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บทคัดย่อ 
 

แม้ปัจจบุนัมีการน าแรงสัน่สะเทือนมาใช้กระตุ้นการเคล่ือนท่ีของฟัน ในขณะจดัฟัน 
แตก่ลไกท่ีเนือ้เย่ือตอบสนองตอ่แรงนี ้ยงัไม่เป็นท่ีทราบแนช่ดั วัตถุประสงค์ เพ่ือศกึษาผลของการ
กระตุ้นด้วยแรงสัน่สะเทือนขนาดต ่าความถ่ีสงูร่วมกบัแรงกดในเซลล์เนือ้เย่ือปริทนัต์ของมนษุย์ ใน
ห้องปฏิบตัิการ วิธีการวิจัย เซลล์เนือ้เย่ือปริทนัต์ของมนษุย์ได้จากฟันกรามน้อยที่ถูกถอนจากกลุม่
ตวัอย่าง 4 คน ในการศึกษาเพือ่หาความถีข่องแรงส ัน่สะเทอืนทีเ่หมาะสม เพือ่น ามาใชใ้นการใหแ้รงส ัน่สะเทอืน

ร่วมกบัแรงกด เซลลเ์น้ือเยื่อปริทนัตถ์กูกระตุน้ดว้ยแรงส ัน่สะเทอืนขนาดต า่ (0.3 กราวติี้) ที่ความถี่ต่างๆ กนั (30, 

60 หรือ 90 เฮริตซ)์ เป็นเวลา 20 นาทต่ีอวนั จ านวน 3 รอบ ในการศึกษาเพื่อหาผลของการกระตุ้นด้วย
แรงสัน่สะเทือนขนาดต ่าความถ่ีสงูร่วมกบัแรงกด เซลลเ์น้ือเยื่อปริทนัตถ์กูกระตุน้ดว้ยแรงส ัน่สะเทอืนท่ี
ความถ่ีท่ีเหมาะสม เป็นเวลา 20 นาทต่ีอวนั จ านวน 3 รอบ หรือ ถูกกระตุน้ดว้ยแรงกด 1.5 กรัมตอ่ตาราง
เซนติเมตร ตอ่เน่ืองเป็นเวลา 48 ชัว่โมง หรือถกูกระตุ้นด้วยแรงสัน่สะเทือนร่วมกบัแรงกด จากนัน้ท าการ
วดัปริมาณการมีชีวิตของเซลล์ด้วยวิธีเอ็มทีที (MTT assay) วดัปริมาณพรอสตาแกรนดนิอีท ู ด้วยวิธี
อีไลซ่า (ELISA) และวดัปริมาณการแสดงออกของจีน แรงค์แอล, โอพีจี และ รังซ์ท ูด้วยวิธีควอนทิเททีฟ
เรียลไทม์พีซีอาร์ (quantitative real-time PCR) ผลการศึกษา แรงกด และแรงสัน่สะเทือนร่วมกบัแรง
กด มีผลลดการแบง่ตวัของเซลล์อย่างมีนยัส าคญัทางสถิติ เม่ือเปรียบเทียบกบักลุม่ควบคมุท่ีไมไ่ด้รับ
แรง แรงสัน่สะเทือน แรงกด และแรงสัน่สะเทือนร่วมกบัแรงกด มีผลเพิ่มปริมาณพรอสตาแกรนดินอีท ู
และการแสดงออกของจีนแรงค์แอล แตไ่มมี่ผลตอ่การแสดงออกของจีนโอพีจี สง่ผลให้มีการเพิ่มขึน้ของ
สดัส่วนของจีนแรงค์แอลตอ่จีนโอพีจี โดยพบการตอบสนองสงูสดุในกลุม่ท่ีได้รับแรงสัน่สะเทือนร่วมกบั
แรงกด แรงกด และแรงสัน่สะเทือนร่วมกบัแรงกด มีผลลดการแสดงออกของจีนรังซ์ท ู สรุปผล

การศึกษา แรงสัน่สะเทือนมีผลเพิ่มการแสดงออกของพรอสตาแกรนดินอีท ู และจีนแรงค์แอล ทัง้
ทางตรง และมีผลเสริมผลท่ีเกิดจากการกระตุ้นด้วยแรงกดด้วย แตไ่มมี่ผลเสริมผลหรือยบัยัง้ผลของแรง
กด ตอ่การแสดงออกของจีนโอพีจี และจีนรังซ์ทู เม่ือกระตุ้นด้วยแรงสัน่สะเทือนร่วมกบัแรงกด  
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ABSTRACT 
 

Mechanical vibration can be used to accelerate tooth movement during 
orthodontic treatment, though the exact tissue responses remain unclear. Objectives This 
study aimed to investigate the effects of low magnitude high frequency (LMHF) 
mechanical vibration combined with compressive force on periodontal ligament (PDL) 
cells in vitro. Materials and methods Human PDL cells were isolated from extracted 
premolar teeth of four individuals. To determine the optimal frequency for later used in 
combination with compressive force, three cycles of low-magnitude (0.3 g) vibration at 
various frequencies (30, 60 or 90 Hz) were applied to PDL cells for 20 min every 24 h. To 
investigate the effects of LMHF vibration combined with compressive force, PDL cells were 
subjected to three cycles of optimal vibration frequency for 20 min every 24 h or 1.5 g/cm2 
compressive force for 48 h or vibration combined with compressive force. Cell viability was 
assessed using MTT assay, an ELISA was used to quantify PGE2 and quantitative real-
time PCR was used to measure RANKL, OPG and Runx2 expression. Results 
Compressive force and vibration combined with compressive force significantly reduced 
cell viability. Vibration, compressive force and vibration combined with compressive force 
increased PGE2 production and RANKL expression but did not affect OPG expression, 
thus increasing the RANKL/OPG ratio. The highest level was observed in the cells exposed 
to vibration combined with compressive force. Compressive force and vibration combined 
with compressive force (but not vibration alone) reduced Runx2 expression. Conclusions 
Vibration directly increases and had the additive effects of compressive force on the PGE2 
production and the expression of RANKL, but not OPG and Runx2, in PDL cells. 
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CHAPTER 1 
 

INTRODUCTION 
 
Background and Rationale 
 

Orthodontic treatment usually takes a long time to complete, which can 
lead to several complications.1 Many attempts have been made to accelerate tooth 
movement, including physical,2 pharmacological3 and surgical approaches.4-5 However, 
complications such as local pain, severe root resorption6 and drug-induced side effects 
can occur, with varied results reported.7  

Low magnitude high frequency (LMHF) mechanical vibration is a non-
invasive method8 that can be applied in conjunction with orthodontic treatment to increase 
the rate of tooth movement.9 A number of vibratory devices are commercially available, such 
as AcceleDent (OrthoAccel Technologies, Inc., Houston, Tex, USA). Several in vivo studies 
have investigated the effects of vibration during the acceleration of tooth movement in animal 
models10 and humans,9, 11 but have reported conflicting results.12 Moreover, the mechanisms 
of action of vibration on the surrounding tissues and cells, either periodontal ligament (PDL) 
cells or bone cells, have not been determined. Therefore, it would be interesting to 
investigate the mechanisms of action and cellular responses to vibration during application 
of orthodontic force in vitro.  

