

Final Report

A Fuzzy XML Database System

Researchers

 Asst. Prof. Apirada Thadadech
Department of Computer Science, Faculty of Science, Prince of Songkla University

 Asst. Prof. Preecha Vonghirandecha
Department of Computer Science, Faculty of Science, Prince of Songkla University

 Asst. Prof. Dr. Supaporn Kansomkeat
Department of Computer Science, Faculty of Science, Prince of Songkla University

 Assoc. Prof. Dr. Srdjan Skrbic
Department of Mathematics and Informatics, Faculty of Sciences, University of Novi Sad,
Novi Sad, Serbia

โครงการวิจัยนี้ไดรับทุนสนับสนุนจากเงินรายไดมหาวิทยาลัยสงขลานครินทร
ประจําปงบประมาณ.....2557......รหัสโครงการ......... SCI570329S................

2

Acknowledgements

We would like to acknowledge the support of the budget revenue from Prince of

Songkla University and Faculty of Science, Prince of Songkla University, Thailand, through

the project no. SCI570329S: A Fuzzy XML Database System.

We would like to express my thanks to Department of Computer Science, Faculty of

Sciences, Prince of Songkla University for giving us places and time to do this research.

We would also like to thank Department of Mathematics and Informatics, Faculty of
Sciences, University of Novi Sad for inviting, working together, sharing knowledge and
collaborating.

3

Abstract

In recent times, XQuery is the standard language for querying XML documents. However, data in

the real world are imprecise and vague values, but standard XQuery does not facilitate to support these
kinds of data. Therefore, we present an approach which uses fuzzy set theory to manage these data to
XML technology. The objective of this paper is to extend XQuery, namely “fuzzy XQuery”, for
providing priority, threshold and fuzzy expressions. An interpreter for fuzzy XQuery is developed by
using GPFCSP concept, Java programming language and eXist-native XML database.

บทคัดยอ
 ปจจุบันนี้ ภาษาสอบถามเอ็กคิวรี (XQuery) เปนมาตรฐานของภาษาสอบถามท่ีใชในการสืบคน
เอกสารเอ็กเอ็มแอล (XML) อยางไรก็ดี ในความเปนจริงขอมูลสวนใหญจะมีลักษณะไมชัดเจนและ
คลุมเครือ แตภาษาสอบถามเอ็กคิวรีไมสนับสนุนการทํางานกับขอมูลเหลานี้ ดังนั้น ในงานวิจัยนี้ จะ
นําเสนอการใชทฤษฎีฟซซีเซตเพ่ือจัดการกับขอมูลเหลานี้ในเทคโนโลยีเอ็กเอ็มแอล วัตถุประสงคของงาน
คือตองการจะขยายความสามารถของภาษาสอบถามเอ็กคิวรี ซ่ึงใหช่ือวา ภาษาสอบถามเอ็กคิวรีแบบ
คลุมเครือ เพื่อท่ีผูใชสามารถระบุเง่ือนไขในการสอบถามโดยใชนิพจนลําดับความสําคัญ (priority
expression) นิพจนขีดกั้น (threshold expression) และนิพจนคลุมเครือ (fuzzy expression) ได ตัวแปลภาษาท่ี
ใชในการประมวลผลภาษาสอบถามเอ็กคิวรีแบบคลุมเครือไดถูกพัฒนาข้ึนโดยใชหลักการ GPFCSP ภาษา
จาวาและฐานขอมูล eXist-db

4

Table of Contents

1. Introduction .. 6
2. Related Works .. 7
3. GPFCSP (Generalized Prioritized Fuzzy Constraint Satisfaction Problem) 8
4. System Implementation ... 9

4.1. System Architecture .. 9
4.2. Fuzzy XQuery EBNF grammar ... 11
4.3. Fuzzy values .. 12
4.4. Fuzzy XQuery Interpreter .. 13
4.5. Fuzzy Compatibility .. 18
4.6. Fuzzy Ordering .. 19

5. Graphic User Interface ... 20
6. Research Publications .. 21
7. Conclusion ... 22
8. References .. 23
9. Appendices ... 26
 A. Fuzzy XQuery EBNF grammar .. 26
 B. Manuscript of ADVCIT Paper .. 31
 C. Paper of IJMLC Journal .. 38
 D. Proceeding of ICIST2015 ... 43

5

Table of Figures

Figure 1: The system architecture of our approach .. 10
Figure 2: The EBNF notation of extended XQuery ... 11
Figure 3: An example of fuzzy XQuery ... 12
Figure 4: DTD for defining linguistic variables ... 12
Figure 5: The definition of linguistic variable “age”. ... 13
Figure 6: Activity diagram for executing fuzzy XQuery.. 13
Figure 7: The created AST by ANTLR .. 14
Figure 8: The whereclause subtree ... 15
Figure 9: The steps used to delete the FUZZY node from whereclause subtree 15
Figure 10: The whereclause subtree after the FUZZY token was deleted ... 15
Figure 11: The inorder walk in whereclause subtree ... 16
Figure 12: The tree after the fuzzy node was deleted ... 16
Figure 13: Interface with output in table view ... 20
Figure 14: Interface with output in XML views ... 21

Table of Tables

Table 1: List of softwares ... 10

6

1. Introduction

Most of the real world information comes in the form of imprecise or incomplete values. Tools for
fuzzy logic usage with relational databases have been studied deeply in the past, but in recent years, fuzzy
database community interest has been shifted to usage of fuzzy logic with XML. Although several
directions of research have been undertaken, there is a lack of stable, usable implementations and
standardized fuzzy extensions. As a consequence, there is a great interest in developing standardized,
industry usable extensions to XML databases and XML languages using fuzzy logic.

Furthermore, the concept of constraint satisfaction problem (CSP) has been known for years. The
aim of CSP is to find a solution that satisfies all the constraints in optimal time. If the satisfaction of the
constraint is not a Boolean value, i.e., if there can be many levels of constraint satisfaction, it is clear that
there is room for inserting fuzzy values and fuzzy logic into CSP. We can model constraints as fuzzy sets
over a particular domain. This leads to fuzzy constraint satisfaction problem (FCSP) reference. Obviously,
the degree of satisfaction of a constraint is the membership degree of its domain value on the fuzzy set
that represents it. In order to obtain the global satisfaction degree, we need to aggregate the values of each
constraint. For the aggregation operator we can use operators from fuzzy logic: t-norms, t-conorms and
strict negation. Priority is generally viewed as the importance level of an object among others and it is
often used in real time systems. PFCSP is actually a fuzzy constraint satisfaction problem (FCSP) in
which the notion of priority is introduced. After that the PFCSP was generalized to GPFCSP (Generalized
Prioritized Fuzzy Constraint Satisfaction Problem). The definition of GPFCSP is the same as the
definition of PFCSP. However, the GPFCSP adds the possibility to use a disjunction and negation.

The eXtensible Markup Language (XML) is becoming the standard for data description and
exchange between various systems and databases over the Internet. The World Wide Web Consortium
(W3C) has defined two standard languages for querying XML data: XPath and XQuery. XPath allows
selecting XML node sets via tree traversal expressions. XQuery is an extension of XPath conceived to
integrate multiple XML sources. We have an idea to improve the XQuery to be able to include the
imprecise or incomplete values in terms of user’s criteria.
 As a consequence, this project proposes a way to extend XQuery language as providing a more
flexible XQuery language with fuzzy set and implement an interpreter to execute the extended XQuery
queries by using the GPFCSP concept.

7

2. Related Works

 After we reviewed the literatures, we can summarize that there are three directions which research
on fuzzy logic into XML technology at this time. The first is to use fuzzy logic in XML databases that
uses of uncertain and imprecise values to define in database structures. The researchers are trying to define
fuzzy XML model that will rely on existing database architecture. Definition of uncertain values in
databases is achieved by reserving a part of a database for a fuzzy meta model that models fuzzy
membership functions. Using an unconstrained set of membership functions would be difficult to
implement. That is why authors define finite set of fuzzy membership function types that is enough for
most uses. Besides, this type of papers will add the elements of fuzzy logic into the SQL query languages
[1][2][3], and XQuery [4][5][6][7][8]. Authors introduce elements of syntax that allow the use of fuzzy
elements with XML stored in a database. Additionally, some papers define extensions related to store
procedures and triggers [9]. However, we rarely found the papers that implement the system in this
direction.
 The second is the use of fuzzy logic in XML documents. This approach divides into two parts –
defining uncertainty of document structure and defining uncertainty values in XML elements and
attributes. If an application needs to use XML documents, it is necessary that the structure of these
documents is revealed. Since XML documents are developed together with other parts of a software
system, introducing a new predefined structure of documents would cause problems with applications that
read them. This is only an example of a problem that can be solved by introducing fuzzy logic to
document structure. Some research defined query languages, typically by extending query languages like
XPath [10][11], and XQuery [12].
 The XML documents can have the uncertainty values. Sometimes a user is not able to precisely
map real world values to XML document values. Classic logic demands precise definition of its elements.
It is not able to work with values not defined in this way. However, values used in the real world are
usually not precisely defined. While defining fuzzy XML document model, most often XML Schema and
DTD Schema are used. Extensions of XML Schema language represent dominant way of defining fuzzy
XML elements, because of its advantages over DTD. The example of papers that used the XML Schema
are [13], [14] and [15] whereas [16] used DTD Schema. Sometimes even graph schema is used. Authors
in this type of papers define syntax and implement fuzzy query language interpreters.
 The third is use of fuzzy logic with XML for creating the modeling. The authors create the tools
that extend the expressive power of UML with fuzzy logic. These tools give a foundation to create a

8

fuzzy XML based information system. Using these tools, users can develop XML models with fuzzy logic
elements. The tools can contain possibilities to map fuzzy XML model to objects or database tables [17].
 This project focuses on the first direction that applies fuzzy logic in XML databases. Our
approach was inspired by the research work of Škrbić et al. [3] that proposed an extension of SQL with
fuzzy capabilities called PFSQL (Prioritized Fuzzy Structured Query Language). In contrast, our research
has been shifted to usage of XML technology. Another work that presents the similar approach as this
project is Panić et al. [8]. They proposed the fuzzy XML and fuzzy XQuery extension which used
GPFCSP concept to calculate the membership degree like in our work. However, the main difference
between Panić’s work and our work is that Panić’s implementation used .NET framework, MATLAB and
Microsoft SQL Server database, whereas our approach used Java programming language to implement the
new interpreter independent of MATLAB with eXist-db - native XML database.

3. GPFCSP (Generalized Prioritized Fuzzy Constraint Satisfaction Problem)
 The concept of Constraint Satisfaction Problem (CSP) is the problem defined as a set of objects

which state must satisfy a number of constraints or limitations. The CSP can be extended to the FCSP

(Fuzzy Constraint Satisfaction Problem) by modeling constraints as fuzzy sets over a particular domain.

The PFCSP (Prioritized Fuzzy Constraint Satisfaction Problem) [18] is a type of FCSP that introduces the

notion of priority. In this way, the value of constraint with the highest priority has the largest impact on

the result. However, PFCSP only describes the use of the conjunction of the constraints. Takači et al.

[19] generalized the PFCSP to the GPFCSP by adding the possibility to use disjunction and negation

whereas the definition of the GPFCSP is much the same as the definition of the PFCSP.

 Formal definition of GPFCSP may be found in [20]. Here we present a theorem that describes one
practically usable GPFCSP system.

Theorem the following system (X, D, Cf, , g, ∧, ∨, ￢, ) where

 1. X = {xi | i = 1, 2, …, n} is a set of variables,

 2. D ={di | i=1, 2, …, n} is a set of domains. Every domain di is a set that contains possible values

of variable xi ∈ X,

 3. Cf is a set of fuzzy c, that is,

Cf = { → [0, 1], i = 1, …, m, 1 ≤ ki ≤ n} if
i

ikiR
f

i ddR  ...:| 1

9

 where f

iR denotes the set of constraint variables

 4.  : Cf → [0,∞) is the priority of each constraint,

 5. g: [0,) ×[0,1] →[0,1] is the global satisfaction degree,

 6. ∧ = TL,

 7. ∨ = SL,

 8. ￢ = 1-x,

 9. (xi, ci) = SP (xi, 1-pi) , pi = (Ci) represents its priority.
 10. vX is a simultaneous valuation vX(x1,…,xn), xi di of all variables in X.
 is a GPFCSP. The global satisfaction degree of a valuation vX for a formula F is obtained in the
following way:

F(vX) = F{ () | Rf  Cf },
 where Cf is the set of constraints of formula F, max= max{(Rf), Rf  Cf}.
 In a way, GPFCSP systems can be made similar to XQuery FLWOR (For-Let-Where-Order by-
Return) clause. Basic structure of the FLWOR clause consists of for/let and where constructs. Variables
that follow after the for and let keywords can be viewed as GPFCSP variables with associated domains.
The where clause contains sequence of constraints connected with logical operators in much the same way
as in GPFCSP.

4. System Implementation
 This section contains details about the system implementation that is divided into seven
subsections: System Architecture, Fuzzy XQuery Interpreter, Fuzzy XQuery EBNF grammar, Fuzzy
values, Fuzzy compatibility, Fuzzy ordering and Graphic User Interface.
4.1 System Architecture
 The aim of this research is to implement an interpreter that allows executing of fuzzy XQuery.
We used Java programming language and defined the grammar of the fuzzy XQuery language with
ANTLR (ANother Tool for Language Recognition) [21]. ANTLR is the tool for automatic generation of a
lexical analyzer and a parser for the given EBNF Grammar. We chose eXist-db [22] as a Native XML
database because it provides a pluggable module interface that allows extension modules to be easily
developed in Java. These extension modules have full access to the eXist database for XQuery execution.

max

)(
,

 f

x
Rv

i

10

Our system architecture consists of three main components: Fuzzy XQuery Interpreter, Compatibility
Operation and Fuzzy ordering as in figure 1.

Figure 1: The system architecture of our approach

 In the Fuzzy XQuery Interpreter, we defined the fuzzy XQuery grammar (see section 4.2: Fuzzy
XQuery EBNF grammar) and calculated the global constraint satisfaction degrees of the result set (see
section 4.4: Fuzzy XQuery Interpreter). The Compatibility Operation and Fuzzy ordering are the
component for comparing two fuzzy sets. The Compatibility Operation (see section 4.5: Compatibility
Operation) uses to compare two fuzzy sets with the equality (=) and inequality operator (!=). In the other
hand, the Fuzzy ordering (see section 4.6: Fuzzy ordering) uses when the comparison operator is relational
operators (<, <=, >, >=). Additionally, we defined the fuzzy values, which can be used in the fuzzy
XQuery query, in XML document within our database (see section 4.3 Fuzzy values). The list of software
used is shown in table 1.
Table 1: List of softwares

 Software Version
Operating System Windows 7 64 bit
Database eXist-db 2.1
Web Server Apache Tomcat 8.0
Tools Java Standard Edition Development Kit (Linux x64) 7u7

Eclipse IDE for Java EE Developers (Luna Packages)
ANTLR 3.4 (Complete ANTLR 3.4 Java binaries jar)

11

4.2 Fuzzy XQuery EBNF grammar

 We extend some of the standard XQuery EBNF 1.0 notation in the where clause of the FLWOR
statement with the keywords priority and threshold. The extended fuzzy XQuery syntax is described by
using the EBNF notation as in figure 2. The PriorityExpr is an expression with the keyword priority which
has the effect to define the level of influence criteria on the result. The ThresholdExpr, like PriorityExpr,
is an expression with threshold that applies the concept of -cut to reject those results that are under the
specified threshold value. Both values of priority and threshold are in the unit interval [0, 1]. If there is
no priority, it will assume that the value is 1. On the other hand, if the query does not specify the
threshold, the value is 0.

