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ABSTRACT

In recent years, moving traditional video surveillance systems into the Cloud-
based Video Surveillance (CVS) system or Video Surveillance as a Service (VSaaS) is significant
to support a large number of IP cameras via the Internet. Most concerned about applying the
cloud computing technology and quality of service rather than the scalability and flexibility of
the system. In this thesis, the two issues are considered in the design and implementation of
a VSaaS system architecture. The architecture addresses a flexible and scalable component-
based VSaaS that can be easily scaled from one server up to a complex cluster to support
the varying requirements of users. The publish-subscribe message passing mechanism has
been used for the cooperation between the controller and compute node worker, and it
contributes to the system fault tolerance and scalability. In case of cloud computing resource
management in this architecture, cloud services are accessed via Amazon AWS, especially
EC2 and S3 Application Program Interfaces (APIs) for computing services and object storage
respectively, as many cloud computing providers are supporting those APIs. Moreover, this
thesis also presents possible component deployment plans suitable for any size or type of
systems, which combine both physical and virtual machines. The API server applying the
REST interface and a token based authentication has been designed to support multiple types
of clients as well as to protect the controller from direct security attacks. Also, this thesis
presents the concept of having the compute node worker separately designed and worked
apart from the video processor. Therefore, not only the compute node worker can support
video processors but also related stream processing of which interfaces implemented based
on standard I/O.

In case of flexibility and scalability, the scheduling process plays an important
role for the computing resource usage efficiency of a VSaaS system. Few previous works de-
scribed video processing workload analysis and few video processing factors were revealed.
Having unknown resource usage information of video processing it usually is difficult to search
for an appropriate available computing node to assign for the requested video processing task.
This thesis discusses in details about video processing workload characteristics applying various
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parameters, such as the type of video processing task, frame rate, frame size, and computing
node specification. The analytical results have been applied to design the scheduler process
to suitably place video processing tasks at different compute node specifications. This thesis
proposes the video processing workload exploration for observing the capacity of available
compute nodes by varying the parameters of related video processing tasks. The exploration
data is then stored in a database to be used by the scheduler as the information for estimating
the video processing resource usage of a new video processing task. The method and algorithm
for estimating the resource usage of a new video processing task have been suggested, employ-
ing both data from the video processing task exploitation and CPU scaling factor. Furthermore,
this thesis suggests the scheduler’s criteria to assist the VSaaS administrator in optimizing the
system resource usage suitable for the system type needed.
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ชื่อวิทยานิพนธ สถาปตยกรรมระบบบริการตรวจตราดวยกลองวิดีโอที่ยืดหยุนและขยายตัวได
ผูเขียน นายธนาธิป ลิ่มนา
สาขาวิชา วิศวกรรมคอมพิวเตอร
ปการศึกษา 2559

บทคัดยอ

ในสวนของความยืดหยุนและการขยายตัวของระบบนั้น การจัดตารางงานเปนสวนสำคัญ
ในการทำใหการใชงานทรัพยากรการประมวลผลมีความคุมคา งานวิจัยกอนหนานี้ซึ่งมีจำนวนไมมากนักได
นำเสนอการวิเคราะหภาระงานการประมวลผลวิดีโอ โดยใชบางคุณลักษณะของการประมวลผลวิดีโอสำหรับ
การวิเคราะหการใชงานทรัพยากรการประมวลผล การที่จะหาหนวยประมวลผลที่เหมาะสมกับความตองการ

ในหลายปที่ผานมา มีการเปลี่ยนผานจากระบบตรวจตราดวยกลองวิดีโอวงจรปดแบบดั้งเดิม
เปนระบบตรวจตราดวยกลองวิดีโอที่ทำงานอยูบนระบบการประมวลผลแบบกลุมเมฆ หรือระบบบริการตรวจ
ตราดวยกลองวิดีโอ การเปลี่ยนแปลงดังกลาวสงผลใหระบบตรวจตราดวยกลองวิดีโอสามารถรองรับการประมวล
ผลวิดีโอจากกลองไอพีจำนวนมากผานทางระบบอินเตอรเน็ตได ระบบที่สรางขึ้นมาใหมนั้นโดยสวนใหญคำนึง
ถึงการประยุกตใชงานเทคโนโลยีการประมวลผลแบบกลุมเมฆ และคุณภาพการใหบริการ มากกวาคำนึงถึง
ความยืดหยุนและการขยายตัวไดของระบบ วิทยานิพนธนี้จึงสนใจในสองประเด็นดังกลาวเพื่อใชสำหรับการ
ออกแบบและพัฒนาสถาปตยกรรมระบบบริการตรวจตราดวยกลองวิดีโอขึ้นมาใหม การออกแบบสถาปตยกรรม
นั้นเนนแบงการทำงานของระบบออกเปนโมดูลตางๆ เพื่อใหงายตอการขยายระบบจากเครื่องเซิรฟเวอรเครื่อง
เดียว ไปยังกลุมของเซิรฟเวอรจำนวนมากที่มีความซับซอน เพื่อใหระบบที่นำเสนอสามารถตอบสนองความ
ตองการของผูใชงานระบบที่มีความหลากหลายและมีจำนวนมาก กระบวนการสงผานขอความในรูปแบบที่แบง
ออกเปน ฝายผลิตสื่อและฝายรับสื่อในลักษณะของสมาชิก จึงถูกเลือกใชงานสำหรับการสื่อสารระหวาง โมดูล
ควบคุม และโมดูลหนวยประมวลผล ซึ่งชวยในการปองกันความลมเหลวและเพิ่มความสามารถในการขยายตัว
ของระบบดวยอีกทางหนึ่ง ในสวนของการจัดการทรัพยากรการประมวลผลแบบกลุมเมฆนั้น ในสถาปตยกรรม
ระบบตรวจตราดวยกลองวิดีโอที่นำเสนอนี้ จะใชงานรูปแบบการเชื่อมตอผานทาง Amazon AWS โดยเฉพาะ
สวนของ EC2 และ S3 เปนหลัก สำหรับใชจัดการเครื่องคอมพิวเตอรที่ใชในการประมวลผลและการจัดเก็บ
ขอมูล ซึ่งผูใหบริการการประมวลผลแบบกลุมเมฆสวนใหญสนับสนุนรูปแบบการทำงานดังกลาว วิทยานิพนธ
นี้ยังไดนำเสนอรูปแบบการจัดการเครื่องเซิรฟเวอรที่ เหมาะสมตอสถานการณตางๆ เพื่อการใหบริการระบบ
ตรวจตราดวยกลองวิดีโอตามขนาดและประเภทของระบบที่ตองการ รวมถึงการใชงานระบบบนเซิรฟเวอรจริง
และเซิรฟเวอรเสมือน ในสวนตอประสานกับระบบหลักนั้นเพื่อใหสามารถรองรับเครื่องลูกขายไดหลากหลาย
ประเภท จึงใชรูปแบบการสื่อสารแบบ REST รวมกับการพิสูจนตัวตนดวยโทเคน การออกแบบดังกลาวยัง
ชวยปองกันระบบหลักออกจากการใชงานโดยตรงจากผูใชงานระบบเพื่อปองกันระบบหลักจากการโจมตีระบบ
จากภายนอก วิทยานิพนธนี้ไดนำเสนอหลักการแยกโมดูลระหวางโมดูลหนวยประมวลผล ออกจากโมดูลการ
ประมวลผลวิดีโอ เนื่องจากโมดูลหนวยประมวลผลนั้นสามารถทำงานรวมกับการโปรแกรมประมวลผลแบบอื่น
ที่ทำงานในลักษณะการประมวลผลสายขอมูลแบบตอเนื่อง ผานการพัฒนาสวนติดตอคอมพิวเตอรมาตรฐาน
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ของการประมวลผลวิดีโอนั้นทำไดยากหากไมทราบวาการประมวลผลนั้นๆ ใชทรัพยากรการประมวลผลไป
เทาใด ในวิทยานิพนธนี้จึงอภิปรายรายละเอียดของลักษณะการประมวลผลวิดีโอโดยใชัคุณลักษณะของการ
ประมวลผลวิดีโอตางๆ เชน ชนิดของการประมวลผลวิดีโอ อัตราเฟรมวิดีโอ ขนาดเฟรมวิดีโอ และคุณสมบัติของ
หนวยประมวลผล ผลจากการศึกษาลักษณะของการประมวลผลวิดีโอไดนำไปใชในการออกแบบกระบวนการ
จัดตารางงานที่สามารถหาหนวยประมวลผลที่เหมาะสำหรับการประมวลผลภาพวิดีโอนั้นๆ ได โดยที่สามารถ
ทำงานไดในทุกหนวยประมวลผลที่มีคุณลักษณะแตกตางกัน วิทยานิพนธนี้ไดเสนอใหมีหนวยสำรวจการประมวล
ผลวิดีโอเพื่อรวบรวมขอมูลของหนวยประมวลผล โดยปรับเปลี่ยนปจจัยตางๆ ที่มีผลตอการประมวลวิดีโอ
ขอมูลดังกลาวจะถูกบรรจุในฐานขอมูลเพื่อใชสำหรับประมาณการทรัพยากรการประมวลผลของการประมวล
ผลวิดีโอที่ เขามาใหม วิทยานิพนธนี้ ไดนำเสนอวิธีการประมาณความตองการทรัพยากรการประมวลผลของ
งานประมวลผลที่ตองการทำงานใหมโดยใชขอมูลจากหนวยสำรวจการประมวลผลวิดีโอและคาปจจัย CPU
นอกจากนี้วิทยานิพนธนี้ ไดนำเสนอเกณฑการจัดตารางงานเพื่อชวยใหผูดูแลระบบตรวจตราดวยกลองวิดีโอ
สามารถปรับแตงการใชงานทรัพยากรไดเหมาะสมกับระบบที่ดูแลอยู
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CHAPTER 1
INTRODUCTION

This chapter presents the overview information of the study. It consists of four
main parts: the Introduction and motivation, the objectives of this thesis, the scopes of the
study, and the contributions of the study.

1.1 Introduction and Motivation

Video Surveillance Systems (VSS) are widely used in many areas, including
residential areas, offices, factories, colleges, and traffic control systems, especially for security
reasons [1]. They are used for monitoring unusual events that endanger lives and properties.
Sometimes, video records become evidences or proofs in the justice procedure. Currently,
cameras and related equipment are inexpensive and can be easily installed. This simply
causes a significant increase in home use VSSes. Although the home use VSSes can efficiently
handle a few video cameras, it is difficult to manage when applying a large number of video
cameras in a large organization, such as a university, a hospital, a stadium, and a transportation
hub. Large organizations require a lot of video cameras to cover all their operating areas.
Therefore, good preparation and administration are essential for implementing a system for
such requirements. There are not only problems about deploying larger VSSes, but also the
VSSes have to sufficiently and efficiently provide storage space for the required time period
to store the involved video records. Any organization that plans to use a VSS has to prepare
some budgets to support its requirements.

Currently, the VSSes support Internet Protocol (IP) cameras [2] which connect
to a Network Video Recorder (NVR) or a generic computer for video processing. The video
cameras management and video processing software are usually bundled with the video cam-
eras or are sold separately. They usually are high-performance software, and can manage
a lot of cameras and special video processing but this comes with a price. Normally, free
video management software is specifically limited to certain types of cameras and it cannot
combine cameras from different manufacturers. Furthermore, VSSes must have appropriate
storage space corresponding to the time period to store the video records involved. Each video
record from a camera usually requires a lot of storage space. Consequently, if anyone wants
to set up a VSS, one has to pay for video cameras, processing units, additional storage space,
first-time installation, computing software, administration, and maintenance costs (to validate
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and verify the system availability). In order to reduce some costs, whoever want to set up their
own VSS can rent a video surveillance service in forms of Software as a Service (SaaS) over the
Internet. Currently, the characteristic of video cameras has changed from analog to digital as
IP cameras and SaaS on the Internet are widely spread in the market. Therefore, there are at-
tempts to transform VSS models into Internet services and provide video surveillance services
to many users, namely Video Surveillance as a Service (VSaaS). Such services can solve the
storage space problem, supporting a lot of video processing tasks and being able to elastically
increase the number of video cameras. The users only have to pay fees according to their
requirements. Although there are several video surveillance services in the market such as
SecurityStation [3], Secure-i HVR™ [4], and OVS™ [5], the technical issues behind the scenes
to provide such services, for example, the software architecture, resource management and
cost-effective optimization, are still not disclosed.

VSaaS generally supports online video recorders, surveillance video processors,
and online video storage. The main advantage of VSaaS is that the users can be less concerned
about system software/hardware maintenance, and instead focus on providing and managing
IP cameras. Also, the users can choose new video processing solutions as soon as the provider
deploys them on the system, without system reinstallation. In addition, provider competition
reduces operational costs and influences on best-quality video processing provision for the
users. Most current VSaaSes provide simple video processing, such as motion detection for
specific areas of interest, storage space, and an alert system. Unfortunately, there is a lack of
information about the employed technologies and VSaaS architectures due to trade secrets.
Also, some open video surveillance systems are not suitable for SaaS models because they
are designed to support specific applications. These include car tracking in parking areas and
traffic monitoring, which may not be applicable to home or residential areas. Moreover, it is
difficult to modify some types of software to run in a distributed manner to support SaaS due
to the tightly-coupled cooperation among the software’s components.

Recent works suggested the architectures of which their VSaaS systems were
implemented based on cloud infrastructure and big data technology, i.e., Amazon AWS [6],
and Hadoop [7], as Cloud-based Video Surveillance (CVS) systems. For instance, a Hadoop
MapReduce distributes image processing tasks and employs the Hadoop Distributed File System
(HDFS) for storing video records. Examples included P2PCloud [8], VAQACI [9], and the cloud
video recorder (CVR) system [10]. Another approach used Amazon AWS employing Virtual
Machine (VM) applying Amazon EC2 and cloud object storage using Amazon S3 [6] as described
by Hossain et al. [11], [12] and Rodriguez-Silva et al. [13]. However, these researches did not
reveal deployment information, such as how the components were placed, how to scale the
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computing units, the minimum number of servers that could be deployed on the system, the
front-end component arrangement for user access, and the provision of the video/camera
management services. In addition, some researches presented resource allocation techniques
and algorithms for minimizing the number of VMs on cloud infrastructures, including works
done by Nan [14], Miao et al. [15], and Hossain et al. [11], [12]. Their proposed methods
supposed that video analysis workloads consumed static computational resources. Therefore,
the VM providers provided the same VM capacity and capability for all types of workloads. In
reality, the VSaaS system has to support different video analysis workloads which are combined
from any customers. Consequently, the resource allocation for VSaaS must consider factors
involving the type of video analysis, video frame size, and frame rate.

According to resource allocation for VSaaS, video processing tasks consume
different computing resources according to their kind of video processing, video frame size,
and frame rate. Video task processing on different computing machine specifications involves
different computing resource consumptions according to different CPU vendors, CPU architec-
tures, and CPU frequencies. It is hard for the video processing task scheduler to accurately
predict computing resource consumption as different tasks involve different data input result-
ing in various types of video processing analysis. The suitable methodology for estimating
different computing resource consumptions is to run a video processing testing suite to collect
the related consumption results. The information can be concluded as a heuristic for video
processing task scheduling. The heuristic can also be automatically adjusted to a particular
computing resource pool by rerunning the testing suite on the appearance of new machines.

The objective of this thesis is to purpose a VSaaS system which works on In-
frastructure as a Service (IaaS), focusing on software system architecture, system behaviors,
and user requirements. The system architecture is based on traditional cloud services: the
compute service employs Amazon EC2, and the object storage service utilizes the Amazon S3
Application Program Interface (API). The VSaaS can easily add new computation node workers
to support the ever increasing number of IP cameras, and also saves time and energy in plan-
ning and controlling the system performance. In addition, this thesis presents video processing
workloads and task scheduling running on both physical machines and VMs on a cloud infras-
tructure. The proposed scheduling method considers different video analysis configurations
from various VSaaS users on heterogeneous computational units. This workload analysis and
task scheduling aim to provide that the system can place a video processing task on a suitable
compute node.
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1.2 Objectives

1.2.1 To propose a system architecture for VSaaS running on both physical machines and
VMs that can serve a large number of users on the Internet, and handle many IP
cameras. The users can add or remove IP cameras to and from the VSaaS.

1.2.2 To propose a video processing task scheduling based on actual computing resource
consumption from video processing workloads. The resource predictor module con-
siders several factors including the kind of video processing, compute node specifi-
cation, and video frame size and rate.

1.3 Scopes

1.3.1 This thesis involves generic video processing found in residential areas, such as mo-
tion detection and video recording. It does not consider the video processing for
specific functional areas.

1.3.2 The proposed VSaaS is tested on a private IaaS system which is built from five generic
PCs using the OpenStack software suite.

1.3.3 This thesis assumes that the IaaS provider or private cloud system can provide un-
limited storage space to store video records.

1.3.4 The proposed VSaaS architecture works with a cloud infrastructure employing Ama-
zon AWS, especially Amazon EC2 and Amazon S3.

1.4 Contributions

1.4.1 Presenting the new component-based design to promote the scalability and flexibility
of VSaaS which easily scales the VSaaS services for supporting different sizes of IP
cameras and user requirements as follows:

(a) Encapsulating the functionalities of each component.

(b) Running on both physical machines and VMs provided by an IaaS cloud provider.

(c) Separating the VM layer to the VSS layer by using components.

(d) Deploying scenarios based on seven topology configurations.
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(e) Using open-standard, human-readable JSON file format to configure the com-
ponents for various usage scenarios.

1.4.2 Proposing the task scheduling techniques to ensure the scalability of the system that
can support large numbers of users and IP cameras.

1.4.3 Presenting a video processing tasks resource consumption predicting module to en-
sure that the scheduler can place the required tasks on suitable compute nodes.

1.4.4 Conducting experiments and summarizing the results to assess the flexibility obtained
from the component-based design.

1.4.5 Evaluating the proposed task scheduling techniques to ensure the scalability of VSaaS
can support the required tasks when increase the numbers of users and IP cameras.
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CHAPTER 2
LITERATURE REVIEWS

This chapter is to provide background information applied in the thesis includ-
ing video surveillance systems, cloud computing, and cloud-based video surveillance. The
video surveillance section describes current video surveillance systems and modern video
surveillance technology. The next section introduces cloud computing and moving traditional
video surveillance to the cloud. Finally, the last section concludes all literature reviews related
to video surveillance as a service system design.

2.1 Video Surveillance Systems

Video Surveillance Systems (VSS) currently employ two types of cameras:
closed-circuit television (CCTV) and IP cameras. Many CCTV systems do not only record video
but can also perform functions such as motion detection and recording motion video footage.
However, CCTV systems have limitations concerning camera usage distance, storage capacity,
installation and reconfiguration problems when adding new cameras or new Video Content
Analysis (VCA) algorithms. IP camera systems avoid these restrictions with longer working dis-
tances and wider areas. They can easily be plugged into any computer network in order to
distribute data across the Internet. IP camera systems commonly provide computers capa-
ble of VCA and recording. The systems can be scaled up to support many IP cameras, and
offer new or sophisticated VCA features. Currently, VSSes are moving away from standalone
applications toward software as a service for providing a large computing unit that supports
a larger number of users. In this section, this thesis compares traditional and modern video
surveillance systems which motivate the improvements proposed in the design.

2.1.1 Traditional Video Surveillance Systems

Current VSSes are employed in many applications [1], [16], [17], [18], [19]. They
have been used in wide areas and have processed videos from many cameras. Traditional
VSSes supporting IP cameras [2] were often connected to a Network Video Recorder (NVR)
or a generic computer to provide VCA. Home use VSS software including the video camera
management and VCA were usually bundled with IP cameras. The user had to install system
software on a computer which allowed it to connect to the IP cameras. The vendor software
was limited to their types of cameras and could not interface with cameras from different
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suppliers. Also, high-performance software that could manage a larger number of cameras
and provide special VCA was usually sold separately as additional software. Usually, this kind
of software was very expensive and required complex configuration. Anyone wants to set up a
VSS would incur many expenses apart from the cost of the IP cameras, including the expenses
of first-time installation, network equipment, maintenance and additional computing software.

In typical VSSes, the data was collected from video cameras and delivered to
video processing units. A typical flow of the video processing units in VSS started with object
detection and ended with storing the information into a database as shown in Figure 2.1 [1].
Many systems required specific configurations. They had certain limits according to the man-
ufactured cameras. Some video processing tasks required complex computation. Therefore,
many systems tried to reduce the computation time on complex system architectures.

Figure 2.1: A typical flow of video analysis in a surveillance system.

Figure 2.1 shows a typical flow of video analysis in a VSS. There were many
video analysis systems, applied to surveillance applications, proposing a flexible architecture,
reconfigurable, and failure prevention. Many researches proposed component based architec-
tures due to flexibility, easy configuration and development. Most development frameworks
were, however, standalone applications and could not automatically handle a large number
of cameras.

2.1.1.1 Video Surveillance Software

Generally, home use VSSes have been developed for a single computing unit
including IP camera setting, video record management, and simple video processing. They
can handle about two to ten cameras according to their computer capability. However, this
kind of architectures can scale the system up for supporting video streams sent from a lot
of cameras. In this method, it typically assigns that the video streams go into the computing
node as shown in Figure 2.2. If there is any failure in a computing node, the video processing
in the node will be stopped until the crash has been fixed. In this situation, the information
would be lost. In case of video processing that requires high accuracy, it may affect other
parts of the system process. This implementing pattern costs much lower than that of a large-
scale software architecture, but it needs an administrator with a high level of skills for system
deployment, management and maintenance.
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Figure 2.2: Current video surveillance architecture.

There are many free and open source video surveillance software running
on standalone computers, such as ODViS [17], OpenVSS [19], and Zoneminder [20], which
provide video camera management, simple VCA, video playback and video record storage.
Most software are easy to install, configure, and use. However, their software components are
rather atomic and hard to scale. One solution is to add a new computing node and re-configure
the VSS. However, the number of cameras continuously increases and VCA configurations vary
as for different vendors. It, therefore, is difficult to manage and maintain the expanding system
with heterogeneous devices.

The other type of VSSes is a distributed system or a client/server model with
a processing control unit and a video processing subsystem. The server distributes works to
other computing nodes in order to enhance the computing performance and reduce the fail-
ure of network communication. Some VSSes have not been designed for scaling or preventing
failures. Most system designs are mainly aware of the camera cost. Generally, a VSS is a
standalone application running on a single physical desktop. Therefore, it cannot distribute
works to others. The system development mainly focuses on enhancing the performance of
the video processing algorithms while trying to reduce the system resource usage as much
as possible and also provides cooperative video stream processing. Some systems focus on
processing multiple cameras on a single physical machine and lack of system flexibility. There
are several softwares proposing this kind of VSS, utilizing a software architecture consisting of
many components and processing layers, such as IVSS [21], DiVA [18], CANDELA [22], S-VDS
[23], and SSF [24]. These distributed architectures are designed to support a large number of
cameras and various configurations. The components can be distributed across many com-
puters to provide higher performance VCA and system availability. However, the architecture
must be carefully configured as it includes different modules running on separate machines,
and requires tightly-coupled work cooperation. Moreover, these kinds of systems require a
specialist to determine which components need to be scaled up.
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Exploiting the Internet, some video surveillance software provides online sys-
tem access for video camera monitoring, video storage, and software configuration. Examples
include ViSOR [25], S-VDS [23], and MoSES [26]. Although, this makes it easier to access the
system, users must prepare a large amount of budget for hardware, software, and service
charges.

2.1.2 Video Surveillance as a Service

Online video storage enhances traditional VSSes by increasing user conve-
nience, and has influenced research on remote video surveillance recorders and VCA on the
Internet [27]. One advantage of this architecture is that it can serve any IP camera from any
location to users anywhere across the Internet. Users do not have to own recording and stor-
age hardware. Instead, they can just rent an NVR or a VCA from a video surveillance provider.
The provider offers an Internet based recorder and storage space via a service package which
matches the user’s requirements. However, it is hard for the video surveillance provider to
predict the required supply of computing and storage hardware for on-demand processing.

Basically, Video Surveillance as a Service (VSaaS) is a VSS in a cloud environ-
ment for supporting users located at different places as shown in Figure 2.3. In Figure 2.3, the
users register and record their IP cameras to the VSaaS system, and also pay the service charge
over a billing period. VSaaS providers provide several facilities for managing the cameras, video
processing, storage, and billing. The VSaaS system can scale the video processing part for sup-
porting various, dynamic, and a lot of video content analysis for users. Therefore, several
VSaaSes have been deployed on cloud infrastructure using any cloud services, especially elas-
tic computing units and object storage. VSaaS systems can request for dynamic computing
resources and can easily scale the system up according to the system requirement.

The main advantage of VSaaS is that the users can be less concerned about
system software/hardware maintenance, and instead focus on providing IP cameras. Also,
users can choose new video processing solutions as soon as the provider deploys them on the
system, without system reinstallation. In addition, provider competition reduces operational
cost and provides best-quality video processing for the users. Most current VSaaSes provide
simple video processing, such as motion detection for specific areas of interest, storage space,
and an alert system. Unfortunately, there is a lack of information about the technologies and
VSaaS architectures due to trade secrets. Also, some open VSSes are not suitable for SaaS
models because they are designed to support specific applications. These include car tracking
in parking areas and traffic monitoring, which may not be applicable to home or residential
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Figure 2.3: Overview concept of VSaaS

areas. Moreover, it is difficult to modify some types of software to run in a distributed manner
to support SaaS due to the close cooperative work among the software’s components.

A new video surveillance platform has emerged from cloud computing tech-
nology, especially IaaS such as Amazon Web Service (AWS) [6], Hadoop, and virtualization tech-
nology. It provides more system availability, security, reliability, and maintainability for CVS
than traditional software [28]. Cloud technology changes remote video surveillance into VSaaS
which is a SaaS model. This kind of architectures solves problems concerning limitations of
computing resources, such as storage space, computing unit, and network management. Cloud
computing enables a remote video surveillance provider to start with a small VSS which can
later grow according to the users’ demands. Consequently, the provider does not need a
high budget for starting the business and does not need a complex hardware supply plan for
supporting user requirements. Current VSaaSes in the market provide an NVR, a simple VCA,
and storage space for collecting video records. The VSaaS providers offer various service plans
of which their customers choose based on their requirements. Examples of VSaaS currently
provided in the market include SecurityStation [3], Secure-i Hosted Video Recorder™ [4], and
OVS™ [5].

Many CVS systems can be classified into two groups by the cloud technology
they use. The first group implements their video surveillance architecture based on Hadoop
technology which includes MapReduce and the Hadoop Distributed File System (HDFS). Exam-
ple systems of this group are P2PCloud [8], VAQACI [9], and CVR systems [10]. They utilize
the HDFS to store video records and to provide high performance video retrieval. In addition,
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MapReduce can automatically distribute processing tasks to Hadoop computing nodes. This
ability means that a large number of video records can be distributed as VCA tasks to Hadoop
nodes.

The second group implement IaaS by employing Amazon AWS as a video
surveillance tool. Examples of this group include the systems developed by Hossain et al.
[11], Rodriguez-Silva et al. [13], and Chen et al. [29]. Normally, this kind of architectures uses
the Amazon Simple Storage Service (Amazon S3) to collect video records and the Amazon
Elastic Compute Cloud (Amazon EC2) to provide VMs as computing units.

Both groups of CVS systems transform the tasks of video surveillance applying
cloud-based technology as the software does not depend on any development framework.
However, the architecture designs in [11], [13], and [29] are rather general. For example, it is
unclear how issues are handled such as the compute node number for the first-time installation
or component distribution during deployment and system scalability.

Previous works [11], [12], and [14] as focused on CVS system design, mainly
utilized Amazon EC2 and S3 API. Most works were interested in optimizing resource allocation
especially VM such as works proposed by Hossain et al. [11], Nan et al. [14], Hossain and Song
[30], Yang et al. [31]. Hossain et al. [11] presented a VM allocation scheme for supporting
video streaming for emergency officials. Nan et al. [14] proposed a cost effective resource
allocation optimization approach for multimedia cloud that was based on a queuing model.
Hossain and Song [30] presented a VM resource allocation model to satisfy Quality of Service
(QoS) requirements for CVS. Yang et al. [31] proposed a mapping approach for placing het-
erogeneous VM instances into heterogeneous physical machines based on video surveillance
workloads. Hossain et al. [12] described a VSS framework for dynamic workloads such as
face detection and storage tasks. Alamri et al. [32] and Hossain [33] were interested in QoS
for distributed video surveillance services, especially video transcoding. They proposed a VSS
and a service configuration algorithm based on video transcoding workloads. Hossain [33] de-
scribed video workloads involving 320x240 pixels at 30 frames per second (FPS). Alamri et al.
[32] presented computing resource consumption for surveillance video streaming and video
repurposing/transcoding, but without any information about video workloads. Unfortunately,
there have been few video processing factors and workload characteristics which identify the
computing resource consumption.

Other interesting works involved CVS as follows: Miao et al. [15] presented an
optimizing resource allocation for cloud-based rendering between cloud and mobile phones.
Song et al. [34] proposed a parallel encoding and queuing analysis for remote display of video
surveillance desktop in cloud environment. Sharma and Kumar [35] proposed an architectural
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framework for human activity recognition in CVS environment. Chen et al. [36] presented a
video analysis service for integrating into the existing CVS, the implementation is available in
the CityEyes system [29].

Deploying VSaaS in a cloud computing environment involves VSaaS system
design and computing resource management, two issues which affect the quality of service.
Video task scheduling involves symmetric video analysis workloads, including the frame size
and rate, and video analysis type, running on a homogeneous computing units. Such VSaaSes
display high resource efficiency when everything is static but these settings restrict the flex-
ibility of the VSaaS’s capacity, and do not alway support user requirements. Furthermore,
when some computing hardware is replaced, the infrastructure will be changed from a homo-
geneous to a heterogeneous computing system. Therefore, flexible resource management is
needed in VSaaS systems, especially for task scheduling handling dynamic user requirements
and heterogeneous computing units.

2.2 Cloud Computing

Cloud computing [37] [38] is a popular computing model to support large
volumetric data [39], and focuses on the concept of user request services and the pay-as-
use schema. There are many definitions for cloud computing. However, it is well known as
everything as a service. There are different categories of cloud services. The most currently
interested and generally served has three layers which are SaaS, Platform-as-a-Service (PaaS),
and IaaS as shown in Figure 2.4 [39]. The IaaS is the kind of services in cloud computing,
which provides VMs for customers. The customers do not own physical hardware but can
access the VMs which work as real servers via the Internet. According to IaaS, a VSS runs on
IaaS can easily scale the processing resources according to the customers’ requests. The video
surveillance providers who choose to provide their system on cloud computing can pay for the
VM resources they use only. Therefore, this approach can reduce the startup cost (computing
hardware). They can also focus on only the software development.

In Figure 2.4, the IaaS provides a highly flexible computer infrastructure to
other layers such as VMs, computer storage and network. Customers can pay for a flexible
price as their companies grow relating to their applications’ time to market. This kind of services
has significantly increased as observed from Amazon EC2, GoGrid, Rackspace, etc. The SaaS
delivers software over the Internet. It is a modern distribution software model. The user can
access most applications through websites, for example, Gmail, Facebook, etc. It also has
centralized features or maintains security updating.
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Figure 2.4: Cloud computing layered architecture.

In case of changing the VSS served on the Internet, customers do not need to
care about software maintenance and can choose new video processing solutions as soon as
the provider deploys them without new system installation on the user side. The customer can
care less about software and hardware maintenance, and focus on providing IP cameras only.
On the other hand, the providers may compete with each other by reducing the operational
cost and provide best quality video processing to customers. Therefore, the providers have
to optimize their video analysis system to consume little electricity power and provide cost
effective computer resource utilization, and meanwhile, keep the QoS up to the customers’
satisfactory.

2.2.1 Video Surveillance in the Cloud Environment

Currently, cloud computing has been well known as an information technology
platform. Some companies have moved the video surveillance architecture to run on cloud
computing in forms of a SaaS model shown in Figure 2.3 and charge the users by calculating
from the storage amount and the number of IP cameras used. As shown in Figure 2.3, the users
can plug-in video cameras to the Internet at any place. VSaaS concerns capturing video streams
from IP cameras, encoding and storing them in the cloud storage, and charging the user for
the related storage space package. Providing video surveillance services on cloud computing
needs to be aware of the QoS, performance management and consolidation problems.