Periodontal ligament  (PDL) cells play a major role in initiation of the 
remodelling process during orthodontic tooth movement.13 Compression of PDL is a 
prerequisite for tooth movement. The balance between Receptor activator of nuclear factor 
kappa B ligand (RANKL) and Osteoprotegerin (OPG) expression in PDL cells regulates bone 
remodelling during tooth movement. Compressive force upregulates RANKL messenger 
ribonucleic acid (mRNA) expression and protein via a prostaglandin E2 (PGE2)-dependent 
mechanism in PDL cells.14 PGE2 is inflammatory mediator produced by PDL cells in 
response to mechanical stress that acts in autocrine and paracrine manners to stimulate 
RANKL expression and promote bone resorption.14-15 The transcription factor Runt-related 
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transcription factor 2 (Runx2) also plays important roles in osteoblastic differentiation and bone 
deposition.16 LMHF vibration has been reported to induce Runx2 mRNA expression and 
protein in periodontal ligament stem cells (PDLSCs).17 

Although the effects of compressive force on the expression of PGE2, RANKL 
and OPG in PDL cells have been determined,14, 18-19 the effects of vibration combined with 
compressive force on the expression of these osteogenic factors in PDL cells has not yet been 
assessed. This study aimed to investigate whether vibration enhances or inhibits the 
osteogenic factors effects of compressive force by regulating the secretion of PGE2 and 
expression of RANKL, OPG and Runx2 in PDL cells.  
 
Review of Literature 
 
Orthodontic tooth movement 
 

Orthodontic tooth movement is initiated by the hard and soft tissues 
remodeling in dental and paradental areas. The orthodontic force applied on the teeth will alter 
the blood flow and the microenvironment around the PDL resulting in synthesis and release of 
many inflammatory mediators such as neurotransmitters, arachidonic acid metabolites, 
cytokines, growth factors and colony stimulating factors from the local cells. The increasing 
level of these mediators during orthodontic tooth movement results in the assumption that 
regulates the biological responses which occur after the orthodontic forces was applied. These 
substances initiate a cascade of signals that regulate many cellular responses by numerous 
cell types in and around teeth which provides a favorable microenvironment for bone 
deposition or resorption.20 
 
Methods for accelerate orthodontic tooth movement 
 

Since orthodontic treatment usually takes a long time to complete leading 
to several problems. It’s important to accelerate the remodeling of alveolar bone during 
orthodontic treatment to shorten the time required, reduce the cost of treatment and 
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make more benefits to both patient and orthodontist. The rate of tooth movement 
depends on both of the physical characteristics of the applied force, and the biological 
responses from the PDL. Furthermore, this mechanism is modified by many other factors 
such as force magnitude, age, sexual hormone, bone density, genetic variability, and 
activation interval. To date, a number of attempts have been made to accelerate tooth 
movement.  

The velocity of tooth movement mainly depends on the rate of bone 
resorption occurring at the compression side of the PDL, in the direction of orthodontic 
force applied to the tooth. Therefore, it is possible that administration of bone resorbing 
factors may increase bone-resorbing activity in the compressed PDL. Many studies have 
been done using these molecules exogenously such as PGE,3, 21-22, 1,25-
dihydroxyvitamin D 3,23-24  parathyroid hormone (PTH),25-26 and RANKL27 to increase the 
rate of tooth movement in both animal experiments and humans. Although the effects of 
these methods have been investigated on animal experiments but clinical trials on 
humans are limited. Since avoiding systemic effects they must be local administered by 
injections that can be painful and cause discomfort to the patients. In addition, long term 
side effect was not tested.  

Despite many biological approaches have been reported that they can 
increase the rate of tooth movement but complications, such as local pain, severe root 
resorption6, and drug-induced side effects can occur. In addition, all of these methods 
are focus on only the activation of osteoclast on the resorption site of the alveolar bone. 
There is the question about the stability of these accelerations and no guarantee that 
when the resorption site is accelerated, the deposition site can catch up with it. This 
turned the trend to discover a physical approach that focuses on the activation of cellular 
activity of both osteoclast on the resorption site and osteoblast on the depositon site of 
the alveolar bone. These methods not only accelerate tooth movement but also increase 
the stability of post-orthodontic tooth movement. The idea of using physical approaches 
came from the concept of bone bending theory that applying orthodontic forces bend 
the bone and develop the bioelectrical potential. The negatively charged will take place 
at the concave site of the bone and favors osteoblastic activity, whereas the convex site 
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will be positively charged showed elevated osteoclastic activity.20  This technique 
includes direct electric currents,28-29 static magnetic field and pulsed electromagnetic 
field,30-31 low-level laser radiation,2, 32-39 and resonance vibration.40-45 

The surgical technique has recently been studied in a number of 
publications. The increasing of bone turnover after bone grafting, fracture, and 
osteotomy has been known. Several surgical approaches such as interseptal alveolar 
surgery,46 osteotomy and corticotomy,47-50 and Piezocision technique51 have been tried in 
order to increase the rate of tooth movement. This approach is the most clinically 
application and most tested with predictable and stable results. However, it is invasive, 
aggressive, and costly, and patients are not accepted to the surgery unless it is the only 
choice that is needed to have a good occlusion. 
 
Vibratory stimulation and orthodontic tooth movement 
 

Recently, externally applied resonance vibration with low magnitude (LM; 
<1g, where g=9.81 m/s2), high frequency (HF; 20-90 Hz) and short duration have been 
investigated that can be enhancing bone remodeling and anabolic to bone tissue.40-45, 52 
In addition, from the bone bending theory, the bioelectrical potential is created when 
apply discontinuous forces, which leads to the idea of using cyclic forces and resonance 
vibrations combined with orthodontic force for accelerate orthodontic tooth movement. 
Furthermore, it is accepted that mechanical stimuli can activate the response of PDL 
cells and bone cells. There are many studies found that PDL cells and bone cells are 
able to sense mechanical vibratory stimulation directly and respond by alter gene 
expression and produce soluble factors that involve in bone remodeling process.17, 53-55 It 
has been found that applying vibrations accelerated tooth movements in animal 
experiments10, 56-58 and human.9, 11, 59 Although vibration may accelerate orthodontic tooth 
movement with minimal side effects, knowledge of exactly how mechanical vibration 
accelerate orthodontic tooth movement is limited and their effects still have the 
controversial results. Some studies found that vibration has no effect on the acceleration 
of orthodontic tooth movement and there are studies found the opposite results.60-62 
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Moreover, the effects of vibration on tooth movement may depend on frequency, 
duration, amplitude, and site of application, but these previous studies used the different 
vibration protocols that lack of standardization to compare the results. Further studies 
needed to be examined to clearly identify the protocol that can be applied to get the 
maximum desired results. In addition, further studies in the field of molecular biology 
needed to explain the mechanisms at the cellular and genetic levels.  
 
