesis of titanium dioxide 

Titanium dioxide can be prepared in the form of powder, crystal, or 

thin film.  Both powder and film can be built up from crystallites ranging from a few 

nanometers to several micrometers (Carp, et al., 2004). 

Generally, TiO2 may be manufactured by either the sulfate process or 

the chloride process. The economics of the two processes are very much dependent 

upon the raw material available. The starting materials for titanium dioxide 

production are ilmenite and titaniferous slag in the case of the sulfate process and 

leucoxene, rutile, synthetic rutile, and in the future possibly also anatase for the 

chloride process (Büchner, et al., 1989). 

 In sulfate process (Figure 2), ilmenite dissolved in sulfuric acid is 

hydrolyzed at temperatures higher than 95oC, then calcined at 800-1000oC and 

pulverized to produced the TiO2 powder.  During this calcination and pulverization 

process, impurities are introduced which lead to the low quality of the final TiO2 

powder (Nam, et al., 1998; Wang, et al., 2000).  In the chloride process (Figure 3), 

TiCl4 is produced by reacting natural rutile ore with HCl gas at a high temperature; 

then TiO2 powder with a high-purity rutile structure (more than 99.9 %) is obtained 

by reacting the TiCl4 with oxygen gas at temperatures higher than 1000oC. TiO2 

powder formed by this method is fine but rough.  Furthermore, this method requires 

extra protection devices because of the use of corrosive HCl and Cl2 gas.  This leads 

to higher production costs.  The application of TiO2 powder obtained by these 

methods is limited since the particle shape, size and distribution cannot be controlled 

(Nam, et al., 1998; Wang, et al., 2000). 

On a laboratory scale, titanium dioxide has been prepared by various 

methods, such as precipitation, solvothermal, sol-gel, microemulsion, combustion 

synthesis, electrochemical synthesis, chemical vapour deposition (CVD), physical 

vapour deposition (PVD), spray pyrolysis deposition (SPD), and so on (Carp, et al., 

2004).  The different preparation route and the experiment conditions of titanium 

dioxide result in products with different structures, morphology, particle size and 

contaminants (Hadjiivanov, et al., 1996).   
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Figure 2.  TiO2 pigment manufactured by the sulfate process (Büchner, et al., 1989). 

 

 
Figure 3.  TiO2 pigment manufactured by the chloride process (Büchner, et al., 1989). 
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This work used the sol-gel and chemical vapour deposition methods 

to prepare titanium dioxide in form of powder and thin films, respectively.  

 

(a)  Sol-gel method  

The sol-gel method involves the transition of system from a 

liquid “sol” into solid “gel” phase.  An overview of the sol-gel products is presented 

in Figure 4.  The starting materials in the preparation of the “sol” are usually 

inorganic metal salts or metal organic compounds.  In a typical sol-gel method, the 

precursor is subjected to a series of hydrolysis and polymerization (condensation) 

reactions to form a colloidal suspension or a “sol”.  Further processing of the “sol” 

enables one to make ceramic materials in different forms.  Thin films can be prepared 

on a piece of substrate by spin coating or dip coating.  When the “sol” is cast into a 

mold, a wet “gel” will form.  With further drying and heat-treatment, the “gel” is 

converted into dense ceramic or glass articles.  If the liquid in a wet “gel” is removed 

under a supercritical condition, a highly porous and extremely low density material 

called “aerogel” is obtained.  As the viscosity of a “sol” is adjusted into a proper 

viscosity range, ceramic fibers can be drawn from the “sol”.  Ultra-fine and uniform 

ceramic powders are formed by precipitation, spray pyrolysis, or emulsion techniques 

(Chemat Technology, Inc., 1998). 

In preparing oxide materials, the sol-gel method offers many 

advantages in easily control and strongly influenced by the synthesis conditions.  The 

homogeneous property of the products prepared by this method is very satisfactory 

(Ding and Liu, 1997; Suresh, et al., 1998).  Moreover, in these method precursor 

materials are metallic halide or alkoxide that favor the building of a solid network in a 

gel which eventually become a stable solid (Sanchez, et al., 1996).   

In sol-gel processes, titania is usually prepared by the hydrolysis 

and polycondensation reactions of titanium alkoxide. It is well known that titanium 

alkoxide hydrolyze vigorously in water, and many catalysts typically various simple 

acids, e.g., nitric acid, hydrochloric acid, acetic acid, sulfuric acid (Ding and Liu, 

1997; Baolong, et al., 2003; Samantaray, et al., 2003; Zaban, et al., 2000; Yamazaki, 

et al., 2001), and acetic acid, have been applied to lower the reaction rates.  The use of 
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phosphoric acid, however, has not been reported. Furthermore, this work used 

titanium tetrachloride (TiCl4) as precursor for preparation TiO2 powders due to 

inorganic compounds are more economical than alkoxides (Zhang, et al., 1999).  

 

 

Figure 4.  An overview of products prepared by sol-gel methods (Chemat 

Technology, Inc., 1998). 

 

As is well known, Degussa P25 is the most popular and well 

accepted photocatalysts due to its efficiency and has often been used for the 

degradation of pollutants in water or air.  It has found that the mixture phase of 

anatase and rutile was an important factor for the photoactivity of TiO2 as we can see 

from Degussa P25, which consist of anatase 80% and rutile 20%. In addition, it has 

been found that a mixture of anatase and rutile TiO2 nanoparticles has a much higher 

photocatalytic activity than pure anatase or pure rutile TiO2 nanoparticles (Ding and 

Liu, 1997; Zhang and Gao, 2001). Therefore, it is interesting to synthesize TiO2 that 

exhibits high photoactivity by a good combination of anatase-rutile mixture phase and 

surface area.   
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Most of the literature works usually used the precalcined titanium 

dioxide at around 300-400oC to induce crystallization of the anatase form.  It has been 

reported that the different methods for the syntheses of titanium dioxide result in 

products with different structures (anatase or rutile), crystallinity, and contaminants.  

As a consequence, the surface properties of TiO2 strongly depend on the preparation 

techniques (Zhang, et al., 1999; Reddy, et al., 2001). There have been some work 

reported the synthesis of mixture phase TiO2, for example, Gopal, et al, (1997) 

prepared crystalline TiO2 powder either rutile or anatase from titanium isopropoxide 

at temperature below 100oC.  The precipitate sizes were between 50 and 100 nm. 

Wang, et al., (2000) prepared a mixture of anatase and rutile-type TiO2 from poly-

peroxotitanic acid gel obtained by addition of Ti(OBun)4 to H2O2 solution.  The gel 

was heat-treated in air at temperatures ranging from 150oC to 750oC.  Zhang, et al., 

(1999) obtained nanocrystalline TiO2 in anatase or mixed phases from controlling the 

hydrolysis of TiCl4.  The addition of small amount (NH4)2SO4 promotes occurrence of 

anatase phase, however, these were not studied for photocatalytic activity.   

In this work, samples of TiO2 powder were synthesized by the 

sol-gel method using TiCl4 as a starting material at temperature below 100oC and 

using different acids as hydrolysis catalysts such as hydrochloric acid, nitric acid, 

sulfuric acid, acetic acid, and phosphoric acid. 

 

(b) Chemical vapour deposition (CVD) method 

CVD is a widely used versatile technique to coat large surface 

areas in a short span of time.  In industry, this technique is often employed in a 

continuous process to produce ceramic and semiconductor films.  The family of CVD 

is extensive and split out according to from metals to composite oxides, are formed 

from a chemical reaction or decomposition of a precursor in the gas phase. (Carp, et 

al., 2004) 

The basic principles of CVD can be summarized shortly as 

follows.   Chemical vapour deposition (CVD) is a process where one or more 

precursors are transported (1) in the vapor phase, often in a carrier gas, to the reactor 

chamber where they adsorbs (2) and react (3) to liberate the supporting ligands which 
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are subsequently desorbed (6) and transported out of the reactor (7).  The metal atoms 

then diffuse (4) to form a stable nucleus, where subsequent growth occurs (5). Under 

certain circumstances gas reactions can also happen.  All these processes occur on a 

heated substrate which decomposes the precursor, as depicted in the Figure 5. 

The CVD process of creating a film has to be reproducible and 

controllable.  As a result, the intrinsic properties, such as the purity, composition, 

thickness, adhesion, microstructure and surface morphology have to be reproducible 

for the same reactor conditions. 

 

 
Figure 5.  Illustration showing the elementary processes involved in the CVD of a 

metal-organic molecule     (adapted from www.chemsoc.org/chembytes/ezine/images/         

2002/ashton_jun02.htm). 

 

Thin films of titania can be produced by metal-organic chemical 

vapour deposition (MOCVD) and atomic layer deposition (ALD) techniques, which 

offer the advantage over other techniques of being able to coat large areas and with 

good aspect ratios over complex geometries. Central to the MOCVD / ALD 

methodology is the availability and choice of precursor, which can play a significant 

role in controlling ease of handling, volatility, deposition temperature, film 

composition and morphology etc. Conventional precursors for TiO2 are TiCl4 (Akhtar, 

et al., 1994) or a homoleptic alkoxide [Ti(OR)4] (R = Me (Pore, et al., 2004), Et 

(Kim, et al., 2004), or, most commonly, OPri (Evans, et al., 2006; Simcock, 2006; 

Sonnenfeld, et al., 2006 and Duminica, et al., 2006) along with a source of oxygen 
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(H2O, ROH are common), but TiCl4 suffers from the introduction of chlorine 

contaminant into the film (Aarik, et al., 2000) while the alkoxides are relatively air- 

and moisture-sensitive making them unattractive both from a handling perspective 

and susceptible to pre-reaction in a dual-source MOCVD reaction. Other precursors 

which have been reported include the use of simple volatile Ti(NMe2)4 (used with 

H2O2) (Pheamhom, et al., 2006) and more complex precursors such as 

[Ti6(O)6(O2CR)6] (R = Bu, Bz) (Piszczek, et al., 2005), however most variations 

attempts to mitigate the sensitivity of titanium alkoxides by the use of chelating 

ligands which saturate the coordination sphere of the metal. Pre-eminent among these 

ligands are the β-diketonates, which have been used extensively in conjunction with 

alkoxides, e.g. [Ti(OPri)2(thd)2] (thd = 2, 2, 6, 6-tetramethylheptane-3, 5-dionate) 

(Roeder, et al., 1996); more recently, related β-ketoesters e.g. [Ti(OPri)2(tbaoac)2] 

(Htbaoac = t-butylacetoacetate) (Bhakta, et al., 2004) and related malonates have been 

reported. The latter, when coupled with amido ligands i.e. [Ti(NMe2)2(dpml)2] 

(Hdpml = di-isopropylmalonate) (Baunemann, et al., 2006) have generated precursors 

with a mixed O,N ligand sphere for ALD applications. 

The use of chelating aminoalkoxides R2N(CH2)nOH in CVD 

precursor chemistry has been reported recently (Hollingsworth, et al., 2006). Titanium 

derivatives of amino ethanols [n = 2; R = Me (Hdmae), Et (Hdeae)] and propanols [n 

= 3, R = Me (Hdmap)] have been known for some time, and several e.g. 

[Ti(OPri)3(dmap)], [Ti(OPri)2(dmae)2], (Jones, et al., 1998) [Ti(OPri)(dmae)3], 

[Ti(dmae)4].(Lee, et al., 1999) have been used in the CVD of TiO2 and / or related 

binary oxide films.  Indeed, the use of Ti(dmae)n precursors has been claimed to lead 

to more uniform growth of TiO2 films. (Lee, et al., 1999) 

The use of the more functionalised ligands bis-

(dimethylamino)propanol (I: Hbdmap) and tris-(dimethylamino)propanol (II: 

Htdmap) have not been considered. The structures of Hbdmap and Htdmap are shown 

in Figure 6. Their use is of interest, firstly because of their enhanced ability to 

coordinate the metal centre from which the precursors may gain greater stability and 

secondly because unused donor sites have the potential to be further utilised for 
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secondary metal binding. The synthesis and characterisation of a series of compounds 

[Ti(OR)x(L)4-x] (R = Et, Pri; L = bdmap, tdmap) will also be reported in this work. 

 

OH

NMe2Me2N Me2N

OH

NMe2

NMe2

 
                               I: Hbdmap                                           II: Htdmap 

Figure 6.  Structures of I: Hbdmap (bis-(dimethylamino)propanol) and II: Htdmap 

(tris-(dimethylamino)propanol). 

 

1.2.2  Dye and treatment of dye pollutant 

 

 1.2.2.1  Dye 

A dye can generally be described as a colored substance that has 

an affinity to the substrate to which it is being applied.  The dye is generally applied 

in an aqueous solution, and may require a mordant to improve the fastness of the dye 

on the fiber. 

The first human-made (synthetic) organic dye, mauveine, was 

discovered by William Henry Perkin in 1856.  Many thousands of synthetic dyes have 

since been prepared.  Synthetic dyes quickly replaced the traditional natural dyes. 

They cost less, they offered a vast range of new colors, and they imparted better 

properties upon the dyed materials.   

Chemical classification by the nature of their chromophore, dyes 

are divided into (http://en.wikipedia.org/wiki/Dye):   

(1)  Category; Acridine dyes, derivates of acridine 

(2)  Category; Anthraquinone dyes, derivates of anthraquinone 

(3)  Arylmethane dyes 

      3.1  Category; Diarylmethane dyes, based on diphenyl methane 

      3.2  Category; Triarylmethane dyes, derivates of triphenyl 

methane 
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(4)  Category; Azo dyes, based on –N=N – azo structure 

(5)  Cyanine dyes, derivates of phthalocyanine 

(6)  Diazonium dyes, based on diazonium salts 

(7)  Nitro dyes, based on a –NO2 nitro functional group 

(8)  Nitroso dyes, based on a –N=O nitroso functional group 

(9)  Phthalocyanine dyes, derivates of phthalocyanine 

(10)  Quinone-imine dyes, derivates of quinone 

        10.1  Category; Azin dyes 

                 - Category; Eurhodin dyes 

                 - Category; Safranin dyes, derivates of safranin 

        10.2  Indamins 

        10.3  Category; Indophenol dyes, derivates of indophenol 

        10.4  Category; Oxazin dyes, derivates of oxazin 

        10.5  Oxazone dyes, derivates of oxazone 

        10.6  Category; Thiazin dyes, derivates of thiazin 

(11)  Category; Thiazole dyes, derivates of thiazole 

(12)  Xanthene dyes, derived from xanthene 

        12.1  Fluorene dyes, derivates of fluorine 

                 - Pyronin dyes 

        12.2  Category; Fluorone dyes, based on fluorine 

                 - Category; Rhodamine dyes, derivates of rhodamine 

 

Three types of dyes (Methylene blue, Congo red, and Crystal 

violet) were used as model of dye pollutants in this research.  

 

(a)  Methylene Blue 

  Methylene blue, MB, is a brightly colored, blue cationic 

thiazine dye. The structural formula and characteristic data of MB (3,7-

bis(dimethylamino)phenothiazin-5-ium chloride) are shown in Figure 7(a) and Table 

2, respectively. The uses of MB include being an antidote for cyanide poisoning in 

humans, antiseptic in veterinary medicine and, most commonly, in vitro diagnostic in 
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biology, cytology, hematology and histology (Mills and Wang, 1999).  At room 

temperature it appears as a solid, odorless, dark green powder that yields a blue 

solution when dissolved in water. 

Methylene blue has been used in several research articles. 

Mills and Wang (1999) studied the photobleaching of MB in an aqueous solution in 

the absence and presence of oxygen. Xu, et al., (1999) reported the influence of 

particles size of TiO2 on the photocatalytic degradation of MB in a suspended 

aqueous solution. Houas, et al., (2001) investigated the TiO2/UV photocatalytic 

degradation of methylene blue (MB) in water. Epling and Lin (2002) studied the 

photoassisted bleaching of MB utilizing TiO2 and visible light. Awati, et al., (2003) 

studied the photocatalytic decomposition of MB using nanocrystalline anatase titania 

prepared by ultrasonic technique. Randorn, et al., (2004) reported the bleaching of 

methylene blue by hydrated titanium dioxide.  

 

 (b)  Congo Red 

  The conjugated diazo dye Congo red was first synthesized in 

1884 and found commercial success because of its ability to dye cotton by simple 

immersion.  In the textile industry such dyes are known as direct dye.  Congo red, as a 

textile dye, has been replaced by other dyes more resistant to fading and repeated 

washing.  However, it is still widely used as a pH indicator and as a histological stain. 

(Bumpus, et al., 1999) The structural formula and characteristic of Congo red dye 

(sodium 3,3-[1,1-biphenyl]-4,4 diyl(azo) bis(4-aminonaphtalenesulfonate)) are shown 

in Figure 7(b) and Table 2, respectively. 

Congo red has also been used in several research articles such 

as Bumpus, et al., (1999) who demonstrated the use of TiO2-mediated photocatalysis 

for remediation of water contaminated with the azo dye congo red. Hachem, et al., 

(2001) studied the decolourization of Congo red by using P25 Degussa as catalyst. 

Wahi, et al., (2005) reported the photodegradation of Congo red catalyzed by 

nanosized TiO2. Bonancêa, et al., (2006) optimized SERS-active (by the presence of 

nanostructured silver) substrate was employed to study the photodegradation of congo 
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red (CR). Bejarano-Pérez and Suárez-Herrera (2007) compared between the 

photocatalytic and sonophotocatalytic oxidation process of congo red using titanium 

dioxide as a catalyst. 

 

(c)  Crystal Violet 

Cystal violet or Gentian violet is a triphenylmetane dye. It is 

extensively used in textile dyeing, paper printing, as a biological stain and as a 

dermatological agent. Gentian violet is a mutagen, a mitotic poison and clastogen and 

has been used for many years in veterinary medicine and as an additive to poultry 

feed to inhibit propagation of mold, intestinal parasites and fungus.  Gentian violet is 

carcinogenic in mice at several different organ sites.  Because of its low cost, its 

effectiveness as an antifungal agent for commercial poultry feed, and its ready 

availability, the general public may be exposed to the dye and its metabolites through 

the consumption of treated poultry products. Therefore, there are both environmental 

and health concerns on this particular dye (Saquib and Muneer, 2003; Sahoo, et al., 

2005). The structural formula and characteristic of crystal violet 

(hexamethylparasaniline chloride) are shown in Figure 7(c) and Table 2, respectively.   

Crystal violet has also been used in several research articles. 

Hachem, et al., (2001) studied the photocatalytic degradation of crystal violet by 

using P25 Degussa as catalyst. Saquib and Muneer, (2003) demonstrated the use of 

TiO2-mediated photocatalytic degradation of a triphenylmethane dye (gentian violet), 

in aqueous suspensions.  Sahoo, et al., (2005) studied the photocatalytic degradation 

of crystal violet on silver ion doped TiO2. 

 

 



   

 

 
 

16

  

S

N

(H3C)2N N(CH3)2
+

-Cl  
 

(a) Methylene blue 

NH2

N
N

2

Na+SO-
3

 
 

(b) Congo red 

 

N
CH3H3C

NN
CH3

CH3

H3C

CH3

+ -Cl

 
 

(c) Crystal violet 

 

Figure 7.  Structure of Metylene blue (a), Congo red (b), and Crystal violet (c). 

 

Table 2.  Characteristic of dyes. 

