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ชื่อวิทยานิพนธ  การเพิ่มความเร็วในการวิเคราะหความสัมพันธทั่วทั้งจีโนมโดยการ 
ประยุกตใชการประมวลผลแบบขนาน 

ผูเขียน   นางสาวอุนิตษา  สังขเกตุ 
สาขาวิชา  ชีววิทยาโมเลกุลและชีวสารเทศ 
ปการศึกษา  2554    
 

บทคัดยอ 
 

การศึกษาความสัมพันธทั่วทั้งจีโนม (Genome-Wide Association Study: GWAS) 
เปนวิธีการที่มีประสิทธิภาพสําหรับระบุตําแหนงของยีนที่มีสวนเกี่ยวของกับการเปลี่ยนแปลงของ
ลักษณะทางพันธุกรรมที่ซับซอน ซ่ึงอาจมีผลทําใหเกิดโรค การวิเคราะหเพื่อหาคาสถิติสําหรับ
การศึกษา GWA โดยใชกลุมตัวอยางและกลุมควบคุมสามารถทําไดโดยใชไลบรารี GenABEL และ
ไลบรารี LogicReg ซ่ึงเปนไลบรารีที่ทํางานอยูภายใตโปรแกรม R อยางไรก็ตามในการวิเคราะห
เพื่อหาคาสถิติในการศึกษา GWA จากขอมูลที่มีขนาดใหญจะตองใชระยะเวลาในการประมวลผล
นาน ทั้งนี้อาจจะใชเวลานานเปนชั่วโมง สัปดาห หรือเดือน  

การประมวลผลแบบขนานเปนวิธีการที่ใชไดผลดีในการเพิ่มประสิทธิภาพในการ
ประมวลผล และสามารถนํามาประยุกตใชกับการประมวลผลเพื่อศึกษา GWA ในแตละขั้นตอนได 
เนื่องจากขั้นตอนเหลานั้นมีการประมวลผลขอมูลที่อิสระจากกัน นอกจากนี้ไลบรารี Rmpi เปน
ไลบรารีที่ทํางานภายใตโปรแกรม R ไดเก็บรวบรวมฟงกชันตางๆสําหรับการประมวลผลแบบ
ขนาน โดยใช MPI (Message-Passing Interface) เปนตัวกลางในการสื่อสารระหวางเครื่องแมขาย
กับเครื่องลูกขาย แตผูใชอาจนําไลบรารี Rmpi มาประยุกตใชในการวิเคราะห GWAไดยากลําบาก 
เนื่องจากผูใชจําเปนตองมีความรูทางดานการเขียนโปรแกรมแบบขนานขั้นสูง เพื่อแบงขอมูล 
กระจายขอมูล ควบคุมงาน และสังเกตการณงานระหวางหนวยประมวลผลกลางหรือคอมพิวเตอร 
และสุดทายรวบรวมผลลัพธ 

ในวิทยานิพนธนี้ไดนําเสนอไลบรารี ParallABEL และไลบรารี ParallLogicReg 
เพื่อเพิ่มประสิทธิภาพในการวิเคราะห GWA โดยการประยุกตใชการประมวลผลแบบขนาน การ
วิเคราะหทางสถิติบนไลบรารี ParallABEL และไลบรารี ParallLogicReg ไดถูกดัดแปลงมาจาก
ไลบรารี GenABEL และไลบรารี LogicReg ตามลําดับ องคประกอบในการวิเคราะห GWA ของ
ไลบรารี ParallABEL สามารถถูกแบงเปนสวนยอยๆ เทากันได ทั้งนี้ขึ้นอยูกับประเภทของขอมูลเขา 
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(ตาม SNP และตามรายบุคคล) และลักษณะผลลัพธคาสถิติที่ตองการ ขณะที่ขอมูลเขาของ 
ParallLogicReg จะถูกแบงเปนสวนยอยตามจํานวนยีนที่นํามาวิเคราะห 

ขอมูลจากสมาคมโรคไขขออักเสบอเมริกาเหนือประกอบดวยจํานวนตัวอยาง 
2,062 คน และแตละตัวอยางมีจํานวน SNP 545,080 ตําแหนง ไดถูกนํามาใชเพื่อวัดประสิทธิภาพ
ของไลบรารี ParallABEL ผลปรากฏวาไลบรารี ParallABEL ประมวลผลขอมูลไดอยางรวดเร็วขึ้น
มาก ยกตัวอยางเชนไลบรารี ParallABEL สามารถลดระยะเวลาในการประมวลผลขอมูลเพื่อหา 
identity-by-state จากเดิมใชเวลาประมาณ 8 ช่ัวโมงเหลือเพียงประมาณ 1 ช่ัวโมงเทานั้นเมื่อใช
หนวยประมวลผลกลาง 8 ตัว ชุดขอมูลโรคลําไสอักเสบจากสมาคม WTCCC ซ่ึงประกอบดวย
จํานวนตัวอยาง 4,680 ตัวอยางและแตละตัวอยางมีจํานวน SNP ประมาณ 2,000 ตัว ถูกนํามาทดลอง
เพื่อวัดประสิทธิภาพของไลบรารี ParallLogicReg ผลการทดสอบปรากฏวาไลบรารี 
ParallLogicReg สามารถลดระยะเวลาในการประมวลผลยีน 200 ตัวดวยการเรียงสับเปลี่ยน 20 รอบ 
จากเดิมใชเวลาประมาณ 7.3 วันเหลือเพียงประมาณ 0.9 วัน เมื่อใชหนวยประมวลผลกลาง  8 ตัว 
ทั้งนี้ผลลัพธจากไลบรารี ParallABEL และไลบรารี ParallLogicReg มีความถูกตองเชนเดียวกับคา
ผลลัพธจากไลบรารี GenABEL และไลบรารี LogicReg เนื่องจากขอมูลที่นํามาวิเคราะหเพื่อศึกษา 
GWA มีความเปนอิสระจากกัน 

การประมวลผลขอมูลทางดาน GWA โดยใชไลบรารี ParallABEL และไลบรารี 
ParallLogicReg บนเครื่องคอมพิวเตอรคลัสเตอรหรือเครื่องคอมพิวเตอรที่มีหนวยประมวลผลกลาง
หลายแกนหรือหลายตัวเปนวิธีการที่มีประสิทธิภาพ เนื่องจากสามารถเพิ่มความเร็วในการ
ประมวลผลและผูใชสามารถใชงานไดงาย โดยถือไดวาไลบรารี ParallABEL และไลบรารี 
ParallLogicReg เปนไลบรารี GenABEL และไลบรารี LogicReg เวอรชันที่รองรับการประมวลผล
แบบขนานที่เปนมิตรกับผูใช ยิ่งไปกวานั้นไลบรารีทั้งสองยังสามารถประมวลผลขอมูลในโรคอื่นๆ 
ไดอีกดวย เชน ขอมูลโรคมะเร็งที่ลําคอ เพื่อคนหายีนที่มีสวนเกี่ยวของกับการเกิดโรคนั้นๆ ซ่ึงใน
ที่นี้คือโรคมะเร็งที่ลําคอ เปนตน 
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ABSTRACT 

 

Genome-Wide Association Study (GWAS) is a powerful method for 

identifying loci associated with variations of complex genetic traits such as common 

diseases. Statistical analyses for GWAS with both case and control participants can be 

processed by GenABEL and LogicReg libraries implemented in R. Nevertheless, 

statistical analysis of very large data sets is computationally challenging and may take 

hours, weeks or months to complete.  

Parallel computing is an intuitive and effective method for increasing 

computational throughput. Most tasks solved in GWA analysis are suitable for 

parallelization, due to their computational independency and with parallelization 

achieved at the data level. In addition, Rmpi [14] is an R library which provides 

various functions to parallelize tasks in R using MPI. However, it is very difficult and 

complicated for users to apply a parallel computing library such as Rmpi to conduct 

statistical analyses of GWA studies because they need advanced programming skills 

to correctly partition and distribute data, control and monitor tasks across the 

computers and finally merge outputs.  