PDL and PDL cells 
 

Orthodontic tooth movement occurs by applying mechanical forces to the 
tooth, then the forces are transmitted to the alveolar bone through the PDL. PDL contains 
several cells populations comprising osteoblasts and osteoclasts on the bone side, 
whereas periodontal ligament fibroblasts, undifferentiated mesenchymal cells, 
macrophages, neural elements, endothelial cells, smooth muscle cells, and epithelial cell 
rests of Malassez in the body of the PDL, in addition cementoblasts on the root surface. 
All of these cells, the predominant cell type is the periodontal ligament fibroblasts. In this 
study, only periodontal ligament fibroblasts are defined as PDL cells.  

PDL cells also play important role in alveolar bone remodeling during 
orthodontic tooth movement as well as osteoblasts and osteoclasts. PDL cells have the 
important functions to sense and respond to the forces generated by speech, 
mastication and orthodontic treatment. Commonly, ankylosed teeth, that lack of PDL, 
cannot be moved by mechanical force.63 There are evidences that in the orthodontic 
tooth movement model, strains in the alveolar bone are generally lower than 0.02%13, 64 
which not sufficient to stimulate bone cells to trigger the bone remodeling process. 65

 

On the other hand, strains in the PDL have been reported to be in the range of 10–40%13, 

64 which above the threshold that required to stimulate fibroblasts to initiate the 
remodeling process (strain levels around 7–12%).66-68 Assuming that strains in PDL and 
the response of PDL cells to mechanical stimulus play the important role in initiating 
modeling and remodeling process during orthodontic tooth movement.13, 64, 69 PDL cells 
response to mechanical stimuli by form biologically active substances, such as cytokines 
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and enzymes for signaling the surrounding cells to modulate the resorption and 
formation of bone matrix.14, 19, 69-78 External orthodontic forces are converted to 
intracellular signals that result in the resoption of bone by osteoclasts on compression 
site and the formation of the new bone by osteoblasts on tension site. The coordination of 
these two processes results in alveolar bone remodeling and tooth movement through 
the alveolar bone. PDL cells have been reported that it could recognize and respond to 
mechanical stimulation directly.14, 19, 71-78 The in vitro studies using primary cultures from 
PDL tissue have indicated that both mechanical stress and strain induced intracellular 
mechanotransduction signals that alter gene expression in these cells. Some reports 
found that the PDL cells were able to induce osteoclastogenesis in vitro.14, 76 In addition, 
the expression of RANKL and OPG in PDL cells has already been reported.14, 19, 71, 74, 79 
Furthermore, some PDL cells has the progenitor cells characteristics and are able to 
differentiate into osteoblast in response to the mechanical stress.80 
 
Prostaglandin E2 (PGE2) 
 

PGE2 is produced from arachidonic acid, the main component of 
phospholipids of the cell membrane, by the action of cyclo-oxygenase enzymes. PGE2 is 
one of key molecule that plays an important role in bone metabolism. Many studies have 
shown that bone resorption via osteoclasts is mediated by prostaglandins, especially 
PGE214, 81 which is produced by PDL cells in response to mechanical stress in vivo82 and 
in vitro.14, 83 In addition, during orthodontic tooth movement, PDL cells at the pressure 
side produce and secrete several inflammatory cytokines, such as interleukin 1 (IL-1) 
and interleukin 6 (IL-6) that can induce PGE2 production. PGE2 acts in an autocrine and 
paracrine manner to initiate the activity of adenylate cyclase and the accumulation of 
cellular cyclic adenosine monophosphate (cAMP) via the prostaglandin E4 receptor, 
inducing of the expression of RANKL, resulting in an increasing of bone resorption.15, 84 
The direct action of prostaglandins on an increasing of osteoclasts numbers and 
capacity to form a ruffled border and their effect on bone resorption has been reported in 
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clinical and animal studies.85-87 Thus, a signaling cascade of these molecules in the PDL 
could regulate osteoclastogenesis through RANKL-RANK signaling. 

On the other hand, like other bone resorbing agents, PGE2 also is a 
powerful skeletal anabolic factor that promotes osteoblastic cell differentiation and 
osteogenesis under numerous conditions, including mechanical stimulation88-89 resulting 
in new bone formation, coupling bone resorption. 
 
The RANK/RANKL/OPG system 
 

The receptor activator of nuclear factor kappa B (RANK), RANKL and 
osteoprotegerin (OPG) are produced by numerous cell types and a variety of 
tissues, their expression effects involve in the three main biological systems: the 
osteoarticular, immune, and vascular systems.90 The crucial role of the 
RANK/RANKL/OPG system in inducing bone remodeling process was recently 
elucidated.90-91 

RANKL is a cytokine which in the group of the Tumor necrosis factor 
(TNF) super-family that plays the important role in the st imulation of differentiation 
and activation of osteoclast, and inhibition of osteoclast apoptosis. 91 It is expressed 
on osteoblasts and bone marrow stromal cells. Its expression in combination with 
macrophage-colony stimulating factor (M-CSF) is needed and sufficient for the 
complete differentiation of osteoclastic precursors into mature osteoclasts. Severe  
osteopetrosis and a total loss of osteoclasts have been reported in RANKL knock -out 
mice.92 RANKL has both membrane-bound molecule and secreted from that is 
released from the cell surface by proteolytic cleavage with metalloproteinase -
disintegrin tumour necrosis factor-α convertase (TACE).93 Both forms of RANKL have 
the same function as ligands for RANK receptor. RANKL-RANK interactions lead to 
rapid differentiation of monocyte/macrophage lineage into osteoclasts. This 
interaction is also necessary activate the function and survival of mature osteoclasts.  