Dye Formula Abbreviation Type of dye Class of dye

Methylene 

blue 

C16H18ClN3S MB Thiazine Cationic* 

Congo red C32H22N6Na2O6S2 CR Diazo Direct** 

Crystal violet C25H30N3Cl CV Thiphenyl Cationic** 

* Epling and Lin, 2002 

** Hachem, et al., 2001 
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1.2.2.2  Methods for the treatment of dye pollutants 

Different types of dyes are used in many industries such as textile, 

paint, ink, plastics, and cosmetics.  A certain amount of them are lost in the process of 

their manufacturing and utilization and often cause environmental problems (Tanaka, 

et al., 2000). 

Depending on the chromogenes, chromophores, and 

auxochromes, dyes exhibit different physical and chemical properties, such as water 

solubility, color, brightness, fastness, and light absorption characteristics.  Many dyes 

pose environmental hazards because their degradation may produce toxic 

intermediates. For example, those dyes with substructures of nitrobenzene, benzidine 

and quaternary amines have carcinogenicity and toxicity.  With increasing awareness 

of water-resource protection to ensure a safe drinking supply, dye-containing 

wastewater originated from dye manufacturing industries and dyeing industries needs 

to be treated before being discharged (Epling and Lin, 2002). 

A variety of physical, chemical and biological methods are 

presently available for treatment of textile wastewater.  Biological treatment is a 

proven technology and is cost-effective.  However, it has been reported that the 

majority of dyes are only adsorbed on the sludge and are not degraded.  Physical 

methods such as ion-exchange, adsorption, air stripping, etc., are also ineffective on 

pollutants which are not readily adsorbable or volatile, and have the further 

disadvantage that they simply transfer the pollutants to another phase rather than 

destroying them (Sauer, et al., 2002). 

Over the last two decades photocatalytic process has been shown 

to be potentially advantageous and useful for the treatment of wastewater pollutants.  

This process has several advantages over competing processes such as: (1) complete 

mineralization, (2) no waste-solids disposal problem, and (3) only mild temperature 

and pressure conditions are necessary (Mahmoodi, et al., 2005). 
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Principles of heterogeneous photocatalysis 

The basic principles of heterogeneous photocatalysis can be 

summarized as follows.  In a semiconductor exists an occupied series of levels of 

highest energy (the valence band: VB), followed by a finite energy gap between this 

level and a corresponding series of unoccupied levels, known as the conduction band 

(CB). The magnitude of this energy gap (band gap, Eg) for a bulk solid is analogous to 

the HOMO-LUMO separation for a small molecule (Chandler, et al., 1993). 

 

band gap (Eg)

conduction band

valence band

hυ

A A-

D D+
 

 

Figure 8.  Schematic representation of the semiconductor showing the electron/hole 

pair formed in the conduction band and the valence band, respectively. 

 

When a photon with energy of hν matches or exceeds the band 

gap energy, Eg, of the semiconductor, and electron ( −
CBe ), is promoted form the 

valence band, VB, into the conduction band, CB, leaving a hole, +
VBh  behind.  The 

−
CBe  and the +

VBh  can recombine on the surface or in the bulk of the particle in a few 

nanoseconds (and the energy dissipated as heat) or can be trapped in surface states 

where they can react with donor (D) or acceptor (A) species adsorbed or close to the 

surface of the particle. Thereby, subsequent anodic and cathodic redox reactions can 
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be initiated (Figure 8). The energy level at the bottom of the CB is actually the 

reduction potential of photoelectrons and the energy level at the top of the VB 

determines the oxidizing ability of photoholes,  each value reflecting the ability of the 

system to promote reduction and oxidations (Litter, 1999). 

Some oxide and chalcogenides have enough bandgap energies to 

be excited by UV or visible light, and the redox potentials of the edges of the valence 

band and conduction band can promote a series of oxidative or reductive reactions.  

From the available semiconductors, ZnO is generally unstable in illuminated aqueous 

solutions, especially at low pH values, and WO3, although useful in the visible range, 

is generally less photocatalytically active than TiO2.  Among others, CdS, ZnS and 

iron oxides have been also tested.  However, and without any doubt, TiO2 is 

extensively used as photocatalyst due to its optical and electronic properties, chemical 

stability, non-toxicity, and low cost. 

The heterogeneous photocatalytic process is a complex sequence 

of reactions that can be expressed by the following equations: 

1. Absorption of efficient photons (hν ≥ Eg = 3.2 eV) by titania 

)h(eTiOhνTiO VBCB22
+− +→+  (1) 

2. Oxygen ionosorption (first step of oxygen reduction; oxygen’s 

oxidation degree passes from 0 to -1/2) 

−•− →+ 2CB2ads2 O)(eTiO)(O  (2) 

3. Neutralization of OH- groups by photoholes which produces 
•HO  radicals 

•+++ +→++↔ HOH)(hTiO)OH H OH( VB2(ads)
-

2  (3) 

4. Neutralization of −•
2O  by protons 

•+−• →+ 22 HOHO  (4) 
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5. Transient hydrogen peroxide formation and dismutation of 

oxygen 

2222 OOH2HO +→•  (5) 

6. Decomposition of H2O2 and second reduction of oxygen 

−• +→+ HOHO)(eTiOOH -
CB222  (6) 

7. Oxidation of the organic reactant via successive attacks by 
•HO radicals 

OHRHOR 2
' +→+ ••  (7) 

8. Direct oxidation by reaction with holes 

productsn degradatioRhR →→+ •++  (8) 

As an example of the last process, holes can react directly with 

carboxylic acids generation CO2 

2
- CORhRCOO +→+ •+  (9) 

 

Many studied have shown that heterogeneous photocatalytic 

oxidation processes can be used for removing coloring material from dye effluent. 

Zhang, et al., (1998) demonstrated the TiO2-assisted photodegradation of dye 

pollutants under illumination by visible light. Kiriakidou, et al., (1999) reported the 

effect of operational parameters and TiO2-doping on the photocatalytic degradation of 

Acid Orange 7 (AO7). Zhu, et al., (2000) studied the photocatalytic degradation of 

azo dyes by supported TiO2 + UV in aqueous solution. Hachem, et al., (2001) studied 

the photocatalytic degradation of various dyes (Orange II, Orange G, Congo Red, 

Indigo Carmine, Crystal Violet, Malachite Green, Remazol Blue and Methyl Yellow), 

using P25 Degussa as catalyst. Epling and Lin (2002) demonstrated the photoassisted 

bleaching of dyes utilizing TiO2 and visible light. Sauer, et al., (2002) studied the 

kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor. 

Fernándea, et al., (2002) reported photo-discolouration of Orange II solutions at 

different concentrations carried out in a 1l concentric reactor irradiated with a 254 nm 
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mercury lamp (125 W) in the presence of Degussa TiO2 P-25 dispersions.       

Daneshvar, et al., (2003) studied the photocatalytic degradation of azo dye acid red 14 

in water and investigated the effect of operational parameters. Xie and Yuan (2003) 

reported the photocatalytic activity and recycle application of titanium dioxide sol for 

X-3B photodegradation. Karkmaz, et al., (2004) studied the photocatalytic 

degradation of amaranth, an alimentary dye in an irradiated titanium dioxide aqueous 

suspension. Qamar, et al., (2005) reported the photocatalytic degradation of two 

selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous 

suspensions of titanium dioxide.  

 

1.3  Objectives 

 

       The objectives of this research are as follows: 

 

Part 1: Studying TiO2 in powder form 

        (1) Several samples of TiO2 powder will be prepared by the sol-gel method using 

different acids as hydrolysis catalyst and TiCl4 as precursor.  The acids to be used are 

hydrochloric acid, nitric acid, acetic acid, sulfuric acid, and phosphoric acid. 

       (2) Samples obtained in (1) will be investigated by many physical methods, such 

as, XRD, BET, and spectrophotometric methods.   

 (3) Sample obtained in (1) will be studied further for the photocatalytic activity 

and compare the results with commercial TiO2 samples (P25, anatase and rutile).  

Three dyes are used in this test: methylene blue, crystal violet, and congo red.   

 

Part 2: Studying TiO2 in film form and nanoparticles 

        (1)  Samples of TiO2 film and nanoparticles will be prepared from the chelating 

amino alkoxides of the form [Ti(OR)x(L)4-x] (R = Et, Pri; L = bdmap, tdmap). 

        (2) Samples obtained in (1) will be studied further for the photocatalytic 

activities using methylene blue as a dye model. 
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CHAPTER 2 

EXPERIMENTAL 
 

 

2.1  Synthesis of nanocrystalline TiO2 powders  

 

  2.1.1  Materials  

(1)  Acetic acid, CH3COOH; A.R., code no. A8401, Lab-scan, Ireland. 

(2)  Ammonium hydroxide (Ammonia solution) 28.0-30.0%, NH4OH; 

      A.R., code no. 9721-03, J.T. Baker, U.S.A. 

(3)  Hydrochloric acid, HCl; A.R., code no. 1.00317.2500, Merck,  

      Germany. 

(4)  Nitric acid, HNO3; A.R., code no. 9601-06, J.T. Baker, U.S.A.  

(5)  Phosphoric acid, H3PO4; code no. 406002, Carlo Erba, Italy. 

(6)  Silver nitrate, AgNO3; A.R., code no. 102333J, BDH, England. 

(7)  Sulfuric acid, H2SO4; A.R., code no.9681-03, J.T. Baker. 

(8)  Titanium tetrachloride, TiCl4; A.R., code no. 8.12382.1000, Merck,  

      Germany. 

(9)  Titanium dioxide (Anatase); A.R., code no.488257, Carlo Erba, Italy. 

(10)  Titanium dioxide (P25); code no. D-60287, Degussa AG, Frankfurt, 

        Germany. 

(11)  Titanium dioxide (Rutile: R706); Dupont, U.S.A. 
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2.1.2  Method  

 

2.1.2.1  Preparation of TiO2 powder 

A flow chart for the synthesis of titanium dioxide is shown in 

Figiure 9. Detailed procedure for the preparation is as follows: titanium tetrachloride 

(TiCl4) 20 mL was added slowly to 200 mL of cold distilled water which had been 

cooled in an ice-water bath at least 10 minutes prior to the addition. The solution was 

then mixed with small amount of each corresponding acid (acts as hydrolysis catalyst) 

in a three necked round bottom flask and refluxed 80oC for 1 hr under vigorous 

stirring.  The solution was then treated with ammonia solution until the pH value was 

7 and maintained at the same temperature for 24 hrs.  The white precipitate formed 

was filtered and then washed with distilled water until free of chloride ion (AgNO3 

test). The product was dried overnight and ground to fine powder.  The product were 

assigned as Ti-HCl, Ti-HNO3, Ti-H2SO4, Ti-CH3COOH, and Ti-H3PO4, 

corresponding to the preparation method of each by adding HCl, HNO3, H2SO4, 

CH3COOH, and H3PO4 acids, respectively, plus another sample designated as Ti-no-

acid since it was prepared in the absence of acid catalyst. 

 

2.1.2.2  Products characterization 

The XRD patterns were obtained via the Philips PW 3710 

powder diffractometer using Cu Kα radiation and equipped with a Ni filter.  

Diffraction patterns of both anatase and rutile phases were compared with reference in 

the JCPDS Powder Diffraction Files (21-1272, 21-1276).  From the line broadening of 

the corresponding X-ray diffraction peaks and using the Scherrer’s formula, the 

crystallite size was estimated by 

 

θβ
λ

=
cos
K        L                                      (1) 
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where, L is the average crystallite size in nm, λ is the wavelength of the X-ray 

radiation (0.154056 nm for copper lamp), K is a constant usually taken as 0.9, β is the 

line width at half-maximum height in radians, and θ is the diffraction angles 

(Zielińska, et al., 2001; Sivalingam, et al., 2003). 

The infrared spectra were recorded using Fourier-transformed 

infrared (FT-IR) spectrophotometer (EQUINOX55, Bruker, Germany) in diffused 

reflectance mode at 400-4000 cm-1 with KBr as blank.  The SEM micrographs were 

performed on gold-coated samples using a Jeol apparatus (JSM-5800 LV) equipped 

with a Link analyzer (ISIS 300) for X-ray energy-dispersive analysis (EDX).  The 

Brunauer-Emmett-Teller (BET) surface area of TiO2 powders were determined by 

means of Coulter SA 3100 (U.S.A) using nitrogen adsorption at -196oC. 

The band gap energies of titanium dioxide samples were 

determined using UV-Vis spectrophotometer (Shimadzu UV-2401, Japan).  The 

spectra were recorded in diffused reflectance mode with BaSO4 as a reference.  The 

band gap energies (Eg) of the catalyst were calculated by the Planck’s equation: 

λ
1240         

λ
ch         gE ==  (2) 

 

where Eg is the band gap energy (eV), h is the Planck’s constant, c is the light velocity 

(m/s), and λ is the wavelength (nm). 

 

 

 

 

 

 

 

 



   

 

 
 

25

 

 

 

Figure 9.  Flow chart of the synthesis of titanium dioxide powders. 
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2.1.3  Photocatalytic study 

 

2.1.3.1  Materials  

(1)  Congo red, C32H22N6Na2O6S2; Microscopical stain, code no.  

       30422, BDH, England. 

(2)  Crystal violet, C.I. 42555, code no. 34024, BDH, England.   

(3)  Methylene blue, C16H18N3ClS2•2H2O; Laboratory Reagent,  

       code no. 1137-25G, UNILAB, Australia. 

(4)  Hydrogen peroxide, H2O2; A.R., code no. 307701005, Carlo  

       Erba, Italy. 

 

2.1.3.2  Procedures 

(1)  Test for photocatalytic activity of the samples 

A solution (450 mL) containing 1 × 10-5 mol of dye per liter 

of water, a stirring bar, and 0.225 g of TiO2 were placed in the beaker.  Prior to the 

illumination, the suspension was stirred for 30 min to allow the dye adsorption onto 

the solid surface.  The UV irradiation was carried out using the fluorescence black 

light tube (20 w, F20T12-BLB, G.E., U.S.A.) as previously reported (Randorn, et al., 

2004) but with newly designed wooden compartment that can accommodate up to 5 

tubes of black light. The picture of a wooden compartment was shown in Fig. 10.  At 

specific time intervals, 5 mL of the sample was sampled and centrifuged (EBA 20 

Hettich, Germany) to remove titanium dioxide particles. The change in absorbance of 

dye solution was measured using an UV-Vis Spectrophotometer (Specord S100, 

Germany) at λmax 665, 590, and 500 nm for methylene blue (MB), crystal violet (CV), 

and congo red (CR), respectively.  Controlled experiments with either light and TiO2 

were performed to demonstrate that decolorization of the dyes was dependent on the 
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presence of both light and TiO2.  During adsorption in the darkness, the beaker was 

wrapped with aluminum foil to shield it from the ambient light. 

 

(2)  The initial dye concentration 

The effect of initial dye concentrations on the 

photocatalytic activity of titanium dioxide was investigated with three dyes.  The dye 

concentrations were 1 × 10-5, 1.75 × 10-5, and 2.5 × 10-5 mol/L.   In each case, the 

TiO2 powder (0.225 g) was mixed in the known concentration of dye solution under 

continuous stirring and kept for 30 min in the dark to equilibrate.  The UV-lights were 

turned on to irradiate the suspension.  At irradiation time intervals (1, 2, 3, 4, and 5 

hr), samples were taken, centrifuged to remove TiO2 particles.  After centrifugation 

the absorbance at λmax 665 nm for methylene blue, 590 nm for crystal violet, and 500 

nm for congo red was determined. 

 

(a) Outer compartment (b) Inner compartment 

 

Figure 10.  The wooden compartment for photocatalytic experiment (a) outer and (b) 

inner. 
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(3)  Effect of hydrogen peroxide 

In the studies on the effect of addition of hydrogen peroxide 

on dye degradation, a starting solution was prepared from a dye solution (500 mL) 

containing a known concentration of dye with added small volume of 1 mol/L (5 mL) 

of hydrogen peroxide. From the starting solution, 450 mL was taken and 0.225 g of 

TiO2 was added.  It was allowed to equilibrate for 30 min in the darkness and kept at 

the maintained condition. The beaker was wrapped with aluminum foil to shield 

against the ambient light. 

 

(a)  In the absence of light 

The suspension prepared above was sampled after an 

appropriate time (1, 2, 3, 4, and 5 hr).  TiO2 particles were removed by centrifugation.  

The absorbance of the dye solution was determined at λmax 665, 590, and 500 nm for 

methylene blue, crystal violet, and congo red, respectively. Two controlled 

experiments were also run simultaneously, one containing only dye and hydrogen 

peroxide while the other only dye and TiO2. 

 

(b)  In the presence of light 

In this experiment, the same set up as above was 

employed but after being equilibrated for 30 min in the dark the aluminum foil was 

removed. The lamps were switched on to initiate the reaction. The suspension was 

sampled after an appropriate illumination time (1, 2, 3, 4, and 5 hr). TiO2 particles 

were removed by centrifugation. Two controlled experiments were also run 

simultaneously, one containing only dye and hydrogen peroxide while the other only 

dye and TiO2. The absorbance of the dye solution was determined at λmax 665 nm for 

methylene blue, 590 nm for crystal violet, and 500 nm for congo red. 
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2.2  Synthesis of titanium amino-alkoxides: precursors for the formation of TiO2 

materials 

 

2.2.1  Materials  

(1)  Epichlorohydrin, C3H5ClO; A.R., CAS No. 106-89-9, Aldrich, UK. 

(2)  40% Dimethylamine, (CH3)2NH, A.R., CAS No. 124-40-3, SIGMA- 

Aldich, UK. 

(3)  Sodium hydroxide, NaOH, A. R., CAS No.1310-73-2, Aldrich, UK. 

(4)  Dichloromethane, CH2Cl2, Laboratory reagent grade, CAS No. 75-09- 

2, Fisher Scientific, UK.  

(5)  Magnesium sulfate-dried, Laboratory reagent grade, CAS No. 7487- 

88-9, Fisher Scientific, UK.  

(6)  Titanium (IV) i-propoxide, Ti(OCH(CH3)2)4, CAS No. 20527-3, 

 Aldrich, UK. 

(7)  Titanium (IV) ethoxide, Ti(OC2H5)4, CAS No. 3087-36-3, Aldrich,  

UK. 

(8)  Titanium (IV) ethoxide, Ti(OCH2CH3)4, A.R., CAS No. 8087-36-3, 

Alfa Aesar, UK. 

(9)  3-Chloro-2-chloromethyl-1-propene, (CH2=C(CH2Cl)2), CAS No.  

1871-57-4, Aldrich, UK. 

(10)  3-Chloroperbenzoic acid, ClC6H4CO3H, CAS No. 937-14-4, Aldrich, 

UK. 

(11)  Chloroform, CHCl3, CAS No. 67-66-3, Aldrich, UK. 
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2.2.2  General procedures 

Elemental analyses were performed using an Exeter Analytical CE 440 

analyser.  1H and 13C NMR spectra were recorded on a Bruker Advance 300 MHz FT-

NMR spectrometer as saturated solution at room temperature; chemical shifts are in 

ppm with respect to Me4Si; coupling constants are in Hz.  SEM was carried out on a 

JEOL JSM-6310 microscope equipped with Oxford Instruments ISIS EDXS 

attachment while TEM used a JEOL 1200EX machine.  XRD was performed using a 

Bruker D8 Diffractometer on which coupled θ-2θ scans were carried out. 

Crystal structure data were collected on a Nonius Kappa CCD 

diffractometer at 150(2) K using Mo-Kα radiation (λ = 0.71073 Å). 

