Final Report

Study of glutamate decarboxylase gene from GABA-producing lactic acid bacteria isolated from Kung-Som, the traditional Thai fermented shrimp

Investigator

Suppasil Maneerat

Department of Industrial Biotechnology
Faculty of Agro-Industry
Prince of Songkla University

This research project was supported by Prince of Songkla University, Thailand, for the fiscal year of 2013-2014 (Grant No. AGR560008S)

2015
ACKNOWLEDGEMENTS

This study was financially supported by Prince of Songkla University, Thailand, for the fiscal year of 2013-2014 (Grant No. AGR560008S).

Suppasil Maneerat
ABSTRACT

Kung-Som is one of several traditional Thai fermented shrimp products, especially popular in the southern part of Thailand. This is the first report to reveal the bacterial communities in the finished product of *Kung-Som*. Ten *Kung-Som* samples were evaluated using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methodology combined with appropriated primers to study the dynamics of the bacterial population. Two primers sets (V3; 341f(GC)-518r and rpoB; rpoB1698f(GC)-rpoB2014r primers) were considered as a possible tool for study the communities of bacteria. PCR-DGGE analysis of both the V3-region and rpoB amplicon was successfully applied to discriminate between lactic acid bacteria (LAB) and other Gram positive strains in the bacterial communities of *Kung-Som* products. These preliminary results concluded that the main microbiology of finished product of *Kung-Som* was LAB and coagulase negative cocci (CNC).

Kung-Som presents a high glutamic acid which is a major substrate for biosynthesis of natural γ-aminobutyric acid (GABA) by LAB. The GABA-producing LAB from *Kung-Som* products were isolated, screened and identified. The strain CS3 showed the highest GABA-producing ability among the screened strains. Based on an API-CHL50 fermentation and phylogenetic trees of 16S rDNA sequence, the strain CS3 belonged to genus *Lactobacillus futsaii*. Newly *L. futsaii* CS3 with high GABA-synthesizing capacity was first discovered in the present report. The open reading frame (ORF) of glutamate decarboxylase (*gad*) gene was cloned by PCR. It was 1,410 bp encoding a polypeptide of 469 amino acids. In addition, the non-crystallization structure of *L. futsaii* CS3 glutamate decarboxylase enzyme (GAD) was also predicted by SWISS-MODEL server. The entire ORF sequence of *gad* gene was cloned into pColdI expression vector and expressed in *Escherichia coli* BL21 (DE3). The *gad* gene with His6-Tag was expressed. The recombinant GAD was purified using a Ni-NTA column. SDS-PAGE analysis revealed that it had a molecular weight of approximately 53 kDa, which corresponded to the predicted size of the deduced protein (53.64 kDa). The results of these findings offer a way of replacing chemical GABA by natural GABA in fermented foods or functional foods. Moreover, it preliminary provides useful details for development of the molecular mechanism regulating GABA metabolism in valuable LAB.
บทคัดย่อ

กุ้งส้มเป็นอาหารหมักชนิดหนึ่งที่นิยมบริโภคกันมากในภาคใต้ของประเทศไทย งานวิจัยครั้งนี้ศึกษาความหลากหลายของแบคทีเรียในผลิตภัณฑ์กุ้งส้ม โดยสุ่มเก็บตัวอย่างกุ้งส้มจากตลาดในจังหวัดสงขลา จำนวน 10 ตัวอย่าง นำมาวิเคราะห์โดยใช้เทคนิค PCR-DGGE ร่วมกับการใช้ primer 2 คู่ที่ต่ำแหน่ง V3 ของ 16S rDNA และอีก one rpoB เพื่อศึกษาประสิทธิภาพของ primer ทั้ง 2 คู่ในการจำแนกชนิดของแบคทีเรียในกุ้งส้ม จากการตรวจวิเคราะห์พบว่า ตำแหน่ง V3 ของ 16S rDNA และอีก rpoB สามารถแยกแยะความแตกต่างระหว่างแบคทีเรียแลกติกและแบคทีเรียแกรมบวกอื่นๆในกุ้งส้มได้ และพบว่าผลิตภัณฑ์กุ้งส้มประกอบไปด้วย แบคทีเรียกลุ่มแลกติกและกลุ่ม coagulase negative coccii เช่น Staphylococcus piscifermantans เป็นต้น

กุ้งส้มประกอบไปด้วยกรดอะมิโนกลูตามิกสูง ซึ่งแบคทีเรียแลกติกสามารถใช้กรดกลูตามิกเป็นสับสเตรสน์ในการสังเคราะห์สารกาบาได้ ดังนั้นงานวิจัยชิ้นนี้ได้ทำการแยกและคัดเลือกแบคทีเรียแลกติกที่มีความสามารถในการผลิตสารกาบาจากกุ้งส้ม พบว่าแบคทีเรียแลกติกสายพันธุ์ CS3 ผลิตสารกาบาได้สูงที่สุด เมื่อนำมาจัดแซกเมาท์เป็นลูกกวาด (宓หมักน้ำตาล) และแทนหน้าในเซลล์ (การสังเคราะห์ในอินเวลู) พบว่า จัดเป็นสายพันธุ์ Lactobacillus futsaii ซึ่งมีความสามารถในการงอกในเซลล์ของ Lactobacillus ซึ่งส่งผลให้สารกาบานั้นกระจายออกไปได้ ผลการคัดเลือกสายพันธุ์ให้สารกาบาได้สูงที่สุด ทีมวิจัยได้คัดเลือกสายพันธุ์ CS3 เพื่อทำการสร้างโมเดลเพื่อใช้เป็นของชีวภาพในอุตสาหกรรมอาหารได้ ผลการทดลองดังกล่าวสามารถใช้เป็นข้อมูลพื้นฐานในการประยุกต์ใช้แบคทีเรียแลกติกสายพันธุ์ CS3 เพื่อทดแทนการใช้สารหลิปซัลซ์ในอุตสาหกรรมอาหารได้
CONTENTS

<table>
<thead>
<tr>
<th>Acknowledgements</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>ii</td>
</tr>
<tr>
<td>Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of tables</td>
<td>v</td>
</tr>
<tr>
<td>List of figures</td>
<td>vi</td>
</tr>
<tr>
<td>Abbreviations</td>
<td>1</td>
</tr>
</tbody>
</table>

CHAPTER

1. Introduction and review of literature
 - Introduction | 2 |
 - Literature review | 3 |
 - Objectives | 41 |

2. Evaluation of bacterial community in Kung-som using rpoB gene and V3 region of 16S rDNA analysis by PCR-DGGE technique
 - Abstract | 42 |
 - Introduction | 43 |
 - Materials and Methods | 44 |
 - Results and Discussion | 46 |
 - Conclusion | 53 |

3. Isolation and cloning of a novel glutamate decarboxylase gene from a newly GABA-producing lactic acid bacteria, Lactobacillus futsaii CS3
 - Abstract | 54 |
 - Introduction | 55 |
 - Materials and Methods | 56 |
 - Results | 60 |
 - Discussion | 69 |
 - Conclusion | 72 |

4. Conclusion and Suggestion
 - References | 73 |
 - Appendix | 96 |
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Production of GABA by different microorganisms isolated from various sources</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>The properties of lactic acid bacterial glutamate decarboxylases</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>PCR primers used for DGGE analysis of DNA from microbial communities directly extracted from foods</td>
<td>32</td>
</tr>
<tr>
<td>4</td>
<td>Biochemical characterization of the strain CS3 and CS5 using API 50 CHL fermentation strips</td>
<td>62</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Structure of GABA</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Decarboxylation of L-glutamate to GABA by glutamate decarboxylase (GAD)</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>GAD activity cycle of interconversion of apoenzyme and holoenzyme.</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>The pH value and titratable acidity of Kung-Som samples.</td>
<td>47</td>
</tr>
<tr>
<td>5</td>
<td>DGGE profiles (A) and the phylogenetic tree based on V3-region on 16S rDNA (B) of the bacteria community obtained from DNA directly extracted from Kung-Som samples.</td>
<td>48</td>
</tr>
<tr>
<td>6</td>
<td>DGGE profiles (A) and the phylogenetic tree based on rpoB gene (B) of the bacteria community obtained from DNA directly extracted from Kung-Som samples.</td>
<td>51</td>
</tr>
<tr>
<td>7</td>
<td>TLC chromatogram of GABA production by the isolated LAB (A) and HPLC chromatogram of MSG and GABA in the media (B).</td>
<td>61</td>
</tr>
<tr>
<td>8</td>
<td>Neighbour-joining tree comprising 16S rDNA sequences of strain CS3 and recognized Lactobacillus species.</td>
<td>63</td>
</tr>
<tr>
<td>9</td>
<td>Growth of Lactobacillus futsaii CS3 in MRS broth containing 20.5 mg/ml MSG, GABA production, and the changes in broth pH and lactic acid content.</td>
<td>64</td>
</tr>
<tr>
<td>10</td>
<td>The presence of approximate 1.4 kb of the gad gene from Lactobacillus futsaii CS3.</td>
<td>65</td>
</tr>
<tr>
<td>11</td>
<td>Nucleotide and deduced amino acid sequence of the Lactobacillus futsaii CS3 gadB gene.</td>
<td>65</td>
</tr>
<tr>
<td>12</td>
<td>Alignment of the amino acid sequence of Lactobacillus futsaii CS3 gadB with gadB proteins from other LAB.</td>
<td>67</td>
</tr>
<tr>
<td>13</td>
<td>Cartoon representation of the homology model of the gadB monomer at low pH.</td>
<td>68</td>
</tr>
<tr>
<td>14</td>
<td>SDS-PAGE analysis of the expression and purification of recombinant GAD protein in E. coli BL21 (DE3).</td>
<td>69</td>
</tr>
</tbody>
</table>
ABBREVIATIONS

A. = Aerococcus
B. = Bacillus
E. = Escherichia
Ent. = Enterococcus
Le. = Lactococcus
L. = Lactobacillus
Leu. = Leuconostoc
Ped. = Pediococcus
Ps. = Pseudomonas
S. = Staphylococcus
Sac. = Saccharomyces
Strep. = Streptococcus
Tetra. = Tetragenococcus
V. = Vibrio
W. = Weissella
CHAPTER 1
INTRODUCTION AND REVIEW OF LITERATURE

Introduction

Nowadays, the consumers pay a lot of attention to the relation between food and health. As a consequence, the market for foods with health-promoting properties, so called functional foods, has shown a remarkable growth over the last few years. All of these, gamma-aminobutyric acid (GABA) is one of substances that has several physiological functions and hence has a great application potential in functional foods. However, the direct addition of chemical GABA to food is regarded as unnatural and unsafe and is still illegal in Korea (Seok et al., 2008; Kim et al., 2009).

Kung-Som is one of Thai fermented foods that made from shrimp, sugar, salt and water (Hwanhlem et al., 2010) and is fermented with the natural microbial flora. The microbiology of *Kung-Som* is mainly lactic acid bacteria (LAB). Generally, LAB play a central role in fermentation processes, and have a long and safe history of application and consumption in the production of fermented foods and beverages (Leroy and Vuyst, 2004). In addition, LAB have been used as probiotics due to their properties and also protect foods by controlling the food spoilage pathogens by secreting acids, conjugated linoleic acid, vitamin, aroma compounds, bacteriocins, exopolysaccharides, GABA and enzymes (Djenane et al., 2005; Li and Cao, 2010; Dhakal et al., 2012). Therefore, the use of GABA-producing LAB strains as starter cultures in fermentation processes can help to achieve biosynthetic production of the GABA, safety and many special physiological activities. This provides a way of replacing chemical GABA by natural GABA, at the same time offering the consumer with new, attractive food products. This reduces the production cost because of the omission the extra addition of GABA (Leroy and Vuyst, 2004; Li and Cao, 2010; Dhakal et al., 2012).

The biosynthesis of GABA is one step reaction of decarboxylating glutamate to GABA, catalyzed by glutamate decarboxylase enzyme (GAD). GAD acts as the essential enzyme for GABA production and needs a pyridoxal 5'-phosphate (PLP) as a cofactor. The glutamic acid or glutamate acts as a major substrate for biosynthesis of natural GABA by LAB. Fortunately, glutamic acid might be greatly found in Kung-Som products because shrimp contains a rich source of glutamic acid (Daul et al., 1994). Therefore, the development of Kung-Som containing GABA to contribute functional properties will be actively studied. However, the studies on GABA-producing LAB in Kung-Som have not been reported yet. Moreover, a few reports on the biochemical and molecular properties of
GAD have been published. Consequently, in this study we focused on the use of the hypervariable V3-region on the 16S rDNA and \textit{rpoB} gene by using PCR-DGGE techniques as a tool to reveal the bacteria that commonly develop in the \textit{Kung-Som} product. In addition, we isolated, screened and identified the newly GABA-producing LAB from \textit{Kung-Som} products. Furthermore, the existence of \textit{gad} gene from novel strain was also investigated for cloning and expression of the GAD protein combined with cold shock vector in \textit{E. coli} system. These preliminary results may provide useful information for the potential expression of LAB \textit{gad} gene in other microbes. It will further expand the application area of GABA-producing LAB to significantly enhance GABA production and value added of products in further studies.
Review of Literature

1. Bacterial community in a Thai traditional fermented foods

Fermentation is an ancient technique to preserve foods due to the inhibitory effect toward many microorganisms. It is undergoes relevant changes in the physico-chemical characteristics of raw material to product (Hutkins, 2006). Kung-Som is one of Thai fermented foods that made from shrimp, sugar, salt and water (Hwanhlem et al., 2010) and is fermented with the natural microbial flora at room temperature for 5-7 days according to family or local geographic preferences, especially in the southern parts of Thailand such as Nakhon Si Thammarat, Satun, Songkhla and Phatthalung Provinces. The microbiology of Kung-Som is various and complex. Many strains of microorganisms have already been isolated from Kung-Som by traditional methods. These microorganisms are mainly lactic acid bacteria (LAB).

Hwanhlem et al. (2010) isolated and screened LAB from Kung-Som at various fermentation periods. The results showed that only 274 isolates were identified as LAB using the criteria of being Gram positive and catalase negative. Of these 274 isolates, 120 isolates were cocci; 111 isolates were short rods and 43 isolates were rods. L. plantarum D10SM20, D8SM21, D10SM16 and D6SM3 as probiotics were screened from Kung-Som.

Miyashita et al. (2012) investigated the variety of LAB in fermented foods in Thailand. The 945 strains were isolated from 114 varieties of fermented foods from the northeastern, central and southern parts of the northern Thailand. The results showed that the isolates were divided into 50 groups of six genera: Aerococcus, Enterococcus, Lactobacillus, Pediococcus, Tetragenococcus and Weissella. Only one strain belonging to the genus Aerococcus showed sequence similarity to A. viridans. Forty-six strains were assigned to the genus Enterococcus. They were divided into six groups to which they were closely related, namely, Ent. avium, Ent. faecalis, Ent. faecium, Ent. hirae, Ent. thailandicus, Ent. gilvus and Ent. raffinosus. They sorted 309 strains belonging to the genus Lactobacillus showed sequence similarity to L. acidipiscis, L. alimentarius, L. brevis, L. collinoides, L. crустorum, L. curvatus, L. farciminis, L. fermentum, L. futsaii, L. namurensis, L. nantensis, L. pantheris, L. paracasei, L. paralimentarius, L. plantarum, L. pobuzihi, L. saerimneri, L. senioris and L. versmoldensis. Thirty-eight strains were classified in the genus Pediococcus (Ped. acidilactici and Ped. pentosaceus). Four isolates were classified in Tetra. halophilus. Twelve strains belonging to the genus Weissella were divided into five species, namely, W. cibaria, W. confusa, W. paramesenteroides, W. thailandensis and W. viridescens.
Additionally, in Pla-som, traditional Thai fermented fish, in early stages of the process were dominated by the presence of Lc. garvieae, Strep. bovis and W. cibaria. At 48 h of fermentation, W. cibaria, Ped. pentosaceus, L. fermentum and L. plantarum were prevalent, and gave way to a dominance of L. plantarum that completed the fermentation (Kopermsub and Yunchalard, 2010). Also, Strep. salivarius, Ent. faecalis (Hwanhlem et al., 2011), L. plantarum, L. acidophilus, L. fermentum and L. pentosus were found in these products (Panthavee et al., 2007).

In addition, Tetra. halophilus, Ent. faecalis, Ent. hirae, Lactobacillus sp., L. farciminis, L. pentosus, L. plantarum and Leuconostoc sp. were reported to be distributed in Nam-pla, Budu, Tai-pla, Pla-ra, Pla-chom, Kung-chom, and Hoi-dong products (Tanasupawat and Daengsubha, 1983; Tanasupawat et al., 1991; 1992a; b; c; 1998). Also, Salinivibrio species are generally isolated bacteria from fermented fish (Pla-ra) (Chamroensaksri et al., 2009).

Jaichumjai et al. (2010) also isolated and screened L. plantarum BCC9546 from Nham and used as the starter culture for Nham production. The type of microflora that develops is related to the fermentation time and raw materials. Mostly, lactobacillus species were the dominant LAB in the last stage of fermentation because they produce acid more slowly than cocci, but were more tolerant to acid than cocci (Moha Adnan and Tan, 2007; Kopermsub and Yunchalard, 2010; Hwanhlem et al., 2011). In addition, lactobacilli have been reported to exhibit probiotic properties (Papamanoli et al., 2003; Klingberg et al., 2005; Schillinger et al., 2005; Maragkoudakis et al., 2006). These varies between recipes depending on an initial food matrix, fermentation process, personal hygiene, local tradition or local geographic preferences, which are crucial factor to select for the growth of specific microbial communities.

In spontaneous fermented foods, LAB are widely distributed in nature and occur naturally as indigenous microflora. During the fermentation, LAB utilize carbohydrate substrates available in the fermentation system and produce organic acids, especially lactic acid as primary metabolites (Paludan-Müller et al., 2002) and also make a low pH value (4.0-5.9) (Hugas and Monfort, 1997; Riebroy et al., 2004). Moreover, many kinds of important products including conjugated linoleic acid, vitamins, aroma compounds, bacteriocins, exopolysaccharides, GABA and enzymes can be also produced as secondary metabolites by LAB. LAB is not only contributed to the taste, flavor, texture, the pleasant sensory profile and give a certain added value of the end product but also lower the product's pH which is one of the key factors to ensure quality and safety. Thus, LAB can
prolong the shelf life of foods. LAB possess special physiological activities and are generally regarded as safe (GRAS), and have been extensively utilized in food industries such as dairy products, cheeses, bread, fermented vegetables, meats, shrimp and fish, etc. (Cocolin et al., 2000; 2001c; 2004; Leroy and Vuyst 2004; Rantsiou et al., 2005a; c; Fontana et al., 2005a; b; Visessanguan et al., 2006; Lee et al. 2006; Yan et al., 2008; Randazzo et al., 2009; Karahan et al., 2010; Kopermsub and Yunchalard, 2010). Also, LAB have been used as probiotics due to their properties such as immunomodulation, inhibition of pathogenic bacteria, control of intestinal homeostasis, resistance to gastric acidity, bile acid resistance, and anti-allergic activity (Tuohy et al., 2003; Tannock, 2004; Nishida et al., 2008; Hwanhlem et al., 2010; Li and Cao, 2010).