RANK receptor is a transmembrane molecule that is expressed on 
the cell surface of osteoclast lineage cells. RANK has no soluble form.  
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OPG is also a cytokine which in the group of the TNF family and is 
produced by osteoblasts and bone marrow stromal cells. OPG is only secreted as a 
soluble protein because it lacks transmembrane and cytoplasmic domains. OPG acts as 
a decoy receptor that competes with RANK for RANKL binding, inhibits 
osteoclastogenesis. OPG has the biologic effects that inhibit the terminal stages of 
osteoclast differentiation, suppress the activation of matrix osteoclast, and induce 
osteoclast apoptosis.94  

RANKL, RANK, and OPG expression are modulated by numerous 
osteotropic agents such as, hormones, growth factors and peptides, cytokines, and 
other factors.90 In addition, there are many reports found that mechanical stimuli 
could modulate the expression of RANKL and OPG.14, 19, 71, 73-74, 77, 95 Excess RANKL 
binds to the extracellular RANK domain on osteoclast precursors, leading to the 
recruitment of tumour necrosis factor receptor associated factors (TRAFs) to the 
intracellular domain of RANK. TRAFs 1–3, 5 and 6 are associate with the activation of 
several intracellular signaling pathways, that regulate osteoclast precursor fusion, 
differentiation into mature osteoclasts, and their subsequent activation for bone 
resorption and survival.96 In contrast, excess OPG binds RANKL and prevents its 
interaction with RANK, decreasing numbers and function of osteoclasts. Thus, 
alveolar bone remodeling during orthodontic tooth movement is controlled by 
balance between RANKL and OPG that exerting a positive or negative control on the 
activation of RANK on osteoclasts.90-91, 97    

In the field of orthodontics, Shiotani et al.98 and Kim et al.99 showed the 
presence of RANKL in periodontal tissues during experimental tooth movement of rat 
molars. Nishijima et al.19  found a significant increasing of RANKL and decreasing of 
OPG in GCF of orthodontic patients during tooth movement compared to the control 
teeth at 24 h. There are many studies reported that compressive stress up -regulated 
RANKL expression and decreased OPG expression in human PDL cells in vitro.14, 19, 

71, 73-74, 77, 95 Furthermore, Kanzaki et al.27 demonstrated that RANKL gene transfers to 
the periodontal tissue could activate osteoclastogenesis and increase the rate of 
experimental tooth movement in rats. In contrast, OPG gene transfer down-regulates 
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RANKL-mediated osteoclastogenesis and decreased the rate of experimental tooth 
movement.100  
 
Runt-related transcription factor 2 (Runx2) 
 

Runx2 is the transcription factor which in the group of the Runt family of 
transcription factors that is expressed at the onset of skeletal development by mesenchymal 
cells and is present in throughout of osteoblasts differentiation. Its expression is both 
necessary and sufficient for mesenchymal cell differentiation towards the osteoblast lineage.16 
To date, there are the reports found that LMHF mechanical vibration increases osteoblastic 
activity of preosteoblast,53 osteocytes,54 monocyte55 and can promotes bone marrow-derived 
mesenchymal  stromal cells (BMSCs)101 and PDLSCs commitment to the osteoblast lineage by 
increasing of the expression of osteogenic gene such as Runx2.17 

 
Objectives 
 

To investigate whether vibration enhances or inhibits the osteogenic 
factor effects of compressive force by regulating the cell proliferation rate, the secretion 
of PGE2 and the expression of RANKL, OPG and Runx2 in PDL cells. 
 
Hypothesis 

 
LMHF vibration does not enhance the effects of compressive force on the 

cell proliferation rate, PGE2 production, RANKL, OPG, the RANKL/OPG ratio and Runx2 
expression. 
 
Significance of the study 
 

  This study sheds light on the mechanisms by which PDL cells respond to 
vibration and vibration combined with compressive force and may support the ability of 
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vibration to accelerate tooth movement in clinical research. Moreover, it establishes a 
range of parameters for further in vitro and in vivo analyses.  
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CHAPTER 2 
 

RESEARCH METHODOLOGY 
 

Cell culture 
 

This research was approved by the Institutional Ethics Committee 
Board of the Prince of Songkla University (EC5803-06-P-LR). Human PDL cells were 
isolated from the ligament tissues on the root of healthy premolar teeth, which 
extracted for orthodontic treatments from four individuals (2 males and 2 females; 
17-20 years of age). The teeth were rinsed several times with phosphate-buffered 
saline (PBS). Remaining gingival tissue from the cervical portions was removed. 
Then tissues at the middle third of the tooth 102 were scraped with surgical blades 
and were cultured in normal culture medium (NCM) in humidified incubator with 5% 
CO2 at 37°C. NCM consisted of Dulbecco’s modified essential medium (DMEM; 
Gibco BRL, Grand Island, NY, USA), supplemented with 10% foetal bovine serum 
(FBS; Gibco BRL), 1% penicillin (10,000 U/ml) -streptomycin (10,000 µg/ml; Gibco 
BRL) and 1% fungizone (250 µg/ml AmphotericinB; Gibco BRL). The PDL tissues at 
the apical and cervical parts of the root were discarded to avoid contamination with 
gingival fibroblasts and pulp cells in the culture.  Cell preparations were established 
from each individual donor. All experiments were carried out using cell cultures at 
third to fifth passage and performed in triplicate using the four independently 
isolated cell preparations. 
 
Morphological analysis and characterization of PDL cells 
 

PDL cells were identified by spindle-shaped cell morphology, the 
expression of Scleraxis mRNA which is the ligament -specific marker,103 the 
expression of Fibromodulin mRNA which specifically expressed in PDL cells but 
cannot detected in gingival fibroblasts and osteoblasts,104 the expression of 
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Periostin mRNA which highly expressed in PDL cells but cannot be detected in 
gingival fibroblast,105-106 and the ability to initiate an in vitro calcification after culture 
in osteogenic conditioned medium. To induce osteogenic differentiation, PDL cells 
were cultured in NCM supplemented with 50 µg/ml ascorbic acid, 10 mM β-
glycerophosphate and 0.1 µM dexamethasone (Sigma-Aldrich, St Louis, MO, USA) 
for 21 days. Then stained the cells with 2% Alizarin Red stain solution (Sigma-
Aldrich) and examined by phase contrast microscopy (Nikon Eclipse Ti -S; Nikon 
Instruments Inc., Melville, NY, USA) to observe calcium deposition. 
 