In this thesis, ParallABEL and ParallLogicReg, the novel R libraries, 

were presented to boost performance of GWA analyses applying parallel computing 

based on Rmpi. Statistical analyses of the ParallABEL and ParallLogicReg are 

adapted based on GenABEL and LogicReg, respectively. In ParallABEL, most 

components of GWA analysis can be equally divided into subsets depend on the types 

of input data (SNPs and individuals) and statistical outputs, while the input data of 

ParallLogicReg is partitioned into G subsets (where G is the number of genes to be 

analyzed). 
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 The data set from the North American Rheumatoid Arthritis 

Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping, 

was used to measure the ParallABEL performance. Almost perfect speed-up was 

achieved for many types of analyses. For example, the computing time for the 

identity-by-state matrix was linearly reduced from approximately eight hours to one 

hour when ParallABEL employed eight processors. The Crohn’s disease GWA study 

dataset from the Wellcome Trust Case Control Consortium (WTCCC) that includes 

4,680 individuals with 2,000 SNPs’ genotypes was analyzed using logic regression on 

a computer cluster to evaluate the ParallLogicReg performance. The ParallLogicReg 

library also accelerated the logic regression analysis perfectly. For instance, with two 

hundred genes and twenty permutation rounds, the computing time was continuously 

decreased from 7.3 days to only 0.9 day when ParallLogicReg applied eight CPUs. 

The statistical outputs from ParallABEL and ParallLogicReg with any number of 

CPUs are as valid as those from GenABEL and LogicReg with one CPU because of 

their computational independency of GWA analyses at the data level. 

   Executing genome-wide association analysis using the ParallABEL 

and ParallLogicReg library on a computer cluster or a computer with multi-core CPUs 

is effective way to boost the performance and to simplify the parallelization of GWA 

studies. ParallABEL and ParallLogicReg are the user-friendly parallelization versions 

of GenABEL and LogicReg respectively. Moreover, ParallABEL and ParallLogicReg 

also can process other disease data sets such as a neck cancer data set to find genes 

associated the diseases such as the neck cancer.   
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CHAPTER 1 

 

General Introduction 

 
This chapter presents an overview of this thesis. It starts with the 

background and rationale of genome-wide association (GWA) studies using parallel 

computing. It also introduces the purposes, the scopes, the benefits and the summaries 

of this project.  

 

1.1 Background and rationale 

 

In genetic epidemiology, genome-wide association studies (GWA 

studies, or GWAS), also called as whole genome association studies (WGA studies, 

or WGAS) are comparisons of the genomes of distinct individuals in a particular 

species to find variations of genes among individuals. Different variations can be 

associated with different traits, such as diseases. Researchers can use the information 

to develop better strategies to detect, treat and prevent the diseases. In addition, in the 

near future, if there are low cost and high efficiency genome-wide scans and other 

novel technologies, health experts can apply the tools to determine from 

individualized patients information whether there are possible hazards of causing 

certain diseases. Also, when a patient becomes sick, the information can be used to 

find the most effecient treatments with the least like probably to develop adverse 

reactions for that particular patient [1]. 

GWA analyses succeed to conduct the research discovery of 

associations of specific genes with diseases such as coronary heart disease, diabetes, 

rheumatoid, Chrohn’s disease, biolara disorder and hypertension [2-3]. The genomic 

discoveries of complex and non-Mendelian diseases are growing, and more than one 

hundread loci for as many as fourty common diseases are powerfully determined and 

replicated by GWA studies. The hundreds of thousands of the common forms of 

genetic variants or single-nucleotide polymorphisms (SNPs) are assayed by high 

throughput genotyping technologies and refered to diseases or health-related traits [4].  
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In the National Center for Biotechnology Information’s dbSNP database, closely 

twelve million unique human SNPs have been coded a reference SNP (rs) number [5] 

and marked as specific alleles (an alternate form of the SNPs). Also, summary allele 

frequencies and other genomic information can be calculated from the human SNPs 

[6]. In 118 articles, 56,411 significant SNPs related to diseases are found [7]. The 

GWA method allows inquiry of the entire human genome at levels of solving 

previously unachievable, in thousands of unrelated individuals, unconstrained by prior 

hypotheses regarding genetic associations with diseases [8].  

The conventional GWA study has 4 processes: (1) selection of a huge 

number of individuals with the disorder or trait of interest and an eligible comparison 

category; (2) Deoxyribonucleic acid (DNA) isolation, genotyping, and data checking; 

(3) statistical analyses for associations between the SNPs passing suitable thresholds 

and the disorder or trait; and (4) replication of identified associations [9]. In the 

processes, case-control design has been often used to create GWA studies. In this 

method, allele frequencies in patients with the disorder of interest are compared to 

those in participants with disorder-free of interest. Case-control studies are frequently 

easier and less expensive to create than studies applying other designs such as cohort 

and trio designs [9]. Statistical analyses for GWA studies with both case and control 

participants can be processed by Bioinformatic tools including GenABEL and 

LogicReg. GenABEL is a specialized library package for GWA analysis of 

quantitative, binary and time-till-event traits to find associations between the SNPs 

[10]. GenABEL has been implemented in R, an open source statistics programming 

language and environment [11-12]. LogicReg is a famous R library for logic 

regression analyses [13] and can be applied to various regression/classification 

problems, one of which is the analysis of SNP interactions with each gene related to 

diseases. Nevertheless, statistical analysis of very large data sets is computationally 

challenging and may take hours, weeks or months to complete. Examples include the 

utilization of sophisticated adjustments for population stratification and relationship 

structures, the estimation of linkage disequilibriums and the calculation of genome-

wide identity-by-state, haplotypic tests, permutation analyses and deviance of logic 

regression analyses. 
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Parallel computing is an intuitive and powerful method for increasing 

computational throughput. A task is separated into smaller tasks, and each is 

processed independently, in parallel, using multiple Central Processing Units (CPUs) 

or a cluster of computers. The outputs from each task must later be merged [14]. Most 

tasks solved in GWA analysis are suitable for parallelization, due to their 

computational independency, with parallelization achieved at the data level. For 

example, association tests can usually be done separately for each SNP and/or a small 

group of SNPs. Consequently, parallelization is a beneficial way to reduce the 

computing time, with few overheads incurved in large-scale GWA analyses. In 

addition, Rmpi [15] is an R library which provides various functions to parallelize 

tasks in R using the message-passing interface (MPI) [16]. Rmpi employs various 

functions to manage flow analysis in parallel environment, and is applicable for 

employing not only multi-core CPUs on a single computer but also multi-core CPUs 

distributed across many computers. However, it is very difficult and complicated for 

users to apply a parallel computing library such an Rmpi to statistical analyses of 

GWA studies because they need advanced programming skills to correctly partition 

and distribute data, control and monitor tasks across the computers, and merge 

outputs. For example, the analyses will be failed, if the users mistakenly partition the 

large data. Another example is that the outputs from the computers are usually messy 

and their order may be hard to follow.    

 

1.2 Objectives  

 

1.2.1 To propose the design of novel methods to speed up the computation of 

large-scale GWA analyses with valid statistical outputs. 

1.2.2 To present development of novel R libraries, which are as easy-to-use as the 

more conventional GenABEL and LogicReg, based on the novel methods to 

accelerate the computation of large-scale GWA analyses with effective statistical 

outputs. 
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1.3 Scopes 

 

1.3.1 Parallel computing is applied to the novel libraries to accelerate the 

computing time of large-scale GWA. 

1.3.2 Statistical analyses of the novel libraries are adapted based on GenABEL 

and LogicReg  

1.3.3 Rmpi is applied to parallelize statistical functions of novel libraries. 

1.3.4 The novel libraries require Rmpi, GenABEL and LogicReg for data 

analyses.  

1.3.5 The Crohn’s disease GWAS dataset from the Wellcome Trust Case Control 

Consortium (WTCCC) [17] and The Rheumatoid dataset form the North American 

Rheumatoid Arthritis Consortium (NARAC) [18] are used to measure the 

performance of the novel libraries. 

  

1.4 Benefits 

 

1.4.1 The novel methods implemented in the novel libraries can speed up GWAS 

computing using parallel computing.   

1.4.2 The novel libraries can be used to boost the performance of GWA analyses 

and are user-friendly libraries like the other famous R libraries. 

1.4.3 The user can use statistical outputs from the novel libraries to quickly find 

genes associated to various diseases  

 

1.5 Summary 

 

 This thesis presents ParallABEL and ParallLogicReg to boost 

performance of GWA analyses applying parallel computing. Both novel libraries can 

be executed on not only multi-core CPUs on a single computer but also multi-core 

CPUs or single-core CPU distributed across many computers (a computer cluster). 

ParallABEL is a user-friendly parallelization of GenABEL whereas ParallLogicReg is 

a user-friendly parallelization of LogicReg. With ParallABEL and ParallLogicReg 

libraries, the users can immensely accelerate the computing time of GWA analyses. 
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Nonetheless, they can easily execute ParallABEL and ParallLogicReg, since they do 

not need to be programming experts in parallel computing which concerns 

partitioning and distributing data, controling and monitoring tasks, and merging 

output files. Moreover, the statistical outputs from ParallABEL and ParallLogicReg 

with any number of CPUs are as valid as those from GenABEL and LogicReg due to 

their computational independency of GWA analyses at the data level. 
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CHAPTER 2 

 

Parallel Computing 
  

  

 This chapter presents overview of parallel computing. There are five 

sections including overview, types of parallel computing, parallel computer memory 

architectures, parallel programming models and parallel program design [19].  

