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ชื่อวิทยานิพนธ์  การศึกษาเชิงคํานวณทางโครงสร้างของแอลฟาโกลบินคอนสแตนท์ 

   สปริงและสัมพรรคภาพการยึดจับกับโปรตีนช่วยรักษาเสถียรภาพ 

   ของแอลฟาฮีโมโกลบินในระยะเริ่มแรกของการสร้างโมเลกุลฮีโมโกลบิน 

ผู้เขียน   นายนวันวัจน์ ไชยนุวงศ์ ภัทรางกูน 
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ปีการศึกษา  2558 

บทคัดย่อ 

บทนํา ความผิดปกติชนิดฮีโมโกลบินเอ็ชคอนสแตนท์สปริงเป็นโรคทางโลหิตที่ถ่ายทอดทาง

พันธุกรรม ความผิดปกติน้ีสามารถพบความชุกได้ในประชากรไทยที่เป็นโรคโลหิตจางธาลัสซีเมีย

ชนิดกลุ่มแอลฟาธาลัสซีเมีย สาเหตุของความผิดปกติน้ีเกิดจากการกลายพันธ์ุที่รหัสหยุดบนยีน

สร้างสายแอลฟาโกลบิน ทําให้มีการสังเคราะห์กรดอะมิโนในสายแอลฟาโกลบินเพิ่มขึ้น 31       

กรดอะมิโน เรียกว่า หางคอนสแตนท์สปริง ส่งผลให้การสร้างฮีโมโกลบินไม่เสถียร โดย

สมมติฐานของงานวิจัยน้ีคือลําดับกรดอะมิโนที่สร้างเกินออกมาอาจมีผลต่อการเปลี่ยนแปลงของ

โครงสร้างและการเข้าจับกับโมเลกุลโปรตีนช่วยรักษาเสถียรภาพของสายแอลฟาฮีโมโกลบิน        

ในระยะเริ่มแรกของการสร้างโมเลกุลฮีโมโกลบิน อย่างไรก็ตามในปัจจุบันกลไกการสร้าง              

ฮีโมโกลบินเอจากกรณีการกลายพันธ์ุชนิดคอนสแตนท์สปริงบนสายแอลฟาโกลบินในแง่ของ

พลวัติเชิงโมเลกุล ยังไม่พบการศึกษาวิจัยและข้อสรุปอย่างเด่นชัด อีกทั้งโครงสร้างสามมิติของ

โปรตีนแอลฟาโกลบินคอนสแตนท์สปริงยังไม่มีการรายงานไว้ในฐานข้อมูลโครงสร้างสามมิติของ

โปรตีน  ดังน้ันการวิจัยครั้งน้ีจึงสนใจที่จะสร้างโครงสร้างโปรตีนชนิดน้ีโดยวิธีการทํานายโครงสร้าง

สามมิติของโปรตีนด้วยเครื่องมือทางชีวสารสนเทศ ในการทํานายโครงสร้างสามมิติของโปรตีน

แอลฟาโกลบินคอนสแตนท์สปริงได้ใช้โครงสร้างสามมิติของโปรตีนดีออกซีฮีโมโกลบินเอ ซึ่งมี

การรายงานไว้แล้วในฐานข้อมูลโครงสร้างโปรตีนมาเป็นแม่แบบในการทํานายเพื่อจะศึกษาการ    

ยึดจับกับโปรตีนช่วยรักษาเสถียรภาพของแอลฟาฮีโมโกลบิน ในระยะเริ่มแรกของการสร้าง          

โมเลกุลฮีโมโกลบินเอ 

วัตถุประสงค ์ ศึกษาการเปลี่ยนแปลงเชิงโครงสร้างจากผลกระทบของการกลายพันธ์ุชนิด          

คอนสแตนท์สปริงบนสายแอลฟาโกลบินเปรียบเทียบกับสายแอลฟาโกลบินปกติ ภายใต้       

สภาวะเทียบเคียงทางสรีรวิทยาของมนุษย์ และศึกษาสัมพรรคภาพการยึดจับของสายแอลฟา       

โกลบินคอนสแตนท์สปริงกับโปรตีนช่วยรักษาเสถียรภาพของแอลฟาฮีโมโกลบินในระยะเริ่มแรก

ของการสร้างโมเลกุลฮีโมโกลบินเอ 
วิธีเชิงคํานวณ  โครงสร้างสามมิติ ของโปรตีนแอลฟาโกลบินคอนสแตนท์สปริงได้ถูกทํานายด้วย

เครื่องมือทางชีวสารสนเทศเพื่อสร้างโครงสร้างทุติยภูมิและสร้างโครงสร้างสามมิติขึ้น โดยใช้ 

PSIPRED NetSurfP และ CABS-fold ตามลําดับ จากน้ันโครงสร้างสามมิติของโปรตีนทุก

โครงสร้างที่ศึกษาใช้โมดูล PMEMD ในการคํานวณเชิงพลวัติ จากโปรแกรม AMBER12 ที่ความ
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เข้มข้นโซเดียมคลอไรด์ 0.15 โมลาร์ กําหนดอุณหภูมิคงที่ 310 แคลวิน และความดันคงที่ 

1.031 ความดันบรรยากาศมาตรฐาน การวิเคราะห์การเปลี่ยนแปลงโครงสร้างใช้โมดูล PTRAJ 

CPPTRAJ และโปรแกรมที่ได้เขียนขึ้นเอง โปรแกรม VMD ได้ใช้ในการแสดงภาพโครงสร้าง    

สามมิติของโปรตีนและวิเคราะห์สมบัติบางประการของโปรตีน ส่วนการคํานวณพลังงานเสรีการ

ยึดจับสัมพัทธ์โดยใช้สคริปส์ MMPBSA จากโปรแกรม AMBER12 

ผลการศึกษา โครงสร้างสามมิติของ 31 กรดอะมิโน ที ่ได้จากการทํานายน้ันหลังจากทําการตรวจ

สอบความผิดพลาดของโครงสร้าง ทั้งการตรวจสอบความผิดพลาดของมุมทอร์ชันด้วยกราฟ 

รามาชานดราน และการเปรียบเทียบความเป็นไปได้เชิงทฤษฎีของการม้วนพับของโครงสร้าง           

สามมิติโปรตีน พบว่าสามารถยอมรับโครงสร้างสามมิติน้ีได้และนําหางคอนสแตนท์สปริงน้ี         

ต่อกับโครงสร้างสามมิติหลักของสายแอลฟาโกลบินเพื่อสร้างโครงสร้างสามมิติสายแอลฟาโกลบิน

คอนสแตนท์สปริง แบบจําลองพลวัติเชิงโมเลกุลของสายแอลฟาโกลบินคอนสแตนท์สปริง มีค่า 

RMSD ใกล้เคียงกับโครงสร้างสามมิติอ้างอิงปกติ อีกทั้งความหนาแน่นประจุเชิงผิวบริเวณเข้าจับ

สายแอลฟาโกลบินปกติมีความคล้ายกันเมื่อเปรียบเทียบกับสายแอลฟาโกลบินคอนสแตนท์สปริง 

การเปรียบเทียบระยะทางจากทุก ๆ กรดอะมิโนในโครงสร้างถึงโมเลกุลฮีมของสายแอลฟา          

โกลบินคอนสแตนท์สปริง พบมีค่าไม่แตกต่างจากสายแอลฟาโกลบินปกติ และส่วนหางคอนส

แตนท์สปริงที่ยาวออกมาน้ันบ่งชี้ ว่าไม่ส่งผลกระทบเชิงโครงสร้างต่อโครงสร้างโมโนเมอร์สามมิติ

หลักของสายแอลฟาโกลบินปกติและชนิดกลายพันธ์ุ แต่อย่างไรก็ตามโครงสร้างสามมิติของสาย

แอลฟาโกลบินสแตนท์สปริงแสดงให้เห็นถึงความผิดปกติของการจัดเรียงตัวทุติยภูมิบริเวณเข้า

จับขณะเกิดพลวัติ 10 นาโนวินาที สุดท้าย นอกจากน้ันผลจากการวิเคราะห์สัมพรรคภาพ          

การยึดจับพบว่าพลังงานเสรีการยึดจับสัมพัทธ์ของสายแอลฟาโกลบินคอนสแตนท์สปริงกับ

โปรตีนช่วยรักษาเสถียรภาพแสดงค่าแย่กว่าการยึดจับของสายแอลฟาโกลบินปกติ 

สรุป ส่วนของ 31 กรดอะมิโน ที่สร้างเพิ่มออกมาน้ันไม่ส่งผลในเชิงโครงสร้างโมโนเมอร์สามมิติ

และความหนาแน่นประจุเชิงผิวบริเวณเข้าจับของโมเลกุลโมโนเมอร์ที่กลายพันธ์ุแต่มีผลต่อการ

กีดกันการเข้าจับของโปรตีนช่วยรักษาเสถียรภาพของแอลฟาฮีโมโกลบินต่อบริเวณเข้าจับของ

สายแอลฟาโกลบินที่กลายพันธ์ุเพื่อเป็นโมเลกุลไดเมอร์ ซึ่งอาจส่งผลต่อเสถียรภาพของ

โครงสร้างโมโนเมอร์แอลฟาโกลบินคอนสแตนท์สปริงและอาจทําให้เกิดการตกตะกอนบริเวณผนัง           

เม็ดเลือดแดง ก่อให้เกิดอนุมูลอิสระทําลายเม็ดเลือดแดงได้ โดยสามารถตรวจพบจากสเมียร์

เลือด ซึ่งจากบทสรุปน้ีอาจอธิบายว่าหางคอนสแตนท์สปริงเกี่ยวข้องกับกลไกภาวะโลหิตจาง   

ธาลัสซีเมียชนิดฮีโมโกลบินเอ็ชคอนสแตนท์สปริง 

คําสําคัญ  แอลฟาโกลบินเอ็ชคอนสแตนท์สปริง แบบจําลองพลวัตเชิงโมเลกุล  

           การทํานายโครงสร้าง สัมพรรคภาพการยึดจับ
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ABSTRACT

Introduction: Haemoglobin H Constant Spring thalassaemia disease (HbH CS

disease) is a hereditary haematologic disease that has a very high prevalence among

α-type one found in Thai thalassaemia patients. The tetrameric HbCS-globin comes

from the abnormal elongated α-globin, containing 31 amino acid extension in its

structure so called a CS-tail. The mutant αCS-globin structure may cause unstable

Hb formation. Herein this thesis has focussed on early phase where mutant αCS-

globin binds to alpha haemoglobin stabilising protein (AHSP) within a hypothesis

is the CS-tail may affect main α-globin conformation and interfere for binding site

on αCS-globin while αCS·AHSP formation. However, the tetrameric HbA forma-

tion mechanism is underleased remains unclear and no report about these. In such

a case 3-D structure of mutant αCS-globin is necessary in order to insight to the

mechanism. Unfortunately, a 3-D αCS-globin structure has not yet been reported,

so in this work we attempt to construct 3-D structures αCS-globin by bioinformat-

ics tools using α-globin from deoxyHbA as a structural template and study the

protein-protein binding for mutant αCS-globin at early phase of HbA formation

Objective: To study the conformations change of elongated C-terminal αCS-globin

subunit mutation comparing to wild-type α-globin in the dynamics physiological en-

vironment, and to study the structural effects associated with the dimer formation

in case of dimeric αCS·AHSP structure.

Computational method: Mutant structures were predicted the 2-D and 3-D of

CS-tail using bioinformatics tools for PSIPRED, NetSurfP, and CABS-fold, respec-

tively. All MD simulation was carried out with PMEMD module in AMBER12

package under a condition of 0.15 M NaCl and 310 K at standard pressure 1.031

atm. The protein conformations were eventually analysed using PTRAJ, CPP-

TRAJ module, and some manually written programmes. A structure visualisation

was performed and analysed of some properties using packages on VMD programme.

The relative binding free energy was computed by the MMPBSA script in AM-

BER12.

Results: 3-D CS-tail structures had been successfully predicted using various tools.

The final chosen CS-tail structure had been justified for the 2-D and 3-D geomet-
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rical error detection by Ramachandran plot. The result consistently showed with

theory of protein folding. Later the CS-tail was docked to the C-terminus of main

αWT -globin for creating predicted αCS-globin. From monomeric structure analysis

results of trajectory analysis had the similarly RMSD to the reference structure, and

found similar surface charge distribution on binding site for wild-type to the mu-

tant. Moreover, the internal interaction distance amongst each amino acids residues

to haem molecule also demonstrated that wild-type was not different from mutant.

These are indicated that CS-tail may not strong effect to main conformation. Un-

fortunately the time evolution of secondary structure of mutant protein had a few

changed locating on binding site in the last 10 ns trajectory. For dimeric binding

mode found the relative binding free energy of mutant complex was shown poor

binding than wild-type complex.

Conclusion: The CS-tail may neither effect monomeric main-globin-structure con-

formation nor surface charge distribution on the binding site. However, CS-tail

seems to interfere with interactions on the mutant globin binding site to AHSP and

influence mutant globin binding affinity to AHSP at an early phase of Hb formation.