Determination of optimal LMHF vibration 
 

PDL cells were seeded in 35 mm culture dishes at 1 x 105 cells and 
cultured in NCM to 70-80% confluence, then changed the medium to DMEM with 
2% FBS for 24 h to synchronize the cycle of the cell. Before the mechanical 
stimulus was applied, the culture medium was changed to NCM. Culture dishes 
were placed onto the platform of a GJX-5 vibration calibrator (Beijing Sending 
Technology, Beijing, China) that generates perpendicular mechanical vibration 
when the platform is parallel with the ground, 17 as illustrated in Figure 1A. Three 
cycles of low-magnitude (0.3 g) vibration at various frequencies (30, 60 or 90 Hz) 
were applied to PDL cells for 20 min every 24 h, the total experimental time was 48 
h. Non-vibrated control cells were cultured in a same manner, but placed on a 
stationary platform for the same periods of time. The magnitude and frequencies of 
vibration were based on studies that reported positive bone remodelling .40, 54  

Immediately after the end of mechanical vibration, cell viability was 
assessed using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide 
(MTT) assay. PGE2 levels were quantified by an enzyme-linked immunosorbent 
assay (ELISA). The expression of RANKL and OPG was quantified using 
quantitative real-time Polymerase chain reaction (qPCR). The lowest frequency that 
led to a significant difference in the RANKL/OPG ratio compared to the control was 
selected as optimal frequency. 
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Application of LMHF vibration and compressive force 
 

PDL cells were cultured and the cell cycle was synchronized as 
described above prior to the application of mechanical stimulus. Cells were divided into 
four groups by randomization: control without mechanical stimulation (Con), selected 
optimal vibration frequency (V), compressive force (C), and vibration combined with 
compressive force (VC). Vibration was generated with the same protocol as described 
above, at the selected optimal vibration frequency. Compressive force was generated at 
1.5 g/cm2 for 48 h using the method that modified from Kanzaki et al.14

  A glass cylinder 
containing acrylic mass was placed over the 70-80% confluent monolayer in each 35 
mm culture dish, as illustrated in Figure 1B. Vibration combined with compressive force 
group was generated by mounted the cell culture of compressive force model onto the 
platform of a GJX-5 vibration calibrator, that generates the vibration with the same 
protocol as described above, at the selected optimal vibration frequency.   

Immediately after the end of mechanical stimulation, cell viability was 
assessed using the MTT assay. PGE2 levels were quantified by ELISA. The expression of 
RANKL, OPG and Runx2 was quantified using qPCR. 
 

 
 

Fig.1: Model used to generate vibration and compressive force in vitro. (A) GJX-5 
vibration calibrator generates mechanical vibration perpendicular to the bottom of 
the culture dish. (B) Illustration of how compressive force was applied. PDL cells 
were continuously compressed using a glass cylinder containing acrylic mass 
with a total force of 1.5 g/cm2. 
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Cell viability assay 
 

The cell viability was assessed using the MTT assay. Immediately after 
the completion of mechanical stimuli procedure, cell culture medium was aspirated and 
replaced with aliquots containing MTT solution (5 mg/ml; Sigma-Aldrich) of RPMI cell 
culture medium (Gibco BRL), incubated and protected from the light at 37°C, with 5% 
CO2 for 3 h. Then, formazan crystals were solubilized in acid isopropanol. Quantification 
of the end product was performed at a wavelength of 570 nm using a Multiskan GO 
microplate spectrophotometer (Multiskan GO; Thermo Scientific, Waltham, MA, USA). 
Cell viability was calculated as percentage relative to the control. 
 
Quantification of PGE2 
 

The PGE2 levels in the culture media were determined by a commercially 
available kit (DuoSet® ELISA Development kit; R&D Systems, Minneapolis, MN, USA). In 
brief, 150 µl of supernatant from cultured cells and 50 µl of the Primary Antibody Solution 
were added to the plates that pre-coated with antibodies. Then, the plates were 
incubated on the horizontal orbital microplate shaker (KS-130-B KS 130 Basic Orbital 
Shaker; IKA Werke, GMBH & CO. KG, Germany) at room temperature for 1 h. After that, 
added 50 µl of PGE2 Conjugate and incubated at room temperature on the horizontal 
orbital microplate shaker (KS-130-B KS 130 Basic Orbital Shaker; IKA Werke) for 2 h. 
Then aspirated and washed the plates three times with Wash Buffer. After that, added 
200 µl of Substrate Solution and incubated at room temperature for 30 min. Then, 
stopped color development by added 100 µl of Stop Solution and gently taped to ensure 
thorough mixing. The absorbance was measured immediately by using a Multiskan GO 
microplate spectrophotometer (Multiskan GO) at wavelength 450 nm with wavelength 
correction at 540 nm. The levels of PGE2 were calculated by comparison with the 
standard curve. Values were normalized to total protein content, assessed by Pierce™ 
BCA Protein Assay Kit (Thermo Scientific). Changes in experimental groups were 
expressed as fold changes relative to the control.  
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RNA isolation and quantitative real-time PCR 
 

Total RNA was isolated from cultured cells using innuPREP DNA/RNA 
mini kits (Analytic-Jena, Konrad-Zuse-Strasse 1, Jena, Germany) according to the 
manufacturer’s protocol. The RNA purity and concentration were assessed using a 
spectrophotometer at 260 nm. Thereafter, the reverse transcription from total RNA to 
cDNA was performed using a SuperScript® III First-Strand Synthesis System for RT-PCR 
(Invitrogen, Carlsbad, CA, USA). Aliquots containing amounts 300 ng of total RNA were 
mixed with 1 µl of 50 µM Oligo(dT)20, 1 µl of 10 mM dNTP mix and added diethyl 
pyrocarbonate-treated water (DEPC-treated water) to total volume 10 µl. Pipetting the 
sample to ensure thorough mixing. Then, incubated the sample at 65oC for 5 min and 
placed on ice for at least 1 min.  After that, Added 10 µl cDNA Synthesis Mix (the mixing 
of 2 µl of 10xRT Buffer, 4 µl of 25 mM MgCl2, 2 µl of 0.1 M DTT, 1 µl of RNaseOUTtm (40 
U/µl), 1 µl of SuperScript® III RT (200 U/µl)). Then incubated at 50oC for 50 min, 
terminated reactions at 85oC for 5 min and followed by chilled on ice. After that, added 1 
µl of RNase H and incubated for 20 min at 37oC. Then, the sample was used as template 
for qPCR. 

Aliquots containing equal amounts of cDNA template were subjected to 
qPCR amplification on a Rotor-Gene® Q (Qiagen, Qiagen Str. 1, Hilden, Germany) using 
SensiFASTTM SYBR No-ROX Kit (Bioline Inc, Taunton, MA, USA) according to the 
manufacturer’s protocol. The primers for Scleraxis,103 Periostin,107 RANKL,108 OPG,103 
Runx2,17and GAPDH109 are listed in Table 1. All primer sequences were described in 
previous reports. Appropriate intron spanning primers for PCR amplification of all genes 
were chosen in order to avoid co-amplification of genomic DNA. The polymerase 
activation started the PCR at 95oC for 2 min, then denaturing at 95oC for 5s, following by 
annealing at a temperature optimized for each primer pair (Table 1) for 10s and an 
extension at 72oC for 20s for 35 cycles. The fluorescence data were analysed using 
Rotor-Gene Q software version 2.0.2 (Build 3) to determine Ct values. Ct values of 
interested gene were calculated in relation to GAPDH Ct values that served as an 
internal control. The internal control gene was validated that its expression was 
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unaffected by the experimental treatment. The levels of gene expression were calculated 
by the 2-ΔΔCt method. Changes in experimental groups were expressed as fold changes 
relative to the control. The efficiency for each specific primer was calculated base on the 
SYBR Green fluorescence curves and the standard dilution series by Rotor-Gene Q 
software. To ensure the presence of single amplification products, melting curves 
analysis was performed following PCR amplification to indicate the presence of a peak at 
the proper melting temperature for each gene sequence. In addition, 1.5% agarose gel 
electrophoresis of the PCR amplification products for each PCR reaction were 
performed.   