 

2.2.3  Syntheses 

All reactions were carried out under an inert atmosphere. Solvents were 

dried and degassed under an argon atmosphere over activated alumina columns using 

an Innovative Technology solvent purification system (SPS) 

 

 (1) Hbdmap (Campbell, et al., 1949) and Htdmap (Müller and Schätzle, 

2004) were prepared by literature methods. 

- Synthesis of Hbdmap: One mole (92.5 g) of epichlorohydrin was 

added at the rate of 3-4 drops per second, with vigorous stirring, to 800 g of 40% 

dimethylamine solution.  The reaction was exothermic and the inside temperature had 

risen to 70oC by the time addition was completed.  The reaction mixture was stirred at 

90oC for 6 hrs and then allowed to stand overnight.  The mixture was chilled in an ice-

bath and saturated with sodium hydroxide; the yellow organic layer which separated 

was dried over sodium hydroxide.  Distillation through a short Vigreux column 

yielded 96.9 g or 66% of a colourless oil. 

 

- Synthesis of Htdmap:  A 500 mL two-necked flask fitted with a 

dropping funnel and thermometer was charged with 120 mL of a 40% aqueous 
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solution of dimethylamine (0.95 mol). 1-chloro-2,3-epoxy-2-chloromethylpropane 

(10.1g, 72 mmol) was slowly added dropwise under stirring whereupon the 

temperature of the cloudy solution rose from 14 to 40oC.  The dropping funnel was 

replaced by a reflux condenser and the solution was refluxed for 6 hr at 90oC which 

was accompanied by gas evolution (mostly HNMe2).  After standing overnight, the 

solution was cooled in an ice bath and 30 g of NaOH was slowly added in small 

portions which resulted in further gas evolution and phase separation.  After addition 

of chloroform the phases were separated and the aqueous phase was washed with 

several small portions of chloroform until a total of 250 mL of choloform was used.  

The combined organic phases were dried over MgSO4 and solvent was evaporated in 

vacuo (1 mbar) leaving 20.3 g of an orange liquid.  Distillation at 1 mbar yielded 13.9 

g (68 mmol, 95%) of colourless. 

 

(2) Synthesis of [Ti(OEt)3(bdmap)]: [Ti(OEt)4] (1.59 g, 6.9 mmol) was 

dissolved in dry hexane (10 mL) and Hbdmap (1.02 g, 6.9 mmol) was added.  After 

stirring overnight, the mixture was heated at 50oC with stirring for 2 hrs.  All volatiles 

were removed under vacuum, giving 2.17 g (96%) of a white solid. This was 

subsequently dissolved in dry dichloromethane (5 mL) and placed in the freezer at      

-12oC where colourless crystals appeared. Analysis: Found (calc. for TiO4N2C13H32): 

C 45.9 (47.6); H 9.7 (9.8); N 8.3 (8.5)%. 1H-NMR (CDCl3): 4.40 (1H, br sh OCH), 

4.30 (6H, br s, OCH2), 2.45 (4H, br s, NCH2) 2.25 (12H, s, NCH3), 1.20 (9H, t, 

CCH3) 13C-NMR (CDCl3): 75.2 (br, OCH), 69.3 (br, OCH2), 65.0 (br, NCH2), 45.7 

(NCH3), 18.7 (br, CCH3). 

 

(3) Synthesis of [Ti(OiPr)3(bdmap)]: [Ti(OiPr)4] (1.83 g, 6.3 mmol) was 

dissolved in dry hexane (10 mL) and Hbdmap (0.92 g, 6.3 mmol) was added.  After 

stirring overnight, the mixture was heated at 50oC with stirring for 2 hrs.  All volatiles 

were removed under vacuum, giving 2.02 g (87%) colourless clear oil. Analysis: 

Found (calc. for TiO4N2C16H38): C 49.9 (51.9); H 10.0 (10.3) ; N 7.7 (7.6)%. 1H-

NMR (CDCl3): 4.60 (3H, septet, CHO), 4.38 (1H, m, CHCH2), 2.47 (2H, m, NCH2), 



   

 

 
 

32

2.33 (2H, m, NCH2), 2.28 (12H, s, NCH3), 1.20 (18H, d, CCH3) 13C-NMR (CDCl3): 

75.1 (OC of Pri), 74.9 (OCH of bdmap), 64.8 (CH2N), 45.8 (NCH3), 25.5 (CCH3). 

 

(4)  Synthesis of [Ti(OEt)3(tdmap)]: [Ti(OEt)4] (1.18 g, 5.2 mmol) was 

dissolved in dry hexane (10 mL) and Htdmap (1.05 g, 5.2 mmol) was added.  After 

stirring overnight, the mixture was heated at 50oC with stirring for 2 hrs.  All volatiles 

were removed under vacuum, giving 1.95 g (98%) creamy solid. This was 

subsequently dissolved in dry hexane (5 mL) and placed in the freezer at -12oC where 

white crystals appeared; these were found be soft, diffracting poorly. Analysis: Found 

(calc. for TiO4N3C16H39): C 48.6 (49.9); H 10.0 (10.2) ; N 10.7 (10.9)%. 1H-NMR 

(CDCl3): 4.30 (6H, br s, OCH2), 2.45 (6H, s, CH2N), 2.30 (12H, s, NCH3), 2.25 (6H, 

s, NCH3) 1.15 (9H, t, CCH3) 13C-NMR (CDCl3): 84.0 (OC), 69.0 (OCH2), 66.2, 63.9 

(2:1, NCH2), 47.9, 47.0 (2:1, NCH3), 18.9 (CCH3); minor signals also observed at 

62.7, 44.6 ppm. 

 

(5)  Synthesis of [Ti(OiPr)3(tdmap)]: [Ti(OiPr)4] (1.35 g, 4.6 mmol) was 

dissolved in dry hexane (10 mL) and Htdmap (0.94 g, 4.6 mmol) was added.  After 

stirring overnight, the mixture was heated at 50oC with stirring for 2 hrs.  All volatiles 

were removed under vacuum, giving 1.87 g (95%) colourless clear oil. Analysis: 

Found (calc. for TiO4N3C19H45): C 49.4 (53.4); H 10.1 (10.6)% ; N 8.9 (9.8)%. 1H-

NMR (CDCl3): 4.60 (3H, septet, OCH), 2.45 (6H, s, CH2N), 2.30 (18H, s, NCH3), 

1.15 (18H, d, CCH3) 13C-NMR (CDCl3): 83.9 (OC), 74.8 (OCH), 66.0 (CH2N), 47.5 

(NCH3), 24.8 (CCH3). 

 

(6)  Synthesis of [Ti(OEt)2(bdmap)2] : [Ti(OEt)4] (0.78 g, 3.4 mmol) was 

dissolved in dry hexane (10 mL) and Hbdmap (0.99 g, 6.8 mmol) was added.  After 

stirring overnight, the mixture was heated at 50oC with stirring for 2 hrs.  All volatiles 

were removed under vacuum, giving 1.36 g (47%) colourless oil [Ti(OEt)2(bdmap)]. 

Crystals of the hydrolysis product [(bdmap)2TiO]2 appeared on standing over a few 

days. [Ti(OEt)2(bdmap)2] : 1H-NMR (CDCl3): 4.50 (2H, br s, OCH), 4.32 (4H, br s, 

OCH2), 2.45 (8H, br s, CH2N), 2.25 (24H, br s, NCH3), 1.15 (6H, br s, CCH3). 13C-
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NMR (CDCl3): 77.5 (OCH), 69.1 (OCH2), 65.1, 64.8 (3:1, NCH2), 45.8 (NCH3), 18.7 

(CCH3). 

 

(7)  Synthesis of [Ti(OiPr)2(bdmap)2]: [Ti(OiPr)4] (1.07 g, 3.6 mmol) was 

dissolved in dry hexane (10 mL) and Hbdmap (1.03 g, 7.1 mmol) was added.  After 

stirring overnight, the mixture was heated at 50oC with stirring for 2 hrs.  All volatiles 

were removed under vacuum, giving 1.52 g (94%) colourless clear oil. Analysis: 

Found (calc. for TiO4N4C20H48): C 49.1(52.7); H 10.0 (10.6)% ; N 12.0 (12.3)%.  1H-

NMR (CDCl3): 4.60 (2H, m, CHO), 4.40 (2H, m, CHCH2), 2.25 (32H, overlapping m, 

NCH3 and CH2N), 1.15 (12H, d, CCH3). 13C-NMR (CDCl3): 77.8, 75.0 (CHO of OPri 

and bdmap), 65.2, 64.9, 62.9 (ca. 1:2:1, CH2N), 45.8, 45.5, 44.9 (ca. 2:1:1, NCH3), 

25.5 (CCH3). 

 

2.2.4  Thermal decomposition of [Ti(OEt)3(bdmap)] 

The experiment follows the procedure outlined by Gedanken (Pol, et al., 

2004). A 0.5 g of [Ti(OEt)3(bdmap)] was introduced into the Swagelock cell at room 

temperature in a nitrogen filled glove box.  The filled cell was closed tightly with the 

two plugs and placed inside an iron pipe in the middle of a tube furnace. The 

temperature was raised at a rate of 10oC per minute to 700oC and held at that 

temperature for 1 hr.  The Swagelok fitting was gradually cooled (1.5oC per minute) 

to room temperature (25oC). 0.12 g of a dark black powder was collected.  

 

 
 

Figure 11.  An overview of the Swagelok used for thermal decomposition. 
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2.2.5  CVD study 

Films were grown using AACVD on glass microscope slides (76 × 26 × 

1.0 mm) under an inert atmosphere at 1 bar pressure, using a horizontal, cold-wall 

reactor. The reactor has been described in appendix A. The slides were cleaned prior 

to use by washing successively with water/detergent and acetone. [Ti(OEt)3(bdmap)]2 

(ca. 0.2 g) was dissolved in dry toluene (20 mL) and an aerosol generated using a 

domestic household humidifier. The aerosol was transported to the reactor using 

argon carrier gas (1.2 Lmin-1). The glass substrate temperature was held at 440oC. The 

run time was 60 min. 

 

2.2.6  Photocatalytic study 

(1)  Photoactivity of TiO2@C nanoparticles 

The photocatalytic activities of the TiO2@C nanoparticles were also 

evaluated by the degradation of methylene blue in an aqueous solution under UV light. 

An aqueous solution of MB (2.5 × 10-5 M) and TiO2 were placed in the beaker (0.5 g 

of TiO2 per liter of MB solution).  Prior to the illumination, the suspension was stirred 

for 30 min to allow for the dye adsorption onto the TiO2 surface. In all studies, the 

mixture was magnetically stirred, before and during illumination.  At specific time 

intervals, 2 mL of the sample was sampled and centrifuged to remove TiO2 particles. 

The absorbance of MB in each degraded sample was observed from its characteristic 

at λmax 665 nm using a UV-Vis spectrophotometer. Controlled experiments without 

light and without TiO2 were performed to demonstrate that degradation of the dye was 

dependent on the presence of light and TiO2. In addition, the photocatalytic activity 

between the TiO2@C nanoparticles and the commercial TiO2 Degussa P25 from 

Degussa (Germany), Anatase from Carlo Erba (Italy), and Rutile from Dupont 

(U.S.A.) were also compared. 
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(2)  Photoactivity of thin films 

In the photocatalytic studies, the film slide was placed in a Petri dish 

(4 inch diameter) containing 50 ml of methylene blue solution (2.5 × 10-5 M).  Prior to 

the illumination, the system was kept for 30 min to allow for the dye adsorption onto 

the TiO2 film. At given irradiation time intervals (every 1 hr), 2 mL of MB solution 

sample was collected.  Controlled experiments without TiO2 thin film coated and only 

MB solution were performed. 

 

(3)  Calculation of decolorization 

The decolorization of dye solutions was calculated as follows: 

Decolorization = (A0-At)/A0 × 100% 

A0 and At are the maximum absorbance in visible area of the dye 

solution before and after irradiation 
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CHAPTER 3 

RESULTS AND DISCUSSION 
 

 

3.1  Synthesis of nanocrystalline TiO2 powders 

 

3.1.1  Physical properties of the synthesized TiO2 powders 

The X-ray diffraction patterns in Figure 12 illustrate the effect of type of 

acids (hydrolysis catalysts) on the phase formation of TiO2. The compositions of the 

synthesized Ti-no-acid, Ti-HCl, Ti-HNO3, and Ti-CH3COOH were mixtures of 

mainly amorphous TiO2 with small amount of anatase and rutile phases. For the Ti-

H2SO4 and Ti-H3PO4 (Figure 12(d) and 12(f)), the peaks are broad indicating low 

crystallinity of anatase phase. The possible mechanism for anatase and rutile phases 

formation will be discussed in Section 3.1.2. Summary of results obtained from the X-

ray diffraction patterns are shown in Table 3. 
 

Table 3. Comparison of TiO2 powders prepared under various acid catalyzed 

conditions. 

Samples Crystallite sizea  (nm) Crystallinityb (%) 

Ti-no-acid 4.1 (A), 12.8 (R) 11 (A), 10 (R) 

Ti-HCl 4.2 (A), 13.8 (R) 13 (A), 6 (R) 

Ti-HNO3 4.7 (A), 13.6 (R) 15 (A), 13 (R) 

Ti-H2SO4 4.1 (A) 15 (A) 

Ti-CH3COOH 4.0 (A), 13.2 (R) 12 (A), 8 (R) 

Ti-H3PO4 3.8 (A) 14 (A) 

Anatase (Carlo Erba) 16.3 (A) 100 (A) 

Rutile:R706 (Dupont) 42.7 (R) 100 (R) 

P25 (Degussa) 10.2 (A), 42.7 (R) 80 (A), 20 (R)c 
                  a Calculated from XRD data using Scherrer’s formula. A denotes anatase and R denotes rutile. 
                 b Determined by XRD using standard addition method, the rest is amorphous phase. 
                 c Stylidi, et al., 2004. 
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Figure 12.  XRD patterns of the synthesized TiO2 powders (a) Ti-no-acid, (b) Ti-HCl, 

(c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. A denotes anatase 

and R denotes rutile. 

 

The degrees of crystallinity (the 3rd column in Table 3) of the samples 

were determined from the XRD intensities by using the standard addition method. 

The commercial titanium dioxide (anatase (Carlo Erba) and rutile (R706)) were mixed 

with the original synthesized titanium dioxide samples in different percent weight; 0, 

10, 20, 40, and 60% and then measured the peak intensities.  A calibration curve was 

made by plotting the total XRD-peak-intensity against the percentage of the added 

standard.  The original percentage of anatase (or rutile) was obtained by the 

interception point on the percent weight axis.   The curve of sample was shown in 

Figures 13-14. 
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Figure 13. The standard addition calibration graphs of Ti-no-acid, Ti-HCl, Ti-HNO3, 

and Ti-CH3COOH.  
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Figure 14.  The standard addition calibration graphs of Ti-H2SO4 and Ti-H3PO4. 

 

The crystallite sizes of the samples were calculated using the peak at 2θ 

= 25.4o and 27.5o for anatase and rutile phase, respectively, and are also shown in 

Table 3.  The crystallite sizes of all the samples can be classified as nanocrystalline 

TiO2 powders and are smaller than those of the commercial ones. When both anatase 

and rutile are present the anatase crystallite sizes are invariably smaller than rutile.  

This result is similar to the work reported by Gopal, et al., (1997) where they found 

that anatase crystallite sizes were smaller than rutile in the mixed sample. That the Ti-

H2SO4 and Ti-H3PO4 samples have the crystallite size smaller than the other products 

(Ti-no-acid, Ti-HCl, Ti-HNO3, and Ti-CH3COOH) could be the effect from the 

presence of sulphate and phosphate ions in the TiO2 network as observed by 

Samantaray, et al., (2003), and suggested that the sulphate ions could possibly interact 

with TiO2 network and thus hinder the growth of the particles.  

The infrared spectra of all the synthesized titanium dioxide powders in 

the range 4000-400 cm-1 are shown in Figure 15.  Table 4 lists the assigned modes of 

the functional groups that are responsible for the vibration bands in Figure 15. 

The large broad band at 3600-3100 cm-1 can be assigned to mixed νOH 

and νNH modes (stretching modes). These bands are in the hydroxyl stretching region 

and correspond to O-H vibration of the Ti-OH groups and H2O molecules. The band 

around 3500 cm-1 can be assigned to O-H vibration of the Ti-OH groups (Velasco, et 

al., 1999). The stretching vibration of O-H in Ti-OH bonding could not be removed 

easily and must be heated until relatively high temperature (Wang, et al., 2000).  Near 

the band around 3500 cm-1, a shoulder was generated by an asymmetric vibration 
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mode of the residual ammonium ions. The rather narrow bands around 1600 and 1400 

cm-1 can be assigned to δOH and δNH modes (bending modes) of hydroxyl (OH) and 

ammonium (NH4
+) groups, respectively (Khalil and Zaki, 1997; Youn, et al., 1999).  

All of these bands indicated that H2O and NH4
+ were present in the products.  In the 

low energy region (below 800 cm-1), the band due to stretching mode of Ti-O (νTi-O) 

which was the envelope of the phonon bands of a Ti-O-Ti bond of a titanium oxide 

network could be assigned (Velasco, et al., 1999).  The absence of any bands in this 

spectral region may then suggest that the precipitate is amorphous.   

 

 
 

Figure 15.  FT-IR spectra of the synthesized TiO2 powders: (a) Ti-no-acid, (b) Ti-

HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Additionally, the spectrum of Ti-H2SO4 in Figure 15d shows broad band 

at 1250-1100   cm-1 which is the characteristic frequencies of SO4
2- group.  The broad 

band in this region resulted from the lowering of the symmetry in the free SO4
2- (Td 

point group) to either C2v (Figure 22B) or C3v (Figure 22A and 22C) when SO4
2- is 

bound to the titania surface (Samantaray, et al., 2003; Nakamoto, 1986). The 

vibrational modes of the PO4
3- anion in the sample Ti-H3PO4 are also detected in the 

IR spectrum (Figure 2f) where the asymmetric νP-O stretching mode appears at 1015 

cm-1  (Bazán, et al., 2003).  The results from XRD and FT-IR led to the conclusion 

that samples were a hydrated amorphous titanium dioxide with minute amount of 

impurities, such as NH4
+, SO4

2-, and PO4
3-.  

 

Table 4.  Assignment of the FT-IR bands of titanium dioxide samples (Figure 15). 

Samples Wavenumber  Assignment Functional groups Literatures 

 (cm-1)  /molecule  

a-f 3600 - 3100 νOH and νNH  H2O and NH4
+ Khalil and Zaki, 

1997 

    Youn, et al., 1999 

a-f ~1600 δOH OH groups Khalil and Zaki, 

1997 

    Youn, et al., 1999 

a, b, c, and 

e 

~1400 δNH  NH4
+ groups Khalil and Zaki, 

1997 

    Youn, et al., 1999 

a-f Below 800 νTi-O  Ti-O bond Velasco, et al., 1999 

d 1200-1100 νS-O SO4
2- Samantaray, et al., 

2003 

f 1015 νP-O PO4
3- Bazán, et al., 2003. 

 
(a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4 
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Table 5.  Specific surface area of TiO2 powders. 