2.2.2 Video Surveillance as a Service Over Infrastructure as a Service

VSaaS facilities are for providing services with elasticity properties while tech-
niques for exploiting system resources are not publicly apparent or clearly explained. For
current video surveillance architectures, it is the system administrator’s job to provide suffi-
cient computing resources for the system request. However, this approach may not always be
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appropriate. The system often uses computing resources inefficiently, and it is rather expensive
(incurring hardware, storage and electricity costs).

The current trend for cloud computing services is that users popularly use
IaaS. The evidence can be observed from the requirements for VMs in Amazon EC2 or Virtual
Private Server (VPS). The customer does not need to own any physical machine, instead they
can own VMs on the Internet. Considering the elasticity of the cloud computing characteristics,
transforming the current video surveillance software onto SaaS and running on IaaS will allow
the system to easily start a VM with required resources.

Although Neal and Rahman [40] [41] showed higher pricing in deploying VSaaS
on public IaaS, current results show that the total cost of cloud services is less expensive than
purchasing and deploying the hardware locally. Also, they proposed a cost effective scheme
by combining two separate cloud computing vendor solutions together to take advantage of
available pricing. Fully, deploying VSaaS on public cloud is quite expensive. VSaaS deploying
cloud technology is necessary for supporting technology transformation. In addition, many
organizations continuously change their infrastructure to a cloud computing platform or a
private cloud service. The VSaaS system can be deployed on private cloud to reduce the
hardware complexity. Some organizations gradually change their infrastructure to a cloud
platform, so that at time there can be hybrid infrastructures including cloud and legacy physical
servers. Therefore, in real usage the VSaaS architecture should be able to adapt the design for
supporting both cloud technology and physical hardware for seamless deployment.

2.3 Summary

VSaaS is a new platform for modern VSS that provides video surveillance ser-
vice using cloud computing technology. It reduces hardware and maintenance cost, and is
friendly for general users who seek for home VSS. Although, there are many VSaaS systems
designed for supporting a large number of users. They still lack of information about technical
system design, scalability, and deployment topologies. The other issue for deploying VSaaS is
video task scheduling. The scheduler essentially responds to different configurations of video
processing tasks and places them on suitable compute nodes. This issue received less con-
cern on many pieces of research, but it is essential and difficult to handle various tasks on the
VSaaS. The VSaaS system design and video task scheduling are important issues being focused
in this thesis.
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CHAPTER 3
SYSTEM DESIGN AND IMPLEMENTATION

This chapter presents details of the proposed VSaaS called the “Nokkhum”
(a Thai word for “Asian quail”) system. First, it introduces the Nokkhum design concept ad-
dressing a scalability, flexibility and specification of the proposed VSaaS. Second, it presents
the Nokkhum system design describing the architecture definition, components, and system
scalability. Third, the analysis of video workload characteristics which identify the video pro-
cessing workloads considering several factors. Fourth, it proposes Nokkhum scheduling using
the analysis results in the scheduling design to place the required video processing task in a
compute node. Finally, the summary section summarizes all presented issues.

3.1 Nokkhum Design Concept

According to the VSaaS paradigm, a provider offers video processing and stor-
age service to users. The users must register their information for opening an account with
the provider and can then use VSaaS services provided by the VSaaS system via the Internet.
The provider must prepare the VSaaS system and provide services which are available to users
at all times. The system must handle dynamic user requests and start the required video
processing processes when and where it is appropriate. Many video surveillance systems are
designed to support a single organization with groups of users, but VSaaS tends to be more
complex by including various organizations and groups.

The benefits of cloud computing such as reliability, scalability, dynamic re-
sources provision, and quick deployment, enable VSaaS providers to provide their services
exploiting minimal computing units, and to dynamically scale the computing units according
to user requirements. This motivation is the major influence for designing the proposed VSaaS
architecture utilizing the elastic computing and storage service from the cloud platform.

Public cloud services currently are quite expensive for providing such a VSaaS
system to wide area users. Also, it is difficult to deploy the VSaaS to perform better than the
breakeven point. However, the advantages of cloud computing technology help to deploy
applications easily, and also many organizations are on progress in transferring from the legacy
physical computing units to apply a private cloud platform. Nowadays, system software cannot
avoid the cloud technology involvement in designing the VSaaS. Therefore, the proposed VSaaS
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system has to support both cloud computing and physical machines for a smooth transition
in the current stage of technology.

The proposed Nokkhum architecture is a VSaaS system that can runs on top
of a cloud infrastructure. Both the system size and the business size can be easily scaled to
match the user requirements. The VSaaS design is divided into five components for support-
ing scalability and flexibility, and can simply distribute all components to different sizes of
machines. Moreover, the architecture is designed to run on physical machines if necessary,
in order to offer the best video processing performance, a small VSaaS system, and hybrid
deployment.

3.1.1 Video Surveillance as a Service Design Specification

This section presents a specification for designing the Nokkhum VSaaS. The
expected VSaaS system is to be designed to fulfill the following requirements:

1. The proposed system can support multiple users and different organizations.

2. The system can be deployed on physical and virtual machines.

3. The system can run on IaaS by implementing AWS EC2 for elastic computing and AWS
S3 for object storage.

4. The proposed system can be deployed on a single machine and extended to a large
scale system of which components are distributed to multiple machines.

5. Focus on to deploying the system on a heterogeneous machine specification and the
compatibility of legacy computer systems.

6. All VMs utilize Kernel-based Virtual Machine (KVM) [42] as a virtualization infrastructure.

7. Study on three video processing tasks including video recording, motion detection, and
motion recording, employing OpenCV [43].

8. The proposed system can support a variety of video formats according to user require-
ments.

• Eight frame rates: 1, 5, 7, 10, 15, 20, 25, and 30 FPS.

• Six frame sizes: 160x120, 320x240, 640x480, 800x600, 960x720, and 1120x840
pixels.



17

• Support recommended video input/output by SWGIT [44] at the resolution of
640x480 pixels, and the frame rate of 30 FPS.

• Ogg codec [45] is used as a default codec for video output.

9. The video processing task scheduling design is based on first-come, first-serve (FCFS)
scheduling.

10. The scheduling applies real computing resource consumption in heterogeneous ma-
chines.

11. The VIRAT Video Dataset [46] is employed to explore the resource usage of video pro-
cessing and to verify the scheduling results.

3.1.2 Nokkhum Scalability Design

The scalability of the Nokkhum VSaaS architecture is designed by using the
following assumptions:

1. The video surveillance system can run on both physical servers and a cloud IaaS.

2. The architecture automatically acquires VMs to support the customer’s changing re-
quirements.

3. The VSaaS provides a private cloud for an organization and/or a public cloud for user
groups.

4. The VSaaS fully supports IaaS with the Amazon EC2 and Amazon S3 APIs, and also is
suitable with a system that uses only a physical server or more.

5. The VSaaS starts as a small system, and can easily scale up to match dynamic user
requirements.

6. The design aims for a system that utilizes a broadband network throughout.

Following the above assumptions, Nokkhum VSaaS is a highly scalable architec-
ture composed of five components. The controller manages system resources and scheduler
for passing video processing tasks to a suitable compute nodes. Consequently, each compute
node includes a system resource reporter and a video processing task starter to help the con-
troller monitor the computing resource pool and to start the task according to the controller
requirement consecutively. Message oriented middleware (MOM) [47] [48] is employed to
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exchange information among the main distributed components using publish–subscribe pat-
tern, and allows the components to be distributed across different computing platforms (both
generic personal computers and VMs).

3.1.3 Nokkhum Flexibility Design

The MOM increases system availability, because if some components crash,
the other components in the system can still continue running. Nokkhum VSaaS is designed
to flexibly tolerate difficult scenarios such as:

1. When the electricity is cut off, or the network is out of service at a video camera site,
the system can automatically recover after the camera becomes available again.

2. If a compute node worker has a problem, e.g. the network is out of service, a program
crashes or a message broker disconnects, then the system can provide an alternative
compute node worker.

3. If the Nokkhum controller does not respond, but the compute node workers are still
running, then the video processors can continue working. When the controller resumes,
it can recover its previous states by processing the information collected in the message
broker server and database server.

4. If the message broker server does not respond, then the compute node worker, and the
controller can continue running with the last available information. After the message
broker server resumes, the compute node worker and the controller will start their
communication again.

5. The system can start on a single machine and scale up by adding more worker machines.

3.1.4 Summary of Nokkhum Design

The Nokkhum VSaaS system has been designed for a flexible, scalable component-
based architecture which can deploy the components on both physical and VMs running IaaS
using the Amazon AWS API (EC2, S3). It has been designed and developed to support video
applications for various organizations and business sizes, where the deployment and config-
uration involve a flexible range of computing units. It has an API interface server providing
a REpresentational State Transfer (REST) over Hypertext Transfer Protocol (HTTP) [49] which
supports any client platform, and is able to control, view, or manage video analysis, video
recording, and camera configuration.
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The Nokkhum components begins when the user composes a video processing
configuration using the web interface, and submits it to the API. After the API has validated the
configuration, it stores a video processing command in the database, which the controller later
reads. It finds a suitable computing node which connect to the others through the MOM. The
suitable computing node starts a video processor with the configuration from the user which
processes the video stream following the user’s configuration. All output from the processor
is immediately pushed to cloud storage. In addition, the user can manage the status of the
video processing and playback video records via the web interface.

Nokkhum’s scalability benefits from the MOM which enables it to distribute
components to many servers. This thesis supposes that VSaaS may be provided in the cloud
environment employing different computer specifications for video processing. In order to
do so, the video processing task scheduling has to be designed for supporting heterogeneous
computing nodes which are connected to the Nokkhum system. The scheduling method has
to relate on video processing workload analysis and resource estimation on the Nokkhum
VSaaS. The proposed method is based on video processing task exploration involving different
frame rate and size, type of video processing and computer specification. The task exploration
collects and records CPU and memory usage in a database for the scheduler to utilize it in
computing resource estimation for allocating a new video processor task to a suitable compute
node. When there is a new compute node in the VSaaS system, a video task scheduler many
inefficiently place a new video processing task on a new compute node. This could cause
video frame drops, or processing task crashes or termination either with or without an error
due to insufficient resources. Therefore, the scheduling design has to estimate a new video
processing task based on the existing experimental results.

3.2 Nokkhum Component-based System

This section presents a component-based video surveillance architecture in-
cluding five components for providing a VSaaS on both physical servers and VMs. Nokkhum
system can deploy the components on a hybrid system of physical servers and VMs via the
Amazon EC2 API and also Amazon S3 API for image and video record storage. This method
engenders system portability so that the VSaaS system is suitable for different business sizes.
In addition, an API server supports interfaces from any client by utilizing a REST style architec-
ture via HTTP. In summary, this thesis proposes a flexible and scalable system architecture,
and components design and implementation, for providing VSaaS on physical server and IaaS.
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Nokkhum VSaaS consists of five components (see Figure 3.1): controller, com-
pute node worker, video processor, API, and client (web interface). VSaaS users can access
and control their video processing tasks via a web interface connected to the API server. The
controller is a daemon process that handles user requests from an API server and directs
commands to available compute nodes using the MOM. The compute node worker receives
commands from the controller via a message broker, manages its video processors, monitors its
resources, and reports status details back to the controller. In this thesis, the video processors
are implemented using OpenCV.

Figure 3.1: All components and modules of the Nokkhum VSaaS.



21

3.2.1 Nokkhum Components

Nokkhum consists of five components developed with C++ and Python as
shown in Figure 3.1. Each offers specific functions and work cooperation for enabling sys-
tem availability. The following sections describe the five components, namely the Nokkhum
controller, Nokkhum compute node worker, Nokkhum video processor, Nokkhum API, and
Nokkhum client shown in Figure 3.1.

3.2.1.1 Nokkhum Controller

The Nokkhum controller is a daemon process made of multiple modules and
sub-controllers which perform many tasks as shown in Figure 3.2. The most important module
is resource management, which is handled by four sub-controllers:

Figure 3.2: Modules and sub-controllers of the Nokkhum controller.

• The task controller is a central video processing controller which handles VCA tasks
via the task monitor and task manager. It deals with a new task as to start the task in a
suitable compute node. The task monitor checks all running video processor tasks. If
one does not respond, then the task monitor will send a command request to restart the
processor task. The task manager provides an interface for controlling video processor
activities and is mainly used by the task scheduler.

• The compute node controller is a compute node worker manager which processes all
the resource status reports. The data is delivered from Nokkhum compute node worker
sensors via the message broker server. A resource status report includes total CPU usage,
total memory usage, and total hard disk usage of a particular compute node worker. It
also includes video processing resource usage data, such as CPU usage, memory usage,
important video processor results, and the availability status of the video processor. If



22

the resource status report shows that a video processor is unavailable, then the com-
pute node controller will call the task controller to restart the video processor. Besides,
when the task scheduler or the VM controller requests for a compute node worker’s
resource information, the compute node controller will provide that information, and
predict the resource usage for all the compute node workers. Currently, this prediction
utilizes a Kalman filter [50] applying to the last 20 compute node resource status reports.
The compute node controller supports both physical servers and VMs.

• The VM controller enables Nokkhum to control VMs using the Amazon EC2 API. It
acquires a resource prediction from the compute node controller to decide whether
to terminate a VM or to start a new one. The VM controller will acquire a new VM
when there is a command waiting in the processor command queue, and there is no
computing resource to handle it.

• The storage controller manages video records and images. Part of its duties are to
remove expired video records of any video processor.

Apart from resource management, the Nokkhum controller also includes a
task scheduler, a notifier, and a billing process module:

• The task scheduler allocates video processors or VCA tasks to the most suitable
Nokkhum compute node workers. It acquires resource information from the compute
node controller and starts video processing tasks via the task controller. This module
has a command waiting for the queue that collects processing commands from the user
and recovers commands from the task controller.

• The notifier module provides alert messages to users those have activated this module
via a video processing task. This module is activated when the compute node controller
receives a resource status report that includes a notification message.

• The billing controller handles billing processing for the Nokkhum VSaaS.

The Nokkhum controller deals with the users’ video surveillance requirements
and calls compute node workers to start surveillance applications via a message passing
method. It starts the work by retrieving video processing action commands from the database
and directs them to available compute node workers. In this way, it can start and stop video
processing tasks, and check video processing status details. The controller directs message
commands to computer node workers using the message broker server. The compute node
workers then build the related video analysis processes.
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3.2.1.2 Nokkhum Compute Node Worker

A compute node worker is a daemon process that runs on each computation
node. It provides computer resource monitoring, video processing task monitoring, and video
processing deployment interface as shown in Figure 3.3. The compute node worker uses PIPEs
[51] for communicating with the video processors and reports information resource updates to
the controller using message passing. The compute node worker consolidates the video pro-
cessing tasks assigned by the Nokkhum controller. The tasks include video analytical solutions
such as motion and face detection. The compute node worker includes resource sensors for
monitoring the availability and capacity of computer resources and collects the information
about the controller’s monitoring. The compute node worker also includes resource sensors
for monitoring usage requirements, such as the CPU and memory utilization, and storage space.
This resource information is delivered to the Nokkhum controller.

Figure 3.3: Modules of Nokkhum compute node worker.

One important module in the compute node worker is the video processing
task manager which controls and monitors tasks and the task pool. This module manages
the task life cycle involving the creation and termination of tasks. Also, the manager can
watch task behaviors and handle shortcomings in order to promote system availability. The
video processing task runs on a compute node worker containing video processing solutions
for the video surveillance system. When the video processing task obtains logging messages,
this module sends the messages to the controller via a resource status report. The output
uploader module uploads images and video records to cloud storage via the Amazon S3 API.
After the video processor output has been completely uploaded, the module can release it
from the hard disk. In addition, if a compute node worker crashes, the tasks running on it
will be terminated and restarted on another compute node worker without affecting other
workers.
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3.2.1.3 Nokkhum Video Processor

A Nokkhum video processor provides a VCA as a set of video analysis modules
using the OpenCV library as shown in Figure 3.4. The camera configuration and video processor
attributes are described using JavaScript Object Notation (JSON) [52] for building a video pro-
cessing process. The camera configuration is a JSON object containing attributes such as the
name, Uniform Resource Identifier (URI) [53], width, and height. The video processor attribute
is a JSON object which contain a JSON array and identified by “processors” keywords. The
video processor attribute allows the use of nested descriptions for complex configurations.
The Nokkhum video processor parses JSON information from the compute node pipe that
works as a standard input and constructs video processing threads. The video processor is a
computing process controlled by the compute node worker.

Figure 3.4: Modules of Nokkhum processor.

The Nokkhum video processor is flexible because users can design their VCA
via JSON configurations. This thesis implements this component by employing threads and
queues of image objects. Each video analysis is a running thread which connects to others
via an image queue. Each video analysis thread generally includes two queues for image
input and output. The video analysis thread receives an image object from the input queue
and processes it. Afterwards, it puts the object into the output queue for another thread. A
configuration example for the Nokkhum video processor is shown in Figure 3.5.

Figure 3.5 shows a configuration example involving four video processing mod-
ules: a motion detector, a face detector, a video recorder, and an image recorder. When a
configuration is sent to a Nokkhum video processor, it translates that configuration and create
related image queues.
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Figure 3.5: An example of Nokkhum video processor configuration.

3.2.1.4 Nokkhum API

A popular way to manage a distributed system is to use a single API server and
multiple clients. One advantage is that the developer can carefully implement a central API
server, so that the client implementation is lightweight, and it can support various operating
system platforms. The Nokkhum API provides for camera management, video processing task
control, video play-back, and media management for basic users as shown in Figure 3.6. For ad-
ministrators, the API server provides system monitoring and high-level permission management
of the functions provided to the users.

Figure 3.6: Modules of Nokkhum API.
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The API has been developed using Python, Pyramid [54], and MongoDB [55],
and using a REST style architecture via HTTP [49]. Clients are identified with token-based
authentication when they connect to the server. A token is generated by the server during the
authentication, and used in the reply sent to the client. If the API requires a secure connection
for protecting the privacy of user requests, a simple solution is to switch to Hypertext Transfer
Protocol Secure (HTTPS) [56].

3.2.1.5 Nokkhum Client and Web Interface

A Nokkhum client could be implemented in several ways, e.g. as an interface
web, a mobile application, or a desktop application, because it connects to the Nokkhum API
server using HTTP and a REST architecture. This thesis prefers a web interface client since it
can be used via a web browser on both desktop and mobile devices. Moreover, a web-based
interface can be displayed on many platforms, and is more easily developed and maintained
than native programs. The web interface is implemented with Python and HTML, and utilized
by both users and the administrator, providing camera and system information according to
user role permissions. Users can create new camera configurations, compose image analyses,
and watch videos or images obtained from the cloud storage as shown in Figure 3.7.

Figure 3.7: Modules of Nokkhum client, web interface implementation.

Although the web interface can be used on many platforms, the users may
have to adjust the device’s screen resolution which is somewhat inconvenient. Consequently,
it can be a burden for the developer who develops the native client to adjust it for best user
experience and satisfaction. When applied in a real business model, the developer may apply
a responsive style to solve the problem.
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3.2.2 Nokkhum Architecture

Nokkhum offers a scalable VSaaS architecture by using message passing, im-
plemented with the Advanced Message Queuing Protocol (AMQP) [48], for connecting the
Nokkhum controller and the compute node workers. This design provides many options for
system deployment and the exploitation of mixed computing resources (both virtual and phys-
ical machines) for improving the performance or flexible deployment according to the limita-
tion of the targeted machine. The simplified version of Nokkhum’s cooperating components
is shown in the architecture overview in Figure 3.8. The inter-component communication and
data format are described in the following sections.

Figure 3.8: The overview of the Nokkhum architecture.
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3.2.2.1 Nokkhum Components Cooperative Working

A sequence process of Nokkhum components is divided into two parts: first
is interaction between the user and the front-end components as shown in Figures 3.9, and
second is interaction between all back-end components as shown in Figure 3.10. In Figures 3.9,
after a user has already registered his information in the VSaaS system, the user then initially
creates a camera configuration and a video processing solution on a Nokkhum client, which
is then passed to a Nokkhum API that stores the command in a database. Before storing that
information, the Nokkhum API must validate, and verify the camera and video processing and
compost the user request command for next Nokkhum controller processing. This process
terminates after the Nokkhum API acknowledges the Nokkhum client. The user can watch,
download, and delete the video records and images via the Nokkhum client.

Figure 3.9: The VSaaS user configuration sequence.

Figures 3.10 presents a sequence diagram describing a back-end components
work. When the Nokkhum compute node worker first appears in the Nokkhum system, it
publishes a greeting message to the Nokkhum controller through the message broker. After the
Nokhum controller gets the greeting message, the Nokkhum controller publishes an initialized
central configuration for the new Nokkhum compute node worker. The Nokkhum compute
node worker usually publishes the computing resource usage every certain time period. The
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Figure 3.10: Interactions among system components of the VSaaS during the initialization.

controller keeps the information to be later used for determining a suitable Nokkhum compute
node worker. The task scheduler on the Nokkhum controller becomes active when there
is at least one video processing task on the database. After it gets the user’s command,
the compute node resource predictor module on the Nokkhum controller finds a suitable
Nokkhum compute node worker using the persistent resource usage information of Nokkhum
compute node workers in the database. The Nokkhum controller directs the user request
command to the suitable Nokkhum compute node worker via the message broker. When
the compute node worker receives the command message, it constructs a video surveillance
solution and starts the related video processors. As the video processors produce output data
(video records and/or images), the compute node worker stores the data in the cloud storage.
All the video processor status such as CPU and memory usage can be reported to the Nokkhum
controller for overviewing the remaining resource usage for next scheduling. The controller
also monitors and manages the storage usage history of the video records and images.
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3.2.2.2 Inter-component Communication

Nokkhum employs two main kinds of inter-component communication for ex-
changing information and controlling the system’s behavior. The communication between
the Nokkhum controller and Nokkhum compute node workers uses MOM for distributing com-
mands and reporting resource status details to its physical and virtual machines. Program-to-
program communication on the same computing machine is utilized between compute node
workers and video processors. These two approaches are explained in more details below.

1) Controller and Compute Node Workers Communication
As shown in Figure 3.8, the controller communicates with compute node workers us-
ing message passing. Two types of communication patterns are used: direct exchange
and topic exchange. The controller and the workers employ direct exchange for greet-
ing messages, and updating worker resources and video processing status or behavior.
That allows the workers to send these kinds of the message without waiting for a re-
sponse. The controller and the workers use topic exchange for synchronizing command
messages, such as to start or stop video processor processes, or to request greeting in-
formation. Topic exchange communication is designed to wait for a response message
and command confirmation.

As shown in Figure 3.10, when a new compute node worker starts and finishes the
booting state, it will send a greeting message to the message broker server. Then, the
controller will receive a greeting message and add the worker to the resource pool.
After receiving the greeting message, the controller sends configuration details to the
worker, such as cloud storage configuration that includes the communication protocol
for accessing the storage. Therefore, Nokkhum VSaaS requires central configuration from
the controller, which distributes it to every compute node involved. After the compute
node worker receives configuration information, it will update its system resource usage
details, run the required video processors, and report the CPU utilization and memory
usage to the controller.

2) Compute Node Workers and video processors Communication
A compute node worker communicates with a video processor using the pipeline. A
video processor is created by a worker when it receives a starting control message. The
worker outputs all the commands for controlling the video processor’s behavior via its
standard input. When the video processor generates a message output, the compute
node worker will read it from its standard output. The commands and results are written
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in a JSON format to facilitate processing. The worker checks the availability of all the
video processors by monitoring their pipelines. Then, the compute node worker will
report to the controller via a resource update system message.

3.2.2.3 Data Format

JSON is utilized as the default data format for cameras, video processors, and
inter-component messages because it is both lightweight and available in several computer
languages. Cameras and video processor attributes are described via JSON objects. A camera
object includes the frame size, frame rate (frames per second) for video, camera manufactory
information, and username and password to access the camera. A video processor object
includes the name and attributes of the video processor. Inter-component message passing
uses a JSON object for describing the command property. Listing 3.1 shows a JSON description
for starting video surveillance commands composed by the Nokkhum controller.

3.2.2.4 Running Nokkhum on Infrastructure as a Service

The cloud infrastructure that provides physical or virtual machines, and other
computing resources, is known as Infrastructure as a Service (IaaS). IaaS supplies computing
resources on demand according to the user’s requirements. IaaS plays an important role in
starting up businesses by replacing high computer hardware purchasing costs with lower pay-
as-use resource rental fees. Moreover, this scheme allows large businesses to reduce their
hardware maintenance and administrative costs. As a result, many organizations are currently
transforming their IT platforms into cloud computing services. However, there are few available
details about the implementation of the SaaS.

IaaS providers typically implement their own APIs to access and manage com-
puting resources by exploiting a compatible version of the AWS API. AWS provides many ser-
vices, but the most popular are Amazon EC2 for computing and Amazon S3 for storage. There
are many open source IaaS products which support the AWS API, including Eucalyptus [57],
OpenNebula [58], CloudStack [59], and OpenStack [60]. Since IaaS can provide a private cloud
infrastructure for an organization, Nokkhum is designed using the Amazon EC2 and Amazon S3
APIs which can run on most IaaS software providers.
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1 {
2 "action" : "start",
3 "attributes" : {
4 "cameras" : [
5 {
6 "id" : "52779ae724b5b108e243649e",
7 "password" : "",
8 "model" : "DCS-930L",
9 "width" : 640, // video width

10 "height" : 480, // video height
11 "fps" : 10, // frames per second
12 "name" : "camera -01",
13 "audio_uri" : "http://example.com/audio.cgi",
14 "video_uri" : "http://example.com/video/mjpg.cgi?.mjpg",
15 "image_uri" : "http://example.com/image/jpeg.cgi",
16 "username" : ""
17 }
18 ],
19 "processors" : [
20 {
21 "name" : "Motion Detector",
22 "wait_motion_time" : 5, // wait for motion in 5 second
23 "interval" : 3, // process every 3 image
24 "sensitive" : 95, // motion sensitivity 0 - 100
25 "processors" : [
26 {
27 "height" : 480, // image height
28 "fps" : 10, // frames per second
29 "width" : 640 // image width
30 "name" : "Video Recorder",
31 "record_motion" : true, // enable motion recording
32 }
33 ]
34 }
35 ]
36 }
37 }

Listing 3.1: An example of JSON description for starting a video processor command.



33

3.2.3 Nokkhum System Scalability

The Nokkhum VSaaS system is divided into five components, with each pro-
viding specific functions. These components can be distributed across many computers which
are connected to the message broker server. The MOM enables Nokkhum to scale easily to
support dynamic user requirements. Moreover, Nokkhum can start running on just one ma-
chine, providing a small VSaaS system, and simply make a transition to support more cameras
and video processing tasks, involving more computing machines. Nokkhum components could
be fully deployed in many concurrent servers as shown in Figure 3.11

Figure 3.11: The overview of the Nokkhum architecture.

Figure 3.11 relates to Figure 3.8, and presents a full deployment of the Nokkhum
system and necessary services that can prevent a situation of a single point of failure, and illus-
trates the scalability for supporting a large number of users. However, the full deployment is
not possible in many situations, especially small and medium systems. This section describes
possible topologies for deploying Nokkhum VSaaS in seven scenarios.

As seen in Figures 3.12 - 3.18, Nokkhum’s components and other infrastructure
software can be distributed across many types of computing machines in seven scenarios. Fig-
ure 3.12 shows the smallest system type, where all the components run on a single machine
supporting a small VSaaS. In order to extend the system for processing more cameras, the
computing unit (Nokkhum compute node worker and video processor) can restart congested
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Figure 3.12: Nokkhum topology configuration pattern A - all services run on a single machine.

Figure 3.13: Nokkhum topology configuration pattern B - separating the compute node worker.

Figure 3.14: Nokkhum topology configuration pattern C - separating multiple compute node
workers.
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Figure 3.15: Nokkhum topology configuration pattern D - separating cloud objects storage for
higher volumetric.

Figure 3.16: Nokkhum topology configuration pattern E - separating the database and message
server.

Figure 3.17: Nokkhum topology configuration pattern F - separating the Nokkhum controller
and Nokkhum Front-end.
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Figure 3.18: Nokkhum topology configuration pattern G - fully distributed components.

tasks on another computing machine added to the controller node as shown in Figure 3.13. In
Figure 3.14, more computing units are added to deal with the increasing number of cameras,
and to handle the expanded video processing requirements. In this configuration, the comput-
ing units and the controller unit are separated parts. Figure 3.15 is similar to Figure 3.14, but
the cloud storage is moved to another machine for easier storage management and reducing
the computation load of the controller node. This configuration is suitable for a medium-size
VSaaS.

The system topologies in Figures 3.16, 3.17 and 3.18 are preferable when a
highly scalable system is needed because the Nokkhum components and infrastructure soft-
ware modules are distributed across many computing machines. In Figure 3.16, MongoDB and
the message server are moved to run on different machines in order to increase the system
availability. The message server and MongoDB are shared services for supporting computing
units and controller nodes. If the Nokkhum components and the message server are not
connected, it is likely that the system will fail. Therefore, the extracted parts, MongoDB, and
the message server, are designed to work in close cooperation with the controller node in all
proposed topologies in order to increase the system availability. In Figure 3.17, the Nokkhum
controller is separated from the front-end machine. The rationale is that the controller compo-
nent can run on its own without affecting other components, and if the controller component
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runs on a private network, it also increases the security. The architecture is also designed to
support a complete distributed system of which components are located on many computing
machines as shown in Figure 3.18, thereby providing a large scale VSaaS system. This scenario
is appropriate for a public VSaaS provider and offers a high level of system availability. On the
other hand, it involves many computing machines and requires many system resources.

The Nokkhum architecture addresses the system scalability across various sce-
narios. The VSaaS providers can freely choose configuration patterns for supporting their re-
quirement. Moreover, the Nokkhum component configuration can combine both physical and
virtual machine servers according to the organization’s economy and information technology
proficiency. The organization can choose their security policy whether running many compo-
nents in a private network or providing context components in a public network.

3.3 Analysis of Video Processing Workload Characteristics

Few VSSes perform video workloads analysis or emphasized on scalable dis-
tributed video processing over a pool of computing resources. Many VSSes only utilized a
single video size and varied frame rate in their case studies. Recently, VSSes had been trans-
formed into VSaaS for supporting various user requirements, and the workload analysis was
likely to provide wrong results for these systems. They did not take into account significant
parameters involving changing video frame size and rate, or video processing based on sev-
eral machine specifications. This section describes video workload characteristics affecting
computing resources based on the Nokkhum VSaaS architecture.

3.3.1 Video Processing Task Exploration

Most VSSes employ similar compute nodes specification, because it is easy
to manage many video processing tasks with the same parameters. This simple scenario is
insufficient for a VSaaS system with dynamic requirements involving many variables, such
as frame rate, frame size, and video processor type. In addition, the cloud environment
provides VM specifications according to its capacity and limitations. This means that the video
processing task will consume different computational resources on different VM specifications,
in a difficult-to-predict manner. Therefore, this thesis utilize video processing task exploration
to determine the computational resources consumed by the desired video processing task,
depending on its parameters. The results are used in workload analysis described in Section
3.3, which become a heuristic for video task scheduling. There are two different ways to run
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video processing exploration: the first is manually run by the administrator, and the second is
automatically done by the Nokkhum controller, which is described as follows:

1) Video processing task exploration during system installation is manually run by the
administrator, because he usually knows the number of compute nodes and their spec-
ifications. With manual execution, the administrator can collect all the resource usage
information about the video processing tasks soon after the initialization. This means
that the Nokkhum system does not need to collect any further resource consump-
tion information for the task scheduling. Nokkhum can use the existing information for
scheduling without repeating the task exploration.

2) The Nokkhum controller automatically runs video processing task exploration under
two circumstances: the first is when there are no experimental results in the database
related to the compute node. The second occurs when the node is idle for at least
100 % when the total percentage (more than 100 %) is calculated by 100 % multiplied
by the number of CPU cores. In this case, the administrator does not have to decide to
execute video processing task exploration. Also, the scheduler has to focus on workload
estimation in order to respond to the tasks in the queue. If it has to wait for experimental
results from video processing task exploration, tasks will probably have a long wait in
the queue.

The exploration employs two types of video processing tasks: motion detec-
tion and video recording. A surveillance video from the VIRAT video dataset was used in our
experiments, with eight frame rates (1, 5, 7, 10, 15, 20, 25 and 30 FPS) and six frame sizes
(160x120, 320x240, 640x480, 800x600, 960x720, and 1120x840 pixels). A total of 96 (2 × 8 ×
6) test cases were executed, with each test running for two minutes, for a total of 192 minutes,
which is too long. This means that scheduling required another approach to deal with missing
experimental results from the task exploration caused by the skipping of some tests to make
the scheduling faster. The resource decision approach will be presented in Subsection 3.4.2.