 
Table 1: Primers used for real-time PCR 

 
 
Gene 

   Product 
(BP) 

Annealing 
temperature 

(oc) 
Scleraxis 
 
Fibromodulin 
 
Periostin 
 
RANKL 
 
OPG 
 
Runx2 
 
GAPDH 

F: 5’- ACACCCAGCCCAAACAGAT-3’ 
R: 5’- TCTTTCTGTCGCGGTCCTT-3’ 
F: 5’- GGGACGTGGTCACTCTCTG-3’ 
R: 5’- CTGGGAGAGGGAGAAGAGC-3’ 
F: 5’-TGTTGCCCTGGTTATATGAG-3’ 
R: 5’-ACTCGGTGCAAAGTAAGTGA-3’ 
F: 5’-TCCCATCTGGTTCCCATAAA-3’ 
R: 5’-GGTGCTTCCTCCTTTCATCA-3’ 
F: 5’-GAAGGGCGCTACCTTGAGAT-3’ 
R: 5’-GCAAACTGTATTTCGCTCTGG-3’ 
F: 5’-CAGATGGGACTGTGGTTACTGT-3’ 
R: 5’-GTGAAGACGGTTATGGTCAAGG-3’ 
F: 5’-GCACCGTCAAGGCTGAGAAC-3’ 
R: 5’-ATGGTGGTGAAGACGCCAGT-3’ 

75 
 

93 
 

180 
 

260 
 

102 
 

169 
 

142 

60 
 

60 
 

60 
 

60 
 

62 
 

60 
 

62 

F, Forward primer; R, Reverse primer. 
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Statistical analysis 

 

All data are presented as the mean ± standard deviation for the four 
independently isolated cell preparations assessed in triplicate. The Kruskal-Wallis test 
and Mann-Whitney U-test were performed using SPSS software version 17.0 (SPSS Inc., 
Chicago, IL, USA); P < 0.05 was defined as statistically significant.  
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CHAPTER 3 
 

RESULTS 
 
Morphological analysis and characterization of PDL cells  
 

The isolated cells exhibited a spindle-shaped morphology, expressed 
Scleraxis, Fibromodulin and Periostin mRNA and had the ability to undergo calcification 
in vitro, confirming they were PDL cells (Figure 2). 
 

 
 

Fig.2: Characterization of the isolated PDL cells. (A) The cells exhibited a  spindle-
shaped cell morphology. (B) Expression of Scleraxis (SCX), Fibromodulin (FMOD) 
and Periostin (POSTN) mRNA on 1.5% agarose gel electrophoresis. (C) Alizarin 
Red staining after culture in osteogenic conditioned medium for 21 days. 

 
Effects of different vibration frequency and determination of optimal vibration 
frequency 
 

The vibration at all frequencies did not affect the viability of PDL cells 
(Figure 3A). PDL cells exposed to vibration at 30, 60 or 90 Hz had significantly 
higher levels of secreted PGE2 and RANKL mRNA expression than control cells (P 
= 0.014 and P = 0.014, respectively); however, cells exposed to all vibration 
frequencies expressed similar levels of PGE2 and RANKL (Figure 3B and 3C). 
Vibration did not significantly affect the expression of OPG mRNA (Figure 3D). 
Therefore, the RANKL/OPG ratio significantly increased at all vibration frequencies 
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(30 Hz; P = 0.013, 60 and 90 Hz; P = 0.014; Figure 3E). The frequency at 30 Hz 
was the lowest frequency that led to a significant difference in the RANKL/OPG 
ratio compared to the control, which was the optimal vibration frequency for 
combination with compressive force. 
 

 
 
Fig.3: The cell viability, PGE2 secretion and gene expression of RANKL, OPG and 

the RANKL/OPG ratio in human PDL cells after exposed to three cycles of 
vibration at 30, 60 or 90 Hz at 0.3 g for 20 min every 24 h in vitro. The 
vibration at all frequencies did not  affect the viability of PDL cells (A), PGE2 
levels (B) and RANKL mRNA expression (C) significantly increased in the 
cells exposed to any vibration frequencies compared to the control, OPG 
mRNA expression was not changed at all vibration frequencies (D), t he 
RANKL/OPG ratio significantly increased at all vibration frequencies (E). 
Values are mean ± SD of the four cell lines isolated from different individuals, 
each assessed in triplicate (*P < 0.05, Mann-Whitney U-test). 
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Effects of LMHF vibration and compressive force 
 

Compressive force and vibration combined with compressive force 
significantly reduced cell viability compared to the control (P = 0.014 and P = 0.014, 
respectively; Figure 4A). However, mechanical stimuli did not result in obvious 
morphologic changes in any treatment group (Figure 4B). 

PGE2 was increased in PDL cells exposed to mechanical stimuli - either 
30 Hz vibration or compressive force; the highest level was observed in the cells 
exposed to vibration combined with compressive force (Figure 4C). Compared to the 
control, cells exposed to compressive force and vibration combined with compressive 
force expressed significantly higher levels of RANKL (P = 0.014 and P = 0.014, 
respectively; Figure 4D), while OPG expression was not affected (Figure 4E). Therefore, 
cells exposed to compressive force and vibration combined with compressive force had 
significantly higher RANKL/OPG ratio than the control (P = 0.014 and P = 0.014, 
respectively; Figure 4F).  In addition, the RANKL/OPG ratio in the vibration combined 
with compressive force group was significantly higher than the RANKL/OPG ratio in the 
group subjected to compressive force alone (P = 0.021; Figure 4F).  