 Samples Specific surface area (m2/g) 

 This work Literatures 

Ti-no-acid 194.7 - 

Ti-HCl 192.8 - 

Ti-HNO3 196.6 - 

Ti-H2SO4 220.6 - 

Ti-CH3COOH 212.1 - 

Ti-H3PO4 308.5 - 

Anatase (Carlo Erba) 7.6 5.9 (Sclafani, et al., 1990) 

Rutile:R706 (Dupont) 9.9 - 

P25 (Degussa) 51.4 50 (Neppolian, et al., 2002) 

 

The specific surface areas of samples are also shown in Table 5.  The 

data were compared between the synthesized TiO2 and the commercial TiO2.  All the 

synthesized titanium dioxide samples exhibited higher surface area than the 

commercial ones due to lower crystallinity of the synthesized samples without 

calcination in this work. Among the synthesized samples, both Ti-H2SO4 and            

Ti-H3PO4 exhibited higher surface area than Ti-no-acid, Ti-HCl, Ti-HNO3, and        

Ti-CH3COOH.  This result agrees with those in the reports that the surface area of 

sulfated-titania was higher than that of pure TiO2 (Gómaz, et al., 2003 ) and the 

nanosized TiO2 prepared in the presence of sulfate ion had  higher BET surface than 

those prepared in the absence of sulfate ion  (Zhang, et al., 2000).  The values of 

surface area of all these commercial TiO2 came out similar to those given in 

literatures.  Data in 3rd column of Table 3 are examples of such literature values. 
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(a) Ti-no-acid 

 
(b) Ti-HCl 

 
(c) Ti-HNO3 

 
(d) Ti-H2SO4 

 
(e) Ti-CH3COOH 

 
(f) Ti-H3PO4 

 

Figure 16.  SEM images of the synthesized TiO2 powders: (a) Ti-no-acid, (b) Ti-HCl, 

(c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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(a) HNO3 

 
(b) without catalyst 

 

Figure 17.   SEM images of TiO2 reported by Yu, et al., (2003). 

 

Figure 16 shows SEM images of TiO2 powders prepared under various 

acid catalysts.  From the SEM images, magnified by 35,000×, the images show 

delicate structures of spherical shape particles. The images of Ti-no-acid, Ti-HCl,   

Ti-HNO3, and Ti-CH3COOH samples appear as dense and uniform structures with 

fewer aggregation of particles.  For the Ti-H2SO4 and Ti-H3PO4 samples, the dense 

and non-uniform structure with higher aggregation (than the Ti-no-acid, Ti-HCl,     

Ti-HNO3, and Ti-CH3COOH samples) were observed. From SEM images of this 

study, it could be seen that the difference in the morphology could be ascribed to 

different preparation conditions, especially the hydrolysis catalyst which may affect 

the aggregation of each sample.   

The morphology of this work are similar to the results of Yu, et al., 

(2003) who investigated the effect of acidic and basic hydrolysis catalysts on the 

photocatalytic activity and microstructure of titanium dioxide prepared by sol-gel 

process.  Their results (Figure 17) showed that the morphology of titanium dioxide 

prepared by the hydrolysis of titanium tetraisopropoxide at pH 6.8 and without using 

HNO3 as catalyst appears as a dense structure and fewer in aggregation. 
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(a) Ti-no-acid, Ti-HCl, Ti-HNO3, and  Ti-CH3COOH 

 
(b) Ti-H2SO4 

 
(c) Ti-H3PO4 

 

Figure 18. EDX spectra of the synthesized TiO2 powders: (a) Ti-no-acid, Ti-HCl,      

Ti-HNO3, Ti-CH3COOH, (b) Ti-H2SO4, and (c) Ti-H3PO4. 
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Figure 18 shows EDX patterns of TiO2 powders prepared under various 

acid catalysts.  The EDX results revealed that, with the exception of two samples, all 

powder samples did not contain chloride anion which indicated that it was washed out 

completely at the washing stage.   However, the samples obtained from using sulfuric 

acid and phosphoric acid showed the presence of S and P indicating the SO4
2- and 

PO4
3- ions still adhered to the titanium dioxide surfaces which agreed with the FT-IR 

results. 

The diffuse reflectance UV-Vis spectra of synthesized and commercial 

titanium dioxide are shown in Figure 19 and 20, respectively. The absorption edge 

can be approximated by the intersection of two straight lines: a straight line 

extrapolated from the baseline, and a line drawn through the ascending slope of the 

onset of absorption (Chandler, et al., 1993). The band gap energies of the titanium 

dioxide calculated from Plank’s equation are shown in Table 6. 

The absorption edges of Ti-no-acid, Ti-HCl, Ti-HNO3, and Ti-

CH3COOH appear at longer wavelength than that of Ti-H3PO4 and Ti-H2SO4.  In the 

case of commercial TiO2, the absorption edge of rutile (R706) appears at longer 

wavelength than that of anatase (Carlo Erba). The absorption edge wavelengths of 

commercial titanium dioxide are in order of rutile (R706) > Degussa P25 > anatase 

(Carlo Erba). The bandgap energies, calculated using Planck’s equation, of rutile 

(R706), Degussa P25, and anatase (Carlo Erba) are 3.00, 3.14, and 3.22 eV, 

respectively, which are identical to the literature values of  3.00, 3.14, and 3.20 eV 

(Miao, et al., 2003; Zielińska, et al., 2003).  

The bandgap energies of Ti-no-acid, Ti-HCl, Ti-HNO3, and Ti-

CH3COOH are slightly larger than rutile (R706). Both Ti-H3PO4 and Ti-H2SO4 have 

larger bandgap energy and are in the same range of anatase (Carlo Erba).  
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(a) Ti-no-acid 
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(b) Ti-HCl 
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(c) Ti-HNO3 
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(d) Ti-H2SO4 
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(e) Ti-CH3COOH 
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(f) Ti-H3PO4 

 

Figure 19. Diffuse reflectance UV-Vis spectra of the synthesized TiO2 powders:        

(a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and          

(f) Ti-H3PO4. 
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Figure 20.  Diffuse reflectance UV-Vis spectra of the commercial TiO2 powders. 

 

Table 6.  The absorption edges and band gap energies of titanium dioxide powders. 

Samples Absorption edge Bandgap energy (eV) 

 (nm) This work Literatures 

Ti-no-acid 408 3.04 - 

Ti-HCl 405 3.06 - 

Ti-HNO3 406 3.05 - 

Ti-H2SO4 390 3.18 - 

Ti-CH3COOH 406 3.05 - 

Ti-H3PO4 386 3.21 - 

Anatase (Carlo Erba) 385 3.22 3.20a 

Rutile-R706 (TOA) 413 3.00 3.00a 

P25 (Degussa) 395 3.14 3.14b 
a Sclafani, et al., 1990; Miao, et al., 2003 
b Zielińska, et al., 2003 
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3.1.2  The possible mechanism for anatase and rutile TiO2 formation 

The sol-gel method consists of the hydrolysis and condensation reactions 

which are catalysed in the presence of acid.  The hydrolysis reaction leads to the 

formation of original nuclei or basic units of titanium dioxide while the condensation 

reaction leads to the growth of network system of the original basic units (Kumar, et 

al., 1999).   

The hydrolysis reaction (eq.1) 

TiCl4 + 4H2O Ti(OH)4 + 4H++ 4Cl-
H+

 
(1) 

The condensation reaction (eq.2)  

OH-
TiO2 +  2H2OTi(OH)4  

(2) 

  

The product powders obtained in this work were mixtures of amorphous 

TiO2, anatase, and rutile. The amorphous phase was dominant with small amount of 

anatase or mixed anatase and rutile (see the 3rd column in Table 3). The key to the 

differences in anatase and rutile formation stems from the structure of the two 

polymorphs. In rutile, two opposite edges of each (TiO6
2-) octahedra are shared 

forming a linear chain along the (001) direction. Chains are then linked to each other 

by sharing corner oxygen atoms.  Anatase has no corner sharing, but has four edges 

shared per octahedron.  The anatase structure can be viewed as zigzag chains of 

octahedra, linked to each other through shared edges (Gopal, et al., 1997).   

There have been reported that excellently discussed the possible 

mechanism of the anatase and rutile formations (Gopal, et al., 1997; Yanqing, et al., 

2001). The basic unit of (TiO6
2-) octahedra in solution can join together to form 

oligomers which are the growth units leading to both anatase and rutile phases. The 

joining of the basic octahedra unit if takes place at the opposite edges will give a 

growth unit for the rutile phase, however, if it takes place at the non-opposite edges 

will give a growth unit for the anatase  phase (and possibly the brookite phase, too). 

The (TiO6
2-) octahedra in this system can be written in full as 

[TiO(H2O)5]2+ or [Ti(OH)2(H2O)4]2+ ion. In fact, the initial complex species first 

formed in the hydrolysis should be [Ti(H2O)6]4+ which, due to its acidic nature, would 
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undergo the first deprotonation to [Ti(OH)(H2O)5]3+ and subsequently through the 

second deprotonation yielding the dipositive ions as [TiO(H2O)5]2+ or 

[Ti(OH)2(H2O)4]2+
 ion.  The latter is probably more preferred based on the evidence 

reported that both forms co-existed in the solution and in the oligomers growth unit no 

titanyl (Ti=O) moiety was found so [TiO(H2O)5]2+ ion was not the basic unit growing 

into oligomers  (Comba and Merbach, 1987). This leaves the [Ti(OH)2(H2O)4]2+ as 

the most likely basic unit. However, the two hydroxyl (OH) groups in this complex 

basic unit can take two geometrical sites: cis and trans with respect to one another. In 

the previously proposed diagram only the trans isomer was demonstrated (Yanqing, et 

al., 2001).  In our opinion, the cis isomer cannot be left out due to existence of many 

examples of titanium complexes having two bridging Ti-O moieties in cis positions 

(Cotton and Wilkinson, 1988). The cis isomer can grow into larger unit in the same 

way as the trans isomer. The growing of the cis isomer can be shown in Figure 21.   

At pH~7, the precipitation occurred quite rapidly resulting in low 

crystallinity, hence, the precipitate mostly appeared in the amorphous form with small 

amount of anatase and rutile mixed in as shown in Table 3. This behavior had been 

earlier mentioned in other reports (Gopal, et al., 1997; Bartlett, et al., 1992; Wang, et 

al., 1992). In this work, the amount of anatase was slightly higher than the rutile in 

most cases. This may reflect the statistical probability when the basic unit octahedra 

joined together, sharing other edges leading to anatase has more chances than joining 

the opposite edge to form rutile. 

In the case of adding H2SO4 and H3PO4 acids, the products yielded 

mainly amorphous and only the anatase phase as a minor component. The rutile phase 

was completely absence in these two cases. The sulfate and phosphate anions both 

have high negative charge, -2 and -3, respectively. The attraction forces between the 

Ti4+ ion and SO4
2- or PO4

3- are strong so these anions will be bonded to Ti basic unit 

easily ( the strong attraction is evidenced in the EDX spectra with the characteristic 

peaks of S and P and FT-IR spectra with the characteristic vibration of the sulphate 

and phosphate groups on TiO2 ). Since both SO4
2- and PO4

3- have tetrahedral 

geometry with the negative ends at the oxygen atoms where they can bond to Ti 

octahedra in three ways as shown in Figure 22.  Among the three modes of bonding, 
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the bidentate and tridentate, Figures 22(B) and 22(C), respectively, are favored due to 

the well known  chelate effect. The bonding of SO4
2- in these multidentate modes 

occupy one full face of octahedra and inhibit the growing of chain along the opposite 

edges as illustrated in Figure 23 and hence inhibit the formation of rutile. The same 

argument can be applied to PO4
3- as well. Therefore, the addition of these two acids 

yielded only the anatase form, in the mixture with the amorphous form, as shown in 

Table 3. Our results here are in agreement with other reports that the presence of 

SO4
2- ion helped promote formation of anatase phase (Zhang, et al., 1999; 

Samantaray, et al., 2003; Xie, et al., 2002). 

 

Olation Olation
Growth unit for rutile

Olation

Growth unit for anatase

Olation

--OH

Olation

Growth unit for anatase
Growth unit for brookite or anatase

Figure 21. Formation of growth units from cis-[Ti(OH)2(H2O)4]2+ ion. 
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Figure 22.  Bonding mode of SO4
2- anion as, (A) monodentate, (B) bidentate, and (C) 

tridentate ligand (  indicates OH position). 
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Figure 23.  Possible pathway to inhibit the formation of rutile by SO4
2-. 
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3.1.3  Photocatalytic study 

 

3.1.3.1  Test for photocatalytic activity 

Three dyes (methylene blue, congo red, and crystal violet) were 

separately degraded in the presence of TiO2 photocatalyst in the form of suspension 

by irradiation with UV light of black light tube.  A blank experiment in the absence of 

UV light irradiation illustrated the rapid attainment of adsorption equilibrium of the 

dyes onto titanium dioxide. The adsorption was quite fast and the equilibrium 

adsorption was reached within 30 min.  The contact was carried out up to 330 min, 

but no significant change in the absorption was observed.   

The equilibrium time used in this work was 30 min in 

accordance with what had been reported by other researchers. For instance, Zielińska, 

et al., (2003) used 15 min for adsorption dyes (Reactive Red 198, Acid Black 1, Acid 

Blue 7, and Direct Green 99) onto the TiO2 surface; Gonçalves, et al., (2005) mixed 

the dye solution (Reactive Orange 4) and catalyst in the dark for 30 min to equilibrate; 

and Qumar, et al., (2005) selected 15 min in the dark to allow equilibration of 

adsorption of two dye (chromotrope 2B and amido black 10B) on TiO2 before 

irradiation, and so on. 

The percentage of decolorization on irradiation of aqueous 

solutions of dyes are shown in Figures 26-31.  It can be seen from the figures that all 

the synthesized TiO2 powders and two commercial TiO2 samples: Degussa P25 and 

anatase (Carlo Erba) decolorized the dye solutions upon irradiation with UV-light. 

The commercial TiO2 in rutile phase (R706, TOA) had no effect on the dye solutions.  

(The rutile result agrees what has been reported by other reports.  Its lack of 

photocatalytic activity has been known for some times. It is shown here merely for the 

completeness of the systematic studies and further discussion is not necessary.) 

Moreover, either TiO2 or UV-light had very little effect when each was used 

separately.  These experiments demonstrated that both UV-light and a photocatalyst, 

such as TiO2, were needed for the effective decolorization of dye.  This is due to the 

fact that when TiO2 is illuminated with the light of energy equal or higher than the 

band gap energy the electron-hole pairs are produced.   
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The UV source used in this work was the 20 watts blacklight 

tube which emits UV light in the range 346-395 nm with maximum at 366 nm (Figure 

24). The pathway of dye degradation composed of several chemical steps (Houas, et 

al., 2001) which can be summarized in a compact diagram (Figure 25) as follows. 

 

 
 

Figure 24.  Spectrum of UV-light source used in this work (Randorn, et al., 2004). 
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Figure 25.   Pathway of dye degradation by TiO2. 

In the most recent report by Hirakawa, et al., (2007) it was 

shown that pure anatase and a mixture of anatase and a small amount of rutile 

efficiently generated OH• radicals in the photocatalytic process while the amount of 

OH• radicals generated was extremely low with pure ruitle. 
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Figure 26.   Decolorization of MB solution at 1 × 10-5M as a function of time in 

the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-

H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4.  
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(b) Anatase (Carlo Erba) 

0

20

40

60

80

100

0 30 60 90 120 150 180 210 240 270 300 330
Time (min)

% 
De

col
ori

zat
ion

- catalyst + light
+ catalyst - light
+ catalyst + light

 
(c) Rutile (R706, TOA) 

 

Figure 27.   Decolorization of MB solution at 1 × 10-5M as a function of time in the 

presence of commercial TiO2: (a) Degussa P25, (b) anatase (Carlo Erba), and (c) 

rutile (R706, TOA).       
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Figure 28.   Decolorization of CR solution at 1 × 10-5M as a function of time in the 

presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-

H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Figure 29.   Decolorization of CR solution at 1 × 10-5M as a function of time in the 

presence of commercial TiO2: (a) Degussa P25, (b) anatase (Carlo Erba), and            

(c) rutile (R706, TOA).      
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Figure 30.   Decolorization of CV solution at 1 × 10-5M as a function of time in the 

presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-H2SO4, 

(e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Figure 31.   Decolorization of CV solution at 1 × 10-5M as a function of time in the 

presence of commercial TiO2: (a) Degussa P25, (b) anatase (Carlo Erba), and (c) 

rutile (R706, TOA).              

 

 

3.1.3.2  Effect of initial concentrations of dye 

It is important both from mechanistic and from application 

point of view to study the dependence of initial concentration on the degradation of 

the pollutant. (Saquib, et al., 2008)  Effect of initial concentration on the degradation 

of three dyes, methylene blue, congo red, and crystal violet, was studied at different 

concentrations such as 1 × 10-5, 1.75 × 10-5 , and 2.5 × 10-5 mol/L with constant 

catalyst loading (0.5 g/L).  The percentages of decolorization of each dye in various 
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concentrations as a function of time employing TiO2 as photocatalyst are shown in 

Figures 32-37.   

It was observed that the photodegradation of dye decreased 

with an increase in the initial concentration of dye solution.  The decrease of 

degradation with increase substrate concentration was rationalized as the initial 

concentrations of dye increased the color of the irradiating mixture became more 

intense which prevented the penetration of light to the surface of titanium dioxide.  

Hence, the generation of relative amount of hydroxyl radical ( OH• ) and superoxide 

radical ( −•   
2O ) on the surface of the catalyst did not increase with dye concentration 

while the intensity of light, irradiation time and catalyst were held constant.  The 

produced OH•  radical was believed to be the key factor in the photocatalytic 

degradation of aromatic compounds through the hydroxylation by hydroxyl radicals 

(Matthews, 1984). In addition, Okamoto et al. (1985) pointed out that the rate-

determining step of the reaction could be the formation of OH•  radicals since they 

reacted very rapidly once they were formed through the reaction of holes with 

adsorbed OH- and water. If we assume that the positions of adsorbed OH- were 

replaced by dye ions (dye-) which had been generated from the dissociation of sodium 

salt of dye molecules, then the generation of OH•  radical would be reduced since 

there were only fewer active sites available for the generation of OH•  radicals. 

Another important point for this behavior is that as the initial concentration of dye 

increased, the path length of photons entering the solution decreased, and in low 

concentration the reverse effect was observed (Davis, et al., 1994).  Consequently, the 

degradation efficiency of the dye decreased as the dye concentration increased.  These 

results are in agreement with a number of studies reported earlier such as 

photocatalytic oxidation of azo dye acid red by Daneshvar, et al., (2003), 

triphenylmethane dye (gential violet) by Saquib and Muneer, (2003), and textile dye 

reactive blue 4 by Neppolian, et al., (2002).   
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Figure 32.   Effect of the initial concentration of MB solution as a function of time in 

the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-

H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Figure 33.   Effect of the initial concentration of MB solution as a function of time in 

the presence of commercial TiO2: (a) Degussa P25, (b) anatase (Carlo Erba), and       

(c) rutile (R706, TOA).    
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Figure 34.   Effect of the initial concentration of CR solution as a function of time in 

the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3, (d) Ti-

H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Figure 35.   Effect of the initial concentration of CR solution as a function of time in 

the presence of commercial TiO2: (a) Degussa P25, (b) anatase (Carlo Erba), and (c) 

rutile (R706, TOA). 
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Figure 36.   Effect of the initial concentration of CV solution as a function of time in 

the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-HNO3,        (d) Ti-

H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Figure 37.   Effect of the initial concentration of CV solution as a function of time in 

the presence of commercial TiO2: (a) Degussa P25, (b) anatase (Carlo Erba), and     

(c) rutile (R706, TOA).     
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3.1.3.3  Effect of types of TiO2 

Overview of all the three figures (Figures 38-40) shows that all 

the six synthesized TiO2 powders do possess the photocatalytic property as seen by 

the higher % decolorization of the combined adsorption + photocatalytic activity as 

compared to the adsorption-only columns in the figures. Degussa P25 was used as a 

reference with which all the other commercial TiO2 (anatase and rutile) and the 

synthesized TiO2 samples were to be compared. The results in the figures show that 

P25 has the highest photocatalytic activity for these dyes. Some of the synthesized 

samples, notably Ti-no-acid and Ti-HNO3, constantly showed quite good activity for 

all the three dyes - only slightly less than P25. The rest of the samples showed some 

inconsistency performance against these dyes, i.e. good performance with one dye but 

mediocre with another dye. There seems to be no relation between the band gap 

energy and photocatalytic property of all the TiO2 samples under study here. 