 WhereClause ::= "where" ExprSingle (ThresholdExpr)?
 ExprSingle ::= OrExpr
 ThresholdExpr ::= "threshold" DecimalLiteral
 OrExpr ::= AndExpr ("or" AndExpr)*
 AndExpr ::= ComparisonExpr ("and" ComparisonExpr)*
 ComparisonExpr ::=ValueExpr((GeneralComp)ValueExpr)

ValueExpr ::=FuzzyExpr (PriorityExpr)?
GeneralComp ::= '='|'!= '|'<'|'<='|'>'|'>='
FuzzyExpr ::'#' 'ling' '('Qname')' '#'
 | '#' 'tri' '('leftoffset','max','rightoffset')' '#'
 | '#' 'trap' '('leftoffset','leftmax','rightmax','rightoffset')' '#'
 | '#' 'interval' '('leftoffset','rightoffset')' '#'
 | '#' 'fs' '('type','leftoffset','rightoffset',)' '#'
PriorityExpr ::="priority" DegreeLiteral

Figure 2: The EBNF notation of extended XQuery
Moreover, we defined the fuzzy expression in grammar as in FuzzyExpr. There are 5 types of

fuzzy value as follows: Linguistic label, Triangle, Trapezoidal, Interval and Fuzzy shoulder.
1) Linguistic label-ling (Qname)

Fuzzy value is a linguistic label with name given by Qname.
2) Triangle-triangle (leftoffset, max, rightoffset)

Fuzzy value is a triangular fuzzy number with maximum in max and left and right offsets denoted
by leftoffset and rightoffset.
3) Trapezoidal-trapezoid (leftoffset, leftmax, rightmax, rightoffset)

Fuzzy value is a trapezoidal fuzzy number with maximum on the [leftmax, rightmax] interval and
left and right offsets denoted by leftoffset and rightoffset.
4) Interval-interval (left, right)

Fuzzy value is an interval with left and right boundaries given by left and right.

12

5) Fuzzy shoulder-fs (type, leftoffset, rightoffset)
 Fuzzy value is a fuzzy shoulder which has two types (left shoulder and right shoulder) with left
and right boundaries given by leftoffset and rightoffset.

Suppose that user wants to retrieve information about students that have height more than 170
cm. and young. But the property height is more important than young which has the priority with 0.5. For
this purpose, the user can define the fuzzy XQuery with priority and threshold as in figure 3. The query
also contains the threshold clause that limits the results and removes the results with the fuzzy satisfaction
degree smaller than 0.6.

for $x in document(“students.xml”)//student
where $x/height > 170 AND $x/age = #ling(young) priority 0.5
threshold 0.6
return $x/name

Figure 3: An example of fuzzy XQuery

4.3 Fuzzy values
We store fuzzy data (the linguistic labels, the linguistic variables, and the possibility distributions)

in an XML document and use them to describe membership functions of fuzzy values. A linguistic
variable (such as age) has a range of values and at least one linguistic label. The linguistic label (such as
young) describes the standard type of fuzzy values (triangle, trapezoidal, interval and fuzzy shoulder) and
the values of distribution in a numeric data type with tag <offset>. The DTD (Document Type Definition)
in figure 4 shows the structure of XML elements used for definition of fuzzy values.

<!DOCTYPE linguistics [
 <!ELEMENT linguistics (linguistic+)>
 <!ELEMENT linguistic (name, (triangular|trapezoidal|interval|leftshoulder|rightshoulder))>
 <!ATTLIST linguistic var NMTOKEN #REQUIRED >
 <!ELEMENT name (#PCDATA) >
 <!ELEMENT triangular (leftOffset, maxOffset, rightOffset)>
 <!ELEMENT trapezoidal (leftLowerOffset, leftUpperOffset, rightUpperOffset,

rightLowerOffset)>
 <!ELEMENT interval (leftOffset, rightOffset) >
 <!ELEMENT leftshoulder (leftOffset, rightOffset)>
 <!ELEMENT rightshoulder (leftOffset, rightOffset)>
 <!ELEMENT leftOffset (#PCDATA)>
 <!ELEMENT rightOffset (#PCDATA)>
 <!ELEMENT maxOffset (#PCDATA)>
 <!ELEMENT leftLowerOffset (#PCDATA)>
 <!ELEMENT leftUpperOffset (#PCDATA)>
 <!ELEMENT rightUpperOffset (#PCDATA)>
 <!ELEMENT rightLowerOffset (#PCDATA)>
 <!ELEMENT UpperOffset (#PCDATA)>
 <!ELEMENT LowerOffset (#PCDATA)>
]>

Figure 4: DTD for defining linguistic variables

13

 For example (as in figure 5), the linguistic variable “age” has a value of linguistic label “young”
and it is corresponding to the fuzzy shoulder distribution (left shoulder) with the offset of 20 and 25,
respectively.

<?xml version=“1.0”?>
<!--define linquistic variables: age-->
<linguistics>

<linguistic var="age">
 <name>young</name>
 <leftshoulder>
 <leftOffset>20</leftOffset>
 <rightOffset>25</rightOffset>
 </leftshoulder>

</linguistic>
</linguistics>

Figure 5 The definition of linguistic variable “age”

4.4 Fuzzy XQuery interpreter
 Now let us turn our attention to how fuzzy XQuery interpreter’s work. Figure 6 shows three main
steps for executing the fuzzy XQuery: 1) check syntax; 2) transform and 3) calculate the membership
degree as follows:

Figure 6 Activity diagram for executing fuzzy XQuery

young

age (years)
25 0

20

1

14

Step 1: Check syntax
 When a user inputs a fuzzy XQuery query, the system first checks and validates its syntax by
following the EBNF (Extended Backus Normal Form) grammar (as can be seen in figure 2 and appendix
A). In this step, we use the ANTLR to generate the parser and create an AST (Abstract Syntax Tree).
Step 2: Transform

 The fuzzy XQuery is transformed to a classical XQuery query by extracting the fuzzy parts from
it. This step uses the Transformer component which the system will check for fuzzy element in the query,
eliminate the fuzzy constraint and move the fuzzy expression from the fuzzy XQuery.

 At this point, let us consider how to transform the fuzzy XQuery to standard XQuery. Firstly, the
system checks and validates the fuzzy XQuery’s syntax by following the EBNF grammar. The ANTLR
will generate the AST. For example, if we have the fuzzy XQuery as follows:

 “for $x in doc("db/data/student.xml")/students/student
 where $x/tall > 170 and $x/age = #ling(young)# priority 0.5 threshold 0.6
 return $x/name”

We will have the AST as in figure 7. It is noticeable that the priority and threshold will not be in

the tree and the fuzzyexpr will be replace by the FUZZY token

Figure 7 The created AST by ANTLR

 Secondly, we traverse the AST and extract only the whereclause subtree (as in figure 8) and
delete the FUZZY node from the query.

There ar

the FUZ

OR), del

re 4 steps for
Search th
ZY token.
If the par
lete the conju
 Traverse
we will h

Figure 9

Figur



deleting the F
he FUZZY tok

ent of the bra
unction token
e the tree and
have the new w

9 The steps u

re 10 The wh

Figure 8 T

FUZZY node
kens from the

anch (which w
and put the s
check for ev
whereclause

used to delete

hereclause su

The wherecla

e from the wh
e child node.

was deleted in
sibling branch
ery FUZZY t
tree as shown

e the FUZZY

ubtree after

use subtree

hereclause su
 If found, de

n step 1) is th
h to replace t
tokens in the
n in figure 10

Y node from

the FUZZY



ubtree (as sho
lete the branc

he conjunctio
the conjunctio
tree.

0.

m whereclause

token was d

wn in figure
ch of the tree

on token (AND
on token.

e subtree

deleted

15

9):
e that has

D or



16

 Thirdly, after we have the new whereclause subtree, we walk through the whereclause subtree
again and write it to standard XQuery with inorder traversal. Inorder walk traverses the left subtree, visits
the root and finally traverses the right subtree. In figure 11, we show how to traverse the tree as inorder
walk: I, traverse the left subtree ($, x, /, tall). II, Visit the root node (>). III, traverse the right subtree
(170).

Figure 11 The inorder walk in whereclause subtree

Finally, from this example, we have the tree as in figure 12 and standard XQuery as follows:

for $x in doc("db/data/student.xml")/students/student
where $x/tall > 170
return $x/name

Figure 12 The tree after the fuzzy node was deleted

Step 3: Calculate the membership degree

 The system will retrieve the data from the standard XQuery in step 2. When the database returns
the results, they are again interpreted having original query in mind. Fuzzy elements are to be interpreted
using known GPFCSP concept. This step uses the CalculateMembershipFn, Compatibility Operation [23]
and Fuzzy ordering component [24].
 We now explain in detail how to use the GPFCSP concept for calculating the global constraint
satisfaction degree () for every tuples in a result set by using algorithm as can be seen below.

Algorithm used for calculating the global constraint satisfaction degree ()

1. Walk the fuzzy XQuery tree.
2. Find the whereclause subtree.
3. Walk the whereclause subtree until the end of subtree,

3.1 check the type of current node
3.3.1 If the current node = ‘AND’, then  =TL(LeftBranch,RightBranch)
3.3.2 If the current node = ‘OR’, then  = SL(LeftBranch,RightBranch)
3.3.3 If the current node is ‘=’, ‘!=’, ‘>’, ‘>=’, ‘<’, ‘<=’, then walk

    



17

the child node
A. If the child node = ‘/’, then get the variable of condition

after the ‘/’ node
B. If the child node =‘ling’

a) Read the linguistic variable after ‘ling’ node
b) Take the distribution of the linguistic variable in step a)
from DB
c) Get the value of variable in step A from DB

i) If the value is numeric data, then  is the value of
corresponding membership function in the given point

ii) Else if the value is fuzzy value
 Check type of the operator

o If the operator is = or != then call Compatibility
Function
 If the operator is =, then  = Compatibility value
 If the operator is !=, then  = 1-Compatibility

value
o Else if the operator is >,>=,<,<= then call Fuzzy

Ordering Function
 If the operator is < or <=, then  = Fuzzy

ordering value
 If the operator is > or >=, then  = 1- Fuzzy

ordering value
d) If it has priority expression, then  = SP(, 1-priority

value)
C. If the child node is ‘tri’, ‘trap’, ‘interval’ or ‘fs’

a) Read the offsets of the ‘tri’, ‘trap’, ‘interval’ or ‘fs’
node

b) Get the value of variable in step A from DB
c) Check the type of the operator

i) If the operator is = or != then call Compatibility
Function
 If the operator is =, then  = Compatibility value
 If the operator is !=, then  = 1-Compatibility value

ii) Else if the operator is >,>=,<,<= then call Fuzzy Ordering
Function
 If the operator is < or <=, then  = Fuzzy ordering

value
 If the operator is > or >=, then  = 1- Fuzzy ordering

value
d) If it has priority expression, then  = SP(, 1-priority

value)

 From the algorithm, when node is conjunction ‘AND’, we calculate the  by calling the

Łukasiewicz triangular norm (TL) function. Similar as the disjunction ‘OR’ node, we use Łukasiewicz

triangular conorm (SL). If the fuzzy XQuery has priority expression, we use the triangular product conorm

(SP) to aggregate with priority value. When node is the operator = or != , a Fuzzy Compatibility function is

called. The Fuzzy Compatibility function is explained in section 4.5. When node is the operator >, >=, <

or <= , a Fuzzy Ordering function is called. The Fuzzy Ordering function is explained in section 4.6

 After calculating the  for every tuples, if the fuzzy XQuery has threshold expression, the system
will remove the tuples which have the  under the threshold value.
 Additionally, we illustrate how to calculate the gobal constraint with an example in our proposed

18

papare that will be published in the Special Issues of Journal Teknologi (see appendix B: ADVCIT
Paper).

4.5 Fuzzy Compatibility
 In fuzzy XQuery statements, variables can be fuzzy or non-fuzzy value. Normally, different types
of values cannot be compared directly. Therefore, it is necessary to implement fuzzy compatibility
calculation to solve this problem. In 2013, Škrbić [25] proposed the equation of compatibility of fuzzy set
A to the fuzzy set B is given below.
ܤ,ܣܥ ൌ ܲሺܣ ת ሻܣሻܲሺܤ (E1)

 ܲሺܣ ת ሻ is the area of intersection between the two fuzzy sets and PሺAሻ is the area of the sourceܤ
fuzzy set A. Compatibility value is a number that varies from 0 to 1. Zero means incompatible, and one
means fully compatible. According to equation (E1), the fuzzy compatibility calculation contains 3 steps:

1) Calculate intersection area

2) Calculate size of obtained intersection area

3) Calculate compatibility value

 To obtain intersection area of two fuzzy sets, the edge equations of each fuzzy sets will be
compared as well as their boundaries. The output of the step 1 is a coordinates of the intersection area that
will be used to calculate size of the intersection area in step 2.
 In step 2, the cyclic polygon calculation proposed by Pak [26] will be used to calculate size of the
intersection area. This method uses coordinates of a polygon for the area calculations. The area is
calculated by the following equation:
ܽ݁ݎܣ ൌ ቤሺݔଵݕଶ െ ଵሻݕଶݔ ൅ ሺݔଶݕଷ െ ଶሻݕଷݔ ൅ ڮ ൅ ሺݔ௡ݕଵ െ ௡ሻ2ݕଵݔ ቤ (E2)

 In step 3, a compatibility value can be obtained by equation (E1) using size of the intersection
area provided by step 2 and size of area of the source fuzzy set that can be calculated by the equation
(E2).
 The idea of fuzzy compatibility has been proposed in International Journal of Machine Learning

and Computing (IJMLC) (see appendix C). To prove the correctness of the compatability calculation

19

process, 360 compatibility cases are generated for experimental in this paper. The experimental results

show that the proposed algorithms for compatibility calculations can handle various types of intersections

between any two fuzzy sets and can be used for the fuzzy logic enriched XQuery lanaguge.