 

2.1 Overview 

 

2.1.1 What is parallel computing?  

 

 Basically, a computer program is coded for sequential computing to be 

executed on a single computer having a single central processing unit (CPU). A 

problem or a job is divided into a discrete series of commands. Then, the commands 

will be running one after another. Figure 2.1 shows the concept and an example of 

sequential computing [19].     

 Nowadays, many programs need more computational power than 

conventional sequential computing can offer. Consequently, parallel computing has 

been developed to speed up the computational power by growing the number of CPUs 

in a computer or a computer cluster. Parallel computing is a useful methodology, 

enabling the concurrent handling of multiple computing resources to gain 

computational throughput. In parallel computing, a problem or a job will be divided 

into unassociated smaller tasks including series of commands. Each task will then be 

executed freely using multiple or multi-core CPUs on a computer or a computer 

cluster; after that, one of these CPUs will combine the outputs from all tasks. Figure 

2.2 shows the concept and an example of parallel computing [19]. 
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a) The concept of sequential computing [19] 

 

 
b) The example of sequential computing [19] 

Figure 2.1: The concept and the example of sequential computing. The CPU 

sequentially executes N commands [19] 
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a) The concept of parallel computing [19] 

 

 
b) The example of parallel computing [19] 

Figure 2.2: The concept and the example of parallel computing [19]. The problem is 

divided into four unassociated tasks containing series of commands. Each task will be 

executed on each CPU [19]  

 

 Parallel computing can be used to solve arduous problems not only in 

Bioinformatics but also other fields of Science and Engineering such as Atmosphere, 

Physics, Chemistry, Biology, Geology, Mechanical Engineering and Computer 

Science [19]. 
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2.1.2 Why apply parallel computing?  

 

 When parallel computing is applied to any computer program, there 

are many benefits, which are saving of computing time and/or cost, carrying out of 

bigger problems, supporting of concurrency, and applying of non-local resources [19].  

 First of all, parallel computing will save computing time and/or cost 

since it can exploit more resources such as computers or CPUs than sequential 

computing, with possible cost reduction. A cluster computer for executing parallel 

computing can be set up from cheap and profitable components; in contrast, it is 

expensive to build a single CPU providing the same or better performance [19]. 

 The second benefit is that parallel computing can figure out larger or 

complicated problems, which can be solved by sequential computing slowly and 

arduously. For instance, web search engines or databases perform millions of 

transactions per second as parallel computing can help reducing their computing time 

[19].  

 In addition to save computing time or cost and carry out bigger 

problems, supporting concurrency is another advantage of parallel computing.  

Sequential computing can only execute one job at a time, while parallel computing 

can be run many tasks concurrently. For example, users from anywhere can see and 

do work “virtually” using the Access Grid (www.accessgrid.org) supporting a 

worldwide cooperation network [19]. 

 Finally, parallel computing can access compute resources on a wide 

area network or the Internet while local computer resources are unavailable. For 

instance, SETI@home (setiathome.berkeley.edu) works with million computers in 

253 countries, whereas Folding@home (folding.stanford.edu) consumes more than 

450,000 CPUs universally [19]. 

 

2.2 Types of parallel computing 

 

 Parallel computing includes many parts of von Neumann architecture. 

The von Neumann architecture consists of four main components, which are memory, 

control unit, arithemetic logic unit, input and output as shown in Figure 2.3 [19].   
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Figure 2.3: The von Neumann architecture [19] 

 

 The program commands and data are stored in read/write random 

access memory.  The computers process data using the program commands. The 

control unit conveys commands and data from memory, translates and sequentially 

performs the commands to fulfil the programmed job. The aritmetic unit works on 

arithmetic operations. Input/output is the interface to the human operator [19]. 

 Parallel computing can be grouped in various ways. The famous 

grouping is called Flynn’s Taxonomy. It groupeds parallel computing using two 

independent dimensions of instructions and data. Only one of two possible states, 

single or multiple, can be included in each of dimensions. According to Flynn’s 

Taxonomy, The four possible groupings can be shown in the matrix in Figure 2.4 

[19]. 

 

SISD 

Single instruction, single data 

SIMD 

Single instruction, multiple data 

MISD 

Multiple instruction, single data 

MIMD 

Multiple instruction, multiple data 

 

Figure 2.4: Flynn’s Taxonomy matrix [19] 

  

 First of all, SISD is the only sequential computing that only one 

instruction stream and one data stream are executed by the CPU at any clock cycle. It 
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is the most common type of computing performed on older generation mainframes, 

minicomputers and workstations, and most modern day Personal Computers (PCs). 

SIMD is next type of parallel computing that parallel CPUs process the same set of 

instructions but with different data sets on each at any supplied clock cycle. This type 

is famous for operatingto operate on most modern computers. Another type of parallel 

computing is MISD. Parallel CPUs perform different instruction streams with the 

same data set. The example of applications for MISD is that multiple cryptography 

algorithm tries to crack a single coded message. The last parallel computing type is 

MIMD. Different instruction streams with various data sets may be executed on each 

CPU. MIMD is commonly applied to supercomputers, networked parallel computer 

clusters and “grids”, multi-CPUs computers, and multi-core PCs. Basically, SIMD 

execution elements are contained in many MIMD [19]. 

 

2.3 Parallel computer memory architectures 

 

  There are three kinds of parallel computer memory architectures 

including shared memory, distributed memory and hybrid distributed-shared memory 

[19]. 

 

2.3.1 Shared memory architecture 

 

Shared memory architecture allows all CPUs to fetch any memory as 

they appear in the global address space. Although each CPU shares the same memory 

resource, it processes a task simultaneously and independently. The main 

characteristic of shared memory architecture is cache coherent of which concept is 

that the CPU can modify any memory location also seen by other CPUs. Based on 

memory access times, shared memory architecture can be divided into two groups, 

which are uniform memory access (UMA) and non-uniform memory access 

(NUMA). UMA architecture called cache coherent UMA (CC-UMA) or symmetric 

multiprocessor (SMP) computer is shown in Figure 2.5. Each CPU can equally access 

the global memory and also take equal duration to do as well. Access and access time 

for each CPU to memory is equally. NUMA architecture or CC-NUMA is shown in 
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Figure 2.6. NUMA is frequently contains two or more physically linked SMPs. The 

memory of a SMP can directly be accessed by another SMP. However, access and 

access time for each CPU to all memories are not equal. Memory access in a SMP is 

faster than between SMPs. The benefit of this architecture is that global address space 

supports a user-friendly programming viewing to memory. Also, data sharing between 

tasks is speedy and uniform because of the adjacency of memory to CPUs. 

Nevertheless, there are three disadvantages of the architecture. First, the lack of 

scalability between memory and CPUs, increasing more CPUs can relatively gain 

traffic on the shared memory-CPU path and for cache coherent systems. Another 

disadvantage is that programmers need a special skill to synchronize constructs 

accessing to global memory correctly. The last disadvantage is that it is difficult and 

expensive to add new CPUs on a shared memory computer [19]. 

 
 

Figure 2.5: Uniform shared memory architecture (UMA) [19] 

 

 
Figure 2.6: Non-uniform shared memory architecture (NUMA) [19] 
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2.3.2 Distributed memory architecture 

 

Distributed memory architecture is another type of parallel computer 

memory architectures as shown in Figure 2.7. Each CPU has its own memory. 

Memory addresses in a CPU are not mapped for another CPU. Therefore, distributed 

memory architecture does not support global address space across all CPUs and cache 

coherence. The programmers must write a program to define how and when data is 

communicated via Ethernet when a CPU requires an access to data located in control 

of another CPU. The benefit of distributed memory architecture is that memory can be 

increased easily with the number of CPUs. Each CPU can quickly fetch its own 

memory without conflict or without overhead. Nonetheless, the programmers need a 

special skill to manage data communication between CPUs [19]. 

 

 
Figure 2.7: Distributed memory architecture [19] 

 

2.3.3 Hybrid distributed-shared memory architecture 

 

The last architecture is hybrid distributed-shared memory as shown in 

Figure 2.8. It is applied to the recent largest and fastest computers in the world. A 

cache coherent SMP machine and/or graphics processing units (GPUs) can be shared 

memory components, whereas the network of multiple SMP/GPU machines can be 

the distributed memory components. Each machine can only access its own memory. 