Vibration alone (30 Hz) did not affect the expression of Runx2 compared 
to the control. In contrast, compressive force and vibration combined with compressive 
force significantly downregulated Runx2 compared to control cells (P = 0.014 and P 
= 0.014, respectively; Figure 4G). 
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Fig.4: The cell viability, cell morphology, PGE2 secretion and gene expression of RANKL, 
OPG, the RANKL/OPG ratio and Runx2 in PDL cells after exposed to three cycles 
of vibration at 30 Hz at 0.3 g for 20 min every 24 h (V), 1.5 g/cm2 compressive 
force for 48 h (C), or vibration combined with compressive force (VC) in vitro. 
Compressive force and vibration combined with compressive force significantly 
reduced cell viability (A), cell morphology observed with phase contrast 
microscopy found no obvious morphologic changes of the cells in all groups (B), 
PGE2 levels (C) and RANKL mRNA expression (D) increased in the cells exposed 
to any mechanical stimuli, OPG mRNA expression was not changed in all groups 
(E), the RANKL/OPG ratio significantly increased in the cells exposed to any 
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mechanical stimuli; the highest level was observed in the cells exposed to 
vibration combined with compressive force (F), Runx2 mRNA expression was not 
changed in the cells exposed to vibration, while significantly decreased in the 
cells exposed to compressive force and vibration combined with compressive 
force (G). Values are mean ± SD of four cell lines isolated from different 
individuals, each assessed in triplicate (*P < 0.05, Mann-Whitney U-test). 
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CHAPTER 4 
 

DISCUSSION 
 

To examine the mechanism by which vibration accelerates tooth 
movement, we applied vibration in combination with compressive force to human 
PDL cells, mimicking the application of vibration on the compression side of the 
tooth during orthodontic treatment.  To the best of our knowledge, there are no 
reports on the effects of vibration in combination with compressive force on the 
production of PGE2, the RANKL/OPG ratio and Runx2 expression in human PDL 
cells. Based on the study of Kanzaki et al.,14 RANKL expression increased in a 
force-dependent manner, with the peak response observed at 2 g/cm 2 compressive 
force. We used a lower force (1.5 g/cm 2) to investigate whether vibration enhanced 
or inhibited the effects of compressive force on the RANKL/OPG ratio. In  addition, 
the effects of vibration depend on the frequency. 45 We selected the frequency at 30 
Hz as the optimal vibration frequency for combination with compressive force, 
which was the lowest frequency that led to a significant difference in the 
RANKL/OPG ratio compared to control cells. This study showed that vibration 
enhanced PGE2 secretion, RANKL and the RANKL/OPG ratio expression in 
compressed PDL cells, but had no effect on Runx2 expression.  

PDL cells may respond directly to vibration by increasing RANKL 
expression or indirectly upregulate RANKL in response to increased release of 
PGE2. A previous study reported that vibration increased RANKL and the rate of 
tooth movement in a rat model,10 implying vibration promoted the 
osteoclastogenesis and bone resorption required to initiate tooth movement. 
Therefore, the vibration-induced upregulation of PGE2 and the RANKL/OPG ratio 
observed in this study may explain the ability of vibration to accelerate tooth 
movement in clinical research.9, 11, 59 However, the vibration-induced upregulation of 
RANKL mRNA expression levels in this study does not have to indicate the 
increasing of osteoclastic resorption or orthodontic tooth movement. Further studies 
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to investigate the effects of vibration on the protein levels , the osteoclastic activities, 
and the acceleration of tooth movement in vivo are needed to confirm our findings.    

In this study, compressive force and vibration combined with 
compressive force significantly reduced cell viability but had no effect on cell 
morphology; which was similar to previous studies.110-111 Indeed, compressive force can 
be increased up to 2 g/cm2 with no any damage to the cells.112-113 Our study and 
previous reports indicated that mechanical stimuli affected cell proliferation but did not 
damage PDL cells. However, we found slightly reduced in viable cell number than the 
previous reports,110-111 which may be resulted from the loss of cell during removal of a 
glass cylinder used to generate compressive force. Moreover, the application of 
vibration in combination with compressive force did not increase the reduction in cell 
proliferation observed under compressive force alone. 

Compressive force increased PGE2 secretion and RANKL expression in 
PDL cells; which was similar to previous reports.14, 19, 103, 110 The effects of compressive 
force on the OPG expression were still controversial. In this study, compressive force 
had no significant effect on OPG expression, in agreement with previous studies.14, 112 
However, one study reported compressive force (0.5 to 4.0 g/cm2) upregulated OPG in 
human PDL cells,73 while another reported exposure to compressive force 
downregulated OPG in PDL cells.19 Overall, it appears that compressive force increases 
PGE2 secretion and upregulates RANKL in PDL cells. However, it is possible that the 
expression of OPG to compressive force depends on several factors, including force 
magnitude, duration and inter-individual variations. Further investigation using a larger 
number of samples and/or different compressive force protocols is needed to establish 
the mode of OPG production in PDL cells exposed to compressive force. 

Runx2 was downregulated after exposure to compressive force and 
vibration combined with compressive force. Currently, there are no reports on these 
effects in human PDL cells. A previous study reported static compressive force 
significantly downregulated Runx2 mRNA expression in osteoblast-like cells.114 
Moreover, Diercke et al.115 reported static compressive force significantly induced 
ephrin-A2 expresssion in PDL cells which can suppress the osteoblastogenesis gene 
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expression such as Runx2 and decrease sign of osteoblastic differentiation in 
osteoblasts. Collectively, it is possible that the application of compressive force can 
downregulates Runx2 expression and inhibited the differentiation of PDL cells into 
osteoblasts in the similar manner as in the osteoblasts.  

Vibration with various frequencies had no significant effects on the 
viability of PDL cells, in agreement with previous report in mouse osteoblast-like cells.116 
In contrast, Zhang et al.17 reported that exposure of PDLSCs to vibration periodically 
over 3 days reduced the cell proliferation as it increased cell differentiation. This 
discrepancy may be due to differences in the cell types, culture conditions and vibration 
protocols used. 

All vibration frequencies tested significantly increased PGE2 production 
and RANKL expression, but had no significant effect on OPG expression. Lau et al.54 
showed that application of vibration with the same magnitude and frequency to 
osteocytes for 1 h significantly decreased PGE2 and RANKL mRNA and protein 
expression, with had no effect on OPG. These inconsistent results may be due to cell 
types and/or different durations of vibration. The vibration-induced increases in PGE2 
expression and the RANKL/OPG ratio were similar for all frequencies tested. Further 
studies at a wider range of frequencies are necessary to evaluate if the response of PDL 
cells to vibration is frequency-dependent. PGE2 and RANKL are known to stimulate 
osteoclast formation and bone resorption;15, 84 therefore, this study indicates application 
of vibration may promote bone resorption during orthodontic treatment. In contrast, 
previous studies reported LMHF vibration enhanced bone formation in human PDLSCs,17 
mouse osteoblast-like cells116 and rat bone marrow-derived mesenchymal stromal 
cells;101 these differences may reflect the use of different research models. The PDL cells 
used in this study may respond to mechanical stimuli in a different manner to bone 
cells18, 110 or different vibration protocols may induce varied responses. Indeed, the 
response of cells to vibration may be also dependent on several other factors, such as 
the magnitude,53, 116

 frequency,17, 116-117 duration101, 118
 and schedule of mechanical 

stimuli.119 In agreement with a previous study,17 Runx2 expression slightly increased, 
though not significantly, in PDL cells exposed to vibration at 30 Hz. It is possible that the 



26 
  

 

vibration protocol used in this study was not sufficient to upregulate Runx2 expression 
and could not induce PDL cell differentiation. 