4.6 Fuzzy Ordering
 When the relational operators are included in the query, it is necessary to provide means for
comparison between fuzzy sets. These fuzzy relational operators are typically used in two fuzzy sets
comparison case, but can also be used with some aggregate functions like MIN, MAX, and SUM. In 2008,
fuzzy ordering is proposed by Bodenhofer [27]. The proposed method is given below:
ܣ ூع ܤ ฻ ሺܴܶܮሺܣሻ ل ሻܤሺܴܶܮ ∧ ሻܣሺܮܴܶ ك ሻሻܤሺܮܴܶ (E3)

 The inclusion ܴܶܮሺܣሻ ل ሻmeans that the left flank of A is to the left of the left flank of Bܤሺܴܶܮ
while ܴܶܮሺܣሻ ك .ሻ means that the right flank of A is to the left of the right flank of Bܤሺܮܴܶ
 Considering fuzzy orderings above, the fuzzy ordering calculation can be determined by
considering horizontal positions of comparing fuzzy sets. If the assertion (E3) is fulfilled in both
conditions, the fuzzy ordering value is true or 1. Otherwise, the operation returns false or 0. From
assertion (E3) can be concluded that if only one condition is satisfied, it means that fuzzy sets cannot be
compared - incomparable case. In this case, the fuzzy ordering operation will return incomparable or 0.5.
 Another incomparable case is the comparison of fuzzy sets having different heights. However,
Skrbic and Rackovic proposed an idea to eliminate this problem in [26]. Fuzzy set Aᇱ is introduced as: ߤ஺ᇲ ൌ ൜ 1, ሻݔ஺ሺߤ ൌ ݄ሺܣሻߤ஺ሺݔሻ, (E4) ݁ݏ݅ݓݎ݄݁ݐ݋

 In this way, fuzzy relational operator ൑F is introduced by: ܣ ൑ி ܤ ฻ ᇱܣ ൑ிᇱ ᇱܤ (E5)

 From equation (E4) and assertion (E5), the fuzzy ordering that can compare two fuzzy sets with
different heights defined by: ܣ ൑ிᇱ ܤ ฻ ሺܴܶܮሺܤሻ ك ሻܣሺܴܶܮ ∧ ሻܣሺܮܴܶ ك ሻሻܤሺܮܴܶ (E6)

 In the same way as with operators ൏ and ൐ on crisp domain, other relational operators, like ൏F and ൐F can be derived using the ൑F order.

20

 The concept of fuzzy ordering has been proposed in International Conference on Information
Society and Technology (ICIST 2015). (see appendix D). The proposed fuzzy ordering process is
evaluated with 360 fuzzy ordering cases. The experimental results show that the proposed algorithms are
capable of calculating fuzzy ordering values with various types of fuzzy values correctly.

5. Graphical User Interface (GUI)
 We developed a GUI that allows the fuzzy XQuery query to execute on our application. The GUI
has two parts: Input and Output as shown in Figure 13 and 14. The Input is on the top part of the
page which a user can add the fuzzy XQuery query in the text box and click on the CALCULATE button to
submit the query into our system. After that the result will be shown in the Output part. There are two
views of the output: table view and XML view. In the table view, the results are shown in the Results tab
(see Figure 13). The table of results has six columns: ID, name, GPA, age, height and alpha. The first
five columns are the data from the database and the last column is the global constraint satisfaction degree
(alpha) of that record. If the user clicks on the XML Results tab, the same results as in the Results tab are
shown in the XML view (see Figure 14).

Figure 13 Interface with output in table view

21

Figure 14 Interface with output in XML views

6. Research Publications
 This project has accepted for publications as follows:
 6.1 The paper entitled “A GPFCSP Based Fuzzy XQuery Interpreter” has been accepted by 2nd
Advancement on Information Technology International Conference (ADVCIT 2015), Thailand and will
be published in the Special Issues of Journal Teknologi (Indexed by Elsevier: SCOPUS) (see appendix B:
ADVCIT Paper).
 6.2 The paper entitled “Polygon Intersection Based Algorithm for Fuzzy Set Compatibility
Calculations” has been published by International Journal of Machine Learning and Computing (IJMLC),
Vol. 6, No. 1, pp. 32 – 35, February 2016. (see appendix C: ICIT Paper).
 6.3 The paper entitled “Fuzzy ordering implementation applied in fuzzy XQuery” accepted by
2015 International Conference on Information Society and Technology (ICIST 2015), Kopaonik, Serbia
(see appendix D: ICIST Paper).

22

7. Conclusion
 We present the extension of the XQuery language with fuzzy set that would allow to adding the
priority and threshold in the query, incorporate fuzzy information into XML documents and define the
structure of fuzzy XML documents by using DTD schema. The interpreter is implemented by using Java
language and the GPFCSP concept for execution of the fuzzy XQuery queries. Moreover, the system is
based on a native XML database: eXist-db.

23

References

[1] C. D. Barranco, J. R. Campana, and J. M. Medina, “Towards a XML Fuzzy Structured Query

Language,” in Proceedings of the Joint 4th Conference of the European Society for Fuzzy Logic and
Technology and the 11th Rencontres Francophones sur la Logique Floue et ses Applications,
Barcelona, Spain, 2005, pp. 1188–1193.

[2] R. D. Rodrigues, A. J. O. Cruz, and R. T. Cavalcante, “Aliança: A proposal for a fuzzy database
architecture incorporating XML,” Fuzzy Sets Syst., vol. 160, no. 2, pp. 269 – 279, 2009.

[3] S. Škrbić and M. Racković, “PFSQL: a fuzzy sql language with priorities,” in Proceedings of the
4th International Conference on Engineering Technologies (ICET 2009), 2009, pp. 119–125.

[4] E. J. Thomson Fredrick and G. Radhamani, “Fuzzy logic based XQuery operations for native XML
database systems,” International Journal Database Theory and Application, vol. 2, no. 3, pp. 13–20,
September 2009.

[5] E. J. Thomson Fredrick and G. Radhamani, “A GUI based tool for generating XQuery and fuzzy
XQuery,” International Journal of Computer Applications Database Theory and Application, vol. 1,
no. 17, pp. 54–58, 2010.

[6] E. J. Thomson Fredrick and G. Radhamani, “Information retrieval using XQuery processing
techniques,” International Journal of Database Management Systems (IJDMS), vol. 3, no. 1, pp. 50–
58, February. 2011.

[7] E. J. Thomson Fredrick and G. Radhamani, “Fuzzy integrity constraints for native xml database,”
vol. 9, issue 2, no. 3, p. 466–471, March 2012.

[8] G. Panić, S. Škrbić, and M. Racković, “Fuzzy xml and prioritized fuzzy xquery with
implementation,” Journal of Intelligent and Fuzzy Systems, vol. 26, no. 1, pp. 303–316, 2014.

[9] Ying Jin and S. Shidlagatta, “A framework of fuzzy triggers for XML database systems,” in
Proceedings of the 10th IEEE international conference on Information Reuse & Integration, Las
Vegas, USA, 2009, pp. 296–299.

[10] E. Damiani, S. Marrara, and G. Pasi, “FuzzyXPath: Using Fuzzy Logic an IR Features to
Approximately Query XML Documents,” in Foundations of Fuzzy Logic and Soft Computing, vol.
4529, P. Melin, O. Castillo, L. Aguilar, J. Kacprzyk, and W. Pedrycz, Eds. Springer Berlin
Heidelberg, 2007, pp. 199–208.

24

[11] A. Campi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, and P. Spoletini, “A Fuzzy Extension of the

XPath Query Language,” Journal of Intelligent Information System, vol. 33, no. 3, pp. 285–305, Dec.
2009.

[12] M. Goncalves and L. Tineo, “Fuzzy XQuery,” in Soft Computing in XML Data Management, vol.
255, Z. Ma and L. Yan, Eds. Springer Berlin Heidelberg, 2010, pp. 133–163.

[13] B. Oliboni and G. Pozzani, “Representing Fuzzy Information by Using XML Schema,” in
Proceedings of the 19th International Conference on Database and Expert Systems Application, 2008,
pp. 683–687.

[14] H. Wang, Z. M. Ma, L. Yan, and J. Cheng, “A Unified Formalism for Fuzzy Data Types
Representation,” in Proceedings of the Fifth International Conference on Fuzzy Systems and
Knowledge Discovery, 2008, pp. 167 – 171.

[15] L. Yan, Z. M. Ma, and J. Liu, “Fuzzy Data Modeling Based on XML Schema,” in Proceedings of
the 2009 ACM Symposium on Applied Computing, 2009, pp. 1563–1567.

[16] C. Tseng, W. Khamisy, and T. Vu, “Universal fuzzy system representation with XML,” Comput.
Stand. Interfaces, vol. 28, no. 2, pp. 218 – 230, 2005.

[17] Z. M. Ma and L. Yan, “Fuzzy XML data modeling with the UML and relational data models,” Data
Knowl. Eng., vol. 63, no. 3, pp. 972 – 996, 2007.

[18] D. Dubois, H. Fargier, and H. Prade, “Possibility theory in constraint satisfaction problems:
Handling priority, preference and uncertainty,” Applied Intelligence, vol. 6, 1996, pp. 287–309.

[19] A. Takači, S. Škrbić, and A. Perović, "Generalized Priority Constraint Satisfaction Problem," in the
7th Serbian-Hungarian Joint Symposium Intelligent Systems and Informatics, Subotica, Serbia, 2009,
pp. 145–148.

[20] S. Škrbić, M. Racković, and A. Takači, "Prioritized fuzzy logic based information processing in
relational databases," Knowledge-Based Systems, vol. 38, pp. 62-73, January 2013.

[21] T. Parr. (2012) ANTLR v3. [Online]. Available: http://www.antlr.org/.
[22] eXistdb project. (2014) eXistdb. [Online]. Available:

http://existdb.org/exist/apps/homepage/index.html.
[23] Sukpisit, S., Kansomkeat, S., Sae Ueng P., Thadadech, A., and Skrbic S. “Polygon Intersection Based

Algorithm for Fuzzy Set Compatibility Calculations,” International Journal of Machine Learning and
Computing (IJMLC), Vol. 6, No. 1, pp. 32 – 35, February 2016.

25

[24] S. Kansomkeat, S. Sukpisit, A. Thadadech, P. S. Ueng, and S. Škrbic,´“Fuzzy ordering

implementation applied in fuzzy XQuery,” in Proc. Of International Conference on Information
Society and Technology (ICIST 2015), Kopaonik, Serbia, 2015, pp. 443-448.

[25] S. Škrbić and M. Racković, FUZZY DATABASES. Faculty of Science, University of Novi Sad,
2013.

[26] I. Pak, “The area of cyclic polygons: Recent progress on Robbin’s conjectures,” Advances in Applied
Mathematics 34, pp. 690-696, 2005.

[27] U. Bodenhofer, “Orderings of fuzzy sets based on fuzzy orderings part i: The basic approach,”
Mathware & Soft Computing, vol. 15, pp. 201–218, 2008.

26

Appendix A: Fuzzy XQuery EBNF grammar

grammar FuzzyXQueryFull;

options {
 language = Java;
 output=AST;
 ASTLabelType=CommonTree;
}

tokens{
 FUZZY;
 PRIORITY;
}

@lexer::header{
 package grammar;
}

@parser::header{
 package grammar;
}

querybody
 : expr
 ;
expr
 : exprsingle (',' exprsingle)*
 ;
exprsingle
 : flowrexpr
 |orexpr
 ;
flowrexpr
 :(forclause|letclause)+ whereclause? orderbyclause? returnclause
 ;
forclause
 : 'for'^ '$' varname typedeclaration? positionalvar? 'in' exprsingle
(',' '$' varname typedeclaration? positionalvar? 'in' exprsingle)*
 ;
positionalvar
 : 'at' '$' varname
 ;
letclause
 : 'let'^ '$' varname typedeclaration? ':=' exprsingle (',' '$' varname
typedeclaration? ':=' exprsingle)*
 ;
whereclause
 : 'where' exprsingle (thresholdexpr)? -> ^('where' exprsingle)
thresholdexpr?
 ;
orderbyclause
 : ('order' 'by' | 'stable' 'order' 'by') orderspeclist
 ;
orderspeclist
 : orderspec (',' orderspec)*
 ;

27

orderspec
 : exprsingle ordermodifier
 ;
ordermodifier
 : ('ascending' | 'descending')? ('empty' 'greatest'| 'empty' 'least')?
('collation' uriliteral)?
 ;
returnclause
 : 'return'^ '$' varname
 ;
orexpr
 : andexpr ('or'^ andexpr)*
 ;
andexpr
 : comparisonexpr ('and'^ comparisonexpr)*
 ;
comparisonexpr
 : rangeexpr (generalcomp^ rangeexpr)?
 ;
rangeexpr
 :valueexpr
 ;
valueexpr
 : pathexpr
 | fuzzyexpr (priorityexpr)? ;

generalcomp
 : '=' | '!=' | '<' | '<=' | '>' | '>='
 ;
pathexpr
 :('/' relativepathexpr?)
 | ('//' relativepathexpr)
 | relativepathexpr
 ;
relativepathexpr
 : stepexpr (('/' | '//')stepexpr)*
 ;
stepexpr
 :filterexpr
 | axisstep
 ;
axisstep
 :(reversestep | forwardstep) predicatelist
 ;
forwardstep
 : (forwardaxis nodetest)
 | abbrevforwardstep
 ;
forwardaxis
 :('child' '::')
 | ('descendant' '::')
 | ('attribute' '::')
 | ('self' '::')
 | ('descendant-or-self' '::')
 | ('following-sibling' '::')
 | ('following' '::')
 ;
abbrevforwardstep
 : '@'? nodetest

28

 ;
reversestep
 :(reverseaxis nodetest) | abbrevreversestep
 ;
reverseaxis
 : ('parent' '::')
 | ('ancestor' '::')
 | ('preceding-sibling' '::')
 | ('preceding' '::')
 | ('ancestor-or-self' '::')
 ;
abbrevreversestep
 :'..'
 ;
nodetest
 :nametest
 ;
nametest
 :QNAME
 ;
filterexpr
 :primaryexpr predicatelist
 ;
predicatelist
 :predicate*
 ;
predicate
 :'[' expr ']'
 ;
primaryexpr
 :literal
 |varref
 |parenthesizedexpr
 |contextitemexpr
 |functioncall
 |orderedexpr
 |unorderexpr
 ;
literal
 :numericliteral
 |STRINGLITERAL
 ;
varref
 : '$' varname
 ;
varname
 : QNAME
 ;
parenthesizedexpr
 :'(' expr?')' -> expr?
 ;
contextitemexpr
 :QNAME '.' QNAME
 ;
orderedexpr
 :'ordered' '{' expr '}'
 ;
unorderexpr
 :'unordered' '{' expr '}'

29

 ;
functioncall
 :QNAME '("'(exprsingle (',' exprsingle)*)? '")' //add " and "
 ;
ncname
 :name
 ;
singletype
 : atomictype '?'?
 ;
typedeclaration
 : 'as' sequencetype
 ;
sequencetype
 : ('empty-sequence' '(' ')')
 ;
occurrenceindicator
 :'?' |'*'|'+'
 ;
atomictype
 : QNAME
 ;
uriliteral
 : STRINGLITERAL
 ;
fuzzyexpr
 : '#' 'ling' '('QNAME')' '#' -> FUZZY 'ling' QNAME
 | '#' 'tri' '(' leftoffset','max','rightoffset')' '#' -> FUZZY 'tri'
leftoffset max rightoffset
 | '#' 'trap' '('leftoffset',' leftmax ','rightmax ',' rightoffset ')' '#' -
> FUZZY 'trap' leftoffset leftmax rightmax rightoffset
 | '#' 'interval' '(' leftoffset ',' rightoffset ')' '#' -> FUZZY 'interval'
leftoffset rightoffset
 | '#' 'fs' '(' type ',' leftoffset ',' rightoffset')' '#' -> FUZZY 'fs'
type leftoffset rightoffset
 ;
max
 :numericliteral
 ;
leftoffset
 :numericliteral
 ;
rightoffset
 :numericliteral
 ;
leftmax
 :numericliteral
 ;
rightmax
 :numericliteral
 ;
type
 : '1' | '0';

priorityexpr
 : 'priority' degreeliteral -> PRIORITY degreeliteral
 ;
thresholdexpr
 : 'threshold' degreeliteral