3.3.2 VCA and Video Recorder Workloads Analysis

VCA and video recorder workloads play an important role in driving VSS. Nor-
mally, the consumption of computing resources by the VCA and video recording tasks is a
function of the frame rate and frame size. The CPU and memory utilizations of the VCA and
video recording tasks vary when running on different machines. There are many multimedia
systems, both VSSes and VSaaSes, which focus only on static workloads and homogeneous
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computing machines. However, the situation is rather different in real deployment environ-
ments, especially in Cloud infrastructures.

In general, the IaaS provider promises to provide all customers with the same
VM template for the same charge. However, when the IaaS provider adds new hardware of a
different specification, it is possible that it will provide a different certified VM template. Then,
when the VSaaS provider deploys a VSaaS system on a Cloud IaaS, the efficiency of the VCA
and video recording tasks scheduler will be affected. Therefore, this thesis have studied the
behaviors of the VCA and video recording tasks in terms of computing resource consumption
to improve the scheduling performance.

3.3.2.1 VCA and Video Recorder

The two main factors affecting resource consumption are the video frame rate
and frame size. It is difficult to study VCAs used in VSaaS, due to the many available types.
The most popular is motion detection for filtering motion sequences of, which the footages
are subsequently passed to the video recorder or used to notify the user. Focusing on motion
detection and video recording tasks, and results of resource consumption handled by initially
fixing the frame rate and varying the frame size are shown in Figures 3.19 and 3.20. The CPU
and memory consumption for different frame rates are shown in Figures 3.21 and 3.22. All the
experiments were performed on a physical machine, an AMD FX(tm)-8320 eight-core processor
with a 3.5 GHz CPU and 16 GB RAM.

The video’s frame rate is fixed at 10 frames per second (FPS) in Figures 3.19
and 3.20, and the results show how increases in the frame size increase the consumed com-
putational resources, namely CPU and memory usage, for both motion detection and video
recording. Also, when the frame size was fixed at 640x480 pixels and the increasing frame rate
of the motion detector and video recorder increased more consumed computational resources
as shown in Figures 3.21 and 3.22. In further experiments, when increasing the frame rate, it
caused the motion detector task to consume memory up to the maximum buffer allowed,
which is expected for the Nokkhum processor.

Figures 3.19, 3.20, 3.21 and 3.22 show individual resource consumption. How-
ever, the VSaaS video processing task can combine multiple VCAs for complex analysis. An ex-
ample of VCA combination is the cooperation between the motion detector and video recorder
for recording when motion sequences occur. Figure 3.23 shows the resource consumption of
the motion recorder which employs a continuously running subtask to filter motion events
before passing them to the video recorder. Therefore, the bottom line of each CPU usage
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(a) CPU usage for the motion detection

(b) Memory usage for the motion detection

Figure 3.19: Motion detector resource consumption at various frame sizes with the fixed frame
rate of 10 FPS.
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(a) CPU usage for the video recorder

(b) Memory usage for the video recorder

Figure 3.20: Video recorder resource consumption at various frame sizes with the fixed frame
rate of 10 FPS.
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(a) CPU usage for the motion detection task

(b) Memory usage for the motion detection task

Figure 3.21: Motion detector resource consumption at various frame rates with the fixed frame
size of 640x480 pixels.
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(a) CPU usage for the video recorder task

(b) Memory usage for the video recorder task

Figure 3.22: Video recorder resource consumption at various frame rates with the fix frame
size of 640x480 pixels.
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(a) CPU usage for the motion recorder task

(b) Memory usage for the motion recorder

Figure 3.23: Motion recorder resource consumption at various frame sizes with the fixed frame
rate of 10 FPS.
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graph in Figure 3.24(a) is the resource consumption of the motion detector. The overshooting
line represents the CPU resource consumption of the video recorder. Also, memory usage has
similar characteristics to the motion detector on the bottom line as shown in Figure 3.24(b).

3.3.2.2 VCA and Video Recorder in Various Computing Specifications

This section presents resource consumption for the motion detector, video
recorder, and motion recorder running on different physical machines shown in Figures 3.24,
3.25, and 3.26. All experiments utilized a fixed frame rate at 10 FPS and a frame size of 640x480
pixels. The testing machines used a x64 CPU with more than 4 GB of RAM.

In Figure 3.24(a), it is difficult to find any outstanding related factors to differ-
entiate the CPU usage characteristics in the motion detector when using different and compli-
cated CPU architectural designs. When dividing the experimental results according to vendor
(AMD and Intel), it seems that the CPU frequency is the only discriminator. The memory
consumption of the machines in Figure 3.24(b) imply similar utilizations.

Video recorder resource consumption is shown in Figures 3.25(a) and 3.25(b).
The video recorder resource consumption is different from the motion detector due to different
CPU/memory architectural designs. For example, some desktop CPUs employ a special video
codec chip set, to lower CPU utilization, but return the same frame size and rate.

The motion recorder is a combination of the motion detector and video
recorder, and so inherits CPU and memory utilization characteristics from both. Its results
are shown in Figures 3.26(a) and 3.26(b). The bottom line in Figure 3.26(a) comes from the
motion detector, and the overshooting line comes from the video recorder. However, it is
difficult to identify which motion recorder characteristics are affected by the video recorder’s
CPU consumption, which depends on the CPU model and vendor.

3.3.2.3 Virtual and Physical Machines

The Nokkhum VSaaS supports hybrid virtual and physical machines for the
scalability of the cloud environment. Comparing results between VMs and physical machines
helps the Nokkhum system to improve the task scheduling performance for both machine
types. The results involving motion detection, video recording, and motion recording are
shown in Figures 3.27, 3.28, and 3.29. All the experiments used the frame rate of 10 FPS and
frame size of 640x480 pixels. The physical machines support virtualization technology with
the KVM [42].
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(a) CPU usage for the motion detector

(b) Memory usage for the motion detector

Figure 3.24: Resources consumption for the motion detector running on different physical
machines with the fixed frame rate at 10 FPS and frame size at 640x480 pixels.
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(a) CPU usage for the video recorder

(b) Memory usage for the video recorder

Figure 3.25: Resources consumption for the video recorder running on different physical ma-
chines with the fixed frame rate at 10 FPS and frame size at 640x480 pixels.
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(a) CPU usage for the motion recorder

(b) Memory usage for the motion recorder

Figure 3.26: Resources consumption for the motion recorder running on different physical
machines with the fixed frame rate at 10 FPS and frame size at 640x480 pixels.
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Figures 3.27(a), 3.28(a), and 3.29(a) present the CPU utilization comparison
between the VMs and physical machines. The patterns of the results of the VMs and physical
machines look similar. However, the VMs’ CPU utilization is a little bit higher. The memory
usage in Figures 3.27(b), 3.28(b), and 3.29(b) show a different characteristic comparing to that
of the CPU utilization. All memory consumption of the VM task is a little bit lower than that
of the physical machine.

Figures 3.27(a), 3.28(a), and 3.29(a) present the CPU utilization for VMs and
physical machines, showing that the pattern of results are similar for both, but that the VMs’
CPU utilization is a little bit higher. Figures 3.27(b), 3.28(b), and 3.29(b) show that memory
consumption for VM tasks is a little bit lower than that for physical machines.

3.3.2.4 Summary

Figures 3.19 - 3.29 show results from experiments using the frame rates 1, 5,
7, 10, 15, 20, 25, and 30 FPS, and frame sizes 160x120, 320x240, 640x480, 800x600, 960x720,
and 1120x840 pixels. The resource consumption results become unclear when they combine
frame rate and frame size, and it is difficult to discriminate which are from the VCA or the
recording tasks. Moreover, the computing resource utilizations of the VCA and video recorder
tasks are different when different machine specifications and hypervisors are employed.

The video processing workload characteristics show that different machine
specifications, especially those affecting the CPU model, influence resource usage consump-
tion. In order to support multiple machine specifications, the workload scheduler has to
consider CPU and memory usage from the task exploration when assigning a task to a suitable
compute node. The scheduler utilizes the exploration results by applying three resource usage
criteria, as described in Subsection 3.3.3.

3.3.3 Resource Usage Criteria

Results from the same compute node specification and similar video process-
ing tasks point in the same direction, but it is difficult to apply them to task scheduling. The
scheduler needs to use resource usage criteria for computing resources estimation, based on
criteria that involve the resource utilization of all the video processors which generally con-
sume resources linearly. The factors for approximating resource usage include the average data
set, average minimum data set, and average maximum data set, and the proposed criteria are
shown in Figure 3.30.
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(a) CPU usage for the motion detector

(b) Memory usage for the motion detector

Figure 3.27: Resource consumption for the motion detector running on different physical and
virtual machines applying the fixed frame rate of 10 FPS and frame size of 640x480 pixels.
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(a) CPU usage for the video recorder

(b) Memory usage for the video recorder

Figure 3.28: Resource consumption for the video recorder running on different physical and
virtual machines applying the fixed frame rate of 10 FPS and frame size of 640x480 pixels.



52

(a) CPU usage for the motion recorder

(b) Memory usage for the motion recorder

Figure 3.29: Resource consumption for the motion recorder running on different physical and
virtual machines applying the fixed frame rate of 10 FPS and frame size of 640x480 pixels.
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The first criterion is the average data set, representing the data mean suitable
for general CPU utilization events. The second criterion is the average minimum data set,
which is the data average lower than the mean, and best for heavy CPU utilization although
it may affect memory utilization. For example, when the CPU is busy or can not process the
image on time, the memory utilization will increase. The last criterion is the average maximum
data set, which is the data average higher than the mean. This ensures that the computing
resources will be sufficient for the required video processing.

In short, VSaaS administrators must identify their system specification and
choose a suitable criterion for highly efficient computing resource management. Section 4.3
presents experimental results applying the proposed three different criteria and discuss suit-
able exploitations in real situations.

Figure 3.30: Nokkhum resource criteria: the average data set, average minimum data set, and
average maximum data set.

The three computing resource usage criteria can also be used to estimate the
CPU and memory usage in video processing task scheduling. In this section, only the CPU
usage is present as shown in Figure 3.31, because it has the same characteristics as memory
usage. Figure 3.31 shows CPU usage at several video frame rates and frame sizes, including
motion detection and video recording in Figures 3.31(a) and (b). In Figure 3.31, the average
resources usage increases when increasing the frame rate or frame size, and the results can be
plotted as straight lines with different slopes.
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(a) CPU usage for the three resource usage criteria, varying the frame rate, and fixing the frame size at 640x480
pixels

(b) CPU usage for the three resource usage criteria, varying the frame size, and fixing the frame rate at 10 FPS

Figure 3.31: CPU usage for motion detection and video recorder using the three resource usage
criteria.
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Figure 3.32: Approximating the CPU usage with a linear equation for the CPU AMD-FX, 8 cores,
3.5 GHz

The video processing task exploration can take quite a long time to collect
data from the compute nodes, but the execution time can be reduced by exploiting the CPU
usage values in the criteria of Figure 3.31. It appears that the average usage is directly related
to the frame size and rate. This can then be exploited by determining the linear slope plotted
by only taking the sampling points of the video processing tasks from the lowest and highest
frame rate or size. For example in Figure 3.32, the frame rates of 1 and 30 FPS are used to
approximate the CPU usage, and the result motion detection and video recording equation
are presented as Equations (3.1.1) and (3.1.2). Table 3.1 shows the approximated CPU usages
from the two equations compared to the real average CPU usages and their absolute errors.

%CPU = 3.90695652x+ 2.1626087

for motion detection on the CPU AMD-FX, 8 cores, 3.5 GHz
where x is the frame rate

(3.1.1)

%CPU = 3.19016492x+ 2.40983508

for video recorder on the CPU AMD-FX, 8 cores, 3.5 GHz
where x is the frame rate

(3.1.2)
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Table 3.1: Comparison between the average CPU usage and its approximation for motion
detection and video recording at different frame rates for the CPU AMD-FX, 8 cores, 3.5 GHz
Frame
rate

Motion detection Video recorder
Average

CPU usage
Approxi-
mation

Absolute
error

Average
CPU usage

Approxi-
mation

Absolute
error

1 6.070 6.070 0.000 5.600 5.600 0.000
5 15.478 14.720 0.758 17.417 15.239 2.178
7 20.243 19.045 1.198 22.809 20.059 2.750
10 26.512 25.533 0.979 29.355 27.289 2.066
15 36.396 36.346 0.050 39.568 39.338 0.230
20 47.237 47.159 0.077 50.462 51.387 0.925
25 58.270 57.972 0.297 61.809 63.436 1.627
30 68.785 68.785 0.000 75.485 75.485 0.000

Table 3.1 shows that the errors when applying Equations (3.1.1) and (3.1.2)
are small, with the maximum absolute error about 2.75 %. By applying these equations, the
execution time of the video processing exploration task can be reduced from 96 test cases to
eight (2 × 2 × 2) which come from two video processing types (motion detection and video
recording), two frame rates (1 and 30 FPS) and two frame sizes (160x120 and 1120x840 pixels),
taking the total time of 16 minutes for each machine specification. The linear equation model
can only be applied to the same machine. Different specifications may result in different
slopes due to different CPU architectures.

3.4 Nokkhum Scheduling

Resource management and the video processing task scheduler are the key
Nokkhum VSaaS modules for the availability and resource provision of tasks. This section
describes a suitable task scheduler based on the real workloads presented in Section 3.3.

3.4.1 Scheduling Overview

The task scheduler picks a video processing task from a queue, and asks the
resource predictor to estimate the computing resource requirements for the task. After the
predictor has returned an available computing node, the scheduler calls the task controller to
spawn the video processing task. The Nokkhum scheduling process is shown in Figure 3.33.

The Nokkhum scheduler evaluates which compute node worker is suitable to
run a video analysis task. At first, it gets a video processing task from the task queue, finds
an available compute node worker, and passes it to the resource predictor. The predictor
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Figure 3.33: Overview Nokkhum scheduling.

then looks for the most suitable experimental workloads from the database and returns the
best fit compute node worker to the scheduler. After that, the scheduler sends the video
processing configuration and compute node worker information to the task controller. Finally,
the controller communicates with the compute node worker to run the video processing task.
The Nokkhum resource decision process is described in details in Section 3.4.2.

Resource prediction is part of the compute node controller. It responds to
the task scheduler by providing an available compute node worker suitable for the video
processing task. It performs resource estimation based on data from the previously mentioned
experimental results, especially the CPU and memory usage information. This estimation is
used to determine which compute node is suitable for running the required video processing
task. The experimental results can be collected from the task exploration, which can be run
on any machine specification, and are stored in a database for the next round of scheduling.
The resource prediction process is shown in Figure 3.34.

3.4.2 Resource Decision Description

The Nokkhum resource decision module for placing a video processing task
on a suitable computing unit is shown in Figure 3.34. The module requires both the desired
computation unit and the video processing configuration. The resource decision steps are
described as follows.
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Figure 3.34: The Nokkhum resource management decision process.

Step 1) Find matching experimental video analysis
The resource decision module finds a video processing task with a matching video
processing type, frame rate, and frame size from the previously allocated computa-
tion unit (of the same CPU vendor, model, and frequency). If it finds a result, it skips
Steps 2 - 4 and goes to Step 5.

Step 2) Find the closest adjacent experimental video analysis based on CPU frequency
If the resource decision module cannot find an exactly matching experimental re-
sult in the database, it requests a new experimental result with an adjacent CPU
frequency and ignores the CPU model of the desired compute node, but the video
processing type, frame rate, and frame size must still match. The example in Fig-
ure 3.35 shows that it always chooses the next available CPU with a higher frequency
than the desired one. If a result is found, it will skip Step 3.

Step 3) Estimate the CPU and memory usage using the experiment results
This step looks for an experimental result in the database which has the same video
processing type, and passes the result to Step 4. The result may not be accurate,
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Figure 3.35: Selecting a CPU frequency adjacent to the desired frequency.

and may not fit the task well, but it is better than scheduling with no estimation at
all.

Step 4) Perform the new resource estimation based on CPU frequency

Step 4 analyzes the experimental results shown in Figures 3.24, 3.25, and 3.26. The
task’s CPU usage depends on the CPU frequency. A higher clock frequency means
a lower CPU usage by the task, depending on the CPU model and specification,
although memory usage is rather consistent. The resource decision module estimates
the CPU and memory usages from the experimental result equivalent to the desired
computation unit’s CPU frequency. It applies a scaling factor (SF ) as described by
Equation (3.2) to the CPU usage as shown in Equation (3.3.1).

SF =



Fdesired

Fexperiment

if Fexperiment >= Fdesired

Fexperiment

Fdesired

otherwise

where SF is the CPU scaling factor;
Fdesired is the CPU frequency of

the desired computation unit;
Fexperiment is the CPU frequency of

the computation unit running the experiment.

(3.2)

Equation (3.2) calculates a scaling factor using the ratio of the compute node CPU
frequency and the adjacent frequency determined from the experimental results in
the database. It returns different ratios whether the adjacent frequency is higher
or lower than the CPU frequency of the desired compute node. The scaling factor
is used to estimate adjacent CPU usages, according to the resource usage criterion
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shown in Equations (3.3.1) and (3.3.2). The estimated memory usage is set to the
memory usage of the experiment, as in Equation (3.3.2). The CPU and memory
usages are derived from the resource usage criteria as presented in Section 3.3.3.
The estimated CPU and memory usages (CPUestimated and memoryestimated) are
used in the next step.

CPUestimated = SF × CPUexperiment[criterion]

where CPUexperiment[criterion] is the CPU usage, collected
from the experiment, selected by the criterion;

criterion is a resource usage policy
identified by the administrator.

(3.3.1)

memoryestimated = memoryexperiment[criterion]

where memoryexperiment[criterion] is the memory usage
from the experiment selected by applying the criterion.

(3.3.2)

Step 5) Summarize the CPU and memory usages from all processing tasks
The Nokkhum video processor components are sequentially connected to each
other. The resource decision module summarizes the CPU and memory usages of all
the video tasks from the previous steps to aid decision making in the final step. For
example, a motion recorder consists of a motion detector and a video recorder; the
resource decision module sums the CPU and memory usages from both processors
for consideration in the next step.

Step 6) Decide the suitable compute node worker
The final step decides which compute node is suitable. The resource decision mod-
ule acquires the real workload of the compute node and approximates the current
capacity of the running task. The approximated current resource usage of the target
compute node and the task information from Step 5 are used to decide if it is suit-
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able. The module will return an appropriate compute node to the task scheduler to
start the task. The calculations are presented by Equations (3.4.1), (3.4.2) and (3.4.3).

TCPU =
N∑

n=1

CPUe(n)
+ CPUep

where TCPU is the summation of CPUestimated of all the video
processor tasks running on the compute node C;

CPUe(n)
is the estimated CPU usage of

the video processing task n;
CPUep is CPUestimated of the requested video processing

task p that will be executed by the compute node C;

N is the number of video processing tasks
contained in the compute node C.

(3.4.1)

Tmemory =
N∑

n=1

memorye(n)
+memoryep

where Tmemory is the summation memoryestimated of all the
video processor tasks running on the compute node C;

memorye(n)
is the estimated memory usage of

the video processing task n;
memoryep is memoryestimated of the requested

video processing task p that will be executed by
the compute node C;

N is the number of video processing tasks
contained in the compute node C.

(3.4.2)
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D(C) =


True if TCPU < C.cpu_core ∗ 100,

and Tmemory < C.total_memory

False otherwise
where D(C) is the decision function for the compute node

qualification;
C is the desired compute node.

(3.4.3)

Equations (3.4.1), (3.4.2) and (3.4.3) determine a compute node suitable for
executing the video processing task. TCPU and Tmemory are summations of the estimated CPU
and memory usages (CPUestimated and memoryestimated) of all the video processing tasks
(N ) containing the candidate compute nodes and selected video processing tasks (CPUep and
memoryep ). The decision function (D) of compute node C employs TCPU and Tmemory to
determine whether the compute node C can run the video processing task p. TCPU must
be lower than the number of cores multiplied by 100%, and Tmemory must be lower than
the maximum memory of the desired compute node. If there is no compute node with the
desired specification, the decision function will return False. The resource decision algorithm
for placing tasks is also presented as pseudocode in Algorithm 1.

Algorithm 1 presents three functions for task scheduling: GetSuitableCom-
puteNode, EstimateComputingResources, and GetVPTExperiment. GetSuitableComputeNode
validates whether a compute node is suitable for starting a task using a compute node in-
formation and a video processing configuration. It checks an available compute node using
EstimateComputingResources which gathers approximated computing resources from the cur-
rent task running on the candidate compute node. The approximated computing resource is
compared with the estimated video processing resource taken from the video processing task
configuration. EstimateComputingResources summarizes the CPU and memory usage sums
from all the video processing configurations using GetVPTExperiment. It queries the experi-
mental VCA from the database following the steps shown and described in Figure 3.34 and
Section 3.4.2 respectively.

The scheduler orders the tasks based on real resource usage, but it is difficult
to evaluate the computing resources for such data. Therefore, the decision algorithm is driven
by resource utilization, so the system administrator can guide the scheduler with the resource
usage criteria described in Subsection 3.3.3.
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input : A set of available compute nodes
input : A VCA configuration
output : A suitable compute node
Function GetSuitableComputeNode (compute-nodes, p)

foreach c in compute-nodes do
cEstimateCPU← 0; cEstimateMemory← 0;
foreach cp in c.processors do

subcpu, submemory= EstimateComputingResources
(c, cp);

cEstimateCPU = cEstimateCPU + subcpu;
cEstimateMemory = cEstimateMemory + submemory;

end
processorCPU, processorMemory =
EstimateComputingResources (c, p);

if processorCPU + cEstimateCPU < 100 × c.cpucore and
processorMemory + cEstimateMemory < c.maxmeory then
return c ;

end
return None

End
Function EstimateComputingResources (c, p)

totalCPU← 0; totalMemory← 0;
foreach p in p.processors do

experiment = GetVPTExperiment (c, p);
totalCPU← totalCPU + experiment.cpu[criterion];
totalMemory← totalMemory + experiment.memory[criterion];
if “processors” in p then

subcpu, submem = EstimateComputingResources
(c, p.processors);

totalCPU← totalCPU + subcpu; totalMemory←
totalMemory + submem;

end
end
return totalCPU, totalMemory

End
Function GetVPTExperiment (c, p)

cpu← c.CPU ;
experiment← GetVPTExFromDatabase (cpu.vender, cpu.model,

cpu.frequency, p.vcatype, p.framerate, p.imagesize);
if experiment == None then

experiment← GetVPTExFromDatabase (cpu.vender,
∼cpu.frequency, p.vcatype, p.framerate, p.imagesize);

// ∼cpu.frequency is the selected CPU frequency that is an adjacent
target CPU frequency

end
if experiment == None then

experiment← GetVPTExFromDatabase (∼cpu.frequency,
p.vcatype, p.framerate, ∼p.imagesize);

// ∼p.imagesizes is the selected image size that is adjacent target
image size

end
return experiment

End
Algorithm 1: Nokkhum task scheduling
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3.5 Summary

This chapter presented the system design and implementation of Nokkhum
VSaaS. The Nokkhum system consists of five components performing different functions which
can be distributed are several servers. It can deploy all the elements in a single server for a
small business, or many servers to support a large number of IP cameras. Moreover, video pro-
cessing workloads are analyzed applying various factors including the kind of video processing,
video frame rate, video frame size, and type of computing units. The analysis results are used
to guide video task scheduling for placing a new task into a suitable compute node. The task
scheduler ensures the compute node sufficiently consumes the computing resources.
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CHAPTER 4
RESULTS AND DISCUSSIONS

This chapter mainly presents and discusses the results of the Nokkhum VSaaS
testing and video task scheduling. First, Infrastructure setting presents essential specification
and environment setting for this experimental results. Second, Nokkhum VSaaS system testing
includes the scalability and flexibility checklist, and system response time. The next section
shows the video task scheduling results, varying the number of video processing tasks placed
on a computing unit with various video processing configurations.

4.1 Infrastructure Setting

The general specification and cloud environment setting for testing the flexi-
bility and scalability of Nokkhum system and video processing task scheduling are presented
in this section. The general specification is a common infrastructure for all experiments. The
cloud environment setting describes the essential software and physical machine for providing
cloud environment to evaluate the system’s flexibility and scalability.

4.1.1 General Specification

This section presents physical and virtual machine specification, camera spec-
ification, video record format, and software using in this thesis as follows:

1. Six physical machines including three AMD and three Intel CPU as shown in Table 4.2 as
computing machines. Two gigabit Ethernet interface is employed for both internal and
public networks.

2. Six VMs related to physical machines employing 2-core CPU and 2 GB of RAM as shown
in Table 4.3

3. OpenStack Icehouse [61] with KVM [42] as the hypervisor for IaaS infrastructure. The VM
image format is QEMU Copy On Write (QCOW2) [62].

4. Camera and video inputs shown in Table 4.1.

5. Video processing exploration using the VIRAT video data set with following parameters.



66

• Eight frame rates: 1, 5, 7, 10, 15, 20, 25, and 30 FPS
• Six frame sizes: 160x120, 320x240, 640x480, 800x600, 960x720, and 1120x840

pixels.
• Video processings: motion detection, video recording, and motion recording.
• Ogg codec used as the default codec for video output.

6. RabbitMQ [63][64] is MOM for providing the OpenStack and Nokkhum system.

Table 4.1: IP camera vendors and video input formats

Vendor Model Video Size (pixels) Frame Rate (FPS)

D-Link
DCS-930L

160x120 1, 5, 7, 15, 20, 30
320x240 1, 5, 7, 15, 20, 30
640x480 1, 5, 7, 15, 20

DSC-2102
160x120 5, 10, 15, 30
302x240 5, 10, 15, 30
640x480 5, 10, 15, 30

AXIS 215 PTZ 640x480 10
210 640x480 10
211M 640x480 10

Table 4.2: Physical machines used in the experiments.
PM Code CPU Total

Memory
(GB)

Total
Disk
(GB)Model Frequency

(Hz) Cores

AMD-2.8-PM AMD Phenom(tm) II X6
1055T Processor

2800 6 8.11 98.29

AMD-3.5-PM AMD FX(tm)-8320
Eight-Core Processor

3500 8 16.55 98.29

AMD-3.8-PM AMD A10-5800K APU with
Radeon(tm) HD Graphics

3800 4 16.27 1850.37

Intel-2.6-PM Intel(R) Core(TM)2 Quad
CPU Q9400 @ 2.66GHz

2670 4 4.15 285.31

Intel-2.8-PM Intel(R) Xeon(R) CPU X3360
@ 2.83GHz

2834 4 4.15 226.78

Intel-3.4-PM Intel(R) Core(TM) i7-2600
CPU @ 3.40GHz

3800 4 4.13 473.86

Table 4.1 presents IP camera vendors and video formats used in this thesis.
In this thesis, the experiments emphasize on the video sizes of 320x240 and 640x480 pixels,
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Table 4.3: Virtual machines used in the experiments.
VM
Code

PM
Code

CPU Total
Memory
(GB)

Total
Disk
(GB)Model Frequency

(Hz) Cores

AMD-
2.8-VM

AMD-
2.8-PM AMD Opteron 23xx

(Gen 3 Class Opteron)
2812.792 2 2.10 20.09

AMD-
3.5-VM

AMD-
3.5-PM AMD Opteron 63xx

class CPU
3515.784 2 2.10 20.09

AMD-
3.8-VM

AMD-
3.8-PM AMD Opteron 63xx

class CPU
3793.102 2 2.10 20.09

Intel-
2.6-VM

Intel-
2.6-PM Intel Core 2 Duo P9xxx

(Penryn Class Core 2)
2666.362 2 2.10 20.09

Intel-
2.8-VM

Intel-
2.8-PM Intel Core 2 Duo P9xxx

(Penryn Class Core 2)
2833.530 2 2.10 20.09

Intel-
3.4-VM

Intel-
3.4-PM Intel Xeon E312xx

(Sandy Bridge)
3391.448 2 2.10 20.09

and the frame rates of 10, 15 and 30 FPS. Table 4.2 shows physical machine specifications
and their codes. The machine codes are used in Tables 4.3 and referred to in the computing
resource usage report in Table 4.9. Table 4.3 shows the VM specifications based on the physical
machines from Table 4.2.

4.1.2 Cloud Environment Setting

For the cloud testing environment, this thesis employs the OpenStack service
family on generic PCs (AMD-2.8-PM and AMD-3.5-PM). For VM providers, OpenStack Nova and
KVM are chosen to work as the hypervisor. The physical cloud structure is implemented by
a PC acting as a cloud controller (AMD-2.8-PM), and many PCs (AMD-2.8-PM and AMD-3.5-PM)
utilized as cloud compute nodes. The connection is done by using two Ethernet interfaces.
The first interface is for internal communication, and the other for public use via a 10/100/1000
Mb Ethernet. The public interface connects all the cloud controllers, cloud compute node
workers, cloud storage, and IP cameras. The cloud environment setting is shown in Figure 4.1.

Nokkhum VSaaS is designed to run on a cloud infrastructure, and all the pos-
sible topology configurations shown in Figures 3.12 - 3.18 have been tested successfully in
the cloud infrastructure testing system. The system’s response time for a medium sized VSaaS
(the scenario of Figure 3.15) which supports 10-30 VMs of compute node workers, depending
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Figure 4.1: Cloud environment setting using OpenStack.

Figure 4.2: Nokkhum VSaaS on cloud infrastructure.
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on the capability of the CPUs and memory of the controller node, have been thoroughly inves-
tigated. Its deployment is shown in Figure 4.2. The Figure 3.15 scenario has been emphasized
because it is a good representative of the topology configurations typically used by many or-
ganizations, departments, and universities for providing video surveillance. Figure 4.2 shows
a VM as a controller node, containing a message server (RabbitMQ), databases (MongoDB), a
web interface, an API and a controller. In addition, each compute node VM image contains
a compute node worker and a video processor. The IP address of the message server in the
VSaaS system must be identified in the compute node worker configuration. After registering
the compute node image in the cloud infrastructure, the compute node image name can be
added to the controller and started to run on the VSaaS system.

4.2 Nokkhum VSaaS System Testing

The system testing in this section focuses on the response times of the Nokkhum
VSaaS in the cloud environment. This thesis utilizes general-purpose PCs for building the cloud
infrastructure with OpenStack, Icehouse version, as the cloud middleware. The PCs used two
different CPUs, such as AMD-2.8-PM and AMD-3.5-PM, and their memory range from 8 to 16
GB, with 1 TB of storage. The experiments have been designed to create an underlying per-
formance matrix including the VM acquisition time, waiting time, and processing time for both
user and system request commands. The Nokkhum VSaaS is based on the design described
in Section 3.2, and its cloud environment set up is explained in Section 4.1.2. All testing
descriptions are described as follows:

1. Computing nodes employ AMD-2.8-VM and AMD-3.5-VM as VM templates.

2. Twenty IP cameras are employed including models of the Dlink DSC-930L, Dlink DSC-
2102, AXIS 215 PTZ, and AXIS 211M.

3. All input video formats based on the IP cameras which are widely spread in the market
including the frame sizes of 160x120, 320x240, and 640x480 and the frame rates of 5,
7, 15, 20, and 30.

4. The experiments involve many users and multiple video processing configurations such
as motion detection and video recording.

5. The testing is repeated ten times on a random sequence of video processing suits.
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4.2.1 Scalability and Flexibility Checklists

The testing results confirm that the Nokkhum VSaaS system performs accord-
ing to the system design as shown in the scalability and flexibility check lists in Tables 4.4 and
4.5. In terms of scalability, the system can automatically acquire VMs, provide services for
various user groups, support IaaS, and be scaled up by distributing its components across VMs
and physical machines. In terms of flexibility, the system can automatically handle different
situations concerning camera suspension, and malfunctioning, or unavailable compute node
workers, controller, and message server.