Hence, network communication is needed to transfer data from a SMP/GPU to 

another SMP/GPU. The hybrid distributed-shared memory is widespread today and 

tends to grow at the high end of computing in the future. Advantages and 



 
 
 
 

14 
 

disadvantages of hybrid distributed-shared memory can be inferred from both shared 

and distributed memory architectures [19]. 

 

 
Figure 2.8: Hybrid distributed-shared memory architecture [19] 

 

2.4 Parallel programming models 

 

  There are seven programming models in common use including share 

memory (without threads), threads, distributed memory/message passing, data 

parallel, hybrid, single program multiple data (SPMD) and multiple program multiple 

data (MPMD) [19]. 

 

2.4.1 Shared memory model (without threads) 

 

In shared memory programming model, a common address space is 

shared by tasks, and it can be read and written asynchronously. The shared memory 

can be controlled by several mechanisms such as locks and semaphores. The 

advantage of this model is that programmers do not have to explicitly specify the 

communication of data between tasks. The downside of shared memory programming 

model is that it is difficult to understand and to manage a data locality when multiple 

CPUs use the same data [19]. 

 

2.4.2 Thread model  

 

  The thread model is a type of shared memory programming that a 

single process can have multiple and concurrent execution paths. A thread’s work can 

be explained like a subroutine within the main program. Each thread can execute any 
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subroutine at the same time as other threads. Threads communicate with each other 

via global memory (updating address locations). Synchronization is needed to ensure 

that only one thread can update the global address at a time.  POSIX threads and 

OpenMP are the implementations of thread programming model [19]. 

 

2.4.3 Distributed memory/message passing model 

 

  Message passing programming model is commonly applied in 

distributed memory computers. Several tasks consume their own local memory while 

processing. A set of tasks can be executed on the same physical machine or different 

machines. Communication methods including sending and receiving messages are 

used to exchange data between tasks as shown in Figure 2.9. Message passing 

interface (MPI), an implementation of this model, is an application programming 

interface (API) specification that allows processes to communicate with each other by 

sending and receiving messages [19]. 

 

 
Figure 2.9: An example of message passing programming model [19] 
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2.4.4 Data parallel model  

  

  In data parallel model, each task performs the same operation on a 

different portion of the same data structure as shown in Figure 2.10. On shared 

memory architecture, all tasks may fetch the data structure via global memory. 

Whereas on distributed memory architecture the data structure is partitioned into 

“chunks” in the local memory of each task [19]. 

 

 
Figure 2.10: An example of data parallel model [19] 

 

2.4.5 Hybrid model  

 

  A hybrid programming model contains more than one of the already 

explained programming models. A combination of the message passing model (MPI) 

with the thread model (OpenMP) is a general example of a hybrid programming 

model as shown in Figure 2.11. Computationally intensive kernels using local or on-

node data are performed by thread, while communication between processes on other 

nodes over the network are operated by MPI [19]. 
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Figure 2.11: An example of hybrid programming model [19] 

 

2.4.6 Single program multiple data (SPMD) 

   

  SPMD is an advanced level programming model combined the 

previously described programming models. All tasks perform their copy of the same 

program concurrently but may use different data as shown in Figure 2.12. The 

program can be threads, message passing, data parallel or hybrid. The SPMD 

programming model using message passing or hybrid programming is the most 

basically applied for multi-node clusters [19]. 

 

 
 Figure 2.12: An example of SPMD [19] 

 

2.4.7 Mutilple Program Multiple Data (MPMD) 

 

MPMD programming model is also an advanced level programming 

model combined the previously described programming models. Each task performs a 

different program at the same time, and may process different data as shown in Figure 

2.13. Like SPMD, The program can be threads, message passing, data parallel or 

hybrid [19]. 
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 Figure 2.13: An example of MPMD [19] 

 

However, these programming models are not specific to a certain type 

of computer or memory architecture. For instance, the shared memory programming 

model can be employed to a distributed memory computer. Physical memory of the 

computer is distributed but presented to the user as a single shared memory (global 

address space) called “virtual shared memory.” Another instance, distributed memory 

programming model (MPI) can be applied to a shared memory computer. Tasks 

directly access to global address space of all computers. Nonetheless, MPI is used to 

send and receive massages over shared memory [19]. 

 

2.5 Parallel program design 

 

2.5.1 Automatic vs. manual parallelization 

 

Generally, manual parallelization is applied to design and develop 

parallelable programs more than automatic parallelization. However, manual 

parallelization is a time consuming, complex, error-prone and iterative process. For 

this reason, various tools for automatic parallelization have been released, for 

example, a compiler or pre-processor used to convert sequential programs into 

parallel programs. Nevertheless, automatic parallelization is limited to a subset 

(mostly loops) of code and may produce incorrect outputs and give poor performance 

[19].  
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2.5.2 Understand the problem and the program 

 

  Before develop the parallel program, we have to understand how the 

problem to be solved in parallel. If we begin with a sequential program, we must 

understand the existing code. Since not all problems can be solved by parallel 

computing, we should check whether parallel computing can be applied before 

starting to develop a parallel program. An example of a parallelizable problem is 

sequence similarity finding using the basic local alignment search tool (BLAST). This 

problem can be divided into a set of independent tasks. In contrast, an example of a 

non-parallelizable problem is the Fibonacci sequence, which can not be divided to 

independent tasks. Moreover, parallel computing should only be applied to the 

program’s hotspots. Therefore, those sections of the program that consume little CPU 

usage can be ignored [19].  

  

2.5.3 Decomposition methods  

 

  Two simple methods to create parallel tasks which are domain 

decomposition and functional decomposition [19]. 

  In domain decomposition, the data related with the problem is to be 

decomposed. After that, each parallel task will process only a portion of data as 

shown in Figure 2.14. In addition, there are two data partitioning techniques which are 

block and cyclic partitioning. Figure 2.15 shows the examples of one-dimension and 

two-dimensions data decomposition using block and cyclic partitioning techniques 

[19]. 
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Figure 2.14: An example of domain decomposition 

 

 
Figure 2.15: An example of domain decomposition using block and cyclic 

partitioning techniques [19] 

 

  Functional decomposition is another parallelization technique. In this 

technique, the instruction set is decomposed into a set of tasks as shown in figure 

2.16. Then, each task is processed on parallel machines [19].  
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Figure 2.16: An example of functional decomposition [19] 

 

2.5.4 Load Balancing 

 

  Load balancing is a method concerning task distribution to keep each 

CPU busy working. Better load balancing can produce higher performance of parallel 

computing. There are two approaches to achieve load balance. The first approach is 

equal work partitioning that each task processes within need the same period of 

computing time. Another approach is dynamic work assignment. An example of 

dynamic work assignment is the task pool method. If a task is finished, the next task 

in a queue will be executed [19]. 

 

2.6 Summary 

 

Since ParallABEL and ParallLogic analyze genotype and phenotype 

data containing SNPs and individuals, the libraries are developed based on the SIMD 

parallel computing and distributed memory/message passing programming model. 

ParallABEL and ParallLogic also can be run on shared memory architecture and 

distributed memory architecture. Manual parallelization is applied to design and 

develop the libraries. 
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CHAPTER 3 

 

Speeding up SNP Association Analyses Applying Parallel Computing 

for GWA Studies   
 

3.1 Introduction  

 

  GWA analysis [9] is a well established and powerful method for 

identifying loci associated with variations of complex genetic traits such as common 

diseases. For non-Mendlian consideration, GWA studies are more effective than 

family-based linkage studies, which have arduously assembled results related to 

several hundred markers throughout the genome. Eventhough family-based linkage 

studies can identify genes of large effect in Mendelian diseases such as 

neurofibromatosis, it limits to only common diseases like asthma [20]. The 

disadvantages of linkage studies are low proficiency for complex disorders influenced 

by multiple genes, and that it is hard to identify a causative gene due to the large size 

of the chromosomal regions shared among family members. GWA studies are 

developed based on the benefits of candidate genes, family linkage studies and the 

expanding knowledge of the relationships among SNP variants created by the 

International Hapmap Project [21-22]. GWA studies aim to acquire the important 

differences among individuals and associate them to health and illness. Hundreds of 

new genes have been implicated in human health and diseases during the last few 

years in various GWA studies [23]. GWA analyses succeed to lead discovery of 

associations of specific genes with diseases such as coronary heart disease, diabetes, 

rheumatoid, Chrohn’s disease, biolara disorder and hypertension [2-3]. The case-

control design has often been used to create GWA studies. In this method, allele 

frequencies in patients with the disorder of interest are compared to those in 

participants with disorder-free of interest. Case-control studies are frequently easier 

and less expensive to create than studies applying other designs [9]. In a typical study, 

hundreds of thousands of the common form of genetic variants or SNPs are assayed 

by high throughput genotyping technologies in order to detect genetic risk factors [4]. 
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In the National Center for Biotechnology Information’s dbSNP database, closely 

twelve million unique human SNPs have been coded a reference SNP (rs) number [5] 

and marked as to specific alleles (alternate form of the SNPs). Also, summary allele 

frequencies and other genomic information can be calculated from the human SNPs 

[6]. There are 56,411 significant SNPs from 118 articles related to diseases [7].  