There is the presence of unstable momoneric αCS-globin which may be bound to

erythrocytic membrane and made the oxidative damage. Therefor, the oxidative

damage in erythrocytic membrane was detected on a blood smear. The evidences

reveal molecular effect was due to the CS-tail on anaemia occurrence via HbH CS

diseases.
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CHAPTER 1

INTRODUCTION

1.1 Background and motivation

Nowadays, biological techniques are associated in various biomedical re-

searchers. Understanding the molecular and cellular mechanisms of disease is one of

the key goals of modern biomedical researches by using computational biology and

Bioinformatics. It is critical to dissect the initiation, progression, and dissemination

of human diseases, and vital for the identification of appropriate therapeutic tar-

gets. Structural Bioinformatics become common to analyse and predict the three-

dimensional (3-D) structure of biological macromolecules such as proteins, RNA,

and DNA. Proteins are molecular devices, in nanometre to micrometre scales, where

biological function is work. Proteins are the building blocks of all cells in our bodies

and all living things. The information crucial to proceed life is controlled by the

DNA molecule, the dynamic process of life maintenance, defence, replication and

reproduction are carried out by the proteins.

Molecular functions are described the burdens performed by individual

proteins and can be broadly divided into twelve subcategories; namely cellular pro-

cesses, metabolism, DNA modification/replication, cell-cell communication, intra-

cellular signalling, protein folding/degradation, transport, multifunctional proteins,

cytoskeletal/structural, defence and immunity, and miscellaneous functions. A re-

markable fact is that all tasks they can perform are based on a common principle

that a protein is formed by 20 amino acids. That is the reason why studying pro-

teins, their composition, structure, dynamics and function, is so important. All

protein functions are dependent on its structure, which, in turn, depends on phys-

ical and chemical parameters. Multidisciplinary subjects involve studying these

molecules; physical, chemical, classical biological, mathematical and informatics

sciences have been running together in a new area known as bioinformatics to al-

low a further level of knowledge about life organisation. This thesis is focussed on

a structural biology, which is a branch of bioinformatics by using the molecular

dynamics simulation method to study the interesting protein behaviours. An avail-

able bioinformatics tool for understanding function/structure applied in this thesis

is RCSB Protein Data Bank (PDB) database of protein. As of October, 2015 there

are 104,942 are proteins from 112,968 structures in the RCSB/PDB.

Herein, this work has concentrated on computational study regarding

mechanism of molecular assembly in the early phase of alpha haemoglobin stabilis-

ing protein (AHSP) binds to alpha-globin (α-globin) subunit, in case of alpha-globin
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Constant Spring (αCS-globin) mutant. The αCS-globin is a structural abnormal Hb

which is generated 31 amino-acid-residues longer than wide-type α-globin, so called

CS-tail. A structurally abnormal Hb is one of haemoglobinopathy disorders which

causes anaemias and eventually leads to unstable αCS-globin. The later precipitates

and causes oxidative damage in developing red cells (causing dyserythropoiesis) and

in mature red cells (causing haemolysis) [1]. Precipitated unstable αCS-globin play

a role in HbA formation via imbalanced quantity of globin protein. The abnormal-

ity is a quantitative defect in the biosynthesis of HbA for thalassaemia disorders.

Recently, it has been shown that highly expressed protein called AHSP can act

as a chaperon for free α-globin and prevent their precipitation [1,2]. Free α-globins

are highly unstable in red blood cell, which formed Heinz bodies [3,4]. Heinz bodies

are a clinical laboratory feature found in G6PD (glucose-6-phosphate dehydroge-

nase) deficiency disorders or chronic liver diseases. There are detected by staining

with crystal violet. However, the mechanism of forming tetrameric Hb structure

formation including abnormal αCS-globin is still unclear [4]. To understand protein

behavior as above mentioned, must understand n atomic level model of this proteins

is necessary.

1.2 Objectives

• To study the conformations change of elongated C-terminal αCS-globin sub-

unit mutation comparing to wild-type α-globin in the dynamics physiological

environment.

• To study the structural effects associated with the dimer formation in case of

dimeric αCS·AHSP structure.
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Figure 1.1 Schematic flow chart of research methodology
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CHAPTER 2

LITERATURE REVIEWS AND THEORIES

To learn how such versatile molecular machines as proteins work, and why, this

interest is reflected by the exponential growth of solved spatial structures of proteins

deposited in the RCSB Protein Data Bank (PDB) *.

2.1 Molecular dynamics (MD) simulation

2.1.1 Equations of motion for MD simulations

Molecular dynamics is a method in which the motion of each individual

entity is computed according to Newton’s equation of motion (Equation 2.1).

It involves a large number of particles, to even several millions of particles. The

method has been widely used in many areas from the simulation of liquids and

solids to biological molecules by solving the set of Newton’s equations.

mi
d2ri(t)

dt2
= Fi(r1, r2, ..., rN) (2.1)

Here the particle of interest is atoms. There are a total N atoms in the system.

ri are the position vectors and mi is the mass of particle. Fi are the forces acting

upon the ith particles at time (t) in the system.

The forces derive from potential functions, U(r1,r2,...,rN), representing

the potential energy of the system for the specific geometric arrangement of the

particles,

−∇riU(r1, r2, ..., rN) = Fi(r1, r2, ..., rN) (2.2)

The form implies the conservation of the total energy Et = Ek + Ep, where Et, Ek,

and Ep is the total energy, instantaneous kinetic energy, and potential energy (Ep
represented to U in Equation 2.2) respectively.

2.1.2 The numerical techniques

The most time-consuming component of MD calculation is force eval-

uation. Any method requiring more than one force evaluation per time step is

inefficient. The classification of MD integrators are,

1. low-order methods, for example, leapfrog, Verlet, velocity Verlet algorithms,

etc.

*http://www.rcsb.org/pdb/
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2. predictor-corrector methods, which is high accuracy for large time-steps

Thus to obtain the dynamic behaviour of our system we must solve this second

order differential equation for every particle in the system integrating with respect

to time gives,
dri(t)

dt
=

Fi(r1, r2, ..., rN)

mi

t+ C1 (2.3)

At time t=0 the first term vanishes and the velocity is given by the constant c1, the

initial velocity ui. At time t equation written as,

dri(t)

dt
= ait+ ui (2.4)

This simple derivation produces and expression which corresponds to the truncated

Taylor series for displacement.

ri(t+ ∆t) = ri(t) +
dri(t)

dt
∆t+

1

2
· d2ri(t)

dt2
∆t2 + · · · (2.5)

therefore a small, persistent error is introduced into the calculation at every time

step through the neglect of the higher order term. Note also this is based on the

assumption that made the acceleration remains constant throughout the time step

∆t . Unless infinitesimal steps are taken, this is another error including assumption.

In practice, the time steps are used are of the order of 0.5–1 fs, with the restric-

tion that the time difference must be smaller than that for the highest frequency

vibration in the system (typically bond stretches). Using smaller time step would

produce fewer errors but would require a complementary increase in computer time

to allow the simulation of interesting phenomena. A number of algorithms have

been developed to circumvent the problems associated with finite time steps and

truncation errors [5].

The potential energy is a function of the atomic positions of all the atoms

in the system. Due to the function complexity, there is no analytical solution

to the equations of motion; they must be solved numerically. Finite difference

techniques are used to generate molecular dynamics trajectories with continuous

potential models. Numerous numerical algorithms using finite difference methods

have been developed for integrating the equations of motion and commonly used in

molecular dynamics calculations such as Verlet algorithm, Leap-frog algorithm, Ve-

locity Verlet and Beeman’s algorithm. AMBER12 applies the Leap-Frog algorithm

for the integration [6], describes in details later. All algorithms assume that the po-

sitions and dynamic properties (velocities, accelerations, etc.) can be approximated

as Taylor series expansion, as previously mentioned (Equation 2.5).
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2.1.3 Leap-Frog algorithm

The first method used is the leapfrog algorithm, a modified version of the

Verlet algorithm. The Verlet algorithm uses the positions and accelerations at the

time t and the positions at the time t+∆t where ∆t is the a Taylor expansion of

the 3rd order integration step,

ri(t+ ∆t) = 2ri(t)− ri(t−∆t) +
d2ri
dt2

(t+ ∆t2) (2.6)

The error in the atomic positions is of the order of ∆t4. The velocities are obtained

from the basic definition of differentiation,

dri(t)

dt
=

1

2
· ri(t+ ∆t)− ri(t−∆t)

∆t
(2.7)

with an error of the order of ∆t2. To obtain more accurate velocities, the leapfrog

algorithm is used, using velocities at half time step,

dri
dt

(t+
∆t

2
) =

dri
dt

(t− ∆t

2
) +

d2ri(t)

dt2
∆t (2.8)

At time t, velocities can be computed by,

dri(t)

dt
=

1

2
· dri

dt
(t+

∆t

2
) +

dri
dt

(t− ∆t

2
) (2.9)

This is advantageous when the kinetic energy is needed at time t, as in the case where

velocity rescaling must be carried out (Equation 2.10). The atomic positions are

then obtained by,

ri(t+ ∆t) = ri(t) +
dri(t)

dt
∆t (2.10)

The leapfrog algorithm is computationally less expensive than the Predictor-Corrector

approach, and requires less storage. In the case of large scale calculations, this could

be an crucial advantage. Furthermore, the energy conservation is respected, even at

large time steps. Therefore, computation time could be huge decreased. However,

when more accurate velocities and positions are needed, another algorithm should

be used for computing, as well as the Predictor-Corrector algorithm. To show in

the following the effects of this algorithm on the results of the calculations.

2.1.4 Periodic boundary condition (PBC)

A PBC enable a simulation to be achieved using a relatively small number

of particles in such a way which the particles experience forces as though they were

in a bulk solution. The box containing the system is repeated infinitely in all
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directions to give a periodic array. In term of the simulation, when an atom leaves

the basic simulation box, attention has been switched to the incoming image. This

is display in Figure 2.1, it is important to keep in mind the appointed artificial

periodicity when in consideration of properties that are influenced by long-range

correlations. The number of interacting particles is placed in a cubic cell which is

surrounded by an infinite array of identical cubic cells is called a periodic boundary

conditions (PBC). The minimum image of particle i, may be within the primitive

cell shaded in lined pattern, or one of the surrounding image cells. The minimum

image cell of particle (•) is surrounded by dashed square, where are a cubic box

with box length (L) and the surface area of a sphere of radius cutoff (rcutoff )

block=[rectangle,draw,fill=red!20,text width=3cm,text badly centered,rounded corners,minimum height=1cm]
block0=[rectangle,draw,fill=cyan!20,text width=6.9cm,text badly centered,rounded corners,minimum

height=1cm]
block1=[rectangle,draw,fill=blue!20,text width=6.9cm,text badly centered,rounded corners,minimum

height=1cm]
block2=[rectangle,draw,fill=orange!30,text width=6.9cm,text badly centered,rounded corners,minimum

height=1cm]
block3=[rectangle,draw,fill=orange!30,text width=.8cm,text badly centered,rounded corners,minimum

height=1cm]
block4=[rectangle,draw,fill=blue!20,text width=3.75cm,text badly centered,rounded corners,minimum

height=1cm]
block5=[rectangle,draw,fill=blue!20,text width=2.75cm,text badly centered,rounded corners,minimum
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[block5,right of=NPT1, node distance=3.65cm] (NPT2) 50 to 80 ns
;
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rcutoff

L

Figure 2.1 Periodic boundary conditions in 2-D

Special attention must be used to the case where the potential range is not short,

for example, dipolar systems and charged. The shape of a periodic simulation cell

must fill all space by translational operations of the central box in 3-D, a cube or

rectangular prism is the most easy-to-use and common choice but can be computa-

tionally expensive due to dispensable amounts of solvent molecules in the corners,

distant from the central macromolecules. A universal alternative that requires less

volume is the truncated octahedron. Under PBC, inter-particle distances are mea-

sured by the minimum image convention and rcutoff less than 1/2 so particles do

not interact with multiple images of neighbours.

2.1.5 Ensembles

Canonical ensemble (NVT) – in the canonical ensemble, number of par-

ticles (N), volume (V) and temperature (T) are conserved. It is also sometimes

called constant temperature molecular dynamics (CTMD). In NVT, the energy of

endothermic and exothermic processes is exchanged with a thermostat. A variety
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of thermostat methods are available to add and remove energy from the bound-

aries of an MD system in a realistic way, approximating the canonical ensemble [7].

Isothermal-Isobaric ensemble (NPT) – in the isothermal-isobaric ensemble, number

of particles (N), pressure (P) and temperature (T) are conserved. In addition to a

thermostat, a barostat is needed. It corresponds most closely to laboratory condi-

tions with a flask open to ambient temperature and pressure. In the simulation of

biological membranes, isotropic pressure control is not appropriate [7].