Table 4.4: Scalability checklist.
List Check

Acquire VMs automatically 3

Provide services for various user groups 3

Support IaaS with Amazon EC2/S3 3

Components can scale up and down according to Figures 3.12 - 3.18
A: compact system on one machine 3

B: add a compute node worker 3

C: compute node workers are separated from the controller 3

D: separate cloud storage service 3

E: separate database and message server 3

F: separate front-end node 3

G: fully distributed system 3

Table 4.5: Flexibility checklist.
List Check

System automatically recovers after a suspended IP camera becomes available 3

System handles compute node worker errors (either electricity or network prob-
lem) and acquires a new one

3

Compute node worker continues running when controller node is unavailable 3

Controller node can recover its status when it resumes running 3

Controller and compute node worker can continue running when the message
server is unavailable

3

4.2.2 System Responding Time

The Nokkhum VSaaS is based on the design described in Section 3.2, and its
cloud environment set up is explained in Section 4.1.2. The minimum video recording space
per camera per day was varied from 65 KB to 210 MB. The total video recording space per
camera used each day was varied from 361MB to 19 GB.
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The Nokkhum front-end node was executed as a single VM and the Nokkhum
compute unit utilized the 3 GB QCOW2 disk format. The virtual hardware template for instance
acquisition was equipped with a 2-core CPU, 2.10 GB RAM, and a hard disk of 20.09 GB. The
experimental results are shown in Table 4.6 and in Figures 4.3 - 4.8.

Table 4.6: Virtual machine acquisition time.
Activity Time (s)

Min Max Average
Instance spawning with image cache 11.150 11.470 11.265
Instance spawning without image cache 104.930 117.011 112.229
Instance booting 13.220 19.379 16.081

Table 4.6 shows the acquisition time for OpenStack Nova to provide instances.
The spawning time is the time to transfer a VM image from the OpenStack Glance server to
the destination Nova Compute Node Worker, plus the time to prepare the image for booting.
The image cache plays an important role in instance spawning. If the Nova Compute Node
Worker has previously run an instance, it may cache its image for a later run. This reduces the
image transferring time so it can boot much sooner. The instance booting time is the interval
from when the VM is first active to when the Nokkhum controller gets its first response from
the Nokkhum compute node worker. The VM acquiring average time (spawning and booting
time) was 128.31 seconds without image cache, and 27.346 seconds with caching.

In this experiment, there were two types of message commands for controlling
the starting and stopping of the Nokkhum processor. Firstly, User Request Command (URC)
messages are generated when the user requests the starting or stopping of video processing.
Secondly, System Request Command (SRC) messages are generated by the task controller
module in the Nokkhum controller when the video processor crashes. The task controller
adds an SRC to the command waiting queue to start the video processor. The waiting and
command processing times for an SRC indicate the system’s ability to serve user requests.

Figures 4.3 and 4.4 show the waiting time histograms for URCs to start and stop
video processors. Figures 4.5 and 4.6 show the processing time duration histograms for URCs
to start and stop video processors. The command waiting time histograms contain a range
of different time distributions due to several causes: the task scheduler is a single thread
performing sequential processing, the user submits requests for several sequential actions in
a too short time, and the user command action must wait for an available compute node.
The waiting time for a URC to start a video processor begins when the system starts loading
the video processor binary and finishes when the video processor gets its first image from the
video connection. The image acquisition time varies depending on the IP camera type, camera
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Figure 4.3: URC waiting time for starting video processors.

Figure 4.4: URC waiting time for stopping video processors.
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Figure 4.5: URC processing time for starting video processors.

Figure 4.6: URC processing time for stopping video processors.
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Figure 4.7: SRC waiting time for starting video processors.

Figure 4.8: SRC processing time for starting video processors.
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model, and network topology. Most URC processing times for starting a video processor are
in the range of 10-15 seconds (Figure 4.5). Measuring the processing time for a URC to stop a
video processor does not involve the binary loading and network traffic when measuring the
command waiting time. Most URC waiting times for starting a video processor are in the range
of 0-10 seconds (Figure 4.3) because results in long waiting times for acquiring a new compute
node worker do not often occur. Most waiting and processing times for the URCs to stop a
video processor are in the ranges of 0-10 and 1-2 seconds respectively (Figures 4.4 and 4.6).

Figures 4.7 and 4.8 show the waiting and processing times of SRCs for video
processor recovery. The waiting and processing times of SRCs are similar to the waiting and
processing times of URCs. However, URC events occur spontaneously while SRC events occur
automatically. For example, when a video processor exits with an error because it cannot
acquire an image from the video connection, then the compute node worker will detect the
suspicious consumption of computing resources. Most waiting and processing times for SRCs
to start a video processor have similar characteristics, falling within the range of 10-20 seconds.
The response times show that the system works well.

4.2.3 Discussion

In this section, Nokkhum is compared with available video surveillance systems
as shown in Tables 4.7 and 4.8. However, direct comparisons are difficult because some of
these systems are conceptual designs without complete implementations. Some researches
focused on resource allocation for system scalability rather than software architecture. Also,
some researches used simulated data rather than the actual one.

As a consequence, some descriptions are unavailable (N/A) or lacking in in-
formation (L/I). For example, Nokkhum provides Account/Billing, Authentication, and Autho-
rization (AAA), while the information is unclear for other systems. Nokkhum can more flexibly
configure components for different deployment scenarios. For instance, it can utilize resources
in a minimal way at first, and then scale them up later. In this way, Nokkhum is not just a
particular type of video surveillance system applying cloud computing technology, but it also
supports a variety of users in the public cloud, flexibility configurations for different system
sizes, and scalability, which are topics that are not addressed in other systems.

Section 4.2.2 includes histograms of VSaaS response times for service delivery
to users. Other CVS systems did not provide such response time information. Instead, they
focused on video processing performance or network bandwidth usage. Nokkhum system re-
sponse times are similar to those for the bundled software which come with the IP cameras.
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Table 4.7: Compairison of cloud-based video surveillance systems.
System Nokkhum P2PCloud VAQACI

Architecture Distributed
components

Distributed physical
nodes Distributed components

AAA service
Account and

Billing,
Authentication,
Authorization

N/A Billing

Cloud technol-
ogy

Nova/EC2, Swift/S3 HDFS MapReduce, HDFS

Real-time
video analysis

Yes L/I
Only after videos have
been recorded and

pushed into the HDFS

Bandwidth us-
age

According to
configuration

Low (only when event
detectors are used,
otherwise as high as

others)

High (centralized video
controller by Hadoop)

Table 4.8: System scalability compairison.
System Nokkhum P2PCloud VAQACI
Resource allocation Automatic N/A Automatic
Deployment
configuration

Supporting many
scenarios according
to Figures 3.12 -
3.18

Local node and di-
rectory node

One scenario

Minimum number of
deployed machines

1 Minimum required 2
(central and local)

2

However, many factors can affect the URC processing times for starting a video processor.
These include the camera response time for starting video streaming, resource allocation wait-
ing time, and the URC scheduling waiting time. Nokkhum supports real-time video processing
while other systems do not fully support it. Nokkhum can vary its network bandwidth usage
according to its users’ configurations while other systems are not as flexible.

Also, this thesis has tested Nokkhum controller’s capability for handling the
compute node worker. In the test scenario, the compute node worker has spawned 25 VMs
on the OpenStack environment. The VMs include one to two cores of CPU and 512 MB to 2.10
GB of RAM. The controller can comprehensively deal with the all VMs and has a tendency to
support more compute node workers. This test scenario uses VMs with 4-core CPU, 8 GB of
RAM, and 80 GB of hard disk according to Figure 3.15 configuration.
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4.3 Video Task Scheduling Results

This section presents experimental results when testing the Nokkhum sched-
uler with different resource configurations and machine specifications. The results then be-
come the video processing exploration data for applying scaling factors in later scheduling.

1. Computing node employs physical machine as shown in Table 4.2 and virtual machine
as shown in Table 4.3.

(a) Physical machines: AMD-2.8-PM, AMD-3.5-PM, AMD-3.8-PM, Intel-2.6-PM, Intel-2.8-
PM, and, Intel-3.4-PM.

(b) VMs: AMD-2.8-VM, AMD-3.5-VM, AMD-3.8-VM, Intel-2.6-VM, Intel-2.8-VM, and, Intel-
3.4-VM.

2. Using VIRAT video data set as a reference video.

3. Exploring CPU and RAM based on video formats as follows:

(a) Eight frame rates: 1, 5, 7, 10, 15, 20, 25, and 30 FPS.

(b) Six frame sizes: 160x120, 320x240, 640x480, 800x600, 960x720, and 1120x840
pixels.

(c) Ogg codec is applied for video output.

4. Exploring video processing including motion detection and video recording, and motion
recording which is a combination of motion detection and video recording.

5. Each exploration results shown in Table 4.9 have been tested ten times.

4.3.1 Video Task Scheduling Experimental Results

Table 4.9 presents the resource usage for the machines described in Tables 4.2
and 4.3, comparing three resource usages criteria: the average (Avg), average maximum (AMax),
and average minimum (AMin) of CPU and memory usage. Each run involves two video process-
ing tasks, a video recorder (VR) and motion detector (MD). These results are used as example
models for determining task scheduling.

Figures 4.9 and 4.10 present task scheduling results based on a physical ma-
chine (AMD-3.5-PM) and a VM (AMD-3.5-VM), involving a number of both types of video tasks
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Table 4.9: Video processing workload resource usage results.

Code Processor Video CPU Usage (%) Memory Usage (MB)
Size FPS Avg AMax AMin Avg AMax AMin

AMD-
3.5-PM

MD

320x240 10 9.80 10.47 8.83 46.08 46.82 45.01
320x240 15 12.44 13.47 11.36 46.16 46.98 44.10
320x240 30 20.24 21.40 19.26 47.03 47.74 46.19
640x480 10 26.51 28.45 25.08 71.70 79.00 69.56
640x480 15 36.40 38.15 34.35 71.90 80.58 68.70
640x480 30 75.86 123.01 68.24 82.30 93.32 76.19

VR

320x240 10 11.80 12.67 10.71 41.18 41.69 40.70
320x240 15 16.50 17.46 15.55 41.51 41.84 40.86
320x240 30 29.26 30.36 28.42 42.01 42.17 41.58
640x480 10 29.35 30.86 28.20 54.61 55.36 53.99
640x480 15 39.57 40.90 37.95 54.98 55.50 54.27
640x480 30 75.49 77.89 73.28 55.88 56.26 55.11

AMD-
3.8-PM

MD 640x480 10 25.45 27.60 24.07 67.26 79.94 64.43
VR 640x480 10 28.42 29.86 26.95 49.40 49.85 48.63

Intel-
2.8-PM

MD 640x480 10 25.22 28.40 23.83 65.65 77.56 62.84
VR 640x480 10 31.55 32.75 30.45 48.57 48.97 47.79

Intel-
3.8-PM

MD 640x480 10 26.93 29.32 25.28 66.81 78.23 64.40
VR 640x480 10 40.28 41.61 39.19 49.84 50.24 49.20

AMD-
3.5-VM

MD

320x240 10 9.97 10.68 8.49 40.14 40.42 37.18
320x240 15 13.13 14.30 12.58 39.94 40.45 35.96
320x240 30 22.10 23.28 21.47 40.86 41.63 40.21
640x480 10 25.24 27.60 23.99 61.79 70.98 59.86
640x480 15 33.85 35.04 31.80 62.72 73.89 59.46
640x480 30 65.27 66.75 64.17 66.17 75.79 59.52

VR

320x240 10 13.37 14.36 12.62 35.92 36.11 35.76
320x240 15 17.72 18.55 16.56 35.70 35.82 35.57
320x240 30 29.83 30.67 28.59 36.12 36.24 35.99
640x480 10 31.27 32.72 30.11 45.35 46.11 44.93
640x480 15 41.20 42.79 39.93 45.64 46.36 45.26
640x480 30 78.08 80.20 76.20 45.69 46.49 45.32

AMD-
3.8-VM

MD 640x480 10 25.29 27.40 24.16 61.81 71.87 59.82
VR 640x480 10 29.19 30.88 28.18 45.37 46.02 44.94

Intel-
2.8-VM

MD 640x480 10 36.98 39.43 35.09 63.10 73.28 59.35
VR 640x480 10 32.92 34.27 31.59 45.81 46.56 45.36

Intel-
3.8-VM

MD 640x480 10 26.38 29.18 25.00 63.12 75.64 60.48
VR 640x480 10 39.94 41.58 38.88 45.52 46.25 45.09

MD: Motion detector
VR: Video recorder
Avg: Average
AMax: Average Maximum
Amin: Average Minimum
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Figure 4.9: Number of tasks, the CPU and memory consumption in the physical machine (AMD-
3.5-PM).
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Figure 4.10: Number of tasks, the CPU and memory consumption in the virtual machine (AMD-
3.5-VM).
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(VR and motion recorder (MR)). AMD-3.5-VM is a VM running on AMD-3.5-PM. Both are very sim-
ilar, but their CPU specifications are different as shown in Tables 4.2 and 4.3. The important
specification parameters are the number of cores and the maximum memory. The video pro-
cessing tasks used for scheduling are a VR and a MR, whereas MR combines motion detector
and video recorder tasks. This means that the MR computing resource usage is a summation
of both tasks.

Scheduling results are shown in Figures 4.9 and 4.10. One of the experiments
of which the result shown in Figure 4.10 involves a video recorder, using the frame size of
640x480 pixels, and a frame rate of 10 FPS on AMD-3.5-VM. The scheduler can assign six video
recorder tasks to this VM when applying the average CPU usage criterion. The video recorder
task occupies the CPU usage for 187.59 % and consumes 272.10 MB, where the maximum
memory usage is 2000MB and the maximum CPU usage is 200 %. Therefore, there is some
space left for placing another task on the VM. For instance, the scheduler cloud can add a
video recorder VM, with the video size of 320x240 pixels and frame rate of 10 FPS which
would consume 199.39 % CPU usage and 313.28 MB memory. The machine specification can
support a these workload, and so they all can run together smoothly. As the video format
that recommended by SWGIT is 640x480 pixels at 30 FPS. The scheduler can place ten video
recorder on the AMD-3.5-PM and two video recorder on the AMD-3.5-VM.

Figures 4.9 and 4.10 show that the number of tasks placed on a compute
node worker depends on the frame rate and size, for both the video and motion recorders.
The number of tasks decreases when the frame rate and size increase. This characteristic
appears in both physical and virtual machines, and also directly affects memory consumption.
Therefore, this thesis can consider the number of tasks in the analysis as reflecting the memory
usage. However, the CPU consumption by the video and motion recorders affects the CPU
usage percentage, depending on the number of tasks and the compute node capacity. This
indicates that CPU consumption is the most significant factor for workload scheduling.

According to the scheduling process, the video processing scheduler’s re-
sponse time in different scenarios are shown in Table 4.10. When the scheduler executed
without any experiment dataset in the database, it took the average response time of 0.0427
second, while the maximum response time and minimum response time were 0.2393 and
0.0005 seconds respectively. While the scheduler found the experimental result matched with
the desired CPU model, it took longer time than when there were no experimental results in
the database. The average, maximum, and minimum response time were 0.0715, 0.9315, and
0.0002 seconds respectively. Part of the execution time was the database querying time. In
case that the scheduler could not match the experimental results with the desired CPU model,
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the scheduler took the average response time of 0.2637 seconds. The average maximum and
minimum response times were 1.2503 and 0.0005 second which were more than the querying
time from the database. The experimental results show that the scheduling consumed the
average scheduling time less than one second. All experimental results have been tested on
AMD-3.5-VM specification, and seven physical machines and seven virtual machines including
1344 experimental results (96 test cases on 17 machines).

Table 4.10: Scheduling response time.
Scienario Response Time (s)

Average Maximum Minimum Standard Deviation
No dataset 0.0427 0.2393 0.0005 0.0473
CPU model found 0.0715 0.9315 0.0005 0.1113
CPU model Not found 0.2637 1.2503 0.0005 0.2926

4.3.2 Discussion

The Nokkhum scheduler assigns a video processing task to a compute node
by examining adjacent experiment results from the exploration test in order to estimate the
resource usage. However, if the scheduler does not have enough resource usage information,
it may assign tasks that exceed the compute node’s capacity. To avoid this, the Nokkhum
scheduler also need to compare the real resource usage and the estimated resource usage.
This method is used to prevent system failure until better exploration results are received.

This thesis can estimate the number of video processing tasks per compute
node by transforming Equations (3.4.1), (3.4.2) and (3.4.3) into Equation (4.1). It shows that the
number of video processing tasks depends on the video frame rate and frame size per compute
node. Also, the CPU information is given more weight than the memory. The VSaaS admin-
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istrator can predict the number of compute nodes for their system by applying Equation 4.1,
and also plan the system deployment budget.

NCPU = ⌊C.cpucore × 100

CPUestimated

⌋

Nmemory = ⌊
C.total_memory

memoryestimated

⌋

Ntotal =

NCPU if NCPU < Nmemory,

Nmemory otherwise
where NCPU is the possible number of video processing tasks

divided by CPU usage;
Nmemory is the maximum number of video processing tasks

divided by memory usage;
Ntotal is the maximum number of video processing tasks

based on a comparison of NCPU and Nmemory.

(4.1)

4.4 Summary

This chapter addresses that the Nokkhum VSaaS can run on virtual and phys-
ical machines based on the OpenStack software for providing the cloud environment. Also,
this chapter concludes the checklist for verifying the system scalability and flexibility designed
in Section 3.2.3. In addition, the chapter presents the response time for any request command
type for testing the VSaaS service work as well as the response quality to the request com-
mands. Moreover, this chapter compares the Nokkhum VSaaS with other available systems in
several factors. Finally, the scheduling example results for placing a video processing task in a
suitable computing node running a real video processing workload have been presented.
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CHAPTER 5
CONCLUSIONS

This chapter presents the thesis contributions and suggestions for further devel-
opments of Nokkum VSaaS. It reveals both investigation results on Nokkhum VSaaS architecture
and scheduling. The contribution concerns architectural design, development, optimization
and testing schemes.

5.1 Thesis Summary

This thesis involves the design and development of a flexible and scalable
component-based VSaaS architecture for providing a VSaaS system called Nokkhum. It enables
deploying any components separately on both physical servers and VMs IaaS. The Nokkhum
VSaaS software architecture can automatically scale the number of VMs to support dynamic
user requirements. The Nokkhum applies the Amazon EC2 API for automatically handling VM
acquisition, and the Amazon S3 API is used by the storage engine. The designs and benefits of
Nokkhum components are described as follows.

The Nokkhum controller component consists of many modules for manag-
ing the computing resources, video processing tasks, notifier, and billing. The controller can
handle a large number of compute node workers according to the computing unit perfor-
mance. In a single VSaaS system, the Nokkhum system allows more than one active controller
for supporting a large number of compute node workers and concurrently dealing with new
video processing tasks. This scheme increases the system availability and relieves the system
overloading. Also, the controller includes VM management interface using Amazon EC2. It
automatically acquires an additional computing resource, when the compute node controller
detects insufficient computing resource for a new video processing task. The compute node
controller activates this action when the cloud provider key has been assigned. All above
descriptions are made up for the feature functions of the Nokkhum controller.

This thesis shows the design of the Nokkhum compute node worker for report-
ing computing status, both of the computing unit and video processing task, to the controller,
and responding to the controller order. The compute node worker is separately designed
from Nokkhum processors so that the compute node workers can support related stream pro-
cessing by implementing standard input/output interfaces. This designed model is different
from other systems. The others only support their video processing software. The Nokkhum
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compute node worker consists of the data storage interface for storing all data into the cloud
object storage using Amazon S3 API. It immediately pushes the output data to the cloud ob-
ject storage as soon as possible. This data pushing style causes the computing unit does not
require a high volume hard disk. However, the hard drive consumption may relate to the CPU
capacity for temporarily storing video records.

The Nokkum controller and compute node worker cooperate with each other
to manage video processing tasks. They communicate with each other via a message broker
using the publish-subscribe messaging pattern. Also, the publish-subscribe model increases
fault tolerance for the Nokkhum system. Although, some components terminate when errors
occur, the other components still smoothly continue running. When the crashed component
restarts working again, the controller will recover the system states and continuously process
next operations. Moreover, the publish-subscribe pattern extends the scalability of the system
architecture. The Nokkhum VSaaS system can, as a minimum, deploy only one machine for
a small-size VSS requirement. For the requirement of a larger VSS, the Nokkhum system can
distribute components especially the Nokkhum compute node worker, to another server or
more. The scaling component operation can proceed while the system is running, without a
need to shut the system down. This potential is explicitly addressed in the mechanism and the
design of the Nokkhum architecture but it was implicit and not mentioned in many previous
works.

The REST interface of the Nokkhum API server allows the system to support
multiple types of clients. In this thesis, a web client working as a proof of concept has been
implemented and used in both desktop and mobile platforms. The API server provides a set of
functions for managing cameras, video processors, and video records. It applies a token based
mechanism for authentication and authorization of the user requests. Then, it composes a
controlling message for managing the user’s video processing task. The API server conceals
the users from the controller in order to protect the controller from direct security attacks. In
addition, the API server can concurrently be deployed in many servers.

According to the Nokkhum scalability, this thesis presents the seven possible
components deployment topologies as a guideline to the VSaaS administrator. All topologies
are aimed for configuring the components corresponding to various provider requirements. The
Nokkhum architecture can be deployed using a minimal number of servers at the beginning
and can later be scaled up quickly for supporting a growing number of cameras. The minimum
number of servers begins with one and the number of Nokkhum compute node workers and
processors can be scaled up to sufficiently support added IP cameras. In case that there is a
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large number of IP cameras, all Nokkhum components can be distributed to many servers in
order to help respond to video processing demands.

This thesis has described video processing workload analysis and resource
estimation for workload scheduling on the Nokkhum VSaaS, which handles the computing
resource consumption of video processing tasks by interlacing the percentages of CPU and
memory usage with frame rates and sizes. In this part, the characteristics of video process-
ing workloads based on popular home-use video processing, especially motion detection, and
video recorder, have been studied. Based on experiments run on both physical and virtual ma-
chines, this thesis has developed video processing that stably consumes computing resources.
A typical combination of video processors incurs different characteristics which makes it dif-
ficult to model CPU and memory usage. Therefore, the approach for video processing task
scheduling utilizes task exploration which collects and records CPU and memory usage in a
database. Later, the scheduler uses this data to estimate required computing resources for a
new task, to determine which compute node is the most suitable for it. Task exploration is
initiated when there is no video processing information for a computing unit in the database,
and the unit is idle.

This thesis has also described a method for determining video resource usage
when there is no exactly matching information in the database. While waiting for exploration
results, the scheduler estimates the new video processing task’s resource usage from existing
experimental results available in the database. The estimation process employs a scaling factor
to adjust the CPU usage as a heuristic in the scheduling process. This resource estimation
process enables the scheduler to immediately place a task on an appropriate compute node
without waiting for exploration results which may take a long time to be produced.

In addition, this thesis has offered criteria (the average, average maximum, and
average minimum resource usage) as guidelines for identifying the resource usage policy. These
three criteria allow the administrator to adjust the requested task to the desired compute node.
Average resource usage fits all task consumption relative to the computing unit. Average
maximum resource usage can force the compute node towards an excessive workload and
average minimum resource usage can reduce consumption to allow space to left over.

In conclusion, this thesis proposes the design and implementation of the ar-
chitecture for a VSaaS system. It enables flexible deployment on both physical machines and
VMs. The system scaling process does not require the system to be shut down, unlike in other
systems. This scaling operation is clearly defined in this system, while it was not emphasized
in other works. Nokkhum VSaaS is flexible enough to tolerate challenging scenarios in which
some components are not connected due to various causes such as electricity blackout, loss
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of network communication, or suspension due to software errors which require a restart. Not
only the architecture design, but also the resource usage efficiency is important. This the-
sis studies the video processing workloads characteristics, especially motion detection, and
video recorder with considerable factors, such as the type of video processing, video frame
rate, frame size, and computing unit specification. Consequently, this thesis proposes video
processing exploration based scheduling for placing any video processing task to a suitable
computing node. The scheduler applies the resource usage data from the video processing
task exploration to predict a new video processing task consumption. Moreover, this thesis
describes a resource decision mechanism for approximating the resource usage of the video
processing task when the exploration data is not available. The scheduler also applies the
proposed three resource usage criteria to be identified by an administrator for resource usage
provision in the scheduling process.

5.2 Claims to Originality

This thesis contributes to the designs, developments and applications of VSaaS,
especially the flexible and scalable architecture and video processing task scheduling in a
number of ways. The system architecture has been suggested and new approaches have been
proposed for organizing and managing the VSaaS. The original contributions are highlighted as
below.

• A flexible and scalable component-based VSaaS architecture possibly deployed on both
heterogeneous physical servers and VMs of IaaS has been proposed.

• Encapsulating the functionalities of each components, and separating the VM layer to
the VSS layer by using components has been presented.

• The idea of employing more than one active controller helps increase the system scal-
ability and relieve the system overloading.

• The concept of having the compute node worker separately designed and work apart
from the video processor enables that it can support related stream processing imple-
mented by standard I/O interfaces.

• Storing data into the cloud object storage with an immediate pushing style consumes
a lower volume of hard disk of the computing node.
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• The publish-subscribe message passing mechanism has been used for the cooperation
between the controller and compute node worker, and it contributes to the system
fault tolerance and scalability.

• The API server applying the REST interface and a token based mechanism has been
designed to support multiple types of clients as well as to protect the controller from
direct security attacks.

• A video processing workload analysis has been carried out, and it reveals factors affecting
the system resources consumption.

• The video processing task exploration approach has been proposed and conducted
to collect the CPU and memory usages into the database to enable the scheduler to
compare and estimate the resources for a new video processing task.

• The method and algorithm for estimating the resource usage of a new video processing
task have been suggested, employing both data from the video processing task exploita-
tion and CPU scaling factor.

• Three resource usage criteria have been proposed and guided for resource scheduling
and prediction.

5.3 Limitations

Currently, the Nokkhum system has been deployed on a physical machine via
manual configuration, applying a snapshot of the VM image in the OpenStack environment. It
also supports cloud resource management APIs, Amazon EC2 and S3. Then, it can be deployed
by the cloud provider which provides those APIs. According to a single machine deployment,
the minimum machine specification required is 2.0 GHz of CPU, 4 GB of RAM, 500 GB of hard
disk, which can cover 4-6 cameras. In addition, this thesis studies video processing workload
characteristics based on only video recorder, motion detection, and motion recorder. Other
excluding complex video processing tasks have been excluded in the study.

5.4 Future Work

There still are many issues for further research and development in order to
make a better VSaaS, for example:
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• A video processing redundant system to archive high availability and fault tolerance

• Billing according to on-demand video processing resources

• Migration of VSaaS computation to other locations for more system availability

• Selection of best VSaaS locations for video processing with low video stream transfer
latency and network bandwidth

• All the Nokkhum components can be configured to run on modern lightweight software
containers like Docker [65] for reducing time to start and enable automatic deployment.

• Extended types of video processing workloads analysis can be included.
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APPENDIX A
NOKKHUM HANDBOOK

This appendix presents how to install and use the Nokkhum system. The
program installation section presents programs, tools, and libraries installation step for a front-
end node and a computing node.

A.1 Software Installation

Nokkhum is mainly written in Python in many parts, and in C++ in the Nokkhum
processor. The Nokkhum project is hosted on github.com as described in Table A.1. Many
components, required libraries and middlewares are shown in Tables A.2, A.3 and A.4.

Table A.1: Nokkhum components on github.com.

Nokkhum components URL
Nokkhum Controller and
Nokkhum Compute Node
Workder

https://github.com/sdayu/nokkhum

Nokkhum Processors https://github.com/sdayu/nokkhum-processor
Nokkhum API https://github.com/sdayu/nokkhum-api
Nokkhum Web Client https://github.com/sdayu/nokkhum-web

Nokkhum can be installed applying many topologies as described in Figures 3.12
- 3.18. This appendix shows the installation example identified in Figure 3.15. The deployed
system consists of two types of servers. The first type is the front-end node and the second
type is the computing node. This installation manual only describes the setup for the Linux
operating system. The below steps must be done in the following order.

A.1.1 Front-end Node Installation and Configuration

This section describes how to install and configure the front-end node which
consists of a MongoDB, RabbitMQ, Nokkhum API, Nokkhum web, and Nokkhum controller as
described in Figure 3.15.

https://github.com/sdayu/nokkhum
https://github.com/sdayu/nokkhum-processor
https://github.com/sdayu/nokkhum-api
https://github.com/sdayu/nokkhum-web
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Table A.2: Required Python libraries and tools.

Libraries and tools Version URL
Python >= 3.5 https://www.python.org/downloads/release/

python-350/
mongoengine >= 0.10.0 http://mongoengine.org/
psutil >= 3.4.0 https://github.com/giampaolo/psutil
amqp >= 1.4.9 http://github.com/celery/py-amqp
netifaces >= 0.10.4 https://bitbucket.org/al45tair/netifaces
numpy >= 1.11.0 http://www.numpy.org
scipy >= 0.17.0 http://www.scipy.org
boto >= 2.40 https://github.com/boto/boto/
python-dateutil >= 2.5.3 https://dateutil.readthedocs.org
pyramid >= 1.6 http://docs.pylonsproject.org/en/latest/docs/

pyramid.html
pyramid_jinja2 >= 2.6.2 https://github.com/Pylons/pyramid_jinja2
pyramid_beaker >= 0.8 http://docs.pylonsproject.org/projects/pyramid_

beaker/en/latest/
wtforms >= 2.1 http://wtforms.simplecodes.com
pycrypto >= 2.6.1 http://www.pycrypto.org
requests >= 2.10.0 http://python-requests.org

Table A.3: Required C++ libraries and tools.

Libraries and tools Version URL
G++ >= 5.1 https://gcc.gnu.org/gcc-5/
OpenCV >= 3.0 http://opencv.org/
CMake >= 2.8 https://cmake.org/
boost >= 1.58 http://www.boost.org/
google glog >= 0.3.4 https://github.com/google/glog
jsoncpp >= 1.7.2 https://github.com/open-source-parsers/jsoncpp
Poco C++ >= 1.3.6 http://pocoproject.org/

Table A.4: Required middleware and database.

Software Version URL
OpenStack >= 13.0.0 http://www.openstack.org
RabbitMQ >= 3.5.7 http://www.rabbitmq.com
MongoDB >= 2.4 https://www.mongodb.com

https://www.python.org/downloads/release/python-350/
https://www.python.org/downloads/release/python-350/
http://mongoengine.org/
https://github.com/giampaolo/psutil
http://github.com/celery/py-amqp
https://bitbucket.org/al45tair/netifaces
http://www.numpy.org
http://www.scipy.org 
https://github.com/boto/boto/
https://dateutil.readthedocs.org
http://docs.pylonsproject.org/en/latest/docs/pyramid.html
http://docs.pylonsproject.org/en/latest/docs/pyramid.html
https://github.com/Pylons/pyramid_jinja2
http://docs.pylonsproject.org/projects/pyramid_beaker/en/latest/
http://docs.pylonsproject.org/projects/pyramid_beaker/en/latest/
http://wtforms.simplecodes.com
http://www.pycrypto.org
http://python-requests.org
https://gcc.gnu.org/gcc-5/
http://opencv.org/
https://cmake.org/
http://www.boost.org/
https://github.com/google/glog
https://github.com/open-source-parsers/jsoncpp
http://pocoproject.org/
http://www.openstack.org
http://www.rabbitmq.com
https://www.mongodb.com
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A.1.1.1 Prerequisites

First of all, update the debian repository. Then, install the RabbitMQ, a Mon-
goDB server and essential tools.
# apt update
# apt install rabbitmq -server
# apt install mongodb-server
# apt install python3 python3-dev python3-pip python3-venv git

After having completed the packages installation, the RabbitMQ server requires
to add a user to the system and setup permissions.
# rabbitmqctl add_user nokkhum NOKKHUM_PASSWD
Creating user "nokkhum" ...
...done.
# rabbitmqctl set_permissions nokkhum ".*" ".*" ".*"
Setting permissions for user "nokkhum" in vhost "/nokkhum" ...
...done.

A.1.1.2 Nokkhum API Installation and Configuration

1. Create a Python virtual environment.
$ pyvenv nkapi-env
$ source nkapi-env/bin/activate
(nkapi-env) $

2. Clone the Nokkhun API source code from github.com and the initial submodule.
(nkapi-env) $ git clone --branch v0.1.0 https://github.com/sdayu

/nokkhum-api.git
(nkapi-env) $ cd nokkhum-api
(nkapi-env) $ git submodule update --init

3. Setup Nokkhum with an automatic script, it will simultaneously install required libraries
identified in the setup script.
(nkapi-env) $ python setup.py develop

4. Copy the sample configuration and setup a new configuration.
(nkapi-env) $ cp productoion.ini.sample production.ini

Change the red literals according to your own configuration.