Basically, the GWA study has 4 processes: (1) selection from a huge 

number of individuals with the disorder or trait of interest and an eligible comparison 

category; (2) DNA isolation, genotyping, and data checking; (3) statistical analyses 

for associations between the SNPs passing suitable thresholds and the disorder or 

trait; and (4) replication of identified associations [9].  

Figure 3.1 shows the statistical output for genome-wide association 

study of inflammatory bowel disease. The IL23R gene has two blocks of linkage 

disequilibrium. The association signals are strongest in the centromeric block 

containing exons 5 to 11, whereas markers in the block encompassing the IL12RB2 

gene do not demonstrate significant association [24]. 



 
 
 
 

24 
 

 

 

 
Figure 3.1: Associations in the IL23R gene region identified by a GWAS of 

inflammatory bowel disease [9]. 

 

GenABEL is a specialized library package for GWA analysis [10] 

implemented in R, an open source statistics programming language and environment 

[11-12]. GenABEL enables GWA analysis to be done using a regular desktop 

computer due to its efficient data storage and memory management. Nevertheless, 

analysis of very large data sets is computationally challenging and may take hours or 
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weeks or months to complete. Examples include the utilization of sophisticated 

adjustments for population stratification and relationship structures, the estimation of 

linkage disequilibriums and the calculation of genome-wide identity-by-state, 

haplotypic tests, and permutation analyses. 

To increase the computational throughput, a user can partition their 

data into sets, and perform the analysis of the sets across a network of computers; a 

concept known as parallel and/or distributed computing. It is arduous acquiring the 

necessary programming skills to correctly partition and distribute data, control and 

monitor tasks on clustered computers, and merge output files. Occasionally, a data set 

may fail to be processed, e.g. if the user did not partition the data into small enough 

subsets to be processed on a particular machine. Also, the outputs from the computers 

may be scattered and their order is hard to follow.  

 Parallel computing is an intuitive and powerful method for increasing 

computational throughput. A task is separated into smaller tasks which are processed 

simultaneously on multiple Central Processing Units (CPUs) or a cluster of 

computers. The outputs from each task must later be merged [19]. A general 

architecture for parallel computing is shown in Figure 3.2. 
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Figure 3.2: The user can submit tasks to the cluster of computers via the Internet. 

Once the user submits a job to the computer cluster, the front-end node schedules and 

distributes the smaller partitioned tasks to be processed on the compute nodes. The 

output from each compute node will then be merged by the front-end node.  

 
 Most tasks solved in GWA analysis are suitable for parallelization due 

to their computational independency so that parallelization can be achieved at the data 

level. For example, association tests can usually be done separately for each SNP 

and/or a small group of SNPs. Consequently, parallelization is a beneficial way to 

reduce the computing time, with few overheads incurved in large-scale GWA 

analyses. 

 Several attempts had been made to parallelize genetic association 

analyses. Grid Engine, a cutting-edge parallel tool, can schedule parallel tasks 

involving genetic association analysis programs [25]  such as FBAT [26]  and 

UNPHASED [27]. The approach, first proposed by Mishima et al., is based on non-

parallel code combined through process-based parallelization. The downside is that 

the user still needs to monitor when each task is finished, and when the outputs from 

all the tasks can be merged. Moreover, each process may take a very long time to 

finish, and load balance can be problematic. A granularity problem (a high 
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computation to communication ratio) may occur. However, using higher power 

compute nodes or code parallelization are possible solutions. The R/parallel package 

has been used to automate loop parallel execution, but the application must run on a 

single computer with multi-core CPUs, and does not currently support cluster 

computing [28]. Its inclusion of cluster computing would eliminate the computing 

time limit of the package. Misawa and Kamatani [29] developed the ParaHaplo 

package for haplotype-based whole-genome association studies using parallel 

computing. It is aimed at correcting multiple comparisons in multiple SNP loci in 

linkage disequilibrium. Also, Ma et al. [30]  developed EPISNPmpi, a parallel system 

for epistasis testing in large scale GWA analysis. However, there are other statistical 

analyses requirements in GWA studies, such as obtaining statistics for a particular 

SNP or a trait, association test, characterizing an individual in the study, and pair-wise 

statistics between individuals.  

 Rmpi [15]  is an R library which provides various functions to 

parallelize tasks on R using the MPI (Message-Passing Interface) [16]. Rmpi employs 

various functions to manage flow analysis in parallel environment, and is applicable 

for employing multi-core CPUs distributed across many computers, not only multi-

core CPUs on a single computer. However, it is difficult, if not impossible, for a non-

programmer to write a parallel Rmpi program. Therefore, SPRINT [31]  was 

developed to implement parallel R functions. Although users can use SPRINT easily, 

it does not specifically support GWA studies.  

 In this chapter, we present the development of our ParallABEL library, 

a new R library for parallelization of GWA studies based on Rmpi and GenABEL. 

ParallABEL aims to speed up the computation of GWA studies for various statistical 

analysis requirements and also simplify analysis parallelization. With ParallABEL, 

the users do not need to be experts in parallel programming, no need to know about 

partitioning and distributing data, controling and monitoring tasks, and merging 

output files. 
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3.2 Methods 

 

3.2.1 GWA Function Grouping 

  

Statistical analyses in GWA studies can be categorized into four 

groups based on the nature of the statistics computed and types of data used. These 

four groups can be parallelized in distinct ways. Table 3.1 shows the names and 

descriptions of the GenABEL functions in each group. The first group contains 

statistics computed for a particular SNP, or a trait, such as the SNP characterization 

statistics (e.g. call rates, hardy-weinberg equilibrium (HWE) testing [10]), produced 

by GenABEL’s summary.snp.data or association test statistics (the qtscore, mlreg and 

mmscore GenABEL functions [10]). The second group holds statistics characterizing 

an individual in the study, such as, summary statistics of genotype quality for each 

sample (obtained with the GenABEL perid.summary and hom GenABEL functions 

[10]). The third group consists of pair-wise statistics derived from analyses between 

each pair of individuals in the study, including genome-wide identity-by-state and 

genomic kinship analyses. This is one of the most computationally intensive analyses, 

obtained through GenABEL’s ibs function [10]. The final group concerns pair-wise 

statistics derived for pairs of SNPs, such as linkage disequilibrium characterisation 

(the dprfast, rhofast and r2fast functions [10]). While the number of SNP pairs is 

generally very large, analyses are usually limited by their pair-wise physical distance, 

making them less demanding than pair-wise individual analyses, such as IBS 

computations [10].  
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Table 3.1: The names and descriptions of GenABEL functions in each group 
 
function name of GenABEL Description group 

summary.snp.data Provides summary of observed genotypes, 

allelic frequency, genotypic distribution, P-

value of the exact test for HWE and 

chromosome 1 

qtscore Fast score test for association between a trait 

and genetic polymorphism  1 

mlreg Linear and logistic regression and Cox 

models for genome-wide SNP data  1 

mmscore Score test for association between a trait and 

genetic polymorphism, in samples of related 

individuals  1 

perid.summary Produces call rate and heterozygosity per 

person 2 

hom Computes average homozygosity (inbreeding) 

for a set of people, across multiple markers. 

Can be used for Quality Control (e.g. 

contamination checks)  2 

ibs Given a set of SNPs, computes a matrix of 

average IBS for a group of people 3 

dprfast Given a set of SNPs, computes a matrix of D'  4 

rhofast Given a set of SNPs, computes a matrix of 

rho  4 

r2fast Given a set of SNPs, computes a matrix of r2 4 

 

We have developed the ParallABEL library to parallelize the serial 

functions of these groups using Rmpi library. The four implementation groups are 

named Type1_parall_by_SNPs for the first group, Type2_parall_by_individuals for 

the second group, Type3_parall_by_pairs_of_individuals for the third group and 

Type4_parall_by_pairs_of_SNPs for the fourth group. 
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3.2.2 Data Partitioning  

 

An advantage of ParallABEL is usage simplicity, hiding otherwise 

tedious scripts for file management monitoring tools. These functions not only 

partition input data with automatic load balancing, but also gather output from each 

CPU automatically. Load balancing is critical because an unbalanced work load will 

result in higher loads for particular CPUs, which eventually undermines the overall 

performance. 