30

 ;
numericliteral
 :integerliteral
 |decimalliteral
 |degreeliteral
 ;
integerliteral
 :DIGITS
 ;
decimalliteral
 :(DIGITS '.' DIGITS)
 ;
degreeliteral
 : '0.' DIGITS
 ;
predefinedentityref //145
 : '&' ('lt'|'gt'|'amp'|'quot'|'apos')';'
 ;
name
 :NAMESTARTCHAR (namechar)*
 ;
QNAME
 : ('a'..'z')+
 ;
DIGITS
 :('0'..'9')+
 ;
STRINGLITERAL
 : ('A'..'Z'| 'a'..'z'| '0'..'9')*
 ;
S
 : (' '| '\r'|'\t'| '\n')+ {$channel=HIDDEN;}
 ;
namechar
 :NAMESTARTCHAR | '-' | '.' | '0'..'9'
 ;
NAMESTARTCHAR
 :':' | 'A'..'Z' | '_' | 'a'..'z'
 ;

31

Appendix B: Manuscript of ADVCIT Paper

XX:1 (2015) 1–6 | www.jurnalteknologi.utm.my | eISSN 2180–3722 |

Jurnal
Teknologi

 Full Paper

A GPFCSP BASED FUZZY XQUERY INTERPRETER

Pannipa Sae Uenga*, Srđan Škrbića, Supaporn Kansomkeatb,
Apirada Thadadechb

aDepartment of Mathematics and Informatics, Faculty of Sciences,
University of Novi Sad, Novi Sad, Serbia
bDepartment of Computer Science, Faculty of Science, Prince of
Songkla University, Songkhla, Thailand

Article history
Received

30 July 2015
Received in revised form

9 November 2015
Accepted

25 November 2015

*Corresponding author
pannipa@dmi.uns.ac.rs

Graphical abstract

Abstract

Nowadays XQuery has become the strongest standard for querying XML data. However,
most of the real world information is in the form of imprecise, vague, ambiguous, uncertain
and incomplete values. That is why there is a need for a flexible query language in which
users can formulate queries that arise from their own criteria. In this paper, we propose an
implementation of the Fuzzy XQuery - an extension of the XQuery query language based
on the fuzzy set theory. In particular, we provide priority, threshold and fuzzy expressions for
handling flexible queries. In addition, we have implemented an interpreter for this
language by using the GPFCSP concept in Java and eXist-db environment.

Keywords: Fuzzy XQuery; XQuery Interpreter; XML database; fuzzy set theory

© 2015Penerbit UTM Press. All rights reserved

1.0 INTRODUCTION

XQuery language has been proposed as a standard
for XML querying. It provides a feature called a
FLWOR expression that supports the iteration and
binding of variables to intermediate results. The
FLWOR is an acronym: FOR, LET, WHERE, ORDER BY,
RETURN, which is a powerful and important part of
XQuery, similar in some aspects to the SQL query
language in relational databases.

In real life, most information is imprecise, vague,
ambiguous, uncertain or incomplete. Ideas related
to improving query languages that can include such
imprecise information in terms of the user’s criteria is
therefore natural. However, XQuery does not support
the use of this kind of information by itself. In an effort
to enrich it in a suitable manner, we have attempted
to use the fuzzy set theory to provide a more flexible
XQuery language, namely “Fuzzy XQuery”. The Fuzzy
XQuery is based on the standard XQuery v.1.0 with
an added priority, threshold and fuzzy expressions.
The interpreter for Fuzzy XQuery has been developed
by using Java programming language and the eXist-
db database. We can calculate the global
constraint satisfaction degree of the result set with

the concept of Generalized Prioritized Fuzzy
Constraint Satisfaction Problem (GPFCSP) [1] [2].

This paper is organized as follows. The next section
contains the literature review. The third section
presents the definition of the GPFCSP, compatibility
operation and fuzzy ordering options. The
architecture and implementation are shown in the
fourth section. The fifth section presents an illustrative
example and the last section is the conclusion.

2.0 RELATED WORKS

In this section we briefly review the main approaches
of the flexible query techniques focusing on the
application of fuzzy set theory.

Škrbić et al. proposed an extension of SQL with
fuzzy capabilities called PFSQL (Prioritized Fuzzy
Structured Query Language) [3]. A PFSQL interpreter
was implemented using the priority fuzzy logic that is
based on the concept of GPFCSP.

Many attempts for fuzzy querying in XML
documents have been made in recent years. Campi
et al. [4] presented FuzzyXPath, an attempt to
enhance the flexibility of XPath. They introduced two

2 Pannipa Sae Ueng et al. / JurnalTeknologi (Sciences & Engineering) 72:1 (2015) 1–6

i
f
i

ikiR

f
i ddR  ...:| 1

max

)(
,


 f

V

R
ix

fuzzy constraints: CLOSE and SIMILAR applied to
specific items within XML documents. Moreover, they
also defined two flexible conditions for the flexible
matching of path structures: BELOW and NEAR.
Goncalves and Tineo [5] extended XQuery with the
new xs:truth built-in data type to represent gradual
truth degrees and xml:truth attribute of type xs:truth
to handle the satisfaction degree in nodes of fuzzy
XQuery expressions. Their language extension
allowed users to declare fuzzy terms and used them
in query expressions. Fredrick and Radhamani [6]
illustrated their fuzzy XQuery techniques that allowed
users to use linguistic terms based on the user-defined
function. After that, in 2010 [7], they extended their
earlier work by implementing the GUI tool with VB.net
for the automatic generation of XQuery and fuzzy
XQuery queries. In 2011 [8], they described the fuzzy
XQuery process which used the arithmetic operations
on fuzzy sets. Recently in 2012 [9], they defined fuzzy
information in XML documents and the fuzzy domain
integrity constraints through XML schemas for
restricting invalid XML data into the XML database.

Panić et al. [10] implemented a similar approach
as presented in this paper. They presented the fuzzy
XML and fuzzy XQuery extension which used GPFCSP
expressions, priority expressions and threshold
expressions. The GPFCSP concept was used to
calculate the membership degree in the same way
as we did. In addition, they also developed a tool for
working with XML, XSD and DTD documents, and
fuzzy XQuery extension queries. However, the main
difference between Panić’s work and our work is that
Panić’s implementation used .NET framework,
MATLAB and the Microsoft SQL Server database on a
windows based application, whereas our approach
used Java programming language to implement the
new interpreter that was independent of MATLAB
with eXist-db  native XML database on web based
application.

3.0 BACKGROUND

3.1 Generalized Prioritized Fuzzy Constraint
Satisfaction Problem (GPFCSP)

Skrbić et al. [1] [2] proposed the concept of GPFCSP
for calculating the fuzzy membership degrees of
PFSQL in fuzzy relational databases.

Theorem the following system (X, D, Cf, , g, ∧, ∨, ￢,
) where

1. X = {xi | i = 1, 2, …, n} is a set of variables,
2. D ={di | i=1, 2, …, n} is a set of domains.

Every domain di is a set that contains
possible values of variable xi ∈ X,

3. Cf is a set of fuzzy constraints:

Cf={ → [0, 1], i = 1,…,m, 1 ≤ki≤ n}

Where denotes the set of constraint variables,
4. : Cf → [0,∞) is the priority of each constraint,

5. g:[0,)×[0,1]→[0,1] is the global satisfaction
degree,

6. ∧ = TL,
7. ∨ = SL,
8. ￢ = 1-x,
9. (xi, ci) = SP (xi, 1-(ci)), (ci) represents its

priority,

10. vX is a simultaneous valuation vX(x1,…,xn), xi 
di of all variables in X

is a GPFCSP. The global satisfaction degree of a
valuation vX for a formula F is obtained in the
following way:

F(vX) = F{ ()| Rf  Cf },

Where Cf is the set of constraints of formula F,
max = max{(Rf), Rf ∈ Cf}.

In a similar way, we use the concept of GPFCSP
to calculate the global satisfaction degree of Fuzzy
XQuery because of the where clause in a FLWOR
expression that contains a sequence of constrains
connected with logical operators in the same way as
in PFSQL.

3.2 Compatibility Operation

We can compare the fuzzy values in Fuzzy XQuery
queries using standard notation fuzzyvalue1 =
fuzzyvalue2. For example, $x/age = triangle(25,30,35).
However, in order to allow the use of fuzzy values in
Fuzzy XQuery queries, we need to calculate the
compatibility of two fuzzy sets to measure to what
extent one fuzzy set is a subset of some other fuzzy
set.

Definition [2] Let A and B be two fuzzy sets over
universe X. The measure of compatibility of the set A
to the set B is defined as:

Compatibility value (CA, B) = (1)

Where P(A∩B) is the area of intersection between
two fuzzy sets and P(A) is the area of the fuzzy set A.

In our previous work, we implemented the modules
for calculations of compatibility operations. There are
three steps needed to calculate the compatibility in
our approach [11]. Firstly, we define the algorithms
to find the coordinates of the intersection area of
two fuzzy sets. Secondly, the size of the shape of the
intersection area is calculated as in equation (2).

Area = (2)

Lastly, the compatibility value is calculated using
equation (1).

3.3 Fuzzy Ordering

As mentioned before, we have defined fuzzy values
in Fuzzy XQuery queries like fuzzyvalue1 = fuzzyvalue2.
However, we can compare two fuzzy sets with the
relational operators: >, >=, <, <= like fuzzyvalue1 >
fuzzyvalue2. For example, $x/age>triangle(25,30,35).

)(

)(

AP

BAP 

2

)(...)()(1123321221 nn yxyxyxyxyxyx 

f
iR

3 Pannipa Sae Ueng et al.

I

In this case, we need to calculate the
of two fuzzy sets. One usable definition of fuzzy
ordering was proposed by Bodenhofer [12]. An
ordering of fuzzy sets A and B is generalized as

A B  LTR(A)  LTR(B) and RTL(A)

LTR(A) stands for Left-to-Right closure which is the
smallest fuzzy superset of A with a non
characteristic function, while RTL(A) stands for Right
to-Left closure which is the smallest fuzzy superset of A
with a non-increasing characteristic function. We
have proposed the algorithms and developed
modules for fuzzy ordering calculations in [13].

4.0 IMPLEMENTATION

4.1 Designing the Fuzzy XQuery Grammar

We recall the extension of the XQuery language in
EBNF (Extended Backus-Naur Form) from [14]

FLWORexpr ::= ForClause|LetClause WhereClause
 OrderClause? ReturnClause

WhereClause ::= 'where' ExprSingle (ThresholdExpr)

ExprSingle ::=OrExpr

ThresholdExpr :: 'threshold' DegreeLiteral

OrExpr ::=AndExpr ("or" AndExpr)*

AndExpr ::=ComparisonExpr ("and" ComparisonExpr)*

ComparisonExpr ::=ValueExpr((GeneralComp)ValueExpr)

ValueExpr ::=pathexpr|FuzzyExpr (PriorityExpr

GeneralComp ::= '='|'!= '|'<'|'<='|'>'|'>='

FuzzyExpr ::'#' 'ling' '('QNAME')' '#'

 | '#' 'tri' '('leftoffset','max','rightoffset')' '#'

 | '#' 'trap' '('leftoffset', 'leftmax',
 'rightoffset')' '#'

 | '#' 'interval' '('leftoffset','rightoffset')' '#'

 | '#' 'fs' '('type','leftoffset','rightoffset',)' '#'

PriorityExpr ::="priority" DegreeLiteral

Having this listing in mind, we conclude that our
approach extends XQuery in the following points.

 Threshold Expression is an expression with the
keyword threshold that removes results that
membership degree to the result set
the specified threshold value in a
query. If there is no threshold expression, we assume
that the value is 0.

 Priority Expression is an expression with the
keyword priority that defines the level of influence of
the corresponding constraints on the result. If the
query does not specify the priority expression, the
default value is 1.

 Fuzzy Expression is an expression that allows
users to specify fuzzy numbers in XQuery queries.
There are five types of fuzzy constants:

o ‘ling’‘(’QNAME‘)’ means
with the name given by QNAME.

o ‘tri’‘(’leftoffset‘,’max‘,’rightoffset‘)’
a Triangle fuzzy number with three arguments:
offset, maximum and right offset.

Pannipa Sae Ueng et al. / JurnalTeknologi (Sciences & Engineering) 72:1 (2015) 1

In this case, we need to calculate the fuzzy ordering
of two fuzzy sets. One usable definition of fuzzy
ordering was proposed by Bodenhofer [12]. An
ordering of fuzzy sets A and B is generalized as:

)  RTL(B) (3)

Right closure which is the
smallest fuzzy superset of A with a non-decreasing
characteristic function, while RTL(A) stands for Right-

Left closure which is the smallest fuzzy superset of A
characteristic function. We

have proposed the algorithms and developed
modules for fuzzy ordering calculations in [13].

Designing the Fuzzy XQuery Grammar

We recall the extension of the XQuery language in
Naur Form) from [14].

ForClause|LetClause WhereClause?

(ThresholdExpr)?

::=ComparisonExpr ("and" ComparisonExpr)*

::=ValueExpr((GeneralComp)ValueExpr)

PriorityExpr)?

'('leftoffset','max','rightoffset')' '#'

'leftmax', 'rightmax',

| '#' 'interval' '('leftoffset','rightoffset')' '#'

| '#' 'fs' '('type','leftoffset','rightoffset',)' '#'

we conclude that our
approach extends XQuery in the following points.

Threshold Expression is an expression with the
that removes results that have a

membership degree to the result set that is less than
the specified threshold value in a Fuzzy XQuery
query. If there is no threshold expression, we assume

Priority Expression is an expression with the
the level of influence of

on the result. If the
query does not specify the priority expression, the

xpression is an expression that allows
users to specify fuzzy numbers in XQuery queries.
There are five types of fuzzy constants:

means a linguistic label

‘tri’‘(’leftoffset‘,’max‘,’rightoffset‘)’ means
Triangle fuzzy number with three arguments: left

o ‘trap’‘(’leftoffset‘,’leftmax‘,’rightmax‘,
’rightoffset‘)’ means a Trapezoidal fuzzy number with
four arguments: left offset, left maximum offset,
maximum offset and right offset

o ‘interval’‘(’leftoffset‘,’rightoffset‘)’
an Interval fuzzy number with 2 arguments: left
and right offset.

o ‘fs’‘(’type‘,’leftoffset‘,’rightoffset‘)’
a Fuzzy Shoulder with 3 arguments: type of Fuzzy
Shoulder (left shoulder or right shoulder),
and right offset.

4.2 System Architecture

The overall picture of the system
shown in Figure 1. There are two main parts:

1) eXist-db [15]: eXist
software written in Java that is freely available in
both source code and binary form.
the eXist-db database to store our XML documents
because it provides
interface that allows for an
easily developed in Java. These extension modules
have full access to the eXist
execution.