In many reports P25 and anatase usually show similar activities 

with P25 is always slightly better. However, with the three dyes under study in this 

work we can see the different between P25 and anatase in both photocatalytic 

property and surface adsorption. The commercial anatase showed good photocatalytic 

activity for MB and CV but only mediocre with CR while P25 showed the best 

photocatalytic activity for all three dyes. For the surface adsorption, P25 exhibited 

low adsorption ability for MB and CV but for CR the adsorption dramatically 

increased.  The anatase also showed low adsorption ability, slightly higher than P25, 

for MB and CV but, unlike P25, the adsorption became extremely low for CR. The 

adsorption behavior as observed here could be the result from different surface charge 

between P25 and anatase. Considering the nature of charge on the dye molecules, MB 

and CV have positive charge while CR has negative charge on the parent molecular 

fragment. The surface charge on TiO2 bulk is normally on the negative side. In this 

case, if we compare P25 with anatase based on the adsorption of the three dyes, we 

are led to the conclusion that the surface charge of P25 should be less negative than 

that of anatase. For the six synthesized samples, Ti-no-acid, Ti-HCl, Ti-HNO3,         

Ti-CH3COOH, and Ti-H3PO4 showed the same type of adsorption behavior as anatase 

while Ti-H2SO4 was similar to P25. The surface charge of the former group tends to 
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be more negative, hence, they adsorbed stronger with MB and CV and vice versa for 

the latter group. It is noteworthy to mention the rather inert to change for adsorption 

on the rutile which probably reflects its low surface charge. 

The presence of sulphate and phosphate anions in the system 

was found to retard the photocatalytic activity (Neppolian, et al., 2002; Abdullah, et 

al., 1990). Taken sulphate as an example, when added, the sulphate anion was 

immediately adsorbed on the TiO2 surface and was attacked by the OH•  radical to 

become the sulphate radical. 

.
OH  +  SO4                        OH    +   SO4

_2_ ._

 

This OH•  radical scavenging property of the sulphate anion 

would reduce the number of reactive OH•  radical, therefore, lower the efficiency of 

the dye degradation process. The sulphate radical could also attack the dye molecules, 

too, but it is not as strong as the OH•  radical. This rationale seems to be applicable to 

the data of Ti-H2SO4 with MB and CV dyes where Ti-H2SO4 showed low 

photocatalytic activity. The behavior of Ti-H2SO4 with CR, at first, may seem unfit to 

this rationale. However, on a closer look at the high % decolorization of Ti-H2SO4 in 

Figure 29 it is, in fact, the combined adsorption and photocatalytic effects. Therefore, 

the different between the adsorption–only and the combined adsorption + 

photocatalytic columns should correspond to the true photocatalytic resulting in a 

small value for photocatalytic effect as expected.                                   

It is doubtful that the rationale for the sulphate anion could be 

applicable to the phosphate anion since the photocatalytic activity of Ti-H3PO4 was 

not that low as in the Ti-H2SO4 case. On the contrary, it was quite high, e.g. almost 

equal to P25 for MB dye, acceptable for CR dye, and only mediocre for CV dye.  
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Figure 38. Decolorization of MB solution (2.5 × 10-5M) with (a) Ti-no acid, (b) Ti-

HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, (f) Ti-H3PO4, (g) Degussa P25, 

(h) Anatase(Carlo Erba), and (i) Rutile (R706).  
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Figure 39. Decolorization of CV solution (2.5 × 10-5M) with (a) Ti-no acid, (b) Ti-

HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, (f) Ti-H3PO4, (g) Degussa P25, 

(h) Anatase(Carlo Erba), and (i) Rutile (R706).  
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Figure 40 Decolorization of CR solution (2.5 × 10-5M) with (a) Ti-no acid, (b) Ti-

HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, (f) Ti-H3PO4, (g) Degussa P25, 

(h) Anatase(Carlo Erba), and (i) Rutile (R706).  
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3.1.2.4  Effect of hydrogen peroxide (H2O2) 

The addition of hydrogen peroxide to the heterogeneous system 

increases the concentration of OH• , since it inhibits the electron-hole recombination, 

according to the following equation: 

OHOH TiOOH  )(eTiO -
222

-
2

•++→+  (1) 

Hydrogen peroxide is considered to have two functions in the process of 

photocatalytic degradation.  It accepts a photogenerated electron from the conduction 

band and thus promotes the charge separation, and it also forms OH• .  

The addition of H2O2 is known to increase the rate of 

photocatalytic degradation by allowing an enhancement in the quantum yield of 

formation of hydroxyl radical. Several researchers had studied the effect of the 

addition of hydrogen peroxide under irradiation with various types of light source 

such as Nappolian, et al., (2002) studied the effect of the addition of H2O2 to TiO2 

(P25) in the reactive blue 4 degradation at irradiation time equals 8 hours by using 

solar light. Sun, et al., (2002) studied the role of H2O2 to TiO2 in degradation of the 

Cationic Red GTL using two 6 W UV lamps.  Sauer, et al., (2002) studied the effect 

of adding H2O2 to the Degussa P25-containing system for the photooxidation of 

reactive dyes using medium pressure mercury lamp. Daneshvar, et al., (2003) studied 

the effect of H2O2 addition on photodegradation efficiency of acid red 14 in UV/TiO2 

process using 30 W mercury lamp (UV-C, Philips). Saquib and Muneer, (2003) 

studied the effect of H2O2 for photocatalytic degradation of gentian violet in aqueous 

suspensions of TiO2-P25 using 125 W medium pressure Hg lamp as a light source. 

Senthikumaar, et al., (2004) studied the effect of H2O2 on the photodegradation of 

methylene blue under nanocrystalline TiO2 (Ti-US) using 125 W medium pressure Hg 

arc lamp as a light source. Qamar, et al., (2005) studied the degradation rate for the 

mineralization and decomposition of chromotrope 2B in the presence of different 

electron acceptors (H2O2, (NH4)2S2O8, and KBrO3) using Degussa P25 with 125 W 

medium pressure Hg lamp as a light source. 
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In our earlier work (Randorn, et al., 2004) we found that the 

synthesized titania, h-TiO2, could decompose methylene blue (MB) when irradiated 

with UV-light, however, it was slightly inferior to P25.  However, in the dark with the 

adding small volume of H2O2, h-TiO2 could bleach MB far better than P25.  In this 

work, we investigated the effect of addition H2O2 in the absence of UV light and 

compared with the presence of UV light. 

(1)  Addition of H2O2 in the absence of light 

In Figures 41-46, the results obtained by treating each dye 

sample in the absence of light with TiO2 alone (▲), H2O2 alone ( ), and combination 

of both TiO2/H2O2 ( ).  From these figures, it is possible to observed that the action 

of H2O2 alone show a little bit of decolourization. The combination TiO2 and H2O2 

was more effective in the decolourization of dye than both TiO2 and H2O2 alone. The 

synthesized TiO2 powders in this work which have Ti atoms at the surface could have 

some dangling bonds with an unpaired electron left in some of them.  To explain this 

phenomenon Randorn, et al., (2004) introduced the concept of the vacant site with a 

dangling bond at the surface of the transition metal oxide solid.  The pathway can be 

proposed here for the degradation of two dyes by the synthesized TiO2 with H2O2 in 

the dark, as shown in Scheme 1.  

In Scheme 1, the steps involving the transition metal ion are 

analogous to the so-called superoxide driven Fenton’s reaction with Ti3+/Ti4+ 

replacing Fe2+/Fe3+ (Buettner, 1997). Step (4) shows that H2O2 was produced and 

consumed within the process in step (5). Thus, when H2O2 was added directly in trace 

amounts, the decolorization was enhanced in the dark. 

Two types of the nanocrystalline TiO2 (Ti-H2SO4 and Ti-

H3PO4) and two commercial TiO2 (P25 and anatase) behave differently from each 

other because there is another property that we have to bring into the scenario, that is, 

the functional group adhered to the surface of the catalyst, i.e., OH- as identified by 

FT-IR.  The OH- groups are present in amorphous TiO2 more abundantly than in the 

anatase and rutile form (Tanaka, et al., 1991).  The presence of more OH- groups 

means the catalyst is less crystalline, i.e. being more amorphous and hence having 
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high surface area. The high surface area of the catalyst enables the reactant molecules 

to be adsorbed more densely on the catalyst surface leading to more rapid reaction. 

On the other hand , being more amorphous , i.e. , low crystallinity, would  enhance 

rate of  e-
CB - h+

VB recombination during irradiation , therefore the amorphous TiO2 

was found to be inferior to anatase as photocatalyst (Ohtani, et al., 1997). The two 

commercial TiO2 have high crystallinity and less OH- group at the surface hence less 

surface area as evidenced by its low adsorptivity of MB and CV.  While Ti-H2SO4 

and Ti-H3PO4 have less OH- group at the surface. As a result, a number of H2O2 and 

dye molecules adsorbed on the surface of the two commercial TiO2, Ti-H2SO4, and 

Ti-H3PO4 are much less than that in the other types of synthesized nanocrystalline 

TiO2.  

However, congo red exhibit a slight difference from the 

other dyes.  This effect could be due to a competition for adsorption between the dye 

and the additive (hydrogen peroxide).  This is in agreement with a low adsorption of 

this dye (Hachem, et al., 2001). 

 -
22(ads)

-
DB OO e •→+  (1) 

 -
2

4
(S)2

3
(S) O TiO Ti •++ +→+  (2) 

 −•• +→+ OHHOOHO 22
-
2  (3) 

 2222 OOH2HO +→•  (4) 

 2
-

22
-
2 OOH   OHOHO ++→+ ••  (5) 

 OH  OH TiOH Ti -4
(S)22

3
(S)

•++ ++→+  (6) 

dye  theofn degradatiodyeOH →+•  (7) 

 

Scheme 1.  Tentative pathway to degrade dye by the synthesized TiO2 with H2O2 in 

the dark. Ti4+
(s), Ti3+

(s), and −
DBe represent metal ions and an electron available from 

dangling bond, respectively, at the solid surface. 
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Figure 41.   Effect of addition of hydrogen peroxide in absence of light on MB 

degradation as a function of time in the presence of synthesized TiO2: (a) Ti-no-acid, 

(b) Ti-HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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(a) Degussa P25 
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(b) Anatase (Carlo Erba) 

0

20

40

60

80

100

0 30 60 90 120 150 180 210 240 270 300 330
Time (min)

% 
De

col
ori

zat
ion

+ catalyst - light

+ catalyst + H2O2 - light

- catalyst + H2O2 - light

 
(c) Rutile (R706, TOA) 

 

Figure 42.   Effect of addition of hydrogen peroxide in absence of light on MB 

degradation as a function of time in the presence of commercial TiO2: (a) Degussa 

P25, (b) Anatase (Carlo Erba), and      (c) Rutile (R706, TOA).    
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Figure 43.   Effect of addition of hydrogen peroxide in absence of light on CR 

degradation as a function of time in the presence of synthesized TiO2: (a) Ti-no-acid, 

(b) Ti-HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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Figure 44.   Effect of addition of hydrogen peroxide in absence of light on CR 

degradation as a function of time in the presence of comercial TiO2: (a) Degussa P25, 

(b) Anatase (Carlo Erba), and (c) Rutile (R706, TOA). 
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Figure 45.   Effect of addition of hydrogen peroxide in absence of light on CV 

degradation as a function of time in the presence of synthesized TiO2: (a) Ti-no-acid, 

(b) Ti-HCl, (c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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(b) Anatase (Carlo Erba) 
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Figure 46.   Effect of addition of hydrogen peroxide in absence of light on CV 

degradation as a function of time in the presence of commercial TiO2: (a) Degussa 

P25, (b) Anatase (Carlo Erba), and (c) Rutile (R706, TOA).   
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(2)  Addition of H2O2 in the presence of UV light 

Hydrogen peroxide (H2O2) could increase the hydroxyl 

radical formation through three ways.  Firstly, it could act as an alternative electron 

acceptor to oxygen (reaction (1)), which might restrain the bulk-composite of the 

photo-excitated electrons and holes.  This should consequently increase the rate of the 

photocatalytic process.  Secondly, the reduction of H2O2 at the conductance band 

would also produce hydroxyl radicals.  Even if H2O2 was not reduced at the 

conductance band it could accept an electron from superoxide ( −•
2O ) again producing 

hydroxyl radical (reaction (2)).  Thirdly, the self-decomposition by illumination 

would also produce hydroxyl radicals (reaction (3)) (Sun, et al., 2002). 
−• +→+ OHOHeOH -

CB22  (1) 

 2222 OOHOHOOH ++→+ −•−•  (2) 

OH2hOH 22
•→+ ν  (3) 

Furthermore, H2O2 is oxidized to −•
2O by valence band hole, 

+
VBh (reaction (4)) or by OH• (reaction (5)) (Hirakawa, et al., 2007). 

OH2OOH2hOH 2
-
2

-
VB22 +→++ •+  (4) 

OH2OOHOHOH 2
-
2

-
22 +→++ ••  (5) 

 

Figures 47-52 show the results of decolourization when 

added H2O2 in the presence of light ( ), in the absence of light ( ), and compared 

with UV light (▲). From these figures, it can be seen that the combination H2O2 and 

UV light  is more effective in the decolourization of dye than either UV light or H2O2 

alone. Dye can be attacked by hydroxyl radical which is a powerful oxidant generated 

from photolysis of H2O2 and UV light, making the degradation of dyes possible. 

Hirakawa, et al., (2007) reported that the addition of H2O2 

increased the formation of hydroxyl radical for rutile and for anatase mixed with 

rutile, while anatase showed an opposite tendency. They found a significant effect of 

crystal structure on the OH•  formation from H2O2. The reaction occurs exclusively at 
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rutile TiO2, where the OH•  is not produced in the absence of H2O2.  Furthermore, 

this effect was also observed for mixed-phase TiO2 with 10-20 % rutile.  They 

suggested that the η2-peroxide as H2O2-adsorption structure on the rutile surface takes 

peculiarly the reaction.  Synergic effect of mixing rutile to anatase on the OH•  

formation was hardly observed. 

In the formation of −•
2O , the rutile surface is a favorable 

condition to stabilize −•
2O .  In the case of the −•

2O  production from H2O2, anatase 

TiO2 surpassed rutile because H2O2 is not reduced to OH•  as clarified in their study.  

The photocatalytic oxidation of H2O2 to produce −•
2O is preferably carried out via the 

on-top or µ-peroxide adsorption structure. 

 

 
Scheme 2.  Schematic diagram of H2O2 adsorption structure on the surface of anatase 

and rutile TiO2 (Hirakawa, et al., 2007). 

 

There are three adsorption structures (Scheme 2) of H2O2 

on the surface of anatase and rutile TiO2 reported by Ohno et al., (2001).  The H2O2 

adsorbed on the rutile surface of TiO2 takes a unique structure of (c) η2-peroxide.  

This peroxide is known to form an epoxy molecule under photo-irradiation.  The 

formation rate of OH•  for rutile is explained by the contribution of the H2O2 

adsorption structure (c). On the anatase TiO2, the adsorption of the H2O2 are (a) on-

top and (b) µ-peroxide.  Then, a surface-active species called as adsorbed OH•  may 

be formed on the anatase surface.  The adsorbed OH•  may not be distinguished from 
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the trapped h+.  In the case of anatase the addition of H2O2 does not accelerate the 

formation rate of OH• .  The adsorbed OH• may be finally reduced to hydroxyl ion 

or H2O as reaction (6)  
−→+ OH2e2OH -

CB22  (6) 

As described above, the preferable reaction is OH•  

formation (reaction (1)) for rutile and H2O formation (reaction (5)) for anatase.  

Hirakawa, et al., (2007) showed the difference between rutile and anatase TiO2 for the 

photocatalytic reaction mechanism for H2O2 decomposition by Scheme 3 and the 

proposed reaction mechanism in Scheme 4. 

 

 
Scheme 3. Plausible process in the photocatalytic reduction of H2O2 starting from 

three different adsorption structures (Hirakawa, et al., 2007). 
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Scheme 4.  Summary for the proposed formation mechanism of −•   
2O  and OH• on 

anatase and rutile TiO2 crystal. (a) without H2O2 and (b) with H2O2 (Hirakawa, et al., 

2007). 
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(e) Ti-CH3COOH 
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(f) Ti-H3PO4 

 

Figure 47.   Effect of hydrogen peroxide on MB solution (1 × 10-5M) as a function on 

time in the presence of 0.5 g/L synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-

HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. (  denotes + TiO2 + H2O2 

+ light,  denotes +TiO2 + H2O2 - light, and  ▲ denotes +TiO2 + light) 
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(a) Degussa P25 
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(b) Anatase (Carlo Erba) 
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(c) Rutile (R706, TOA) 

 

Figure 48.   Effect of hydrogen peroxide on MB solution (1 × 10-5M) as a function on 

time in the presence of 0.5 g/L commercial TiO2: (a) Degussa P25, (b) Anatase (Carlo 

Erba), and     (c) Rutile (R706, TOA).   (  denotes + TiO2 + H2O2 + light,  denotes 

+TiO2 + H2O2 - light, and  ▲ denotes +TiO2 + light) 
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(a) Ti-no-acid 
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(b) Ti-HCl 
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(c) Ti-HNO3 
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(d) Ti-H2SO4 
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(e) Ti-CH3COOH 
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(f) Ti-H3PO4 

 

Figure 49.   Effect of hydrogen peroxide on CR solution (1 × 10-5M) as a function on 

time in the presence of 0.5 g/L synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-

HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. (  denotes + TiO2 + H2O2 

+ light,  denotes +TiO2 + H2O2 - light, and  ▲ denotes +TiO2 + light) 
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(b) Anatase (Carlo Erba) 
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(c) Rutile (R706, TOA) 

 

Figure 50.   Effect of hydrogen peroxide on CR solution (1 × 10-5M) as a function on 

time in the presence of 0.5 g/L commercial TiO2: (a) Degussa P25, (b) Anatase (Carlo 

Erba), and (c) Rutile (R706, TOA). (  denotes + TiO2 + H2O2 + light,  denotes 

+TiO2 + H2O2 - light, and  ▲ denotes +TiO2 + light) 
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(a) Ti-no-acid 
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(b) Ti-HCl 
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(c) Ti-HNO3 
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(d) Ti-H2SO4 
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(e) Ti-CH3COOH 
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(f) Ti-H3PO4 

 

Figure 51.   Effect of hydrogen peroxide on CV solution (1 × 10-5M) as a function on 

time in the presence of 0.5 g/L synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl, (c) Ti-

HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. (  denotes + TiO2 + H2O2 

+ light,  denotes +TiO2 + H2O2 - light, and  ▲ denotes +TiO2 + light) 
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(b) Anatase (Carlo Erba) 

0

20

40

60

80

100

0 30 60 90 120 150 180 210 240 270 300 330
Time (min)

%
 D

ec
ol

or
iz

at
io

n

+ catalyst + H2O2 + light

+ catalyst + H2O2 - light

+ catalyst + light

 
(c) Rutile (R706,TOA) 

 

Figure 52.   Effect of hydrogen peroxide on CV solution (1 × 10-5M) as a function on 

time in the presence of 0.5 g/L commercial TiO2: (a) Degussa P25, (b) Anatase (Carlo 

Erba), and (c) Rutile (R706, TOA).  (  denotes + TiO2 + H2O2 + light,  denotes 

+TiO2 + H2O2 - light, and  ▲ denotes +TiO2 + light) 
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3.1.3.5  Photocatalytic degradation pathway of dye from literatures 

 

(1) Methylene blue 

Houas, et al., (2001) studied the TiO2/UV photocatalytic 

degradation of methylene blue in aqueous heterogeneous suspensions.  A detailed 

reaction mechanism was presented from the initial step of adsorption involving the 

cationic functional group of methylene blue molecule, which was probably adsorbed 

perpendicularly to the surface down to the final products (CO2, SO4
2-, NH4

+, and    

NO3
-).  The degradation intermediates originated from the initial opening of the 

central aromatic ring and their subsequent metabolites were formed in agreement with 

general rules already put in evidence in the degradation of other complex molecules in 

water.  It can be concluded that photocatalysis can decontaminate colored used waters.  