2.1.6 Multi-scale modelling and simulation

Multi-scale structural biology modelling combines existing and emerging

methods from diverse scientific disciplines to bridge the wide range of time and

length scales that is inherent in a number of essential phenomena and processes in

structural biology especially protein simulation. Figure 2.2 illustrates the different

scales and characteristic means of investigation by computer simulations (modified

from Praprotnik et al. 2008) [8].
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Figure 1
Illustration of the different length and time scales relevant for the simulation of soft matter.
Here we deal with the lower three levels of resolution, which all introduce features that carry
through into the macroscopic properties of the systems. We show only a selection of
representative methods employed at each scale. MC, Monte Carlo; MD, molecular dynamics;
NEMD, nonequilibrium molecular dynamics.

details allows the study of atomistically detailed processes in various windows of the
CG trajectory (6–10). With such a methodology at hand, one can use CG models to
describe chemically realistic systems over a wide range of length and time scales in a
hierarchical, sequential set of simulations at multiple resolution levels, or in a single,
multiscale simulation in which the resolution level can be changed at will, locally
or adaptively (in the course of a simulation). This linking requires the (high- and
low-) resolution models to be (pairwise) structurally consistent. Because many high-
resolution states correspond to a specific lower-resolution state, the conformational
statistics on both resolution levels should be the same if analyzed on the CG level.

In this article, we emphasize a structure-based coarse graining with the aim to
allow for structure-based scale hopping (11). On this basis we then discuss an adaptive
resolution scheme, which allows us to zoom in/out on the fly in a certain subregion of
the system, maintaining true equilibrium between a CG and a more detailed atomistic
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Figure 2.2 Diagrammatic multi-scale modelling and simulation

2.2 Haemoglobin (Hb)

Hb is found in the red blood cells of all vertebrates (excepting Family

Channichthyidae) and it is an iron-containing oxygen-transport metalloprotein re-
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sponsible for the O2 delivery of oxygen from the lungs to tissues, and the transport

of carbon dioxide from the tissues back to the lungs.

2.2.1 Genetics

The α1-globin (HBA1) and α2-globin (HBA2) genes are composed of three

exons interrupted by two short introns [9]. The two mature α-globin mRNAs only

diverge in structure in this 3’-untranslated region and therefore encode identical α-

globin proteins. Subsequent to the structural characterisation of the two α-globin

mRNAs, it was possible to devise a number of assays which could distinguish the

two mRNA species bases upon the structural divergence in the 3’ non-translated

regions. These studies demonstrated that α2-globin mRNA was present at ap-

proximately 2.6 folds higher level than α1-mRNA in the reticulocytes of normal

individual [10]. These and related reports further demonstrated the same excess of

α2-globin mRNA in bone marrow and early metal erythroid tissue indicating that

the excess in α2-globin gene expression is transcriptional in origin and which this

ratio is not subject to developmental switching. The fact that α2-globin gene has a

dominant role in α-globin synthesis is accepted in an analysis of the α-globin mRNA

and protein expression in eight individuals with distinct α-globin structural muta-

tions at either the α1- or α2-globin locus. The results established that the α2-gene

encodes approximately 2.7 fold more protein than the α1-gene, parallelling the 2.6

to 1 ratio of α2 to α1-mRNA levels [10]. The parallel between the α2 to α1 ratio of

mRNA levels and protein expression is further authenticated by demonstrating of

the two α-globin mRNAs are translated with equal efficiencies.

2.2.2 Hb assembly

The balancing component of α- and β-globins have been independently

encoded on their respective polyribosomes occurring in pre-erythrocyte and haem,

modified from mitochondria that have been inserted in each of them. Before α·β
formation, the alpha haemoglobin stabilising protein (AHSP) stabilises a nascent

α-globin, subsequently, handle a possible stability of free α-globin [11]. Current

evidences suggest that free α-globin is less stable and may form the precipitated

inclusion bodies inside the erythrocyte [2,12–15]. AHSP binds specifically to α-globin

and delivers newly α-globin to β-globin for dimeric globin formation [11,12].

2.3 Alpha-globin

2.3.1 3-D structure

Haem locates between helices H3 and H4, where H4 helix provides the

proximal H87 to axially bind the haem iron atom.
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←− haem

(A) (B)

Figure 2.3 (A) tetrameric deoxyHbA structure and (B) monomeric
α-globin structure (PDB code: 2DN2)
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Figure 2.4 Secondary structure of α-globin (PDB code: 2DN2
chain C)

2.4 Alpha haemoglobin stabilising protein (AHSP)

AHSP has a function as an erythroid-specific molecular chaperone pro-

tein [2,16,17] to prevent the harmful aggregation of α-globin during normal erythroid

cell development. Specifically protects free α-globin from precipitation. AHSP bind-

ing inhibits subunit reactions with oxidants such as hydrogen peroxide (H2O2) [18].

It is predicted to modulate pathological states of α-globin excess such as in thalas-

saemia. The AHSP protein binds to monomeric α-globin until it has been trans-

ferred to β-globin to form a heterodimer, which in turn binds to another heterodimer

to form the stable tetrameric HbA.
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2.4.1 Genetics and synthesis

ASHP is discovered by studying GATA-1 gene [19] which is an essential

erythroid transcription factor. The erythroid phenotype are known to be regulated

by GATA-1. AHSP is a novel gene that is strongly induced by GATA-1 [19]. AHSP

encodes a small (102 amino acids), acidic protein with no recognisable signature

motifs.

2.4.2 ASHP function in Hb synthesis

AHSP protects free α-globin from oxidative damage and participation in

harmful redox reactions in vivo, it has also been shown to accelerate the rate of

O2 autoxidation to the ferric (MetHbA) state [20]. MetHbA, free met-α-globins, and

free met-β-globins are unstable due to accelerated rates of haem loss, denaturation,

aggregation, and precipitation [16]. Thus, it is puzzling why a molecular chaperone

for α-globins would accelerate autoxidation. The AHSP stabilises a haemichrome

folding intermediate and prevents its incorporation into HbA until the bound α-

globins can be reduced to the ferrous form (see Figure 2.5).

Ch16

haem

α

Free-

Excess free-α
ROS

Precipitation
Heinz bodies

α AHSP

AHSP

Ch11

haem

Free-

β

α

β α

β
+

α

βα

β

HbA

Excess free-β
caused by (↓↓ α)

H inclusion
bodies (4 of β)

Figure 2.5 Molecular chaperones and Hb synthesis

2.5 Haemoglobin Constant Spring (HbCS)

HbCS is the most common non-deletional α-thalassaemic mutation (new

sense mutation) and is an important cause of HbH-like disease in Southeast Asia.

HbCS is caused by a mutation in the stop codon of the α2 -globin gene that results
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in poor output (1% of normal) of an α-globin with an additional 31 amino acids

extension. HbH CS disease has a very high prevalence rate amongst α-thal group

found in Thai thalassaemia patients, according to the report of Siriraj Hospital,

Thailand [21]. Generally, clinical features of the disease can be growth retardation,

jaundice, anaemia, gallstones, hepatomegaly, and splenomegaly. In addition the

hypochromic condition and targeted cell of blood smear are commonly observed via

laboratory investigation along with over 50% of HbH (abnormal Hb in a form of four-

β; β4) [10,22] inclusion bodies blood smear [10]. Severe anaemia is observed from when

Hb level is about 9.5–11.0 g/dL in male and 7.5–9.0 g/dL in female [22,23]. Although,

HbH CS disease comes from just only two alpha genes deletion, compared to HbH

thalassaemia which has three alpha genes deletion, clinical manifestations of HbH

CS disease is clearly worse than HbH thalassaemia [23].

CS-tail

Q142

E172

(A) (B)

Figure 2.6 (A) predicted αCS-globin structure at 80 ns of MD tra-
jectory time, (B) predicted CS-tail structure (residue Q142 to E172)
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CHAPTER 3

COMPUTATIONAL METHODOLOGY

This chapter lists materials and computational methodologies. Materials are in-

cluding PDB file and amino acid sequence, web-based bioinformatics tools and

resources, MD simulation, and visualising softwares.

3.1 Materials

3.1.1 Hardwares

• The Eclipse Cluster of the National Centre for Genetic Engineering and

Biotechnology (BIOTEC) in the National Science and Technology Develop-

ment Agency (NSTDA) located at 113 Thailand Science Park, Pathum Thani

12120, Thailand

• Personal computers, DellTM OptiPlexTM 7010, Rock Cluster on CentOS R© 7,

Integrated Intel R© HD Graphics 4000, Intel R© CoreTM i7 (3rd Gen) 3770/3.4

GHz, DDR3 SDRAM - non-ECC 8 GB/1600 MHz of RAM located at De-

partment of Biomedical Sciences, Faculty of Medicine, Prince of Songkla Uni-

versity, Hat Yai, Songkhla 90112, Thailand

3.1.2 3-D structures

The PDB files consist of atomic coordinates of deoxyHbA and AHSP use

as structural templates of the simulations containing the as structural templates of

the amino acid sequence of CS-tail is artificially created. Two crystal structures

and sequence are selected for the study presented in this thesis:

• A 1.25 Å resolution of human HbA in the deoxy form (PDB code 2DN2) [24].

• A 2.40 Å resolution of human oxidised α-globin bounded to AHSP (PDB code

1Z8U) [18].

• A CS-tail, 31-amino-acid-residues elongated in the αCS-globin (Figure 3.1) [25].

3.1.3 Bioinformatics tools

• RCSB PDB – a database that provides an overview of some properties ob-

tained from the analysis of 3-D coordinates of the crystal structures deposited

in the PDB [26].
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1 VLSPADKTNV KAAWGKVGAH AGEYGAEALE RMFLSFPTTK

41 TYFPHFDLSH GSAQVKGHGK KVADALTNAV AHVDDMPNAL

81 SALSDLHAHK LRVDPVNFKL LSHCLLVTLA AHLPAEFTPA

121 VHASLDKFLA SVSTVLTSKY RQAGASVAVP PARWASQRAL

161 LPSLHRPFLV FE

Figure 3.1 Amino acid sequences of αCS-globin. The CS-tail
residues are represented from residue Q142 to E172 (underlined)

• PROPKA – a prediction method for prediction and rationalisation of pKa

values. The server PDB2PQR v2.0.0 is used to predict pKa values of the

ionisable residues [27].

• PSIPRED – a secondary structure prediction web-server bases on amino acid

sequence. [28]

• NetSurfP – a web-server predicts the secondary structure and surface acces-

sibility of amino acids from determined sequence [29].

• CABS-fold – a web-server provides tools for protein tertiary structure pre-

diction from sequence only (de novo modelling) and also using alternative

templates (consensus modelling) [30].

• RosettaBackrub – a web-server is based on ab initio modelling technique. This

study used a Rosetta v3.1 to generate a mutagenesis [31].

• ClusPro – a Critical Assessment of Predicted Interactions which is the protein-

protein Docking web-server that rapidly docks, filters, and ranks putative

protein complexes within a short amount of time [32].

3.1.4 Softwares

• VMD – a Visual Molecular Dynamics, a molecular graphics software version

1.9.2 [33]. The programme is used for the atomistic modelling, the analysis of

MD simulations, and for rendering high resolution graphical images.

• UCSF Chimera – a programme for interactive visualisation and analysis of

molecular structures and related data [34].

• AMBER12 – a molecular simulation programme [6]. An AMBER10 force

field [35] with customised topology and parameter files is used for building

and initial energy minimisation of the atomistic models.

• LigPlot+ – a programme generates schematic 2-D representations of protein-

ligand and protein-protein complexes from standard Protein Data Bank file

input [36].



15

3.2 Prediction of α-globin Constant Spring monomer (αCS)

In the case of wide-type α-globin (αHbA), representing αWT , chain C of

deoxy tetrameric Hb structure is adopted (PDB code 2DN2) [24]. An additional CS-

tail structure is constructed as showed in Figure 3.1. CS-tail, secondary structure

(helix, sheet, and turn) is predicted using PSIPRED web-server * [28] and NetSurfP

v1.1 † [29] and a 3-D structure is independently predicted using CABS-fold ‡ [30] ac-

cording to the amino acid sequence. All above-mentioned data are then analysed

and the tertiary structure of CS-tail is finally refined and obtained. The 3-D struc-

ture is determined using PDB2PQR v1.9.0 web-server § [27] to assign protonation

states at pH 7.4 within a selection of AMBER force field to compute. H50, H72,

and H103 of α-globin subunit are set as doubly protonated [37,38], the proximal his-

tidine, H87 of α-globin subunit is set as singly protonated at the delta position

(δ1-N) [37,38]. The position of the nitrogen atom is demonstrated in Figure 3.3.

3.3 Structural validation

3.3.1 Ramachandran plot

A Ramachandran plot was developed in 1963 by Ramachandran et.al.

This is a structural validation method to visualise a backbone dihedral angles and

use as geometrical error detection tool of amino acid residues in protein structure.

A structural validation is carried out via theoretical values of dihedral angles of an

amino acid residue in a protein and shown the empirical distribution of datapoint

observed in a single structure. In the thesis, Ramachandran plot is constructed

using RAMPAGE web-server¶ [39].