On the other hand, many studies reported that not only LAB are important role in fermentation but also the coagulase-negative staphylococci (CNS) participate in the development of aroma, flavor, and color of fermented products, such as cassava fish (Anihouvi et al., 2007), Pla-som (Riebroy et al., 2004), Pla-ra (Tanasupawat et al., 1992b) and fermented meat or sausages (Cocolin et al., 2001b; 2004; Fontana et al., 2005a; b; Leroy and Vuyst 2004; Rantsiou et al., 2005b; c; Rantsiou and Cocolin, 2006). Also, the catalase positive cocci S. carnosus and S. piscifermentans were reported to be distributed in Nam-pla, Budu, Tai-pla, Pla-ra, Pla-chom, Kung-chom and Hoi-dong products (Tanasupawat and Daengsubha, 1983; Tanasupawat et al., 1991; 1992a; b; c; 1998).

The use of LAB and CNS as starter cultures are potential applied in fermented foods. Moreover, starter cultures LAB can produce some secondary metabolites as GABA which the potential as a bioactive component in foods and pharmaceuticals. Thus, the development of function foods containing GABA has been actively pursued. In recent years, many studies have been focused on the GABA production by using LAB (Kim et al., 2009; Coda et al., 2010; Di Cagno et al., 2010; Thwe et al., 2011; Cho et al., 2011; Kim and Kim, 2012). Therefore, the GABA-producing LAB is much interested in the field of fermented foods for a value added of products and help health benefits.

2. The GABA production by lactic acid bacteria in fermented foods

GABA is a four carbon, a non-protein amino acid (Fig.1) that is widely distributed in nature among microorganisms, plants and animals (Ueno, 2000). GABA is synthesized through the α-decarboxylation of L-glutamic acid in a reaction catalyzed by glutamate decarboxylase enzyme (GAD, EC 4.1.1.15) linked to the Kreb’s cycle (Ueno, 2000; Komatsuzaki et al., 2008).
Nowadays, GABA is used considerably in functional foods and pharmaceuticals, and massively as a major active constitutes in several foods. GABA acts as the major inhibitory neurotransmitters in the central nervous system in mammalian brains. Clinical studies have related increased intake of GABA or analogues to several health benefits, including lowering of blood pressure of mildly hypertensive animals (Hayakawa et al., 2004) and humans (Inoue et al., 2003). GABA also improves the plasma concentration, growth hormones and the protein synthesis in the brain (Cho et al., 2007), but inhibits small airway-derived lung adenocarcinoma (Choi et al., 2006). Furthermore, GABA intake could help treat various neurological disorders such as seizures, Parkinson's disease, stiff-man syndrome, schizophrenia, tranquilizing, diuretic, sleeplessness, depression, autonomic disorders (Okada et al., 2000; Wong et al., 2003) and chronic alcohol-related symptoms (Oh et al., 2003). Hagiwara et al. (2004) reported that GABA strongly induced insulin secretion from the pancreas, therefore, effectively preventing diabetics (Adeghate and Ponery, 2002). In addition, the pancreatic β-cell can also produce GABA and exhibit high level of GAD activity (Okada et al., 1976; Gilon et al., 1991). GABA intake can regulate sensations of pain and anxiety and lipid levels in serum (Kono and Himeno, 2000; Miura et al., 2006). Furthermore, consumption of GABA-enriched foods can inhibit cancer cell proliferation (Park and Oh, 2007b) and improve memory and the learning abilities (Miura et al., 2006). Because of its physiological functions, GABA has been classified as a bioactive component in foods and pharmaceuticals. Generally, sufficient amounts of GABA can be produced in the human body. However, GABA production is sometimes inhibited by a lack of estrogen, zinc, or vitamins, or by an excess of salicylic acid and food additives (Oh et al., 2003; Cho et al., 2011).

2.1 Isolation source and GABA-producing LAB species

A number of microorganisms of bacteria, yeast and fungi have been reported to produce GABA (Komatsuzaki et al., 2005). Recent studies, the most interesting and practical group of bacteria for GABA production is LAB, which produce high levels of GABA (Kim and Kim, 2012; Seo and Lee, 2013; Ratanaburee et al., 2013). LAB possess
special physiological activities and are generally regarded as safe, and have been extensively utilized in food industries for a long time (Leroy and Vuyst, 2004; Yan et al., 2008; Karahan et al., 2010). It is clear that the GABA production by LAB is natural and safe. LAB also are some of the most commonly used microorganisms in food fermentation, and have been used not only in natural fermentation, but also often used as a starter culture to accelerate the fermentation time and consistency products. The primary function of LAB in fermentation system is to convert carbohydrates to several desired metabolites such as mainly lactic acid, acetic acid, alcohol and carbon dioxide. Moreover, LAB are capable of producing: amino acids and peptides as a result of proteolysis; lactate, bacteriocin and GABA as secondary metabolites. Some strains of LAB can catalyze the decarboxylation of glutamate, resulting in the release of the end products GABA and CO₂ (Fig.2) (Dhakal et al., 2012).

![Figure 2 Decarboxylation of L-glutamate to GABA by glutamate decarboxylase (GAD).](source)

The GABA-producing LAB is mostly isolated from several fermented foods as previous reports. To date, *L. brevis* was isolated from many fermented foods, including, kimchi (Lee et al., 2010; Cho et al., 2011), Chinese traditional paocai (Li et al., 2008; Li et al., 2010b), fresh milk (Jiang et al., 2006; Huang et al., 2007a), cheeses (Siragusa et al., 2007) and fermented fish (Thwe et al., 2011). *L. farciminis* was also isolated from fermented fish (Thwe et al., 2011). *L. delbrueckii* subsp. *bulgaricus* was isolated from cheeses (Siragusa et al., 2007) and yoghurt (Watanabe et al., 2011). *Strep. thermophilus* was also isolated from yoghurt (Watanabe et al., 2011). *L. paracasei* was isolated from fermented fish (Komatsuzaki et al., 2005) and cheese (Siragusa et al., 2007). *L. plantarum* was isolated from cheeses (Siragusa et al., 2007; Coda et al., 2010; Di Cagno et al., 2010), fermented fish (Thwe et al., 2011) and fermented red seaweed beverage (Ratanaburee et al., 2011). *L. acidophilus* was also isolated from fermented red seaweed beverage (Ratanaburee et al., 2011). *L. buchneri* was isolated from kimchi (Cho et al., 2011). *L. helveticus* was isolated from fermented mare milk (*Koumiss*) (Sun et al., 2009). In addition, *Lc. lactis* was
isolated from cheeses (Siragusa et al., 2007; Rizzello et al., 2008), kimchi and yoghurt (Lu et al., 2008; 2009). Recently, the novel strain of _Leuconostoc_ species (_Leuconostoc_ NC5) was screened and selected with the GABA production from fermented shrimp (_Cincaluk_) (Farrah et al., 2009). In addition, two species of _Leuconostoc_ (_Leuc. mesenteroides_ and _Leuc. lactis_) and one species of _Weissella_ (_W. viridescens_) were isolated and screened from kimchi, with the capacity to synthesize GABA under _in vitro_ conditions (Kim and Kim, 2012). Currently, _Lactobacillus namurensis_ was isolated from nham (Ratanaburee et al., 2013). Also, _Lactobacillus zymae_ was isolated from kimchi (Park et al., 2014). Additionally, other GABA-producing LAB including _Pediococcus_ (_Ped. acidilactici_ and _Ped. pentosaceus_) and _Enterococcus_ (_Ent. durans_, _Ent. faecalis_ and _Ent. faecium_) have been slight reported (Chamba and Irlinger, 2004; Ratanaburee et al., 2013). Mostly, _Lactobacillus_ species were reported as GABA-producing LAB which are the dominant LAB in the last stage of fermentation because they produce acid more slowly than cocci, but were more tolerant to acid than cocci (Mohd Adnan and Tan, 2007; Hwanhlem et al., 2010). Table 1 shows the production of GABA synthesized by different species of LAB isolated from various sources of fermented foods. Although, these LAB strains have already been isolated and identified, further research on isolation and characterization of the LAB is needed because various types of GABA-producing LAB are important for the food industry and also getting a huge attention (Komatsuzaki et al., 2005).
<table>
<thead>
<tr>
<th>Strains</th>
<th>Isolation source</th>
<th>Culture medium</th>
<th>GABA production</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lc. lactis subsp. lactis 017</td>
<td>Cheese starter</td>
<td>Skim milk</td>
<td>2700 mg/l</td>
<td>Nomura et al. (1998)</td>
</tr>
<tr>
<td>L. brevis IFO-12005</td>
<td>Kimchi</td>
<td>Rice shochu distillery lees (Kome shochu kusu) + 10.5 mM MSG</td>
<td>1049.8 mg/l</td>
<td>Yokoyama et al. (2002)</td>
</tr>
<tr>
<td>L. paracasei NFR17415</td>
<td>Fermented fish</td>
<td>MRS medium + 500 mM MSG</td>
<td>31145.3 mg/l</td>
<td>Komatsuzaki et al. (2005)</td>
</tr>
<tr>
<td>L. brevis OPY-1 (KFCC 11337)</td>
<td>Kimchi</td>
<td>MRS medium + 5% MSG</td>
<td>825.3 mg/kg</td>
<td>Park and Oh (2005)</td>
</tr>
<tr>
<td>L. brevis OPK-3 (KFCC 11330)</td>
<td>Kimchi</td>
<td>MRS medium + 5% MSG</td>
<td>2023 mg/l</td>
<td>Park and Oh (2005)</td>
</tr>
<tr>
<td>L. brevis GABA057</td>
<td>NP</td>
<td>GYP medium + MSG</td>
<td>23381.0 mg/l</td>
<td>Choi et al. (2006)</td>
</tr>
<tr>
<td>L. brevis hjxj-01</td>
<td>Fresh milk</td>
<td>GYP medium + MSG</td>
<td>7000 mg/l</td>
<td>Jiang et al. (2006)</td>
</tr>
<tr>
<td>L. brevis</td>
<td>Fresh milk</td>
<td>GYP medium + MSG</td>
<td>4599.2 mg/l</td>
<td>Huang et al. (2007b)</td>
</tr>
<tr>
<td>L. buchneri MS</td>
<td>Kimchi</td>
<td>MRS broth + 5% MSG</td>
<td>25883.12 mg/l</td>
<td>Cho et al. (2007)</td>
</tr>
<tr>
<td>L. brevis BH2</td>
<td>Kimchi</td>
<td>MRS broth + MSG</td>
<td>19902.2 mg/l</td>
<td>Kim et al. (2007)</td>
</tr>
<tr>
<td>Strains</td>
<td>Isolation source</td>
<td>Culture medium</td>
<td>GABA production</td>
<td>References</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>L. plantarum C48</td>
<td>Cheeses</td>
<td>MRS medium + MSG</td>
<td>NP</td>
<td>Siragusa et al. (2007)</td>
</tr>
<tr>
<td>L. paracasei PF6</td>
<td>Cheeses</td>
<td>MRS medium + MSG</td>
<td>NP</td>
<td>Siragusa et al. (2007)</td>
</tr>
<tr>
<td>L. brevis PM17</td>
<td>Cheeses</td>
<td>MRS medium + MSG</td>
<td>NP</td>
<td>Siragusa et al. (2007)</td>
</tr>
<tr>
<td>L. delbrueckii subsp. bulgaricus PR1</td>
<td>Cheeses</td>
<td>MRS medium + MSG</td>
<td>NP</td>
<td>Siragusa et al. (2007)</td>
</tr>
<tr>
<td>Lc. lactis PU1</td>
<td>Cheeses</td>
<td>M17 medium + MSG</td>
<td>NP</td>
<td>Siragusa et al. (2007)</td>
</tr>
<tr>
<td>Strep. salivarius subsp. thermophilus Y2</td>
<td>NP</td>
<td>Nutrient medium + MSG</td>
<td>6000 mg/l</td>
<td>Yang et al. (2006)</td>
</tr>
<tr>
<td>L. brevis</td>
<td>Paocai</td>
<td>MRS medium + MSG</td>
<td>15370.0 mg/l</td>
<td>Li et al. (2008)</td>
</tr>
<tr>
<td>Lc. lactis subsp. lactis B</td>
<td>Kimchi and yoghurt</td>
<td>Brown rice juice, germinated soybean juice and skim milk (33:58:9, v/v/v)</td>
<td>6410 mg/l</td>
<td>Lu et al. (2008)</td>
</tr>
<tr>
<td>Lc. lactis subsp. lactis PU1</td>
<td>Cheese</td>
<td>Wheat flour</td>
<td>258.71 mg/kg</td>
<td>Rizzello et al. (2008)</td>
</tr>
<tr>
<td>Lactobacillus sp. OPK 2-59</td>
<td>Kimchi</td>
<td>Medium + MSG</td>
<td>180 mg/kg</td>
<td>Seok et al. (2008)</td>
</tr>
<tr>
<td>Strains</td>
<td>Isolation source</td>
<td>Culture medium</td>
<td>GABA production</td>
<td>References</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Lc. lactis subsp. lactis</td>
<td>Chinese cabbage Kimchi</td>
<td>Brown rice juice, germinated soybean juice, and skim milk (33: 58: 9, v/ v/ v) and MSG</td>
<td>72 00 mg/l</td>
<td>Lu et al. (2009)</td>
</tr>
<tr>
<td>L. brevis GABA 100</td>
<td>Kimchi</td>
<td>Black raspberry juice</td>
<td>13000 mg/l</td>
<td>Kim et al. (2009)</td>
</tr>
<tr>
<td>L. helveticus ND01</td>
<td>Koumiss (fermented mare milk drink)</td>
<td>Fermented skim milk</td>
<td>165.11 mg/l</td>
<td>Sun et al. (2009)</td>
</tr>
<tr>
<td>Leuconostoc NC5</td>
<td>Fermented shrimp (Cincaluk)</td>
<td>MRS medium + 50 mM MSG</td>
<td>292.86 mg/l</td>
<td>Farrah et al. (2009)</td>
</tr>
<tr>
<td>L. brevis NCL912</td>
<td>Paocai</td>
<td>Nutrient broth + 500 mM MSG</td>
<td>35662.0 mg/l</td>
<td>Li et al. (2010b)</td>
</tr>
<tr>
<td>L. plantarum DSM19463</td>
<td>Cheeses</td>
<td>Grape must/whey milk/MRS</td>
<td>498.1 mg/l</td>
<td>Di Cagno et al. (2010)</td>
</tr>
<tr>
<td>L. plantarum C48</td>
<td>Cheeses</td>
<td>Buckwheat, amaranth, chickpea and quinoa flours (1:1:5.3:1)</td>
<td>504 mg/kg</td>
<td>Coda et al. (2010)</td>
</tr>
<tr>
<td>L. brevis BJ20</td>
<td>Kimchi</td>
<td>MRS medium + 1% MSG</td>
<td>2,465 mg/l</td>
<td>Lee et al. (2010)</td>
</tr>
<tr>
<td>Strains</td>
<td>Isolation source</td>
<td>Culture medium</td>
<td>GABA production</td>
<td>References</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>L. plantarum F311</td>
<td>Fermented fish</td>
<td>GYP medium + 5% MSG</td>
<td>82289.76 mg/l</td>
<td>Thwe et al. (2011)</td>
</tr>
<tr>
<td>L. farcininis D323</td>
<td>Fermented fish</td>
<td>GYP medium + 5% MSG</td>
<td>10054.2 mg/l</td>
<td>Thwe et al. (2011)</td>
</tr>
<tr>
<td>L. buchneri</td>
<td>Mukeunjee kimchi</td>
<td>MRS medium + 50 mM MSG</td>
<td>601.19 mg/l</td>
<td>Cho et al. (2011)</td>
</tr>
<tr>
<td>L. brevis</td>
<td>Mukeunjee kimchi</td>
<td>MRS medium + 50 mM MSG</td>
<td>202.12 mg/l</td>
<td>Cho et al. (2011)</td>
</tr>
<tr>
<td>L. plantarum DW12</td>
<td>Fermented red seaweed</td>
<td>MRS medium + 0.5% MSG</td>
<td>4156 mg/l</td>
<td>Ratanaburee et al. (2011)</td>
</tr>
<tr>
<td>L. acidophilus YA031</td>
<td>Fermented red seaweed</td>
<td>MRS medium + 0.5% MSG</td>
<td>4144 mg/l</td>
<td>Ratanaburee et al. (2011)</td>
</tr>
<tr>
<td>L. senmaizukei L-13</td>
<td>Senmaizuke (pickle)</td>
<td>GYP medium + MSG</td>
<td>80000 mg/l</td>
<td>Oda and Hiraga (2011)</td>
</tr>
<tr>
<td>L. delbrueckii subsp. bulgaricus IAM1120</td>
<td>Yoghurt</td>
<td>GYP medium + 1% MSG</td>
<td>less than 200 mg/l</td>
<td>Watanabe et al. (2011)</td>
</tr>
<tr>
<td>Strep. thermophilus IFO13957</td>
<td>Yoghurt</td>
<td>GYP medium + 1% MSG</td>
<td>less than 200 mg/l</td>
<td>Watanabe et al. (2011)</td>
</tr>
<tr>
<td>Strains</td>
<td>Isolation source</td>
<td>Culture medium</td>
<td>GABA production</td>
<td>References</td>
</tr>
<tr>
<td>------------------</td>
<td>------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Strep. thermophilus IFO13957</td>
<td>Yoghurt</td>
<td>GYP medium + 1% MSG</td>
<td>less than 200 mg/l</td>
<td>Watanabe et al. (2011)</td>
</tr>
<tr>
<td>Leu. mesenteroides</td>
<td>Kimchi</td>
<td>MRS medium + 10 mg MSG</td>
<td>NP</td>
<td>Kim and Kim (2012)</td>
</tr>
<tr>
<td>Leu. lactis</td>
<td>Kimchi</td>
<td>MRS medium + 10 mg MSG</td>
<td>NP</td>
<td>Kim and Kim (2012)</td>
</tr>
<tr>
<td>W. viridescens</td>
<td>Kimchi</td>
<td>MRS medium + 10 mg MSG</td>
<td>NP</td>
<td>Kim and Kim (2012)</td>
</tr>
<tr>
<td>L. brevis 340G</td>
<td>Kimchi</td>
<td>MRS medium + 1% MSG</td>
<td>1598.4 mg/l</td>
<td>Seo and Lee (2013)</td>
</tr>
<tr>
<td>L. namurensis NH2</td>
<td>Nham</td>
<td>MRS medium + 0.5% MSG</td>
<td>7339 mg/l</td>
<td>Ratanaburee et al. (2013)</td>
</tr>
<tr>
<td>Ped. pentosaceus HN8</td>
<td>Nham</td>
<td>MRS medium + 0.5% MSG</td>
<td>9096 mg/l</td>
<td>Ratanaburee et al. (2013)</td>
</tr>
<tr>
<td>L. zymae GU240</td>
<td>Kimchi</td>
<td>MRS medium + 3% MSG</td>
<td>NP</td>
<td>Park et al. (2014)</td>
</tr>
</tbody>
</table>

NP: Not provided; MRS medium: de Man, Rogosa and Sharpe medium; GYP medium: Glucose yeast extract poly-peptone medium; MSG: Monosodium glutamate.
2.2 Methods for screening GABA-producing LAB

Several methods are suitable for the detection of GABA in biological fluids, such as amino acid analyzer (Kono and Himeno, 2000; Komatsuzaki et al., 2005), gas chromatography (GC) (Kagan et al., 2008), high performance liquid chromatography (HPLC) (Cho et al., 2007; Kim et al., 2009), capillary liquid chromatographic/tandem mass spectrometric method (Song et al., 2005), and the flow-injection analysis (FIA) method based on GABase (Horie and Rechnitz, 1995). However, these methods require tedious sample preparation steps and are time consuming and can only analyze one sample each time. It is clear that they are not ideal methods in the screening work. Planar chromatography (Yokoyama et al., 2002; Li et al., 2008; 2009; Cho et al., 2007; 2011), pH indicator method (PIM) (Yang et al., 2006) and enzyme based microtiter plate assay (EBMPA) (Tsukatani et al., 2005) do not need expensive equipments, and are suitable for a parallel analysis of large numbers of samples, and therefore can be applied in high throughput screening of GABA-producing strains.