However, as the cellular response is dependent on several factors, 
additional studies with larger sample sizes and using different vibration protocols are 
necessary to confirm our findings and to define the ideal intensity and frequency of 
vibration. Indeed, other studies have reported conflicting results,12, 60 which may reflect 
variations between cell types/species and different vibration protocols. In addition, the in 
vivo responses to mechanical stimulation are likely to be more complex than the in vitro 
responses of single cell types. Further molecular studies are required to investigate the 
mechanisms underlying the cellular responses to mechanical stimulation. 

In conclusion, this research sheds light on the mechanisms by which PDL 
cells respond to vibration and vibration combined with compressive force. This study 
establishes a range of parameters for further in vitro and in vivo analyses. However, the 
vibration-induced upregulation of RANKL mRNA expression levels in this study does not 
have to indicate the increasing of biological effects. We will investigate these effects on 
the protein levels in the future work to confirm our findings. Moreover, LMHF vibration 
may indirectly induce RANKL expression via a signalling pathway related to PGE2 in 
PDL cells. We aim to investigate the effects of PGE2 on the expression of RANKL and 
characterise this transduction pathway in future work. 

 
 

 
 
 
 
 
 
 

 
 



27 
  

 

CHAPTER 5 
 

CONCLUSION 
 

LMHF vibration had no effect on the viability of PDL cells, in vitro. PDL 
cells respond directly to 30, 60 and 90 Hz vibration by increasing PGE2 production, and 
upregulating RANKL leading to a higher RANKL/OPG ratio. LMHF vibration had the 
additive effects of compressive force on PGE2 production, RANKL and the RANKL/OPG 
ratio upregulation, but had no effect on OPG and Runx2 expression.  
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Cell viability 
 

Subject No. Relative percentage of cell viability 

30 Hz 60 Hz 90 Hz 
1 100.66 ± 9.76 100 ± 7.85 106.08 ± 17.47 
2 100.67 ± 5.42 100.20 ± 6.89 105.99 ± 19.30 
3 82.07 ± 12.49  94.95 ± 1.78 98.93 ± 2.19 
4 104.51 ± 12.30 103.78 ± 8.19 102.81 ± 12.06 

Mean 96.98  99.93 103.45 
SD 10.10 3.67 3.38 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



43 
  

 

PGE2 
 

Subject No. PGE2 level per total protein (pg/mg) 

Control 30 Hz 60 Hz 90 Hz 
1 151.68 ± 1.16 196.00 ± 1.84 238.58 ± 10.78 211.31 ± 7.37 
2 16.55 ± 2.76 42.39 ± 3.42  39.70 ± 4.82 36.96 ± 0.41 
3 24.48 ± 4.33 44.15 ± 4.31 50.31 ± 1.41 42.94 ± 4.86 
4 81.30 ± 5.06 139.41 ± 9.70 325.80 ± 25.82 211.80 ± 35.85 
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RANKL 
 

Subject No. Gene expression level  
(fold change relative to control sample)  

30 Hz 60 Hz 90 Hz 
1 1.50 1.55 1.76 
2 1.78 1.66 1.20 
3 1.57 1.72 1.91 
4 1.38 1.70 1.78 

Mean 1.56 1.66 1.66 
SD 0.17 0.08 0.31 
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OPG 
 

Subject No. Gene expression level  
(fold change relative to control sample) 

30 Hz 60 Hz 90 Hz 
1 0.94 1.16 1.16 
2 0.94 0.95 0.91 
3 0.88 0.92 0.96 
4 0.87 1.02 1.12 

Mean 0.91 1.01 1.04 
SD 0.04 0.11 0.12 
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RANKL/OPG ratio 
 

Subject No. Gene expression level  
(fold change relative to control sample) 

30 Hz 60 Hz 90 Hz 
1 1.59 1.34 1.52 
2 1.89 1.74 1.32 
3 1.78 1.87 2.00 
4 1.59 1.66 1.59 

Mean 1.71 1.65 1.60 
SD 0.15 0.23 0.28 
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Cell viability 
 

Subject No. Relative percentage of cell viability 

V C VC 
1 101.77 ± 7.99 85.58 ± 2.43 89.66 ± 13.17 
2 99.64 ± 0.99 83.76 ± 6.16 78.34 ± 9.13 
3 99.88 ± 4.88 83.48 ± 2.34 87.43 ± 5.40 
4 102.11 ± 3.77 75.88 ± 2.16 74.04 ± 4.71 

Mean 100.85 82.17 82.37 
SD 1.27 4.30 7.40 
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PGE2 
 

Subject No. PGE2 level per total protein (pg/mg) 

Control V C VC 
1 81.55 ± 2.59 105.19 ± 2.00 548.56 ± 37.68 661.25 ± 39.10 
2 56.05 ± 1.54 263.47 ± 48.73  341.71 ± 41.24 584.33 ± 92.22 
3 77.84 ± 17.51 243.98 ± 24.03 429.31 ± 2.38 759.00 ± 85.60 
4 42.23 ± 9.29 104.42 ± 58.50 214.53 ± 21.61 800.95 ± 74.20 
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RANKL 
 

Subject No. Gene expression level  
(fold change relative to control sample) 

V C VC 
1 2.04 2.79 4.69 
2 1.79 2.68 3.41 
3 1.92 2.10 6.36 
4 1.48 2.46 3.52 

Mean 1.81 2.51 4.50 
SD 0.24 0.30 1.37 
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OPG 
 

Subject No. Gene expression level  
(fold change relative to control sample) 

V C VC 
1 1.29 1.23 1.48 
2 0.83 1.15 0.87 
3 0.91 1.43 1.41 
4 1.28 1.29 1.32 

Mean 1.08 1.28 1.27 
SD 0.24 0.12 0.28 
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RANKL/OPG 
 

Subject No. Gene expression level  
(fold change relative to control sample) 

V C VC 
1 1.58 2.27 3.17 
2 2.16 2.33 3.92 
3 2.11 1.47 4.51 
4 1.16 1.90 2.67 

Mean 1.75 1.99 3.57 
SD 0.47 0.40 0.81 
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Runx2 
 

Subject No. Gene expression level  
(fold change relative to control sample) 

V C VC 
1 0.98 0.71 0.62 
2 1.15 0.87 0.85 
3 1.15 0.69 0.60 
4 0.95 0.85 0.91 

Mean 1.06 0.78 0.74 
SD 0.11 0.09 0.16 
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