2) Interpreter: We implemented a parser for the
Fuzzy XQuery grammar with AN
Language Recognition) version 3.4 [16]. ANTLR is the
tool for the automatic generation of a lexical
analyzer and a parser for a given EBNF grammar. We
implemented an interpreter for the Fuzzy XQuery
using Java in four main modules:
transforms a Fuzzy XQuery to a standard XQuery,
CalculateMembershipFunction
concept to calculate the membership degree of the
results, Compatibility Operation
compatibility operation of two fuzzy sets and
Ordering calculates the ordering operation of two
fuzzy sets. Moreover, we developed a web
application GUI for the interpreter

Figure 1 Architecture of the Fuzzy XQuery Interpreter

4.3 Fuzzy XQuery Execution

We implemented an interpreter that
execution of the Fuzzy XQuery
above. The execution process

Let us explain in detail how we execute a
XQuery. The system first checks the syntax of the
XQuery following the given EBNF gramma
if it is valid, the Fuzzy XQuery
standard XQuery by parsing the

(2015) 1–6

‘trap’‘(’leftoffset‘,’leftmax‘,’rightmax‘,
Trapezoidal fuzzy number with

arguments: left offset, left maximum offset, right
maximum offset and right offset.

‘interval’‘(’leftoffset‘,’rightoffset‘)’ means
nterval fuzzy number with 2 arguments: left offset

‘fs’‘(’type‘,’leftoffset‘,’rightoffset‘)’ means
lder with 3 arguments: type of Fuzzy

(left shoulder or right shoulder), left offset

The overall picture of the system’s architecture is
. There are two main parts:

eXist-db is an open source
software written in Java that is freely available in
both source code and binary form. We have chosen

db database to store our XML documents
because it provides for a pluggable module

for an extension modules to be
easily developed in Java. These extension modules
have full access to the eXist-db for XQuery query

We implemented a parser for the
Fuzzy XQuery grammar with ANTLR (ANother Tool for
Language Recognition) version 3.4 [16]. ANTLR is the
tool for the automatic generation of a lexical
analyzer and a parser for a given EBNF grammar. We
implemented an interpreter for the Fuzzy XQuery
using Java in four main modules: Transformer
transforms a Fuzzy XQuery to a standard XQuery,
CalculateMembershipFunction uses the GPFCSP
concept to calculate the membership degree of the

Compatibility Operation calculates the
compatibility operation of two fuzzy sets and Fuzzy

calculates the ordering operation of two
fuzzy sets. Moreover, we developed a web
application GUI for the interpreter.

Architecture of the Fuzzy XQuery Interpreter

Fuzzy XQuery Execution

ented an interpreter that allowed for the
the Fuzzy XQuery queries defined

process is shown in Figure 2.
Let us explain in detail how we execute a Fuzzy

. The system first checks the syntax of the Fuzzy
following the given EBNF grammar. After that,

Fuzzy XQuery is transformed to a
standard XQuery by parsing the Fuzzy XQuery,

4 Pannipa Sae Ueng et al. / JurnalTeknologi (Sciences & Engineering) 72:1 (2015) 1–6

creates an Abstract Syntax Tree (AST) and extracts
the fuzzy part from it. Next, the system sends the
standard XQuery into the database. When the
database returns the result set, the system will
interpret this result set again using the GPFCSP
concept to calculate the membership degree of
every element of the result set. Now we have the
results that have a fuzzy membership degree in every
element. Then, if the query has a threshold
expression, the system will remove the tuples which
have the fuzzy membership degree under the
threshold value. Finally, we print the output to an XML
file.

Now we describe how to calculate the fuzzy
membership degrees in detail. After we have some
result set that was obtained from a standard XQuery
query, we calculate the fuzzy membership degree
for every element of the result set. We walk the Fuzzy
XQuery tree and find the WHERE node. Next, we
traverse the whereclause subtree. If the current
node represents a conjunction (AND) or disjunction

(OR) node, we calculate the global constraint
satisfaction degree () by calling the Łukasiewicz
triangular norm (TL) function or the Łukasiewicz
triangular conorm (SL) function, respectively.
However, if the current node is an operator (=, !=, <,
<=, >, >=), we walk its child node and check the type
of the child node. If it is “/”, we get the variable after
this node. On the other hand, if it is a fuzzy constant
(ling, tri, trap, interval or fs), we read the linguistic
variable or offsets after this node. After that, we
check the type of the operator. We calculate the
membership degree by calling the compatibility
operation module when an operator is an equality
operator (=) or inequality operator (!=). However, if
the operator is a relational operator (<, <=, >, >=), we
call the fuzzy ordering module. Finally, if there is a
child node with a priority expression, we aggregate
the obtained value with a priority using the triangular
product conorm (SP).

Figure 2 Activity diagram for executing a Fuzzy XQuery

5.0 ILLUSTRATIVE EXAMPLE

In this section, we illustrate the execution of the
process of Fuzzy XQuery query with an example.
Suppose that we have a Fuzzy XQuery query as in
Listing 1 that retrieves the students who are of young
age and their height is more than 150 cm with the
priority 0.6 and 0.3, respectively. In addition, we
define the threshold value equal to the 0.5 meaning
that we want the results that have the global
constraint satisfaction degree more than 0.5

Listing 1 An example of a Fuzzy XQuery query

for $x in document("student.xml") where $x/GPA >2.75 and
$x/age = #ling(’young’)# priority 0.6 and
$x/height > #tri(100,150,200)# priority 0.3
Threshold 0.5
return $x

Let us now describe how to calculate this Fuzzy
XQuery. First of all, we transform the Fuzzy XQuery to
a standard XQuery by removing the fuzzy expressions,

5 Pannipa Sae Ueng et al. / JurnalTeknologi (Sciences & Engineering) 72:1 (2015) 1–6

priority expressions and threshold expression as shown
in Listing 2.

Listing 2 Transformation a Fuzzy XQuery to a standard

XQuery query

for $x in document("student.xml")
where $x/GPA >2.75 return $x

Second, we get the result set after we send the
standard XQuery to the database. Third, we send the
results back to the interpreter to calculate the global
constraint satisfaction degree by calling
CalculateMembershipFunction. In this function, the

system will remove the non-fuzzy conditions from the
Fuzzy XQuery, which in this example is “$x/GPA >2.75”,
as in Listing 3.

Listing 3 The Fuzzy XQuery after removing the non-fuzzy
node

for $x in document("student.xml")
where $x/age = #ling(’young’) priority 0.6 and
$x/height > #tri(100,150,200)# priority 0.3
Threshold 0.5 return $x

We use the concept of GPFCSP (as in the
preceding section) to calculate the global constraint
satisfaction degree for all the result set in step two by
using the equation (4).

 = TL(SP(fR1

 (v),1- ρ(fR1
)), SP(fR2

 (v),1- ρ(fR 2
))) (4)

In the equation (4), f
iR is the fuzzy constraint i and

f
iR

 is the satisfaction degree of constraint f
iR . The

priority of each constraint is represented by the
function ρ(f

iR). The greater value of ρ(f
iR) means

that the constraint f
iR is more important. In this

example, the constraint fR1
: age is more important

than the constraint fR 2
: height because the priority

value of the constraint age is 0.6 but the priority value
of the constraint height is 0.3. It is noticeable that we
use the TL because of the conjunction AND in this
Fuzzy XQuery. The SP is used to aggregate with
priority.

Let us assume that we have the student data in the
XML file as in Listing 4 and the result set from the
standard XQuery is shown in Listing 5. It is noticeable
that Ana’s GPA is not greater than 2.75.
Consequently, the result in Listing 5 does not show
Ana’s record.

We calculate the constraint satisfaction degree
() for every constraint and every student as in
Table I. In the case of the first constraint age, these
degrees are obtained directly as the values of the
corresponding membership functions of the young
linguistic fuzzy variable at the given point of the age
data. Suppose that we define the linguistic value of
young in an XML document whose membership
function have the left fuzzy shoulder which can be

seen in Figure 3. However, with the second constraint
height, we calculate fR2

 by using the fuzzy ordering
modules since the type of the fuzzy constant is tri and
the operator is >. If we substitute µ(f

iR) and ρ(f
iR)

for the first student (John) into the equation (4), we
obtain the following:

 John= TL(SP(0,1-0.6), SP(0.5,1-0.3)) (5)

Therefore, we obtain the global constraint
satisfaction degree of John as follows:

 John= TL(SP(0,0.4), SP(0.5,0.7)) = TL (0.4,0.85) = 0.25 (6)

Listing 4 The snippet of student data

<?xml version= “1.0” encoding=“UTF-8”?>
<students>
 <student>
 <name>John</name>
 <GPA>3.5</name>
 <age>25</age>
 <height>170</height>
 </student>
 <student>
 <name>Peter</name>
 <GPA>3.0</name>
 <age>21</age>
 <height>165</height>
 </student>
 <student>
 <name>Ana</name>
 <GPA>2.5</name>
 <age>22</age>
 <height>180</height>
 </student>
 <student>
 <name>Alex </name>
 <GPA>2.8</name>
 <age>20</age>
 <height>tri(150,200,250)</height>
 </student>
</students>

Listing 5 The result set from standard XQuery in Listing 2

<?xml version= “1.0” encoding=“UTF-8”?>
<students>
 <student>
 <name>John</name>
 <GPA>3.5</name>
 <age>25</age>
 <height>170</height>
 </student>
 <student>
 <name>Peter</name>
 <GPA>3.0</name>
 <age>21</age>
 <height>165</height>
 </student>
 <student>
 <name>Alex </name>
 <GPA>2.8</name>
 <age>20</age>
 <height>tri(150,200,250)</height>
 </student>
</students>

The other students are calculated in the same way
and are given in Table II.

f
iR



6 Pannipa Sae Ueng et al. / JurnalTeknologi (Sciences & Engineering) 72:1 (2015) 1–6

Table 1 The constraint satisfaction degrees of every
constraint and every student

Name fR1

 fR2



John 0 0.5

Peter 0.8 0.5

Alex 1 1

Figure 3 Membership function of young

Table 2 The global constraint satisfaction degrees () of
every student

Name 

John 0.25

Peter 0.73

Alex 1

Finally, because of the threshold value, the system
will print the results which have the global constraint
satisfaction degree more than 0.5 as shown in Listing
6.

Listing 6 The final result set

<?xml version= “1.0” encoding=“UTF-8”?>
<results>
 <student>
 <name>Peter</name>
 <alpha>0.73</alpha>
 </student>
 <student>
 <name>Alex</name>
 <alpha>1.0</alpha>
 </student>
</results>

6.0 CONCLUSION

In this paper, we present an approach that uses the
fuzzy set theory that can manage the imprecise,
vague, ambiguous, uncertain or incomplete data
with XML technology. We have proposed extensions
for the XQuery query language in order to handle
flexible fuzzy queries that provide priority, threshold
and fuzzy expressions. Furthermore, we implement an
interpreter for this language and web GUI using Java
programming language and eXist-db. The GPFCSP
concept is used to calculate the global constraint
satisfaction degrees. In the future, we plan to test the
performance of our application with different case

studies and develop a more modern web
application using AngularJS.

Acknowledgement

This work was supported by the budget revenue from
Prince of Songkla University and Faculty of Science,
Prince of Songkla University, Thailand, through the
project no. SCI570329S: A Fuzzy XML Database
System and partially supported by the Ministry of
Education and Science of the Republic of Serbia,
through the project no. 174023: Intelligent techniques
and their integration into the wide-spectrum decision
support.

References

[1] Škrbić, S., Racković, M. and Takaši, A. 2013. Prioritized fuzzy

logic based information processing in relational databases.
Knowledge Based Systems. 38:62–73.

[2] Škrbić, S., Racković, M. 2013. FUZZY DATABASES. Novi Sad,
Serbia: Faculty of Sciences.

[3] Škrbić, S. and Racković, M. 2009. Pfsql: a fuzzy sql language
with priorities. The 4th International Conference on
Engineering Technologies (ICET), 2009 Novi Sad, Serbia. 28-
30 April 2009. 119–125.

[4] Campi, A., Damiani, E., Guinea, S., Marrara, S., Pasi, G.,
and Spoletini, P. 2009. A fuzzy extension of the XPath query
language. Journal of Intelligent Information Systems.
33:285–305.

[5] Goncalves, M. and Tineo, L. 2010. Fuzzy XQuery. In Soft
Computing in XML Data Management. Series Studies in
Fuzziness and Soft Computing. Ma, Z. and Yan, L. (ed.)
Springer Berlin/Heidelberg. 255:133–163.

[6] Fredrick, E. T. and Radhamani, G. 2009. Fuzzy logic based
XQuery operations for native XML database systems.
International Journal Database Theory and Application.
2:13–20.

[7] Fredrick, E. T. and Radhamani, G. 2010. A GUI based tool
for generating XQuery and fuzzy XQuery. International
Journal of Computer Applications Database Theory and
Application. 1:54–58.

[8] Fredrick, E. T. and Radhamani, G. 2011. Information retrieval
using XQuery processing techniques. International Journal
of Database Management Systems (IJDMS). 3:50–58. Feb,
2011.

[9] Fredrick, E. T. and Radhamani, G. 2012. Fuzzy integrity
constraints for native xml database. International Journal of
Computer Science (IJCSI). 9:50–58. Mar, 2012.

[10] Panić, G., Škrbić, S. and Racković, M. 2014. Fuzzy xml and
prioritized fuzzy xquery with implementation. Journal of
Intelligent and Fuzzy Systems. 26:303–316.

[11] Sukpisit, S., Kansomkeat, S., Thadadech, A., Ueng, P. S. and
Škrbić, S. 2015. Polygon intersection based algorithm for
fuzzy set compatibility calculations. 2015 International
Conference on Information Technology (ICIT), 2015.
Singapore. 2-3 Feb. 2015. 241–248.

[12] Bodenhofer, U. 2008. Orderings of fuzzy sets based on fuzzy
orderings part i: The basic approach. Mathware Soft
Computing. 15:201–218.

[13] Kansomkeat, S., Sukpisit, S., Thadadech, A., Ueng, P. S. and
Škrbić, S. 2015. Fuzzy ordering implementation applied in
fuzzy XQuery. 5th International Conference on Information
Society and Technology (ICIST), 2015. Kopaonik, Serbia. 8-
11 March 2015. 443–448.

[14] Thadadech, A., Kansomkeat, S., Vonghirandecha, P. and
Škrbić, S. 2015. A Fuzzy XML Database System. Final report
of collaborative research. Prince of Songkla University,
Thailand.

[15] eXistdb project. 2014. eXistdb. [Online]. From:
http://existdb.org/exist/apps/homepage/index.html.
[Accessed on 3 July 2015].

[16] Parr, T. 2012. ANTLR v3. [Online]. From:
http://www.antlr3.org. [Accessed on 10 June 2015]

young

1

age (years)
25 0 20

µ(x)

38

Appendix C: Paper of IJMLC Journal



Abstract—PFSQL is an extension of the SQL language that

allows usage of fuzzy logic in SQL queries. In query statements,

variables can take both fuzzy and non-fuzzy values. Normally,

different types of values cannot be compared directly.

Therefore, it is necessary to implement fuzzy compatibility

calculation to solve this problem. This paper proposes a method

of fuzzy compatibility calculation implementation that

determines compatibility degree of two fuzzy sets. The

compatibility value is calculated using polygon intersection

algorithm. To prove the correctness of the proposed method,

the application has been developed and tested with 360

compatibility cases of different randomly generated fuzzy

values. The experimental results show that our algorithms can

handle various types of intersections between any two fuzzy

sets.

Index Terms—Compatibility, fuzzy database, fuzzy query,

PFSQL.