Photocatalysis appears as the only sub-discipline of heterogeneous catalysis, which is 

able to convert organic pollutants to CO2 in water without heating nor using high 

pressure of oxygen nor requiring chemical reactants or additives. 

The main aromatic metabolites resulting from methylene 

blue decomposition are presented in Scheme 5, where they are logically reported 

according to their decreasing molecular weight.  The initial step of methylene blue 

degradation can be ascribed to the cleavage of the bonds of the C-S+=C functional 

group in methylene blue.  The electrophilic attack of OH•  concerned the free doublet 

of heteroatom S, making its oxidation degree pass from -2 to 0.  However, the passage 

from C-S+=C to C-S(=O)-C requires the conservation of double bond conjugation, 

which induces the opening of the central aromatic ring containing both heteroatoms, S 

and N.  The origin of H atoms necessary to C-H and N-H bond formation can be 

proposed from the proton reduction by photogenerated electrons as already observed 

in alcohol dehydrogenation and pesticide degradation. An alternative rearrangement 

of the phenothiazine structure is presented in Scheme 6.  The sulfoxide group can 

undergo a second attack by an OH•  radical producing the sulfone (non-detected) and 

causing the definitive dissociation of the two benzenic rings. 
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Scheme 5. Photocatalytic degradation pathway of methylene blue (Houas, et al., 

2001). 
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Scheme 6. Electronic reorganization during the passage of adsorbed methylene blue 

to the sulfoxide form (Houas, et al., 2001). 

 

 

(2)  Crystal violet (Gentian violet) 

Saquib and Muneer (2003) proposed a plausible mechanism 

for the formation of intermediate products involving electron transfer reactions and 

reaction with hydroxyl radicals formed in the photocatalytic system in Schemes 7 and 

8, respectively.  The model compound (gentian violet) 1 upon the transfer of an 

electron can form the radical species 2 which may undergo addition of a hydroxyl 

radical forming 5 which in turn may undergo cleavage either by abstracting a 

hydroxyl radical to form 4 or by abstracting a proton to form 7 along with the 

benzophenone derivative 3.  The compound 7 on further transfer of an electron can 

form the radical cation 6 which may subsequently undergo loss of methyl group to 

give the observed product 8 as shown in Scheme 7.  The formation of p-amino-

benzoic acid (14) could be understood in terms of the pathways shown in Scheme 8.  

The benzophenon derivative 3 upon the transfer of an electron can form the radical 

anion 9 which can undergo addition of a hydroxyl radical forming the anionic species 

11 subsequent cleavage of species 11 can lead to the formation of aniline and benzoic 

acid derivatives 6 and 10, respectively.  The compound 10 on further transfer of an 

electron can give rise to radical cation 12 which may subsequently undergo loss of 

methyl group to give the observed product 14 as shown in Scheme 8. 
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Scheme 7. A mechanism for the formation of intermediate products involving 

electron transfer reactions in the photocatalytic system (Saquib and Muneer, 2003). 
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Scheme 8.  A mechanism for the formation of intermediate products involving 

reaction with hydroxyl radicals formed in the photocatalytic system (Saquib and 

Muneer, 2003). 
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(3)  Congo red 

Ma, et al., (2007) proposed the possible degradation 

mechanisms of congo red.  They suggested mechanism for the reaction of congo red 

with −
aqe  and OH• is illustrated in Figure 53a and 53b, respectively.   

Figure 53a illustrates the vary fast reaction that −
aqe attacks 

the –N=N– double bond and destroys the conjugated system of congo red molecule.  

The anion is quickly protonated to form hydrazyl radical as follows: 

 

 
 

 

 

 

Figure 53. The suggested mechanisms for the degradation of congo red initiated by 
−
aqe  (a) and OH•  (b) (Ma, et al., 2007). 
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The alternative mechanism for the reaction of OH• with 

congo red is illustrated in Figure 53b. Among the oxidative species, OH•  is the major 

oxidative transient, and is known to react with benzene and azo moieties with high 

rate coefficients.  Since one of the OH• -adducts (product A) had almost the same 

visible absorption spectrum as congo red, it did not necessarily cause the destruction 

of the color centre.  Besides, the OH• addition to the –N=N– bond produced the 

hydrazyl radical, -N-N(OH), a similar radical to –N–NH–.  This reaction probably led 

to the destruction of the intensive color of the dye.   

In the presence of O2, when O2 cooperated with 

OH• addition, peroxide was formed when O2 added to hydroxylcyclohexadienyl 

radical (Figure 54).  Most of the ring cleavage came from these peroxide compounds 

producing alcohols, aldehydes, and acids.  As a result, a more prominent degradation 

pathway was engendered leading to the final evolution of CO2. 

 

 
 

Figure 54.  Postulated role of O2 played in the degradation of aromatic compounds 

(Ma, et al., 2007). 
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3.2  Synthesis of titanium amino-alkoxides: precursors for the formation of TiO2 

materials 

 

3.2.1  Synthesis 

New titanium alkoxides [Ti(OR)3(OR')] (R = Et, Pri; R' = bdmap, tdmap) 

have been synthesised by heating Ti(OR)4 and Hbdmap / Htdmap in hexane: 

 

Ti(OR)4 + HOR'                           Ti(OR)3(OR')-HOR (1) 

R = Et, R’= CH(CH2NMe2)2, C(CH2NMe2)3 

R = Pri, R’= CH(CH2NMe2)2, C(CH2NMe2)3 

 

Both ethoxides [Ti(OEt)3(bdmap), Ti(OEt)3(tdmap)] are white solids, 

though Ti(OEt)3(bdmap) remains sticky after isolation from the recrystallisation 

solvent (CH2Cl2) while Ti(OEt)3(tdmap) is very soft; the two iso-propoxide analogues 

[Ti(OiPr)3(bdmap), Ti(OiPr)3(tdmap)] are liquids. Attempts to purify 

Ti(OiPr)3(bdmap), Ti(OiPr)3(tdmap) (and other liquid products described in herein) by 

vacuum distillation resulted in decomposition, the NMR of the distillate containing 

only signals due to the OPri groups. The formation of a bond between titanium and 

the aminoalcohol is evidenced by the large downfield 13C NMR shift of the resonance 

due to the O-C nucleus with respect to the parent alcohol (bdmap: ca. 64 to 75 ppm; 

tdmap: ca. 74 to 84 ppm). 

The room temperature 1H and 13C spectra of Ti(OEt)3(bdmap) are simple 

and show that the dimeric structure of the compound (Figure 55) is fluxional under 

these conditions. The 1H NMR has a broad singlet for the OCH2 ethoxy protons 

overlapping with a weaker, also broad, singlet due to CHO of the bdmap, but only one 

sharp singlet for the two distinct NMe2 groups which overlaps a broad singlet from 

NCH2 of the aminoalcohol. The OCH2CH3 appear as a sharp triplet, though with some 

evidence of signal splitting. Similarly, the 13C NMR shows single, albeit broadened, 

signals for each type of carbon with no resolution of the distinct ethoxide groups 

present in the dimer, nor any between chelated and free arms of the bdmap ligand. On 
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cooling to -50oC however, the spectra become more complex, with multiple 

overlapping resonances for both OCH2CH3 protons, the CH protons of the central part 

of the bdmap, along with only minor splitting of the intense NMe2 singlet. The low 

temperature 13C NMR contains over 20 distinct resonances, which implies that the 

crystallographic symmetry within the dimer is lost in solution. 

Similar, though less definitive, comments can be made about the tdmap 

analogue. The OCH2 signal of the ethoxy groups is again broad and there is some 

indication of splitting in the associated CH3 triplet, though the remaining 1H NMR 

signals are sharp. The resonance due to the NMe2 groups is split into two, and while 

accurate integration of the separate signals is precluded by their overlapping nature, it 

is approximately in a 2:1 ratio; there is, however, no apparent splitting of the CH2N 

resonance. The corresponding 13C spectrum has broad signals for both carbons of the 

ethoxy groups, and two major signals for each of the N(CH3)2 and CH2N carbons in 

ca. 2:1 ratio, but the presence of smaller third resonances in each case suggest the 

presence of a possible second species. It is likely that the structure of Ti(OEt)3(tdmap) 

resembles that of Ti(OEt)3(bdmap); the poorly diffracting nature of the crystals of 

Ti(OEt)3(tdmap) is consistent with four non-coordinated CH2NMe2 groups in the 

dimer, which are probably disordered in the lattice given our experience with similar 

metal amino alcolates. 

In contrast, the room temperature 1H NMR of Ti(OiPr)3(bdmap), an oil 

for which no definitive structural data are available, is both sharp and simple. Clear, 

defined multiplets are visible for both OCHMe2 and OCH(CH2NMe)2 at 4.60 (septet) 

and 4.38 ppm, respectively. There is a single sharp doublet for the OCH(CH3)2 

protons (1.20 ppm) and a further intense singlet at 2.28 ppm for the N(CH3)2 group, 

partially overlapping with one of two multiplets (2.47, 2.33 ppm) due to the CH2N 

part of the bdmap. These multiplets arise when both arms of the bdmap chelate a 

metal, making the ligand rigid and the two CH2 hydrogens non-equivalent. The 13C 

NMR spectrum is equally simple, with only five sharp singlets corresponding to the 

five unique carbon environments in the molecule. This pattern of data, taken in 

contrast to that of Ti(OEt)3(bdmap), is suggestive of a monomeric, rather than dimeric 

structure, in which both donor arms of the bdmap ligand to chelate the metal, 
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assuming the common octahedral coordination preferred by titanium is maintained. In 

addition, the data are in keeping with the more symmetrical mer isomer, which, for 

example, allows all the NCH3 groups to become equivalent. 

 

Ti NRO

N

RO

OR

O

 

Ti NRO

O

N

OR

OR

 

Ti NRO

O

N

OR

OR

N
 

(2) fac (2) mer (4) 

 

For [Ti(OiPr)3(tdmap)], sharp signals are seen for both nuclei in both the 

room temperature 1H and 13C NMR spectra and indicate only one OiPr, CH2N and 

NMe2 environment, respectively. Since the coordination number at the metal is 

unlikely to go beyond six, we suggest that a monomeric structure similar to 

Ti(OiPr)3(bdmap) exists, in which the isopropoxy groups are static but that some rapid 

fluxionality of the CH2NMe2 groups, with two coordinated and one free, takes place. 

Attempts to introduce additional chelating amino-alkoxides groups have 

only been partially successful. When the reaction described by equation (1) was 

carried out with increasing amounts of amino alcohol, further substitution of the 

monodentate alkoxide was evident, though 1H NMR integrals suggested that the 

desired substitution was incomplete, a situation which became progressively more 

evident as the reaction stoichiometry increased in favour of the chelating ligand. Both 

[Ti(OEt)2(bdmap)2] and [Ti(OiPr)2(bdmap)2] are essentially pure by NMR, though 

both are liquids which could not be obtained analytically purity. The NMR data for 

these two species seem to follow the same trends as compounds Ti(OEt)3(bdmap), 

Ti(OiPr)3(bdmap), Ti(OEt)3(tdmap), and Ti(OiPr)3(tdmap)  : the ethoxy derivative 

shows broad signals for all protons in the 1H NMR, and, while the 13C NMR is 

generally sharper, the only clear non-equivalence is in the CH2N groups, where two 

signals (ca. 3:1 relative intensity) are apparent. The 13C NMR signals due to the OCH 

fragments of bdmap overlap with the signals from the solvent (all ca. 75 ppm) and 
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preclude detailed comment on this region of the spectrum, though some evidence for 

signal splitting occurs here. The structural implications of this data remain conjecture. 

A monomeric, presumably six-coordinated species, would require two of the four 

NMe2 groups to be pendent, inconsistent with both the ca. 3:1 CH2N moieties and the 

fluxional nature of the compound suggested by the broad 1H NMR signals. A rigid, 

symmetrical, dimeric arrangement such as 5a, while incorporating a common bdmap 

bridging mode, is also inconsistent with the NMR data, so a variation incorporating µ-

OEt groups and exempified by 5b seems most likely. 
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For Ti(OiPr)2(bdmap)2, the NMR signals are uniformly sharp but a 

difference in the two iso-propoxy environments is evident from overlapping septets 

due to CHO, while splitting of both the CH2N and NMe2 signals (ca. 2:1:1 ratio from 

the 13C NMR) is also clear. In comparison with Ti(OiPr)3(bdmap), a monomeric 

complex with two terminal (but marginally different) OiPr groups and two chelating 

bdmap ligands (each with one free NMe2 group) in an isomeric form which renders 

the two coordinate Me2N:→Ti interactions non-equivalent e.g. 6a, would rationalise 

the NMR data. A small number of crystals of the hydrolysis product [(bdmap)2TiO]2 

appeared within the oil that is [Ti(OEt)2(bdmap)2] on standing over a period of several 

days. 

 

3.2.2  Crystallography 

Experimental details relating to the single-crystal X-ray crystallographic 

studies are summarised in Table 9.  For [Ti(OEt)3(bdmap)]2 a symmetry-related 

(multi-scan) absorption correction was employed. Structure solution followed by full-
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matrix least squares refinement was performed using the WinGX-1.70 suite of 

programmes throughout. 

 

 
 

Figure 55. The asymmetric unit of [Ti(OEt)3(bdmap)]2 showing the labelling scheme 

used; thermal ellipsoids are at the 30% probability level. Only one of two essentially 

identical molecules which make up the asymmetric unit is shown for clarity and 

discussed in the text.  

 

The structure of [Ti(OEt)3(bdmap)]2  is shown in Figure 55 and is a 

centrosymmetric dimer containing µ-OEt bridges. The selected bond lengths and 

angles are given in Table 7. Each titanium is six-coordinated with a TiO5N 

coordination sphere. The two terminal ethoxy groups are most tightly bound [Ti(1)-

O(2) 1.839(2), Ti(1)-O(3) 1.8122(18) Å], followed by the amino-alkoxide [Ti(1)-O(1) 

1.866(2) Å] while the bridging interactions are, unsurprisingly, weaker [Ti(1)-O(4) 

2.0194(18), Ti(1)-O(4') 2.0793(19) Å]. Coordination is completed by chelation from 

one terminal amine [Ti(1)-N(1) 2.432(2) Å] while the other amine function based on 

N(2)  remains pendant. The Ti-N bond seems typical of these species (see below) and 

allows slighly stronger bonding from the ethoxide based on O(3) to which it is trans, 
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in comparison with the other terminal alkoxide [O(2)] despite the latter being trans to 

the bridging µ-OEt moiety. 

 

Table  7.  Selected bond lengths [Å ] and angles [o] for Ti(OEt)3(bdmap). 

Atoms Bond lengths [Å]  Atoms Bond angles [o] 

Ti(1)-O(1) 1.8641(19)  O(1)-Ti(1)-O(2) 102.56(9) 

Ti(1)-O(2) 1.839(2)  O(1)-Ti(1)-O(3) 92.42(8) 

Ti(1)-O(3) 1.8122(18)  O(1)-Ti(1)-O(4) 157.96(9) 

Ti(1)-O(4) 2.0194(18)  O(1)-Ti(1)-O(4') 92.13(8) 

Ti(1)-O(4') 2.0793(19)  O(1)-Ti(1)-N(1) 74.38(8) 

Ti(1)-N(1) 2.432(2)  O(2)-Ti(1)-O(3) 97.19(9) 

   O(2)-Ti(1)-O(4) 91.53(8) 

   O(2)-Ti(1)-O(4') 161.68(8) 

   O(2)-Ti(1)-N(1) 80.50(8) 

   O(3)-Ti(1)-O(4) 102.65(8) 

   O(3)-Ti(1)-O(4')  93.01(8) 

   O(3)-Ti(1)-N(1) 165.60(8) 

   O(4)-Ti(1)-O(4') 71.35(8) 

   O(4)-Ti(1)-N(1) 91.64(7) 

   N(1)-Ti(1)-O(4') 93.21(7) 

 Symmetry operation: #1 -x+2, -y+1, -z. 
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Figure 56. The asymmetric unit of [(bdmap)TiO]2 showing the labelling scheme 

used; thermal ellipsoids are at the 30% probability level. The NMe2 group based on 

N(4) is disordered over two sites (65:35); only the major component of the disorder is 

shown for clarity.  

 

Hydrolysis of Ti(OEt)3(bdmap) affords the µ-O dimer [(bdmap)TiO]2 

(Figure 56) generated by a crystallographically imposed two-fold axis running 

through the centre of the Ti2O2 ring. The selected bond lengths and angles are given in 

Table 8. Each titanium retains its octahedral coordination, but this is now made up of 

two chelating amino alcolohols in addition to the two bridging groups. The overall 

coordination is TiO4N2, in a cis, cis, trans arrangement of µ-O, coordinated amines 

and alkoxides centres, respectively. The Ti2O2 core is more tightly bound than in 

Ti(OEt)3(bdmap) [Ti(1)-O(1) 1.8445(13), Ti(1)-O(1') 1.8474(14) Å], while the two 

amino-alkoxides show similar bond strengths [Ti(1)-O(2) 1.8777(14), Ti(1)-O(3) 

1.8826(14) Å]. The two coordinated amines [Ti(1)-N(1) 2.3962(18), Ti(1)-N(3) 

2.4529(18) Å], which are trans to the two µ-O groups, straddle the observed Ti-N 
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bond length in Ti(OEt)3(bdmap) [2.432(2) Å], which is trans to a terminal OEt unit. 

As with Ti(OEt)3(bdmap), two amine groups (one per bdmap ligand) remain 

uncoordinated to the metal.  

 

 

Table  8.  Selected bond lengths [Å ] and angles [o] for [(bdmap)TiO]2. 