The input data of Type1_parall_by_SNPs are SNPs equally partitioned 

into P subsets (where P is the number of available CPUs). If the number of SNPs is 

M, the number of SNPs in a subset is: 

 

num_SNPs = floor(M/ P) 

 

If there are M SNPs and 4 CPUs, the SNPs will be partitioned into 4 

smaller subsets. Each contains M/4 SNPs as shown in Figure 3.3.  

 

 

Figure 3.3: Data partitioning for Type1_parall_by_SNPs 

Type2_parall_by_individuals when M  = 800 and P = 4 
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However, the last subset to be generated may contain more SNPs than 

others, caused by integer division. For example, if there are 801 SNPs and 4 CPUs, 

Subset 1 to Subset 3 will contain 200 SNPs, but Subset 4 will have 201 SNPs. The 

SNPs in each subset will be executed on separate CPUs. 

The input data for Type2_parall_by_individuals are individuals, 

partitioned like Type1_parall_by_SNPs.  

The input data for Type3_parall_by_pairs_of_individuals is a pair of 

individuals, and performs a more complicated partitioning than 

Type1_parall_by_SNPs and Type2_parall_by_individuals. The data is divided until 

the number of CPUs is equal to, or less than, the number of subsets for load balancing 

on each CPU. If the number of CPUs is equal to the number of subsets, then each 

CPU executes an individual pair of each subset. If the number of CPUs is less than the 

number of subsets, then each CPU executes an equal number of individual pairs 

(where it is possible). Figure 3.4 shows Type3_parall_by_pairs_of_individuals with N 

individuals. The statistics is calculated from the cross operation of an individual in a 

row with an individual in a column. The input data is partitioned into 4 subsets using 

the data partitioning shown in Figure 3.4A. However, if the number of CPUs is more 

than 4, the subsets will be partitioned again. Subset 1 and Subset 4 are split into 8 

subsets during the first stage of the data partitioning, while Subset 2 and Subset 3 are 

divided into 8 subsets by row, as shown in Figure 3.4B. There are 16 subsets 

altogether in the second stage of the data partitioning.  
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Figure 3.4: A) The first data partitioning for Type3_parall_by_pairs_of_individuals 

when the number of individuals = N. There are 4 equal subsets. B) The second data 

partitioning for Type3_parall_by_pairs_of_individuals when the number of 

individuals = N. There are 16 equal subsets. 

 
The SNPs input of Type4_parall_by_pairs_of_SNPs will be partitioned 

in a similar way to Type3_parall_by_pairs_of_individuals. 

 

3.2.3 Implementation 

 

The workflow for GWA analysis on a single CPU or computer is 

presented in Figure 3.5A. This workflow runs properly. The genotype and phenotype 

data (as shown in Table 3.2 and Table 3.3 respectively) is processed by the GenABEL 

library that works under the R program. GenABEL sequentially processes the raw 

data, producing statistical data as its outputs.  
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Figure 3.5: A) Sequential GWA Computing Workflow, which runs on a single CPU 

or computer. B) Parallel GWA Computing Workflow that runs on a multiprocessor or 

a set of computers. 

 

Table 3.2: The example of genotype data executed in GenABEL and ParallABEL 

snpid chrom chromEnd strand id199 id287 id300 

rs7435137     1 4259040     - CT CT CT 

rs7725697     3 10806991     - CC CG CC 

rs664063     2 7288020     - GG GC GG 

rs4670072    X 13387482    + AA -- AA 

rs546570    2 6120257    + AA AA AA 

rs7908680    1 2311762    - CC CA CC 

rs166732    1 4716343    - TT TG TT 

rs4257079    1 3455895    - AA AA AA 
rs5150804    2 7178160    + AG AG GG 
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Table 3.3: The example of phenotype data executed in GenABEL and ParallABEL 

id sex age disease height weight 

id199 1 59 1 164 80 

id287 0 43 1 169 139 

id300 1 42 1 177 81 
 

This sequential workflow may take a very long time to produce some 

demanding statistical analyses. Our novel parallel workflow for producing statistical 

data in GWA studies shown in Figure 3.5B can save the computing time. The 

genotype and phenotype data (as shown in Table 3.2 and Table 3.3 respectively) is 

passed for distribution to the SUN Grid Engine [32], a job scheduler. It queues jobs 

and assigns them to CPUs in a cluster. LAM/MPI (Local Area 

Multicomputer/Message Passing Interface) [33] has various functions which can be 

called by Rmpi to parallelize R operations. ParallABEL parallelizes GenABEL using 

this Rmpi library. The statistical data from this workflow has been validated by 

comparing it with the outputs from the non-parallel approach. ParallABEL runs not 

only on Linux cluster, such as the Rocks Cluster Distribution, but also on any 

Operating System that supports R and LAM/MPI or Open MPI, such as the Unix and 

Solaris operating systems. It can also run on computer clusters not using the Sun Grid 

Engine but it will fully occupy the CPUs until the end of the program, so that other 

applications can not share the execution time of the occupied CPUs. However, 

normally the administrator will not allow a user to run a parallel program without 

utilizing a queuing process from the Sun Grid Engine or a scheduler. 

ParallABEL is developed based on SIMD parallel computing and 

distributed memory/message passing programming model. ParallABEL can also be 

run on shared memory architecture and distributed memory architecture. Manual 

parallelization is applied to design and develop ParallABEL for more flexibility in 

programming. 

To parallelize GWA studies, ParallABEL running on the front-end 

node partitions input data into smaller subsets so that tasks can be fairly distributed 

among the CPUs. It sends tasks to idle CPUs on compute nodes. When the 
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computation on a compute node has finished, the front-end node will send another 

task to the idle CPU – a cycle that continues until all the tasks are completed, which is 

known as the ‘task pull’ method [34]. When all the tasks are finished, the front-end 

node automatically merges all the outputs. 

The task pull template [35] has been adapted for all types of 

ParallABEL. The example of Type1_parall_by_SNPs is shown in the source code of 

Appendix D. To parallelize Type1_parall_by_SNPs, there are five steps: (1) task 

separation (2) task distribution; (3) task computation in compute nodes; (4) result 

storing; and (5) result combination. The detail of each step can be seen in 3.2.2 Data 

Partitioning section, and the source code of Type2_parall_by_individuals, 

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs has been 

published at https://r-forge.r-project.org/R/?group_id=505.  

Users can use ParallABEL to parallelize GenABEL GWA functions as 

easily as using GenABEL for sequential analyses. An example of the mlreg.p 

command sequentially run on a CPU is shown in Figures 3.6A and 3.7A.  The 

executable command that parallelizes mlreg.p to run on multiple CPUs using 

Type1_parall_by_SNPs is shown in Figures 3.6B and 3.7B.  
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Figure 3.6: A) Executing the mlreg.p function sequentially on a CPU B) Parallelizing 

the mlreg.p function on more than one CPU. The user supplies the function name and 

number of available CPUs to the parallel function. However, if the user does not 

specify the number of CPUs, ParallABEL will automatically get it from Sun Grid 

Engine or from the default value (2). 
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Figure 3.7: A) Execute the mlreg.p function sequentially on a CPU B) Parallelize the 

mlreg.p function on more than one CPU. 

 

3.3 Results 

 

Our computer cluster, Hanuman, runs Rocks Cluster Distribution 

version 4.3 which includes the SUN Grid Engine version 4.3 [36]. The cluster consists 

of 5 IBM servers xSeries 336s, comprising of a front-end node and four compute 

nodes. All servers have 2 SINGLE-CORE Intel Xeon (2.8 GHz) CPUs and 4 GB 

RAM. The front-end node and all the compute nodes are connected through an 

Ethernet switch, and the user can connect to the system via the Internet. The cluster 

provides LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi library version 0.5-

6, and GenABEL version 1.4-2, which are utilized as components by our ParallABEL 

library. 
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The North American Rheumatoid Arthritis Consortium (NARAC) data 

is part of a dataset employed to observe associations between disease and variants in 

the major-histocompatibility-complex locus [17]. The NARAC genotype data 

contains 545,080 SNPs from 2,062 individuals. The data was used to measure the 

performance of ParallABEL by employing 868 individuals for cases, and 1,194 

individuals as controls.  

Trace results from Type1_parall_by_SNPs, 

Type2_parall_by_individuals, Type3_parall_by_pairs_of_individuals, and 

Type4_parall_by_pairs_of_SNPs for the NARAC data are shown in Figure 3.8. 

Type1_parall_by_SNPs was executed by the GenABEL mlreg function, 

Type2_parall_by_individuals was executed by the GenABEL hom function, 

Type3_parall_by_pairs_of_individuals was executed by the GenABEL ibs function, 

and Type4_parall_by_pairs_of_SNPs was executed by the GenABEL r2fast function. 