I. INTRODUCTION

In the real world applications, some information might be

vague, ambiguous, uncertain, imprecise or incomplete. Fuzzy

logic has become a successful approach to handle this kind of

information [1]. At the same time, methods of incorporating

fuzziness into relational databases, such as fuzzy data models

that are introduced by Ma et al. [2] and Vucetic et al. [3], are

studied. In 2012, Škrbić and Racković introduced PFSQL

(Prioritized Fuzzy Structured Query Language) that

represents a set of extensions to SQL using priority fuzzy

logic, together with a new fuzzy relational data model based

on fuzzy extensions of the relational model [1].

PFSQL allows fuzzy logic concepts to be used in queries.

Variables in query statements can be assigned both fuzzy and

crisp values [4]. For example, a.wealth = triangle (13, 18, 20).

Normally, a non-fuzzy value (a.wealth) and a fuzzy value

(triangle (13, 18, 20)) cannot be compared directly because

they are of different type. To solve this problem, the fuzzy

compatibility calculations must be used. In this paper, we

propose a method of implementation of fuzzy compatibility

calculations between fuzzy sets. Our algorithm is capable of

calculating intersection of every pair of the following types:

triangular fuzzy number, trapezoidal fuzzy number, intervals,

Manuscript received May 20, 2015; revised January 18, 2016. Authors

are partially supported by Ministry of Education and Science of the Republic

of Serbia, through project no. ON 174023: Intelligent techniques and their

integration into wide-spectrum decision support.
S. Sukpisit, S. Kansomkeat, and A. Thadadech are with the Department of

Computer Science, Faculty of Science, Prince of Songkla University,

Songkhla, Thailand (e-mail: sukgamon.s@psu.ac.th, supaporn.k@psu.ac.th,
apirada.t@psu.ac.th).

P. S. Ueng and S. Škrbić are with the Department of Mathematics and

Informatics, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia

(e-mail: pannipa@dmi.uns.ac.rs, srdjan.skrbic@dmi.uns.ac.rs).

fuzzy shoulders and crisp values. This algorithm may then be

used for wide spectrum of problems, but our interest is to use

it for the implementation of different types of fuzzy queries.

For example, it can be applied to the implementation of an

interpreter for the fuzzy XQuery language proposed by Ueng

and Škrbić in [5].

This paper is organized as follows. In the next section, we

introduce the algorithms that we propose for compatibility

calculations. Our implementation and testing results are

presented in Sections III and IV, respectively. Section V is

the conclusion.

II. COMPATIBILITY CALCULATION

Our research focuses on five fuzzy types: triangular fuzzy

numbers, trapezoidal fuzzy numbers, fuzzy shoulders,

intervals and crisp values. In this section we describe the

algorithm capable of determining the compatibility degree of

two fuzzy sets of those types.

The compatibility calculation process is separated into

three steps. First, the intersection area of two fuzzy sets is

determined. Second, the size of the shape of the intersection

area is calculated. Finally, a compatibility value is obtained

using the compatibility equation.

A. Determining Intersection Area

An intersection area of two fuzzy sets is determined in

2-dimensions: vertical (x) and horizontal (y). We can assume

that the shape of any characteristic function is a polygon.

Each edge of a polygon can be transformed into linear

equation and used for calculations in that

form. For example, a fuzzy triangle shape has 3 coordinates:

(LeftOffset, 0), (Maximum, 1) and (RightOfsset, 0). The

bottom edge (y = 0) is not used for compatibility

computation, so a fuzzy triangle have two edge-equations,

LeftEdge and RightEdge. Table I shows coordinates and

edge-equations of all characteristic functions used in this

paper. A fuzzy trapezoidal shape has two edge-equations

same as triangle and one additional edge-equation called

CenterEdge which is simple – y = 1.

There are two types of fuzzy shoulder shapes – ascending

or right shoulder and descending or left shoulder. There are

two edge-equations in both types: LeftEdge and RightEdge.

One edge-equation of them is constant depending on its type.

A fuzzy interval is a line graph that starts from (LeftMax, 1)

and ends at (RightMax, 1). The area below that line graph

gives a rectangular shape that can be calculated easily but it is

more complex to determine a common area with other

shapes.

The main activity in determining intersection area step is

the coordinate and edge-equations specification of the

intersection area. The coordinates are transformed into

Polygon Intersection Based Algorithm for Fuzzy Set

Compatibility Calculations

Sukgamon Sukpisit, Supaporn Kansomkeat, Pannipa Sae Ueng, Apirada Thadadech, and Srđan Škrbić

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

32doi: 10.18178/ijmlc.2016.6.1.567

objects. Each object provides x and y coordination called

Coordinate. All objects are clockwise or counter clockwise

added to a coordination table. The sequence of adding is

important because non-consecutive adding may lead to

incorrect results in the polygonal area calculation step.

This paper considers five types of fuzzy sets. For the sake

of brevity, only the simplest case, triangle and triangle, is

demonstrated in this paper. In this case, we only use left and

right edges to find coordinates of the intersection area.

Listing 1 shows the algorithm that calculates coordinates of

the intersection area.

TABLE I: COORDINATES AND EDGE-EQUATION OF ALL CHARACTERISTIC

FUNCTIONS

Characteristic functions Coordinates Edge equations

Triangle

 (LeftOffset, 0) LeftEdge,
RightEdge (Maximum, 1)

 (RightOffset, 0)

Trapezoidal

 (LeftOffset, 0) LeftEdge,

CenterEdge,
RightEdge

 (LeftMaximum, 1)

 (RightMaximum, 1)

 (RightOffset, 0)

Right Shoulder

 (ZeroPoint, 0) LeftEdge,

RightEdge (Maximum, 1)

Left Shoulder

 (0, 0) LeftEdge,

RightEdge (0, 1)

 (Maximum, 1)

 (ZeroPoint, 0)

Interval

 (LeftMaximum, 0)

 (LeftMaximum, 1)

 (RightMaximum, 1)

 (RightMaximum, 0)

Crisp value

 (X, Y)

LISTING. 1: ALGORITHM FOR DETERMINING COORDINATES OF THE

INTERSECTION AREA BETWEEN TWO FUZZY TRIANGLES

Algorithm GetCoordinates (FuzzyTriangle A, FuzzyTriangle B).

01. Compare LeftOffset and RightOffset of 2 fuzzy sets.

02. If there is intersection area

03. Store a coordinate (LeftOffsetmax, 0).
04. Find a coordinate of interception of LeftEdgeA and LeftEdgeB.

05. Find a coordinate of interception of LeftEdgeA and RightEdgeB.

06. Find a coordinate of interception of RightEdgeA and LeftEdgeB.
07. Find a coordinate of interception of RightEdgeA and RightEdgeB.

08. Store coordinate (RightOffsetmin, 0).

09. End if

10. End

The algorithm starts from checking intersection area of

two fuzzy sets by comparing LeftOffset and RightOffset for

the two. If there is no intersection area, the algorithm ends. If

there is an intersection area, the first coordinate of it is

(LeftOffsetmax, 0). The LeftOffsetmax can be obtained by

calculating the maximum value of LeftOffsetA and

LeftOffsetB. This coordinate is stored in the coordination

table. In order to find and store coordinates in clockwise

direction, we start by comparing LeftEdgeA with LeftEdgeB. If

these two edges overlap, the coordinates of the overlapping

point is stored in the second row of the coordination table. To

find and store the next three coordinates, method proceeds in

the same manner. The last coordinate is obtained by

calculating the minimum value of RightOffsetA and

RightOffsetB.

B. Calculating Intersection Area

In our research, the cyclic polygon calculation proposed in

[6] is used to calculate the intersection area. This method uses

coordinates of a polygon for the area calculations. The area is

calculated by the following equation:

 (1)

To demonstrate the process, we describe compatibility

calculation for two fuzzy sets: triangleA (12, 15, 18) and

triangleB (14, 16, 17). The three attributes of a triangular

fuzzy number are LeftOffset, Maximum and RightOffset

respectively. Fig. 1 shows the fuzzy sets, triangleA and

triangleB. There are four coordinates of the intersection of

these two fuzzy sets. Fig. 2 shows coordinates of triangleA

and triangleB, and their coordination table.

When you submit your final version, after your paper has

been accepted, prepare it in two-column format, including

figures and tables.

Fig. 1. TriangleA and triangleB.

Attr. X Y

LeftOffset 12 0

Maximum 15 1

RightOffset 18 0

triangleA

Attr. X Y

LeftOffset 14 0

Maximum 16 1

RightOffset 17 0

triangleB

X Y

14 0

15.6 0.8

16.5 0.5

17 0
Coordination Table

Fig. 2. Coordinates of triangleA and triangleB, and their coordination table.

C. Calculating Compatibility Value

To obtain compatibility value, the compatibility equation

[4] will be applied. The equation of compatibility of the fuzzy

set A to the fuzzy set B is given below.

 (2)

 is the area of intersection between the two fuzzy

sets and is the area of the source fuzzy set A.

Compatibility value is a number that varies from 0 to 1.

Zero means incompatible, and one means fully compatible.

As stated before, we focus on five types of fuzzy sets. Each

fuzzy set has a different shape of the characteristic function.

An area of each shape can be obtained by mathematical

methods. For example, the area of triangular fuzzy set can be

calculated by

 .

In Fig. 1, the area of the intersection is 1.35. The area of the

source fuzzy set (triangleA) is 3. Therefore, the compatibility

value for these two fuzzy sets equals 0.45.

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

33

III. IMPLEMENTATION

To support our ideas, we developed the application that

provides graphical user interface for calculation of the

intersection area of two fuzzy sets and determining

coordinates of the intersection area. Compatibility value is

then obtained using this data. The application has two

functions: manual testing and random testing. The manual

testing function is used for a single test. User can identify two

fuzzy sets and then this function will return the compatibility

value. Fig. 3 shows the user interface for the manual testing

function. The random testing function generates cases

randomly. In this case, user can indicate type of fuzzy sets,

boundary values and the number of generated cases. The

boundary values include minimum value and maximum

value. Fig. 4 shows the user interface of the random testing

function.

Fig. 3. User interface of the manual compatibility testing application.

Fig. 4. User interface of the random compatibility testing application.

In our application, when the compatibility calculation

processes are finished, the image of fuzzy sets and their

intersection area will appear on the screen.

This application was developed on Java platform with the

use of PostgreSQL to store fuzzy set attributes and cases of

the random testing function.

IV. TESTING RESULTS

To prove the correctness of our algorithms, some

compatibility cases are generated. To reduce the collecting

bias, fuzzy sets are generated randomly using the described

random testing function of our application. For thorough

testing, each fuzzy type was compared with other types. For

example, fuzzy triangle is compared with other four types

including itself. There are two types of fuzzy shoulders,

therefore there are six comparison pairs. Each pair has ten

cases of compatibility testing. Totally, there are 360

compatibility cases in our experiment.

TABLE II: A COMPARISONS BETWEEN FUZZY TRIANGLE AND OTHER TYPES

No. Type of fuzzy A P(A) Type of fuzzy B C

Attributes Val. Attributes Val.

1 Fuzzy triangle 2.5 Fuzzy triangle 2.2222 0.8889

LeftOffsetA 13 LeftOffsetB 11

MaximumA 16 MaximumB 18

RightOffsetA 18 RightOffsetB 19

2 Fuzzy triangle 2.5 Fuzzy trapezoidal 1.125 0.45

LeftOffsetA 11 LeftOffsetB 13

MaximumA 15 LeftMaxB 16

RightOffsetA 16 RightMaxB 17

 RightOffsetB 19

3 Fuzzy triangle 2.5 Fuzzy shoulder (FC) 1.553 0.6212

LeftOffsetA 12 ZeroPointB 11

MaximumA 15 MaximumB 20

RightOffsetA 17

4 Fuzzy triangle 2 Fuzzy shoulder (SB) 0.25 0.125

LeftOffsetA 13 MaximumB 10

MaximumA 16 ZeroPointB 15

RightOffsetA 17

5 Fuzzy triangle 2.5 Fuzzy interval 0.5 0.2

LeftOffsetA 12 LeftMaxB 11

MaximumA 16 RightMaxB 14

RightOffsetA 17

6 Fuzzy triangle 3.5 Crisp value 0.3333

LeftOffsetA 10 Xcrisp 12

MaximumA 16 Ycrisp 0.78

RightOffsetA 17

7 Fuzz triangle 1.5 Fuzzy trapezoidal 0 0

LeftOffsetA 10 LeftOffsetB 14

MaximumA 11 LeftMaxB 17

RightOffsetA 13 RightMaxB 18

 RightOffsetB 19

If the range in the random testing function is too long,

fuzzy sets can be positioned too far from each other and have

no compatibility. To overcome this problem, the minimum

and maximum values of boundaries are set to be 10 and 20,

respectively.

Table II shows some cases of comparisons between fuzzy

triangle and other types. The intersection areas of the cases 1

to 5 have 4, 3, 4, 3 and 3 coordinates, respectively. The last

two cases have no intersection area. The shapes and

coordinates of intersection area of each case are shown in Fig.

5.

a) Case No. 1

b) Case No. 2

c) Case No. 3

d) Case No. 4

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

34

e) Case No. 5

f) Case No. 6

Fig. 5. User interface of the random compatibility testing application.

V. CONCLUSION

This paper proposes the algorithm for fuzzy compatibility

calculation of two fuzzy sets. The compatibility measure is

used to compare two fuzzy sets. First we introduced the

algorithms able to determine the intersection area between

two fuzzy sets. After that, the compatibility calculation

processes is explained and illustrated. Within the paper, the

application that provides GUI for compatibility calculations

is developed. The testing results are generated randomly by

this application. In these results, various shapes of

intersection areas are recognized correctly by our

implementation. In this way we illustrated the power of the

proposed algorithms to handle various types of intersections

between any two fuzzy sets of the five fuzzy membership

function types that we described.

It is our intent to use the proposed algorithms for

compatibility calculations inside the interpreter for the fuzzy

logic enriched XQuery language.

In the future, we plan to develop and implement the

algorithms capable of calculating fuzzy ordering. Fuzzy

ordering is important operation for queries that contain

relational operators, as well as for those that contain

aggregate functions like MIN, MAX and SUM.

REFERENCES

[1] S. Škrbić, M. Racković, and A. Takači, “Prioritized fuzzy logic based
information processing in relational databases,” Knowledge-Based

Systems, vol. 38, pp. 62-73, 2013.

[2] Z. M. Ma, F. Zhang, and L. Yan, “Fuzzy information modeling in UML
class diagram and relational database models,” Applied Soft

Computing, vol. 11, pp. 4236-4245, 2011.

[3] M. Vucetic, M. Hudec, and M. Vujoševic, “A new method for
computing fuzzy functional dependencies in relational database

systems,” Expert Systems with Applications, vol. 40, pp. 2738-2745

,2013.
[4] S. Škrbić and M. Racković, Fuzzy Databases, Faculty of Sciences,

University of Novi Sad, Novi Sad, 2013.

[5] P. S. Ueng and S. Škrbić, “Implementing XQuery fuzzy extensions
using a native XML database,” in Proc. 13th IEEE International

Symposium on Computational Intelligence and Informatics, 2012, pp.

305-309.

[6] I. Pak, “The area of cyclic polygons: Recent progress on Robbins’

conjectures,” Advances in Applied Mathematics, vol. 34, pp. 690-696,

2005.

Sukgamon Sukpist is a master student at the

Department of Computer Science, Faculty of Science,
Prince of Songkla University, Songkhla, Thailand. He

received his B.Sc. degree in information and

communication technology from Prince of Songkla
University, Songkhla, Thailand in 2010. His research

interest is fuzzy XQuery. He is a software developer at

the Computer Center, Prince of Songkla University
since 2010.