3.4 Preparation of αCS·AHSP, and αWT ·AHSP dimer

The monomeric structure of AHSP (PDB code 1Z8U chain C) [18] is adopted

from chain C. A mutagenesis is generated by RosettaBackrub web-server, in which

change AHSP (P30A) mutant into wide-type AHSP (P30). The wide-type AHSP

is set to AHSP monomer and submitted to ClusPro v2.0 web-server with αCS for

dimeric prediction. The ten best structures based on scoring selection are chosen

and then clustered according to RMSD considerations. Each top five cluster is

characterised by Ramachandran plot and the best structure is chosen to a starting

wide-type dimeric structure for MD simulation. A dimeric αCS·AHSP structure is

*http://bioinf.cs.ucl.ac.uk/psipred/
†http://www.cbs.dtu.dk/services/NetSurfP/
‡http://biocomp.chem.uw.edu.pl/CABSfold/
§http://nbcr-222.ucsd.edu/pdb2pqr 2.0.0/
¶http://mordred.bioc.cam.ac.uk/ rapper/rampage.php
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Figure 3.2 Schematic flow chart of αCS-globin prediction
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haem

proximal

H87

⊕ε1

Nε2

Nδ2
NH2

OH

O

Figure 3.3 Chemical structure of histidine

constructed identical to αWT ·AHSP dimer, denoting that the αCS monomer is taken

from the Step 3.2. For the αWT ·AHSP dimer prediction uses the same docking

method as the preparation of αCS·AHSP.

• Haem molecular parameter – the parameters archived here are for use with
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the AMBER force field modifications for all-atom haem parameters around

the iron atom are appropriate for a six-coordinate haemoglobin/myoglobin.

This force field parameters were adapted from [40] and finally N-terminus of

H87 and Fe2+ atom in centre of haem is manually connected.

3.5 Simulation protocol

All structures, the hydrogen atoms are added using LEaP programme

of AMBER12 package [6]. Then, the energy minimisation is presented 3,000 cy-

cles using SANDER programme of AMBER12 package to remove bad interatomic

contacts. MD simulation of all proteins, can be summarised as following:

• αWT monomer

• αCS monomer

• AHSP monomer

• αWT ·AHSP dimer

• αCS·AHSP dimer.

The MD simulation starts with the knowledge of the potential energy of the sys-

tem with respect to its position coordinates. There are multiple steps involved in

simulation as summarised in Figure 3.4. Initial structures are prepared by LEaP

programme of AMBER12 package to create topology and parameter files for each

model. The AMBER10 force field [35] is adopted to analyse the proteins, haem

parameters are taken from the study by Giammona [40].

All protonation states are set at pH 7.4 (see in Step 3.2). Each system is

neutralised by either Cl− or Na+ and NaCl is added, corresponding to a physiologi-

cal concentration of 0.15 M, equivalent to osmotic pressure in erythrocyte is shown

on Table 3.1. The energy minimisation sets for 3,000 cycles of in vacuo using

SANDER programme [41]. The systems are equilibrated in the canonical ensemble

(NVT condition), the temperature is heated rescaling to 310 K and set the condition

to dynamics. Van der Waals interactions are modelled using 6-12 Lennard-Jones

potentials [42] and the electrostatic interactions to be performed using particle-mesh

Ewald (PME) method [43], with cutoff is 12 Å. The structure is solvated in a cubic

water box filled with TIP3P model [44] under the periodic boundary conditions at

constant volume. Protein structures are equilibrated for 600 ps and harmonically

restrained with force constants from 250, 150, 100, 50, 20, and 10 kcal·mol−1·Å−2

every 100 ps, respectively. After NVT, the system is switched to to the isothermal-

isobaric ensemble (NPT condition) at 310 K, the system is maintained constant

pressure at 1.013 atm. Temperature and pressure are controlled using Berendsen
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Table 3.1 Number of water molecules and counter ions used are
applied for each protein simulated

System Total TIP3P Box (Å3) Na+ Cl−

αWT 28,270 8,667 73×68×69 24 27
αCS 35,444 10,893 93×69×69 40 35
AHSP 22,590 7,682 79×63×57 25 21
αWT ·AHSP 49,088 15,097 99×79×82 43 42
αCS·AHSP 45,150 13,625 82×73×76 38 39

weak-coupling algorithm [45], time step is set to 2 fs. The NPT simulation is per-

formed for 80 ns of simulation time and the last 25 ns (2,500 snapshots), is taken

for a configuration average.

block=[rectangle,draw,fill=red!20,text width=3cm,text badly centered,rounded corners,minimum height=1cm]
block0=[rectangle,draw,fill=cyan!20,text width=6.9cm,text badly centered,rounded corners,minimum

height=1cm]
block1=[rectangle,draw,fill=blue!20,text width=6.9cm,text badly centered,rounded corners,minimum

height=1cm]
block2=[rectangle,draw,fill=orange!30,text width=6.9cm,text badly centered,rounded corners,minimum

height=1cm]
block3=[rectangle,draw,fill=orange!30,text width=.8cm,text badly centered,rounded corners,minimum

height=1cm]
block4=[rectangle,draw,fill=blue!20,text width=3.75cm,text badly centered,rounded corners,minimum

height=1cm]
block5=[rectangle,draw,fill=blue!20,text width=2.75cm,text badly centered,rounded corners,minimum

height=1cm]
line0=[draw,-latex,line width=1pt] line1=[dashed,draw,-latex,line width=1pt] line2=[dashed,draw,line

width=1pt]
figure[H] tikzpicture[node distance=1.2cm,auto] [block] (VAC) Energy
; [block0,right of=VAC, node distance=6cm] (VAC1) 3000 steps in vacuo; [block,below of=VAC, node

distance=1.3cm] (NVT) Heating the system
; [block2,right of=NVT, node distance=6cm] (NVT1) Harmonic potential within force constants (k) in
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k
250

k
150

k
100

k
50

k
20

k
10

100
ps

100
ps

100
ps

100
ps

100
ps

100
ps

600 ps of NVT ensemble
at 310 K, time step 1 fs, TIP3P water

8,000 ps of NPT ensemble
at 310 K, time step 2 fs, TIP3P water

Figure 3.4 Schematic brief of MD simulation protocol

• Energy minimisation – commonly referred to as geometry optimisation which

is usually performed to determine a stable conformation and remove the bad

interatomic contact in the protein structure. The stable structure indicates

the lowest potential energy of the system to the lowest possible point.

• Heating system and equilibration – the simulation is allowed to continue until
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desired temperature is achieved. Force constraints on different subdomains of

the simulation system are gradually removed as structural tensions dissipated

by heating. In accurate solvent simulation, protein positions are fixed and

solvents (water and ions) move accordingly. Once the solvent is equilibrated,

the constraints on the protein can be removed and the whole system (protein

in solvent) can derive in time.

• Production phase – this is a last step of the simulation methodology to remove

constraints on protein and carry on a simulation in the isothermal-isobaric en-

semble (NPT). The time scale can be varied from several hundred picoseconds

to microseconds.

3.6 Analysis of MD simulations

All the proteins structure are visualised by VMD v1.9.2 [33]. The trajec-

tories are analysed using AMBER12 package. The Root-Mean-square Fluctuation

(RMSF) and intramolecular distance pattern are computed using AMBER12 pack-

age. RMSD Trajectory Tools and VMD MultiSeq plugin on VMD programme

is used to fit and align structures for computing Root-Mean-Square Deviation

(RMSD). Surface charge distribution is analysed by a Coulombic Surface Colouring

tool with UCSF Chimera programme. The molecular surfaces are coloured by the

potential values (10 to -10 kcal·mol−1·e−1, gradient shading in blue to red colour).

• RMSD – a deviation of the structure with respect to a particular conformation

is measured by RMSD. It indicates how structurally similar. The smaller

RMSD value, the more convergent the structures may be; on the other hand,

the structure is more similar to the reference structure. Acceptable simulation

wild-type structures typically have an average RMSD of 1 Å to 3 Å, whereas

an RMSD of 10 Å would be considered a poor fit for a small protein [46]. It is

calculated for all trajectory frames, the RMSD for trajectory frame x is:

RMSDx =

√√√√ 1

N

N∑
i=1

(ri(tx)− rref (t0))2 (3.1)

where N is the number of residues in the molecule; rref is the reference struc-

ture position, starting structure in Step 3.2 is at time t = 0, ri is the position

of the interested residue in trajectory frame x after superimposing on the ref-

erence frame, trajectory frame x is recorded at time tx. The procedure is

repeated for every trajectory frame in the simulation trajectory.

• RMSF – useful for characterising local changes along the protein chain and

showing flexible regions of the protein flexibility. To interpret the flexibility
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of structure, a large RMSF values are associated with increases in flexibility

compares to the WT as the reference structure. The RMSF per residue i of

Cα atom is computed as:

RMSF i =

√√√√ 1

T

T∑
t=1

〈(ri(t)− rref )2〉 (3.2)

Where T is the trajectory time. The rref is the reference position of residue

i and ri is the position of residue iand the 〈· · · 〉 indicate that the average of

the square distance is taken over the selection of atoms in the residue.

• Intramolecular distance pattern – a distance measurement between the centre-

of-mass of haem residue and each interested residue is calculated with:

Davg =
1

T

N∑
i=1

|rcomHEM − rcomi | (3.3)

Where rcomHEM refers to centre-of-mass of haem residue and rcomi is the position

of centre-of-mass residue i.

• Surface charge distribution – a Coulombic Surface Colouring shades molecular

surfaces by the potential values and can handle structures with or without

explicit hydrogens. It can also generate a grid of potential values according

to Coulomb’s law in the scalar form:

|F | = ke
|qi|
r2

(3.4)

Where F is the potential which varies in space, q are the atomic partial i

charges, the scalar r is the distance between the charges and ke is Coulomb’s

constant (ke = (4πε0)−1 is about 8.99×109 N· m2·C−2) [47].

3.7 Calculating binding energies

The MM/GBSA [48], MM/PBSA [49], and binding entropy calculation are

methods used to calculate binding energy in this thesis. Both MM/GBSA and

MM/PBSA have been used to estimate protein-protein binding affinities in wild-

type and mutant complex systems. The binding affinities is used implicit (contin-

uum) solvation and molecular mechanics (forcefields) solvation models [50].

The energy is relative value and not able to directly compare with the

experiments. Mean gold is to compare ones between wild-type and mutant cases

instead. In the MM/GB(PB)SA method, the free energy of the protein-protein

binding, ∆Gbinding, is obtained from the difference between the free energies of
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protein1·protein2 complex (〈Gcomplex〉) and the unbound receptor, protein1 (〈Greceptor〉)
and ligand, protein2 (〈Gligand〉) as follows:

∆Gbinding = 〈Gcomplex〉 − (〈Greceptor〉+ 〈Gligand〉) (3.5)

Each free energy term in Equation 3.5 is calculated with the absolute free energy

of the species (protein1, protein2, and their complex) in gaseous phase (Egas) as

well as in vacuo of MD system. The free energy of each term in Equation 3.5 is

estimated as in Equation 3.6

G = 〈Egas〉+ 〈Esolvation〉 − T 〈S〉 (3.6)

where 〈Egas〉 is the molecular mechanics energy of the molecule expressed as the

sum of the internal energy that are bonds, angles and torsions (〈Einternal〉), Van der

Waals term (〈Evdw〉), and electrostatic energy (〈Eelectrostatic〉):

〈Egas〉 = 〈Einternal〉+ 〈Evdw〉+ 〈Eelectrostatic〉 (3.7)

The term 〈Esolvation〉 free energy is divided into a polar part of 〈EGB〉 or 〈EPB〉 and

〈Esurface〉 is a surface energy (a nonpolar solvation) follow:

〈Esolvation〉 = 〈EGB/PB〉+ 〈Esurface〉 (3.8)

After simplify and put energetic terms for protein1 (monomeric αWT , αCS-globin),

protein2 (monomeric AHSP structure) and the complex Equation 3.5 can be re-

organisated and expressed as:

∆Gbinding = 〈∆Egas〉+ 〈∆Esolvation〉 (3.9)

The calculation the average binding entropy (〈∆S〉) using Normal Mode

Analysis (normal mode) is performed in a vacuum, where the potential energy of

a protein is a complex function. In Equation 3.6, the T〈S〉 term represents the

entropy loss of the flexibility upon binding in system. The entropies are calculated

by a normal mode analysis of harmonic frequencies from minimised snapshots of

MD simulations. This method also uses the MMPBSA script in AMBER12 for

computation. The most common method to estimate the vibrational entropy in the

MM/GBSA method is to use frequencies from a normal mode analysis performed

at the molecular mechanics level.

3.8 Evolution of secondary structure analysis

To animate the secondary structure is defined by Timeline plugin in VMD

v1.9.2 programme. The graphical display of residues and time-steps which are



22

scrolled and zoomed as necessary to see results for secondary structure assignment

trajectories. Its result depends on colour code for magenta denotes α-helix, red

denotes π-helix, cyan denotes turn, blue denotes 310-helix and white denotes coil.