ParallABEL reduced the computing time for Type3_parall_by_pairs_of_individuals, 

especially with 8 CPUs. The Type3_parall_by_pairs_of_individuals executing speed 

on eight CPUs was approximately seven times faster than on one CPU. On a single 

CPU, the complete analysis took 8.1 hours, but only 1.1 hours with 8 CPUs. The 

computing time for Type1_parall_by_SNPs also tends to be like that for 

Type3_parall_by_pairs_of_individuals. 
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Figure 3.8: Trace results from Type1_parall_by_SNPs, Type2_parall_by_individuals, 

Type3_parall_by_pairs_of_individuals, and Type4_parall_by_pairs_of_SNPs for 

NARAC data. When Type1_parall_by_SNPs is executed by the GenABEL mlreg 

function, Type2_parall_by_individuals is executed by the GenABEL hom function, 

Type3_parall_by_pairs_of_individuals is executed by the GenABEL ibs function, and 

Type4_parall_by_pairs_of_SNPs is executed by the GenABEL r2fast function. If 

there is only one CPU, then the data will be analysed using GenABEL. If there are 

more than one CPU, the data will be analysed using ParallABEL package. 
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The computing time for the sequential version of 

Type2_parall_by_individuals can be very short (e.g. 20 seconds). While the parallel 

version took longer (5.3 minutes for 2 CPUs), due to the overhead of data 

partitioning, data distribution, and data merging. Data distribution can be time 

consuming because the data must be saved on the front-end node before the compute 

nodes can load it, and the front-end node must also spend time communicating with 

the compute nodes. In addition, ParallABEL is tailored to quickly retrieve subsets of 

SNPs, as this is a typical GWA scanning procedure, but is much less efficient in 

retrieving subsets of individuals, which is less typical. Thus, the overhead of data 

partitioning in subsets of individuals prevailed over the gain achieved by parallel 

processing. These results highlighted a place where ParallABEL data storage and 

processing is ineffective. It is a waste of time to speed up Type2_parall_by_individual 

because the computation of Type2_parall_by_individuals on a CPU is fast.  

Type4_parall_by_pairs_of_SNPs was executed by the GenABEL 

r2fast function. A single CPU can not pass all the SNPs in the NARAC data to r2fast 

due to CPU memory limitations so the analysis was done separately for each 

chromosome. Even then, a single CPU can not call r2fast with a chromosome with 

more than 10,000 SNPs, which affects 20 chromosomes in the data. However, 

ParallABEL can run r2fast with a chromosome with more than 10,000 SNPs by 

employing a set of CPUs. The chromosome data is automatically partitioned based on 

the number of SNPs as shown in Table 3.4.  

 

Table 3.4: The least number of subsets of each chromosome partitioned by the 

number of SNPs 

Chromosome name Number of SNPs Number of subsets 

19,20,21,22,X,Y 11-14,000 4 

9,11,12,13,14,15,16,17,18 14,001-28,000 16 

1,2,3,4,5,6,7,8,10 28,001-56,000 64 

 

If the number of SNPs for a chromosome is between 11 and 14,000, 

then the data will be partitioned into at least 4 balanced subsets. If the number of the 

SNPs is between 14,001 and 28,000, then the data wil be divided into at least 16 
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balanced subsets. If the number of SNPs is between 28,001 and 65,000, then the data 

will be split into at least 64 balanced subsets. The data will be automatically 

partitioned until the number of CPUs is equal to, or less than, the number of subsets 

for load balancing on each CPU. The trace example results for 

Type4_parall_by_pairs_of_SNPs of NARAC data are shown in Figure 3.8.  

Type4_parall_by_pairs_of_SNPs took only 1.4 days to execute on 

eight CPUs, indicating that time-saving with ParallABEL is linearly correlated to the 

number of nodes. This suggests that with more SNPs, more computing time will be 

saved by ParallABEL. 

If the number of available CPUs is P, the parallel computing time for P 

CPUs is time_P_cpus, and the serial computing time for a CPU is time_a_cpu;  the 

overhead for P CPUs will be: 

 

overhead = time_P_cpus – time_a_cpu/P 

 

Different numbers of CPUs produce different overheads depending on 

data partitioning, network communication, and data merging. However, the overheads 

can be predicted based on the overhead of eight CPUs shown in Figure 3.8. The 

computing time on a large cluster for Type1_parall_by_SNPs, 

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs 

extrapolated from Figure 3.8 applying the above overhead equation are shown in 

Figure 3.9. It is clear that ParallABEL also saves the computing time on a large 

cluster. In addition, the time-saving rates for these types will be much increased when 

the number of CPUs is in between 2 and 50. Nevertheless, the time-saving rates will 

be slowly increased when the number of CPUs is greater than 50. This applies to the 

particularly and relatively small data set analyzed here. With bigger data sets, the 

time-saving rates can be larger. However, the user should optimize the number of 

CPUs according to the gain in computational throughput. 
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Figure 3.9: The computing time on a large cluster for Type1_parall_by_SNPs, 

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs 

extrapolated from Figure 3.8 applying the overhead equation. 

 

3.4 Discussion and summary 

 

We have presented the ParallABEL library which employs parallel 

computing to reduce computing time for data intensive tasks. ParallABEL can run on 

clustered computers that support LAM/MPI and R. With clustered computers, CPUs 

or even personal computers can be easily added as new compute nodes. ParallABEL 

runs on both distributed and shared memory architectures as it was developed with 

MPI. For a distributed memory architecture, MPI usually uses a computer network for 

task communications. For a shared memory architecture, MPI employs shared 
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variables instead of the network for task communications. This means that a 

distributed memory architecture may exhibit more overhead than a shared memory 

architecture (for example, eight single-core CPUs versus a single eight-core CPU). In 

our experiments, Type1_parall_by_SNPs took only 6 minutes to execute on a shared 

memory architecture but 14 minutes on a distributed memory architecture. The 

overhead of the shared memory architecture was tested on a server, which has 2 

QUAD-CORE Intel Xeon(R) (2.8 GHz) CPUs and 8 GB. The server runs on CentOS 

version 5.4, and provides Open MPI version 1.4.1. Whereas, the overhead of the 

distributed memory architecture was measured on the computer cluster comprising of 

a front-end node and four compute nodes. Each node has 2 SINGLE-CORE Intel 

Xeon (2.8 GHz) CPUs and 4 GB RAM.  Although the specification of the shared 

memory server is lower than the specification of the distributed memory cluster, its 

performance is still better than the performance of the distributed memory cluster. 

ParallABEL allows the user to specify the number of CPUs employed 

for data execution. We expect the computational performance to increase linearly with 

the number of CPUs when using Type1_parall_by_SNPs, 

Type3_parall_by_pairs_of_individuals, and Type4_parall_by_pairs_of_SNPs. In 

addition, ParallABEL using multiple CPUs is faster than GenABEL using only one 

CPU. Computing times for Type3_parall_by_pairs_of_individuals and 

Type4_parall_by_pairs_of_SNPs are longer than those for Type1_parall_by_SNPs 

because the input data are pairs of individuals and SNPs respectively, which are much 

larger than the SNPs input for Type1_parall_by_SNPs. In addition, if the number of 

SNPs is n, then the number of inputs for Type1_parall_by_SNPs will be n but the 

number of inputs data for Type4_parall_by_pairs_of_SNPs will be n*n. ParallABEL 

can save much more computational time when utilizing 

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs than 

when using Type1_parall_by_SNPs.  Therefore, as the amount of input data increases, 

the time saved by ParallABEL also increases. ParallABEL does not only reduce the 

computing time but also is as easy-to-use as the more conventional GenABEL. 

ParallABEL can not reduce the computing time when the data size is 

too small, such as the result shown when employing the hom function of 

Type2_parall_by_individuals, because the computing time is too short. In that case, 
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the overheads of data partitioning and output merging overwhelm the computational 

performance.  
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CHAPTER 4 

 

Speeding up SNP Interaction Analyses Based on Logic Regression 

Applying Parallel Computing for GWA Studies 
 

4.1 Introduction  

 

Logic regression, developed by Ruczinski et al., is a flexible method of 

regression with Boolean combinations of binary covariates as explanatory variables 

[37]. It has certain advantages over other analyses, such as Classification and 

Regression Trees (CART) [38] and random forests [39], which relate only the main 

effects and simple (two to three-way at most) interactions between predictors. The 

strength of logic regression is its capacity for finding complex interactions between 

predictors.  Logic regression can be applied to various regression/classification 

problems, one of which is the analysis of Single Nucleotide Polymorphism (SNP) 

interactions.  