For the PIM method, cells must be washed clean through several centrifugation and washing steps before they react with L-glutamic acid for a very long time (8-24 h). This method seems to be somewhat tedious and time-consuming. The EBMPA method needs the expensive GABase. In addition, components in culture medium may effect on the enzymatic reaction of GABase. There exists some difficulty to eliminate the interference factors. For planar chromatography, no any sample pretreatment and expensive chemical reagents are needed. Compared to the PIM and EBMPA methods, planar chromatography is a simple, convenient and inexpensive method for analysis of GABA. Many GABA-producing LAB strains have been isolated from some food samples by this method (Park and Oh, 2005; Cho et al., 2007; 2011; Li et al., 2008; Seok et al., 2008). The recently developed pre-staining planar chromatography has almost the same Rf values of the acids to those of the traditional method. On other hand, the pre-staining method is more clean, simple, convenient, inexpensive and reproducible (Li et al., 2009).

To reduce the workload and research cost, it is necessary to detect the content of GABA in samples to preliminarily determine whether GABA-producing LAB occur in the samples before screening (Siragusa et al., 2007; Li et al., 2008). The suspicious GABA-producing samples are then inoculated in the special medium (containing glutamate) for LAB isolation. After cultivation, the suspicious GABA producing cultures are selected from single colonies. The suspicious GABA-producing strains are further screened by HPLC. Finally, HPLC-MS should be used to confirm the results (Li et al., 2008).
2.3 Enzymatic properties of LAB GADs

Glutamate decarboxylase (L-glutamate-1-carboxylyase, EC 4.1.1.15, GAD) is a pyridoxal 5'-phosphate (PLP) dependent enzyme, which catalyzes the irreversible α-decarboxylation of L-glutamic acid to GABA and carbon dioxide (Fig. 2). This enzyme exists ubiquitously in eukaryotes and prokaryotes such as bacteria, plant, insect and mammalian (Ueno, 2000), but its presence varies in different types of different organisms.

LAB GAD is an intracellular enzyme (Huang et al., 2007a; Jun et al., 2007; Komatsuzaki et al., 2008) and induction of it is one of the acid stress responses in LAB (Sanders et al., 1998; Small and Waterman, 1998). GAD forms of LAB such as L. brevis IFO12005, L. brevis CGMCC1306 and L. paracasei NFRI7415 have indicated that is consisted of 2 subunits as a dimer (approximately 110-120 kD) (Jun et al., 2007; Komatsuzaki et al., 2008). Thus, GAD is produced as a mature form which consists of identical subunits with molecular mass ranging from 54 to 62 kD, not as a precursor protein, and has highly conserved catalytic amino acid residues containing a lysine residue (Lys 279) that is known to be essential to binding of PLP as well as to the active site residues (Thr215 and Asp246) that promote decarboxylation (Park and Oh, 2004; 2007a; Kim et al., 2007; Hiraga et al., 2008; Komatsuzaki et al., 2008; Fan et al., 2012).

The regulation of GABA synthesis

GAD activity is regulated by a cycle of activation and inactivation determined by the binding and release of its co-factor (PLP). The intact GAD-cofactor complex is called holoenzyme, decarboxylates glutamate to form GABA. Once the cofactor is removed, the remaining protein, called apoenzyme, will lose its enzyme activity. Apoenzyme can be activated by binding PLP to form holoGAD when additional GABA synthesis is required, thus completing the cycle (Martin and Rimvall, 1993; Battaglioli et al., 2003). The intermediate complex involves an ionic interaction between the phosphate group of PLP and the positive charged residues on the active site of GAD, to maintain the PLP in an appropriate position in the active centre (Chen et al., 1998). In E. coli, residue lysine (Lys 276) has been confirmed to the catalytic contribution in the active site of E. coli GAD. The evidence showing that mutation of Lys 276 could make the protein less flexible and its active site less accessible to the substrate and cofactor (Tramonti et al., 2002). It was demonstrated that E. coli GAD was naturally localized exclusively in the cell’s cytoplasm, but tended to move to the cell’s membrane when environmental pH fell (Capitani et al., 2003; Zhang et al., 2007). One molecule of E. coli GAD is composed of 6 subunits with molecular weight 50 kDa each. One of the unique properties of GAD is that it is activated by NaCl (Gut et al., 2006).
The apoenzyme is produced by an alternative-transamination reaction catalyzed by GAD that converts the normally tightly bound pyridoxal-P to pyridoxamine-5’-phosphate (pyridoxamine-P) which dissociates readily from the enzyme. The activation of apoGAD by pyridoxal-P is a two-step process involving a rapid, reversible association of the co-factor with the enzyme, followed by a subsequent slower conversion of the intermediate state to the fully active holoenzyme (Spink et al., 1985; Porter and Martin, 1988; Chen et al., 1998). The major reactions catalyzed by GAD are presented in Figure 3. During most catalytic events the holoenzyme (GAD containing bound pyridoxal-P) converts glutamate to GABA and is regenerated in the process; i.e. pyridoxal-P remains bound to GAD. During a small percentage of reactions, however, glutamate is decarboxylated and GAD then catalyzes an alternative transamination reaction that produces succinic semialdehyde (SSA) and pyridoxamine-P (PMP), which readily dissociates from the enzyme, leaving inactive apoGAD. ApoGAD can re-form holoGAD by combining with free pyridoxal-P, thus completing a cycle of inactivation and activation. When free pyridoxal-P is not present, activation cannot take place, and GAD inactivates as a function of time and substrate concentration (Battaglioli et al., 2003; Zhang et al., 2007).

The roles of various compounds in the apo-/holoenzyme cycle have been described in previous research (Martin, 1987; Martin and Rimvall, 1993). The concentration of glutamate regulates the cycle by affecting the rate of the reaction that forms apoGAD. Similarly, GABA, the usual end product of the GAD reaction, will also inactivate the enzyme if present at high concentrations (Porter and Martin, 1984), by reversing the last step of the GAD reaction to form the quinoid intermediate (EQ) (Fig. 3) from which apoenzyme can be formed. Inorganic phosphate (Pi) and nucleoside triphosphates (NTPs) also affect the cycle. To maintain active enzyme, apoGAD binds with pyridoxal-P to form holoGAD. ATP competes with pyridoxal-P for binding to apoGAD, thus slowing activation and shifting the balance of the cycle toward a higher level of apoGAD (Meeley and Martin, 1983). Thus, GAD is inactivated when incubated with glutamate and ATP, even when pyridoxal-P is present. Pi opposes the effect of ATP. Millimolar concentrations of Pi reversed the ATP-induced inhibition of activation and also increased activation under normal conditions without ATP (Meeley and Martin, 1983; Porter and Martin, 1988). In addition, GABA is a weak competitive inhibitor of GAD and also can inactivate GAD via the transamination reaction (Porter and Martin, 1984). The high concentration of GABA (50 mM) required to inactivate GAD is only achieved intracellularly within the synaptic vesicles of GABAergic neurons (Wood et al., 1976).
Figure 3 GAD activity cycle of interconversion of apoenzyme and holoenzyme. The primary reaction (bold face) produces GABA; holoGAD remains intact. The secondary reaction produces apoGAD which can be activated to holoGAD by reaction with pyridoxal-P. The primary reaction is more than 1000 times more frequent than the secondary reaction (Porter et al., 1985). E, apoGAD; E-PLP, holoGAD; EQ, quinoid intermediate; Pi, inorganic phosphate; PLP, pyridoxal-phosphate; PMP, pyridoxamine-phosphate; SSA, succinic semialdehyde; \(k_{\text{inact}} \), inactivation rate constant; \(k_{\text{act}} \), activation rate constant.

Source: Battaglioli et al. (2003)

2.4 Factors affecting on GABA synthesis

Different fermentation factors affect the rate of GABA production by microorganisms. Among them the most common and essential factors are pH, temperature, cultivation time and media additives of culture. The fermentation conditions can be optimized based on the biochemical characteristics of GAD of the fermenting microorganisms. Decarboxylation of glutamate occurred in LAB results in the stoichiometric release of the end product GABA and the consumption of a proton. The net effect of this reaction increases the alkalinity of the cytosol and environment. To maintain the optimum pH 5.0 at which the highest GABA production was obtained by L. brevis. \(\text{H}_2\text{SO}_4 \) was therefore supplemented into the fermenting broth in order to offset pH increase, arisen from the decarboxylation (Li et al., 2010b). Similarly, the glutamate content 500 mM in the culture medium was converted to 302 mM GABA by optimizing the fermentation condition of L. paracasei NFR17415 at pH 5.0 with the addition of pyridoxal-5’-phosphate (PLP) (Komatsuzaki et al., 2005). The GABA production by Strep. salivarius subsp. thermophilus Y2 was also enhanced by optimizing fermentation condition at pH 4.5 and by the addition of PLP (Yang et al., 2006).
The optimum conditions vary among the fermenting microorganisms due to the different properties of the GADs. Accordingly, characterization of the biochemical properties of the GADs will be required in the interested LAB to achieve the highest GABA production. Optimal conditions for GABA-producing LAB are summarized below, especially on the effects of pH, temperature, cultivation time and media additives.

2.4.1 Effect of pH

The biosynthesis of GABA in microorganisms is mainly regulated by pH, which usually has the most pronounced effect for a fermentation process (Komatsuzaki et al., 2005; Tsai et al., 2006; Yang et al., 2006). The biochemical characteristics of GAD vary among different microorganisms, therefore, the effective pH value for the maximum GABA production is species-dependent (Yang et al., 2008; Li et al., 2010b). Small and Waterman (1998) and Yang et al. (2006) explained that the cytoplasmic decarboxylation results in the consumption of an intracellular proton after the uptake of glutamate by its specific transporter. The reaction product GABA is exported from cells by an antiporter, and the net result is an increase in the pH of the cytoplasm, due to the removal of hydrogen ions, and a slight increase in the extracellular pH, due to the exchange of extracellular glutamate for the more alkaline GABA. L. plantarum DSM19463 synthesized the maximum GABA (59 μM/h) at the pH 6.0 (Di Cagno et al., 2010). However, L. paracasei NFRI 7415 produced the highest GABA (210 mM) at pH 5.0 (Komatsuzaki et al., 2005). In Strep. salivarius subsp. thermophilus, the GABA production was highest (7984 mg/l) at pH 4.5 (Yang et al., 2006). Strep. thermophilus IFO13957 produced a large amount of GABA at pH 3.5 (Watanabe et al., 2011). L. brevis GABA057 converted total 10% of monosodium glutamate (MSG) to GABA at pH 4.2 (Soo et al., 2006).

In cheese, L. paracasei PF6, PF8, PF13, L. plantarum PF14, Lactobacillus sp. strain PF7 and Ent. durans PF15 produced high amounts of GABA (289-391 mg/kg) under the pH range of 4.68-5.70 (Siragusa et al., 2007). When GABA-producing L. paracasei was compared the GABA production capacity under different pH (4-6), GABA was produced significantly high (210 mM) at pH 5.0 (Komatsuzaki et al., 2005). Lc. lactis produced the highest amount of GABA (7.2 g/l) at pH ranged from 7.5 to 8.0. However, the GABA production was decreased when pH above 8.0, indicating that Lc. lactis has the optimum GABA production at weak alkaline pH, ranged from 7.5 to 8.0 (Lu et al., 2009). High GABA production of L. buchneri MS (above 200 mM) was maintained at pH range 5.0-8.0. The optimal initial pH for GABA production was found to be pH 5.0. GABA production rapidly decreased at pH values below 4.0 or above pH 8.0 (Cho et al., 2007). The optimum GABA-
producing pH 4.2 was found to be the optimum value for the production of GABA (5.83 mg/ml) in *L. buchneri* (Cho et al., 2011). The GABA production of *Leuconostoc* NC5 was synthesis when the pH of the culture medium was at acidic range (pH 3.5-5.5). Their synthesis started to decrease close to pH 6.0. These results indicated that pH 5.0 was the optimal pH for extracellular and intracellular GABA production at 2.2 mM and 2.3 mM, respectively (Farrah et al., 2009).

The pH in fermentation medium changes with time during fermentation, therefore, the initial pH affects final GABA yield and the pH of the medium should be adjusted timely to maintain the optimum pH (Kimura et al., 2002; Lu et al., 2009; Li et al., 2010b). The black raspberry juice fermented with *L. brevis* GABA 100 and monosodium glutamate (MSG) changed the initial pH of juice from 4, 4.5, 5, 5.5 and 6 to 3.9, 4.2, 4.4, 4.5 and 4.7 after 48 h, respectively (Kim et al., 2009). The MRS medium inoculated with *L. paracasei* changed the pH from 6.5 to about 4.5 within 50 h of fermentation (Jeng et al., 2007). The pH of culture MRS medium with and without 5% MSG with *L. buchneri* MS changed gradually from 6.5 to 7.06 and 4.5 culture after 48 h, respectively (Cho et al., 2007). A significant decrease in culture media pH with *L. buchneri*, from 6.5 to 4.8, was observed. Production of GABA by *L. buchneri* was associated with increased cell growth and decreased pH. The decreased pH apparently accelerated GABA production (Cho et al., 2011).

As reported, the optimum pH values for maintaining the activity of the bacterial GAD was in the range of 4-5 (Ueno et al., 2000). The optimum activity of purified GAD from *L. brevis* CGMCC1306 was observed at pH 4.4 (Jun et al., 2007). In high GABA-producing strains *L. paracasei* NFRI7415 (Komatsuzaki et al., 2008) and *L. brevis* IFO12005 (Ueno et al., 1997), the GAD activity was still observed at pH 4.0 or above pH 5.5, but very low levels of GAD activity were observed at pH 4.0 and no activity was detected above pH 5.5 in a low GABA-producing strain *Lc. lactis* (Nomura et al., 1998). These results suggest that low-pH GAD activity and broad-pH GAD activity might be important for producing high levels of GABA in LAB.

2.4.2 Effect of temperature

The incubation temperature is also a major factor affecting maximum GABA yield by fermentation. In addition to an effect on biocatalyst activity and stability, temperature has an effect on the thermodynamic equilibrium of a reaction. The high efficient conversion of glutamate to GABA needs the high cell density and also the appropriate culture temperature (Kim et al., 2009). GABA production in *L. brevis* NCL912 had a positive correlation with the cell density, which was dependent on the culture temperature (Li et al., 2010b). Production of
GABA by *L. buchneri* associated with an increased cell growth at 30 °C (Cho et al., 2011). *L. buchneri* in MRS broth also had the optimum temperature for GABA production at 30 °C (Cho et al., 2007). *L. brevis* NCL912 growth increased with higher temperature and peaked at 35 °C, then decreased over the temperature (Li et al., 2010b). *L. plantarum* DSM19463 synthesized the highest amount of GABA (59 μM/h) at temperatures between 30 °C and 35 °C (Di Cagno et al., 2010).

The optimum temperatures for *L. brevis* GAD and *L. brevis* CGMCC1306 were found to be as 30 °C and 37 °C, respectively (Ueno et al., 1997; Ueno, 2000; Jun et al., 2007). *L. brevis* GABA100 fermenting black raspberry juice produced maximum GABA (27.6 mg/ml) at pH 3.5 and 30 °C on 12 days of fermentation (Kim et al., 2009). Immobilized whole cells of *L. brevis* at 40 °C produced 92% of GABA after 8 h of fermentation (Huang et al., 2007b). The maximum GABA yields by *Lc. lactis* at the optimum temperature of 33 °C and 34 °C were found to be 310 mg/ml and 439 mg/ml, respectively (Lu et al., 2008; Li et al., 2010a). *Strep. salivarius* subsp. *thermophilus* had the optimum temperature for GABA production as 34 °C, at which, 12% of the total MSG was completely converted into GABA (Yang et al., 2006). *L. paracasei* NFRI7415 produced the highest GABA (302 mM) at 37 °C, however drastically decreased the GABA production and cell growth at 43 °C (Komatsuzaki et al., 2005). The optimal temperature of *Leuconostoc* NC5 for high GAD activity is at 37 °C with the highest GABA production at 5.9 mM (Farrah et al., 2009). Generally, fermenting temperatures ranged from 25 °C to 40 °C result in a high GABA yield within the temperatures. Also, the optimal temperatures of LAB GADs range from 25 to 50 °C (Jun et al., 2007).

2.4.3 Effect of the fermentation time

The time factor plays an important role in the fermentation and the production of GABA as temperature and pH do. *L. plantarum* DSM19463 and *L. paracasei* NFRI7415 required 72 h and 144 h of fermentation to reach the highest production of GABA at 4.83 mM and 60 mM, respectively (Komatsuzaki et al., 2005; Di Cagno et al., 2010). Black raspberry juice fermented with *L. brevis* GABA100 reached the highest production of GABA at 25.4 mg/ml and 26.5 mg/ml at the 15 days of the fermentation at 25 °C, pH 4.0 and 37°C, pH 5.5, respectively. It reached the highest level of GABA (27.6 mg/ml) at the 12 days when the samples were fermented at pH 3.5 and 30 °C (Kim et al., 2009). *Leuconostoc* NC5 showed the highest GABA production at 5.9 mM with cultivation time at 168 h (Farrah et al., 2009).
The addition time for the GABA substrate also affects the final GABA yield as well as the concentration of the substrate in the medium. A significant differences in GABA yield among various times of MSG addition was shown in the fermentation of *Lc. lactis*, as the highest GABA yield was obtained when MSG was added at the beginning of fermentation (0 h). However, the GABA yield lowered when MSG was added during 6 to 96 h of fermentation at 6 h interval of time (Lu *et al.*, 2009). The addition of PLP in different time intervals also affected the production of GABA (Yang *et al.*, 2006). The GABA production at 72 h reached 6272, 6570 and 7333 mg/l when PLP was added at 0, 24 and 48 h, respectively. The higher amount of GABA was produced by the addition of PLP at 48 h than at 0 and 24 h suggested that PLP could easily lose the role as cofactor due to the denaturalization in the culture broth during the fermentation. However, addition of PLP at 48 h could partly recover GAD activity (Yang *et al.*, 2006). These results indicate that the highest GABA production by microorganisms can depend on the addition of appropriate medium additives and optimum additional time for the additives.

2.4.4 Effect of media additives

Nutrient composition and culture conditions affect the GABA production by microbe fermentation (Wang *et al.*, 2003). Also, media additives including glutamate and PLP as the cofactor of GAD are the major factors affecting the production of GABA during the fermentation (Komutsuzaki *et al.*, 2005; Cho *et al.*, 2007; Lu *et al.*, 2008; Yang *et al.*, 2006; Li *et al.*, 2010a). The medium composition, especially carbon and nitrogen sources and other components can influence the amount of GABA production. Furthermore, the concentrations of substrates are important for achieving high GABA yield (Yang *et al.*, 2006). The substrate specificity of GAD from *L. brevis* was tested by using 22 kinds of amino acids (L-alanine, ε-aminocaproic acid, L-arginine, L-aspartic acid, L-citrulline, L-cysteine, L-glutamic acid, L-glutamine, glycine, L-histidine, L-homoserine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-ornithine, L-tyrosine and L-valine). The decarboxylated product was observed only for L-glutamic acid (Ueno *et al.*, 1997). *Lc. lactis* GAD also reacted only with L-glutamate among the 20 α-amino acids (Nomura *et al.*, 1999). These results indicate that GADs from LAB are specific for L-glutamic acid.