3.9 Data analysis

The descriptive statistics are used to summarise and describe data. The

t-Test for two independent samples is used for data competition between wild-type

and mutant structure. True difference is considered statistically significant at the

95% confidence interval (p ≥ 0.05) performs in R programme [51].
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CHAPTER 4

RESULTS AND DISCUSSION

4.1 3-D structure of CS-tail

The 3-D structure prediction is suggested based on the results of different

methods [52,53]. There are three methods for protein structure prediction namely ho-

mology modelling, fold recognition or threading, and ab initio or de novo method.

The 3-D structure of CS-tail is predicted using CABS-fold server, depending on

unique comparative modelling with Monte Carlo simulation for 3-D protein struc-

ture [30]. This method is the most efficient bioinformatics tool for de novo protein

structure prediction in year 2013 [30]. These ten possible structures are validated

the geometrical error detection of dihedral angle of Ramachandran plot as showing

in Table 4.1.

Table 4.1 Ramachandran plot values of predicted models using
RAMPAGE

Structure Favoured Allowed Outlier

Model01 55 (96.5%) 2 (3.5%) -
Model02 54 (94.7%) 3 (5.3%) -
Model03 52 (91.2%) 3 (5.3%) 2 (3.5%)
Model04 57 (100.0%) - -
Model05 50 (87.7%) 2 (3.5%) 5 (8.8%)
Model06 51 (89.5%) 3 (5.3%) 3 (5.3%)
Model07 53 (93.0%) 2 (3.5%) 2 (3.5%)
Model08 50 (87.7%) 4 (7.0%) 3 (5.3%)
Model09 49 (86.0%) 4 (7.0%) 4 (7.0%)
Model10 50 (87.7%) 6 (10.5%) 1 (1.8%)

To choose the best pre-structure of CS-tail, the secondary structure is

assigned to amino acid sequence (P114 to E172) of CS-tail using the computational

tools servers, which are NetSurfP v1.1 and PSIPRED web-server resulting in Table

4.2 and Figure 4.1, respectively. The predicted secondary structure result of

NetSurfP v1.1 indicates that from residue P114 to T118, A143 to A145, V149 to

W154, and L161 to E172 are coil, residue P119 to R141, and A155 to L160 are

α-helix and residue Q142 to A143, and S146 to A148 are β-strand. The method

of protein structure prediction is the primary and secondary neural network [29] in

term of homology modelling method. The predicted secondary structure of CS-tail
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from PSIPRED web-server shows the similarity prediction to NetSurfP v1.1, residue

P114 to T118, A143 to P151, and L161 to E172 are coil and residue P119 to Q142,

and A152 to L160 are α-helix. Both predicted results have been compared to select

the most possible 3-D structural model of CABS-fold server.

Table 4.2 Secondary structure predictions by NetSurfP v1.1

Amino acid Residue no.
Probability

α-helix β-strand Coil

P 114 0.003 0.003 0.994
A 115 0.058 0.017 0.925
E 116 0.115 0.016 0.868
F 117 0.257 0.016 0.727
T 118 0.339 0.016 0.645
P 119 0.717 0.014 0.269
A 120 0.802 0.014 0.185
V 121 0.802 0.014 0.185
H 122 0.831 0.044 0.125
A 123 0.802 0.014 0.185
S 124 0.802 0.014 0.185
L 125 0.879 0.010 0.111
D 126 0.923 0.002 0.076
K 127 0.938 0.007 0.055
F 128 0.938 0.007 0.055
L 129 0.879 0.010 0.111
A 130 0.879 0.010 0.111
S 131 0.831 0.044 0.125
V 132 0.831 0.044 0.125
S 133 0.751 0.050 0.199
T 134 0.779 0.100 0.120
V 135 0.725 0.163 0.112
L 136 0.649 0.163 0.188
T 137 0.649 0.163 0.188
S 138 0.538 0.173 0.289
K 139 0.538 0.173 0.289
Y 140 0.428 0.171 0.402
R 141 0.307 0.165 0.527
Q 142 0.113 0.087 0.800
A 143 0.052 0.084 0.864
G 144 0.018 0.088 0.893
A 145 0.021 0.279 0.699
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Table 4.2 Secondary structure predictions by NetSurfP v1.1
(cont.)

Amino acid Residue no.
Probability

α-helix β-strand Coil

S 146 0.022 0.552 0.426
V 147 0.021 0.756 0.223
A 148 0.023 0.655 0.322
V 149 0.021 0.451 0.528
P 150 0.019 0.141 0.840
P 151 0.113 0.043 0.844
A 152 0.268 0.043 0.689
R 153 0.455 0.046 0.498
W 154 0.455 0.046 0.498
A 155 0.561 0.047 0.393
S 156 0.561 0.047 0.393
Q 157 0.660 0.049 0.291
R 158 0.561 0.047 0.393
A 159 0.561 0.047 0.393
L 160 0.455 0.046 0.498
L 161 0.339 0.016 0.645
P 162 0.339 0.016 0.645
S 163 0.455 0.046 0.498
L 164 0.354 0.048 0.598
H 165 0.268 0.043 0.689
R 166 0.115 0.016 0.868
P 167 0.053 0.043 0.903
F 168 0.066 0.296 0.638
L 169 0.021 0.451 0.528
V 170 0.021 0.451 0.528
F 171 0.022 0.359 0.619
E 172 0.003 0.003 0.994
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Figure 4.1 Schematic representation of secondary structure predic-
tions using PSIPRED web-server of CS-tail

114------.---------.---------.---------.---------.------172 –
Predicted seq. PAEFTPAVHASLDKFLASVSTVLTSKYRQAGASVAVPPARWASQRALLPSLHRPFLVFE

Validated seq. CCCCCHHHHHHHHHHHHHHHHHHHCCCC-------------------------------

NetSurfP CCCCCHHHHHHHHHHHHHHHHHHHHHHHBBCCBBBCCCCCCHHHHHHCCCCCCCCCCCC

PSIPRED CCCCCHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHCCCCCCCCCCCC

Model01 CCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCHHHHHHHHHHHHHHHHHHHHHC

Model02 CCHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCHHHHHHHHHHHHCCCCCCCC

Model03 CCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCHHHHHHHHHHHHCCCCCCCC

Model04 CCHHHHHHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCHHHHHHHHHHHHHHHHHHHHHC

Model05 CCCCHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCHHHHHHHHHHHHCCCCCCCCCCC

Model06 CCCCCCCCHHHHHHHHHHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHHHHCCCCCCCC

Model07 CCHHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCHHHHHHHHHHCCCCCCCCCCCC

Model08 CCCCCCCHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCHHHHHHCCCCCCCCCCCCCCC

Model09 CCCCHHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCHHHHHHHHHHHCCCCCCCCCCC

Model10 CCCCCCCCHHHHHHHHHHHHHHHHHHHHHHCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Figure 4.2 Secondary structure prediction of CS-tail by CASB-fold
(Model1 to Model10)
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A Model07 is chosen to be the predicted-CS-tail structure, which is visu-

alised in Figure 4.3A. The predicted-CS-tail structure is in vacuo minimised with

3,000 steps (Figure 4.3B) then the residue P114 to L136 of pre-CS-tail is removed.

The backbone residue T137 to R141 of αWT -globin chain C (PDB code 2DN2) is

aligned with residue P114 to L136 of pre-CS-tail, RMSD 0.28 Å by using VMD

v1.9.2 (Figure 4.4). The alignment structure, residue T137 to R141 are also re-

moved from αWT -globin chain C. A residue T137 of pre-CS-tail is manually attached

to residue L136 of αWT -globin chain C, which becomes the pre-αCS-globin by using

AMBER12. The pre-αCS-globin structure is in vacuo minimised with 3,000 steps

by fixing up the positions of the atoms in order to remove any bad contacts where

is manually bonded the CS-tail then the structure becomes the starting structure

as predicted-αCS-globin.
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(Model07); (B) pre-CS-tail structure; (C) the Ramachandran plot of
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T S K Y R
137 141

(A) (B)

Figure 4.4 Structural alignment of residue T137 to R141 between
αWT -globin and pre-CS-tail, RMSD is 0.28 Å

4.2 Mutagenesis of AHSP structure

The alpha haemoglobin stabilising protein (AHSP) structure is taken from

PDB code 1Z8U chain C. The structure is P30A mutation, so the structure is

changed back to wild-type using point mutagenesis [54] of RosettaBackrub web-serv

The predicted wild-type structure is in vacuo minimised with 3,000 steps and has

RMSD 0.36 Å comparing to mutant and uses as the starting-AHSP structure in

MD simulation.

P30←−
A30
−→

Figure 4.5 Structural alignment of wild-type AHSP (green) and
AHSP P30A (grey), RMSD 0.36 Å

4.3 Trajectory analysis of MD simulations

For the MD simulations, the trajectories of the αWT -globin, αCS-globin,

AHSP, αWT ·AHSP, and αCS·AHSP in the explicit solvent are simulated. The back-

bone RMSD values for all structures during the production phase relative to the
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starting structures are plotted in Figure 4.6. The RMSD values which are in-

creased because the temperature of system is increased and the structure requires

to stable conformation. The equilibrium phase is selected after 5,500 ps and 4,500

ps to the end of MD trajectory time for αWT -globin, αCS-globin, αWT ·AHSP, and

αCS·AHSP and AHSP, respectively. In the equilibrium phase, RMSD values change

in a narrow range and there are nearly stable. Structures in the equilibrium phase

are the representative sample for MD trajectory analysis.

Table 4.3 Backbone RMSD values of structures

Structure
RMSD ± SD (Å)

All simulation time Equilibrium phase

αWT -globin 1.44 ± 0.47 1.04 ± 0.11
αCS-globin (V1-E172) 6.04 ± 0.67 6.27 ± 0.21
αCS-globin (V1-R141) 1.16 ± 0.14 1.22 ± 0.17
AHSP 3.62 ± 0.94 4.46 ± 0.32
αWT ·AHSP 3.02 ± 0.48 3.46 ± 0.36
αCS·AHSP 2.11 ± 0.35 1.82 ± 0.15

The MD simulations give stable equilibrium structures with backbone

RMSD of 1.00 Å, 6.27 Å, 1.22 Å, 4.46 Å, 3.46 Å, and 1.82 Å for αWT -globin,

αCS-globin residue V1 to E172 (whole mutant structure), αCS-globin residue V1

to R141 (main mutant structure), AHSP, αWT ·AHSP, and αCS·AHSP, respectively

(MD simulation snapshot show in Figure 4.7 to 4.11).

4.3.1 MD simulation of monomeric αCS-globin

The conformation of main αCS-globin (residue V1 to R141) is not differ-

ent from wild-type but the high RMSD value of whole αCS-globin (residue V1 to

E172) results from the flexibility of CS-tail movement. To support conformational

unchanged on main αCS-globin by the distances where they measure from centre

of mass of each residue to haem molecule is the same pattern as wild-type (Figure

4.14). However, the result in Figure 4.15 shows that the secondary structure

of monomeric αCS-globin during 62 ns to the end of simulation time has changed.

These secondary structural change of monomeric αCS has influenced residue T108

to P119, especially, residue L113 to E116 and residue F117 to P119 change from

turn to α-helix and turn to coil, respectively starting at ≈67 ns to the end of

simulation time. The positions from the secondary structural change are included

hotspots binding site to AHSP molecule which are F117, and P119 [55] which locate

on flexible region, see Figure 4.12 that may interfere the binding to AHSP.
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Figure 4.6 MD trajectories for: (A) the RMSD plots of αWT ,
αCS residue V1 to E172, αCS residue V1 to R141, αWT ·AHSP, and
αCS·AHSP; (B) the RMSD plots of AHSP
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Figure 4.7 αWT -globin snapshots from MD simulation
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Figure 4.8 αCS-globin snapshots from MD simulation
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Figure 4.9 αWT ·AHSP dimer snapshots from MD simulation
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Figure 4.10 αCS·AHSP dimer snapshots from MD simulation
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Figure 4.11 AHSP dimer snapshots from MD simulation

180◦

V1-L2

P77-A79

A19-H20

G51

A110-P119

(A) (B)

Figure 4.12 RMSF per residue number of αCS structure: green
and magenta colour are represented by RMSF ≥ 1.00 Å and RMSF
≥ 1.50 Å , respectively
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Figure 4.13 MD trajectories of RMSF values of atomic positions
computed for the backbone atoms are shown as a function of residue
number
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Figure 4.14 MD trajectories for: the distance between Cα atoms
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Figure 4.15 Time evolution of secondary structure of: (A) αWT -
globin monomer and (B) αCS-globin monomer
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4.4 Surface charge distribution of monomeric αCS-globin

Surface charge distribution is computed by the Coulombic Surface Colour-

ing tool on the UCSF Chimera programme. The colours of molecular surfaces rep-

resent the electrostatic surface potential values. These results are shown hardly any

difference between mutant and wild-type structure where the binding site of AHSP

molecule is located. Whereas most of binding surface that K40, K99, H100, and

K127 contribute positively charged appearing in both mutant and wild-type.
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Figure 4.16 Electrostatic surface potential of monomeric αWT -
globin structure
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Figure 4.17 Electrostatic surface potential of monomeric αCS-
globin structure
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4.5 Dimeric structure prediction of αCS·AHSP and αWT ·AHSP

The docked dimeric conformation is computed using ClusPro protein-

protein docking tool. The binding residues on αCS-globin to AHSP molecule are

depended on the experimental analysis of residues interface interaction by Yu et al.