100

[app:main]
use = egg:nokkhum-api

pyramid.reload_templates = t r u e
pyramid.debug_authorization = f a l s e
pyramid.debug_notfound = f a l s e
pyramid.debug_routematch = f a l s e
pyramid.default_locale_name = en

mongodb.host = l o c a l h o s t
mongodb.db_name = nokkhum

nokkhum.auth.secret = NOKKHUM−SECRET

# cloud storage
nokkhum.storage.s3.host = S3−HOST− I P
nokkhum.storage.s3.port = 8080
nokkhum.storage.s3.access_key_id = S3−ACCESS−KEY− I D
nokkhum.storage.s3.secret_access_key = S3−SECRET−ACCESS−KEY
nokkhum.storage.s3.secure_connection = f a l s e
nokkhum.temp_dir = / tmp / nokkhum−a p i / ca che

nokkhum.api.ip = FRONT−END− I P

5. Start the Nokkhum API server.
(nkapi-env) $ pserve --reload production.ini

A.1.1.3 Nokkhum Web Installation and Configuration

Install an additional front-end javascript package manager

# apt install npm
# npm install -g bower

1. Create a Python virtual environment.
$ pyvenv nkweb-env
$ source nkweb-env/bin/activate
(nkweb-env) $

2. Clone the python-nokkhumclient source code from github.com and setup the Nokkhum
client with the automatic script.
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(nkweb-env) $ git clone --branch v0.1.0 https://github.com/sdayu
/python-nokkhumclient.git

(nkweb-env) $ cd python-nokkhumclient
(nkweb-env) $ python setup.py develop
(nkweb-env) $ cd ..

3. Clone the Nokkhun Web source code and setup the Nokkhum client with the automatic
script.
(nkweb-env) $ git clone --branch v0.1.0 https://github.com/sdayu

/nokkhum-web.git
(nkweb-env) $ cd nokkhum-web
(nkweb-env) $ python setup.py develop

4. Install JavaScript for the front-end framework.
(nkweb-env) $ bower install

5. Copy the sample configuration and setup a new configuration.
(nkweb-env) $ cp productoion.ini.sample production.ini

Change the red literals according to your own configuration.
[app:main]
use = egg:nokkhum-web

pyramid.reload_templates = t r u e
pyramid.debug_authorization = f a l s e
pyramid.debug_notfound = f a l s e
pyramid.debug_routematch = f a l s e
pyramid.debug_templates = t r u e
pyramid.default_locale_name = en
pyramid.includes = py r am i d _ tm

p y r a m i d _ j i n j a 2
p y r am i d _ b e a k e r

jinja2.directories = nokkhumweb : t emp l a t e s

nokkhum.auth.secret = NOKKHUM−SECRET

nokkhum.api.host = PUBL IC− I N T E R F A C E
nokkhum.api.port = 6543
nokkhum.api.secure_connection = f a l s e

session.expire = 600
cache.regions = day , hou r , m inu te , s e cond
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cache.type = memory
cache.second.expire = 1
cache.minute.expire = 60
cache.hour.expire = 3600
cache.day.expire = 86400

6. Start the Nokkhum web server.
(nkweb-env) $ pserve --reload production.ini

7. Open web browser and goto http://PUBLIC-INTERFACE:6544 presents the Nokkhum web
index as shown in Figure A.1.

Figure A.1: Nokkhum web index.

A.1.1.4 Nokkhum Controller Installation and Configuration

1. Create a Python virtual environment.
$ pyvenv nkcontroller -env
$ source nkcontroller -env/bin/activate
(nkcontroller -env) $

2. Clone the nokkhum source code from github.com and setup the nokkhum controller
with the automatic script.
(nkcontroller -env) $ git clone --branch v0.1.0 https://github.

com/sdayu/nokkhum.git
(nkcontroller -env) $ cd nokkhum
(nkcontroller -env) $ python setup.py develop
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3. Copy the sample configuration and setup a new configuration.
(nkcontroller -env) $ cp controller -config.ini.sample controller -

config.ini

Change the red literals according to your own configuration.
[DEFAULT]
nokkhum.log_dir = / tmp / nokkhum− l o g

[controller]
nokkhum.controller.interface = e t h 0
nokkhum.scheduler.processor.heuristic = av g

mongodb.host = l o c a l h o s t
mongodb.db_name = nokkhum

amq.url = amqp : / / nokkhum : NOKKHUM−PA S SWD@ l o c a l h o s t : 5 6 7 2 / nokkhum

nokkhum.storage.enable = t r u e
nokkhum.storage.api = s 3
nokkhum.storage.s3.host = S3−HOST− I P
nokkhum.storage.s3.port = S3−HOST−PORT
nokkhum.storage.s3.access_key_id = S3−ACCESS−KEY− I D
nokkhum.storage.s3.secret_access_key = S3−SECRET−ACCESS−KEY
nokkhum.storage.s3.secure_connection = f a l s e

nokkhum.temp_dir = / tmp / nokkhum−web / cache

nokkhum.vm.enable = f a l s e # change to true when using EC2
nokkhum.vm.api = ec2
nokkhum.vm.ec2.host = S2−HOST− I P
nokkhum.vm.ec2.port = EC2−HOST−PORT
nokkhum.vm.ec2.access_key_id = EC2−ACCESS−KEY− I D
nokkhum.vm.ec2.secret_access_key = EC2−SECRET−ACCESS−KEY
nokkhum.vm.ec2.secure_connection = f a l s e
nokkhum.vm.ec2.image.name = NOKKHUM−IMAGE
nokkhum.vm.ec2.instance_type = l 1 . medium , l 1 . l a r g e

nokkhum.information.removal = 30

4. Start the Nokkhum controller.
(nkweb-env) $ bin/bin/nokkhum-controller controller -config.ini
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A.1.2 Computing Node Installation and Configuration

A computing node consists of two Nokkhum components. First is a Nokkhum
compute node worker and the other is a Nokkhum processor.

A.1.2.1 Prerequisites

First of all, update the debian repository. Then, install essential tools for
python and C++.
# apt update
# apt install python3 python3-dev python3-pip python3-venv git
# apt install cmake g++ pkg-config libboost -filesystem -dev libboost -

program-options-dev libboost -date-time-dev libopencv -dev libgoogle
-glog-dev libjsoncpp -dev

A.1.2.2 Nokkhum Compute Node Installation and Configuration

1. Create Python virtual environment.
$ pyvenv nkcompute -env
$ source nkcompute -env/bin/activate
(nkcompute -env) $

2. Clone the nokkhum source code from github.com and setup the nokkhum compute
node worker with the automatic script.
(nkcompute -env) $ git clone --branch v0.1.0 https://github.com/

sdayu/nokkhum.git
(nkcompute -env) $ cd nokkhum
(nkcompute -env) $ python setup.py develop

3. Copy the sample configuration and setup a new configuration.
(nkcompute -env) $ cp compute-config.ini.sample compute-config.

ini

Change the red literals according to your own configuration.
[DEFAULT]
nokkhum.log_dir = / tmp / nokkhum− l o g

[compute]
nokkhum.processor.path = PATH−TO−NOKKHUM−PROCESSOR−PROJECT / b u i l d

/ nokkhum−p r o c e s s o r
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nokkhum.processor.record_path = / tmp / nokkhum− r e c o r d s
nokkhum.compute.interface = e t h 0

amq.url = amqp : / / nokkhum : NOKKHUM−PASSWD@FRONT−END− I P : 5 6 7 2 /
nokkhum

4. Start the Nokkhum controller.
(nkcompute -env) $ bin/bin/nokkhum-compute compute-config.ini

A.1.2.3 Nokkhum Processor Installation and Configuration

1. Configure the cmake to build Nokkhum processors
$ mkdir build
$ cd build
$ cmake ..

2. Compile Nokkhum processors
$ make
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Abstract—Current video surveillance systems are popular on 
standalone applications. A free video surveillance software 
usually fixes its configuration on a single desktop. This makes it 
is hard to scale the system up for supporting many cameras. 
Moreover, it also needs a one-stop management service method. 
Our research tries to enhance OpenVSS, an open source video 
surveillance system, for Video Surveillance as a Service (VSaaS) 
so that it can be used by multiple users and runs on 
Infrastructure as a Service of Cloud Computing in the future. 

Keywords-Video Surveillance as a Service, Cloud Computing 

I.  INTRODUCTION 
A video surveillance system [1] provides an important role 

for security and popularly used to observe indoor events. The 
video surveillance system needs a video analysis software and 
storage space to keep records up to the owner's requirement. 
Currently, the small video surveillance software usually is a 
standalone application and bundles with a closed circuit 
television and Internet Protocol cameras (IP cameras). The 
software that is able to support a lot of cameras is expensive 
and needs complex system configuration.  

The Software as a Service (SaaS) is a famous software 
model that delivers services to users via the Internet. The users 
do not need to have high skills in system configuration and it 
reduces a usability learning curve. We are interested in 
applying SaaS to a video surveillance system for providing 
Video Surveillance as a Service (VSaaS). The VSaaS is 
providing on the Internet must covers massive camera 
management, different camera configuration, massive storage 
space, supporting dynamic user requirement, etc. The 
advantage of the VSaaS is that the user do not need to mind 
about software maintenance and can choose new image 
processing solutions as soon as the provider deploys them 
without new system installation on the user side. The user can 
have less concern about system software/hardware 
maintenance, and focus on providing IP-cameras only. On the 
other hand, the provider may compete with each other to 
reduce the operation cost and provide best quality image 
processing to users.  

The VSaaS on current market provides simple image 
processing such as motion detection with specific areas of 
interest, storage space and alert system. Technologies and 
VSaaS architecture behind the scene lack of information due to 
trade secret. Some open video surveillance systems are 
unsuitable for SaaS models. They are appropriately designed 

according to the software objectives for best system 
performance. However, there still are needs to research upon  
dynamic user request and system scalability. Consequently, we 
simply develop and research on a VSaaS in terms of software 
system architecture, system behavior and user requirement. 
This paper identifies the scalable VSaaS software system 
architecture that easy to increasing a computation node worker 
for supporting increasing IP-cameras. 

Two main parts of our proposed VSaaS architecture which 
are a controller and a compute node worker communicate with 
each other using message passing. Therefore, our VSaaS tasks 
are easily distributed to multiple computational nodes for 
supporting elastic requirement. All of video records are 
collected into the cloud storage and the user can access to 
playback them via a web site. The video records and images 
are stored on cloud storage as long as the user requires.  

II. VIDEO SURVEILLANCE AS A SERVICE 

A. Current Video Surveillance Application 
At the present, video surveillance systems support Internet 

Protocol cameras (IP cameras) [2] which are connected to a 
Network Video Recorder (NVR) or a generic computer for 
image processing. The video camera management and image 
processing software are usually bundled with video cameras or 
sold separately in case of high performance software that can 
manage a lot of cameras and provide special image processing. 
Normally, free video management software is specifically 
limited to only certain types of cameras and cannot combine 
cameras from different manufacturers. In addition, if anyone 
wants to install a video surveillance system, one has to pay for 
the first time installation, maintenance and computer software 
costs. 

There are many free video surveillance software that work 
on standalone machine such as ODViS [3], OpenVSS [4] and 
Zoneminder [5]. They have complete video surveillance 
processing on a single computer. Some software are easy to 
install, configure and use but most software components are 
not scalable. An easy way to scale up this kind of systems is 
adding a new computer worker and re-configure it but when 
the user requires many cameras, it is hard to manage and 
maintain the system. The other type of video surveillance 
system architectures is a distributed system, that its architecture 
consists of many components and processing layers such as 
IVSS [6], DiVA [7], CANDELA [8], etc. It is designed for 

Thailand Research Fund through the Royal Golden Jubilee Ph.D. Program
 (Grant No. PHD/0047/2552) and Prince of Songkla University 
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supporting massive cameras and different configurations. 
However, the architecture needs best configuration as it 
separates modules to run on different machine and requires 
close work cooperation. 

B. Video Surveillace as a Service 
Current VSaaS on market has provided a network video 

recorder and storage space to collect video records. Normally, 
the system has motion analysis for applying to the video 
recorder.  The motion analysis filters the event footage for 
reducing the storage space in collecting video records. The 
VSaaS has a service plan for customers and the customers 
choose the plan that is fit to their requirements. 

It is well known that a video surveillance system must 
have appropriate storage space corresponding to the time to 
store the video record. Therefore, each stored video record 
from a camera requires a lot of memory. In addition, the 
maintenance cost for video cameras, computers and 
administration is next to be considered. To reduce these costs, 
we need to provide a video surveillance service in terms of 
SaaS over the Internet. The characteristic of video cameras 
changes from analog to digital in IP cameras and SaaS on the 
Internet is widely spread in the market. Therefore, there are 
attempts to transform video surveillance system models into 
Internet services like Video Surveillance as a Service (VSaaS). 
This kind of services can solve the storage space problem, 
support a lot of video image processing and allow the growth 
in the number of video cameras in the future. The users have 
to pay fees upon their organization’s requirements. Although 
there are video surveillance services in the market such as 
SecurityStation [9], Secure-i Hosted Video Recorder™ [10], 
and OVS™ [11], the technical issues behind the scenes to 
provide the services, for example, resource management and 
cost-effective optimization, still are not disclosed.  

III. DESIGN OF VIDEO SURVEILLANCE AS A SERVICE 
Our VSaaS called “Nokkhum” is implemented by Python 

and C++, and divided into four parts: controller, compute node 
worker, image processor and web front-end. The controller is a 
daemon process that handles the user requests from a web site 
and pushes commands to available compute nodes using the 
message-oriented middleware. The compute node worker gets 
commands from the controller via the message broker, 
manages its image processor and monitors its resources for 
reporting back to the controller. For a basic image processor, 

we investigate some components of OpenVSS and rewrite the 
code to fit to our system design based on OpenCV [12].  

A. Component Overview  
The video surveillance system have four sections as shown 

in Figure 1. Each section is a separate program developed   
using C++ and Python. The controller pushes message 
commands to the computer node worker via the message 
broker and the compute node worker builds the image analysis 
process. The basic architecture is shown in Figure 2. 

• A controller is a task and resource control which is an 
important part of the system. It is a daemon process that 
monitors user requirements and system resources.  

• A compute node worker is a daemon process that runs 
on each computation node. It provides computer 
resource monitoring, camera monitoring and image 
processing deployment interface. The compute node 
uses pipes for communicating with image processors 
and reports information resource updates to the 
controller using message passing.  

• An image processor provides an image processing 
solution via JSON. It parses JSON information from the 
compute node pipe as a standard input and constructs 
image processing threads. The image processor is a 
computer process controlled by the compute node 
worker.  

• Web front-end is a web user interface for managing  and 
controlling cameras and image processors.  

Nokkhum VSaaS architecture in Figure 2 shows  a 
conceptual design. The user composes the camera 
configuration on web interface then the web site pushes the 
command to the database. When the task scheduler on a 
controller is active, it gets the user command, finds available 
resources and pushes the message to a compute node worker 
via the message server. The compute node worker gets the 
message, then builds a video surveillance solution and starts 
image processors. When the image processors are working and 
producing the output data (video record, image), then the 
compute node worker stores the data at the cloud storage. The 
user can watch, download and delete the video records and 
images from web site. The controller also monitors and 
manages the time to storage of video records and images. 

 
Figure 1: Four components of Nokkhum VSaaS 
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1) Controller 
Video surveillance controller and compute node worker 

communicate via the message passing method. We have 
implemented the controller to handle users' video surveillance 
requirements. The controller can call a compute node worker to 
start a surveillance application. The controller has been 
developed using Python, MongoDB [13] and connected to the 
compute node worker using message passing.  

At the present, the controller has basic camera monitoring 
and task scheduling. It can handle resource information from 
the compute node and push camera action commands to the 
compute node in order to start, stop and check the camera 
image processing status. The compute node can handle actions 
from the controller and trigger order to image processors.  

2) Compute Node Worker 
The compute node worker consolidates image processing 

tasks assigned by the controller. The tasks contain many image 
analytical solutions such as motion detection and face 
detection. The compute node worker has resource sensors to 
monitor the computer resource capacity and serve the 
information for the controller's monitoring.  

A compute node worker includes resource sensors for 
monitoring the resource usage such as CPUs utilization and 
memory capacity. Then, the resource information will be 
delivered to the controller via message passing. The last 
component of a compute node is the task management module 
which controls and monitors tasks and the task pool. This 
module manages the task life cycle such as create and 
terminate states. In addition, the task management module may 
watch task behaviors and handle shortcomings in order to 
increase the system availability. 

A task runs on a compute node worker consists of image 
processing solutions for a video surveillance system. The task 
bundles image processing solutions that apply to the same IP 
camera. Therefore, we need to reduce the internal network 
bandwidth for image delivery between compute node workers. 
In addition, when a compute node worker clashes, then the 
tasks that run on it will stop without affecting other compute 
node workers.   

3) Image Processor 
The video surveillance computation includes image 

processors that is a set of image analysis build from 
configuration based on the OpenCV library as shown in Table 
1. 

Table 1. Image processors and their implementation 

Image Analysis Implementation

Motion detector OpenCV optical flow 

Face detector OpenCV object detection 
with cascade classifier 

Video recorder OpenCV video function 

Image recorder OpenCV image function

 

According to image processor conceptual design, an image 
analysis is a thread that passes its output to another image 
analysis via an image queue as shown in Figure 3.  

 

In Figure 3, the data flow of the image processor starts  
when an IP camera captures images via the video capturing 
thread. The capturing thread pushes the image matrix into 
multiple queues upon image analysis. After the image analysis 
thread begins data processing, it will then pass the image 
matrix output to the next image analysis via the queues. 

A camera configuration and processor attributes are 
described using JSON for building an image processing 
solution as shown in Figure 4. The camera configuration is a 
dictionary containing all attributes such as name, URL, width, 
height, etc. The processor attributes are listed identified by 
“processors” keyword, which contain JSON dictionary of 
attributes. The list of processor attributes allows nested 
description for complex configuration. 

Figure 3. Example of data flow for an image processing process 

Figure 2: Nokkhum VSaaS architecture 
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{ "camera" : {  
        "fps" : 10,  
        "height" : 240, "width" : 320, 
        "model" : "Logitech",  
        "name" : "Camera 1",  
        "url" : "rtsp://url.to.camera/stream",   
         },  
    "processors" : [ {  
            "interval" : 2,  
            "name" : "Motion Detector",  
            "processors" : [ {  
                    "directory" : "./",  
                    "fps" : 20,  
                    "height" : 240, "width" : 320, 
                    "name" : "Video Recorder" } ],  
   } ]  
} 

Figure 4. Example of camera and image processors configuration using JSON 

4) Web Front End 
The web front end is an interface for users and the 

administrator. It has been developed by Python and HTML to 
provide camera and system information up to the user group 
permission.  The user can create new camera configuration, 
compose available image analysis and watch videos and 
images from the cloud storage. The web interface is developed 
by Python, Pyramid [14], HTML5 and MongoDB.    

B. Inter-component Communication 
There are 2 interesting parts of  inter-component 

communication, one includes a controller and compute node 
workers and the other includes compute node workers and 
image processor. In this section, we present the communication 
method between component. 

1) Controller and Compute Node Worker 
According to Figure 2, the controller and compute node 

workers communicate with message passing method. There are 
two types of exchanges in the communication: direct exchange 
and topic exchange. The controller and the compute node 
worker employ direct exchange for greeting messages and 
updating system resources because the compute node does not 
need to wait for a response to do something. The controller and 
the compute node worker use topic exchange for synchronizing 
command messages such as start/stop an image processor and 
request new greeting information. The topic exchange is 
designed to wait for responding messages and command 
confirmation. 

When a new compute node worker starts, it will send a 
greeting message to the message  broker (The message broker 
address must appear in the compute node worker 
configuration), then the controller will receive a greeting 
message and push the compute node worker to the resource 
pool. After receiving the greeting message, the compute node 
pushes to update system resource usage including running 
image processors on this compute node worker, CPU 
utilization and memory usage. 

2) Compute Node Worker and Image Processor 
A compute node worker and an image processor has 

communicate with the pipe as the image processor is a process 
created by the compute node worker. The compute node 
worker writes a command to the standard input and reads 

results from the standard output of the image processor. The 
command and result are written in the JSON format. The 
compute node worker checks available image processors and 
reports to the controller via an update system resource 
message. 

IV. EXPERIMENTAL RESULT 
We have set up a testing environment, running Nokkhum 

VSaaS on two physical machines with AMD Phenom™ II X6 
1055T Processor, 8 GB DDR RAM, 2 TB hard disk and Linux 
operating system. The first machines includes message broker 
(RabbitMQ [15]), database server (MongoDB), Nokkhum 
controller, Nokkhum compute node worker, Nokkhum 
processor and Nokkhum web front end. The second machine 
includes Nokkhum compute node worker and Nokkhum 
processor for only video processing.  

We have 12 available video streams adding to the system 
with different configurations. The system can assign processing 
tasks to Nokkhum compute node workers. There are several 
scenarios as follows: 

• In case of the electricity is cut or the network is down at 
a video camera site, the system can automatically 
recovery after the IP camera is available.  

• When a compute node worker has problem, for 
example, network, program crash and disconnection to 
the message broker, the system should provide an 
available compute node worker for starting a new run. 

• When the Nokkhum controller is down and the compute 
node workers are running, the video processors can 
continue working without an effect. When the controller 
resume running, it can recover to the current status by 
processing message information from the message 
broker server and database server. 

• The system can start with a single machine and scale the 
system up by adding new worker machines in the 
future. 

As the testing system has been run more than two months, 
our Nokkhum VSaaS works well on above scenarios. The 
controller is able to process messages from any compute node 
worker. However, the limitation of the number of compute 
node workers supported by the controller is to be further 
researched. The number of compute node workers is a key to 
determine whether the system should start a new controller. In 
our experiment, a controller can process two compute node 
workers that can support more than 30 video streams according 
to each camera configuration.  

The Nokkhum VSaaS works as expected for serving a 
video surveillance application on the Internet. It is suitable for 
a private organization that has many IP cameras. Some more 
technical issues need to be further researched such as network 
bandwidth, security, service fee, etc., for its expandable service 
running on the global Internet. 

V. CONCLUSION 
Nokkhum is novel design and implementation for VSaaS in 

order to support dynamic user requirement. Nokkhum 
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components make it easy to distribute image processing tasks 
to compute node workers via a message broker. This advantage 
makes the VSaaS can scale up the number of compute node 
workers in order to handle additional cameras and support 
unpredictable user requirements. This system helps the 
administrator find available resources in order to start a 
surveillance application automatically. It handles common 
image processing issues and tries to solve them when the 
conditions are ready (networks, electricity, computing 
resources). Nokkhum has provided a web interface for users to 
manage their camera configuration, design their own 
surveillance processes and arrange image or video records. In 
future work, Nokkhum will provide some more modules to run 
on  Infrastructure as a Service (IaaS) of Cloud Computing for 
automatic system scalability. It is easily scale the system 
according to user requirement and cost-effective optimization.  

Nokkhum is distinguished form other surveillance 
applications as follows: Nokkhum has cloud storage back-end 
for keeping image and video records. Design components are 
prepared to run on IaaS a cloud computing environment. All 
modules require a few resources at the start-up time and 
acquire more resources when adding more cameras. This 
advantage affects the operation cost. The administrator does 
not need a long time to plan for supporting the requirements in 
the future.  

ACKNOWLEDGMENT 
The authors are grateful for financial supports from the 

Thailand Research Fund through the Royal Golden Jubilee 
Ph.D. Program (Grant No. PHD/0047/2552) and Prince of 
Songkla University. 

REFERENCES 
[1] M. Valera and S. Velastin, “Intelligent distributed surveillance systems: 

a review,” in IEE Proceedings Vision, Image and Signal Processing, 
vol. 152, no. 2, pp. 192-204, 2005. 

[2] Georis, J. F. Delaigle, B. Macq, X. Desurmont, D. Demaret, and S. 
Redureau, “IP-distributed computer-aided video-surveillance system,” in 
COLLOQUIUM DIGEST-IEE, pp. 18-18, 2003. 

[3] C. Jaynes, S. Webb, R. M. Steele, and Q. Xiong, “An Open 
Development Environment for Evaluation of Video Surveillance 
Systems,” in Proceedings of the Third International Workshop on 
Performance Evaluation of Tracking and Surveillance(PETS’2002), vol. 
1, p. 32–39, 2002. 

[4] N. Suvonvorn, “A video analysis framework for surveillance system,” in 
2008 IEEE 10th Workshop on Multimedia Signal Processing, pp. 867-
871, 2008. 

[5] Triornis Ltd. (2012, February 21). zoneminder. [Online]. Available: 
http://www.zoneminder.com 

[6] X. Yuan, Z. Sun, Y. Varol, and G. Bebis, “A distributed visual 
surveillance system,” in Proceedings IEEE Conference on Advanced 
Video and Signal Based Surveillance, 2003., 2003, pp. 199 - 204. 

[7] J. C. San Miguel, J. Bescos, J. M. Martinez, and A. Garcia, “DiVA: A 
Distributed Video Analysis Framework Applied to Video-Surveillance 
Systems,” in Image Analysis for Multimedia Interactive Services, 2008. 
WIAMIS ’08. Ninth International Workshop on, 2008, pp. 207-210. 

[8] R. G. J. Wijnhoven, E. G. T. Jaspers, and P. H. N. de With, “Flexible 
surveillance system architecture for prototyping video content analysis 
algorithms,” in Proceedings of SPIE, vol. 6073, no. 1, p. 60730R–
60730R–9, Jan. 2006. 

[9] NW Systems Group Ltd. (2012, February 20). How SecurityStation 
works. [Online]. Available: http://www.securitystation.com/how-vsaas-
works.php 

[10] Secure-i. (2012, February 20). Clear and Simple. HVR™ is changing 
security one camera at a time. [Online]. Available: http://www.secure-
i.com/learn/technologies 

[11] Neo IT Solutions Inc. (2012, February 20). OVS™ Technology. 
[Online]. Available: http://www.neovsp.com/solutions/webvsp  

[12] Gary B. and A. Kaehler, Learning OpenCV. O’Reilly Media, Inc., 2008. 
[13] K. Chodorow and M. Dirolf, MongoDB: The Definitive Guide. O’Reilly 

Media, Inc., 2010. 
[14] C. McDonough, (2012, February 20). The Pyramid Web Application 

Development Framework. [Online]. http://media.readthedocs.org/pdf 
/pyramid/1.3-branch/pyramid.pdf 

[15] SpringSource, (2012, February 20). RabbitMQ – Documentation. 
[Online]. VMware Inc., Available: http://www.rabbitmq.com/ 
documentation.html

 

111



Video Surveillance as a Service Cost Estimation and
Pricing Model

Thanathip Limna and Pichaya Tandayya
Department of Computer Engineering

Prince of Songkla University

Hatyai, Songkhla, Thailand 90112

Email: thanathip.limna@gmail.com, pichaya@coe.psu.ac.th

Abstract—There were many research works about video
surveillance as a service system. Some concerned system archi-
tecture. Some identified cost optimization for the deployment
of video surveillance systems using cloud computing technol-
ogy. However, there was not much information about budget
calculation for system provision. This paper addresses a cost
investigation for video surveillance providers to use as a guideline
for budget preparation. In addition, we propose a pricing model
for monthly package based on real load resource usage.

Keywords—Cost Estimation, Pricing Model, VSaaS, Real Load

I. INTRODUCTION

Currently, applying cloud computing technology to drive
online services becomes a popular trend for modern Software
as a Service (SaaS). The SaaS is spreadly used in many
software categories such as accounting, office, entertainment,
banking, and also video surveillance. Nowadays, there are
many video surveillance system providers providing online
image analysis and storage space for home customers, being
known as Video Surveillance as a Service (VSaaS) [1]. The
customer only has to buy Internet Protocol cameras (IP cam-
eras), then register and connect the IP cameras to an online
system. The provider accepts the IP camera connectivity and
starts the image analysis according to the customer’s choice
of configuration and service package. The VSaaS paradigm
is shown in Fig. 1. Most VSaaS providers charge the cus-
tomer according to software features and timing. Many VSaaS

Fig. 1. VSaaS paradigm

one operates VSaaS services using physical servers, and the
other applies Virtual Machines (VMs) and cloud computing
technology. The two kinds of implementations infer different
costs and also service charges to both service providers and
customers. Therefore, we are interested in investigating the
costs for VSaaS providers in terms of CPU and Memory usage.

II. VIDEO SURVEILLANCE AS A SERVICE

Video Surveillance as a Service is well known as video
surveillance provided on the Internet. Customers just need to
have IP cameras and a connection to the Internet. They do not
have to mind about recording hardwares and storage space.
They can register with the VSaaS provider and connect their
IP cameras to an online software system. After finishing all
configurations, the VSaaS system will start image analysis
and keep its results in the storage. The customer can access
a VSaaS for live monitoring and video record playback via
VSaaS client. The customer has to pay for a service charge
according to the package or service plan chosen during the
registration process. There are advantages using VSaaS as
follows.

• The customer does not implicitly pay for mantainance
cost for recording hardware or storage space.

• The customer gets a new version of software as soon
as it is ready for deployment.

• The customer can add or remove cameras, and apply
image analysis as required.

There are serveral cloud-based video surveillance built with
Hadoop [2] such as P2PCloud [3], VAQACI [4], and the CVR
system [5]. Another approach uses Amazon Web Services
(AWS) [6] platform as appearing in many researches such as
works conducted by Hossain et al. [7], Rodriguez-Silva et al.
[8], and Nokkhum [9]. Most example systems focus on video
surveillance system architecture more than cost analysis. While
the cost for providing VSaaS is necessary for VSaaS providers
in estimating budget and pricing the service charge. In this
paper, we use our Nokkhum system as a reference architecture,
because we can measure the image analysis processing part
that helps with cost estimation and pricing service charges.

A. Nokkhum VSaaS

Nokkhum is a flexible component-based video surveillance
architecture [9] that can deploy any components on both

providers provide video surveillance services based on their

technologies which can be categorized into two types. The first
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physical servers and virtual machines using the Amazon EC2
API. It applies the Amazon S3 API for storing pictures
and video records. Nokkhum can flexibly configure one or
more servers so that its provisions are suitable for different
organizations and business sizes. It has API interfaces server
for providing a REpresentational State Transfer (REST) over
HTTP [10] to support any client platform to control, view,
or manage image analysis, camera configuration, and video
recording. The Nokkhum architecture paradigm is shown in
Fig. 2. Fig. 2 shows the components of Nokkhum architecture

Fig. 2. Nokkhum VSaaS architecture [5]

which includes web interface, APIs, controller, compute node
worker, and image processor. The scalability of Nokkhum
benefits from a message oriented middleware that enables
Nokkhum to distribute its components to run on many servers.
The image processor component contains only image analysis
and its computation starts with JSON configuration. In this
paper, we observe and monitor the resource usage of image
analysis of Nokkhum services.

III. VSAAS PRICE INVESTIGATION

Currently, the VSaaS market has many providers. Examples
are shown in Table I. Many providers focus on VSaaS infras-
tructure implementation and the prices are up to the resellers to
deal with the customers. Some providers point their positioning
on only enterprise solutions or sell the software in bundle with
IP cameras. Small groups of existing VSaaS system provide
services to customers directly and quote fee rates per their
convenient minimum period, mostly in month. This section
shows our investigation on current VSaaS infrastructure costs
per month and all possible costs per month.

A. Infrastructure Costs

In general, a VSaaS system can be deployed onto three
different platforms: first is on a physical server, second is
on virtual machines, and third is using cloud provision. This

TABLE I. EXAMPLES OF VSAAS IN THE MARKET

Name Home page Service plan

Alarm.com https://www.alarm.com/
productservices/video monitoring.
aspx

Bundled with IP cam-
era

AXIS Video Host-
ing System (AVHS)

http://www.axis.com/hosting Bundled with IP cam-
era

Brivo http://www.brivo.com/ Reseller

byRemote Surveil-
lance Solutions

http://www.byremote.net Reseller

CameraManager https://www.cameramanager.com/
website/en/plans

Monthly cost/camera

CheckVideo https://www.checkvideo.com Enterprice, Reseller

Connexed http://www.connexed.com/pricing.
html

Month cost/Camera,
Quarterly
cost/Camera,
Annually cost/camera

Dropcam https://www.dropcam.com/store Annually cost/camera

section investigates on current infrastructure costs for deploy-
ing a VSaaS system on all three mentioned platforms. We
first normalize the infrastructure cost into a monthly rate and
categorize into computation cost per month (Ccpm) and storage
cost per month (Cspm).