Glutamate addition increased GABA production in *L. paracasei* and *L. brevis* (Hayakawa *et al.*, 1997; Komutsuzaki *et al.*, 2005; Huang *et al.*, 2007b; Li *et al.*, 2010b). GABA concentration reached 161 mM after cultivation of 144 h in the medium containing 500 mM of glutamate by *L. paracasei* NFR7415 (Komutsuzaki *et al.*, 2005). *L. brevis* NCL912 and *L. brevis* also increased GABA production by the addition of glutamate
(Hayakawa et al., 1997; Huang et al., 2007b; Li et al., 2010b). The highest production of GABA by Leuconostoc NC5 was achieved at 20 mM in 200 mM of glutamate containing culture medium during the cultivation. However, when the concentration of glutamate exceeded 200 mM, GABA production decreased. These results suggested that the increment of GABA concentration depends on the addition of glutamate in the culture medium (Farrah et al., 2009). On the other hand, Strep. salivarius subsp. thermophilus Y2 did not increase GABA production significantly when glutamate was added 10-20 g/l of media, suggesting that these concentrations of glutamate are not appropriate for the synthesis of GABA in this species (Yang et al., 2006). The production of GABA by using glutamate as a substrate still remains with several problems, such as the high cost of the culture medium.

The addition of carbohydrates as carbon source increased the GABA production. L. plantarum DSM19463 produced 0.9 mM GABA by the fermentation of grape must diluted to 4% (w/v) of total carbohydrates (Di Cagno et al., 2010). Among different carbohydrates tested such as L-arabinose, ribose, D-xylose, galactose, glucose, fructose, maltose, melibiose, α-methyl D-glucoside, N-acetyl D-glucosamine and gluconate as carbon source, 1.25% glucose was the best carbon source for high production of GABA (Li and Cao, 2010). The mixed ratio (33:58:9) of brown rice juice, germinated soybean juice and enzymolyzed skim milk, a milk having deteriorated properties by the means of enzymatic action, as a source of carbon and nitrogen produced the highest GABA (6.41 g/l) by Lc. lactis subsp. lactis B (Lu et al., 2008).

The addition of carbon sources increased growth of L. buchneri MS, especially the addition of 2.0% arabinose. However, this high cell density did not result in increased GABA production. The addition of 2% arabinose caused the highest cell number \(A_{600} \approx 7.26\), but the GABA concentration reached only 9.48 mM (3.5% conversion yield). The addition of over 1% of arabinose to culture media rapidly reduced the GABA conversion yield. However, GABA concentrations reached over 200 mM after adding fructose, galactose, glucose, lactose, or maltose (0.5-2.0%). The optimal carbon source was found to be glucose (at 1%), which resulted in a 230 mM of GABA production (87.9% conversion yield) (Cho et al., 2007). However, the addition of 1% glucose as a carbon source shows no increment in the GABA production (Farrah et al., 2009).

PLP is used as a cofactor of GAD for enhancing GAD activity (Sandmeier et al., 1994; Komutsuzaki et al., 2005). By the addition of PLP, GABA production increased and reached to 7333 mg/l, 200 mM and 504 mg/kg during the fermentation with Strep. salivarius subsp. thermophilus Y2, L. paracasei NFRI74150 and L. plantarum C48,
respectively (Komutsuzaki et al., 2005; Siragusa et al., 2007; Yang et al., 2006). The GABA production of *Leuconostoc* NC5 reached the highest level (35.7 mM), when 50 mM of PLP concentration were added under cultivation conditions at pH 5.0, 37 °C and incubated for 168 h in 200 mM of glutamate. The results of this study provided additional evidence on what was previously revealed that the activity of GAD increases by adding PLP and PLP might acts as a necessary cofactor of GAD (Farrah et al., 2009). The addition of 0.1 mM PLP to the diluted grape must, however, did not enhance the synthesis of GABA, which may be due to the presence of endogenous PLP in grape must (Di Cagno et al., 2010). The addition of PLP in the culture medium for the production of GABA by *L. brevis* NCL912 did not increase the amount of GABA, indicating that *L. brevis* NCL912 could synthesize the PLP by itself necessarily (Li et al., 2010a).

The addition of sulfate ions increased the GAD activity of *L. brevis* IFO 12005 in a dose-dependent manner, the order of effect was as follows: ammonium sulfate > sodium sulfate > magnesium sulfate, indicating that the increase of hydrophobic interaction between subunits causes the increase of GAD activity (Ueno et al., 1997; Hiraga et al., 2008). Hiraga et al. (2008) explained that hydrophobic interaction between the subunits under a high concentration of ammonium sulfate and proper binding of sodium glutamate to the GAD facilitates making an active tetramer from an inactive dimer. The addition of ammonium sulfate did not cause any significant structural changes, but did induce subtle structural changes at the active site, probably in the vicinity of the catalytic residues.

Total 5% of the MSG was converted into GABA within 48 h when 10 mM ammonium sulfate was added to the reaction medium of *L. brevis* GABA 057 (Soo et al., 2006). Five percent of glutamate converted to GABA, when 10 mM ammonium sulfate was added to the medium. The results showed that the addition of 10 mM ammonium sulfate significantly increased the GABA production to 12.3 mM, even though no dose dependent data was observed (Farrah et al., 2009). In glucose-yeast peptone medium, 7% of MSG as glucose concentration with 10 mM ammonium sulfate was the best combination for GABA production (Ueno et al., 1997). The addition of over 0.6% glucose without ammonium sulfate, however, did not increase the GABA conversion rate (Su et al., 2003). The cell viability and stability in the beads can be improved for the higher rate of GABA conversion by adjusting the concentrations of media additives, including skim milk, isomaltooligosaccharide, erythritol, and pectin in an optimum concentration (Soo et al., 2006). The beads with 0.6% isomaltooligosaccharide were the most effective combination for
GABA production and also improved probiotic survival in fermented milk (Chen et al., 2004; Soo et al., 2006).

The addition of other substrates such as the whole meal wheat sourdough and 50% of tomokoji enhanced the GABA production using L. plantarum C48 (Kono and Himeno, 2000; Rizzello et al., 2008). GABA could be produced by LAB using shochu kasu as a growth medium without addition of glutamate. The GABA concentration reached 10.05 mM or 10.18 mM after one or two day cultivation in kome shochu kusu, respectively (Yokoyama et al., 2002). Similarly, the addition of buckwheat and quinoa sourdough with L. plantarum C48 and amaranth and chickpea sourdoughs with Lc. lactis subsp. lactis PU1 enhanced the GABA production and reached to 643, 415, 816 and 1031 mg/kg, respectively (Coda et al., 2010). These processes have advantages over other fermentation processes due to the simplicity and low operation price.

2.6 Cloning of GAD genes in LAB

The full-length GAD genes from L. paracasei NFRI7415 (Komatsuzaki et al., 2008), L. plantarum KCTC3015 (Park and Oh, 2004), L. brevis OPK-3 (Park and Oh, 2007a), L. brevis IFO12005 (Hiraga et al., 2008), L. brevis BH2 (Kim et al., 2007), L. brevis CGMCC1306 (Fan et al., 2012) and Lc. lactis 01-7 (Nomura et al., 1999) and the core fragments of gadBs from L. paracasei PF6 (accession number EF174473), L. delbrueckii subsp. bulgaricus PR1 (accession number EF174472), Lc. lactis PU1 (accession number EF174474) and L. plantarum C48 (accession number EF174475) were cloned and sequenced (Siragusa et al., 2007). In addition, the GAD genes from L. plantarum KCTC3015 (Park and Oh, 2004), L. brevis BH2 (Kim et al., 2007), L. brevis CGMCC1306 (Fan et al., 2012), L. brevis OPK-3 (Park and Oh, 2007a) and L. zymae GU240 (Park et al., 2014) were successfully expressed in E. coli. Moreover the GAD gene from L. brevis OPK-3 was successfully expressed in B. subtilis (Park and Oh, 2006). The properties of the reported GADs from LAB are shown in Table 2.
<table>
<thead>
<tr>
<th>Strains</th>
<th>Molecular weight of subunit (kDa)</th>
<th>Number of subunit</th>
<th>Optimal pH</th>
<th>Optimal temperature (°C)</th>
<th>K_m (mM)</th>
<th>pI</th>
<th>k_{cat} (s$^{-1}$)</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>L. brevis IFO12005</td>
<td>60</td>
<td>2</td>
<td>4.2</td>
<td>30</td>
<td>9.3</td>
<td>-</td>
<td>6.5</td>
<td>Ueno et al. (1997)</td>
</tr>
<tr>
<td>Lc. lactis subsp. lactis 01-7</td>
<td>54</td>
<td>-</td>
<td>4.7</td>
<td>-</td>
<td>0.51</td>
<td>-</td>
<td>-</td>
<td>Nomura et al. (1999)</td>
</tr>
<tr>
<td>L. brevis OPK-3</td>
<td>53.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.65</td>
<td>-</td>
<td>Park and Oh (2007a)</td>
</tr>
<tr>
<td>L. brevis BH2</td>
<td>53.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.34</td>
<td>-</td>
<td>Kim et al. (2007)</td>
</tr>
<tr>
<td>L. brevis CGMCC1306</td>
<td>62</td>
<td>-</td>
<td>4.4</td>
<td>37</td>
<td>8.22</td>
<td>-</td>
<td>-</td>
<td>Huang et al. (2007a, b); Jun et al. (2007)</td>
</tr>
<tr>
<td>L. paracasei NFRI7415</td>
<td>57</td>
<td>2</td>
<td>5.0</td>
<td>50</td>
<td>5.0</td>
<td>-</td>
<td>-</td>
<td>Komatsuzaki et al. (2008)</td>
</tr>
<tr>
<td>L. senmaizukei L-13</td>
<td>57</td>
<td>-</td>
<td>4.5</td>
<td>50</td>
<td>0.85</td>
<td>-</td>
<td>78.8</td>
<td>Oda and Hiraga (2011)</td>
</tr>
<tr>
<td>L. brevis CGMCC1306</td>
<td>53.47</td>
<td>-</td>
<td>4.8</td>
<td>48</td>
<td>10.26</td>
<td>-</td>
<td>-</td>
<td>Fan et al. (2012)</td>
</tr>
<tr>
<td>L. zymae GU240</td>
<td>53</td>
<td>-</td>
<td>4.5</td>
<td>41</td>
<td>1.7</td>
<td>-</td>
<td>-</td>
<td>Park et al. (2014)</td>
</tr>
</tbody>
</table>
2 Method for monitoring of bacteria in a complex food environment

The fermentation is widely carried out at household level and is spontaneous. Then, a description of the microbial diversity of fermented foods is a prerequisite for the development of starter cultures to improve indigenous technologies. Sensitive and reliable methods for their detection and identification are of great importance for monitoring population changes during food fermentation when supported by natural microflora, as well as when promoted by the addition of starter and/or protective culture under controlled conditions (Ercolini et al., 2001; Ercolini, 2004). Methods for investigating microbiota from a given ecosystem of fermented foods can be either culture-dependent or culture-independent. The culture-dependent methods are based on growth of the bacterial species on synthetic media that resemble the conditions of the system from which the microorganisms are isolated. Culture-dependent methods present several disadvantages, above all for determining bacterial numbers; they are known to be biased because bacteria can only be cultivated if their metabolic and physiological requirements can be reproduced in vitro (Nadkarni et al., 2009; Carraro et al., 2011). Problems with using culturing for community analysis arise from the fact that an artificial homogenous medium typically allows growth of only a small fraction of the organisms. In addition, when complex microbial communities are under investigation, enumerating bacteria by traditional microbial culturing techniques may produce erroneous results (Besnard et al., 2000; Carraro et al., 2011). Moreover, sugar fermentation profiles or other biochemical/physiological traits may sometimes be uncertain, complicated and time-consuming (Ercolini et al., 2001). For example, the identification of the *Lactobacillus* species by culture-dependent methods involved in meat fermentation resulted ambiguous. In particular, strains of *L. curvatus* and *L. sakei* isolated from meat products are not easy to differentiate (Reuter, 1981; Kandler, 1984). Identification at intraspecies level is also an important issue since it may help to distinguish groups of strains or single strains with peculiar technological properties. Moreover, in the last decade it was shown that culture-dependent methods do not accurately detect microbial diversity in environments such as traditional fermented foods in which culture methods not only under estimated biodiversity but failed to quantify precisely some dominant taxa (Hugenholtz et al., 1998; Fontana et al., 2005a). For these reasons, culture-independent methods or molecular methods have been used increasingly to simplify characterization procedures, to provide rapid and reliable identification, or validate phenotypically determined taxa (Ercolini et al., 2001).

Several molecular methods have been applied for the monitoring and identification of bacterial communities among the natural or inoculated flora, such as SDS-PAGE of whole cell proteins (Sanchez et al., 2003), restriction fragment length polymorphism
analysis of the 16S rRNA gene (Sato et al., 2000), hybridization with rRNA probes (Sakai et al., 2004), specie-specific PCR (Yost and Nattress, 2000), RAPD-PCR analysis (Andrighetto et al., 2001; Plengvidhya et al., 2004), PCR followed by temperature/denaturing gradient gel electrophoresis (TGGE/DGGE) (Cocolin et al., 2000; 2001b; 2001c; 2004) and reporter genes (Scott et al., 1998; Geoffroy et al., 2000; Gory et al., 2001; Phumkhachorn et al., 2007; Luxananil et al., 2009). In the recent decade, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) has been successfully applied to determine the microbiology of several fermented foods such as fermented sausages (Fontana et al., 2005a; b), fermented grains (Chao et al., 2008), fermented meat (Hu et al., 2009), and fermented dairy products (Liu et al., 2012) or other foods. This approach gives an alternative option free of separation and cultivation steps (Temmerman et al., 2004) and allows the resolution of complex microbial mixture or particular populations without further characterization of the individual inhabitants (Muyzer, 1999).

2.1 Determination of the bacterial populations using Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) technique

2.1.1 Principle of PCR-DGGE

DGGE is an electrophoretic method capable of detecting differences between DNA fragments of the same size but different sequences by single bases. This is because these fragments can be separated in a denaturing gradient gel based on their differential denaturation (melting) profile. The theoretical aspects of this separation were firstly described by Fisher and Lerman (1983). In an acrylamide gel, the denaturing conditions are provided by urea and formamide. A solution of 100% chemical denaturant consists of 7 M urea and 40% formamide in water. Low and high denaturing solutions are prepared, mixed with the acrylamide solution, and poured in a gel casting by using a gradient former in order to generate a linear denaturing gradient. Moreover, the electrophoresis is carried out at a constant temperature between 55 and 65 °C, mostly 60 °C. In a DGGE gel, DNA, which is negatively charged, is attracted by the positive electrode and forced to migrate through the pores of a polyacrylamide gel. A double-strand DNA fragments are subjected to an increasing denaturing environment as they encounter increasing concentrations of the denaturing agents and partially melt in discrete regions called “melting domains”. The melting temperature (T_m) of these domains is sequence-specific. Once the T_m of the lowest melting domain is reached, that part of the fragment becomes partially melted, creating branched “breaking” molecules. This behavior reduces the DNA mobility in the acrylamide gel. Basically, what happens is that hydrogen bonding between the base pairs is broken by the temperature and the increasing gradient of denaturing chemicals (urea and
formamide) (Muyzer et al., 1993; Muyzer and Smalla, 1998). Therefore, DNA fragments of the same size but different base pair compositions will show a different response to the denaturing gradient. The different sequences of the DNA fragments will have melting domains with different T_m values that will run different distances in the DGGE gel. Briefly, DNA fragments of the same length but different sequences will be separated in DGGE. However, the fragments to be loaded on DGGE gels are usually PCR products. An optimal resolution is obtained when the molecules do not completely denature. The addition of a 30- to 40-bp GC clamp to one of the PCR primers insures that the fragment of DNA will remain partially double-stranded and that the region screened is in the lowest melting domain and to improve the sensitivity in the detection of mutations by DGGE (Myers et al., 1985; Sheffield et al., 1989; Cocolin et al., 2001b; 2004; Ercolini, 2004).

Bands in DGGE fingerprints can be revealed by ethidium bromide staining. The most sensitive procedure is silver staining (Felske et al., 1996), although silver-stained gels cannot be used for hybridization experiments and single-strand DNA fragments are also detected. SYBER Green I is also an alternative for visualizing DGGE gels (Muyzer et al., 1997). SYBER Green staining does not give background staining, thus allowing the detection of DNA fragments even at very low concentrations.

2.1.2 Application of PCR-DGGE techniques in fermented foods

PCR-DGGE is classified as part of the new discipline of molecular microbial ecology (Muyzer and Smalla, 1998). This approach has provided a new insight into microbial diversity without cultivation and allowed a more rapid, reliability, high-resolution description of microbial communities than did the traditional approaches because it allows the separation of DNA molecules that differ by single bases (Myers et al., 1987). Although, many studies clearly demonstrate the broad applicability of this method, the DGGE discriminating capabilities aimed to target bacteria are determined by the choice of the PCR primers. The use of appropriate consensus primers is a critical point to influence the resolution of DGGE analysis in mixed microbial systems, especially in LAB differentiation (Chen et al., 2008). The first step was to find suitable primers. The primers must be present in all the species and delimit variable sequences to separate each species. Then it was important to avoid interspecies differences: for each species only one band should appear in the electrophoresis gel. Duplex DNA problem is bypassed by an attachment of a GC rich DNA sequence (Myers et al., 1985). The last step is to find the most suitable and accurate gradient and the best DGGE condition (temperature, time) (Renouf et al., 2006b).
There are several published papers reviewed numerous PCR primers used for DGGE analysis to profile the microbial communities in several food systems without pre-cultivation steps as presented in Table 3. Obviously, the 16S rDNA seems to be by far the most widely used as a molecular marker to determine the phylogenetic relationships of bacteria. This is because it is a much conserved region of the genome that also includes variable regions which makes it possible to distinguish them by PCR-DGGE. Therefore, primers can be designed by hybridizing to conserved regions but spanning variable regions in order to obtain PCR amplicons with species-specific differences in base pair composition that can be separated by DGGE. Several primer pairs have been employed to amplify variable regions of the 16S rDNA for bacteria and 26S rDNA or 18S rDNA for eukaryote microorganisms. In fact, each species is theoretically supposed to yield a different DGGE profile after the amplification of variable regions of the rDNA.

However, the hypervariable V3-region on the 16S rDNA is the most popular objective domain to start the study of an unknown and complex bacterial community. In addition, the V3-region is considered to have a high grade of resolution and to be highly variable, and it is regarded as a good choice when it comes to length and specific-species heterogeneity (Coppola et al., 2001; Ercolini, 2004; Florez and Mayo, 2006; Hovda et al., 2007; Chen et al., 2008). Unfortunately, one problem related to the use of 16S rDNA in DGGE analysis is the complexity created by the existence of multiple heterogeneous copies within a genome due to its heterogeneity (Dahllof et al., 2000; Coenye and Vandamme, 2003; Crosby and Criddle, 2003; Rantsiou et al., 2004; Chen et al., 2008). Its heterogeneity reviewed by Fogel et al. (1999), several bands per species can be seen in high-resolution PCR-DGGE analysis. The amplified fragments of 16S rDNA will therefore appear as several bands on a DGGE gel, rather than a single band that would allow precise species identification. Consequently, a solution to the problem of 16S rDNA heterogeneity is provided by the analysis of a gene that exists in a single copy. The protein-coding gene, such as the gene encoding the beta-subunit of DNA-directed RNA polymerase, rpoB, has been proposed as the one to fulfill these criteria (Dahllof et al., 2000; Ko et al., 2002; Rantsiou et al., 2004; Renouf et al., 2006 a; b; Claisse et al., 2007).