Atoms Bond lengths [Å]  Atoms Bond angles [o] 

Ti(1)-O(1) 1.8445(13)  O(1)-Ti(1)-O(1') 82.19(6) 

Ti(1)-O(1') 1.8474(14)  O(1)-Ti(1)-O(2) 109.35(6) 

Ti(1)-O(2) 1.8774(14)  O(1)-Ti(1)-O(3) 104.61(6) 

Ti(1)-O(3) 1.8826(14)  O(1)-Ti(1)-N(1) 81.70(6) 

Ti(1)-N(1) 2.3962(18)  O(1)-Ti(1)-N(3) 162.97(6) 

Ti(1)-N(3) 2.4529(18)  O(1')-Ti(1)-O(2) 103.88(6) 

   O(1')-Ti(1)-O(3) 109.15(6) 

   O(1')-Ti(1)-N(1) 162.18(6) 

   O(1')-Ti(1)-N(3) 82.35(6) 

   O(2)-Ti(1)-O(3) 135.08(7) 

   O(2)-Ti(1)-N(1) 74.53(6) 

   O(2)-Ti(1)-N(3) 81.36(6) 

   O(3)-Ti(1)-N(1) 82.36(6) 

   O(3)-Ti(1)-N(3) 73.94(6) 

   N(1)-Ti(1)-N(3) 114.50(6) 

 Symmetry operation: #1 -x+1,y,-z+3/2 

 

 

 

 

 

 

 

 



   

 

 
 

107

Table 9.  Crystallographic data for [Ti(OEt)3(bdmap)]2 and [(bdmap)2TiO]2 

 [Ti(OEt)3(bdmap)]2     [(bdmap)2TiO]2   

 Empirical formula C26H64N4O8Ti2 C28H68N8O6Ti2 

 Formula weight  656.61 708.70 

 Crystal system Triclinic Monoclinic 

 Space group P1 C2/c 

 a, Å 9.1310(2) 13.0770(3) 

 b, Å 12.6400(3) 15.9297(4) 

 c, Å 17.1220(6) 19.8605(6) 

α, o 69.905(1)  

β, o 76.840(1) 108.460(1) 

γ, o 81.660(2)  

 Volume, Å3 1802.30(9)  3924.24(18)  

 Z 2 4 

 µ(Mo-Kα), mm-1 0.488  0.452  

 Crystal size, mm 0.30 x 0.20 x 0.05  0.30 x 0.30 x 0.25 

 Reflections collected 23405 24881 

 Independent reflections 7056 [R(int) = 0.0595] 4448 [R(int) = 0.0483]

 Reflections observed (>2σ) 5058 3635 

 Data completeness 0.976 0.986 

 Max., min. transmission 0.97, 0.87 0.96, 0.90 

 Data / restraints / parameters 7052 / 0/ 410 4448 / 0 / 237 

 Goodness-of-fit on F2c 1.055 1.092 

 Final R1
a, wR2

b [I>2σ (I)] 0.0493, 0.1180 0.0441, 0.1059 

 Final R1
a, wR2

b  (all data) 0.0799, 0.1342 0.0582, 0.1146 

 Largest diff. peak and hole, e 

Å-3 

0.948, -0.481 0.430, -0.351 

a R1=Σ ||Fo|-|Fc||/Σ|Fo|, b wR2 ={Σ[w(Fo
2 - Fc

2
)
2
] /Σ[w(Fo

2
)

2
]}

1/2
 

c GOF = S = {Σ[w(Fo
2 - Fc

2
)

2
] /(n-p)}

1/2 
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3.2.3  Thermal decomposition of [Ti(OEt)3(bdmap)]2 

[Ti(OEt)3(bdmap)]2 has been thermally decomposed at 700oC in a sealed 

steel ampoule, a technique coined RAPET (Reaction under Autogenerated Pressure at 

Elevated Temperatures) and first described by Gedanken (Pol, et al., 2004). In 

contrast to CVD where the experimental arrangement allows all the residual carbon to 

be eliminated thermally, under RAPET conditions this is not the case. In addition, the 

autogenerated pressure which accrues during decomposition also facilitates the 

formation of core-shell nanoparticles of different types e.g. carbon coated V2O3 (Pol, 

et al., 2004) or MoO2 (Pol, et al., 2004), silicon coated carbon spheres (Pol, et al., 

2004), or carbon sausages with in situ WO3 (Pol, et al., 2006). 

In the RAPET of [Ti(OEt)3(bdmap)]2 some carbon is lost (presumably as 

hydrocarbons) as evidenced by a pressure release on opening the apparatus, though 

considerable amounts of organic matter, but particularly carbon, are still present in the 

final black residue (C 32.7%, H 0.82%, N 2.32%). This represents approximately two-

thirds retention of carbon from [Ti(OEt)3(bdmap)]2 (C 47.5%).  

 

15 25 35 45 55 65 75
2 theta (deg)

101

004 200 211 204 215220

 
Figure 57. XRD of the powder obtained by RAPET of [Ti(OEt)3(bdmap)]2 at 700oC; 

indexing is consistent with anatase TiO2 (PDF 84-1286). 

 

Powder XRD of the black residue (Figure 57) shows the only crystalline 

phase to be present is anatase TiO2. SEM shows this powder, however, reveals it is 
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made up of two distinct phases: regular elliptical particles of ca. 2 x 3 µm and smaller 

fused spheres ca. 300 - 500 nm in diameter (Figure 58), though fusion of particles 

makes this at best an estimate. EDX of this aggregate shows the presence of both 

titanium and carbon, but more focused EDX using TEM shows that the ellipses are 

purely carbon (Figure 59a) while the titanium is in the smaller features which also 

contain carbon (Figure 59b). TEM of the latter (Figure 60) show them to be core-shell 

materials with an inner TiO2 core of ca. 350 nm diameter with an outer carbon shell 

of width ca. 75 nm, consistent with the SEM results, above. The anatase polymorph of 

TiO2 is known to convert to the thermodynamically favoured rutile phase at T > 

600oC (Inagaki, et al., 2003), so the presence of the carbon coating to these particles 

acts to suppress this transition. 

Gedanken has previously noted the formation of similar structures from 

RAPET of both [Ti(OPri)4] (Pol, et al., 2004)  and [Ti(O)(acac)2]2 (Shammugam,       

et al., 2006). In the former case, the core shell structure consists of TiO2 particles of 

ca. 25 – 50 nm diameter clustered into aggregates of 30 – 40 nm and surrounded by a 

carbon shell of ca. 50 nm thickness (Pol, et al., 2004). Our result seems consistent 

with this report. On the other hand, with [Ti(O)(acac)2]2 as precursor, the TiO2@C is 

15 – 35 nm in diameter with an outer carbon shell of ~2 nm. The formation of these 

particles depends both on the decomposition mechanism for the precursor and the 

relative rates of crystallisation of the components of the mixture. If the precursor is 

atomised into C, Ti, O etc. as is widely quoted for RAPET experiments, then one 

might anticipate little variation in the size of the nanoparticles formed from differing 

precursors, assuming similar experimental conditions (temperature, cooling rate), as 

the growth of the TiO2 particle would be from atomic Ti and O. Conversely, if the 

precursor decomposes directly to TiO2, one would expect a link between particle size 

and precursor structure i.e. in terms of both decomposition mechanism and kinetics of 

the precursor. Gedanken has noted in the case of the RAPET decomposition of 

[Ti(O)(acac)2]2, TiO2@C particle size decreases with temperature, as the rate of 

formation of TiO2 increases (contrary to the norm, where particle size is expected to 

increase with increasing temperature) (Shammugam, et al., 2006). With regard to our 

results, this suggests that the larger TiO2@C particles formed from [Ti(OPri)4] (Pol, et 
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al., 2004) and [Ti(OEt)3(bdmap)]2 result from slower precursor decomposition than 

for [Ti(O)(acac)2]2, which could in turn could be related to the Ti2O2 already present 

in the latter. 

In neither of these reports are the simultaneous formation of pure carbon 

spheres / ellipses noted, though this feature has been noted in the RAPET of several 

species, including mesitylene (Pol, et al., 2004), as smaller (20 – 30 nm) particles 

along with MoO2 nanoparticles when [Mo(O)(OMe)4] is the precursor (Pol, et al., 

2004), and as a minor component (along with carbon sausages and sub-stioichiometric 

WO3) from [W(OPri)6] in isopropanol (Pol, et al., 2006). The lack of any broad 

diffraction peak at ca. 26o associated with graphitic carbon suggest that the carbon 

spheres produced by RAPET of [Ti(OEt)3(bdmap)]2 are amorphous, which contrasts 

with the formation of analogous, but ordered, carbon particles, either by ball-milling 

of graphite or by RAPET of mesitylene (Pol, et al., 2006; Pol, et al., 2004). While the 

importance of interfacial chemistry between the carbon sphere and its surroundings 

has been stressed by Inagaki (1997), where he also references the formation of glass-

like carbon spheres from some organic precursors, it is tempting to also suggest some 

link with the precursor i.e. the lack of any aromatic character to the carbonaceous 

ligands in [Ti(OEt)3(bdmap)]2. 

 
Figure 58.  SEM of the powder obtained by RAPET of [Ti(OEt)3(bdmap)]2 at 700 oC. 

Larger spheres are carbon while the smaller spheres are carbon-coated TiO2. Bar = 1 

µm. 
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(a)  

 
 

(b) 

 

Figure 59. EDX of (top) the large elliptical particles (59a) and (bottom) the smaller 

spherical particle (59b) produced by RAPET of [Ti(OEt)3(bdmap)]2 at 700oC. 

 

 

 



   

 

 
 

112

 
 

Figure 60. TEM of the small particles obtained by RAPET of [Ti(OEt)3(bdmap)]2 at 

700oC showing the dense inner TiO2 core and amorphous carbon coating. Bar = 100 

nm. 

 

We have also used [Ti(OEt)3(bdmap)]2 to deposit a film of TiO2 onto a 

glass substrate by AACVD at 440oC (Figure 61). The film is rather featureless and 

does not yield a diffraction pattern even after annealing in air at 600oC. EDX (Figure 

62) confirms the presence of both titanium and oxygen in the film, though a dominant 

peak due to Si, originating from the underlying glass substrate, suggests the film is 

thin (ca. 0.25 µm from Figure 61a). The film texture shows some particulate matter 

embedded into the film surface (Figure 61b) though these are too small to identify 

unambiguously. While we cannot exclude these as being an artefact of an island 

growth mechanism and are also TiO2, it is plausible that these are TiC particles and 

are the cause of the amorphous nature of the film. The EDX (Figure 62) confirms the 

presence of carbon contamination in the film, and we have noted earlier 

(Experimental) that microanalysis of some of these precursors, and notably 

[Ti(OEt)3(bdmap)]2, show low carbon analyses, again plausibly due to TiC formation. 
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                                        (a) 

 
                       (b) 

 
 

Figure 61. Two views of the film deposited from [Ti(OEt)3(bdmap)]2 by AACVD at 

440oC showing (a) film thickness and (b) texture. Bar = 1 µm 

 



   

 

 
 

114

 
 

Figure 62. EDX of the film deposited from [Ti(OEt)3(bdmap)]2 by AACVD at 440oC; 

gold peaks are due to a sample coating to dissipate charge. 

 

3.2.4  Photocatalytic study 

Neither the TiO2@C particles nor the AACVD deposited film displayed 

any photocatalytic activity with respect to the decomposition of methylene blue      

(2.5 × 10-5 mol/L). Figure 63a (top) shows the decolorization (%) of MB in the 

presence and absence of TiO2 on slide.  After annealing at higher temperature (Figure 

63b (bottom)), the results show that the calcinations at higher temperature cannot 

improve the films in the photocatalytic activity.  In the case of the film, both its 

amorphous nature and its lack of thickness are contributing factors 

Figure 64 shows the decolorization (%) of MB (a) in the presence and 

absence of core shell structures of TiO2 by the UV light and (b) compare with the 

commercial TiO2. It can be seen from the figure that core shell structures of TiO2 

cannot decompose the dye molecules. The TiO2@C nanoparticles is perhaps more 

surprising, as photocatalytic activity has been noted for similar materials, albeit much 

smaller nanoparticles, generated from [Ti(O)(acac)2]2 (Shammugan, et al., 2006).  
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Figure 63.  Decolorization (%) as a function of irradiation time of MB solution (2.5 × 

10-5 M) when using (a) film and (b) after annealing film at 440, 550 and 600oC. 
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Figure 64. Decolorization (%) of MB solution (2.5 × 10-5 M) with (a) nanoparticle 

and    (b) compare with three commercial TiO2. 
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CHAPTER 4 

CONCLUSIONS 
 

 

This research is divided into two parts; part 1: studying TiO2 in a 

powder form and part 2: studying TiO2 in a film form and nanoparticles. In part 1, six 

samples of TiO2 of various amorphous-anatase-rutile contents TiO2 were prepared by 

the acid-catalyzed sol-gel method without calcination. Powder XRD, SEM, BET, FT-

IR, EDX, and UV-Vis techniques were used to characterized these samples. Since the 

calcination was not employed during the preparation, these products mainly 

composed of an amorphous phase with small amount of either mixed anatase-rutile 

phases or solely anatase phase. The products were an amorphous phase with mixtures 

anatase-rutile phases when prepared by without using acid catalyst and by adding 

small amount of acid catalyst (hydrochloric acid, nitric acid, and acetic acid).  

However, when either sulphuric acid or phosphoric acid was used, the products 

obtained an amorphous phase with anatase phase. The mechanism of crystal growth 

leading to anatase or rutile phase was proposed. In this work it is proposed that the cis 

isomer of [Ti(OH)2(H2O)4]2+ can grow into larger unit in the same way as the trans 

isomer. The presence of SO4
2- and PO4

3- groups were found to inhibit the growth to 

rutile phase.  

The photocatalytic activity of the products was evaluated by 

decolorizing three dyes, methylene blue, crystal violet, and congo red and comparing 

them with three commercial TiO2 powder, P25 (Degussa), anatase (Carlo Erba), and 

rutile (Dupont). The effects of initial dye concentration, types of TiO2, and the 

addition of hydrogen peroxide on the photocatalytic process have been examined. All 

samples showed various degrees of photocatalytic activities from almost as good as 

P25 to mediocre ones. Nevertheless, the effect of addition of H2O2 in absence of light, 

the prepared TiO2 sample can bleach dye much better than the commercial sample. 

For those with good performances, these products can be regarded as an inexpensive 

alternative to the presently available commercial ones due to simple synthesis without 

the need for calcination. 
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In part 2, [Ti(OEt)3(bdmap)]2 was synthesized by the reaction of 

[Ti(OR)4] (R = Et, Pri) with the aminoalkoxides L = Hbdmap (I), Htdmap (II) 

generates [Ti(OR)4-n(L)n] and used as a new precursor for TiO2 preparation. The 

structure of [Ti(OEt)3(bdmap)]2, a µ-OEt bridged dimer, has been determined. 

[Ti(OEt)3(bdmap)]2 can be decomposed in a sealed container at 700oC to yield 

TiO2@C nanoparticles along with spherical carbon particles of diameter ca. 2 µm, or 

can be used in AACVD experiments to yield a film at 440oC of amorphous TiO2 

probably contaminated with TiC. Neither film nor particles show any photocatalytic 

activity towards the decomposition of methylene blue. 
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APPENDIX A 
 

 
AACVD apparatus 

 

Details of the reactor assembly are shown in Fig. A (top). The CVD 

apparatus consists of a horizontal, cold-wall reactor with associated gas lines and 

electrical heater controls. The reactor contains two separate systems, a heated bubbler 

assembly and an ultrasonic nebulizer line.  The nebulizer used was an ultrasonic 

humidifier from Pifco Health (model No 1077). The piezoelectric transducer, situated 

in the reservoir containing water, transmits ultrasound through the water and the glass 

of the flask into the solution to be nebulized. The distance between the piezoelectric 

transducer and the flask was approximately 3–4 cm. The water in the reservoir was 

replaced every 30 min in order to cool the transducer. 

Prior to starting a deposition, the system was purged with nitrogen gas and 

the substrate brought to the desired temperature. A solution of the precursor was 

poured into the three-necked round-bottomed flask and placed on the nebulizer. With 

the nebulizer power on, the solution in the flask fountains to generate an aerosol of 

fine droplets (droplet size: ca. 0.2–5.0 lm). The aerosol was swept out of the flask by a 

flow of nitrogen gas (1.2 L min-1) and transported to a horizontal cold wall CVD 

reactor [Fig. A (bottom)]. The mist was first passed through a baffle to promote 

laminar flow, then directly into the reactor chamber (8 mm high, 40 mm wide, and 

300 mm long). The ceiling tiles and walls of the reactor are constructed from silica. 

The glass substrate was positioned upon a large graphite support, heated by three 

Watlow firewood cartridge heaters. A Watlow series 9965 controller, which monitors 

the temperature by means of thermocouples positioned inside the block, maintained 

the temperature of the graphite block. The graphite support was held inside a large 

silica tube (330 mm long, 100 mm diameter) suspended between stainless-steel 

flanges upon which many of the electrical and gas line fittings were fixed. Airtight 

seals were provided by Viton O-rings (Edwards, et al., 1999; Rodriquez-Castro, et al., 

2006). 
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Figure A.  Schematic diagram of the AACVD apparatus (bottom) and detail of the 

reaction   chamber (top) (Edwards, et al., 1999). 
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APPENDIX B 

 

 

 
Figure B.  1H NMR (top) and 13C NMR (bottom) spectrum of bdmap. 
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Figure B1.  1H NMR (top) and 13C NMR (bottom) spectrum of tdmap. 
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Figure B2.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OiPr)4. 
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Figure B3.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OEt)4. 

 



   

 

 
 

143

 

 
Figure B4.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OiPr)3(bdmap). 
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Figure B5.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OEt)3(bdmap). 
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Figure B6.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OEt)3(bdmap) at 

248 K. 
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Figure B7.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OiPr)2(bdmap)2. 
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Figure B8.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OEt)2(bdmap)2. 
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Figure B9.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OiPr)3(tdmap). 
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Figure B10.  1H NMR (top) and 13C NMR (bottom) spectrum of Ti(OEt)3(tdmap). 
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APPENDIX C 

 

 

Table C1.  Bond lengths [Å] and angles [o] for Ti(OEt)3(bdmap). 