1) Physical Server Cost: A physical server is a generic
server available in the market. When providers deploy their
VSaaS, they have to pay for the physical server (Cserver). The
server will be placed in a data center for reasons concerning
stability, security, and reliability of network bandwidth, elec-
tricity, etc. Then, the VSaaS providers also have to pay for
colocation data center service charge (Ccolocation) as an addi-
tional cost. Apart from the colocation cost, many data center
providers also charge the first time set-up price (Cfts) for a
new server, which is an extra cost. The monthly computation
cost (Ccpm) and storage cost (Cspm can be shown in Equations
(1) and (2).

Ccpm =
Cserver

life time× 12
+

Ccolocation

month
+ Cfts (1)

A storage server is a server that provides high volumn storage,
including harddisk drive (HDD), solid-state drive (SSD), or
network-attached storage (NAS). Therefore, the storage cost
(Cspm) includes storage costs (CHDD, CSSD, and CNAS) and
a base server cost.

Cspm =
Cserver

life time× 12
+

Ccolocation

month
+ Cfts

+
CHDD + CSSD + CNAS

life time× 12

(2)

In the market, servers have various specifications. For
example, a decent server specification of Intel Xeon E3-1220
3.1GHz, 8 GB memory, 500 GB HDD, 3-year warranty, costs
about 1359 USD [11]. Regarding this server specification, the
price has a 3-year warranty, we then take three years as the
hardware lifetime. If the matchine lasts longer than three years,
the rest income will be the profit. The other cost is a colocation
service charge of which range is various in the market. It
depends on the specification such as network bandwidth, IP
address, redundant power wire, etc. The colocation cost is
about 75 USD per month [12]. We get the physical server
cost about 112.75 USD per month for Ccpm. For an addition
storage of HDD 7200 RPM serial ATA, 6 TB, 2-years warranty,
the cost of Cspm is about 126.50 USD per month.
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2) Virtual Machine Cost: The VM cost (CVM ) is a service
charge when VSaaS providers deploy their system using VMs.
Normally, the providers rent VMs from a virtual private
server (VPS) provider, and then deploy a VSaaS system on
the VMs. The VPS providers periodically charge customers
(monthly, quaterly, semiannually, or annually) according to
VM specification. We can calculate the cost as shown in
Equation (3).

Ccpm = Cspm =
CVM

month
(3)

For instance, the cost of renting a VM with 4-core CPU, 8 GB
memory, 80 GB SSD disk is 80 USD per month [13]. Then,
Ccpm and Cspm cost about 80 USD per month. The advantage
of using virtual machines is that the VSaaS provider does not
have to buy any hardware. Also, the provider incurs no risks
from hardware failure and maintenance costs.

3) Cloud Computing Cost: There are several kinds of
cloud computing services for different proposes. In the VSaaS
paradigm, the system applies computing and storage services
as a minimal requirment. Two services are rented with different
costs. Therefore, we separate the cloud computing cost into
two kinds: computing rental cost (Ccompute) and storage rental
cost (Cstorage). The two costs have different service charging
schemes according to the cloud providers’ pricing. Therefore,
Equations (4) and (5) present different costs comparing to
previous cases.

Ccpm = Ccompute (4)

Cspm = Cstorage (5)

In the cloud computing market, there are many service pack-
ages for providing cloud services to customers. In this section,
we survey a package that is similar to the physical server and
virtual machine costs. For computing instance, a system of 4-
core CPU, 15 GB memory, 80 GBSSD disk costs 0.28 USD per
hour [14] or 146 USD per month (no upfront). For storage, the
cost is about 0.03 USD per GB per month [15]. If we choose
the storage cost of 1000 GB per month, then the storage cost
is about 30 USD per month. Therefore, Ccpm can be summed
up to 146 USD per month and Cspm is about 30 USD per
month.

B. Monthly Cost

Apart from the infrastructure cost, the VSaaS provider may
have to spend for another additional cost per month (Capm)
which comes from, for example, salaries, various equipment,
and accessory. Moreover, some providers may have to get a
loan for starting up their company. As a consequence, the
monthly cost also includes the interest per month (Im). In
summary, the monthly cost (Cm) can be summed up as shown
in Equation (6).

Cm =

α∑
i=1

Ccpmi +

β∑
j=0

Cspmj + Capm + Im

where α is number of computing servers

β is number of storage servers

(6)

According to Equation (6), the VSaaS provider has a monthly
cost including the summation of computing server costs from
1 to α. However, a single computing server can be deployed

as a VSaaS system, and the storage can be combined in the
computing servers storage. The summation of costs of storage
servers will appear in the equation when separate storage
servers are used. If the provider deploys their VSaaS system
on a single server, this term will disapear. However, in image
analysis the monthly cost term is difficult to calculate resource
usage and video record storage, because we cannot easily
separate the terms between computation and storage space.
Therefore, the monthly cost can be reformed into Ccpm and
Cspm by dividing the Capm and Im with α and β as shown
in Cepm, in Equation (7).

Cepm =
Capm + Im

α+ β
Cncpm = Ccpm + Cepm

Cnspm = Cspm + Cepm

(7)

Equation (7) presents new computational cost (Cncpm) and
storage cost (Cnspm) per month. However, different providers
deal with different additional costs and interests. Therefore,
this paper only focuses on determining the infrastructure cost
(Cepm = 0) for simplification.

IV. REAL LOAD VSAAS RESOURCE USAGE

This section shows the resource usage for video analysis
and video recording using a Nokkhum image processor. The
experiment in this section is conducted for cost estimation,
using the capacity of one camera on one machine. Furthermore,
this criteria is used for caculating the resource-usage pricing
model proposal in Section V-B.

A. CPU and Memory Usage

Serveral workload types occur while a VSaaS is working.
For example, VSaaS middleware workload, database workload,
and image analysis workload. The highest resource usage
among the mentioned workloads is that of image analysis,
especially when an image of a big size is processed as shown
in Fig. 3 to 8. Video encoding used in the experiments is
Theora [16]. These experiments were tested on AMD A10-
5800K Trinity Quad-Core 3.8 GHz, Memory 16 GB. Fig. 3

Fig. 3. Video recorder CPU usage using the frame rate of 10 FPS

and 4 show the results of CPU and memory usages in video
recording when using various image sizes and the frame rate of
10 frames per second (FPS). The graphs of CPU and memory
usages of all image sizes are quite linear, and depend on the
video codec used. Fig. 5 and 6 show resource usages when
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Fig. 4. Video recorder memory usage using the frame rate of 10 FPS

Fig. 5. Motion recorder CPU usage using the frame rate of 10 FPS

Fig. 6. Motion recorder memory usage using the frame rate of 10 FPS

Fig. 7. Motion recorder CPU usage using the frame rate of 15 FPS

combining motion detection and video recording. Resource
usages in Fig. 5 and 6 have a different characteristic from
those of Fig. 3 and 4, as they appear in different periods. The

Fig. 8. Motion recorder memory usage using the frame rate of 15 FPS

shoots occur when the motion detector detects a sequence of
motion, then it passes the sequence to the video recorder. This
characteristic generally appears in results when using various
frame rates. It is also seen in the result when using the frame
rate of 15 FPS as shown in Fig. 7 and 8.

B. Storage Space

Storage space is an important part of VSaaS which stores
video records. The size of storage space has to be sufficient
to store up to the customers’ requirement. The size of a video
record grows following the video frame rate, video image size,
and video encoder types. Table II shows video record sizes of
images of 800x600 pixels with the frame rate of 10 FPS used
in real situations.

TABLE II. EXAMPLES OF VIDEO RECORD SIZES USED IN REAL

SITUATIONS

Type of image
analysis FPS Min Max

Storing period (day)
1 7 30

Video Recorder 10 82.1 M 199.1 M 19 G 133 G 570 G

Video Recorder 15 92.9 M 209.8 M 32 G 224 G 960 G

Motion Recorder 10 1 M 12.5 M 2.3 G 16.1 G 69 G

Motion Recorder 15 1.3 M 26 M 2.9 G 20.3 G 87 G

V. COST ESTIMATION AND PRICING

Pricing models appear in the current market where there
are providers lists in Table I. The least unit of measurment in
the market is per camera per day but the invoice is normally
quoted once per month. Another package charges the user
per camera per month, per quarter, and per year. This section
presents a pricing model for VSaaS revealed in the market,
and infrastructure cost approximation in details.

A. Package Model

A package model is well known in the market and it
is widely used in the current pricing. The provider offers
a package per camera that the invoice is issued monthly,
quarterly, or annually. In general, cost per quarter and per year
are cheaper respectively as the payment is done upfront. In this
section, we present the cost estimation of two package models
that may be useful for VSaaS providers.
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1) Cost Analysis: This section presents a computational
cost for image analysis that can be divided into two situations.
Image analysis heavily comsumes CPU more than memory,
and the storage usage corresponds to the frame rate used and
the video or image size. Howerver, image analysis comsumes
a lot of memory when dealing with a large image size and a
fast frame rate. The computatonal cost used for a camera is
shown in Equation (13).

Cccams,f
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cncpm

�NCPU × 100

% CPUs,f
�
, if interested in CPU usage

Cncpm

�MemoryMAX

Memorys,f
�
, if a big image size is used

(8)
Equation (13) shows a computational cost per camera with
video size and frame rate (Cccams,f

), which depends on
the image size and frame rate. The Cncpm is divided by
the number of CPUs divided by % CPU usage of image
analysis (�NCPU×100

% CPUs,f
�). According to the physical server cost

as shown in Section III-A1 and resource usage of image
analysis in Section IV-A, the monthly computational cost is
about 112.75 USD, when using a camera with the image
size of 800x600 pixels, 10 FPS, and simple video recording.
The average CPU usage is 46.2%. Therefore, we get the
Cccam800x600,10

as about 14.09 USD (112.75/� 4×100
46.2 �).

Cspd =
Cnspm

capacity × 30
(9)

Cscams,f
= Cspd × Sds,f

× day (10)

For storage space, we normalize the Cnspm with the available
space capacity, into a number of giga-bytes per day (Cspd)
for flexibly estimating the cost in different periods as shown
in Equation (9). Therefore, the cost for storing video records
per one camera with specific video size and frame rate
(Cscams,f

) can be calculated by the cost for storing a video
record multiplied by the maximum storage size (Sds,f

) and the
number of days the storage is kept as shown in Equation (10).
For example, according to the physical server cost shown in
Section III-A1 and the storage space usage for video record
described in Section IV-B, the monthly storage server cost is
about 126.50 USD, when using a camera with the image size
of 800x600 pixels, 10 FPS, and simple video recording. The
average storage size for a camera is about 570 GB per month
(storing 570 GB per day). We get the cost per GB per day
about 0.0007 USD (126.50/(6000 × 30)), and the Cscams,f

for 30 days is about 11.97 USD (570 × 30 × 0.0007). Then,
we conclude the cost per camera per month about 26.06 USD
per month (14.09+11.97).

Ccams,f
= Cccams,f

+ Cscams,f
(11)

A VSaaS provider can apply Equation (10) for different storing
periods. In the matket, VSaaS providers offer common periods
for pricing starting from 7 to 30 days. However, customers may
want to keep their video records longer in some sensitive areas
or situation.

2) Pricing: Monthly pricing for VSaaS is like another
issue as the provider needs to manipulate both costs and
excepted profit (ρ). Regarding the monthly pricing model
shown in Equation (12), VSaaS providers can acquire for
as much profit as they want. However, pricing must also
relate to the competitors’ prices. In Equation (12), price per
camera(Pcams,f

) depends on the video frame rate and size.
However, it is difficult to exactly determine prices for all kinds
of providers due to different causes such as system reliability,
quality of service, image analysis quality in each system.

Pcams,f
= Cccams,f

+ Cscams,f
+ ρ (12)

B. Pay-as-use Model

This section presents an ondemand resource usage model
for image analysis with different storage periods. In the maket,
VSaaS providers provide packages for hosting video analysis
and storing video records. The minimum period they generally
offer price is a day. In some situations, VSaaS systems may
fail, for example, the network connectivity is broken, IP
cameras are not working, or customers can not fully utilize
their rental resources. A pay-as-use model that breaks the price
into small details seems fair and worthy for customers.

1) Cost Analysis: According to the infrastructure cost in
Section III-A, we break down the monthly computational cost
into smaller periods such as week, day, hour, minute, as shown
in Table III. The storage space cost in Equation (9) is suitable
for determining in this analysis. Table III shows the same costs

TABLE III. RESOURCE USAGE COSTS

Server Type Month (Cncpm)
Cost (USD)

Week Day Hour Minute

physical server 112.75 26.3083 3.7583 0.1392 0.0023

VM 80 18.667 2.6667 0.0988 0.0016

cloud 146 34.0667 4.8667 0.1802 0.0030

broken down in various periods. Each period cost (Cperiod)
is divided by % CPU usage of image analysis. In Equation
(13), the cost in each period comes from the maximum of
CPU usage Max(% CPUs,fsp) reported by the image analysis
sensor.

Cccams,f
=

Cminute

NCPU × 100
×Max(% CPUs,fsp) (13)

Suppose that a VSaaS provider deploys a VSaaS system on a
physical server. A customer applies a motion video recorder
with a 800x600 pixel and 10 FPS 46.2% CPU usage. It is
about 0.0002 USD (0.00234×100 ×46.2) per one minute. If the CPU
usage significantly differs from the previous measurement all
the time, the cost can also different every minute.

2) Pricing: Pricing for a pay-as-use model is shown in
Equation (14). It is like Equation (12), but the first part is the
summation of Cccams,f

calculated every minute. The provider
can identify static profit (ρ) for every camera. However,
different video sizes lead to different CPU usages in image
analysis. The provider can basically set for a higher profit when
providing a larger video size.

Pcams,f
=

τ∑
t=0

Cccams,fi
+ Cscams,f

+ ρ (14)
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VI. DISCUSSION

Two previous pricing models are suitable for some specific
situations. A monthly package model is easy for calculation
and starting up a small VSaaS business. Providers can provide
pricing according to the video size or frame rate. For instance,
the provider may offer a service with the video size of 800x600
pixels and the frame rate of 10 FPS. In this case, customers can
apply for video analysis equaling to or smaller than 800x600
pixels with the frame rate of 10 FPS. Also, they can ask for
800x600 pixels with 5 FPS, or 320x240 pixels with 10 FPS.
They can reduce their income risks, when the VSaaS system is
not fully utilized. Example costs for a video recorder with 10
FPS, 800x600 pixels is shown in Table IV. Table IV shows

TABLE IV. EXAMPLES OF MONTHLY PACKAGE COST PER CAMERA

Server
type

Monthly
cost

Monthly
cost per
camera

Storage
per
GB

GB
per
day

Storing period (day)

7 30 60

physical
server

112.75 14.09 0.0007 19 14.74 26.06 61.97

VM 80 10.00 0.03 19 37.93 523.00 2062.00

cloud 146 18.25 0.03 19 46.76 531.25 2070.25

that deploying VSaaS on a physical server seems cheaper
than using other platforms. However, in this paper, we cut off
additional costs from the infrastructure cost. In the VM cost,
cloud storage is usually used as an additional storage backend,
because a rental VM normally has a very low capacity of
storage space. The cloud computing cost seems the highest
in deploying VSaaS, but it guarantees highly available quality
of service.

The experimental costs in the pay-as-use model is shown
in Table V. The cost per camera per month in Table V is
cheaper than the monthly package cost model, because it is
a summation of costs per minute. Therefore, VSaaS providers
always have to manage their systems to achieve full utilization,
otherwise they will losse their profit. According to Equation
(14), a provider can increase the profit part for remuneration
before pricing. Tables IV and V show that the hightest cost

TABLE V. EXAMPLES OF PAY-AS-USE COSTS PER CAMERA

Server
type

Cost
per
minute

Monthly
cost per
camera

Storage
per
GB

GB
per
day

Storing period (day)

7 30 60

physical
server

0.0023 11.479 0.0007 19 12.13 23.45 59.36

VM 0.0017 8.485 0.03 19 36.42 521.49 2060.49

cloud 0.0030 14.973 0.03 19 42.9 527.97 2066.97

of VSaaS system is from storage space, because VSaaS keeps
a lot of video records for long periods. If VSaaS providers
want to reduce this cost, they have to add for higher profit or
discount service package charge.

VII. CONCLUSION

This paper presents cost investigation for deploying a
VSaaS system on various platforms and pricing models for
providers. The providers can use the models as a guide line
for estimating their costs and pricing service charges. We
propose serveral pricing models for various situations suitable

for providers with different business sizes based on a real load
investigation.

However, the cost estimation and pricing models appearing
in this paper do not include the network characteristics and
additional costs for VSaaS. We will include them into our
analytical models in the future work.
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Abstract There are many proposals for moving traditional video surveillance systems into
the cloud, commonly known as Video Surveillance as a Service (VSaaS). Most systems use
Hadoop technology for storing video records and distributing video analysis tasks. How-
ever, Hadoop is more appropriate for video retrieval services than real time video analysis.
Also, existing systems offer neither flexible deployment plans, nor are they capable of auto-
matically minimizing the number of required servers (whether they are physical or virtual
machines). Our proposal involves the design and implementation of a component-based
VSaaS running on Infrastructure as a Service (IaaS). This paper focuses on the design con-
cepts and component functions that provide solutions for the availability and scalability of
VSaaS. Our system can easily scale from one server up to a more complex cluster to support
the varying requirements of users. It accesses cloud services via Amazon EC2 for computing
services and Amazon S3 API for object storage services, since they are supported by many
cloud computing IaaS providers. We also present a components deployment that is suit-
able for any size and type of system, which combines both physical and virtual machines.
Experiments show that the system performs well, and can tolerate difficult scenarios.

Keywords Video surveillance as a service · Infrastructure as a service · Cloud
computing · System design architecture · Flexibility · Scalability · Fault toleration

1 Introduction

Video surveillance systems have become a standard security tool, preventing unpleas-
ant events from occurring and reducing damage when unusual events do occur. Video
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surveillance systems are widely used [34], including in residential areas, offices, factories,
and traffic control systems. The cameras and related equipment are inexpensive and eas-
ily installed. However, video surveillance systems costs involve more than just hardware,
including software installation, configuration, operation, and maintanance (to validate and
verify system availability). Good preparation and administration are essential for running a
video surveillance system.

Video surveillance applications on the Internet generally support online video recorders,
surveillance image processors, and online video storage. Cloud-based video surveillance
systems, known as Video Surveillance as a Service (VSaaS) are growing in popularity.
The main advantage of VSaaS is that the users can be less concerned about system soft-
ware/hardware maintenance, instead focusing on providing Internet Protocol (IP) cameras.
Also, users can choose new image processing solutions as soon as the provider deploys
them on the system, without system reinstallation. In addition, provider competition reduces
operation cost and provides best-quality image processing for users. Most current VSaaSs
provide simple image processing, such as motion detection for specific areas of interest,
storage space, and an alert system. Unfortunately, there is a lack of information about the
technologies and VSaaS architectures due to trade secrets, and some open video surveillance
systems are unsuitable for Software as a Service (SaaS) models, because they are designed
to support specific applications. These include car tracking in parking areas and trafic mon-
itoring, which may not be applicable to home or residential areas. Moreover, it is difficult
to modify some types of software to run in a distributed manner to support SaaS due to the
close cooperative work among the software’s components.

A recent proposal suggested the use of a cloud-based video surveillance system built
with Hadoop [39]. A Hadoop MapReduce distributes image processing tasks and employs
the Hadoop Distributed File System (HDFS) for storing video records. Examples include:
P2PCloud [41], VAQACI [16], and the CVR system [18]. Another approach uses cloud
object storage via Amazon S3 [1] for storing video records, as described by Hossain et al.
[10] and Rodriguez-Silva et al. [29]. However, this research did not reveal deployment
information, such as how components are placed, how to scale the computing units, the
minimum number of servers that can deploy the system, front-end component arrangement
for user access, and the provision of the video/camera management services. Neither groups
exploited the benefit of the full capability of computing units on both Virtual Machine
(VM) and object storage; they either employ one type or the other. As a consequence, their
deployment can be rather expensive and complex.

We have developed a VSaaS which works on IaaS, focusing on software system archi-
tecture, system behaviors, and user requirements. The system’s architecture is based on
traditional cloud services: the compute service employs Amazon EC2 and the object stor-
age service utilizes the Amazon S3 API. Our scalable VSaaS software system architecture
can easily add new computation node workers to support increasing numbers of IP cameras,
and also saves time and energy in planning and controlling system performance.

2 Video surveillance system

Video surveillance systems currently use two types of cameras: closed-circuit television
(CCTV) and IP cameras. Many CCTV systems do not only record video, but can also per-
form functions such as motion detection and record motion video footage. However, CCTV
systems have limitations concerning camera usage distance, storage capacity, and instal-
lation and reconfiguration problems when adding new processing algorithms. IP camera
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systems avoid these limitations with longer working distances and wider areas. They can
also be easily plugged into any computer network and so distribute data across the Internet.
IP camera systems normally employ computers capable of video processing and recording,
allowing the systems to be scaled up to support many IP Cameras and offer new image pro-
cessing features. Currently, video surveillance systems are moving away from standalone
applications toward software as a service, in order to provide video processing to a larger
number of users. In this section, we compare traditional and modern video surveillance
which motivate the improvements proposed in our design.

2.1 Traditional video surveillance systems

Traditional video surveillance systems supporting IP cameras [7] were often connected to a
Network Video Recorder (NVR) or a generic computer to provide Video Content Analysis
(VCA). In smaller systems, the video camera management and VCA software were usually
bundled with IP cameras. The user had to install software on a computer which allowed it
to connect to the IP cameras. Normally, the vender software was limited to their own type
of cameras and could not interface with cameras from different venders. High performance
software that could manage a larger number of cameras and provide special VCA was usu-
ally sold separately as additional software. Usually, this kind of software was very expensive
and required complex configuration. Anyone wanting to set up a video surveillance system,
would incur many expenses apart from the cost of the IP cameras, including the cost of first
time installation, network equipment, maintenance and additional computing software.

There are many free and open source video surveillance packages that run on standalone
computers, such as ODViS [13], OpenVSS [32], and Zoneminder [33], which provide video
camera management, VCA, and storage. Most packages are easy to install, configure, and
use, but their software components are rather atomic and hard to scale. One solution is to
add a new computing node and re-configure the system. However, it becomes harder to man-
age and maintain the system, as the number of cameras and different VCA configurations
increases.

The other type of video surveillance system architecture is distributed, utilizing a soft-
ware architecture consisting of many components and processing layers, such as IVSS [42],
DiVA [30], CANDELA [40], and S-VDS [9]. These distributed architectures are designed to
support massive numbers of cameras and configurations. The components can be distributed
across many computers to provide higher performance VCA and system availability. How-
ever, the architecture must be carefully configurated as it includes different modules
that run on separate machines, and requires tightly coupled work cooperation. Moreover,
these kinds of systems require a specialist to determine which components need to be
scaled up.

Exploiting the Internet, some video surveillance software provides online system access
for video camera monitoring, video storage, and software configuration. Examples include
ViSOR [35], S-VDS [9], and MoSES [8]. Although, this makes it easier to access the
system, users must budget a large amount for hardware, software, and service charges.

2.2 Video surveillance as a service

Online video storage enhances traditional video surveillance systems by increasing user
convenience, and has influenced research on remote video surveillance recorders and VCA
on the Internet [11]. One advantage of this architecture is that it can serve any IP camera
from any location to users anywhere across the Internet. Users do not have to own recording
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and storage hardware, instead renting an NVR or a VCA from a video surveillance provider.
The provider offers an Internet based recorder and storage space via a service package which
matches the user’s requirements. However, it is hard for the video surveillance provider to
predict the required supply of computing and storage hardware for on-demand processing.

A new video surveillance platform has emerged from cloud computing technology, espe-
cially Infrastructure as a Service (IaaS) such as Amazon Web Service (AWS) [1], Hadoop,
and virtualization technology. It provides more system availability, security, reliability, and
maintainability for cloud-based video surveillance than traditional software [14]. Cloud
technology changes remote video surveillance into Video Surveillance as a Service (VSaaS)
which is a Software as a Service (SaaS) model. This kind of architecture avoids limitations
of computing resources, such as storage space, computing unit, and network management.
Cloud computing enables a remote video surveillance provider to start with a small video
surveillance system which can grow according to the users’ demands. Consequently, the
provider does not need a high budget for starting the business and does not need a com-
plex hardware supply plan for supporting user requirements. Current VSaaS in the market
provide an NVR, a simple VCA, and storage space for collected video records. The VSaaS
providers offer various service plans which their customers choose based on their require-
ments. Examples of VSaaS currently on the market include SecurityStation [25], Secure-i
Hosted Video Recorder [31], and OVS [23].

Many cloud-based video surveillance systems can be classified into two groups by the
cloud technology they use. The first group implements their video surveillance architech-
ture based on Hadoop technology which includes MapReduce and the Hadoop Distributed
File System (HDFS). Example systems in this group are P2PCloud [41], VAQACI [16],
and CVR systems [18]. They utilize the HDFS to store video records and to provide high
performance video retrieval. In addition, MapReduce can automatically distribute process-
ing tasks to Hadoop computing nodes. This ability means that a massive number of video
records can be distributed as VCA tasks to Hadoop nodes.

The second group implements IaaS by employing Amazon AWS as a video surveil-
lance tool. Examples in this group include the systems developed by Hossain et al. [10]
and Rodriguez-Silva et al. [29]. Normally, this kind of architecture uses the Amazon Sim-
ple Storage Service (Amazon S3) to collect video records and the Amazon Elastic Compute
Cloud (Amazon EC2) to provide virtual machines as computing units.

Both groups of architectures easily transform the task of video surveillance work in
cloud-based technology because the software does not depend on any development frame-
work. However, the resulting architecture design in [10] and [29] is rather general. For
example, it is unclear how issues such as the compute node number for a first-time installa-
tion, or component distribution during deployment and system scalability, are handled.

2.3 Nokkhum component-based system

We propose a component-based video surveillance architecture for VSaaS called the
Nokkhum system [17], a flexible design that treats video surveillance as a service. Nokkhum
includes components for providing a VSaaS on physical servers, which can be ported to
IaaS using the Amazon S3 API for image and video record storage. Nokkhum includes vir-
tual machine management, but previously it only used a web interface for providing user
access. Although, this made it easy to use via a web browser, it was difficult to add support
for other types of clients, such as mobile devices and tablets. For instance, some mobile
operating systems need to execute a native application in order to offer a good user experi-
ence and performance. Therefore, the current Nokkhum system can deploy components on
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a hybrid system of physical servers and virtual machines via the Amazon EC2 API, engen-
dering system portability so that the VSaaS system is suitable for different business sizes.
In addition, our API server supports interfaces from any client by utilizing a REpresenta-
tional State Transfer (REST) style architecture via HTTP [6]. In summary, we propose a
flexible and scalable system architecture, and components design and implementation, for
providing VSaaS on IaaS.

3 Nokkhum video surveillance as a service system

The “Nokkhum” (a Thai word for “Asian quail”) VSaaS consists of five components (see
Fig. 1): a controller, a compute node worker, an image processor, an Application Program
Interface (API), and a client. VSaaS users can access and control their surveillace pro-
cesses via a web interface connected to the API server. The controller is a daemon process
that handles user requests from an API server and directs commands to available com-
pute nodes using the message-oriented middleware [19]. The compute node worker receives

Fig. 1 All components and modules of the Nokkhum VSaaS
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commands from the controller via a message broker, manages its image processors, moni-
tors its resources, and reports status details back to the controller. In this work, our image
processors are implemented using OpenCV [3].

3.1 Nokkhum design concept

According to the Video Surveillance as a Service (VSaaS) paradigm, a provider offers VCA
and storage service to its users. Users must register with the provider and can then use
the services provided by the VSaaS system on the Internet. The provider must prepare the
VSaaS system and provides services which are available to users at all times. The system
must handle dynamic user requests and start required image processing processes when
appropriate. Many video surveillance systems are designed to support a single organization
with groups of users, but VSaaS tends to be more complex, including various organizations
and groups.

The benefits of cloud computing for system availability, dynamic resources provision,
and pay as use, enable providers to offer their software at a low cost. Also, they can dynam-
ically scale the system resources according to user requirements. The service platform
approach saves on both the software and hardware maintainance costs by offering services
with a small software solution at first, but allowing a smooth transition to bigger pack-
ages later. The Nokkhum architecture is a VSaaS that runs on top of a cloud computing
infrastructure. Both the system size and the business size can be easily scaled to match the
customer’s requirements. Moreover, the architecture is designed to run on physical machines
if necessary, in order to offer the best image processing performance for a small VSaaS
system.

3.1.1 Scalability design

The Nokkhum VSaaS architecture is designed for scalability by using the following
assumptions:

1. The video surveillance system runs on a cloud infrastructure as a service.
2. The architecture automatically acquires virtual machines to support the customer’s

changing requirements.
3. The VSaaS provides a private cloud for an organization and a public cloud for user

groups.
4. The VSaaS fully supports IaaS with the Amazon EC2 and Amazon S3 APIs, and is

compatible with a system that uses only a physical server.
5. The VSaaS starts as a small system, but can easily scale up to match dynamic user

requirements.
6. The design aims for a system that utilizes a broadband network throughout.

Following the above assumptions, Nokkhum VSaaS is a highly scalable architec-
ture composed of several components. A controller manages system resources and
task scheduling for passing image processing tasks to compute nodes. Consequently,
each compute node includes a system resource reporter and an image processing
task starter. Message-oriented middleware [37] is employed to exchange information
between the main distributed components, and allows the components to be distributed
across different computing platforms (both generic personal computers and virtual
machines).
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3.1.2 Flexibility design

The message-oriented middleware increases system availability, because if some compo-
nents crash, the other components in the system can still continue running. Nokkhum VSaaS
is designed to flexibly tolerate difficult scenarios such as:

1. When the electricity is cut off, or the network is out of service at a video cam-
era site, the system can automatically recover after the camera becomes available
again.

2. If a compute node worker has a problem, such as the network being out of service, or
a program crashes or a message broker disconnects, then the system can provide an
alternative compute node worker.

3. If the Nokkhum controller does not respond, but the compute node workers are still
running, then the video processors can continue working. When the controller resumes,
it can recover its previous state by processing the information collected in the message
broker server and database server.

4. If the message broker server does not respond, then the compute node worker and
the controller can continue running with the last available information. After the mes-
sage broker server resumes, the compute node worker and the controller will start
commuicating again.

5. The system can start on a single machine and scale up by adding worker machines.

3.2 Nokkhum components

Nokkhum consists of five components developed with C++ and Python as shown in Fig. 1.
Each offers specific functions and work cooperation for enabling system availability.

As shown in Figs. 2 and 3, the user initially creates a camera configuration and image
processing solution on a Nokkhum client, which is then passed to a Nokkhum API that
stores the command in a database. Once the task scheduler on the Nokkhum controller
becomes active, it receives the user’s command. The compute node resource predictor mod-
ule on the Nokkhum Controller finds available resources and directs the command to a
compute node worker via the message server. When the compute node worker receives the
message, it builds a video surveillance solution and starts the related image processors. As
the image processors produce output data (video records and/or images), the compute node
worker stores the data in cloud storage. The user can watch, download, and delete the video
records and images via the Nokkhum client. The controller also monitors and manages
storage usage history for video records and images.

The following subsections describe the five components, namely the Nokkhum Con-
troller, Nokkhum Compute Node Worker, Nokkhum Image Processor, Nokkhum API, and
Nokkhum client shown in Fig. 1.

3.2.1 Nokkhum controller

The Nokkhum controller is a daemon process made of multiple modules and sub-controllers
which perform many tasks. The most important is resource management, which is handled
by several sub-controllers:

– The task controller is an image processor which handles VCA tasks via a task monitor
and a task manager. The task monitor checks all running image processor tasks. If one
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Fig. 2 The VSaaS user configuration sequence

does not respond, then the task monitor will send it a command request to restart the
processor task. The task manager provides an interface for controlling image processor
activities, and is mainly used by the task scheduler.