The rpoB gene is used as a potential biomarker to overcome identification problems because it contains a region that represents all that is common to all bacteria that have the same key attributes as 16S rDNA and it has conserved as well as variable regions and that it functions as an evolutionary clock (Mollet et al., 1997; Dahllof et al., 2000; Ko et al., 2002). Targeting rpoB gene allowed a reliable discrimination of each species. This primer was able to avoid the interspecies heterogeneity problem caused by the use of the 16S rDNA, which appears
to exist in one copy only in bacteria. Moreover, this primer was widely used in many types of fermented foods (Table 3). However, the use of rpoB presents a taxonomic disadvantage: the database of the sequence is less well documented than that of the 16S rDNA (Rantsiou et al., 2004; Renouf et al., 2006a; b).
Table 3 PCR primers used for DGGE analysis of DNA from microbial communities directly extracted from foods

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
<th>Position</th>
<th>Region</th>
<th>Target</th>
<th>References</th>
<th>Application to food products</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1, V1f</td>
<td>GCAGCGTGCCTAACATACATGC</td>
<td>41-60</td>
<td>16S V1</td>
<td>Bacterial 16S rDNA</td>
<td>Klijn et al.</td>
<td>Fermented sausages</td>
</tr>
<tr>
<td>P2, V1r</td>
<td>TTCCCCACGCGTTAC TCACC</td>
<td>111-130</td>
<td></td>
<td></td>
<td>(1991)</td>
<td>(Cocolin et al., 2001a;b; Fontana et al., 2005a; b)</td>
</tr>
<tr>
<td>63f</td>
<td>CAGGCTAACACATGCAAGTC ATTACCGCGGCTGCTGG</td>
<td>63-84</td>
<td>16S V1- V3</td>
<td>Bacterial 16S rDNA</td>
<td>El Fantroussi</td>
<td>Mineral water</td>
</tr>
<tr>
<td>518r</td>
<td>ATTACCGCGCTGCTGG</td>
<td>518-534</td>
<td></td>
<td></td>
<td>et al. (1999)</td>
<td>(Dewettinck et al., 2001)</td>
</tr>
<tr>
<td>HDA1</td>
<td>ACTCCTACGGGAGGC AGCAG</td>
<td>338-357</td>
<td>16S V2- V3</td>
<td>Bacterial 16S rDNA</td>
<td>Walter et al.</td>
<td>Whisky</td>
</tr>
<tr>
<td>HDA2</td>
<td>GTATTACCGCGCTG CTGGCAG</td>
<td>539-561</td>
<td></td>
<td></td>
<td>(2000)</td>
<td>(Van Beek and Priest, 2002)</td>
</tr>
</tbody>
</table>

Fermented sausages

(Cocolin et al., 2001c)

Yoghurt and probiotic preparations (Fasoli et al., 2003)
<table>
<thead>
<tr>
<th>Primer<sup>a</sup></th>
<th>Sequence (5’-3’)</th>
<th>Position<sup>b</sup></th>
<th>Region</th>
<th>Target</th>
<th>References</th>
<th>Application to food products</th>
</tr>
</thead>
<tbody>
<tr>
<td>338f</td>
<td>ACTCCTACGGGAGGCAGCAG</td>
<td>338-357</td>
<td>16S V3</td>
<td>Bacterial 16S rDNA</td>
<td>Ampe <i>et al.</i> (1999)</td>
<td>Cassava (Ampe <i>et al.</i>, 2001; Miambi <i>et al.</i>, 2003)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mineral water (Dewettinck <i>et al.</i>, 2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pozol (Ampe and Miambi, 2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vanilla beans (Roling <i>et al.</i>, 2001)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fermented sausages (Cocolin <i>et al.</i>, 2001c)</td>
</tr>
<tr>
<td>Primer<sup>a</sup></td>
<td>Sequence (5’-3’)</td>
<td>Position<sup>b</sup></td>
<td>Region</td>
<td>Target</td>
<td>References</td>
<td>Application to food products</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>357f</td>
<td>TACGGGAGGCGAGCAG</td>
<td>357-372</td>
<td>16S V3</td>
<td>Bacterial 16S rDNA</td>
<td>Muyzer <i>et al.</i> (1993)</td>
<td>Yoghurts and probiotic preparations (Temmerman <i>et al.</i>, 2003)</td>
</tr>
<tr>
<td>518r</td>
<td>ATTACCGCGGCTGCTG</td>
<td>518-534</td>
<td>16S V3</td>
<td>Bacterial 16S rDNA</td>
<td>Muyzer <i>et al.</i> (1993)</td>
<td>Tarag (Liu <i>et al.</i>, 2012)</td>
</tr>
</tbody>
</table>

Modified atmosphere packaged farmed Atlantic cod (Gadus morhua) (Hovda <i>et al.</i>, 2007)

Kefir grains (Chen <i>et al.</i>, 2008)

Cheese (Arcuri <i>et al.</i>, 2012)

Brazilian kefir grains (Leite <i>et al.</i>, 2013)
Table 3 (Cont.)

<table>
<thead>
<tr>
<th>Primer<sup>a</sup></th>
<th>Sequence (5’-3’)</th>
<th>Position<sup>b</sup></th>
<th>Region</th>
<th>Target</th>
<th>References</th>
<th>Application to food products</th>
</tr>
</thead>
<tbody>
<tr>
<td>339f</td>
<td>CTCCTACGGGAGGCA GCAG</td>
<td>16S V3</td>
<td>Bacterial 16S rDNA</td>
<td></td>
<td>Funazushi, fermented crucian carp (Fujii et al., 2011)</td>
<td></td>
</tr>
<tr>
<td>53r</td>
<td>GTATTACCGCGG CTGCTGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>GGAATCTTCCACAATG GGCG</td>
<td>361-380</td>
<td>16S V3</td>
<td>Bacterial 16S rDNA</td>
<td>Klijn et al. (1991)</td>
<td>Fermented sausages (Cocolin et al., 2001c)</td>
</tr>
<tr>
<td>P4</td>
<td>ATCTACGCATTTCCACGCTAC</td>
<td>385-405</td>
<td>16S V3</td>
<td>Bacterial 16S rDNA</td>
<td>Klijn et al. (1991)</td>
<td>Fermented sausages (Cocolin et al., 2001c)</td>
</tr>
<tr>
<td>Lac1r</td>
<td>AGCAGTAGGGAATCTCCTACA</td>
<td>353-371</td>
<td>16S V3-V4</td>
<td>16S rDNA of a group of LAB (Lactobacillus, Pediococcus, Leuconostoc and Weissella)</td>
<td>Walter et al. (2001)</td>
<td>Sourdough (Meroth et al., 2003)</td>
</tr>
<tr>
<td>Lac2f</td>
<td>ATTYCACCAGCTACACAGTG</td>
<td>651-679</td>
<td></td>
<td></td>
<td></td>
<td>Brazilian kefir grains (Leite et al., 2012)</td>
</tr>
</tbody>
</table>

^a Primer name

^b Position in genome
Table 3 (Cont.)

<table>
<thead>
<tr>
<th>Primer</th>
<th>Sequence (5’-3’)</th>
<th>Position(^b)</th>
<th>Region</th>
<th>Target</th>
<th>References</th>
<th>Application to food products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lac3r</td>
<td>AGCAGTAGGGAATCTTCGG</td>
<td>352-370</td>
<td></td>
<td>16S rDNA of a group of LAB (Lactococcus, Streptococcus, Enterococcus, Tetragenococcus and Vagococcus)</td>
<td>Endo and Okada (2005)</td>
<td></td>
</tr>
<tr>
<td>Ec1055</td>
<td>ATGGCTGTCGTCAGCT</td>
<td>1055-1070</td>
<td>16S V9</td>
<td>Bacterial 16S rDNA</td>
<td>Ferris et al. (1996)</td>
<td></td>
</tr>
<tr>
<td>Ec1392</td>
<td>ACGGGCGGTGTGTAC</td>
<td>1392-1406</td>
<td></td>
<td>Bacterial 16S rDNA</td>
<td>Fermented sausages (Cocolin et al., 2001c)</td>
<td></td>
</tr>
<tr>
<td>WBAC1 (r)</td>
<td>GTCGTCAGCTCGTGTCGTGAGA</td>
<td>1069-1090</td>
<td>16S V9</td>
<td>Bacterial 16S rDNA</td>
<td>Lopez et al. (2003)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCCGGGAACGTATTCAACGGCG</td>
<td>1374-1394</td>
<td></td>
<td>Balsamic vinegar (De Vero et al., 2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primer</td>
<td>Sequence (5’-3’)</td>
<td>Position</td>
<td>Region</td>
<td>Target</td>
<td>References</td>
<td>Application to food products</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------------</td>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>Euk1427F</td>
<td>TCTGTGATGCCCTTGA</td>
<td>1427-1452</td>
<td>18S</td>
<td>Eucarya 18S rDNA</td>
<td>Van Hannen et al. (1999)</td>
<td>Cassava (Ampe et al., 2001)</td>
</tr>
<tr>
<td></td>
<td>TGTTCTGGG</td>
<td>1616-1637</td>
<td></td>
<td></td>
<td></td>
<td>Pozol (Ampe and Miambi, 2000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Euk1616r</td>
<td>GCGGTGTGTACAAAGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GCAGGG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NL1</td>
<td>GCCATATCAATAAGCG</td>
<td>63-88</td>
<td>26S</td>
<td>Eucarya 26S rDNA</td>
<td>Cocolin et al. (2000; 2002a)</td>
<td>Milk (Cocolin et al., 2002a)</td>
</tr>
<tr>
<td></td>
<td>GAGGAAAAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LS2</td>
<td>ATTCATCATAACTCG</td>
<td>266-285</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AC TC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB1698f</td>
<td>AACATCGGTTTGATCA</td>
<td></td>
<td></td>
<td>rpoB</td>
<td>Dahllof et al. (2000)</td>
<td>Fermented sausage and cheese (Rantsiou et al., 2004)</td>
</tr>
<tr>
<td></td>
<td>AC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB2014r</td>
<td>CGTTGCATGTTGTTACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CAT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3 (Cont.)

<table>
<thead>
<tr>
<th>Primer(^a)</th>
<th>Sequence (5’-3’)</th>
<th>Position(^b)</th>
<th>Region</th>
<th>Target</th>
<th>References</th>
<th>Application to food products</th>
</tr>
</thead>
<tbody>
<tr>
<td>rpoB1(r)</td>
<td>ATTGACCACCGGGTGTA</td>
<td>rpoB</td>
<td>Bacterial rpoB gene</td>
<td>Dahllof et al. (2000)</td>
<td>Wine (Renouf et al., 2006b; Claisse et al., 2007)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ACCGTCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB1o (r)</td>
<td>ATCGATCACTTAGGCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAB cocci in fermented beverages (Renouf et al., 2006a)</td>
</tr>
<tr>
<td></td>
<td>ATCGTCG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB2(f)</td>
<td>ACGATCAGGGTGCAA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CCACC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB2491f</td>
<td>AACCAATTCCGTATIGG</td>
<td>rpoB</td>
<td>Staphylococci</td>
<td>Drancourt and Raoult (2002)</td>
<td>Fermented sausages (Ravyts et al., 2010)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TTT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rpoB3554R</td>
<td>CCGTCCCAAGTCATGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) A CG clamp is added to each forward primer according to Muyzer et al. (1993).

\(^b\) *E. coli* numbering for Bacteria and *Sac. cerevisiae* numbering for Eucarya

Primers 338f and HDA1 have the same sequence, but they were given different designations by the authors who described them.
However, PCR-DGGE techniques can also have disadvantages when applied to food product. Biases may already be introduced by sampling or sample handling such as aerobic or anaerobic storage, washing, transport, freezing, or refrigerating procedures may affect the development of the microbial species occurring in the food by increasing or reducing the number and the species to be detected. Further source of variability can be DNA extraction and purification step when it is applied to mixed bacterial cultures where it is very difficult to extract DNA from all the species with the same efficiency. The PCR amplification may be a source of bias because preferential amplification might be caused by reannealing of the template DNA, which compromizes the hybridization of primers (Reysenbach et al., 1992; Suzuki and Giovannoni, 1996). Additionally, the sequences of a primer, the annealing temperature and the number of PCR cycle have been also involved in the mistake of PCR (Hongoh et al., 2003). In fact, the number of species detected may not be real because of a lack of amplification by PCR of a specific DNA template. Therefore, the choice of the primer couple and the fragment to target is fundamental. It has been shown that, sometimes, targeting different 16S variable regions may lead to different results in species composition of the same sample (Ercolini et al., 2003). In addition, the incomplete extension of the GC clamp during PCR amplification, which may result in artifactual double bands in DGGE analysis, often complicates the interpretation of the profiles (Janse et al., 2004). However, the fragments to be resolved by DGGE cannot be longer than 500 bp. This represents a limiting factor for the sequence analysis and eventually probe design. This is strongly affected by the electrophoretic conditions and the amplicon-specific formation of melting domains. Moreover, other problems are the formation of chimeric (Liesack et al., 1991; Kopczynski et al., 1994) or heteroduplex molecules (Ferris et al., 1997), which can affect the distribution of the bands in the DGGE profile. Furthermore, co-migration of DNA fragments can be a problem for retrieving clean sequences from individual bands. In fact, even being different in sequences, the 16S rDNA fragments might have identical melting behavior and therefore they cannot be separated in DGGE. Another problem in the study of community diversity on the basis of 16S rRNA genes using DGGE is the presence of multiple copies of the 16S rDNA with sequence microheterogeneity (Cocolin et al., 2001b; Blaiotta et al., 2003; Ercolini, 2004).

Attempts have been carried out in order to establish the detection limit of the PCR-DGGE. Indeed, it is worthwhile to define the concentration of the microbial species, which is needed in the food matrix to reveal a band in a DGGE fingerprint. However, for only one or a few species, dilution series have been applied in PCR-DGGE after DNA
extraction. Detection limits have been indicated, ranging between 10^4 to 10^8 cfu/ml (Dewettinck et al., 2001; Fasoli et al., 2003; Temmerman et al., 2003; Fontana et al., 2005b; De Vero et al., 2006). As a matter of fact, the detection limit depends on the species and perhaps even the strain considered. Moreover, the number and the concentration of the other members of the microbial community, along with the nature of the food matrix, all represent variables influencing the detection limit of DGGE by affecting both the efficiency of DNA extraction and the PCR amplification due to the possible competition among templates (Ercolini, 2004).
Objectives of study

1. To evaluate the bacterial community in *Kung-Som* products using *rpoB* gene and V3 region of 16S rDNA analysis
2. To isolate, screen and identify the GABA-producing LAB isolated from *Kung-Som*
3. To clone the gene encoding GAD from the selected strain and expressed of the recombinant protein in *E. coli* system
CHAPTER 2
EVALUATION OF BACTERIAL COMMUNITY IN KUNG-SOM USING rpoB GENE AND V3 REGION OF 16S rDNA ANALYSIS BY PCR-DGGE TECHNIQUE

2.1 Abstract

Kung-Som is one of several traditional Thai fermented shrimp products, that is especially in the southern part of Thailand. This is the first report to reveal the bacterial communities in the finished product of *Kung-Som*. Ten *Kung-Som* samples were evaluated using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methodology combined with appropriated primers to study the dynamics of the bacterial population. Two primers sets (V3; 341f(GC)-518r and *rpoB*; rpoB1698f(GC)-rpoB2014r primers) were considered as a possible tool for the differentiation of bacteria and compared with respect to their efficiency of 16S rDNA and *rpoB* gene amplification. PCR-DGGE analysis of both the V3-region and *rpoB* amplicon was successfully applied to discriminate between lactic acid bacteria and Gram positive strains in the bacterial communities of *Kung-Som*. In conclusion, the application of these two primers sets using PCR-DGGE techniques is a useful tool for analyzing the bacterial diversity in *Kung-Som*. Moreover, these preliminary results provide useful information for further isolation of desired bacterial strains used as a starter culture in order to improve the quality of *Kung-Som*.
2.2 Introduction

Kung-Som is a traditional fermented shrimp product that is found widely distributed in the south of Thailand. It is made from shrimp, sugar, salt and water and is typically fermented with the natural, spontaneous microbial flora. The microbiology of *Kung-Som* is diverse and complex. The principal microorganisms found in *Kung-Som* are various lactic acid bacteria (LAB) (Tanasupawat *et al*., 1998; Hwanhlem *et al*., 2010). Species identification and population enumeration are critical in the study of bacterial communities. Due to the limitations of conventional microbiological methods, the identification of microorganisms that requires selective enrichment and subculturing is problematic or impossible. Moreover, classical microbial techniques used have not accurately analyzed the presence of the main bacterial species (Ben Omar and Ampe, 2000) and have not provided a completely accurate representation of these complex communities. On the other hand, culture-independent molecular techniques have provided better methods to give more information on the microbial diversity in complex food samples (Cocolin *et al*., 2001c; Ercolini, 2004). In addition, culture-independent molecular techniques based on specific nucleotide sequences are widely used for monitoring, detection, identification and classification of bacterial diversity.

In the recent decade, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) has been successfully applied to determine the microbiology of fermented food such as fermented sausages (Fontana *et al*., 2005a), fermented grains (Chao *et al*., 2008), fermented meat (Hu *et al*., 2009), and fermented dairy products (Liu *et al*., 2012), to name a few. This approach has provided new insight into the microbial diversity and allowed a more rapid, high-resolution description of microbial communities than did the traditional approaches since it allows the separation of DNA molecules that differ by single bases (Ercolini, 2004). The use of appropriate consensus primers is also a critical point in determining the resolution of DGGE analysis in mixed microbial systems, especially in LAB differentiation (Chen *et al*., 2008). From the evidence of several published papers, the 16S rDNA seems to be by far the most widely used as a molecular marker for the determination of the phylogenetic relationships of bacteria. The hypervariable V3-region on the 16S rDNA is the most frequently used to start the study of an unknown and complex bacterial community. In addition, the V3-region is considered to have a high grade of resolution and to be highly variable, and it is regarded as a good choice when it comes to length and inter-species heterogeneity (Coppola *et al*., 2001; Florez and Mayo, 2006; Hovda *et al*., 2007;
Chen et al., 2008). Unfortunately, one problem related to the use of 16S rDNA in DGGE analysis is the complexity created by the existence of multiple heterogeneous copies within a genome (Dahllof et al., 2000; Crosby and Criddle, 2003; Rantsiou et al., 2004).