Ti(1)-O(3) 1.812(2) Ti(1)-O(2) 1.839(2) 

Ti(1)-O(1) 1.866(2) Ti(1)-O(4) 2.019(2) 

Ti(1)-O(4)#1 2.079(2) Ti(1)-N(1) 2.432(3) 

Ti(1)-Ti(1)#1 3.3294(11) Ti(1A)-O(3A) 1.814(2) 

Ti(1A)-O(2A) 1.834(2) Ti(1A)-O(1A) 1.866(2) 

Ti(1A)-O(4A) 2.018(2) Ti(1A)-O(4A)#2 2.078(2) 

Ti(1A)-N(1A) 2.432(3) Ti(1A)-Ti(1A)#2 3.3300(11) 

O(1)-C(4) 1.412(4) O(2)-C(8) 1.398(4) 

O(3)-C(10) 1.415(4) O(4)-C(12) 1.437(3) 

O(4)-Ti(1)#1 2.079(2) O(1A)-C(4A) 1.403(4) 

O(2A)-C(8B) 1.395(10) O(2A)-C(8A) 1.411(6) 

O(3A)-C(10B) 1.403(11) O(3A)-C(10A) 1.433(6) 

O(4A)-C(12A) 1.436(4) O(4A)-Ti(1A)#2 2.078(2) 

N(1)-C(2) 1.474(4) N(1)-C(3) 1.476(4) 

N(1)-C(1) 1.477(4) N(2)-C(7) 1.448(5) 

N(2)-C(6) 1.454(5) N(2)-C(5) 1.467(4) 

N(1A)-C(3A) 1.475(4) N(1A)-C(1A) 1.475(5) 

N(1A)-C(2A) 1.478(4) N(2A)-C(6A) 1.445(6) 

N(2A)-C(5A) 1.456(4) N(2A)-C(7A) 1.461(5) 

C(3)-C(4) 1.523(4) C(4)-C(5) 1.518(4) 

C(8)-C(9) 1.492(5) C(10)-C(11) 1.474(6) 

C(12)-C(13) 1.501(5) C(3A)-C(4A) 1.522(5) 

C(4A)-C(5A) 1.525(5) C(8A)-C(9A) 1.492(9) 

C(10A)-C(11A) 1.469(11) C(12A)-C(13A) 1.510(5) 

C(8B)-C(9B) 1.471(14) C(10B)-C(11B) 1.437(16) 
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O(3)-Ti(1)-O(2) 97.10(11) O(3)-Ti(1)-O(1) 92.49(10) 

O(2)-Ti(1)-O(1) 102.58(10) O(3)-Ti(1)-O(4) 102.61(9) 

O(2)-Ti(1)-O(4) 91.53(10) O(1)-Ti(1)-O(4) 157.95(10) 

O(3)-Ti(1)-O(4)#1 93.07(10) O(2)-Ti(1)-O(4)#1 161.67(9) 

O(1)-Ti(1)-O(4)#1 92.12(9) O(4)-Ti(1)-O(4)#1 71.33(9) 

O(3)-Ti(1)-N(1) 165.65(10) O(2)-Ti(1)-N(1) 80.54(10) 

O(1)-Ti(1)-N(1) 74.39(9) O(4)-Ti(1)-N(1) 91.63(8) 

O(4)#1-Ti(1)-N(1) 93.18(9) O(3)-Ti(1)-Ti(1)#1 99.55(8) 

O(2)-Ti(1)-Ti(1)#1 127.51(8) O(1)-Ti(1)-Ti(1)#1 125.82(8) 

O(4)-Ti(1)-Ti(1)#1 36.26(6) O(4)#1-Ti(1)-Ti(1)#1 35.07(6) 

N(1)-Ti(1)-Ti(1)#1 92.97(6) O(3A)-Ti(1A)-O(2A) 97.05(11) 

O(3A)-Ti(1A)-O(1A) 92.80(10) O(2A)-Ti(1A)-O(1A) 103.11(10) 

O(3A)-Ti(1A)-O(4A) 102.80(10) O(2A)-Ti(1A)-O(4A) 91.39(9) 

O(1A)-Ti(1A)-O(4A) 157.28(10) O(3A)-Ti(1A)-O(4A)#2 93.86(10) 

O(2A)-Ti(1A)-O(4A)#2 161.19(10) O(1A)-Ti(1A)-O(4A)#2 91.58(9) 

O(4A)-Ti(1A)-O(4A)#2 71.20(9) O(3A)-Ti(1A)-N(1A) 165.52(10) 

O(2A)-Ti(1A)-N(1A) 80.17(10) O(1A)-Ti(1A)-N(1A) 74.19(9) 

O(4A)-Ti(1A)-N(1A) 91.50(9) O(4A)#2-Ti(1A)-N(1A) 92.85(9) 

O(3A)-Ti(1A)-Ti(1A)#2 100.15(8) O(2A)-Ti(1A)-Ti(1A)#2 127.25(8) 

O(1A)-Ti(1A)-Ti(1A)#2 125.18(8) O(4A)-Ti(1A)-Ti(1A)#2 36.20(6) 

O(4A)#2-Ti(1A)-Ti(1A)#2 35.00(6) N(1A)-Ti(1A)-Ti(1A)#2 92.69(7) 

C(4)-O(1)-Ti(1) 127.47(18) C(8)-O(2)-Ti(1) 140.2(2) 

C(10)-O(3)-Ti(1) 136.4(2) C(12)-O(4)-Ti(1) 126.11(18) 

C(12)-O(4)-Ti(1)#1 122.65(18) Ti(1)-O(4)-Ti(1)#1 108.67(9) 

C(4A)-O(1A)-Ti(1A) 127.36(19) C(8B)-O(2A)-C(8A) 21.8(5) 

C(8B)-O(2A)-Ti(1A) 133.6(5) C(8A)-O(2A)-Ti(1A) 144.1(3) 

C(10B)-O(3A)-C(10A) 26.0(5) C(10B)-O(3A)-Ti(1A) 129.4(5) 

C(10A)-O(3A)-Ti(1A) 138.2(3) C(12A)-O(4A)-Ti(1A) 126.27(18) 

C(12A)-O(4A)-Ti(1A)#2 122.99(19) Ti(1A)-O(4A)-Ti(1A)#2 108.80(9) 

C(2)-N(1)-C(3) 108.8(2) C(2)-N(1)-C(1) 108.1(3) 

C(3)-N(1)-C(1) 110.3(3) C(2)-N(1)-Ti(1) 116.1(2) 

C(3)-N(1)-Ti(1) 98.97(17) C(1)-N(1)-Ti(1) 114.11(19) 

C(7)-N(2)-C(6) 109.6(3) C(7)-N(2)-C(5) 111.5(3) 
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C(6)-N(2)-C(5) 109.8(3) C(3A)-N(1A)-C(1A) 110.6(3) 

C(3A)-N(1A)-C(2A) 108.9(3) C(1A)-N(1A)-C(2A) 107.2(3) 

C(3A)-N(1A)-Ti(1A) 99.1(2) C(1A)-N(1A)-Ti(1A) 114.8(2) 

C(2A)-N(1A)-Ti(1A) 116.0(2) C(6A)-N(2A)-C(5A) 111.1(3) 

C(6A)-N(2A)-C(7A) 109.2(3) C(5A)-N(2A)-C(7A) 109.9(3) 

N(1)-C(3)-C(4) 109.6(2) O(1)-C(4)-C(5) 108.4(3) 

O(1)-C(4)-C(3) 108.6(2) C(5)-C(4)-C(3) 111.4(3) 

N(2)-C(5)-C(4) 113.1(3) O(2)-C(8)-C(9) 111.4(3) 

O(3)-C(10)-C(11) 112.0(4) O(4)-C(12)-C(13) 113.5(2) 

N(1A)-C(3A)-C(4A) 109.4(3) O(1A)-C(4A)-C(3A) 109.2(3) 

O(1A)-C(4A)-C(5A) 108.4(3) C(3A)-C(4A)-C(5A) 112.2(3) 

N(2A)-C(5A)-C(4A) 114.1(3) O(2A)-C(8A)-C(9A) 110.7(5) 

O(3A)-C(10A)-C(11A) 109.0(7) O(4A)-C(12A)-C(13A) 113.0(3) 

O(2A)-C(8B)-C(9B) 109.5(10) O(3A)-C(10B)-C(11B) 111.8(13) 

 
Symmetry transformations used to generate equivalent atoms: 
 #1 -x+2,-y+1,-z    #2 -x+1,-y+1,-z+1 
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Table C2.  Bond lengths [Å] and angles [o] for [(bdmap)2TiO]2. 

Ti(1)-O(1) 1.8446(14) Ti(1)-O(1)#1 1.8476(14) 

Ti(1)-O(2) 1.8777(14) Ti(1)-O(3) 1.8829(15) 

Ti(1)-N(1) 2.3965(18) Ti(1)-N(3) 2.4528(18) 

Ti(1)-Ti(1)#1 2.7821(7) O(1)-Ti(1)#1 1.8476(14) 

O(2)-C(1) 1.408(2) O(3)-C(8) 1.399(2) 

N(1)-C(3) 1.465(3) N(1)-C(2) 1.476(3) 

N(1)-C(4) 1.477(3) N(2)-C(6) 1.455(3) 

N(2)-C(7) 1.456(3) N(2)-C(5) 1.459(3) 

N(3)-C(11) 1.457(3) N(3)-C(10) 1.461(3) 

N(3)-C(9) 1.471(3) N(4)-C(13) 1.452(5) 

N(4)-C(14) 1.461(8) N(4)-C(12) 1.534(6) 

N(4A)-C(12) 1.260(12) N(4A)-C(14A) 1.41(3) 

N(4A)-C(13A) 1.511(19) C(1)-C(5) 1.525(3) 

C(1)-C(2) 1.526(3) C(8)-C(12) 1.514(3) 

C(8)-C(9) 1.520(4)   

 

O(1)-Ti(1)-O(1)#1 82.20(6) O(1)-Ti(1)-O(2) 109.34(6) 

O(1)#1-Ti(1)-O(2) 103.87(6) O(1)-Ti(1)-O(3) 104.62(6) 

O(1)#1-Ti(1)-O(3) 109.16(6) O(2)-Ti(1)-O(3) 135.08(7) 

O(1)-Ti(1)-N(1) 81.69(6) O(1)#1-Ti(1)-N(1) 162.18(6) 

O(2)-Ti(1)-N(1) 74.54(6) O(3)-Ti(1)-N(1) 82.35(6) 

O(1)-Ti(1)-N(3) 162.98(6) O(1)#1-Ti(1)-N(3) 82.34(6) 

O(2)-Ti(1)-N(3) 81.35(6) O(3)-Ti(1)-N(3) 73.96(7) 

N(1)-Ti(1)-N(3) 114.50(6) O(1)-Ti(1)-Ti(1)#1 41.15(4) 

O(1)#1-Ti(1)-Ti(1)#1 41.07(4) O(2)-Ti(1)-Ti(1)#1 111.52(5) 

O(3)-Ti(1)-Ti(1)#1 113.40(5) N(1)-Ti(1)-Ti(1)#1 122.32(5) 

N(3)-Ti(1)-Ti(1)#1 123.16(5) Ti(1)-O(1)-Ti(1)#1 97.79(6) 

C(1)-O(2)-Ti(1) 127.74(12) C(8)-O(3)-Ti(1) 129.09(14) 

C(3)-N(1)-C(2) 110.66(17) C(3)-N(1)-C(4) 109.12(17) 
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C(2)-N(1)-C(4) 110.85(17) C(3)-N(1)-Ti(1) 114.38(13) 

C(2)-N(1)-Ti(1) 100.81(12) C(4)-N(1)-Ti(1) 110.82(13) 

C(6)-N(2)-C(7) 109.8(2) C(6)-N(2)-C(5) 111.12(19) 

C(7)-N(2)-C(5) 112.10(19) C(11)-N(3)-C(10) 109.1(2) 

C(11)-N(3)-C(9) 111.2(2) C(10)-N(3)-C(9) 110.6(2) 

C(11)-N(3)-Ti(1) 113.48(14) C(10)-N(3)-Ti(1) 112.19(14) 

C(9)-N(3)-Ti(1) 100.14(13) C(13)-N(4)-C(14) 108.8(4) 

C(13)-N(4)-C(12) 109.4(4) C(14)-N(4)-C(12) 107.2(4) 

C(12)-N(4A)-C(14A) 117.5(15) C(12)-N(4A)-C(13A) 114.6(10) 

C(14A)-N(4A)-C(13A) 103.9(17) O(2)-C(1)-C(5) 112.92(18) 

O(2)-C(1)-C(2) 107.80(16) C(5)-C(1)-C(2) 109.85(17) 

N(1)-C(2)-C(1) 108.47(16) N(2)-C(5)-C(1) 113.57(17) 

O(3)-C(8)-C(12) 113.1(2) O(3)-C(8)-C(9) 107.55(19) 

C(12)-C(8)-C(9) 110.8(2) N(3)-C(9)-C(8) 110.04(19) 

N(4A)-C(12)-C(8) 124.7(6) N(4A)-C(12)-N(4) 14.2(6) 

C(8)-C(12)-N(4) 112.4(3)   

 

Symmetry transformations used to generate equivalent atoms: 
#1 -x+1,y,-z+3/2 
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APPENDIX D 
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(a) Methylene blue (MB) 
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(b) Crystal violet (CV) 
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(c) Congo red (CR) 

Figure D1.  The absorption spectrum of (a) Methylne Blue: MB, (b) Crystal Violet: 

CV, and (c) Congo Red: CR solution. 
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(a) Ti-no-acid 
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(d) Ti-H2SO4 
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(e) Ti-CH3COOH 
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(f) Ti-H3PO4 

 

Figure D2.   Effect of hydrogen peroxide in presence of light on MB degradation as a 

function of time in the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl,        

(c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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(a) Degussa P25 
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(b) Anatase (Carlo Erba) 
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(c) Rutile (R706, TOA) 

 

Figure D3.   Effect of hydrogen peroxide in presence of light on MB degradation as a 

function of time in the presence of commercial TiO2: (a) Degussa P25, (b) Anatase 

(Carlo Erba), and (c) Rutile (R706, TOA).    
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(a) Ti-no-acid 
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(d) Ti-H2SO4 
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(e) Ti-CH3COOH 
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(f) Ti-H3PO4 

 

Figure D4.   Effect of hydrogen peroxide in presence of light on CR degradation as a 

function of time in the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl,         

(c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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(a) Degussa P25 
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(b) Anatase (Carlo Erba) 
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Figure D5.   Effect of hydrogen peroxide in presence of light on CR degradation as a 

function of time in the presence of commercial TiO2: (a) Degussa P25, (b) Anatase 

(Carlo Erba), and (c) Rutile (R706, TOA). 
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(d) Ti-H2SO4 
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(e) Ti-CH3COOH 
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Figure D6.   Effect of hydrogen peroxide in presence of light on CV degradation as a 

function of time in the presence of synthesized TiO2: (a) Ti-no-acid, (b) Ti-HCl,        

(c) Ti-HNO3, (d) Ti-H2SO4, (e) Ti-CH3COOH, and (f) Ti-H3PO4. 
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(a) Degussa P25 
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(b) Anatase (Carlo Erba) 
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Figure D7.   Effect of hydrogen peroxide in presence of light on CV degradation as a 

function of time in the presence of commercial TiO2: (a) Degussa P25, (b) Anatase 

(Carlo Erba), and (c) Rutile (R706, TOA).   

 

 

 

 

 

 

 

 

 

 

 



   

 

 
 

162

 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX E 

 
PUBLICATIONS FROM THIS WORK 

 

 

 

 

 



   

 

 
 

163

 



   

 

 
 

164

 



   

 

 
 

165

 



   

 

 
 

166

 



   

 

 
 

167

 



   

 

 
 

168

 



   

 

 
 

169

 



   

 

 
 

170

 



   

 

 
 

171

 



   

 

 
 

172

 



   

 

 
 

173

 



   

 

 
 

174

 



   

 

 
 

175

 



   

 

 
 

176

 



   

 

 
 

177

 



   

 

 
 

178

 



   

 

 
 

179

 



   

 

 
 

180

 



   

 

 
 

181

 



   

 

 
 

182

 



   

 

 
 

183

 



   

 

 
 

184

VITAE 
 

 

Name    Miss Miki  Kanna 

Student ID   4623015 

Education Attainment 

 Degree             Name of Institution           Year of Graduation 

B. Sc. (Chemistry)    Prince of Songkla University       1999 

M.Sc. (Inorganic Chemistry)    Prince of Songkla University                  2002 

 

Scholarship Awards during Enrolment 

1. Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program 

Grant No. PHD/0126/2546  

2. Center for Innovation in Chemistry: Postgraduate Education and Research 

Program in Chemistry (PERCH-CIC), Commission on Higher Education, 

Ministry of Education 

 

List of Publication and Proceeding 

Publications 

1. Kanna, M., Wongnawa, S., Sherdshoopongse, P. and Boonsin, P. 2005.  

Adsorption Behavior of Some Metal Ions on Hydrated Amorphous Titanium 

Dioxide Surface. Songklanakarin, J. Sci. Technol. 27(5): 1017-1026.  

 

2. Hollingsworth, N., Kanna, M., Kociok-Köhn, G., Molloy, K. C. and 

Wongnawa, S. 2008. Synthesis and Characterisation of New Titanium Amino-

Alkoxides: Precursors for the Formation of TiO2 Materials. Dalton 

Transactions. 631-641. 

 

3. Kanna, M. and Wongnawa, S. 2008. Mixed Amorphous and Nanocrystalline 

TiO2 Powders Prepared by Sol-Gel Method: Characterization and 

Photocatalytic Study. Materials Cemistry and Physics. 110: 166-175. 



   

 

 
 

185

Proceedings 

1. Kanna, M., Wongnawa, S., Sherdshoopongse, and Boonsin, P. 2002.  The 

Adsorption of Metal Ions on Titanium Dioxide Surface.  The 1st PERCH 

Annual Scientific Conference. Garden Sea View Resort, Pattaya Chonburi, 

May 12-15, 2002. pp.124 (Oral presentation)  

 

2. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2005. Nanoparticle Titanium Dioxide Synthesis via a Sol-Gel Method. The 3rd 

PSU Symposium on Graduated Research. Prince of Songkla University, 

March 11, 2005. pp.90 (Oral presentation) 

 

3. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2005. Preparation of Nanoparticle TiO2 at Temperature below 100oC. The 4th 

PERCH Annual Scientific Conference PERCH Congress IV. Jomthein Plam 

Beach Resort, Pattaya Chonburi, May 8-11, 2005. pp.92 (Oral presentation) 

 

4. Kanna, M., Wongnawa, S., Sherdshoopongse, and Boonsin, P. 2002.  Study of 

the Adsorption Behavior of Metal Ions on Titanium Dioxide.  The 28th 

Congress on Science and Technology of Thailand. Queen Sirikit National 

Convention Center, Bangkok, October 24-26, 2002. pp. 97 (Poster 

presentation) 

 

5. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2004. Preparation of Nanosized Titanium dioxide at Temperature below 

100oC. The 30th Congress on Science and Technology of Thailand. Impact 

Exhibition and Convention Center, Muang Thong Thani, Bangkok, October 

19-21, 2004. pp.84 (Poster presentation) 

 

 

 



   

 

 
 

186

6. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2005. Nanosized Titanium Dioxide Powder Prepared by Sol-Gel Method. RGJ 

- Ph.D. Congress VI. Jomthein Plam Beach Resort, Pattaya Chonburi, April 

28-30, 2005. pp.218 (Poster presentation) 

 

7. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2005. Photocatalytic Degradation of Methylene Blue Using Nanocrystalline 

TiO2 Prepared by Sol-Gel Method. The 31th Congress on Science and 

Technology of Thailand. Technopolic, Suranaree University of Technology, 

Nakhon Ratchasima, October 18-20, 2005. pp.131 (Poster presentation) 

 

8. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2006. Decolourization of Crystal Violet (CV) using Nanocrystalline TiO2 

Prepared by Sol-Gel Method. The 1st Penang International Conferance for 

Young Chemists. Universiti Sains Malaysia, Pulau Pinang, Malaysia, May 24-

27, 2006. pp.189 (Poster presentation) 

 

9. Kanna, M., Wongnawa, S., Sirichote, O., Pakawatchai, C. and Boonsin, P. 

2007. Comparison between the Decolourization of Three Dyes (MB, CV, and 

CR) by Commercial and Hydrated Amorphous TiO2. PERCH-CIC 

CONGRESS V Theme; Chemistry for Innovation. Jomthein Plam Beach 

Resort, Pattaya Chonburi, May 6-9, 2007. pp.250 (Poster presentation) 

 

 