(2009) [55] which are residue K99, H103, F117, P119, A123, and D126. The binding

residues on AHSP molecule where interface with αWT are predicted by LigPlot+

programme has display in Figure 4.19. There are obtainable H-bonds between

residue H103 of αWT and D43 of AHSP, residue A123 of αWT and Q24 of AHSP,

and residue D126 of αWT and Q25 of AHSP, others are hydrophobic interaction.

Interestingly, result is displayed aromatic interaction between residue F117 of αWT

and F47 of AHSP.
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Figure 4.19 Diagrammatic of protein-protein interactions for ref-
erence αWT ·AHSP dimer (PDB code 1Z8U, chain C and D) analysing
by LigPlot+

The monomeric structure of α-globin mutant and AHSP are taken form

Step 4.1 and 4.2, respectively and the monomeric structure of wild-type α-globin is

adopted from chain C, PDB code 2DN2 and AHSP is also taken form Step 4.2. For

the best αWT ·AHSP, conformation, there are obtainable H-bonds between residue

T38 of αWT and D36 of AHSP, residue K99 of αWT and A30 of AHSP, residue H103

of αWT and D42 of AHSP, and residue D126 of αWT and Q25 of AHSP, others

are hydrophobic interaction. Interestingly, result is displayed aromatic-aromatic

interaction between residue F117 of αWT and F47 of AHSP. The RMSD value is

3.46 ± 0.36 Å comparing to wild-type dimer chain C and D, PDB code 1Z8U and

theoretical dihedral angle of structure by Ramachandran plot results that 94.3% of

favoured region, 4.4% of allowed region, and 1.3% of outlier region. For the best

αCS·AHSP, conformation, there are obtainable H-bonds between residue V1 of αCS

and D43 of AHSP, residue D6 of αCS and Q25 of AHSP, residue N9 of αCS and
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Q24 of AHSP, residue F117 of αCS and Q54 of AHSP, residue H122 of αCS and

N50 of AHSP, residue K127 of αCS and D43 of AHSP, residue R153 of αCS and

D36 of AHSP, and residue R153 of αCS and T39 of AHSP, others are hydrophobic

interaction. Interestingly, result is displayed aromatic-aromatic interaction between

residue F117 of αCS and F47 of AHSP. The RMSD value is 1.82 ± 0.15 Å and

theoretical dihedral angle of structure by Ramachandran plot results that 93.4% of

favoured region, 5.8% of allowed region, and 0.5% of outlier region.

From interface interactions of binding residue indicate that both of docked

dimeric structures contain some H-bond, hydrophobic interaction, and aromatic-

aromatic interaction when compare to binding residues on αCS-globin to AHSP

molecule according to experiment [55]. However, docked αCS·AHSP structure has

formed seven difference H-bond comparing to reference wild-type dimer while dimeric

αWT ·AHSP has form three H-bonds that is are the same as reference wild-type dimer

and another is difference. This procedure which does not use the α·AHSP(P30A)

form chain C and D of PDB code 1Z8U to be a starting docking structure because

α-globin in chain D lacks of the residue 137 to 141 and the residue 30 in AHSP

chain C is a mutant to proline. The RMSD value of docked α·AHSP is 0.46 Å com-

pared to crystal structure of α·AHSP(P30A) so, the docked α·AHSP structure is

usable. Inspire the docked αCS·AHSP is use to be a staring MD structure, it is

RMSD 10.16 Å. Hight RMSD of mutant dimer is described by the CS-tail is quite

jumbled near interface area where the AHSP performs binding to (Figure 4.20).

This docked mutant structure is the lowest energy score and the lowest RMSD

vale in docking results. There docked dimeric structures which become staring MD

structures are the slightly different binding residues but the binding sites still occur

in the same location, it means that CS-tail may interfere to interface interaction

residues because it stays nearly to binding site of αCS·AHSP.

4.6 Hydrogen bond analysis of dimeric αCS·AHSP and αCS·AHSP

H-bond analysis is determined of the distance between heavy atoms using

a cutoff 3.00 Å and a cutoff 135◦ using for the angle between the acceptor, hydrogen,

and donor atoms. A Table 4.4 displays average H-bond distance and angle value of

binding interface residues between αWT ·AHSP. The number of H-bond are observed

at percentages higher than 45 during equilibrium phase of simulation time. There

H103 of αWT and D43 of AHSP, D126 of αWT and Q25 of AHSP, and A123 of αWT

and Q24 of AHSP are still bonding in 3/6 when compares to starting structure of

dimeric αWT ·AHSP docking Figure 4.21A. Moreover, two more H-bond are found,

D126 of αWT and Q24 of AHSP, and R31 of αWT and D43 of AHSP. Two H-bonds

absent in equilibrium phase of simulation time are T38 of αWT and D36 of AHSP,

and K99 of αWT and A30 of AHSP. A Table 4.5 displays average H-bond distance
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90◦

(A)

(A1) (A2)

(B)

(B1) (B2)

Figure 4.20 Geometrical arrangement of docked (A) and (B) struc-
tural superposition of αWT ·AHSP (grey colour) and structural su-
perposition of αCS·AHSP (red colour). The red line represents geo-
metrical arrangement of AHSP in docked αCS·AHSP structure and
the grey line represents geometrical arrangement of AHSP in docked
αWT ·AHSP structure

and angle value of binding interface residues between αCS·AHSP. The number of

H-bond are also observed at percentages higher than 45 during equilibrium phase

of simulation time. There R153 of αCS and D36 of AHSP, R153 of αCS and T39

of AHSP, and D6 of αCS and Q25 of AHSP are still 3/7 bonding when compares

to starting structure of dimeric αCS·AHSP docking Figure 4.21B. Meanwhile, the

absence H-bonds during equilibrium phase of simulation time are H122 of αCS and

N50 of AHSP, F117 of αCS and Q54 of AHSP, N9 of αCS and Q24 of AHSP, K127

of αCS and D43 of AHSP, and V1 of αCS and D43 of AHSP.
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Figure 4.21 Diagrammatic of protein-protein interactions for docking starting-structures: (A) αWT ·AHSP dimer,
(B) αCS·AHSP dimer analysing by LigPlot+
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Table 4.4 Structural parameters of intermolecular hydrogen
bonds in αWT ·AHSP dimer

Acceptor DonorH Donor
〈Dist〉 〈Ang〉 Found
(Å) (Å) (%)

D43@OD2AHSP H103@HE2α
WT

H103@NE2AHSP 2.72 152.94 89.04

D126@OD2α
WT

Q25@HE21AHSP Q25@NE2AHSP 2.83 161.36 84.80

D43@OD1AHSP R31@HH21α
WT

R31@NH2α
WT

2.79 152.78 76.72

D126@OD2α
WT

Q24@HE22AHSP Q24@NE2AHSP 2.84 155.79 70.40

A123@OαWT
Q24@HE21AHSP Q24@NE2AHSP 2.85 162.70 68.24

D43@OD1AHSP R31@HEαWT
R31@HEαWT

2.85 149.80 55.44

Table 4.5 Structural parameters of intermolecular hydrogen
bonds in αCS·AHSP dimer

Acceptor DonorH Donor
〈Dist〉 〈Ang〉 Found
(Å) (Å) (%)

R153@OαCS
T39@HG1AHSP T39@OG1AHSP 2.72 160.89 57.76

T39@OG1AHSP R153@HH11α
CS

R153@NH1α
CS

2.86 157.73 54.56

D6@OD2α
CS

Q25@HE21AHSP Q25@NE2AHSP 2.86 151.78 51.76

D36@OD2AHSP R153@HH22α
CS

R153@NH2α
CS

2.78 159.52 47.76

(A) (B)

Q25 of AHSP Q24 of AHSP

D43 of AHSP

A123 of αWT
D126 of αWT

H103 of αWT

R31 of αWT

Q25 of AHSP

T39 of AHSP

D36 of AHSP

D6 of αCS

R153 of αCS

Figure 4.22 Representative simulation snapshot (at simulation
time 80 ns) of H-bond network of (A) αWT ·AHSP and (B) αCS·AHSP
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Figure 4.23 H-bond presence during the MD trajectory of
αWT ·AHSP dimer: (A) a plot of average H-bond distance, H-bond
length cutoff of 3.00 Å (red dashed line) and (B) a plot of the average
donor and acceptor atoms (D–H···A) angle, cutoff of 135.00 Å (red
dashed line)
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Figure 4.24 H-bond presence during the MD trajectory of
αCS·AHSP dimer: (A) a plot of average H-bond distance, H-bond
length cutoff of 3.00 Å (red dashed line) and (B) a plot of the av-
erage donor and acceptor atoms (D–H···A) angle, angle cutoff of
135.00 Å (red dashed line)
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4.7 2-D RMSD

The 2-D RMSD plots of all structures are shown for the respective molec-

ular dynamics simulations. Each colour represents the RMSD value between Con-

formational during simulation time on the x-axis and the y-axis. For monomeric

structures are illustrated in 4.25, Figure 4.26, and 4.27 gradually move into a

stable conformation in an equilibrium phase. In contrast, the αCS·AHSP dimer

(Figure 4.29) moves without reaching any stable conformation meanwhile the

αWT ·AHSP dimer (Figure 4.28) moves quite into a stable conformation. It may

indicate that the CS-tail may affect to the stability of mutant dimer.

AHSP nommer

35

40

45

50

35 40 45 50

Conformational during simulation (ns)

C
on

fo
rm

at
io

n
al

d
u
ri

n
g

si
m

u
la

ti
on

(n
s) 4

0

R
M

S
D

(Å
)

Figure 4.25 2-D RMSD plot in simulations of monomeric AHSP
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Figure 4.26 2-D RMSD plot in simulations of monomeric αWT -
globin
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Figure 4.27 2-D RMSD plot in simulations of monomeric αCS-
globin
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aWT-AHSP dimer
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Figure 4.28 2-D RMSD plot in simulations of dimeric αWT ·AHSP
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Figure 4.29 2-D RMSD plot in simulations of dimeric αCS·AHSP



49

4.8 Trajectory analysis of MD simulations of dimeric αCS·AHSP

In Table 4.3, RMSD values of αWT ·AHSP and αCS·AHSP in equilibrium

phase are displayed no statistically significant difference at the 95% confidence level.

4.9 Calculation of binding free energy

The solvent environment plays a significant role on molecular structures,

dynamics, and energetics. Calculation of MD simulations of biological macro-

molecules in explicitly water molecules is very costly on the nanosecond time scale.

However, an analytical binding free energy model efficiently describes electrostatics

of molecules in a water environment. The binding free energy model of AMBER12

was adopted to introduce more flexibility of residue side chain for further refin-

ing of dimeric αWT ·AHSP and αCS·AHSP. The MM/GB(PB)SA analysis allows

us to separate the total binding free energy of binding into electrostatic and van

der Waals solute-solute and solute-solvent interactions, thereby gaining additional

insights into the physics of αWT ·AHSP and αCS·AHSP association process. All

binding free energies are calculated using 1,250 snapshots that are sampled with

every 5 snapshots; these snapshots cover the last 25 ns of the trajectory. The total

binding free energy is -49.95 ± 6.60 kcal/mol for αWT ·AHSP dimer occurring at

an interface between αWT and AHSP contribute favorably to the binding with the

electrostatic contribution to the solvation free energy calculated by MM/GBSA.

On the other hand, an unfavourable interaction is indicated to αCS·AHSP dimer by

the binding free energy is 7.08 ± 10.54 kcal/mol with the electrostatic contribution

to the solvation free energy calculated by MM/GBSA. Moreover, the total binding

free energy of αWT ·AHSP and αCS·AHSP which is calculated with the electrostatic

contribution to the solvation free energy calculated by MM/PBSA shows energeti-

cally unfavourable for binding. Values of total binding free energy are 22.83 ± 10.18

kcal/mol and 53.73 ± 12.59 kcal/mol for αWT ·AHSP and αCS·AHSP, respectively.

The difference of relative binding free energies (MM/GBSA and MM/PBSA) ap-

pearing the value αCS·AHSP is higher than αWT ·AHSP can be emphasised that

the AHSP molecule may be able to bind with wild-type better than mutant. The

entropic contribution (〈∆S〉) is also support for well binging of αWT ·AHSP dimer.