Consequently, a solution to the problem of 16S rDNA heterogeneity is provided by the analysis of a gene that exists in only a single copy (Fogel et al., 1999). Certain protein-coding genes, such as the gene encoding the beta-subunit of DNA-directed RNA polymerase, rpoB, have been proposed to fulfill this criterion. rpoB is used as a potential biomarker to overcome identification problems because it is considered a housekeeping gene. Targeting the rpoB gene allowed the reliable discrimination of species. The use of this gene as a marker was able to avoid the intraspecies heterogeneity problem caused by the use of the 16S rDNA, which appears to exist in one copy only in bacteria (Dahllof et al., 2000; Ko et al., 2002). In addition, in some strains of bacteria, an internal region of rpoB is a more suitable sequence than 16S rDNA because of its higher nucleotide polymorphism (Khamis et al., 2005). However, the use of rpoB presents a taxonomic disadvantage: the database of the sequence is less well documented than that of the 16S rDNA (Rantsiou et al., 2004; Renouf et al., 2006b).

There are no data using the PCR-DGGE technique to characterize the dominant bacteria in Kung-Som product. Consequently, the aim of this present study was to focus on the use of the hypervariable V3-region on the 16S rDNA and rpoB gene by using PCR-DGGE techniques as a tool to reveal the bacteria that commonly develop in the Kung-Som product and to compare the efficiency of the 16S rDNA and rpoB gene sequences for species discrimination in such a complex food sample. The obtained results provide preliminary information for study to apply in the microbial starter cultures in Kung-Som fermentation.

2.3 Materials and Methods

2.3.1 Lactic acid determination in Kung-Som

Kung-Som finish product samples were purchased from different local markets in Songkhla Province, Thailand. The pH value was measured by a pH meter (420A ORION, USA). Total acidity as lactic acid was determined according to the AOAC (AOAC, 2005). Three independent measurements were made for each sample. Data presented are the means and standard deviations calculated.

2.3.2 DNA extraction from Kung-Som

DNA was extracted from the juice sample of Kung-Som by the method Cocolin et al. (2004), with slight modification. One millilitre of juice sample of each sample was
centrifuged at 14,000×g for 10 min at 4 °C to pellet the cells. The pellet was washed twice with 1 ml of sterile 0.85% (w/v) NaCl. The pellet was resuspended in 50 µl of 20 mg/ml lysozyme (Fluka, USA). After 30 min incubation at 37 °C, 30 µl of 25 mg/ml proteinase K (AMRESCO®, USA) and 150 µl proteinase K buffer were added. The tubes were incubated at 65 °C for 90 min before the addition of 400 µl breaking buffer and incubated further at 65 °C for 15 min. Then, 400 µl of phenol:chloroform:isoamyl alcohol (25:24:1, pH 6.7) was added for extracting DNA, RNA and protein. The tubes were centrifuged at 12,000×g at 4 °C for 10 min, the aqueous phase was collected and the nucleic acid was precipitated with 1 ml of ice-cold absolute isopropanol. The DNA was obtained by centrifugation at 14,000×g at 4 °C for 10 min, washed briefly with 70% (v/v) ice-cold ethanol and centrifuged again. The DNA was dried at room temperature, resuspended in 20 µl of RNase-DNase-free sterile water, and treated with 5 µl of 10 mg/ml DNase-free Rnase (Vivantis, USA). After 5 min incubation at 37 °C, genomic DNA was stored at -20 °C.

2.3.3 The V3 region of 16S rDNA and rpoB gene amplification

Primers 341f (5´-CCTACGGGAGGCAGCAG-3´) and 518r (5´ATTACCGCGGTGCTGG-3´) were used to amplify a region of approximately 200 bp of the V3 region of 16S rDNA (Muyzer et al., 1993). Primers rpoB1698f (5´-AACATCGGTTTGATCAAC-3´) and rpoB2014r (5´-CGTTGCATGTTGGGTACCCAT-3´) were used to amplify a region of approximately 350 bp of the rpoB gene (Dahllof et al., 2000). Amplification reactions were carried out in volumes of 50 µl. In addition, a GC clamp was added to the forward primer to improve the sensitivity in the detection of mutations by DGGE (Sheffield et al., 1989). PCR products were examined by 2% (w/v) agarose gel electrophoresis. These were used to check the quality and size of PCR products before being subjected to DGGE analysis.

2.3.4 DGGE analysis

DGGE analysis was performed using the Dcode universal mutation detection system apparatus (Cleaver Scientific, UK) according to Fontana et al. (2005) with slight modification. Thirty millilitres of PCR product was mixed with loading dye and applied to 8% (w/v) polyacrylamide gels. A 28% to 55% denaturing gradient (100% of denaturant corresponded to 7 mol/l urea and 40% formamide) were used for both the 341f(GC)-518r and rpoB1698f(GC)-rpoB2014r primer sets. Electrophoresis was run in 1X TAE buffer at constant temperature (60 °C) for 10 min at 20 V and subsequently for 16 h at 85 V. After electrophoresis, the gel was stained for 30 min with 1X (final concentration) SYBR Gold
After running the DGGE analysis, relevant bands were punched from the gel with sterile pipette tips. Each piece was transferred into 20 µl of RNase-DNase-free sterile water and incubated overnight at 4 °C to allow the diffusion of the DNA. Then, the eluted DNA was used as a template and re-amplification took place with primers without the GC clamp. The PCR products were purified by using the HiYieldGel/PCR DNA Fragments Extraction Kit (RBC, Taiwan), and sequenced by a DNA sequencer (Ward Medic Ltd., Malaysia).

2.3.5 Construction of phylogenetic tree

Searches in GenBank with the BLAST program on the NCBI website were performed to determine the closest known relatives of the determined 16S V3 region and rpoB gene sequences. Multiple sequence alignments were created by using the BioEdit version 3.3.19.0. The phylogenetic tree was obtained to compare similarities among the sequences by the neighbor-joining method (Saitou and Nei, 1987) using the MEGA software version 5. Kimura’s method was followed and 1,000 repetitions were made for bootstrap (Tamura et al., 2011).

2.4 Results and Discussion

Kung-Som is one of the traditional fermented food products from southern Thailand. The production process traditionally relies on a spontaneous fermentation initiated by natural and fortuitous microorganisms, mainly various LAB and coagulase-negative coci (CNC).

Kung-Som is made from the main raw materials shrimp, sugar, salt and water. These raw materials and personal hygiene can also be the possible sources of pathogenic microorganisms or spoilage bacteria such as *E. coli*, *S. aureus*, *B. cereus*, *V. parahaemolyticus* and *Salmonella* sp. In all *Kung-Som* samples of this study, it was found that the pH and lactic acid concentration ranged from 3.58 to 4.04 and 1.78% to 3.12%, respectively (Fig. 4). The pH of all samples was below 4.5 because LAB utilizes the carbohydrate substrates available to produce organic acids, and especially lactic acid, as part of their metabolites. These acids not only contribute to the taste, aroma and texture of the product but also lower the pH of the product which is one of the important key factors to ensure quality and safety (Visessanguan et al., 2006; Kopermsub and Yunchalard, 2010). Generally, a pH lower than 4.4 can inhibit growth of *E. coli* (Alvarado et al., 2006) and *Salmonella* sp. (Sorrells and Speck, 1970); a pH lower than 3.7 can inhibit *S. aureus* (Alvarado et al., 2006); a pH lower than 4.0 inhibits *B. cereus* (Yang et al., 2008) and a pH of
4.5-5.0 has been demonstrated to inhibit *V. parahaemolyticus* (Adams and Moss, 2008). Consequently, the pathogenic or spoilage bacteria were inhibited by organic acids that affected the bacterial growth and extracted DNA concentration in our samples. Most finding reports are probably related to the PCR-DGGE detection limit (10^4 cfu/ml) (Fontana *et al*., 2005b; De Vero *et al*., 2006). In accordance with these results, no DNA bands corresponding to pathogenic and spoilage bacteria were detected in *Kung-Som* samples of our study.

![Figure 4](image)

Figure 4 The pH value and titratable acidity of *Kung-Som* samples.

Renouf *et al.* (2006) reported that the first step for finding suitable primers is to assume that the primers must be present in all the species and delimit variable sequences to separate each species. The last step is to find the most suitable and accurate gradient and the best DGGE conditions (temperature, time). Two sets of primers (V3-region of 16S rDNA and *rpoB* gene) were considered suitable in this study since it is a housekeeping gene. Consequently, the bacterial diversity of the *Kung-Som* product was revealed by DGGE analysis. Figure 5 and 6 show the DGGE profiles obtained by the DNA directly extracted from *Kung-Som* in different regions in Songkhla Province, Thailand. Both the V3 region of 16S rDNA and the *rpoB* gene were amplified from these DNA templates. The V3 region of 16S rDNA and *rpoB* gene profiles displayed different patterns. The DGGE profile of the *rpoB* gene amplification showed that the numbers of the bands were lower than those of the V3 region of 16S rDNA amplification. For the DGGE profile and the phylogenetic relationship of the V3 region of 16S rDNA amplification (Fig. 5A and 5B), bands corresponding to *Tetra. halophilus* (band b), *L. farciminis* (band d) and *L. plantarum* (band l
and k) were prominent in all Kung-Som samples, which is in agreement with data published by Hwanhlem et al. (2010). Although band k was found in all samples, it was faint. L. acetotolerans (band g) and L. rapi (band j, o, p) were present in all samples except samples 3 and 6. Salinivibrio sharmensis (band a) and Macrococcus sp. (band e) appeared only in sample 3 and L. crustorum (band h and i) was only found in sample 6. S. piscifermentans (band c), W. thailandensis (band m) and W. cibaria (band n) were exhibited in some samples but with very weak intensity. Salinivibrio sharmensis (band a) was found only in sample 3. Several bands originating from a single species were observed on the DGGE gels, and these were from L. crustorum, L. rapi and L. plantarum. The reason for this is the sequence heterogeneity as described by Crosby and Criddle (2003).
Figure 5 DGGE profiles (A) and the phylogenetic tree based on V3-region on 16S rDNA (B) of the bacteria community obtained from DNA directly extracted from Kung-Som samples. The scale bar represents the number of inferred substitutions per site.

For the DGGE profile and the phylogenetic relationship of rpoB gene amplification (Fig. 6A and 6B), bands 4 and 5, corresponding to W. thailandensis and S. piscifermentans, were predominating in every sample. Furthermore, L. fermentum (band 2) and L. reuteri (band 3) were present in all samples except sample 3 and 6. Band 1 was only detected in sample 3.

Species-specific DGGE bands from two sets of primers for the main members of LAB and CNC were exhibited. LAB (Lactobacillus, Tetragenococcus and Weissella), including CNC species (Macrococcus and Staphylococcus), are the most commonly isolated bacteria from fermented foods, especially meat and fish (Hu et al., 2008; Kopermsub and Yunchalard, 2010; Hwanhlem et al., 2011). In addition, the genus Salinivibrio was found to be the dominant species in sample 3 of the V3 region amplification. These species are generally isolated from fermented fish samples (Chamroensaksri et al., 2009). The differences in the results obtained, such as the DGGE pattern from the rpoB gene amplification, indicated the occurrence of very low bacterial diversity when compared with the V3-region amplification. These results depended on the specificity of the primers (Endo and Okada, 2005; Renouf et al., 2006b) and the PCR conditions (Hongoh et al., 2003).

Rantsiou et al. (2004) and Renouf et al. (2006b) reported that the use of rpoB gene amplification combined with PCR-DGGE can only reveal the predominant species in a sample. Moreover, Chen et al. (2008) suggested that the use of appropriate consensus primers is a critical point in influencing the resolution of DGGE analysis in mixed microbial systems, especially in LAB differentiation. Endo and Okada (2005) indicated that LAB could not be detected by universal bacterial PCR primer but were detected when groups of LAB-specific primer were used. This is because the DGGE profile can demonstrate only the diversity of bacteria present at more than 1% of the target bacteria. Therefore, the detection of numerous different species present at low concentrations appeared to be difficult using PCR-rpoB/DGGE. Thus, the rpoB gene pattern exhibited the different species which did not appear in the V3-region pattern.
Figure 6 DGGE profiles (A) and the phylogenetic tree based on rpoB gene (B) of the bacteria community obtained from DNA directly extracted from Kung-Som samples. The scale bar represents the number of inferred substitutions per site.

In both the rpoB gene and V3-region patterns, samples 3 and 6 showed different DGGE patterns from those of compared to other samples. This is because these samples were originated from different recipes or processes of preparation which could vary the initial food matrix, fermentation process, personal hygiene, local tradition or local geographic preferences. All of these are crucial factors in determining the growth of specific microbial communities (Cocolin et al., 2004; Ercolini, 2004; Chen et al., 2008). This outcome was related to the higher pH and lower lactic acid content of samples 3 and 6 (Fig. 4). In accordance with this lower lactic acid concentration, a difference in the LAB groups of these samples was detected (Fig. 5 and 6).
A number of faint bands could not be identified because of their low content which might be related to the heterogeneous distribution of microorganism in the food matrix (Florez and Mayo, 2006). In a detection limit analysis, an individual species was identified by PCR-DGGE when its number was higher than 10^4 cfu/ml (Fontana et al., 2005b; De Vero et al., 2006). The detection limit of PCR-DGGE depends on the species or perhaps even the strain considered. Furthermore, the number and the concentration of the other members of the microbial community, along with the nature of the food matrix, all represent variables influencing the detection limit of DGGE. These factors affect both the efficiency of DNA extraction and the PCR amplification due to possible competition among templates (Ercolini, 2004; Temmerman et al., 2004; De Vero et al., 2006).

2.5 Conclusion

The suitability of the primers used was based on the discriminatory efficiency of the hypervariable V3-region and the *rpoB* gene that allowed species differentiation from the dominant groups of bacteria in *Kung-Som*. Although the applications of PCR-DGGE techniques combined with appropriate consensus primers to study complex microbial communities originating from food samples have been shown to be an efficient tool for detection of complex bacteria populations, we believe that our findings represent a preliminary analysis. The data cannot be considered sufficient to achieve a confident identification at species level, but should suggest that the relevant genes together with other target sequences such as other region of 16S rDNA, *gyrA*, *gyrB*, *recA* or *rpoC*, should be used for unequivocal identification of individual species. Moreover, these preliminary results provide useful information for improving product quality. An improved understanding of the changing microflora in *Kung-Som* fermentations could be used to develop a starter culture in the future.
CHAPTER 3

ISOLATION AND CLONING OF A NOVEL GLUTAMATE DECARBOXYLASE GENE FROM A NEWLY GABA-PRODUCING LACTIC ACID BACTERIA,

LACTOBACILLUS FUTSAII CS3

3.1 Abstract

Kung-Som is one of several traditional Thai fermented shrimp products, especially popular in the southern part of Thailand. *Kung-Som* presents a high glutamic acid which a major substrate for biosynthesis of natural \(\gamma \)-aminobutyric acid (GABA) by lactic acid bacteria (LAB). In the present study, the GABA-producing LAB from *Kung-Som* were isolated, screened and identified. The strain CS3 showed the highest GABA-producing ability among the screened strains. Based on an API-CHL50 fermentation and phylogenetic trees of 16S rDNA sequence, the strain CS3 belonged to genus *Lactobacillus futsaii*. Newly *Lactobacillus futsaii* CS3 with high GABA-synthesizing capacity was first discovered in the present report. The open reading frame (ORF) of glutamate decarboxylase (*gad*) gene was cloned by PCR. It was 1,410 bp encoding a polypeptide of 469 amino acids. In addition, the non-crystallization structure of *L. futsaii* CS3 GAD was also predicted by SWISS-MODEL server. The entire ORF sequence of *gad* gene was cloned into pColdI expression vector and expressed in *Escherichia coli* BL21 (DE3). The *gad* gene with His\(_6\)-Tag was expressed. The recombinant GAD was purified using a Ni-NTA column. SDS-PAGE analysis revealed that it had a molecular weight of approximately 53 kDa, which corresponded to the predicted size of the deduced protein (53.64 kDa). The results of these findings offer a way of replacing chemical GABA by natural GABA in fermented foods or functional foods. Moreover, it preliminary provides useful details for development of the molecular mechanism regulating GABA metabolism in valuable LAB.
3.2 Introduction

Nowadays, consumers are increasingly interested in the relation between food and health to improve the human health. As a consequence, many kinds of food with health-promoting properties have entered the global markets over the last few years. All of these, gamma-aminobutyric acid (GABA) is the one of bioactive substances that has several physiological functions and hence has a great application potential in functional foods and pharmaceuticals. However, the direct addition of chemical GABA to food is regarded as unnatural and unsafe and is still illegal in Korea (Seok et al., 2008; Kim et al., 2009).

GABA is a four carbons and non-protein amino acid that is widely distributed in nature among microorganisms, plants and animals. GABA is used considerably in functional foods and pharmaceuticals, and massively as a major active constitutes in several foods. GABA functions as the major inhibitory neurotransmitters in the central nervous system in mammalian brains (Huang et al., 2007b; Dhakal et al., 2012). Clinical studies have related increased intake of GABA or analogues to several health benefits, including lowering of blood pressure of mildly hypertensive animals and humans (Hayakawa et al., 2004; Diana et al., 2014). Hayakawa et al. (2004) reported that GABA strongly induced insulin secretion from the pancreas, therefore, effectively preventing diabetics. Furthermore, consumption of GABA-enriched foods can inhibit cancer cell proliferation (Park and Oh, 2007b) and improve memory and the learning abilities (Miura et al., 2006). Generally, sufficient amounts of GABA can be produced in the human body. However, GABA production is sometimes inhibited by a lack of estrogen, zinc, or vitamins, or by an excess of salicylic acid and food additives (Suk-Heung Oh, 2003; Cho et al., 2011).

Kung-Som is one of Thai fermented foods that made from shrimp, sugar, salt, and water (Hwanhlem et al., 2010) and is typically fermented with the natural, spontaneous microbial flora. The microbiology of *Kung-Som* is various lactic acid bacteria (LAB). Generally, LAB play a crucial role in fermentation processes, and have a long and safe history of application and consumption in the production of fermented foods and beverages (Leroy and De Vuyst, 2004). In addition, LAB have been used as probiotics due to their properties and also protect foods by controlling the food spoilage pathogens by secreting acids, conjugated linoleic acid, vitamin, aroma compounds, bacteriocins, exopolysaccharides, GABA and enzymes. Therefore, the use of GABA-producing LAB strains as starter cultures in fermentation processes can help to achieve bio-synthetic production of the GABA, safety and many special physiological activities. This provides a way of replacing chemical GABA by natural GABA, at the same time offering the consumer with new attractive food products.
This reduces the production cost because of the omission the extra addition of GABA (Leroy and De Vuyst, 2004; Li and Cao, 2010; Dhakal et al., 2012).

The biosynthesis of GABA is one step reaction of decarboxylating glutamate to GABA, catalyzed by glutamate decarboxylase enzyme (GAD). GAD acts as the essential enzyme for GABA production and needs a pyridoxal 5'-phosphate (PLP) as cofactor. The glutamic acid or glutamate acts as a major substrate for biosynthesis of natural GABA by LAB (Ueno, 2000). Fortunately, glutamic acid could be greatly found in Kung-Som products because the shrimp contains a rich source of glutamic acid (Daul et al., 1994). In the future, functional foods that presence of GABA has increased research interest since studies show that GABA may have significant health effects and is only found in low levels in natural substances. Then, much GABA research focuses on finding new ways to produce products high in GABA. However, the studies on GABA-producing LAB in Kung-Som have not been reported yet. Therefore, the development of Kung-Som containing GABA to contribute functional properties will be actively studied. In the present study, isolation and identification the newly GABA-producing LAB from Kung-Som was performed. In addition, the existence of gad gene from novel strain was also investigated for cloning and expression of the GAD protein combined with cold shock vector in E. coli system.