– The compute node controller is a compute node worker manager which processes
every resource status report. These are delivered from Nokkhum compute node worker
sensors via the message broker server. A resource status report includes total CPU
usage, total memory usage, and total harddisk usage of a particular compute node
worker. It also includes image processing resource usage data, such as CPU usage,
memory usage, important image processor results, and the availability status of the
image processor. If the resource status report shows that an image processor is unavail-
able, then the compute node controller will call the task controller to restart the image
processor. In addition, when the task scheduler or the VM controller requests a com-
pute node worker’s resource information, the compute node controller will provide that
information, and predict resource usage for every compute node worker. Currently, this
prediction utilizes a Kalman filter [38] applied to the last 20 compute node resource
status reports. The compute node controller supports both physical servers and virtual
machines.

– The VM controller enables Nokkhum to control virtual machines using the Amazon
EC2 API. It acquires a resource prediction from the compute node controller to decide
whether to terminate a virtual machine or to start a new one. The VM controller will
acquire a new virtual machine when there is a command waiting in the processor
command queue and there is no computing resource to handle it.

– The storage controller manages video records and images. Part of its duties are to
remove expired video records of any image processor.
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Fig. 3 Interactions among system components of the VSaaS during initialization

Apart from resource management, the Nokkhum controller also includes a task scheduler,
a notifier, and a billing process module:

– The task scheduler allocates image processors or VCA tasks to the most suitable
Nokkhum compute node workers. It acquires resource information from the compute
node controller and starts image processing tasks via the task controller. This module
has a command waiting queue that collects processing commands from the user and
recovers commands from the task controller.

– The notifier module provides alert messages to users that have activated this module via
an image processing task. This module is activated when the compute node controller
receives a resource status report that includes a notification message.

– The billing controller handles billing processing for the Nokkhum VSaaS.

The Nokkhum controller deals with the users’ video surveillance requirements and calls
compute node workers to start surveillance applications via message passing methods. It
starts work by retrieving image processing action commands from the database and directs
them to available compute node workers. In this way, it can start and stop image processing
tasks, and check image processing status details. The controller directs message commands
to computer node workers using the message broker server. The compute node workers then
build the related image analysis processes.

3.2.2 Nokkhum compute node worker

A compute node worker is a daemon process that runs on each computation node. It
provides computer resource monitoring, image processing task monitoring, and an image
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processing deployment interface. The compute node worker uses PIPEs [27] for communi-
cating with the image processors, and reports information resource updates to the controller
using message passing. The compute node worker consolidates the image processing tasks
assigned by the Nokkhum controller. The tasks include image analytical solutions such as
motion and face detection. The compute node worker includes resource sensors for mon-
itoring the availability and capacity of computer resources and collects information about
the controller’s monitoring. The compute node worker also includes resource sensors for
monitoring usage requirements, such as the CPU utilization, and memory and storage space.
This resource information is delivered to the Nokkhum controller.

One important module in the compute node worker is the image processing task manager
which controls and monitors tasks and the task pool. This module manages the task life cycle
involving the creation and termination of tasks. In addition, the manager can watch task
behaviors and handle shortcomings in order to promote system availability. The image pro-
cessing task runs on a compute node worker containing image processing solutions for the
video surveillance system. When the image processing task obtains logging messages, this
module sends the messages to the controller via a resource status report. The output uploader
module uploads images and video records to cloud storage via the Amazon S3 API. After
the image processor output has been completely uploaded, the module can release it from
the harddisk. In addition, if a compute node worker crashes, the tasks running on it will be
terminated and restarted on another compute node worker without affecting other workers.

3.2.3 Nokkhum image processor

A Nokkhum image processor provides a VCA as a set of image analysis modules using
the OpenCV library. The camera configuration and image processor attributes are described
using JavaScript Object Notation (JSON) [5] for building an image processing pro-
cess. The camera configuration is a dictionary containing attributes such as a name, a
Uniform Resource Identifier (URI) [20], width, and height. The image processor attributes
are listed and identified by “image processors” keywords which contain the JSON
attributes. The list of image processor attributes allows the use of nested descriptions for
complex configurations. The Nokkhum image processor parses JSON information from
the compute node pipe that works as a standard input and constructs image processing
threads. The image processor is a computing process controlled by the compute node
worker.

The Nokkhum image processor is flexible because users can design their VCA via JSON
configurations. We implement this component by employing threads and queues of image
objects. Each image analysis is a running thread which connects to others via an image queue.
Each image analysis thread generally includes two queues for image input and output.
The image analysis thread receives an image object from the input queue and processes it.
Afterwards, it puts the object into the output queue for another thread. A configuration
example for the Nokkhum image processor is shown in Fig. 4.

Figure 4 contains several image analysers: a motion detector, a face detector, a video
recorder, and an image recorder. When a configuration is sent to a Nokkhum image
processor, it translates that configuration, creating related image queues.

3.2.4 Nokkhum API

A popular way of managing a distributed system is by using a single API server and mul-
tiple clients. One advantage is that the developer can carefully implement a central API
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Fig. 4 An example Nokkhum image processor configuration

server, so that the client implementation is light weight, and can support various operating
system platforms. The Nokkhum API provides for camera management, image processing
task control, video play-back, and media management for basic users. For administrators,
the API server provides system monitoring and high-level permission management of the
functions that are provided to the users.

The API was developed using Python, Pyramid [21], and MongoDB [4], and uses a REST
style architecture via HTTP [6]. Client are identified with token-based authentication when
they connect to the server. A token is generated by the server during the authentication,
and used in the reply sent to the client. However, the API requires a secure connection for
protecting the privacy of user requests. A simple way is to switch to Hypertext Transfer
Protocol Secure (HTTPS) [28].

3.2.5 Nokkhum client and web front-end

A Nokkhum client could be inplemented in several ways—as a web front-end, a mobile
application, or as a desktop application, because it connects to the Nokkhum API server
using HTTP and a REST architecture. We prefer a web front-end client since it can be
used via a web browser on both desktop and mobile devices. Moreover, a web-based inter-
face can be displayed on many platforms, and is more easily developed and maintained
than native programs. The web front-end interface is implemented with Python and HTML,
and utilized by both users and the administrator to provide camera and system information
according to user role permissions. Users can create new camera configurations, compose
image analyses, and watch videos or images obtained from the cloud storage.

Although the web front-end can be used on many platforms, the users may have to adjust
the device’s screen resolution which is somewhat inconvenient. Consequently, it is a burden
for the developer who develops the native client to adjust it for best user experience and
satisfaction.

3.3 Nokkhum architecture

Nokkhum has a scalable VSaaS architecture by using message passing, implemented with
the Advanced Message Queuing Protocol (AMQP) [37], for connecting the Nokkhum
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controller and the compute node workers. This design provides many options for system
deployment and the exploitation of mixed computating resources (both virtual and physi-
cal) for improved performance. All of Nokkhum’s cooperating components are shown in
the architecture overview in Fig. 5. The inter-component communication and data format
are described in the following sections.

3.3.1 Running nokkhum on infrastructure as a service

The cloud infrastructure that provides physical or virtual machines, and other com-
puter resources, is known as Infrastructure as a Service (IaaS). IaaS supplies computing
resources on demand according to the user’s requirements. IaaS plays an important
role in start-up businesses by replacing high computer hardware purchasing costs with
lower, pay-as-use resource rental fees. Moreover, this scheme allows large businesses to

Fig. 5 The overview of the Nokkhum architecture
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reduce their hardware maintenance and administrative costs. As a result, many orga-
nizations are currently transforming their IT platforms into cloud computing services.
However, there are few available details about the implementation of Software as a Service
(SaaS).

IaaS providers typically implement their own APIs to access and manage comput-
ing resources by exploiting a compatible version of the AWS API. AWS provides many
services, but the most popular are Amazon EC2 for computing and Amazon S3 for
storage. There are many open source IaaS products that support the AWS API, includ-
ing Eucalyptus [24], OpenNebula [22], CloudStack [2], and OpenStack [12]. Since IaaS
can provide a private cloud infrastructure for an organization, Nokkhum is designed
using the Amazon EC2 and Amazon S3 APIs so it can run on most IaaS software
providers.

3.3.2 Inter-component Communication

Nokkhum employs two main kinds of inter-component communication for exchang-
ing information and controlling the system’s behavior. The communication between the
Nokkhum controller and Nokkhum compute node workers uses message-oriented middle-
ware for distributing commands and reporting resource status details to its physical and
virtual machines. Program-to-program communication on the same computing machine is
utilized between compute node workers and image processors. These two approaches are
explained in more details below.

1. Controller and Compute Node Workers Communication

As shown in Fig. 5, the controller communicates with compute node workers using
message passing. Two types of communication pattern are used: direct exchange and
topic exchange. The controller and the workers employ direct exchange for greeting
messages and updating worker resources and image processing status or behavior. This
allows the workers to send these kinds of messages without waiting for a response. The
controller and the workers use topic exchange for synchronizing command messages,
such as to start or stop image processor processes, or to request greeting informa-
tion. Topic exchange communication is designed to wait for a response message and
command confirmation.

As shown in Fig. 3, when a new compute node worker starts and finishes the boot
state, it will send a greeting message to the message broker server. Then the controller
will receive a greeting message and add the worker to the resource pool. After receiving
the greeting message, the controller sends configuration details to the worker, such as
cloud storage configuration that includes a comnunication protocol for accessing the
storage. Therefore, Nokkhum VSaaS requires central configuration from the controller,
which distributes it to every compute node involved. After the compute node worker
receives configuration information, it will update its system resource usage details, run
the required image processors, and report CPU utilization and memory usage to the
controller.

2. Compute Node Workers and Image Processors Communication

A compute node worker communicates with an image processor using a pipeline.
An image processor is created by a worker when it receives a starting control message.
The worker outputs all the commands for controlling the image processor’s behavior via
its standard input. When the image processor generates message output, the compute
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node worker will read it from its standard output. The commands and results are written
in JSON format to facilitate processing. The worker checks the availability of all the
image processors by monitoring their pipelines. Then, the compute node worker will
report to the controller via a resource update system message.

3.3.3 Data format

JSON is utilized as the default data format for cameras, image processors, and inter-
component messages because it is both lightweight and available in several computer
languages. Cameras and image processor attributes are described via JSON objects. A
camera object includes image size, frame rate (frames per second) for video, camera manu-
factory information, and a username and password to access the camera. An image processor
object includes the name and attributes of the image processor. Inter-component mes-
sage passing uses a JSON object for describing the command property. Listing 1 shows
a JSON description for starting video surveillance commands composed by the Nokkhum
controller.
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4 Nokkhum system scalability

Nokkhum VSaaS components are divided into five groups, with each providing specific
functions. These components can be distributed across many computers connected to the
message broker server, which enables Nokkhum to easily scale to support dynamic user
requirements. Moreover, Nokkhum can start running on just one machine, providing a small
VSaaS system, and easily transition to supporting more cameras and image processing
tasks, involving more computing machines. This section describes possible topologies for
Nokkhum VSaaS in several scenarios.

As seen in Fig. 6, Nokkhum’s components and other infrastructure software can be dis-
tributed across many types of computing machines. Figure 6a shows the smallest system
type, where all the components run on a single machine supporting a small VSaaS. In order
to extend the system for processing more cameras, the computing unit (Nokkhum com-
pute node worker and image processor) can restart congested tasks on another computing
machine added to the controller node in Fig. 6b. In Fig. 6c, more computing units are added
to deal with an increased number of cameras, and to handle the expanded image processing
requirements. In this configuration, the computing units and the controller unit are separated
parts. Figure 6d is similar to Fig. 6c, but the cloud storage is moved to another machine for
easier storage management and to reduce the computation load of the controller node. This
configuration is suitable for a medium sized VSaaS.

The system topologies in Figs. 6e, 6f, and 6g are preferable when a highly scalable
system is needed because the Nokkhum components and infrastructure software tasks
are distributed across many computing machines. In Fig. 6e, MongoDB and the mes-
sage server are moved to run on different machines to increase system availability. The
message server and MongoDB are shared services for supporting computing units and con-
troller nodes. If the Nokkhum components and the message server are not connected, it is
likely that the system will fail. Therefore, the extracted parts, MongoDB, and the message
server, are designed to closely work with the controller node in all proposed topologies to
increase system availability. In Fig. 6f, the Nokkhum controller is separated from the
front-end machine. The rationale is that the controller component can run on its own
without affecting other components and if the controller component runs on a private
network, it also increases security. The architecture is also designed to support a com-
plete distributed system of which components are located on many computing machines
as shown in Fig. 6g, thereby providing a large scale VSaaS system. This scenario is
appropriate for a public VSaaS provider, and offers a high level of system availability.
On the other hand, it involves many computing machines and consumes many system
resources.

The Nokkhum architecture addresses system scalability across various scenarios. The
VSaaS providers can freely choose configuration patterns for supporting their requirement.
Moreover, the Nokkhum component configuration can combine both physical and virtual
machine servers according to the organization’s economy and IT proficiency. The organiza-
tion can choose their security policy whether running many components in a private network
or providing context components in a public network.

5 System testing

The system testing in this section focuses on the response times of the Nokkhum VSaaS
in the Cloud environment. We utilized general-purpose PCs for building the cloud
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infrastructure, with OpenStack as the cloud middleware. The PCs used several different
CPUs, such as AMD Phenom II X6 1055T and AMD FX-8320, and their memory range
from 8 to 16 GB, with 1 TB for storage. The experiments were designed to create a
basic performance matrix including the virtual machine acquisition time, waiting time, and
processing time for both user and system request commands.

Fig. 6 Nokkhum topology configurations
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5.1 Cloud environment setting

In our cloud testing environment, we employed the OpenStack service family on generic
PCs. For virtual machine providers, we chose OpenStack Nova and KVM [15] as a Hyper-
visor. A physical cloud structure is implemented by a PC acting as a cloud controller,
and many PCs utilized as cloud compute nodes, and connected using two Ethernet inter-
faces. The first interface is for internal communication, and the other for public use via a
10/100 Mb Ethernet. The public interface connects all the cloud controllers, cloud com-
pute node workers, cloud storage and IP cameras. The cloud environment setting is shown
in Fig. 7.

Nokkhum VSaaS is designed to run on a cloud infrastructure, and all the possible
topology configurations shown in Fig. 6 have worked successfully in our cloud infras-
tructure testing system. In this paper, we will only investigate the system’s response
time for a medium sized VSaaS (the scenario in Fig. 6d) which supports 10-20 VMs
of compute node workers depending on the capabilities of the CPUs and memory of
the controller node; Its deployment is shown in Fig. 8. We chose to emphasize the
Fig. 6d scenario because it is a good representative of the topology configurations typ-
ically used by many organizations, departments, and universities for providing video
surveillance. Fig. 8 shows a virtual machine as a controller node, containing a mes-
sage server (RabbitMQ [26, 36]), databases (MongoDB), a web front-end, an API and
a controller. In addition, each compute node virtual machine image contains a com-
pute node worker and a image processor. The IP address of the message server in
the VSaaS system must be identified in the compute node worker configuration. After

Fig. 7 Cloud environment setting using OpenStack
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Fig. 8 Nokkhum VSaaS on a cloud infrastructure

registering the compute node image in the cloud infrastructure, the compute node image
name is added to the controller and the VSaaS system can start.

5.2 Scalability and flexibility check lists

Scalability and flexibility check lists confirming that the Nokkhum VSaaS system is per-
forming according to the system design appear in Tables 1 and 2. In terms of scalability,
the system can automatically acquire VMs, provide for various user groups, support IaaS,
and be scaled up by distributing its components across VMs and physical machines. In
terms of flexibility, the system can automatically handle different situations concerning
suspended cameras, and malfunctioning or unavailable compute node workers, controller,
and message server.

5.3 Experimental results

The Nokkhum VSaaS is based on the design described in Section 3, and its cloud
environment set up as explained in Section 5.1.

Table 1 Scalability check list

List Check

Acquire VMs automatically �
Provide for various user groups �
Support IaaS with Amazon EC2/S3 �
Components can scale according to Fig. 6

A: compact system on one machine �
B: add a compute node worker �
C: compute node workers are separated from the controller �
D: separate cloud storage service �
E: separate database and message server �
F: separate front-end node �
G: fully distributed system �
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Table 2 Flexibility check list

List Check

System automatically recovers after a suspended IP camera becomes available �
System handles compute node worker errors (either electricity �
or network problems) and acquires a new one

Compute node worker continues running when controller node is unavailable �
Controller node can recover its status when it resumes running �
Controller and compute node worker can continue running when the message server is unavailable �

The experiments involved many users and various image processing configurations such
as motion detection, face detection, video recording, and image recording. They utilized
about 20 IP cameras including models such as the Dlink DSC-930L, Dlink DSC-2102,
AXIS 215 PTZ, and AXIS 211M. About 20 IP cameras were distributed at the Robot
Building, Department of Computer Engineering, Prince of Songkla University. The video
processing experiments employed a frame rate of 10 – 15 frames per second, and image size
of 640x480 pixels. The minimum video recording space per camera per day varied from 65
KB to 210 MB. Total video recording space per camera used each day varied from 361MB to
19 GB.

The Nokkhum front-end node was executed as a single VM and the Nokkhum compute
unit utilized a 3 GB QEMU Copy On Write (QCOW2) disk format. The virtual hardware
template for instance acquisition was equipped with a 2-core CPU, 2048 MB RAM, and a
40 GB harddisk. The resulting experimental data is shown in Table 3 and in Figures 9– 14.

Table 3 shows the acquisition time for OpenStack Nova to provide instances. The spawn-
ing time is the time to transfer an image from the OpenStack Glance server to the destination
Nova Compute Node Worker, plus the time to prepare the image for booting. The image
cache plays an important role in instance spawning. If the Nova Compute Node Worker
has previously run an instance, it may cache its image for a later run. This reduces the
image transfering time so it can boot much sooner. The instance booting time is the inter-
val between when the VM is first active to when the Nokkhum controller gets its first
response from the Nokkhum compute node worker. VM acquiring average time (spawn-
ing and booting time) is 128.31 seconds without image cache, and 27.346 seconds with
caching.

In this experiment, there are two types of message commands for controlling the start-
ing and stopping of the Nokkhum image processor. Firstly, User Request Command (URC)

Table 3 Virtual machine acquisition time

Activity Time (s)

Min Max Average

Instance spawning with image cache 11.150 11.470 11.265

Instance spawning without image cache 104.930 117.011 112.229

Instance booting 13.220 19.379 16.081
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Fig. 9 User request command (URC) waiting time for starting image processors

messages are generated when the user requests the starting or stopping of video pro-
cessing. Secondly, System Request Command (SRC) messages are generated by the task
controller module in the Nokkhum controller when the image processor crashes. The task

Fig. 10 User request command (URC) waiting time for stopping image processors
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Fig. 11 User request command (URC) processing time for starting image processors

controller adds a SRC to the command waiting queue to start the image processor. The wait-
ing and command processing times for a SRC indicates the system’s ability to serve user
requests.

Fig. 12 User request command (URC) processing time for stopping image processors
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Fig. 13 System request command (SRC) waiting time for starting image processors

Figures 9 and 10 show the waiting time histograms for URCs to start and stop image pro-
cessors. Figures 11 and 12 show the processing time duration histograms for URCs to start
and stop image processors. The command waiting time histograms contain a range of time

Fig. 14 System request command (SRC) processing time for starting image processors
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distributions due to several causes: the task scheduler is a single thread performing sequen-
tial processing, the user submits requests for several sequential actions in too short a
time, and the user command action must wait for an available compute node. The wait-
ing time for a URC to start an image processor begins when the system starts loading
the image processor binary, and finishes when the image processor gets its first image
from the video connection. The image acquisition time varies depending on the IP camera
type, camera model, and network topology. Most of the URC processing times for start-
ing an image processor are in the range 10–15 seconds (Fig. 11). Measuring the processing
time for a URC to stop an image processor does not involve the impeding causes when
measuring the command waiting time. Most the URC waiting times for starting an image
processor are in the range 0–10 seconds (Fig. 9) because long waiting times for acquir-
ing a new compute node worker do not often occur. Most waiting and processing times
for URCs that stop an image processor in the range 0–10 and 1–2 seconds respectively
(Figs. 10 and 12).

Figures 13 and 14 show the waiting and processing times of SRCs for image proces-
sor recovery. The waiting and processing times of SRCs are similar to the waiting and
processing times of URCs. But URC events occur spontaneously while SRC events occur
automatically. For example, when an image processor exits with an error because it can-
not acquire an image from the video connection, then the compute node worker will detect
the suspicious consumption of computing resources. Most waiting and processing times
for SRCs starting an image processor have similar characteristics, falling within the range
10–20 seconds. The response times show that the system works well. However, results of
this kind are difficult to compare between different systems since some focus on resource
allocation rather than system architecture. Also, some research systems use simulated data
rather than actual results.

Table 4 Compairison of Cloud-based Video Surveillance Systems

System Architecture AAA Cloud Real Time Bandwidth

service technology image Analysis usage

Nokkhum Distributed Account and Nova/EC2, Yes According to

components Billing, Swift/S3 configuration

Authentication,

Authorization

P2PCloud Distributed N/A HDFS L/I Low (only

physical nodes when event

detectors are

used, otherwise

as high

as others)

VAQACI Distributed Billing MapReduce, Only after High

components HDFS videos are (centralized

recorded and video controller)

pushed into by Hadoop

the HDFS
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Table 5 System scalability compairison

System Resource Deployment Minimum number of

allocation configuration deployed machines

Nokkhum Automatic Supporting many scenarios 1

according to Fig. 6

P2PCloud N/A Local node and directory node Minimum required 2

(central and local)

VAQACI Automatic One scenario 2

5.4 Discussion

In this section, we compare Nokkhum with available video surveillance systems as shown in
Tables 4 and 5. However, direct comparisons are difficult because some of these systems are
conceptual designs without complete implementations. Some focus on resource allocation
for system scalability rather than software architecture.

As a consequence, some descriptions are unavailable (N/A) or lacking in information
(L/I). For example, Nokkhum provides Account/Billing, Authentication, and Authoriza-
tion (AAA), while the situation is unclear for other systems. Nokkhum can more flexibly
configure its components for different deployment scenarios. For instance, it can uti-
lize resources in a minimal way, then later scale them up. In this way, Nokkhum is
not just a specific type of video surveillance system applying cloud computing technol-
ogy, but also supports various users in the public cloud, flexibility configurations for
different system sizes, and scalability, which are topics that are not addressed in other
systems.

Section 5.3 included histograms of VSaaS response times for service delivery to users.
Other cloud-based surveillance systems do not provide such response time information.
Instead, they focus on image processing performance or network bandwidth usage. Our
system response times are similar to those for the bundled software that come with the
IP cameras. However, there are many factors that can affect the URC processing times
for starting an image processor. These include the camera response times for starting
video streaming, resource allocation waiting time, and the URC scheduling waiting time.
Nokkhum supports real time image analysis while other systems do not fully support it.
Nokkhum can vary its network bandwidth usage according to its users’ configurations while
other systems are not as flexible.

6 Conclusion

Our Nokkhum Video Surveillance as a Service (VSaaS) software architecture can auto-
matically scale the number of virtual machines needed to support user requirements. The
Amazon EC2 API handles automatic virtual machine acquisition, while the Amazon S3 API
is used by the storage engine. Our VSaaS allows its compute units to be composed from
both virtual machines and physical servers, and all the components are designed for sys-
tem scalability and flexibility. Many server topologies can be configured according to the
provider requirements. Our architecture can be deployed using a minimal number of servers
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at the beginning and later be scaled up easily for a growing number of cameras. Nokkhum
supports small to large VSaaS, in both private and public clouds.

A REST interface allows the systen to support multiple types of client. Experiments
show that the system performance is quite decent, and is flexible enough to tolerate difficult
scenarios when some components are disconnected. Typical causes are electricity black-
out, lost of network communication, or suspension due to software errors which require a
restart.
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Abstract Video Surveillance Systems (VSS) on the Internet as known as Video Surveil-
lance as a Service (VSaaS) or Cloud based Video Surveillance (CVS) systems. Video
processing workload analysis has usually employed only one category of static video pro-
cessing attribute, such as a frame rate with a single frame size on the same computing
node specification, but VSaaS must handle a variety of video processing attributes. Also,
in a static workload, it is difficult to identify the resource consumption of video processing
attributes, especially involving a combination of frame rates and sizes on different comput-
ing nodes on virtual or physical machines. Consequently, it is difficult to place a task on a
computing node if the resource usage information is unknown to the scheduler. In this paper,
the video processing workload characteristics utilize various parameters, such as the type of
video processing task, frame rate, frame size, and compute node specification. The analysis
results have helped us to design a scheduler that supports different computing node specifi-
cations. We explore video processing workload for testing resource usage capacity in several
computing nodes, and collect information for the scheduler’s estimation. This paper also
proposes a resource estimation module for predicting the video processing resource usage
for a new video processing task when there is no matching or close estimation. Furthermore,
we suggest scheduler criteria for optimizing system resource usage.
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1 Introduction

Online Video Surveillance Systems (VSS) are known as Video Surveillances as a Ser-
vice (VSaaS) [7, 15] or Cloud-based Video Surveillance (CVS) systems. VSaaS provides
several service components including real-time video monitoring, online video playback,
video recording, security alerts, and storage space. Customers rent a service package from
a VSaaS provider, and attach Internet Protocol (IP) cameras to the system. The customer
records the IP cameras’ video using the VSaaS service, and chooses suitable video analysis.

There are several software stacks for building VSaaS systems on a cloud infrastructure,
such as P2PCloud [17], VAQACI [9], the CVR system [11], VISERAS [15], and Nokkhum
[10]. Most of the architectures are based on a cloud infrastructure and big data technology,
such as Amazon EC2, Amazon S3, and Hadoop. Some systems include resource allocation
techniques and algorithms for minimizing the number of virtual machines (VMs) on Cloud
infrastructures, including Nan [13], Miao et al. [12], and Hossain et al. [4, 5], and suppose
that the video analysis workloads consume static computational resources. Therefore, the
VM providers offer the same VM capacity and capabilities. In reality, a VSaaS system
must support different video analysis workloads which means that resource allocation must
consider factors involving video analysis, video frame size, and frame rate.

Video processing tasks consume different computing resources according to their kind
of video analysis, video frame size, and frame rate. Task processing on different machines
involve different computing resource consumption according to CPU vendor, architecture,
and frequency, which makes it difficult to predict computing resource consumption for
video processing task scheduling. One way to estimate the consumption of different com-
puting resources is to run a video processing testing suite to collect the results, utilizes
results as heuristics. The heuristics can be automatically adjusted by rerunning the testing
suite on new machines.

This paper presents video analysis workloads and task scheduling for VSaaS running on
a cloud infrastructure. Our scheduling method can handle different video analysis config-
urations from VSaaS users on heterogeneous computational units. We present results for
different VSaaS workloads running on our Nokkhum system.

2 Video surveillance as a service

Video Surveillance as a Service (VSaaS) is a cloud environment for supporting users located
at different places. The users register their IP cameras with the VSaaS system, and pay
a service charge over a billing period. VSaaS provides several facilities for managing the
cameras, video processing, storage, and billing, and can scale to support dynamic num-
bers of video content analysis. Several VSaaSes have been deployed using cloud services,
especially elastic computing units and object storage. VSaaS systems can request dynamic
computing resources and easily scale according to system requirements.

Previous works [4, 5, 10, 12], and [13] as focused on CVS system design, mainly uti-
lized Amazon EC2 and the S3 API. Hossain et al. [5] presented a VM allocation scheme
for supporting video streaming for emergency officials. Hossain et al. [4] described a VSS
framework for dynamic workloads such as face detection and storage tasks. Alamri et al. [1]
and Hossain [6] were interested in the quality of service for distributed video surveillance
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services, especially video transcoding. They proposed a VSS and a service configuration
algorithm based on video transcoding workloads. Hossain [6] described video workloads
involving 320 × 240 pixels at 30 FPS. Alamri et al. [1] presented computing resource
consumption for surveillance video streaming and video repurposing/transcoding, but with-
out any information about video workloads. Unfortunately, there has been little work on
video processing factors and workload characteristics for identifying computing resource
consumption.

Deploying VSaaS in a cloud computing environment involves VSaaS system design and
computing resource management, two issues which affect the quality of service. Video task
scheduling involves symmetric video analysis workloads, including the frame size, frame
rate, and video analysis type, running on a homogeneous computing units. Such VSaaSes
display high resource efficiency when everything is static but these settings restrict the
flexibility of the VSaaS’s capacity, and do not alway support user requirements. Further-
more, when some computing hardware is replaced, the infrastructure will be changed from
a homogeneous to a heterogeneous computing system. Therefore, flexible resource man-
agement is needed in VSaaS systems, especially for task scheduling handling dynamic user
requirements and heterogeneous computing units.

We address these issues by analyzing CPU and memory consumption of several types
of home-use video processing, such as motion detection, video recording, and motion
recording. The collected video processing consumption data involves several types of video
processing, various video frame rates and frame sizes, and several computing unit specifica-
tions based on physical servers and virtual machines. The analyzed results are employed in a
scheduling process for placing the video processing tasks on a suitable computing node. We
have designed video processing task scheduling that supports several situations described
in the workload analysis. The aim is that the scheduling process can handle dynamic video
processing workloads, and so enhance the VSaaS’s efficiency and video processing resource
utilization.

3 Analysis of video workload characteristics

Few VSSes perform video workloads analysis or emphasize scalable distributed video pro-
cessing on a pool of computing resources. Many VSSes only utilize a single video size
and variable frame rate in their case studies. Recently, VSSes had been transformed into
VSaaS for supporting various user requirements, and such workload analysis is likely to pro-
vide wrong results for these systems. They do not take into account significant parameters
involving changing video size and frame rate, or video processing based on several machine
specifications. This section describes video workload characteristics affecting computing
resources based on the Nokkhum VSaaS architecture.

3.1 Nokkhum VSaaS

Nokkhum [11] is a flexible, scalable component-based architecture for VSaaS. It can deploy
components on both physical and virtual machines running Infrastructure as a Service (IaaS)
using the Amazon AWS API. It has been designed and developed to support video applica-
tions for various organizations and business sizes, where the deployment and configuration
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involve a flexible range of computing units. It has an API interface server providing a REST
over HTTP [3] which supports any client platform, and is able to control, view, or manage
video analysis, video recording, and camera configuration. The Nokkhum architecture is
shown in Fig. 1.

Figure 1 shows five components including the Nokkhum client, APIs, controller,
compute node worker, and video processor. The components are described as follows:

– The controller component is a daemon process which consists of many modules includ-
ing, task, scheduler, compute node, VM, notifier, billing, and storage controller. The
compute node, VM, and storage modules play different roles providing elastic compu-
tational resources according to user requirements. The task and scheduler are concerned
with monitoring, and managing video analysis tasks. They ensure that an analysis
works until the user cancels it. The notifier provides a notification to the user when
an exception occurs during an analysis. The billing module calculates the user service
charge.

– A compute node worker is a daemon process which runs on each computational unit. It
reports the CPU and memory utilization the node, and sends all video analysis tasks to

Fig. 1 Nokkhum VSaaS components
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the controller via message passing [16]. It also provides an interface for managing the
video processor module.

– The video processor component provides a set of tools including Video Content Anal-
ysis (VCA) and a video recorder utilizing the OpenCV library. The image component
is started by a compute node worker, and its behavior controlled by the user. The user
can compose a set of video analyses suitable for their requirements.

– The API server provides a REST style architecture via HTTP to manage a video
processing task. The API server supports multiple types of clients and employs
JavaScript Object Notation (JSON) [2] for data description formatting. The API server
encloses several modules, such as accounting, authentication, authorization, camera
configuration, video processing task management, and billing.

– A client can be implemented in several ways, but the default is a web front-end, which
provides easy management of the modules located in the API server.

Our system overview of the Nokkhum components begins when the user composes a
video processing configuration using the web front-end, and submits it to the NokkhumAPI.
After the API has validated the configuration, it stores a video processing command in the
database, which the controller later reads. It finds a suitable Nokkhum compute node worker
for the task using message-oriented middleware. The worker starts a Nokkhum processor
with the configuration from the user which processes the video stream following the user’s
configuration. All output from the processor is immediately pushed to cloud storage. In
addition, the user can manage the status of the video processing and playback video records
via the web front-end.

Nokkhum’s scalability benefits from its message-oriented middleware which enables it
to distribute components to many servers. Earlier versions of the Nokkhum VSaaS only
had a simple task scheduler based on examining the current resource workloads, without
any specific or application-tailored resource prediction. As a result, the scheduler’s resource
decision process sometimes failed. The current Nokkhum versions enhances task scheduling
with real video processing workloads, as explained later in this paper. It utilizes CPU and
memory usage prediction, and decides whether to start a video processing task on the target
computational unit.