The average entropic value calculated to be energetically favourable -48.32 ± 10.01

and -36.61 ± 7.82 for αWT ·AHSP and αCS·AHSP, respectively at 298.15 K. These

results is included to T〈S〉 term that is necessary because the nonpolar solvation

incorporates an estimate of the entropy changes implicitly but does not account

for an entropy change upon αWT ·AHSP or αCS·AHSP formation in vacuo. Denote

that this results do not equal the real binding free energy and results have been not

estimate the unfavourable entropy contribution to binding.
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Table 4.6 Relative binding free energies MM/GBSA of binding
modes of αWT ·AHSP and αCS·AHSP dimer

Energy compartment
αWT ·AHSP dimer αCS·AHSP dimer
(mean ± SD) (mean ± SD)

〈∆Evdw〉 -88.98 ± 6.23 -50.58 ± 8.93
〈∆Eelectrostatic〉 -487.03 ± 42.03 -801.16 ± 45.86
〈∆EGB〉 539.10 ± 40.80 841.71 ± 41.40
〈∆Esurface〉 -13.04 ± 0.74 -9.76 ± 0.70
〈∆Ggas〉 -576.01 ± 43.16 -824.86 ± 45.42
〈∆Gsolvation〉 526.06 ± 40.44 831.94 ± 41.15
〈∆Gtotal〉 -49.95 ± 6.60 7.08 ± 10.54

Note: ∆EGB represents ∆Epolar solvation
Note: ∆Esurface represents ∆Enonpolar solvation

Table 4.7 Relative binding free energies MM/PBSA of binding
modes of αWT ·AHSP and αCS·AHSP

Energy compartment
αWT ·AHSP dimer αCS·AHSP dimer
(mean ± SD) (mean ± SD)

〈∆Evdw〉 -87.47 ± 6.16 -50.58 ± 8.93
〈∆Eelectrostatic〉 -486.47 ± 42.07 -801.17 ± 45.86
〈∆EPB〉 532.55 ± 39.02 827.26 ± 41.17
〈∆Esurface〉 -70.41 ± 3.43 -50.03 ± 3.55
〈∆Ggas〉 -575.94 ± 43.08 -824.86 ± 45.42
〈∆Gsolvation〉 598.77 ± 38.38 878.60 ± 41.74
〈∆Gtotal〉 22.83 ± 10.18 53.73 ± 12.59

Note: ∆EPB represents ∆Epolar solvation
Note: ∆Esurface represents ∆Enonpolar solvation
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Table 4.8 Entropy of binding modes of αWT ·AHSP and
αCS·AHSP

Energy compartment
αWT ·AHSP dimer αCS·AHSP dimer
(mean ± SD) (mean ± SD)

〈∆S〉 -48.32 ± 10.01 -36.61 ± 7.82
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CHAPTER 5

CONCLUSION

According to our simulation, two conclusions can be formulated as followings;

1. The additional CS-tail is suggested to neither effect on main-globin-structure

conformation nor surface charge distribution on the binding site.

2. The CS-tails seems to interfere intermolecular interactions on the binding

interface with AHSP and influence the haemoglobin binding affinity with the

AHSP. Therefore the CS-tail may have an effect on an early phase of Hb

formation.

These conclusions are also in good agreement with a previously reported experi-

ment [56]. Furthermore it is supported by the report that presence of membrane-

bound αCS-globin chains may make for the oxidative damage found on the ery-

throcytic membrane by unstable αCS-globin. More recently, the oxidative damage

in erythrocytic membrane is detected on blood smear as hypochromic, codocytes,

and Heinz bodies [3,4]. All aforementioned evidences reveal molecular effect due to

CS-tail on anaemia occurrence via HbH CS diseases.

For future perspectives,

1. The MD simulation should be varied under different physiological condition

such as hight temperature (greater than 310 K), low temperature (less than

310 K), blood acidosis (pH less than 7.2), or blood alkalosis (pH greater than

7.4). Various physiological conditions may be important to understand the

mechanism of patient carried HbCS combining symptoms with that factors.

The normal body strictly regulates temperature and pH to prevent their pro-

teins [57] for keep working as its functions. In case of an abnormal condition,

the amino acid sequence (the protein’s primary structure) does not change,

the αCS’s shape may change. If the αCS conformation is changed, it may

allow AHSP for binding force close to wild-type.

2. The Hb formation within mutant CS-tail should be completely studied of

αCS·β assembly, and tetrameter Hb formation.

3. For the most accurate result, this study should be compared with the result

of an MD simulation using X-ray crystal αCS-globin structure.
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ABSTRACT 
Introduction: Thalassaemia is an inherited autosomal recessive blood disorder which is 
concerning quantitative reduction in globin chain synthesis in thalassaemia syndromes, 
and can be differentiated from the structural changes seen in abnormal haemoglobin. 
The structurally abnormal haemoglobin are mostly produced in normal amounts. 
However, some abnormal haemoglobin are also associated with reduced globin chain 
production. Popular types of newsense mutations, for example Paksé (HbPS), Icaria 
(HbIC), and Seal Rock (Hb SR) as well as some frameshift mutation i.e. Wayne type I 
and Wayne type II, (HbW-I) and (HbW-II), respectively are included in this study, 
compared to previous study of Constant Spring (HbCS) case and wild type monomeric 
α-globins. Objective: To investigate the effect due to additional mutated structure on 
overall α-globin conformation under virtual human in vivo condition. Methodology: All 
mutated tertiary structures were predicted the elongated tail using bioinformatics tools. 
All MD simulation was carried out with PMEMD module in AMBER12 package under 
0.15 M NaC, 310 K condition. The protein conformations were eventually analysed 
using PTRAJ module and some manually written programmes. A structure visualisation 
was done using VMD package. Conclusion: The study suggested that the additional 
protein structure at the C-terminus did not affect the protein conformation significantly. 
In other words, our work excluded the hypothesis that the mutation can lead to an 
absurdity in conformation, in addition, this work demonstrated a visualisation of how 
α-globins with an additional part due to the causative mutation behaved under in vivo 
condition, with a reference of native protein.  

Keywords: Structure predictions, Molecular Dynamic Simulation, Haemoglobin, 
Thalassaemia  

1. INTRODUCTION 
 Thalassaemia is a hereditary disease highly found in tropical country including 
Thailand. The disease comes from an abnormality in haemoglobin (Hb) protein, locating in an 
erythrocyte (red blood cell) and leading to various symptoms from mild anaemia to even a 
death. Two Hb types, α- and β-globins, are responsible to the disease, and the disease can 
therefore be categorised into two groups, α- and β-thalassemia, according to the abnormality 
in corresponding globin type. The genes responsible in coding these proteins are HBA and 
HBB respectively. Once a mutation occurs in these genes, the obtained globin protein will be 
affected. In order to understand the disease mechanism in molecular scale, a tertiary structure 
of abnormal Hb is necessary. Unfortunately, three dimensional structure of Hb mutant is 
rarely available in database. Herein we focus on α-thalassaemia 2 (α2-thal or α+-thal) in 
which the mutation in α-globin gene yields an additional protein chain from the C-terminus of 
α-globin. In other word, the globin structure contains extension part in the structure. The 
number of extended amino acids is varied in each mutation. According to above-mentioned 
unavailability regarding a protein structure, we applied some bioinformatics tools and 
molecular dynamics simulation to study a set of abnormal Hb able to cause many α-thal 
types. The current aim is to investigate an effect due to the mutation on globin conformation. 
Many popular mutations [1] are included in this study namely Paksé (HbPS), Koya Dora 
(HbKD), and Seal Rock (HbSR), respectively. These simulations are compared to previous 
study of Constant Spring (HbCS) case and wild-type monomeric α-globins.  

ANSCSE19   Ubon Ratchathani University, Ubon Ratchathani, Thailand 
June 17-19, 2015

273



67

2. THEORY AND RELATED WORKS 

Computer simulation is proved to be a powerful apparatus to study the structural and 
functional behaviours of macromolecules such as enzymes or polynucleotides. One of the 
commonplace methods is molecular dynamics simulation, relied on Newtonian mechanics 
and treating the atom as a rigid sphere. The method can successfully reflect the dynamics 
system and reproduce an experimental results [10]. In 1959, the molecular structure of 
myoglobin (similar to Hb) was discovered by Max Ferdinand Perutz, the 1962 Nobel Prize in 
Chemistry. The role of oxygen binding cooperatively Hb in the blood was also elucidated in 
many reports [11,12,13]. Results form the studies of William A. Eaton et al. are summarised 
that in the T (deoxyHb) to R (oxyHb) state transition, the structure rotates ≈ 15 Angstroms. 
This conformational changes is that α1 interacts with β2, on the other hand, α2 interacts with 
β1. From studies of Barbara J. Bain and H. Franklin Bunn proposed that α·β dimer was 
normally formed by α-globin monomer, which prefers to pair with β-globin monomer. 
However, the crystal structure cannot represent the phenomenon under natural condition since 
the crystallisation media is far different from the erythrocytic entity. Furthermore, the thermal 
fluctuation because of temperature is neglected in the crystal since the structure is generally 
solved at cryogenic temperature.  

Recently the MD studies of electron transfer in haem-containing-proteins [14,15] were 
performed and published results were in good agreement with experiments. Also The study 
concerning formation of dimer by protein-protein binding which resembles Hb dimer 
formation or Hb tetramer formation by the study of Chanin Nantasenamat et al. [16] was 
reported. Therefore we have already put these studies as a benchmark for our heroin 
simulations. 

3. COMPUTATIONAL DETAILS 
 All additional mutated structures from C-terminus are constructed via secondary and 
tertiary structure prediction. The best predicted structure from each mutation will be manually 
attached to an experimental monomeric α- globin (X-ray structure, PDB code 2DN2) [2]. The 
secondary structure prediction was performed independently from PREDATOR [3] and 
NetSurfP version 1.1 [4] webserver tools. The tertiary structure prediction was carried out 
with CABS-fold webserver [5]. The results from these predictions were analysed together to 
obtain the best predicted structure. Molecular dynamics simulation was exploited in order to 
investigate the mutation effect on protein conformation under virtual human in vivo condition. 
Thus the protonation state of all ionisable amino acids in the mutant globin was modelled at 
pH 7.4 using PDB2PQR (formerly known as ProPKa) [6]. The protein was then solvated by 
TIP3P water and NaCl, and simulated under 0.15 M NaCl solution at 310 K and 1 atm, 
equivalent to a human erythrocytic environment, with AMBER10 force field [7]. For a charge 
model of haem in haemoglobin, reported RESP charges and bonded parameters were adopted 
[8]. The simulation consists of 400ps-NVT ensemble as a pre-equilibrated phase, and NPT 
simulation as a production run. In NVT simulation, a temperature of 310 K was regulated 
using Langevin Dynamics, while a similar temperature and a pressure of 1 atm (1.013 bar) 
were controlled by a weak coupling (Berendsen) algorithm. All Van der Waals interactions 
and electrostatics forces were handled with a cutoff of 12 Angstroms, which the latter were 
computed via Particle Mesh Ewald (PME) calculation. All MD simulation was carried out 
with PMEMD module in AMBER12 package. The protein conformations were eventually 
analysed using PTRAJ module and some manually written programmes. A structure 
visualisation was performed using Visual Molecular Dynamics package [9]. 

4. RESULTS AND DISCUSSION 
 All mutant α-globins structures of all were successfully constructed through the 
bioinformatics tools. The predicted tertiary structure was corresponding to the results from the 
secondary structure predictions. Merging the predicted protein tail to the wild-type structure to 
create an initial coordinate for MD simulation, the energy-minimisation was performed, yielding 
the low root-mean-square displacement (RMSD), less than 0.5 Angstroms compared to an 
experiment (2DN2.pdb). For MD simulation, energetics parameters such as energy terms, 
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temperature, pressure and density become stable and converged to the set values. Furthermore all 
mutant protein gives a steady RMSD of less than 1.5 Angstroms, Figure 1A. 
 Besides, after structural analysis for each amino acid residue using the relative distance 
from a haem group to an interested residue, we found that the dynamic trajectories from all 
mutant proteins show no significant structural difference in residue 1-141 from wild-type 
dynamic structure, Figure 1B. This indicates a structural similarity amongst all globin proteins. 
The study suggests that the additional protein structure at the C-terminus does not affect the 
protein conformation significantly. In other words, our work excludes the hypothesis that the 
mutation can lead to an absurdity in conformation, in addition, this work demonstrate a 
visualisation of how α-globins with an additional part due to the causative mutation behaves 
under in vivo condition, with a reference of native protein. In short, the mutation of α-thal type II 
which provides C-terminus elongation in α-globins, seems to have no effect on a protein 
conformation in monomeric form. Instead this elongated component may play a role in further 
functional stages, such as dimeric or tetrameric formations between two globin types (α- and β-
types). A further study needs to be accomplished to verify how causative mutation contributes to 
a disease occurrence. 

!  
Figure 1. (A), RMSD of all MD simulations with respect to backbone atoms in the 

experimental structure PDB code 2DN2. (B), Distance pattern of residue 1 to 141 of all MD 
simulations. A similar pattern indicates the structural similarity between MD trajectories. 