3.3 Materials and Methods

3.3.1 Isolation and screening of GABA-producing LAB

Kung-Som samples were purchased from local markets in Songkhla Province, Thailand. Samples were homogenized in sterile 0.1% (w/v) peptone and spread onto MRS agar supplemented with 0.02% (w/v) bromocresol purple and incubated at 37 °C for 24 h. Bacterial colonies exhibited yellow zone on the plates were tested for catalase and Gram-staining. The catalase-negative and Gram-positive isolates were cultivated in MRS broth containing 2% (w/v) monosodium glutamate (MSG) at 37 °C for 24 h. Culture broth was centrifuged at 8,000×g for 5 min at 4 °C. The GABA in the supernatant was presumptively detected by using thin-layer chromatography (TLC). Briefly, levels of GABA were determined qualitatively by TLC with Silicagel 60 F254 TLC plate (Merck, Germany). One microliter of supernatant was spotted onto TLC plates. TLC was conducted using an 1-butanol:acetic acid:distilled water (5:2:2) solvent mixture, and plates were subsequently sprayed with 0.5% (w/v) ninhydrin solution and then heated at 105 °C for 5 min. R_f value was calculated as followed: $R_f = \frac{\text{distance travelled by component}}{\text{distance travelled by}}$
solvent. Bacterial strains having the same Rf value as the GABA standard (Sigma-Aldrich, UK) was selected for quantitation by HPLC.

3.3.2 GABA analysis

3.3.2.1 Sample preparation

Quantitative analysis of GABA in culture broth was derivatized with o-phthaldialdehyde (OPA) before detection using RP-HPLC according to Populin et al. (2007) with modification. The OPA solution (pH 9.3) was made by mixing 5.0 ml of a methanolic OPA, 20 ml of borate buffer (pH 9.9) and 50 µl of 2-mercaptoethanol. Methanolic OPA was made by dissolving 0.25 g of OPA in 50 ml of methanol. The borate buffer solution was prepared by mixing 0.2 M boric acid (dissolved in 0.2 M potassium chloride) and 0.2 M sodium hydroxide in a ratio of 50:50 (v/v). Fifteen microliters of sample and 75 µl of OPA solution were mixed and allowed to stand for 2 min before injection into the column.

3.3.2.2 RP-HPLC analysis

A RP-HPLC determination was performed with an Agilent Technologies 1200 series binary pump, autosampler and a fluorescence detector equipped with an automatic liquid sampler, injector program. The column was a Hypersil ODS C18 reverse phase column (4.6 x 250 mm, 5 µm) and thermostatted at 30 °C.

The separation of OPA-derivatives was performed with a mobile phase, consisting of 370 ml of water plus 90 ml of phosphate buffer at pH 7.0 as solvent A, while solvent B was acetonitrile. The gradient elution program was held at 13% of B for 15 min, ramped at 50% of B (40 min) and then at 85% of B (60 min) and held until the end of the run (62 min) with a flow rate of 1.0 ml/min. Detection was performed with a spectrofluorometer, model G1321A set at 330 nm (λ excitation) and 440 nm (λ emission).

3.3.3 Identification of GABA-producing LAB

3.3.3.1 Phenotypic identification

Morphological characterization of the superior GABA-producing isolates was done by examining colony growth, cell morphology, and Gram reaction and catalase test. Isolates that were found to be Gram positive and catalase negative were subjected to biochemical characterization using the API 50 CHL fermentation strips (Biomerieux SA, France) at 37 °C according to the manufacturer’s instructions. The cells were collected by centrifugation (8,000×g for 5 min at 4 °C) and washed twice with phosphate buffer (pH 7.0). The washed cells were suspended in 10 ml of suspension medium (Bio Me’rieux) and inoculated into the API CHL strips. The strips were incubated at 37 °C for 48 h, and then acid formation was determined by monitoring the change in color of bromocresol purple used as an indicator.
3.3.3.2 Genotypic identification

Genomic DNA from the superior GABA production was extracted and used as template for PCR to amplify the 16S rDNA by using the universal bacterial primers (approximately 1.5 kb) 8f (5ʹ-AGAGTTTGATCCTGGCTCAG-3ʹ) and 1492r (5ʹ-GGTTACCTTGGTTACGACTT-3ʹ) (Shukla and Goyal, 2011). The amplification cycle was as follows: 30 repetitions of 95 °C for 1 min; 50 °C for 45 sec and 72 °C for 1 min 30 sec. An initial denaturation at 95 °C for 5 min and a final extension at 72 °C for 10 min were carried out. PCR products were purified and cloned into pGEM T-Easy vector (Promega, Madison, WI, USA). E. coli JM109 cells were transformed with the ligation mixture by a heat shock method (Chung et al., 1989). The sequencing results were compared with known sequences using the basic local alignment search tool (BLAST program, http://www.ncbi.nlm.nih.gov/BLAST/). The 16S rDNA sequences from various species were downloaded from NCBI. A phylogenetic tree was constructed using the neighbour-joining method in the Molecular Evolutionary Genetics Analysis (MEGA 5) package (Tamura et al., 2011).

3.3.4 Growth profiles and GABA production of L. futsaii CS3

Lactobacillus futsaii CS3 was cultivated in MRS broth with 25 mg/ml of total MSG containing 1% (v/v) inoculums (OD600 ~ 0.4-0.5). Then, incubated at 37 ºC for 72 h. Growth of the isolate was determined by measuring culture turbidity at 600 nm every 3 h. Also, culture pH, lactic acid content (AOAC, 2005) and GABA concentration were measured at the same time intervals. The GABA conversion efficiency (%) was calculated from equation according to Ratababuree et al. (2011):

\[
\text{GABA conversion efficiency (\%)} = \frac{[\text{GABA}]}{[\text{GABA}]_{\text{max}}} = \frac{[\text{GABA}]-[\text{GABA}]_0}{[\text{MSG}]_0 \times 169.13} \times 100
\]

[GABA] = concentration of GABA at time of sampling (g/l)

[GABA]_{\text{max}} = concentration of GABA when all MSG converted to GABA by fermentation (g/l)

[GABA]_0 = concentration of GABA at the time of starting fermentation (g/l)

[MSG]_0 = concentration of MSG added (this study, 25 g/l)

169.13 and 103.12 are molecular weights of MSG and GABA, respectively
3.3.5 Cloning of gad gene

Based on the conserved sequences of gadB position of Lactobacillus gad genes available in GenBank (www.ncbi.nlm.nih.gov), a pair of primers, GAD_FT (5'-ATGGCAATGTATACGGTAAACAC-3’) and GAD_RT (5'-TCAGTGTGTGAATCCGTATTCTTT-3’) was designed to amplify the ORF of gad gene. It was used to amplify the approximate 1.4 kb target sequence. The PCR was performed as follows: 94 ºC for 3 min; 35 cycles of 94 ºC for 30 sec, 55 ºC for 30 sec, and 72 ºC for 1 min 30 sec; finally 72 ºC for 10 min. The amplified fragments were cloned into pGEM T-Easy vector. After being transformed into the competent cells of E. coli JM109, positive clones were sequenced in both directions with universal primers T7 and SP6. The similarity of gad gene with others was analyzed using the online BLAST program. The molecular weight and the predicted isoelectric point (pI) were obtained through ExPASy (http://web.expasy.org/compute_pi/).

3.3.6 Construction and expression of gad gene in E. coli BL21 (DE3)

Based on the ORF sequence of gad gene, a pair of primers, forward primers: 5′-GCGCATATGGCAATGTATACGGTAAACAC-3’ and reverse primer 5′-GGGAATTCTCA GTGTGTGTGAATCCGTATTCTTT-3’ were designed to amplify the sequence encoding the mature peptide of GAD enzyme. The underlined portions in the primer sequences represent the recognition sites for the restriction enzymes NdeI and EcoRI, respectively. The amplified fragment was digested by NdeI and EcoRI and then inserted into the pColdI expression vector (Takara, Japan) to generate the expression vector pColdI-GAD. The recombinant plasmid pColdI-GAD was transformed and expressed in E. coli BL21 (DE3). Briefly, E. coli BL21 (DE3) cells carrying pColdI-GAD was inoculated into LB broth containing ampicilin (100 μg/ml) and grown at 37 ºC to reach an OD600 of approximately 0.3-0.5. After that, the culture solution was refrigerated at 15 ºC for 60 min to prepare the cells. The expression was induced by adding of isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM. It was cultivated with shaking (150 rpm) at 15 ºC for 24 h. The bacterial cells were harvested and the expression of recombinant protein was confirmed by 12.5% SDS-PAGE analysis.

3.3.7 Purification of the GAD-(His)6 fusion protein

A single colony of the expressed cell was inoculated into LB medium containing 100 μg/ml of ampicilin. The cells were harvested by centrifugation (10,000×g, 4 ºC, 10 min) after induction by IPTG at 15 ºC for 24 h. The recombinant protein was isolated from the pellet cells by lysis with lysozyme followed by repeated cycles of freezing and thawing.
(Johnson and Hecht, 1994). Briefly, the pellet cells was washed twice with 50 mM phosphate buffer (pH 8.0) and then resuspended in lysis buffer (50 mM sodium phosphate, 1 mM PMSF, 300 mM NaCl, 10 mM imidazole, pH 8.0). A final concentration of lysozyme 1 mg/ml was added in solution. Pellet cells were frozen by submerging the tube into liquid nitrogen for 5 min and then thawed by transferring it into water bath (37 ºC) for 10 min. This cycle was repeated 4 additional times. The cell debris was removed by centrifugation at 10,000×g at 4 ºC for 20 min. The pellet was dissolved in 8M urea and purified by using the affinity chromatography which carried out with HisPur™ Ni²⁺-nitrilotriacetate (Ni-NTA) superflow agarose (Thermo Scientific, U.S.A.) under denaturing conditions. Briefly, the solution was first loaded onto an affinity column pre-equilibrated with equilibration buffer (20 mM NaH₂PO₄, 6M urea, 300 mM NaCl, 10 mM imidazole, pH 7.4). The contaminant proteins were removed with washing buffer (20 mM NaH₂PO₄, 6M urea, 300 mM NaCl, 20 mM imidazole, pH 7.4). Then, GAD protein was eluted with elution buffer (20 mM NaH₂PO₄, 6M urea, 300 mM NaCl, 300 mM imidazole, pH 7.4). The concentrations of purified protein were determined using Bradford approach with bovine serum albumin (BSA) as a standard (Bradford, 1976). The GAD molecular weight was determined by SDS-PAGE using 12.5% (w/v) acrylamide gel for separation and 5% (w/v) gel for stacking.

3.3.8 Computer modeling method

The molecular model of GAD from *L. futsaii* CS3 was obtained by homology modeling via the SWISS-MODEL server (Peitsch, 1995; Guex and Peitsch, 1997; Arnold et al., 2006). The *gad*B from *E. coli* at low pH (PDB ID: 1PMM) was selected as the template for model building. Sequence alignment was performed using ClustalX (Thompson et al., 1997). The resulting model was evaluated with SWISS-MODEL server.

3.4 Results

Screening and identification of GABA-producing LAB

The GABA-producing LAB was isolated from *Kung-Som*, a Thai traditional fermented shrimp. During the screening stage, 600 pure LAB isolates were cultivated in MRS medium containing 2% MSG. Then, the supernatant was qualitative tested for GABA-producing ability on TLC plates. Only two isolates (CS3 and CS5) exhibited a strong GABA spot when MSG was present (Fig. 7A). In addition, two GABA-producing LAB isolates were quantitatively confirmed using RP-HPLC (Fig.7B). GABA content of strain CS3 at 24 and 48 h was 3.25 and 6.30 mg/ml, respectively. Strain CS5 produced GABA content at 24 and 48 h was 2.55 and 6.0 mg/ml, respectively.
Figure 7 A; TLC chromatogram of GABA production by the isolated LAB. Lanes G, GABA standard; M, MSG standard; ME, MRS medium containing 2% MSG (control); A, isolate CS3; B, isolate CS5. B; HPLC chromatogram of MSG and GABA in the media.

The superior GABA-producing LAB strain CS3 and CS5 were a Gram-positive, rod shape, negative-catalase test and facultative anaerobic. To identify these strains, the biochemical tests using API-CHL50 fermentation strips and 16S rDNA using PCR amplification was performed. Based on the fermentation of 50 carbohydrates producing organic acids, monitoring the change in color of bromocresol purple used as an indicator was performed. This demonstrated the presence of a strong intra-strain fluctuation in carbohydrate metabolism patterns of *Lactobacillus* species. The phenotypic results obtained for two strains are shown in Table 4. Carbohydrate fermentations pattern of both strains were completely same. These results suggested that strain CS3 and CS5 correspond to the specie *L. futsaii* when comparing with type strains of *L. futsaii* YM0097T or JCM 17355T or BCRC 80278T according to Chao et al. (2012).
Table 4 Biochemical characterization of the strain CS3 and CS5 using API 50 CHL fermentation strips

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utilizable sugar</td>
<td>D-Galactose, D-Glucose, D-Fructose, D-Mannose, N-Acetylglucosamine, Amygdalin, Arbutin, Esculin ferric citrate, Salicin, D-Cellobiose, D-Maltose, D-Lactose (bovine origin), D-Saccharose (Sucrose), D-Trehalose, Gentiobiose, D-Tagatose</td>
</tr>
<tr>
<td>Non-utilizable sugar</td>
<td>Glycerol, Erythritol, D-Arabinose, L-Arabinose, D-Ribose, D-Xylose, L-Xylose, D-Adonitol, Methyl-βD-Xylopyranoside, L-Sorbose, L-Rhamnose, Dulcitol, Inositol, D-Mannitol, D-Sorbitol, Methyl-αD-Mannopyranoside, Methyl-αD-Glycopyranoside, D-Melibiose, Inulin, D-melezitose, D-Raffinose, Amidon (starch), Glycogen, Xylitol, D-Turanose, D-Lyxose, D-Fucose, L-Fucose, D-Arabinol, L-Arabinol, Potassium Gluconate, Potassium 2-Ketogluconate, Potassium 5-Ketogluconate</td>
</tr>
</tbody>
</table>

Moreover, based on the 16S rDNA sequence, phylogenetic tree analysis showed that the strain CS3 and CS5 belonged to the genus *L. futsaii* (Fig. 8) with 99.80% and 99.66% identity of *L. futsaii* YM0097T (GenBank accession no. HQ322270), respectively. Therefore, the strain CS3 and CS5 was named as *L. futsaii* CS3 and *L. futsaii* CS5, respectively. The nucleotide sequence of 16S rDNA from *L. futsaii* CS3 and CS5 were deposited in DNA Data Bank of Japan (DDBJ) as the accession number AB839950 and LC019014, respectively.
Figure 8 Neighbour-joining tree comprising 16S rDNA sequences of strain CS3 and CS5 with recognized Lactobacillus species. Bootstrap values expressed as percentages of 1,000 replications (greater than 50% are shown at the branch points). Bar, 0.01 substitutions per nucleotide position.

Growth profiles and GABA production of L. futsaii CS3

In order to investigate the cell growth association with GABA production pattern of L. futsaii CS3 strain, L. futsaii CS3 was cultivated in MRS broth supplemented with 25 MSG mg/ml at 37 °C for 72 h. As shown in Figure 9, the bacterium grew rapidly within the first 24 h (~9 log cfu/ml), which was correlated with the sharply decline in pH and rapidly increased in lactic acid concentration. After pH value of the medium dropped to lower than 4.5, the GABA was produced. Then, the GABA concentration was gradually increased until maximum at 72 h. The pH of the culture medium increased gradually to pH 5.0 at the end of fermentation. However, it was noted that L. futsaii CS3 could quite completely convert MSG to GABA at the maximum more than 99% of GABA conversion.
Figure 9 Growth of *L. futsaii* CS3 in MRS broth containing 25 mg/ml MSG, GABA production (% GABA conversion), and the changes in broth pH and lactic acid content

Molecular survey and cloning of *gad* gene

The ORF sequence of *L. futsaii* CS3 *gad* gene was amplified by using PCR with proof reading DNA polymerase enzyme. The result showed that 1.4 kb *gad* gene was successfully detected in *L. futsaii* CS3 (Fig. 10). Then, the *gad* gene was cloned into pGEM T-Easy vector and the nucleotide sequence was investigated. The entire open reading frame (ORF) was 1,410 bp in length that encoded a protein of 469 amino acids (Fig. 11) with a predicted molecular weight of 53.64 kDa and an estimated isoelectric point (pI) of 5.56 by ExPASy program. The *gad* sequence comparisons were carried out using BLAST program. The results indicated that *L. futsaii* CS3 *gad* gene showed 99% identity with *L. plantarum* (CP002222, AL935263 and CP001617), 98% with *L. reuteri* (KF751352), 97% with *Lc. lactis* subsp. *lactis* (KF751353) and *L. delbrueckii* subsp. *bulgaricus* (KF751355). The alignments of the deduced amino acid sequence of *gad* gene with others were also carried out. The results showed that *gad* sequence from *L. futsaii* CS3 showed similarity with *L. plantarum* CMPG5300 (KGH41583) (99%), *L. reuteri* ATCC 23272 (AHX56280) (97%), *L. delbrueckii* subsp. *bulgaricus* ATCC 11842 (AHX56283) (94%), *L. brevis* BH2 (ABU55419) (83%), and *L. brevis* OPK-3 (AAZ95185) (83%).
Figure 10 The presence of approximate 1.4 kb of the gad gene from L. futsaii CS3.

Lane M = a 1 kb DNA ladder marker

Figure 11 Nucleotide and deduced amino acid sequence of the L. futsaii CS3 gadB gene. The predicted amino acids sequence (single-letter abbreviation) is shown above the nucleotide sequence. The presumed catalytic amino acid residues (Thr215 and Asp247, and Lys280) are shown in bold case.
In addition, the deduced amino acid sequence of CS3 gad gene belonged to the gadB family. It had both a highly conserved motif (HVDAASGG) that belongs to pyridoxal-5’-phosphate (PLP)-dependent decarboxylase and a PLP-binding domain (Fig. 12). Moreover, these positions in the non-crystallization structure are shown in Figure 13. The monomer homology model of recombinant GAD protein had almost the same fold as the subunit A of gadB from E.coli. The high degree of sequence identity was 46.23% similarity. Moreover, the Global Model Quality Estimation (GMQE) value of 0.74 also indicated fairly good quality of the constructed model. Correspondingly, the gadB of L. futsaii CS3 composed of three domains: N-terminal domain (residues 1-59), large (residues 60-350) and small (residues 351-469) domain. The gadB β-hairpin region spanning residues 304-316 was performed. Indeed, the nucleotide sequence of gadB gene from L. futsaii CS3 has been submitted to the DDBJ nucleotide sequence database under the accession no. AB986192.
Figure 12: Alignment of the amino acid sequence of *L. futsaii* CS3 gadB with gadB proteins from other LAB. The amino acid residues (HVDAASGG) in the box are highly conserved in pyridoxal 5’-phosphate-dependent decarboxylase; the amino acid residues in other box are the pyridoxal 5’-phosphate binding domain.
Figure 13 Cartoon representation of the homology model of the gadB monomer at low pH. N-terminal domain is colored yellow, large domain pink color, small domain or C-terminal deep blue color and β-hairpin region green color. PLP-binding domain and motif sheets are colored light blue and white, respectively.