3.2 Video processing task exploration

Most VSS employ similar compute nodes specification, because it is easy to manage many
video processing tasks with the same parameters. This simple scenario is insufficient for
a VSaaS system with dynamic requirements involving many variables, such as frame rate,
frame size, and video processor type. In addition, the cloud environment provides VM
specifications according to its capacity and limitations. This means that the video process-
ing task will consume different computational resources on different VM specifications,
in a difficult to predict manner. Therefore, we utilize video processing task exploration
to determine the computational resources consumed by the desired video processing task,
depending on its parameters. The results are used in workload analysis described in
Section 3.3, which become a heuristic for video task scheduling. There are two different
ways to run video processing exploration: the first is manually by the administrator, and the
second is automatically by the Nokkhum controller, which is described as follows:

– Video processing task exploration during system installation is manually run by the
administrator, because he usually knows the number of compute nodes and their spec-
ifications. With manual execution, the administrator can collect all the resource usage
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information about the video processing tasks soon after the initialization. This means
that the Nokkhum system does not need to collect any further resource consumption
information for the task scheduling. Nokkhum can use the existing information for
scheduling without repeating task exploration.

– The Nokkhum controller automatically runs video processing task exploration under
two circumstances: the first is when there are no experimental results related to the com-
pute node in the database. The second occurs when the node is idle for at least 100 %
when the total percentage (more than 100 %) is calculated by 100 % multiplied by the
number of CPU cores. In this case, the administrator does not have to decide to execute
task exploration. Also, the scheduler has to focus on workload estimation in order to
respond to the tasks in the queue. If it has to wait for experimental results from video
exploration, tasks will probably have a long wait in the queue.

The exploration employs two types of video processing tasks: motion detection and video
recording. A surveillance video from the VIRAT video dataset [14] was used in our experi-
ments, with eight frame rates (1, 5, 7, 10, 15, 20, 25 and 30 FPS) and six frame sizes (160 ×
120, 320 × 240, 640 × 480, 800 × 600, 960 × 720, and 1120 × 840 pixels). A total of
96 (2 × 8 × 6) test cases were executed, with each test running for two minutes, for a total
of 192 minutes. This means that scheduling required another approach to deal with missing
experimental results from the task exploration caused by the skipping of some tests to make
the scheduling faster. Our approach will be presented in Section 4.2.

Fig. 2 Motion detector and video recorder resource consumption with various frame sizes
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3.3 VCA and video recorder workloads analysis

VCA and video recorder workloads play an important role in driving VSS. Normally, the
consumption of computing resources by the VCA and video recording tasks is a function
of the frame rate and frame size. The CPU and memory utilizations of the VCA and video
recording tasks vary when running on different machines. There are many multimedia
systems, both VSSes and VSaaSes, which focus only on static workloads and homoge-
neous computing machines. However, the situation is rather different in real deployment
environments, especially in Cloud infrastructures.

In general, the IaaS provider promises to provide all customers with the same VM tem-
plate for the same charge. However, when the IaaS provider adds new hardware of a different
specification, it is possible that it will provide a different certified VM template. Then, when
the VSaaS provider deploys a VSaaS system on a Cloud IaaS, the efficiency of the VCA
and video recording tasks scheduler will be affected. Therefore, we have studied the behav-
iors of the VCA and video recording tasks in terms of computing resource consumption to
improve scheduling performance.

3.3.1 The VCA and video recorder

The two main factors affecting resource consumption are the video frame rate and frame
size. It is difficult to study VCAs used in VSaaS, because of the many available types. The
most popular is motion detection for filtering motion sequences, which are subsequently

Fig. 3 Motion detector and video recorder resource consumption at various frame rates
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passed to the video recorder or used to notify the user. We focus on motion detection and
video recording tasks, and initially handle resource consumption by fixing the frame rate
and varying the frame size as in Fig. 2. The CPU and memory consumption for different
frame rates are shown in Fig. 3. All the experiments were performed on a physical machine,
an AMD FX(tm)-8320 eight-core processor with a 3.5 GHz CPU and 16 GB RAM.

The video’s frame rate is fixed at 10 frames per second (FPS) in Fig. 2, and the results
show how an increases in the frame size, increase the consumed computational resources,
namely CPU and memory usage, for both motion detection and video recording. Also, the
frame size is fixed at 640 × 480 pixels and the frame rate of the motion detector and video
recorder increased more computational resources are consumed as shown in Fig. 3. Further
experiments that varied the frame rate caused the motion detector task to consume memory
up to the maximum buffer allowed, which is expected for the Nokkhum processor.

Figures 2 and 3 show individual resource consumption, but the VSaaS video processing
task can combine multiple VCAs for complex analysis. An example of VCA combination is
the cooperation between the motion detector and video recorder for recording when motion
sequences occur. Figure 4 shows the resource consumption of the motion recorder which
employs a continuously running subtask to filter motion events before passing them to the
video recorder. Therefore, the bottom line of each CPU usage graph in Fig. 5a is the resource
consumption of the motion detector. The overshooting line represents the CPU resource
consumption of the video recorder. Also, memory usage has similar characteristics to the
motion detector on the bottom line.

3.3.2 The VCA and video recorder for various computing specifications

This section presents resource consumption for the motion detector, video recorder, and
motion recorder running on different physical machines shown in Fig. 5. All experiments
utilize a fixed frame rate at 10 FPS and a frame size of 640x480 pixels. The testing machines
used a x64 CPU with more than 4 GB of RAM.

In Fig. 5a, it is difficult to find any outstanding related factors to differentiate between
the CPU usage characteristics in the motion detector when using different and complicated
CPU architectural designs. When we divide the experimental results according to vendor
(AMD and Intel), it seems that the CPU frequency is the only discriminator. The memory
consumption of the machines in Fig. 5b imply similar utilizations.

Fig. 4 Motion recorder resource consumption at various frame sizes
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Fig. 5 Resources consumption for the motion detector, video recorder, and motion recorder running on
different physical machines

Video recorder resource consumption is shown in Fig. 5c and d. The video recorder
resource consumption is different from the motion detector due to different CPU/memory
architectural designs. For example, some desktop CPUs employ a special video codec chip
set, to lower CPU utilization, but return the same frame size and rate.

The motion recorder is a combination of the motion detector and video recorder, and
so inherits CPU and memory utilization characteristics from both. Its result are shown in
Fig. 5e and f; the bottom line in Fig. 5e comes from the motion detector, and the overshoot-
ing line from the video recorder. However, it is difficult to identify which motion recorder
characteristics are affected by the video recorder’s CPU consumption, which depends on
the CPU model and vendor.
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3.3.3 Virtual and physical machines

The Nokkhum VSaaS supports hybrid virtual and physical machines for the scalability of
the cloud environment. Comparing results between VMs and physical machines helps the
Nokkhum system to improve task scheduling performance for both machine types. Our
results involving motion detection, video recording, and motion recording are shown in
Fig. 6. All the experiments used a frame rate of 10 FPS and frame size of 640x480 pixels.
The physical machines support virtualization technology with the KVM [8].

Figure 6a, c, and e present the CPU utilization for VMs and physical machines, showing
that the pattern of results are similar for both, but that the VMs’ CPU utilization is a little
bit higher. Figure 6b, d, and f show that memory consumption for VM tasks is a little bit
lower than that for physical machines.

Fig. 6 Resource consumption for the motion detector, video recorder, and motion recorder tasks running on
different physical and virtual machines

155



Multimed Tools Appl

3.3.4 Summary

Figures 2–6 show results from experiments using the frame rates 1, 5, 7, 10, 15, 20, 25,
and 30 FPS, and frame sizes 160 × 120, 320 × 240, 640 × 480, 800 × 600, 960 ×
720, and 1120x840 pixels. The resource consumption results become unclear when they
combine frame rate and frame size, and it is difficult to discriminate which are from the
VCA or the recording tasks. Moreover, the computing resource utilizations of the VCA and
video recorder tasks are different when different machine specifications and hypervisors are
employed.

The video processing workload characteristics show that different machine specifica-
tions, especially those affecting the CPU model, influence resource usage consumption.
In order to support multiple machine specifications, the workload scheduler has to con-
sider CPU and memory usage from the task exploration when assigning a task to a suitable
compute node. The scheduler utilizes the exploration results by applying three resource
usage criteria, as described in Section 3.4.

3.4 Resource usage criteria

Results from the same compute node specification and similar video processing tasks point
in the same direction, but it is difficult to apply them to task scheduling. The scheduler
needs to use resource usage criteria for computing resources estimation, based on criteria
that involve the resource utilization of all the video processors which generally consume
resources linearly. Our factors for approximating resource usage include the average data
set, average minimum data set, and average maximum data set, and the proposed criteria are
shown in Fig. 7.

Fig. 7 Nokkhum resource criteria: the average data set, average minimum data set, and average maximum
data set

156



Multimed Tools Appl

The first criterion is the average data set, representing the data mean suitable for general
CPU utilization events. The second criterion is the average minimum data set, which is
the data average lower than the mean, and best for heavy CPU utilization although it may
affect memory utilization. For example, when the CPU is busy or can not process the image

Fig. 8 CPU usage for motion detection and video recording using the three resource usage criteria
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on time, the memory utilization will increase. The last criterion is the average maximum
data set, which is the data average higher than the mean. This ensures that the computing
resources will be sufficient for the required video processing.

In short, VSaaS administrators must identify their system specification and choose a
suitable criterion for highly efficient computing resource management. Section 5 presents
experimental results applying our three different criteria and discuss suitable exploitations
in real situations.

The three computing resource usage criteria can also be used to estimate the CPU and
memory usage in video processing task scheduling. In this section, we only present the CPU
usage as shown in Fig. 8, because it has the same characteristics as memory usage. Figure 8
shows CPU usage at several video frame rates and frame sizes, including motion detection
and video recording in Fig. 8a and b. In Fig. 8, the average resources usage increases with
increasing frame rates or frame sizes, and they can be plotted as straight lines with different
slopes.

The video processing task exploration can take quite a long time to collect data from the
compute nodes, but the execution time can be reduced by exploiting the CPU usage values in
the criteria of Fig. 8. It appears that the average usage in is directly related to the frame size
and frame rate. This can then be exploited by determining the linear slope and the sampling
points of the video processing tasks from the lowest and highest frame rate or frame size.
For example in Fig. 9, a frame rate of 1 and 30 FPS are used to approximate CPU usage,
and the resulting motion detection and video recording equation are presented as (1) and
(2). Table 1 shows the approximated CPU usages from the two equations compared to the
real average CPU usages and their absolute errors.

%CPU = 3.90695652x + 2.1626087
for motion detection on the CPU AMD FX, 8 cores, 3.5 GHz

(1)

Fig. 9 Approximate CPU usage with a linear equation

158



Multimed Tools Appl

Table 1 Comparison of the average CPU usage and its approximation for motion detection and video
recording at different frame rates for the CPU AMD FX, 8 cores, 3.5 GHz

Frame rate Motion detection Video recorder

Average Approximation Absolute Average Approximation Absolute

CPU usage error CPU usage error

1 6.070 6.070 0.000 5.600 5.600 0.000

5 15.478 14.720 0.758 17.417 15.239 2.178

7 20.243 19.045 1.198 22.809 20.059 2.750

10 26.512 25.533 0.979 29.355 27.289 2.066

15 36.396 36.346 0.050 39.568 39.338 0.230

20 47.237 47.159 0.077 50.462 51.387 0.925

25 58.270 57.972 0.297 61.809 63.436 1.627

30 68.785 68.785 0.000 75.485 75.485 0.000

%CPU = 3.19016492x + 2.40983508
for video recording on the CPU AMD FX, 8 cores, 3.5 GHz

where x is the frame rate
(2)

Table 1 shows that the errors when applying (1) and (2) are small compared to the average
CPU usages, with the maximum absolute error about 2.75 % of the usage. By applying these
equations, we can reduce the execution time of the video processing exploration task from
96 test cases to eight (2 × 2 × 2). These come from two video processing types (motion
detection and video recording), two frame rates (1 and 30 FPS) and two frame sizes (160 ×
120 and 1120 × 840 pixels), taking a total 16 minutes for each machine specification. The
linear equation model can only be applied to the same machine. Different specifications
may result in different slopes due to different CPU architectures.

4 Nokkhum scheduling

Resource management and the video processing task scheduler are the key NokkhumVSaaS
modules for the availability and resource provision of tasks. This section describes a suitable
task scheduler based on the real workloads presented in Section 3.

4.1 Scheduling overview

The task scheduler picks a video processing task from a queue, and asks the resource pre-
dictor to estimate the computing resource requirements for the task. After the predictor has
returned an available computing node, the scheduler calls the task controller to spawn the
video processing task. The Nokkhum scheduling process is shown in Fig. 10.

The Nokkhum scheduler evaluates which compute node worker is suitable to run a video
analysis task across several steps. It gets a video processing task from the task queue, finds
an available compute node worker, and passes it to the resource predictor. The predic-
tor looks up the most suitable experimental workloads from the database and returns the
best fit compute node worker to the scheduler. The scheduler then sends the video pro-
cessing configuration and compute node worker information to the task controller. The
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Fig. 10 Nokkhum scheduling

controller communicates with the compute node worker to run the video processing task.
The Nokkhum resource decision process will be described in detail in Section 4.2.

Resource prediction is part of the compute node controller, and responds to the task
scheduler by providing an available compute node worker suitable for the video processing
task. It performs resource estimation based on data from the previously mentioned experi-
mental results, especially the CPU and memory usage information. This estimation is used
to determine which compute node is suitable for running the required video processing task.
The experimental results can be collected from the task exploration, which can be run on
any machine specification, and are stored in a database for the next round of scheduling.
The resource prediction process is shown in Fig. 11.

4.2 Resource decision description

The Nokkhum resource decision module for placing a video processing task on a suitable
computing unit is shown in Fig. 11. The module requires both the desired computation
unit and the video processing configuration. The resource decision steps are described as
follows.

Step 1) Find matching experimental video analysis
The resource decision module finds a video processing task with a matching

video processing type, frame rate, and frame size from the previously allocated
computation unit (of the same CPU vendor, model, and frequency). If it finds a
result, it skips Steps 2 and 3 and goes to Step 5.

Step 2) Find the closest adjacent experimental video analysis based on CPU frequency
If the resource decision module cannot find an exactly matching experimen-

tal result in the database, it requests a new experimental result with an adjacent
CPU frequency and ignores the CPU model of the desired compute node, but the
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Fig. 11 The Nokkhum resource management decision process.

video processing type, frame rate, and frame size must still match. The exam-
ple in Fig. 12 shows that it always chooses the next available CPU with a higher
frequency than the desired one. If a result is found, it will skip Step 3.

Step 3) Estimate a CPU and memory usage using the experiment results
This step looks for an experimental result in the database which has the same

video processing type, and passes the result to Step 4. The result may not be
accurate, and may not fit the task well, but it is better than scheduling with no
estimation at all.

Step 4) Estimate the new resource estimation based on CPU frequency
Step 4 analyzes the experimental results shown in Fig. 5. The task’s CPU usage

depends on the CPU frequency. Higher clock frequency means a lower CPU usage
by the task, depending on the CPU model and specification, although memory
usage is rather consistent. The resource decision module estimates the CPU and
memory usages from the experimental result equivalent to the desired computation

Fig. 12 Selecting a CPU
frequency adjacent to the desired
frequency
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unit’s CPU frequency. It applies a scaling factor (SF ) as described by (3) to the
CPU usage, unit as shown in (4).

SF =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Fdesired

Fexperiment

if Fexperiment >= Fdesired

Fexperiment

Fdesired

otherwise

where SF is the CPU scaling factor;
Fdesired is the CPU frequency of the desired computation unit;
Fexperiment is the CPU frequency of the computation unit running
the experiment.

(3)

Equation (3) calculates a scaling factor using the ratio of the compute node
CPU frequency and the adjacent frequency determined from the experimental
results in the database. It returns a different ratio according to whether the adjacent
frequency is higher or lower than the CPU frequency of the desired compute node.
The scaling factor will be used to estimate adjacent CPU usages, according to the
resource usage criterion shown in (4) and (5). The estimated memory usage is set
to the memory usage of the experiment, as in (5). The CPU and memory usages
are derived from the resource usage criteria as presented in Section 3.4. The esti-
mated CPU and memory usages (CPUestimated and memoryestimated ) are used in
the next step.

CPUestimated = SF × CPUexperiment [criterion]

where CPUexperiment [criterion] is the CPU usage, collected
from the experiment, selected by the criterion;

criterion is a resource usage policy
identified by the administrator.

(4)

memoryestimated = memoryexperiment [criterion]

where memoryexperiment [criterion] is the memory usage
from the experiment selected by applying the criterion.

(5)

Step 5) Summarize the CPU and memory usages from all processing tasks
The Nokkhum video processor components are sequentially connected to each

other. The resource decision module summarizes the CPU and memory usages
of all the video tasks from the previous steps to aid decision making in the final
step. For example, a motion recorder consists of a motion detector and a video
recorder; the resource decision module sums the CPU and memory usages from
both processors for consideration in the next step.

Step 6) Decide on a suitable compute node worker
The final step decides which computing node is suitable. The resource deci-

sion module acquires the real workload of the compute node and approximates
the current capacity of the running task. The approximated current resource usage
of the target compute node and the task information from Step 5 are used to
decide if it is suitable. The module will return an appropriate compute node to the
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task scheduler which can start the task. The processes are described by (6), (7)
and (8).

TCPU = ∑N
n=1 CPUe(n)

+ CPUep

where TCPU is the summation of CPUestimated of all
the video processor tasks running on the compute node C;

CPUe(n)
is the estimated CPU usage of

the video processing task n;
CPUep is CPUestimated of the requested video processing task

p that will be executed by the compute node C;
N is the number of video processing tasks

contained in the compute node C.

(6)

Tmemory = ∑N
n=1 memorye(n)

+ memoryep

where Tmemory is the summation of memoryestimated of all
the video processor tasks running on the compute node C;

memorye(n)
is the estimated memory usage of

the video processing task n;
memoryep is memoryestimated of the requested

video processing task p that will be executed by
the compute node C.

(7)

D(C) =

⎧
⎪⎪⎨

⎪⎪⎩

T rue if TCPU < C.cpu core ∗ 100,
and Tmemory < C.total memory

False otherwise
where D(C) is the decision function for

the compute node qualification;
C is the desired compute node.

(8)

Equations (6), (7) and (8) determine a compute node suitable for executing the video pro-
cessing task. TCPU and Tmemory are summations of the estimated CPU and memory usages
(CPUestimated and memoryestimated ) of all the video processing tasks (N ) containing the
desired compute nodes and selected video processing tasks (CPUep and memoryep ). The
decision function (D) of compute node C employs TCPU and Tmemory to determine whether
the compute node C can run the video processing task p. TCPU must be lower than the
number of cores multiply by 100 % and Tmemory must be lower than the maximum mem-
ory of the desired compute node. If there is no compute node with the desired specification,
the decision function will return False. The resource decision algorithm for placing tasks
is also presented as pseudocode in Algorithm 1.

Algorithm 1 presents three functions for task scheduling: GetSuitableComputeNode,
EstimateComputingResources, andGetVPTExperiment.GetSuitableComputeNode validates
whether a compute node is suitable for starting a task using a compute node information
and a video processing configuration. It checks an available compute node using Estimate-
ComputingResources which gathers approximated computing resources from the current
task running on the candidate compute node. The approximated computing resource is
compared with the estimated video processing resource taken from the video processing
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task configuration. EstimateComputingResources summarizes the CPU and memory usage
sums from all the video processing configurations using GetVPTExperiment. It queries
the experimental VCA from the database following the steps described in Fig. 11 and
Section 4.2.

The scheduler orders the tasks based on real resource usage, but it is difficult to evalu-
ate the computing resources for such data. Therefore, the decision algorithm is driven by
resource utilization, so the system administrator can guide the scheduler with the resource
usage criteria described in Section 3.4.

5 Experimental results and discussion

This section presents experimental results when applying the Nokkhum scheduler to
different resource configurations and machine specifications.

5.1 Experimental results

Table 2 shows physical machine specifications including their codes used in Tables 3 and 4,
while Table 3 shows the VM specifications based on the physical machines from Table 2.
Table 4 presents the resource usage for the machines described in Tables 2 and 3, and
includes three resource usages criteria: the average (Avg), average maximum (AMax), and
average minimum (AMin) of CPU and memory usage. Each run involves two video pro-
cessing tasks, a video recorder (VR) and motion detector (MD). These results are used as
example models for determining task scheduling.

Figures 13 and 14 present task scheduling results based on a physical machine (AMD-
3.5-PM) and a VM (AMD-3.5-VM), and includes the number of video tasks contained in
both types. AMD-3.5-VM is a VM running on the AMD-3.5-PM. Both are very similar, but
their CPU specifications are different as shown in Tables 2 and 3. The important specifica-
tion parameters are the number of cores and the maximum memory. The video processing
tasks used for scheduling are a video recorder (VR) and motion recorder (MR), with MR
combining motion detector and video recorder tasks. This means that the MR computing
resource usage is a summation of both tasks.

Scheduling results are shown in Figs. 13 and 14. One of the experiments in Fig. 14
involves a video recorder, using a 640x480 pixel size, and a frame rate of 10 FPS. The
scheduler can assign six video recorder tasks to this VM based on applying the average CPU
usage criterion. The video recorder task has a CPU usage of about 187.59 % and consumes
272.10 MB of 200 % (2 × 100), where the maximum memory usage is 2000MB and the
maximum CPU usage is 200 %. Therefore, there is some space left for placing another task
on the VM. For instance, the scheduler cloud add a video recorder VM, with a video size of
320x240 pixels and frame rate of 10 FPS which would consume 199.39 % CPU usage and
313.28 MB memory. All these workloads are within the machine specification, and so can
all run smoothly together.

Figures 13 and 14 show that the number of tasks placed on a compute node worker
depends on the frame rate and size, for both the video and motion recorder. The number
of tasks decreases when the frame rate and size are increased. This characteristic appears
in both the physical and virtual machines, and also directly affects memory consumption.
Therefore, we can consider the number of tasks in the analysis as reflecting memory usage.
However, the CPU consumption by the video and motion recorder affects the CPU usage

165



Multimed Tools Appl

Ta
bl
e
2

Ph
ys
ic
al
m
ac
hi
ne
s
us
ed

in
th
e
ex
pe
ri
m
en
ts

PM
C
od
e

C
PU

To
ta
lM

em
or
y
(G

B
)

To
ta
lD

is
k
(G

B
)

M
od
el

Fr
eq
ue
nc
y
(H

z)
C
or
es

A
M
D
-2
.8
-P
M

A
M
D
Ph

en
om

(t
m
)
II
X
6
10
55
T
Pr
oc
es
so
r

28
00

6
8.
11

98
.2
9

A
M
D
-3
.5
-P
M

A
M
D
FX

(t
m
)-
83
20

E
ig
ht
-C
or
e
Pr
oc
es
so
r

35
00

8
16
.5
5

98
.2
9

A
M
D
-3
.8
-P
M

A
M
D
A
10
-5
80
0K

A
PU

w
ith

R
ad
eo
n(
tm

)
H
D
G
ra
ph
ic
s

38
00

4
16
.2
7

18
50
.3
7

In
te
l-
2.
6-
PM

In
te
l(
R
)
C
or
e(
T
M
)2

Q
ua
d
C
PU

Q
94
00

@
2.
66
G
H
z

26
70

4
4.
15

28
5.
31

In
te
l-
2.
8-
PM

In
te
l(
R
)
X
eo
n(
R
)
C
PU

X
33
60

@
2.
83
G
H
z

28
34

4
4.
15

22
6.
78

In
te
l-
3.
4-
PM

In
te
l(
R
)
C
or
e(
T
M
)
i7
-2
60
0
C
PU

@
3.
40
G
H
z

38
00

4
4.
13

47
3.
86

166



Multimed Tools Appl

Ta
bl
e
3

V
ir
tu
al
m
ac
hi
ne
s
us
ed

in
th
e
ex
pe
ri
m
en
ts

V
M

C
od
e

PM
C
od
e

C
PU

To
ta
lM

em
or
y
(G

B
)

To
ta
lD

is
k
(G

B
)

M
od
el

Fr
eq
ue
nc
y
(H

z)
C
or
es

A
M
D
-2
.8
-V

M
A
M
D
-2
.8
-P
M

A
M
D
O
pt
er
on

23
xx

(G
en

3
C
la
ss

O
pt
er
on
)

28
12
.7
92

2
2.
10

20
.0
9

A
M
D
-3
.5
-V

M
A
M
D
-3
.5
-P
M

A
M
D
O
pt
er
on

63
xx

cl
as
s
C
PU

35
15
.7
84

2
2.
10

20
.0
9

A
M
D
-3
.8
-V

M
A
M
D
-3
.8
-P
M

A
M
D
O
pt
er
on

63
xx

cl
as
s
C
PU

37
93
.1
02

2
2.
10

20
.0
9

In
te
l-
2.
6-
V
M

In
te
l-
2.
6-
PM

In
te
lC

or
e
2
D
uo

P9
xx
x
(P
en
ry
n
C
la
ss

C
or
e
2)

26
66
.3
62

2
2.
10

20
.0
9

In
te
l-
2.
8-
V
M

In
te
l-
2.
8-
PM

In
te
lC

or
e
2
D
uo

P9
xx
x
(P
en
ry
n
C
la
ss

C
or
e
2)

28
33
.5
3

2
2.
10

20
.0
9

In
te
l-
3.
4-
V
M

In
te
l-
3.
4-
PM

In
te
lX

eo
n
E
31
2x
x
(S
an
dy

B
ri
dg
e)

33
91
.4
48

2
2.
10

20
.0
9

167



Multimed Tools Appl

Table 4 Video processing workload resource usage results

Code Processor Video CPU Usage (%) Memory Usage (MB)

Size FPS Avg AMax AMin Avg AMax AMin

AMD-2.8-PM Motion detector 640 × 480 10 36.38 38.13 35.08 68.02 78.22 65.04

Video recorder 640 × 480 10 34.85 35.77 33.30 50.57 51.17 49.96

AMD-3.5-PM Motion detector 320 × 240 10 9.80 10.47 8.83 46.08 46.82 45.01

320 × 240 15 12.44 13.47 11.36 46.16 46.98 44.10

640 × 480 10 26.51 28.45 25.08 71.70 79.00 69.56

640 × 480 15 36.40 38.15 34.35 71.90 80.58 68.70

Video recorder 320 × 240 10 11.80 12.67 10.71 41.18 41.69 40.70

320 × 240 15 16.50 17.46 15.55 41.51 41.84 40.86

640 × 480 10 29.35 30.86 28.20 54.61 55.36 53.99

640 × 480 15 39.57 40.90 37.95 54.98 55.50 54.27

AMD-3.8-PM Motion detector 640 × 480 10 25.45 27.60 24.07 67.26 79.94 64.43

Video recorder 640 × 480 10 28.42 29.86 26.95 49.40 49.85 48.63

Intel-2.6-PM Motion detector 640 × 480 10 26.26 29.19 24.92 65.49 77.76 62.91

Video recorder 640 × 480 10 32.89 33.93 31.23 47.89 48.33 47.17

Intel-2.8-PM Motion detector 640 × 480 10 25.22 28.40 23.83 65.65 77.56 62.84

Video recorder 640 × 480 10 31.55 32.75 30.45 48.57 48.97 47.79

Intel-3.8-PM Motion detector 640 × 480 10 26.93 29.32 25.28 66.81 78.23 64.40

Video recorder 640 × 480 10 40.28 41.61 39.19 49.84 50.24 49.20

AMD-2.8-VM Motion detector 640 × 480 10 35.75 37.22 34.31 63.25 75.05 60.13

Video recorder 640 × 480 10 36.52 37.96 34.91 44.79 45.51 44.37

AMD-3.5-VM Motion detector 320 × 240 10 9.97 10.68 8.49 40.14 40.42 37.18

320 × 240 15 13.13 14.30 12.58 39.94 40.45 35.96

640 × 480 10 25.24 27.60 23.99 61.79 70.98 59.86

640 × 480 15 33.85 35.04 31.80 62.72 73.89 59.46

Video recorder 320 × 240 10 13.37 14.36 12.62 35.92 36.11 35.76

320 × 240 15 17.72 18.55 16.56 35.70 35.82 35.57

640 × 480 10 31.27 32.72 30.11 45.35 46.11 44.93

640 × 480 15 41.20 42.79 39.93 45.64 46.36 45.26

AMD-3.8-VM Motion detector 640 × 480 10 25.29 27.40 24.16 61.81 71.87 59.82

Video recorder 640 × 480 10 29.19 30.88 28.18 45.37 46.02 44.94

Intel-2.6-VM Motion detector 640 × 480 10 40.46 42.36 39.05 64.51 73.43 60.92

Video recorder 640 × 480 10 34.74 35.95 33.46 45.28 45.93 44.83

Intel-2.8-VM Motion detector 640 × 480 10 36.98 39.43 35.09 63.10 73.28 59.35

Video recorder 640 × 480 10 32.92 34.27 31.59 45.81 46.56 45.36

Intel-3.8-VM Motion detector 640 × 480 10 26.38 29.18 25.00 63.12 75.64 60.48

Video recorder 640 × 480 10 39.94 41.58 38.88 45.52 46.25 45.09

Avg: Average

AMax: Average Maximum

Amin: Average Minimum
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Fig. 13 Number of tasks, the CPU and memory consumption in the physical machine (AMD-3.5-PM)

percentage, depending on the number of tasks and the compute node capacity. This indicates
that CPU consumption is the most significant factor for workload scheduling.

5.2 Discussion

The Nokkhum scheduler assigns a video processing task to a compute node by examining
adjacent experiment results from the exploration test in order to estimate resource usage.

Fig. 14 Number of tasks, the CPU and memory consumption in the virtual machine (AMD-3.5-VM)
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However, if the scheduler does not have enough resource usage information, it may assign
tasks that exceed the compute node’s capacity. To avoid this the Nokkhum scheduler com-
pares real resource usage and the estimated resource usage. This is used to prevent system
failure until better exploration results are received.

NCPU = �C.cpucore×100
CPUestimated

�
Nmemory = �C.total memory

memoryestimated
�

Ntotal =
{

NCPU if NCPU < Nmemory,

Nmemory otherwise
where NCPU is the number of video processing tasks

divided by CPU usage;
Nmemory is the number of video processing tasks

divided by memory usage;
Ntotal is the number of video processing tasks based on a comparison of

NCPU and Nmemory.

(9)
We can estimate the number of video processing tasks per compute node by transforming

(6), (7) and (8) into (9). It shows that the number of video processing tasks depends on
the video frame rate and frame size per compute node. Also, the CPU information is given
more weight than the memory. The VSaaS administrator can predict the number of compute
nodes for their system by applying (9), and so plan the system deployment budget.

6 Conclusions

This paper has described video processing workload analysis and resource estimation for
workload scheduling on the Nokkhum VSaaS, which handles the computing resource con-
sumption of video processing tasks by interlacing the percentages of CPU and memory
usage with frame rates and sizes. Based on experiments run on both physical and virtual
machines, we developed video processing that stably consumes computing resources. A
typical combination of video processors incurs different characteristics which makes it dif-
ficult to model CPU and memory usage. Therefore, our approach to video processing task
scheduling utilizes task exploration which collects and records CPU and memory usage in
a database. Later the scheduler uses this data to estimate required computing resources for
a new task, to determine which compute node is most suitable for it. Task exploration is ini-
tiated when there is no video processing information for a computing unit in the database,
and the unit is idle.

We have also described a method for determining video resource usage when there is
no exactly matching information in the database. While waiting for exploration results, the
scheduler estimates the new video processing task’s resource usage from existing experi-
mental results available in the database. The estimation process employs a scaling factor
to adjust the CPU usage as a heuristic in the scheduling process. This resource estimation
process enables the scheduler to immediately place a task on an appropriate compute node
without waiting for exploration results which may take a long time to be produced.

In addition, we have offered criteria (the average, average maximum, and average mini-
mum resource usage) as guidelines for identifying resource usage policy. These three criteria
allow the administrator to adjust the requested task to the desired compute node. Average
resource usage fits all task consumption relative to the computing unit. Average maximum
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can force the compute node towards an excessive workload and average minimum resource
usage can reduce consumption to allow space to left over.

This paper describes a technique to decide on how to allocate video processing tasks to
compute nodes which is useful for estimating the number of servers and budget planning.
This will give VSaaS system administrators more insight into their system’s behavior and
enable them to optimize resource usage.
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