Supaporn Kansomkeat is an assistant professor at the
Department of Computer Science, Faculty of Science,

Prince of Songkla University, Songkhla, Thailand. Her

current research interests include software testing, test
process improvement and fuzzy XQuery. She received

a PhD in computer engineering from Chulalongkorn

University in 2007. She was a publicity co-chair for the
International Conference on Asia-Pacific Software

Engineering Conference. She is a general secretariat for the 12th

International Joint Conference on Computer Science and Software
Engineering.

Pannipa Sae Ueng is a Ph.D. student at the
Department of Mathematics and Informatics, Faculty

of Sciences, University of Novi Sad, Novi Sad, Serbia.

She received her B.Sc. degree in computer science
from the Department of Computer Science, Faculty of

Science, Prince of Songkla University, Songkhla,

Thailand and M.Sc. degree in computer science from
the Department of Computer Engineering, Faculty of

Engineering, Chulalongkorn University, Bangkok, Thailand. She has

worked as a lecturer at the Department of Computer Science, Faculty of
Science, Prince of Songkla University since 2007. Her research interests are

fuzzy database and fuzzy XQuery.

Apirada Thadadech is an assistant professor at the

Department of Computer Science, Faculty of Science,
Prince of Songkla University, Songkhla, Thailand. She

received her M.Sc. degree in computer science from

University of Philippines Losbanos, Philippines in
1990. In 2013, she was elected as a head of the

Department of Computer Science, Faculty of Science,

Prince of Songkla University, Songkhla, Thailand. Her
research interest is software engineering.

Srđan Škrbić is an associate professor at the
Department of Mathermatics and Informatics, Faculty

of Sciences, University of Novi Sad, Novi Sad, Serbia.

He received his B.Sc. degree in computer science in
2001. M.Sc. in computer science in 2004 and Ph.D. in

computer science in 2009 at the Faculty of Sciences,

University of Novi Sad. In 2006, he received the
“Mileva Maric – Einstein” prize for his M.Sc. thesis. He was elected as a

head of the Chair for information technologies and systems in 2011.

Recently he has focused on reseach topics in high performance and parallel
scientific computing. He coauthored more than 50 research papers.

International Journal of Machine Learning and Computing, Vol. 6, No. 1, February 2016

35

43

Appendix D: Proceeding of ICIST2015

Fuzzy Ordering Implementation Applied
in Fuzzy XQuery

Supaporn Kansomkeat*, Sukgamon Sukpisit*, Apirada Thadadech*,

Pannipa Sae Ueng** and Srdjan Skrbic**

* Prince of Songkla University, Department of Computer Science, Songkhla, Thailand
** University of Novi Sad, Department of Mathematics and Informatics, Novi Sad, Serbia

supaporn.k@psu.ac.th, sukgamon.s@psu.ac.th, apirada.t@psu.ac.th,
pannipa@dmi.uns.ac.rs, srdjan.skrbic@dmi.uns.ac.rs

Abstract — Fuzzy XQuery is the extension of standard
XQuery language that allows fuzzy values in the query
condition statements. Relational operators are not only
required and possible in crisp value cases but also for fuzzy
values. When relational operators are included in the query,
it is necessary to provide means for comparison between
fuzzy sets. These fuzzy relational operators are typically used
in two fuzzy sets comparison case, but can also be used with
some aggregate functions like MIN, MAX, and SUM. The aim
of this paper is to present the algorithms for the
implementation of fuzzy relational operators. Our algorithms
compare the horizontal positions of two fuzzy sets and
calculate the ordering value based on partial fuzzy ordering
proposed by Bodenhofer. Moreover, we developed a GUI
application and evaluated our approach with 360 fuzzy
ordering cases. The experimental results show that our
algorithms are capable of calculating fuzzy ordering values
with various types of fuzzy values correctly.

I. INTRODUCTION
Recently, fuzzy extensions are proposed to handle

vague, ambiguous, uncertain, imprecise or incomplete
information. Campi et al. [1] introduced fuzzy extensions
to XPath named FuzzyXPath that used to query XML data
based on the fuzzy set theory. Fredrick and Radhamani [2]
introduced fuzzy XQuery to retrieve data from native XML
database. Skrbic et al. [3] introduced PFSQL (Prioritized
Fuzzy Structured Query Language), which is an extension
of SQL (Structured Query Language). PFSQL uses the
prioritized fuzzy logic to retrieve data from a fuzzy
relational database. In 2012, Ueng and Skrbic [4] proposed
fuzzy extensions to standard XQuery. Their query system
retrieves data from native XML database based on
prioritized fuzzy logic. In 2014, they implemented an
interpreter for fuzzy XQuery in their project called FXI
(Fuzzy XQuery Interpreter). Users can query data with
priority and threshold keywords in the condition statement
and define fuzzy values used as search conditions in the
query.

Including fuzzy relational operators in FXI is a very
promising idea. In this way, fuzzy XQuery queries would
be able to provide flexible comparisons between fuzzy sets
that represent vague data. Relational operators on fuzzy sets
are binary operators, which are able to compare two fuzzy
sets: <, ≤, ≥ and >. Furthermore, fuzzy relational
operators can be used with some aggregate functions like
MIN, MAX, and SUM. In this paper, we propose a method
to calculate fuzzy relational operations between two fuzzy

sets and give its implementation. The proposed method is
general and may be used with different types of problems.
For example, it can be applied to fuzzy XQuery or PFSQL.

This paper is organized as follows. In the next section,
we introduce algorithms for fuzzy relational operator
calculations. Our implementation and testing results are
presented in Sections 3 and 4, respectively. Section 5 is the
conclusion.

II. FUZZY ORDERING CALCULATIONS
A. Membership functions

There are five different types of fuzzy membership
functions used in [4]: triangle fuzzy number, trapezoidal
fuzzy number, interval, fuzzy shoulder and crisp value.
Figure 1 shows the shape of a fuzzy triangle membership
function.

𝜇𝐴(𝑥) =

{

0, ∀𝑥,𝑥 ≤ 𝑎 ∧ 𝑥 ≥ 𝑏
𝑥−𝑎
𝑚−𝑎

, ∀𝑥 ∈ (𝑎,𝑚]

𝑏 −𝑥
𝑏−𝑚

, ∀𝑥 ∈ (𝑚,𝑏)

Figure 1 Fuzzy triangle number and its membership function

Definition 1 A fuzzy set A over universe X is determined

by its characteristic (membership) function [5],
𝜇𝐴: 𝑥 → [0, 1],

where, for every 𝑥 ∈ 𝑋, 𝜇𝐴(𝑥) is interpreted as

membership degree of element x to fuzzy set A. Value
𝜇𝐴(𝑥) = 0 denotes that element x does not belong to the set
A, while 𝜇𝐴(𝑥) = 1 denotes that element x belongs to the
set A. Universe X is almost always the set of real numbers.

1

0
a m b

ICIST 2015 5th International Conference on Information Society and Technology

Page 443 of 493

Definition 2 The set 𝑥 ∈ 𝑋 | 𝜇𝐴 > 0 is called the support
of A (supp(A)) and the set {𝑥 ∈ 𝑋 | 𝜇𝐴 = 1} is called its
kernel (ker(A)) [5]

B. Fuzzy ordering calculation
In 2008, fuzzy orderings were proposed by Bodenhofer

in [6]. Here we recall some basic definitions used in our
research; for a more extensive description see [6].

Definition 3 Consider a fuzzy equivalence relation, T-

equivalence 𝐸: 𝑋2 → [0,1] and a direct fuzzification,
T-E-ordering 𝐿: 𝑋2 → [0,1]. Then, for given fuzzy set
 𝐴 ∈ ℱ(𝑋), where ℱ(𝑋) is a fuzzy superset of X. The fuzzy
sets ‘at least A’ and ‘at most A’ (with respect to L),
abbreviated ATL(A) and ATM(A), respectively, are defined
as follow (for all 𝑥 ∈ 𝑋):

𝐴𝑇𝐿(𝐴)(𝑥) = {𝑇(𝐴(𝑦), 𝐿(𝑦, 𝑥))| 𝑦 ∈ 𝑋} (1)
𝐴𝑇𝑀(𝐴)(𝑥) = {𝑇(𝐴(𝑦), 𝐿(𝑥, 𝑦))|𝑦 ∈ 𝑋} (2)

ATL(A) is the smallest fuzzy superset of A that has a non-
decreasing membership function with respect to L, while
ATM(A) is the smallest fuzzy superset of A that has a non-
increasing membership function with respect to L.

When L is a crisp ordering, the notations LTR(A) and
RTL(A) are used instead of ATL(A) and ATM(A),
respectively. LTR(A) stands for left-to-right closure and
RTL(A) stands for right-to-left closure. The operator ≼ is
referred to crisp ordering.

First we describe a well-known ordering procedure for
real intervals.

[𝑎, 𝑏] ≤𝐼 [𝑐, 𝑑] ⟺ 𝑎 ≤ 𝑐 ∧ 𝑏 ≤ d (5)

Equation (5) states that the only case that yields “true” or
1 value is 𝑎 ≤ 𝑐 and 𝑏 ≤ 𝑑. The inequality
 𝑎 ≤ 𝑐 means that there are no elements of set [c, d] that are
below the entire interval [a, b] and the inequality
𝑏 ≤ 𝑑 means that there are no elements of [a, b] that are
completely above [c, d]. Equation (5) can be generalized to
arbitrary crisp subsets of an ordered set (𝑥,≼) as follow:

𝑀 ≼𝐼 𝑁 ⟺ ((∀𝑥 ∈ 𝑁)(∃𝑦 ∈ 𝑀)𝑦 ≼ 𝑥)

∧ ((∀𝑥 ∈ 𝑀)(∃𝑦 ∈ 𝑁)𝑥 ≼ 𝑦)
(6)

By using the operators LTR and RTL, and considering a

crisp ordering ≼ on X, the following equivalences that hold
for all 𝑀,𝑁 ⊆ 𝑋 are proved.

𝐿𝑇𝑅(𝑀) ⊇ 𝐿𝑇𝑅(𝑁) ⟺ (∀𝑥 ∈ 𝑁)(∃𝑦 ∈ 𝑁) 𝑦 ≼ 𝑥 (7)
𝑅𝐿𝑇(𝑀) ⊆ 𝑅𝑇𝐿(𝑁) ⟺ (∀𝑥 ∈ 𝑀)(∃𝑦 ∈ 𝑁) 𝑥 ≼ 𝑦 (8)

Since the operators LTR and RTL can be applied for

fuzzy sets, an ordering of fuzzy sets 𝐴, 𝐵 ∈ ℱ(𝑋) with
respect to crisp ordering ≼ is generalized as:

𝐴 ≼𝐼 𝐵 ⟺ (𝐿𝑇𝑅(𝐴) ⊇ 𝐿𝑇𝑅(𝐵) ∧ 𝑅𝑇𝐿(𝐴) ⊆ 𝑅𝑇𝐿(𝐵)) (9)

The inclusion 𝐿𝑇𝑅(𝐴) ⊇ 𝐿𝑇𝑅(𝐵) means that the left
flank of A is to the left of the left flank of B while
𝑅𝑇𝐿(𝐴) ⊆ 𝑅𝑇𝐿(𝐵) means that the right flank of A is to the
left of the right flank of B.

Considering fuzzy orderings above, the fuzzy ordering
calculation can be determined by considering horizontal
positions of comparing fuzzy sets. If the assertion (9) is
fulfilled in both conditions, the fuzzy ordering value is
true or 1. Otherwise, the operation returns false or 0. Figure
2 shows the comparison of fuzzy sets that yields value 1.

Figure 2. Comparison of fuzzy sets that satisfy (2)

From assertion (9) can be concluded that if only one

condition is satisfied, it means that fuzzy sets cannot be
compared - incomparable case. In this case, the fuzzy
ordering operation will return incomparable or 0.5. Figure
3 shows the incomparable fuzzy sets.

Figure 3. Incomparable fuzzy sets

Another incomparable case is the comparison of fuzzy

sets having different heights. However, Skrbic and
Rackovic proposed an idea to eliminate this problem in [5].
Fuzzy set 𝐴′ is introduced as:

𝜇𝐴′ = {
1, 𝜇𝐴(𝑥) = ℎ(𝐴)

𝜇𝐴(𝑥), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(10)

In this way, fuzzy relational operator ≤𝐹 is introduced

by:
𝐴 ≤𝐹 𝐵 ⟺ 𝐴′ ≤𝐹

′ 𝐵′ (11)

𝐿𝑇𝑅(𝐴)(𝑥) = {𝐴(𝑦)| 𝑦 ∈ 𝑋 ∧ 𝑦 ≼ 𝑥} (3)
𝑅𝑇𝐿(𝐴)(𝑥) = {𝐴(𝑦)| 𝑦 ∈ 𝑋 ∧ 𝑥 ≼ 𝑦} (4)

A B

A B

ICIST 2015 5th International Conference on Information Society and Technology

Page 444 of 493

Definition 4 Let A and B be two fuzzy sets over universe
X. Order ≤𝐹 ′ over the set of all fuzzy sets over universe X,
ℱ(𝑋) is defined by:

𝐴 ≤𝐹

′ 𝐵 ⟺ (𝐿𝑇𝑅(𝐵) ⊆ 𝐿𝑇𝑅(𝐴) ∧ 𝑅𝑇𝐿(𝐴) ⊆ 𝑅𝑇𝐿(𝐵)) (12)

In the same way as with operators < and > on crisp

domain, other relational operators, like <𝐹 and >𝐹 can be
derived using the ≤𝐹 order.

C. Algorithm
As mentioned before, we consider five types of fuzzy set.

Each type has different attributes that depict its properties.
For example, a triangle fuzzy number contains three
attributes (LeftOffset, Maximum and RightOffset). The
LeftOffset refers to the beginning location of the support
(supp in Definition 2) of fuzzy set (LeftOffset, 0). The
Maximum refers to a location of its kernel (Maximum, 1)
and the RightOffset refers to the end location of the support
of fuzzy set (RightOffset, 0). Table I shows attributes for
each type of characteristic function.

Attributes of fuzzy sets are used to calculate fuzzy
relational operator values. Comparing two fuzzy sets, A
and B, focuses on beginning, maximum and ending
locations of A and B. For example, in Figure 1, two triangle
fuzzy sets, A and B, are compared by operator <, the
algorithm starts from comparing the Maximum attributes. If
MaximumA is greater than MaximumB, the result is 0 and the
process ends. If not, the LeftOffset attributes will be
compared. If LeftOffsetA is not greater than LeftOffsetB, the
process is still going onto compare RightOffset. If
RightOffsetA is greater than RightOffsetB, the result value is
0.5 (incomparable). If not, the result value is 1 (true). If
LeftOffsetA is greater than LeftOffsetB, RightOffsetA and
RightOffsetB are compared. If RightOffsetA is greater than
RightOffsetB then the result value is 0 (false), otherwise, the
result value is 0.5 (incomparable). The algorithm for
comparing two triangle fuzzy sets is shown in Listing 1.