Expression of the recombinant GAD enzyme

The recombinant plasmid (pColdI-GAD) was transformed into *E. coli* BL21 (DE3) cells. After IPTG induction for 24 h at 15 ºC, the recombinant protein, mainly expressed as inclusion bodies, was analyzed using SDS-PAGE. Therefore, the inclusion bodies were dissolved in 8M urea and purified by Ni-NTA chromatography under denaturing conditions (Fig. 14). SDS-PAGE analysis showed that the molecular mass of the purified recombinant was about 53 kDa. In addition, the amount of proteins after purification was approximately 19.16 mg proteins/0.1 gram of pellet cell.
Figure 14 Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis of the expression and purification of recombinant GAD protein in E. coli BL21 (DE3). The figure showed a 12.5% SDS-PAGE gel stained with Coomassie Blue. Lanes: M molecular weight marker, 1 soluble-insoluble fraction of E. coli BL21 with pColdI plasmid, 2 and 3 soluble-insoluble fraction of E. coli BL21 transformed with pColdI-GAD before and after 24h induction by IPTG, respectively. 4 and 5 insoluble and soluble fraction of E. coli BL21 transformed with pColdI-GAD after 24h induction by IPTG, respectively. 6 recombinant GAD purified by Ni-NTA column kit

3.5 Discussion

The GABA-producing LAB have been isolated successfully from several fermented foods as previous reports such as fermented fish, fermented shrimp (Cincaluk) (Farrah et al., 2009), fermented vegetable (Kimchi) (Kim and Kim, 2012), Chinese traditional paocai (Li et al., 2010b), yoghurt (Watanabe et al., 2011), fermented sausages (Nham) (Ratanaburee et al., 2013) or cheeses (Di Cagno et al., 2010). Mostly, Lactobacillus spp. were reported as GABA-producing LAB. They are the dominant LAB in the last stage of fermentation because they produce acid more slowly than cocci. However, they are more tolerant to acid than cocci (Mohd Adnan and Tan, 2007; Kopermsub and Yunchalard, 2010; Hwanhlem et al., 2011). In the present study, a promising L. futsaii CS3 was first reported in the finished products of Kung-Som, a traditional fermented shrimp of southern Thailand. It is a rich source of LAB and higher glutamic acid which a major substrate for biosynthesis of natural GABA by LAB. Actually, L. futsaii was first isolated from fu-tsai, the traditional fermented mustard products.
of Taiwan by Chao et al. (2012). In addition, *L. futsaii* was isolated from several Thai fermented fish (*Pla-Som, Pla-ra, Pla-jom, Pla-jaw, Som-khai-pla, Mum-sai-pla*) (Miyashita et al., 2012). During cultivated *L. futsaii* CS3 in MRS medium containing 2% (w/v) MSG at 37 °C for 24 h (Fig. 9), it produced a GABA content of 6,628.46 mg/l. It was remarkably higher than that of other strains such as *L. delbrueckii* subsp. *bulgaricus* IAM1120 and *Strep. thermophilus* IFO13957 (less than 200 mg/l) (Watanabe et al., 2011), *L. plantarum* DW12 (4,156 mg/l) (Ratanaburee et al., 2011), *Leuconostoc* NC5 (292.86 mg/l) (Farrah et al., 2009), and *L. brevis* 340G (1,598.4 mg/l) (Seo and Lee, 2013). Accordingly, *L. futsaii* CS3 could be a promising LAB strain for application as a starter culture in the food industrial production of GABA and the development of functional foods.

GABA is the product of the reaction catalyzed by glutamate decarboxylase enzyme which is the irreversible α-decarboxylation of L-glutamic acid to GABA and carbon dioxide (Ueno, 2000). The aim of growth characteristics observation was to obtain a better understanding about the mechanism of the GABA production in *L. futsaii* CS3. In the present study, a significant decrease and gradually increased in culture media pH was observed. This decrease could be due to the hetero-type lactic acid fermentation of *L. futsaii*, resulting in the formation of lactic acid and acetic acid (Cho et al., 2011). Production of GABA by *L. futsaii* was related to increase of cell growth and decrease of the culture media pH. The decreased pH apparently accelerated GABA production in the medium during periods of exponential cell growth. In other investigations using other species of GABA-producing LAB, the GABA and pH pattern during GABA production was found to be similar to the present study (Komatsuzaki et al., 2005; Cho et al., 2007; 2011). In addition, GABA production was also directly associated with its expression of *gad* genes. Physiologically, this is assumed to control the acidification of the cytosolic environment by consumption of an intracellular proton after the uptake of glutamate by its specific transporter. The decarboxylating reaction product GABA would then be exported from cells into the extracellular environment by an antiporter. The net result is an increase in the pH of the cytoplasm, due to the removal of hydrogen ions, and a slight increase in the extracellular pH, due to the exchange of extracellular glutamate for the more alkaline GABA (an acid-tolerance mechanism) (Cho et al., 2007; Siragusa et al., 2007; Hiraga et al., 2008).

Actually, the existence of *gad* gene in LAB has been described in many reports (Park and Oh, 2007a; Kim et al., 2007; Fan et al., 2012; Park et al., 2014). However, there is no information available on the *gad* gene sequences from *L. futsaii* strains. Fortunately, the sequences of *gad* gene of *L. futsaii* CS3 was discovered and first reported in the present
study. As discussed earlier, the presence of *gad* gene suggests an increased ability to produce GABA, since GAD enzyme must be present to produce GABA. In addition, sequence analysis showed that the fragment contained a complete ORF of 1,410 nucleotides that encoded a protein of 469 amino acids. Among the alignment of deduced amino acid with other *gad* sequence, the results revealed that the deduced amino acid sequence of the *L. futsaii* CS3 GAD contained a highly conserved catalytic domain that belong to the PLP-dependent decarboxylase superfamily. It possessed a conserved lysine residue (Lys280) that is known to be crucial for the binding of PLP as well as the active site residues (Thr215 and Asp247) that promote decarboxylation. Moreover, the motif [HVDAASGG] which is highly conserved in PLP-dependent decarboxylase was discovered in the *L. futsaii* CS3 *gad* sequence (Park and Oh, 2007a; Kim et al., 2007; Fan et al., 2012). In addition, non-crystallization structure of *L. futsaii* CS3 was predicted using SWISS-MODEL server. The structure of *L. futsaii* CS3 GAD was fairly good model. Because GAD enzyme is localized exclusively in the cytoplasm at neutral pH, it is recruited to the membrane when the pH falls (Capitani et al., 2003). Therefore, the subunit A of *gadB* from *E. coli* at low pH was used as the template for modeling evaluation. Also, bacterial GAD exhibits an acidic pH optimum (3.8-5.0) (Huang et al., 2007b; Komatsuzaki et al., 2008; Fan et al., 2012). In addition, the *gad* system is by far the most potent and is involved in conferring acid resistance to the bacteria in stationary phase, giving them survival capacity for at least 2 h in a strongly acidic environment (pH<2.5), such as that of the stomach (Capitani et al., 2003).

The expression of GAD enzyme was carried out with cold-shock expression vector, so called pColdI. It could be induced to create the cold-shock proteins base on the low-temperature by utilizing the promoter derived from *cspA* gene, which is one of the cold-shock genes. The *gad* gene was inserted to the multicloning site of pColdI vector to generate the recombinant expression vector construct pColdI-GAD. The recombinant plasmid was transformed into *E. coli* BL21 (DE3) to express the GAD enzyme under the control of the *cspA* promoter. The *cspA* mRNA has a highly efficient structure for translation initiation. When the *cspA* mRNA is induced at 15 ºC using a multiple copy plasmid results in the trapping of most cellular ribosomes and the inhibition of other cellular protein synthesis (Mitta et al., 1997; Qing et al., 2004). Besides the pColdI vector is consisted of His-tag sequence, GAD protein was expressed as a His-tagged fusion protein to facilitate purification. The recombinant GAD proteins expressed from pColdI-GAD plasmid was constructed as inclusion bodied forms. However, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Although inclusion bodies cannot be directly used
for studies of protein activities, their insolubility provides an easy source of relatively pure protein (Yang et al., 2011). The inactive inclusion bodies forms are frequently occurred depending on many parameters such as the gene regulatory, characteristic of proteins, secretion mechanisms, types of plasmid, temperature induction, disulfide bond formations or whatever explained in Rudolph and Lilie (1996) and Singh and Panda (2005). As a result, a computer-based homology search program by NCBI revealed that the amino acid sequence deduced from L. futsaii CS3 GAD ORF showed different homology with recombinant GAD enzyme in microbes such as L. brevis BH2 (83%) (Park and Oh, 2007a) and L. brevis OPK-3 (83%) (Kim et al., 2007). Their results showed that the GAD recombinant proteins were expressed as the soluble protein forms. On the other hand, GAD proteins from L. futsaii CS3 showed 44.5% of hydrophobic amino acids. According to these results, it is generally assumed that highly hydrophobic protein and high-level expression is more prone to lead to accumulation as inclusion bodies in E. coli system (Mitraki et al., 1991). Indeed, this procedure was employed successfully with highly expressed proteins that formed inclusion bodies.

3.6 Conclusion

Kung-Som is the one of famous fermented shrimp that widely distributed in the south of Thailand. Because many kinds of fermented foods is mainly fermented by Lactobacillus sp., L. futsaii CS3 is a potential alternative to be extensively used in the functional foods and pharmaceuticals with contributing GABA. In addition, we have also first reported the ORF sequence of gadB gene from L. futsaii strain. In addition, the non-crystallization structure of L. futsaii CS3 GAD was predicted for additional basic knowledge. Furthermore, the GAD protein was successfully expressed in E. coli system. These preliminary results may provide useful information for the potential expression of LAB gad gene in other microbes. It will further expand the application area of GABA-producing LAB to significantly enhance GABA production and value added of products in further study.
CHAPTER 4
CONCLUSION AND SUGGESTION

4.1 Conclusion

Kung-Som is the one of famous fermented shrimp that widely distributed in the south of Thailand. From PCR-DGGE analysis combined with two primer sets, the dominant groups of bacteria in *Kung-Som* were LAB and CNC. *L. futsaii* was first discovered from *Kung-Som* products with contributing GABA production. In addition, we have also first reported the ORF sequence of *gadB* gene from *L. futsaii* strain. Moreover, the non-crystallization structure of *L. futsaii* CS3 GAD was predicted for additional basic knowledge. Furthermore, the GAD protein was successfully expressed in *E. coli* system. These preliminary results may provide useful information for the potential expression of LAB gad gene in other microbes. It will further expand the application area of GABA-producing LAB to significantly enhance GABA production and value added of products in further studies.

4.2 Suggestion

1. The data cannot be considered sufficient to achieve a confident identification at species level, but should suggest that the relevant genes together with other target sequences such as other region of 16S rDNA, *gyrA, gyrB, recA* or *rpoC*, should be used for unequivocal identification of individual species.

2. According to molecular and genetic characterization of *gad* gene, the GAD protein was expressed as inclusion bodied form in *E.coli* system. Therefore, it should be improved the expression system. For example, it could be changed to other vectors or expression host. In our further studies, we will transform the *gad* gene into a food grade vector and expressed in *Lactobacillus* system.
REFERENCES

APPENDIX
BLAST results of nucleotide of 16S rDNA from *Lactobacillus futsaii* CS3
Query 853 AGGTTCTCCGCTTCCAGTGCTGCAAGTACAGCGATATGCCCGCCCTGGGAAGTACGA
 912
Sbjct 841 AGGTTCTCCGCTTCCAGTGCTGCAAGTACAGCGATATGCCCGCCCTGGGAAGTACGA
 900
Query 913 CACCAAGTGGGAGATGAACTCAAGGAATTGACGGGGGCGCCGACAAACGGTGAGCACTTGTGTT
 972
Sbjct 901 CACCAAGTGGGAGATGAACTCAAGGAATTGACGGGGGCGCCGACAAACGGTGAGCACTTGTGTT
 960
Query 973 TTAAATTCAGACGGGAGACAGATCATCGTCACTTGGACATACAGGAATGCTTGAG
 1032
Sbjct 961 TTAAATTCAGACGGGAGACAGATCATCGTCACTTGGACATACAGGAATGCTTGAG
 1020
Query 1033 ATAAATCATTTCTCTTCATCCGGGAGTGATCAGATCTTGGCTGGATGCTCACTCTGTGTT
 1092
Sbjct 1021 ATAAATCATTTCTCTTCATCCGGGAGTGATCAGATCTTGGCTGGATGCTCACTCTGTGTT
 1080
Query 1093 CAGTGAGATGGTGCTAGCTCCGCAACGACGCAAGCGACCGGGTTAATCGCCACAGAAT
 1152
Sbjct 1081 CAGTGAGATGGTGCTAGCTCCGCAACGACGCAAGCGACCGGGTTAATCGCCACAGAAT
 1140
Query 1153 CAGTGAGATGGTGCTAGCTCCGCAACGACGCAAGCGACCGGGTTAATCGCCACAGAAT
 1212
Sbjct 1141 CAGTGAGATGGTGCTAGCTCCGCAACGACGCAAGCGACCGGGTTAATCGCCACAGAAT
 1200
Query 1213 AAGCTCGTCACGGGTGGGCTACAGTGACGGGGGCGCCGACAAACGGTGAGCACTTGTGTT
 1272
Sbjct 1201 AAGCTCGTCACGGGTGGGCTACAGTGACGGGGGCGCCGACAAACGGTGAGCACTTGTGTT
 1260
Query 1273 TGGCAACTCGGAGGCGGCAACGACGCAAGCGACCGGGTTAATCGCCACAGAAT
 1332
Sbjct 1261 TGGCAACTCGGAGGCGGCAACGACGCAAGCGACCGGGTTAATCGCCACAGAAT
 1320
Query 1333 CAACCTCGTCGCCATGATGGRATGCTGCAATCGGATTGCAGCATCGCCGCTGGAAT
 1392
Sbjct 1321 CAACCTCGTCGCCATGATGGRATGCTGCAATCGGATTGCAGCATCGCCGCTGGAAT
 1380
Query 1393 AGGTTCTCCGCTTCCAGTGCTGCAAGTACAGCGATATGCCCGCCCTGGGAAGTACGA
 1452
Sbjct 1381 AGGTTCTCCGCTTCCAGTGCTGCAAGTACAGCGATATGCCCGCCCTGGGAAGTACGA
 1440
Query 1453 CGGTTGGGTACACTTTGGGGGAGACAGATCATCGTCACTTGGACATACAGGAATGCTTGAG
 1512
Sbjct 1441 CGGTTGGGTACACTTTGGGGGAGACAGATCATCGTCACTTGGACATACAGGAATGCTTGAG
 1500
Query 1513 TGCTAACAGGGTGACCC
 1528
Sbjct 1501 TGCTAACAGGGTGACCC
 1516
BLAST results of nucleotide of 16S rDNA from *Lactobacillus futsaii CS5*

<table>
<thead>
<tr>
<th>Query</th>
<th>Sbjct</th>
<th>Score</th>
<th>Expect</th>
<th>Identities</th>
<th>Gaps</th>
<th>Strand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>56</td>
<td>26/26</td>
<td>10/10</td>
<td>12/12</td>
<td>Plus</td>
</tr>
<tr>
<td>61</td>
<td>18</td>
<td>2</td>
<td>25/25</td>
<td>10/10</td>
<td>5/15</td>
<td>Plus</td>
</tr>
<tr>
<td>121</td>
<td>78</td>
<td>120</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>138</td>
<td>1</td>
<td>137</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>178</td>
<td>180</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>178</td>
<td>97</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>81</td>
<td>300</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>258</td>
<td>241</td>
<td>257</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>301</td>
<td>318</td>
<td>360</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>318</td>
<td>361</td>
<td>377</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>361</td>
<td>378</td>
<td>420</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>421</td>
<td>438</td>
<td>480</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>438</td>
<td>481</td>
<td>497</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>481</td>
<td>498</td>
<td>540</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>498</td>
<td>541</td>
<td>557</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>541</td>
<td>558</td>
<td>600</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>558</td>
<td>601</td>
<td>617</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>618</td>
<td>660</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>618</td>
<td>661</td>
<td>677</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>661</td>
<td>678</td>
<td>720</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>678</td>
<td>721</td>
<td>737</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>721</td>
<td>738</td>
<td>780</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>738</td>
<td>781</td>
<td>797</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>781</td>
<td>798</td>
<td>840</td>
<td>1466/1473</td>
<td>5/1473 (0%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>798</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BLAST results of nucleotide of gadB gene from Lactobacillus futsaii CS3
BLAST results of amino acid sequences of gadB gene from *Lactobacillus futsaii* CS3

Query 1	MAMLYSKHNHEAZ3YLEPVPFAGP8EQRLKPRNLKSNLSFREDLRVHELDDIEGNRSL	60
Sbjct 1	MAMLYSKHNHEAZ3YLEPVPFAGP8EQRLKPRNLKSNLSFREDLRVHELDDIEGNRSL	60
Query 61	NLATFCQYMEPEAVELMRDITLNAIDKSEYPRTAEIENRCVNIANLWHAPDEHHTG	120
Sbjct 61	NLATFCQYMEPEAVELMRDITLNAIDKSEYPRTAEIENRCVNIANLWHAPDEHHTG	120
Query 121	TST1G8EACMLGLCGLAMKFWRRRAQAGQLDNLNAHRPNLVIASAGYCVWCKFPCVYWD	180
Sbjct 121	TST1G8EACMLGLCGLAMKFWRRRAQAGQLDNLNAHRPNLVIASAGYCVWCKFPCVYWD	180
Query 181	HVPVMDEQHMLALDVIHFVDEYVTFGIMDITYREGQYDDILALDLKVRTHYNHQHPK	240
Sbjct 181	HVPVMDEQHMLALDVIHFVDEYVTFGIMDITYREGQYDDILALDLKVRTHYNHQHPK	240
Query 241	PYY1HVDAA3G9GYTFFIEQP1LMDFRLVAVS1NASGKHLYLPGVQVWRDQFPLP	300
Sbjct 241	PYY1HVDAA3G9GYTFFIEQP1LMDFRLVAVS1NASGKHLYLPGVQVWRDQFPLP	300
Query 301	PELTVR0YLYLGELPTMANF883QAQLIQLGQNIFFMRGMDYREIFQCTFTHVARYLAAA	360
Sbjct 301	PELTVR0YLYLGELPTMANF883QAQLIQLGQNIFFMRGMDYREIFQCTFTHVARYLAAA	360
Query 361	LDRVGFEMMNGHQOLPIQYCALPREDRENTYLDL9DRLLMGQYPTVLFPLANLEQQV	420
Sbjct 361	LDRVGFEMMNGHQOLPIQYCALPREDRENTYLDL9DRLLMGQYPTVLFPLANLEQQV	420
Query 421	IQRIYVRADPSGMNADMDFMDLTLAKVHDLNNAHITVHHDAAAPKKYCFHT	469
Sbjct 421	IQRIYVRADPSGMNADMDFMDLTLAKVHDLNNAHITVHHDAAAPKKYCFHT	469
Standard curve of GABA standard

<table>
<thead>
<tr>
<th>RetTime (min)</th>
<th>Level</th>
<th>Amount (mg/l)</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.230</td>
<td>1</td>
<td>0.01</td>
<td>2.56332</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.05</td>
<td>16.31875</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0.1</td>
<td>35.35496</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.5</td>
<td>210.45236</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>1.0</td>
<td>423.29700</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>5.0</td>
<td>2732.35229</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>10.0</td>
<td>5676.29321</td>
</tr>
</tbody>
</table>

GABA at exp. RT: 18.628
FLD1 A, Ex=330, Em=440
Correlation: 0.99785
Residual Std. Dev.: 186.33612
Formula: y = mx
m: 567.80409
x: Amount
y: Area