ANSCSE19   Ubon Ratchathani University, Ubon Ratchathani, Thailand 
June 17-19, 2015

275



69

5. CONCLUSION 
 In our current study, we have applied bioinformatic apparatus to predict the Hb 
mutant composed of an additional elongated terminus related to α-thal. We have later carried 
out Md simulations in order to elucidate information at atomistic scale under in vivo 
circumstance. Our study provides molecular insight of conformational change with a presence 
of interested mutation. The results indicate no significant impact due to the mutation on Hb 
native core domain. An assumption associated with structural disturbance in alpha Hb 
monomeric structure is discarded, and the focus on disease origin has subsequently moved 
into other key steps in tetrameric formation instead. 
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204

Introduction:  Haemoglobin H Constant Spring thalassaemia disease (HbH CS disease) is 
a hereditary haematologic disease that has a very high prevalence among alpha-type one 
found in Thai thalassaemia patients. The disease comes from the abnormal elongated alpha 
haemoglobin (alpha-Hb), containing 31 amino acid extension in its structure. The abnormal 
structure can affect the functional form of haemoglobin protein, a tetramer (alpha2beta2) 
consisting of 2 alpha- and 2 beta- subunits. However, the tetrameric formation mechanism 
remains unclear. In such a case 3-D structure of Hb is necessary in order to elucidate and 
understand the mechanism. Unfortunately a 3-D HbCS structure has not yet been reported, 
so in this work we attempt to construct 3-D structures HbCS by bioinformatics tools using 
deoxy alpha Hb as a structural template.
Objective:  To construct and predict homology structure of HbCS by bioinformatics tools
Materials and Methods:  The human deoxyHbA crystal structure (PDB code 2DN2) will take 
from the Protein Data Bank. A secondary structure of CS tail in HbCS has been predicted 
by NetSurfP (1.1) and PREDATOR (2.1.2). For alpha-globin 3-D monomeric structure, both 
alpha amino acid residues from HbA and HbCS amino acid residues will be predicted for the 
homology structure of HbCS using PHYRE2. All structures HbA will be determined at pH 7.4 
using the PROPKA bioinformatics tool. The rigid-body protein-protein docking programme 
ZDOCK (3.0.2) is used for the elucidation of dimeric and tetrameric structures.
Results and conclusion:  3-D CS tail structures were predicted using various tools. The 
finalised chosen structure was justified using the 2-D structure prediction data. Later the CS tail 
was docked to the C-terminus of human alpha-HbA. The obtained structure was then energy 
minimised along with hydrogen addition. The protonation state of the alpha-CS-globin protein 
was considered at pH 7.4 using the ProPkA web-based tool. Finally this energy minimised 
structure will be used as the starting structure for investigating the interaction and simulated 
“in solution” structure by molecular dynamics simulation method.

Keywords: haemoglobin constant spring, alpha-globin, homology structure prediction, 
bioinformatics

The homology structure Ppediction of alpha-globin 
Constant spring using bioinformatics tools

Nawanwat  Chainuwong, Varomyalin  Tipmanee
Department of Biomedical Sciences, Faculty of Medicine, Prince of Songkla University, 
Hat Yai, Songkhla, Thailand.
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APPENDIX C

AMBER INPUT FILES

C.1 Input files for MD simulation of αWT -globin

The residue 1 to 141 is represented αWT -globin, and the residue 142 is

represented haem molecule.

C.1.1 Energy minimisation

C.1.1 in vacuo

#energy minimisation.in

&cntrl

imin = 1,

maxcyc = 3000,

ncyc = 500,

cut = 12.0,

igb = 0,

ntb = 0,

ntb = 500,

/

C.1.2 Heating and equilibration

C.1.2 (k=250 kcal·mol−1·Å−2)

#heat nvt 250.in

&cntrl

imin = 1,

irest = 0, ntx = 1,

ntb = 1, cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

250.0

RES 1 142

END

END

C.1.3 Heating and equilibration

C.1.3 (k=150 kcal·mol−1·Å−2)

#heat nvt 150.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

150.0

RES 1 142

END

END

C.1.4 Heating and equilibration

C.1.4 (k=100 kcal·mol−1·Å−2)

#heat nvt 100.in

&cntrl

imin = 1,
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irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

100.0

RES 1 142

END

END

C.1.5 Heating and equilibration

C.1.5 (k=50 kcal·mol−1·Å−2)

#heat nvt 50.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

50.0

RES 1 142

END

END

C.1.6 Heating and equilibration

C.1.6 (k=20 kcal·mol−1·Å−2)

#heat nvt 20.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

20.0

RES 1 142

END

END

C.1.7 Heating and equilibration

C.1.7 (k=10 kcal·mol−1·Å−2)

#heat nvt 10.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein
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10.0

RES 1 142

END

END

C.1.8 Production for 80 ns

#production npt.in

&cntrl

imin = 0,

irest = 1, ntx = 5,

ntb = 2,

cut = 12.0,

ntr = 0, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 1,

tautp = 1.0,

nstlim = 4000000, dt = 0.002,

ntpr = 1000,

ntwx = 5000, ntwr = 5000,

nscm = 1000,

iwrap = 1,

/

C.2 Input files for MD simulation of αCS-globin

The residue 1 to 172 is represented αCS-globin, and the residue 173 is

represented haem molecule.

C.2.1 Energy minimisation

C.2.1 in vacuo

#energy minimisation.in

&cntrl

imin = 1,

maxcyc = 3000,

ncyc = 500,

cut = 12.0,

igb = 0,

ntb = 0,

ntb = 500,

/

C.2.2 Heating and equilibration

C.2.2 (k=250 kcal·mol−1·Å−2)

#heat nvt 250.in

&cntrl

imin = 1,

irest = 0, ntx = 1,

ntb = 1, cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

250.0

RES 1 173

END

END

C.2.3 Heating and equilibration

C.2.3 (k=150 kcal·mol−1·Å−2)

#heat nvt 150.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,
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ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

150.0

RES 1 173

END

END

C.2.4 Heating and equilibration

C.2.4 (k=100 kcal·mol−1·Å−2)

#heat nvt 100.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

100.0

RES 1 173

END

END

C.2.5 Heating and equilibration

C.2.5 (k=50 kcal·mol−1·Å−2)

#heat nvt 50.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

50.0

RES 1 173

END

END

C.2.6 Heating and equilibration

C.2.6 (k=20 kcal·mol−1·Å−2)

#heat nvt 20.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

20.0

RES 1 173

END

END

C.2.7 Heating and equilibration

C.2.7 (k=10 kcal·mol−1·Å−2)

#heat nvt 10.in
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&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

10.0

RES 1 173

END

END

C.2.8 Production for 80 ns

#production npt.in

&cntrl

imin = 0,

irest = 1, ntx = 5,

ntb = 2,

cut = 12.0,

ntr = 0, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 1,

tautp = 1.0,

nstlim = 4000000, dt = 0.002,

ntpr = 1000,

ntwx = 5000, ntwr = 5000,

nscm = 1000,

iwrap = 1,

/

C.3 Input files for MD simulation of AHSP

The residue 1 to 91 is represented AHSP.

C.3.1 Energy minimisation

C.3.1 in vacuo

#energy minimisation.in

&cntrl

imin = 1,

maxcyc = 3000,

ncyc = 500,

cut = 12.0,

igb = 0,

ntb = 0,

ntb = 500,

/

C.3.2 Heating and equilibration

C.3.2 (k=250 kcal·mol−1·Å−2)

#heat nvt 250.in

&cntrl

imin = 1,

irest = 0, ntx = 1,

ntb = 1, cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2, tempi = 10.0,

temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

250.0

RES 1 91

END
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END

C.3.3 Heating and equilibration

C.3.3 (k=150 kcal·mol−1·Å−2)

#heat nvt 150.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

150.0

RES 1 91

END

END

C.3.4 Heating and equilibration

C.3.4 (k=100 kcal·mol−1·Å−2)

#heat nvt 100.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

100.0

RES 1 91

END

END

C.3.5 Heating and equilibration

C.3.5 (k=50 kcal·mol−1·Å−2)

#heat nvt 50.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

50.0

RES 1 91

END

END

C.3.6 Heating and equilibration

C.3.6 (k=20 kcal·mol−1·Å−2)

#heat nvt 20.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,
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nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

20.0

RES 1 91

END

END

C.3.7 Heating and equilibration

C.3.7 (k=10 kcal·mol−1·Å−2)

#heat nvt 10.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

10.0

RES 1 91

END

END

C.3.8 Production for 50 ns

#production npt.in

&cntrl

imin = 0,

irest = 1, ntx = 5,

ntb = 2,

cut = 12.0,

ntr = 0, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 1,

tautp = 1.0,

nstlim = 4000000, dt = 0.002,

ntpr = 1000,

ntwx = 5000, ntwr = 5000,

nscm = 1000,

iwrap = 1,

/

C.4 Input files for MD simulation of αWT ·AHSP

The residue 1 to 141 is represented αWT -globin, the residue 142 to 232 is

represented AHSP, the residue 233 and haem molecule.

C.4.1 Energy minimisation

C.4.1 in vacuo

#energy minimisation.in

&cntrl

imin = 1,

maxcyc = 3000,

ncyc = 500,

cut = 12.0,

igb = 0,

ntb = 0,

ntb = 500,

/

C.4.2 Heating and equilibration

C.4.2 (k=250 kcal·mol−1·Å−2)

#heat nvt 250.in

&cntrl
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imin = 1,

irest = 0, ntx = 1,

ntb = 1, cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

250.0

RES 1 233

END

END

C.4.3 Heating and equilibration

C.4.3 (k=150 kcal·mol−1·Å−2)

#heat nvt 150.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

150.0

RES 1 233

END

END

C.4.4 Heating and equilibration

C.4.4 (k=100 kcal·mol−1·Å−2)

#heat nvt 100.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

100.0

RES 1 233

END

END

C.4.5 Heating and equilibration

C.4.5 (k=50 kcal·mol−1·Å−2)

#heat nvt 50.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/
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fix protein

50.0

RES 1 233

END

END

C.4.6 Heating and equilibration

C.4.6 (k=20 kcal·mol−1·Å−2)

#heat nvt 20.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2, tempi = 10.0,

temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

20.0

RES 1 233

END

END

C.4.7 Heating and equilibration

C.4.7 (k=10 kcal·mol−1·Å−2)

#heat nvt 10.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

10.0

RES 1 233

END

END

C.4.8 Production for 80 ns

#production npt.in

&cntrl

imin = 0,

irest = 1, ntx = 5,

ntb = 2,

cut = 12.0,

ntr = 0, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 1,

tautp = 1.0,

nstlim = 4000000, dt = 0.002,

ntpr = 1000,

ntwx = 5000, ntwr = 5000,

nscm = 1000,

iwrap = 1,

/

C.5 Input files for MD simulation of αCS·AHSP

The residue 1 to 172 is represented αCS-globin, the residue 173 to 263 is

represented AHSP, the residue 264 and haem molecule.
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C.5.1 Energy minimisation

C.5.1 in vacuo

#energy minimisation.in

&cntrl

imin = 1,

maxcyc = 3000,

ncyc = 500,

cut = 12.0,

igb = 0,

ntb = 0,

ntb = 500,

/

C.5.2 Heating and equilibration

C.5.2 (k=250 kcal·mol−1·Å−2)

#heat nvt 250.in

&cntrl

imin = 1,

irest = 0, ntx = 1,

ntb = 1, cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

250.0

RES 1 263

END

END

C.5.3 Heating and equilibration

C.5.3 (k=150 kcal·mol−1·Å−2)

#heat nvt 150.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

150.0

RES 1 263

END

END

C.5.4 Heating and equilibration

C.5.4 (k=100 kcal·mol−1·Å−2)

#heat nvt 100.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

100.0

RES 1 263

END

END

C.5.5 Heating and equilibration

C.5.5 (k=50 kcal·mol−1·Å−2)

#heat nvt 50.in
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&cntrl

imin = 1,

irest = 1, ntx = 5, ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

50.0

RES 1 263

END

END

C.5.6 Heating and equilibration

C.5.6 (k=20 kcal·mol−1·Å−2)

#heat nvt 20.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

20.0

RES 1 263

END

END

C.5.7 Heating and equilibration

C.5.7 (k=10 kcal·mol−1·Å−2)

#heat nvt 10.in

&cntrl

imin = 1,

irest = 1, ntx = 5,

ntb = 1,

cut = 12.0,

ntr = 1, ntc = 2,

ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 3, gamma ln = 1.0,

tautp = 0.1,

nstlim = 100000, dt = 0.001,

ntpr = 1000,

ntwx = 1000, ntwr = 1000,

/

fix protein

10.0

RES 1 263

END

END

C.5.8 Production for 80 ns

#production npt.in

&cntrl

imin = 0,

irest = 1, ntx = 5,

ntb = 2,

cut = 12.0,

ntr = 0, ntc = 2, ntf = 2,

tempi = 10.0, temp0 = 310.0,

ntt = 1,

tautp = 1.0,

nstlim = 4000000, dt = 0.002,

ntpr = 1000,

ntwx = 5000, ntwr = 5000,

nscm = 1000,

iwrap = 1,

/
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C.6 Input files for calculating free binding energies

C.6.1 MMBGSA entopy

#energy MMGB(PB)SA.in

&general

verbose=1,

interval=1,

/

#MMGBSA

&gb

igb=2,

saltcon=0.15,

/

#MMPBSA

&pb

inp=1,

saltcon=0.15,

/

#delta S entropy

&nmode

nmode igb=1,

nmode istrng=0.15,

/
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