TABLE I.
ATTRIBUTES OF EACH CHARACTERISTIC FUNCTION

Characteristic function Attributes
(𝑨,𝝁𝑨)

Abbreviation

Triangle fuzzy number
LeftOffset (𝐴, 0) T-LO
Maximum (𝐴, 1) T-MX

RightOffset (𝐴, 0) T-RO

Trapezoidal fuzzy
number

LeftOffset (𝐴, 0) TR-LO
LeftMaximum (𝐴, 1) TR-LMX

RightMaximum (𝐴, 1) TR-RMX
RightOffset (𝐴, 0) TR-RO

Right shoulder
ZeroPoint (𝐴, 0) S-ZP
Maximum (∞,1) S-MX

Left shoulder
Maximum (0, 1) S-MX
ZeroPoint (𝐴, 0) S-ZP

Interval
LeftMaximum (𝐴, 1) I-LMX

RightMaximum (𝐴, 1) I-RMX

Crip value
X (𝐴) C-X

Y (𝜇𝐴) C-Y

D. Crisp value
Unlike other fuzzy sets, the crisp value is a paired-

value (𝐴, 𝜇𝐴). A comparison between crisp value and other
fuzzy sets needs a special method.

For a relational operation between crisp value and
another fuzzy set, we compare the value of attribute X of
crisp value and boundary values of the compared fuzzy
set. If a value X is less than the lower bound of the
compared fuzzy set, the fuzzy ordering value is 1. If a
value X is inside the boundary, the result value is 0.5.
Otherwise, the result value is 0.

Comparing between crisp values is done in the same
manner. For ordering between crisp values, A and B,
following applies, if value XA is not greater than value XB,
the result is 1. Otherwise the result is 0.

Listing 1. Algorithm for calculating fuzzy ordering between a triangle

fuzzy number and another triangle fuzzy number.

Algorithm IsLessThan (FuzzyTriangle A, FuzzyTriangle B)
01. Compare MaximumA and MaximumB
02. If MaximumA greater than MaximumB
03. Result is 0
04. Else
05. Compare LeftOffsetA and LeftOffsetB
06. If LeftOffsetA not greater than LeftOffsetB
07. Compare RightOffsetA and RightOffsetB
08. If RightOffsetA greater than RightOffsetB
09. Result is 0.5
10. Else
11. Result is 1
12. End if
13. Else
18. Compare RightOffsetA and RightOffsetB
19. If RightOffsetA greater than RightOffsetB
20. Result is 0
21. Else
22. Result is 0.5
23. End if
23. End if
24. End if

III. IMPLEMENTATION
To support our ideas, we developed the application that

has two functions: manual fuzzy ordering testing and
random fuzzy ordering testing. The manual testing function
is used for a single test. In this case, the user can specify
types of fuzzy sets and their attributes. When the process is
done, the application shows an image of specified fuzzy
sets and their fuzzy ordering value. Figure 4 illustrates the
user interface for the manual testing function. The random
testing function randomly generates comparison cases. In
this function, the user can indicate types of fuzzy sets,
number of generated cases, and boundary values. Figure 5
shows the user interface of the random testing function.

This application was developed on Java platform with
the use of PostgreSQL to store fuzzy set attributes and cases
of the random testing function.

ICIST 2015 5th International Conference on Information Society and Technology

Page 445 of 493

Figure 4. User interface of manual testing function

Figure 5. User interface of automated random testing function

IV. TESTING RESULTS
To prove the reliability of our proposed algorithms, some

fuzzy ordering cases are generated randomly using random
fuzzy ordering testing function of our application. As
mentioned above, this paper considers five types of fuzzy
sets. To cover all types of comparisons, each characteristic
function is compared with the other four types including
itself. Since there are two types of fuzzy shoulder, there are
36 comparison pairs. For a better variety in the comparison,
the number of generated cases is set to be 10. Consequently,
each pair has 10 cases of fuzzy ordering testing. Totally,
there are 360 fuzzy ordering cases in our experimental
results. The generated fuzzy sets are forced to position
inside a boundary that is specified by the user. If the
boundary is too wide, the fuzzy sets can be positioned too
far from each other and have no incomparable cases. To
avoid this problem, the lower bound and the upper bound
are set to be 10 and 20, respectively. For the sake of brevity,
some selected comparison cases between fuzzy triangle and
other types are represented in Table II.

TABLE II.
A COMPARISONS BETWEEN FUZZY TRIANGLE AND OTHER TYPES

Case
No.

Type of fuzzy set A Type of fuzzy set B Result
Attributes Value Attributes Value

1 Fuzzy triangle Fuzzy triangle 1

T-LOA 13 T-ROB 15

T-MXA 14 T-MXB 17
T-ROA 16 T-ROB 18

2 Fuzzy triangle Fuzzy triangle 0.5

T-LOA 16 T-ROB 13

T-MXA 17 T-MXB 18
T-ROA 18 T-ROB 19

3 Fuzzy triangle Fuzzy triangle 0

T-LOA 12 T-ROB 10

T-MXA 18 T-MXB 13
T-ROA 19 T-ROB 14

4 Fuzzy triangle Fuzzy trapezoidal 1

T-LOA 12 TR-LOB 14

T-MXA 14 TR-LMXB 16
T-ROA 18 TR-RMXB 18

 TR-ROB 19

ICIST 2015 5th International Conference on Information Society and Technology

Page 446 of 493

5 Fuzzy triangle Fuzzy trapezoidal 0.5

T-LOA 16 TR-LOB 14

T-MXA 17 TR-LMXB 17
T-ROA 19 TR-RMXB 18

 TR-ROB 19

6 Fuzzy triangle Fuzzy trapezoidal 0

T-LOA 17 TR-LOB 11

T-MXA 18 TR-LMXB 12
T-ROA 19 TR-RMXB 14

 TR-ROB 19

7 Fuzzy triangle Right shoulder 1

T-LOA 10 S-ZPB 10

T-MXA 18 S-MXB 20
T-ROA 19

8 Fuzzy triangle Right shoulder 0.5

T-LOA 16 S-ZPB 15

T-MXA 18 S-MXB 20
T-ROA 19

9 Fuzzy triangle Left shoulder 0

T-LOA 15 S-MXB 14

T-MXA 17 S-ZPB 16
T-ROA 18

10 Fuzzy triangle Left shoulder 0.5

T-LOA 12 S-MXB 17

T-MXA 15 S-ZPB 18
T-ROA 18

11 Fuzzy triangle Interval 1

T-LOA 13 I-LMXB 17

T-MXA 16 I-RMXB 18
T-ROA 18

12 Fuzzy triangle Interval 0.5

T-LOA 10 I-LMXB 13

T-MXA 14 I-RMXB 19
T-ROA 19

ICIST 2015 5th International Conference on Information Society and Technology

Page 447 of 493

13 Fuzzy triangle Interval 0

T-LOA 13 I-LMXB 16

T-MXA 18 I-RMXB 18
T-ROA 19

14 Fuzzy triangle Crisp value 0

T-LOA 17 C-X 15

T-MXA 18 C-Y 0.595
T-ROA 19

15 Fuzzy triangle Crisp value 0.5

T-LOA 14 C-X 15

T-MXA 18 C-Y 0.819
T-ROA 19

16 Fuzzy triangle Crisp value 1

T-LOA 10 C-X 18

T-MXA 12 C-Y 0.143
T-ROA 15

V. CONCLUSION
This paper proposes the algorithm for binary fuzzy

relational operators, which can be used to compare two
fuzzy sets. Algorithms used to calculate fuzzy relational
operator values are introduced. We developed an
application that provides GUI and fuzzy relational operator
calculations to prove the reliability of our algorithms. The
testing results are generated randomly by this application.
The results show that various comparisons are proved to be
calculated correctly by our implementation. The proposed
algorithms for fuzzy ordering will be used in FXI to enable
comparison of two fuzzy sets.

Future research in this direction will tackle problems
related to the implementation of aggregate functions, like
MIN MAX, and SUM, using the proposed algorithms in
FXI.

REFERENCES
[1] A. Champi, E. Damiani, S. Guinea, S. Marrara, G. Pasi, and P.

Spoletini, “A Fuzzy Extension for the XPath Query Language” in
Flexible Query Answering Systems, Lecture Notes in Computer
Science, vol. 4027, 2006, pp. 210—221.

[2] E.J.T. Fredrick, and G. Radhamani, “Fuzzy Logic Based XQuery
operations for Native XML Database Systems,” in International
Journal of Database Theory and Application, vol. 2, pp. 14—20.

[3] S. Skrbic, M. Rackovic, and M. Takaci, “Prioritized Fuzzy Logic
Based Information Processing in Relational Databases,” in
Knowledge-Based Systems, vol. 38, 2013, pp. 62—73.

[4] P.S. Ueng, and S. Skrbic, “Implementing XQuery Fuzzy Extensions
Using a Native XML Database,” in Proceeding of 13th IEEE
International Symposium on Computational Intelligence and
Informatics, 2012, pp.305—309.

[5] S. Skrbic, and M. Rackovic, Fuzzy databases, Faculty of Sciences,
University of Novi Sad, Novi Sad, 2013.

[6] U. Bodenhofer, “Orderings of Fuzzy Sets Based on Fuzzy
Orderings Part I: The Basic Approach,” in Mathware & Soft
Computing, 2008, pp.201—218.

A

B

A

B

A

B

ICIST 2015 5th International Conference on Information Society and Technology

Page 448 of 493

	2015 ICIST Fuzzy Ordering Implementation Applied in Fuzzy XQuery.pdf
	ICIST2015
	CONTENT
	A Foreword to the Proceedings
	VOLUME 1
	Failure-Correction Simulation Tool Applied to Skull Prosthesis Modelling
	Implementation of the Smartphone Based Biofeedback Application
	Application of Data Mining Algorithms for Detection of Masses on Digitalized Mammograms
	Finite Element Model of Cochlea – Air Conduction and Bone Conduction
	Model-Based System for the creation and application of modified cloverleaf plate fixator
	Decision Support System for Selection of the Most Suitable Biomedical Material
	Software Framework for REST Client Android Applications: Canvas LMS Case Study
	Bioinspired metaheuristic algorithms for global optimization
	Measuring influence of Facebook pages
	A Framework for Comparative Analysis of Data Mining Algorithms
	Graph Layout Algorithms and Libraries: Overview and Improvements
	RDF Stores Performance Test on Servers with Average Specification
	A Framework for ICT Support to Sustainable Mining - An Integral Approach
	High level design of architecture for software reliability management of Power Supply Company Jugoistok
	ekoNET system architecture and service for environmental monitoring
	Software Module for Integrated Energy Dispatch Optimization
	Experimental Evaluation of Growing and Pruning Hyper Basis Function Neural Networks Trained with Extended Information Filter
	Multi-Objective Tire Design Optimization by Artificial Neural Networks
	Reducing Wagons Accumulation Time in Classification Yards by Genetic Algorithm
	Simulation model of a Single Track Railway Line
	Open Satellite Data for the area of Serbia
	ESTA-LD: enabling spatio-temporal analysis of linked statistical data
	Exploring collaboration between public administrations through the notion of open data
	Visual analytics of traffic-related Open Data and VGI
	Improving geoportal information search capabilities – an approach based on semantic similarity measurement
	Design of Geospatial Benchmarking System and Performance Evaluation of Virtuoso and PostGIS
	Mobile Semantic Geospatial Visualization and Exploration
	Cloud Network Infrastructure Design Approach
	A Routing Algorithm for Mobile Ad Hoc Networks
	Linked data network approach to ontology-based data sharing
	Dynamic Software Adapters as Enablers for Sustainable Interoperability Networks
	Smartphone MEMS Accelerometer for Cycling – Observations
	A Reasoning Geometric Modeling to Support Design for Dental Implant
	Diagnosis of Lumbar Disc Herniation using Multilayer Perceptron Neural Network
	Telerehabilitation Model of Physical Therapy using Kinect and Embedded Systems
	Prediction of wall shear stress in the arteries with myocardial bridge by neural networks
	Designing of Internal Dynamic Tibia Fixation 3D Model according to Mitkovic type TPL
	Methods for assessment of cognitive workload in driving tasks
	On the Runtime Models for Complex, Distributed and Aware Systems
	A Meta-metadata Ontology Based on ebRIM Specification
	New Approach to Development of Supply Chain Management Information Systems Through Software Factories
	Prototype of a Framework for Ontology-aided semantic conflict resolution in enterprise integration
	Data Point Mapping Approach to Airport Ontology Modelling and Population
	Enabling Customization of Document-Centric Systems Using Document Management Ontology
	SilabMDD - Model Driven Approach
	Service Networks Monitoring for Better Quality of Service
	Process performance measurement system for financial statements audit process in BPMS environment
	An Approach to Business Improvement by the Development of an Information System
	Scheme for mapping scientific research data from EPrints to CERIF format
	Information Security Awareness through a Virtual World: An end-user requirements analysis
	Enhancing Learning on Information Security Using 3D Virtual World Learning Environment
	A Flexible, Process-Aware Contract Management System
	Digital Technologies for Cultural Heritage Presentation in Bosnia and Herzegovina
	Comparative Analysis of Local and Global Innovation of Knowledge Sources in Standardized Subfields of Health Care Technology
	Use of Geographic information systems in analysis of telecommunication market
	Contextual Modeling of ICT Projects for E-Government: The Case Study of Republic of Srpska
	Managing PhD promotions and register of doctors in CRIS UNS

	VOLUME 2
	Evaluation of the implementation of the “eAdministration Strategy of Provincial Authorities”
	A strategic approach to providing cloud services for research and education community
	A Contribution to the Development of an Information System in the Function of Improving Decision-making in Business
	ERP and Competitive Intelligence Systems in Agility of Organization: A Systematic Literature Review
	Advantages and Drawbacks of Sloodle application for creating high-quality teaching materials with demanding graphics
	Massive Open Online Courses: edX vs Moodle MOOC
	Adaptation of Online Courses for Students with Different Educational Backgrounds and Predispositions for Learning
	Multi linked lists: an object-oriented approach
	Ontological Model of the Standardized Secondary School Curriculum in Informatics
	Architecture and Algorithms for Filtering Tweets Based on Chosen Countries and Cities
	Automatic data extraction from GPR data
	Orchestrating Music Queries via the Semantic Web
	Reporting system for mobile
	Measurement of QoS Parameters VoIP Codecs as a Function of the Level of Network Traffic
	An Efficient MATLAB Implementation of OFDM/OQAM Modulator with Orthogonal Pulse Shaping Filters
	Smart City Services for Citizen-Centric Internet of Things
	PyTabs: A DSL for simplified music notation
	Opportunities of the Internet of Things for Healthcare through Architectural Layers- Architecture and Technologies
	Limitations of Smartphone MEMS for motion analysis
	Segmentation and Three-Dimensional Visualization of Brain Tumor and Possibility of Mapping Such Algorithms on High Performance Reconfigurable Computers
	Framework for early manufacturability and technological process analysis for implants manufacturing
	Multimodal Imaging for PET Attenuation Correction
	DICOM Image Management Through Agents Based Systems
	Development of Web-available Models of Human Spinal Vertebrae for Biomedical Engineering Research and Education
	Fuzzy Ordering Implementation Applied in Fuzzy XQuery
	A performance analysis of the R language and an assessment of the capabilities for its improvement
	The role of modeling in information system development with disciplined agile delivery approach: A case study
	Domain specific agent-oriented programming language based on the Xtext framework
	Aspect-Oriented Engines for Kroki Models Execution
	Software development with Scrum – Telenor Serbia E-Business Success Story
	Developing distributed multi-core and many-core architecture using java agents