  SNPs refer to genetic variations at the single nucleotide level. There 

are more than one million SNPs in the human genome. From a large set of SNP 

measurements, finding SNPs whose variations are associated with a disorder is an 

important analytic goal of bioinformatics. Such analyses can help researchers discover 

genes that predispose individuals to a higher risk of the disorder. In addition, SNP 

analyses may assist researchers to explain possible heterogeneity in individuals' 

responses to a certain medicine [40]. 

Schwender and Ickstadt suggested that it is usually not an individual 

SNP that plays an imperative role in the risk of a complex disorder. Rather, it is SNP 

interactions that strongly influence the risk of a complex disorder [41]. This suggests 

that SNP interactions may identify high risk groups [42], to whom an intervention 

strategy for decreasing the risk or detecting the disorder early for treatment may be 

considered. Logic regression can be employed to search for multi-way SNP 

interactions, e.g., 4-way interactions: such an analysis is often difficult with other 

methods including random forests, CART, and Support Vector Machines (SVMs) [41, 
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43]. For this reasons, logic regression is a powerful methodology for identifying SNPs 

interactions associated with risks of complex disorders. 

LogicReg is an R library for logic regression analyses [13] 

implemented in R [11], a well-known open source statistics programming language 

and environment. To allow a large number of permutation rounds for a large dataset 

such as ones from GWAS, it is advantageous to create an R-library that allows 

parallel computation of logic regression. For instance, for the gene-level SNP analysis 

of Crohn’s disease dataset from the Wellcome Trust Case Control Consortium 

(WTCCC) including approximately 13,500 genes, we need more than 400,000 runs of 

logic regressions when SNP interactions within each gene must be analyzed with 

thirty permutations. Moreover, to the size of the dataset is large: for example, the 

WTCCC Crohn’s disease dataset includes 4,680 individuals. Accordingly, without 

parallel computing, the logic regression analysis requires massive computing time, 

hours to months, depending on the size of the dataset being analyzed and the 

computer capacities. 

Possible ways to speed up the computing time of any program include 

editing of the algorithm and using parallel computing. Since it is not simple to alter 

the logic regression algorithm, the best way to speed up the logic regression analysis 

is to employ parallel computing. Parallel computing is a useful methodology, enabling 

concurrent handling of multiple computing resources to gain computational 

throughput. In parallelization, a problem or a job is partitioned into unassociated 

smaller tasks including series of commands. Each task will then be executed freely 

using multiple Central Processing Units (CPUs) on compute nodes of a cluster; after 

that, one of these CPUs on the front-end node will combine the outputs from all tasks 

[44].  

Rmpi [15], an R library, supports many functions to parallelize broken 

tasks on R using the MPI (Message Passing Interface) [16]. Besides, Rmpi can be 

applied to control the flow of computation in a parallel environment with both single-

core CPUs and multi-core CPUs, and on a single computer or on a computer cluster. 

Nonetheless, it is arduous for general users to write a parallel Rmpi program including 

partitioning and distributing data, controlling and monitoring tasks, and merging 

output files.  
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In this chapter, we propose a development of ParallLogicReg, a new R 

library for parallelization of logic regression analyses using Rmpi. ParallLogicReg 

aims not only to accelerate the computation of logic regression analyses, but also 

simplify analysis parallelization. Moreover, using ParallLogicReg, users do not need 

to be proficient with parallel programming because it will automatically partition and 

distribute data, control and monitor tasks across the computers, and merge output 

files.    

 

4.2 Methods 

 

4.2.1 Logic regression analyses 

  

Logic regression aims to find Boolean combinations of the predictors. 

We consider that all predictors are binary (0 or 1, yes or no), for identification of SNP 

associations. Specifically, the predictor Xi = 1 if the ith SNP has a certain genotype, 

and Xi = 0 otherwise. Each Boolean combination of SNPs could use three operators, 

� (AND), � (OR), and c (NOT) to form a logic expression, Lj, j = 1,…, t such as: 

 

Lj = (X1 � X2) � X3
c 

 

This example of Boolean logic expression means: 

 

Lj = (SNP1 � SNP2) � SNP3
c 

 

  Figure 4.1 shows the example of SNP interaction associations between 

SNP1 and SNP2 that both SNP1 and SNP2 high risk; or either SNP1 or SNP2 high risks.  
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Figure 4.1: SNP interaction associations between SNP1 and SNP2 [45]. 

 

Logic regression uses L’s instead of X’s in its linear predictor and takes 

the form:  

 

    f(E[Y]) = β0 + Σ βj Lj 

 

where Y is a response variable, f is a link function, and parameters βj, j 

= 0,…, t are concurrently estimated with the search for the Boolean expressions Lj’s 

in the above equation that minimizes the scoring function related with this model type 

[37].  

 

4.2.2 Data partitioning and distribution  

 

The computation of logic regression is demanding as it explores a large 

space for an optimal set of logics and needs a large number of permutation tests to 

assess signals in the data. Hence, parallel computing is very important as it decreases 

the computing time. To parallelize a logic regression analysis, ParallLogicReg 

 

t

j = 1 
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running on the front-end node automatically partitions the input dataset into G 

subsets, where G is the number of genes to be analyzed. The ‘task full’ approach [34] 

is used to keep load balancing when ParallLogic is being executed. Also, this 

approach is not sensitive to the number of CPUs or compute nodes .The front-end 

node sends these subsets to idle CPUs on compute nodes. The example of data 

partitioning and distribution are shown in Figure 4.2. If there are four compute nodes, 

and each compute node has only one CPU, SNPs of G1 - G4 (Gene1 - Gene4) will 

separately be executed on these compute nodes as shown in Figure 4.2A. When the 

execution of the second compute node has finished, the front-end node will send the 

SNPs of the next gene (G5) to it – a cycle that proceeds until all the genes are sent as 

shown in Figure 4.2B. After all the compute nodes has finished their tasks, the front-

end node will combine all the outputs automatically. 
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Figure 4.2: A) The data is partitioned into fifteen subsets, and each subset contains 

SNPs of a gene. G1 - G4 subsets will then be executed on different compute nodes. B) 

The G5 is sent to be executed on the second compute node after the execution of G1 

has finished. 
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4.2.3 Implementation 

 

The sequential workflow for a logic regression analysis on a single 

CPU/computer is shown in Figure 4.3A. The genotype and phenotype data are 

analyzed by the LogicReg library, working under the R program. LogicReg 

sequentially analyzes the raw data, and produces statistical data (e.g., deviance) as 

outputs.  

Since this sequential workflow generally takes great computing time to 

conduct statistical analyses, we have developed a novel parallel workflow for 

ParallLogicReg to save the computing time. The novel parallel workflow in a logic 

regression analysis is shown in Figure 4.3B. A job scheduler such as the SUN Grid 

Engine [32] distributes the genotype and phenotype data to each compute node on a 

cluster to queue jobs and reserve a set of CPUs required by the employed MPI 

(Message Passing Interface) library such as LAM/MPI (Local Area 

Multicomputer/Message Passing Interface) [33] and Open MPI [46]. The MPI library 

has various functions called by Rmpi to parallelize R functions. ParallLogicReg uses 

this Rmpi library to parallelize LogicReg. In addition, ParallLogicReg partitions a job 

into several smaller tasks on a front-end node using basic R commands and distributes 

them with genotype and phenotype data to the reserved CPUs using Rmpi. These 

CPUs execute the tasks on compute nodes and call the LogicReg. Later, the outputs 

will return to Rmpi and be combined by ParallLogicReg on the front-end node. The 

statistical data from the parallel workflow can be approved by comparison with the 

statistical data from the sequential workflow. ParallLogicReg can run on any 

Operating System supporting components for the parallel workflow such as Linux and 

Solaris.  



 
 
 
 

52 
 

 

Figure 4.3: A) Sequential logic regression computing workflow runs on a single CPU 

or a computer. B) Parallel logic regression computing workflow runs on a multiple 

CPUs or a set of computers.  

 

ParallLogic is designed based on SIMD parallel computing and 

distributed memory/message passing programming model and can be executed on 

shared memory architecture and distributed memory architecture. Manual 

parallelization is applied to design and develop ParallLogic. 

Users can easily use ParallLogicReg to parallelize logic regression 

function. The executable command that parallelizes logic regression on multiple 

CPUs is shown in Figure 4.4. To run the function, the number of CPUs can be 

specified in the Sun Grid Engine. 
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Figure 4.4: The example of parallel execution used to analyze Crohn’s disease data 

when gene ids were between one and ten, and the numbers of permutations and 

iterations were twenty.  The data contained 1,745 cases and 2,935 controls.  Besides, 

the user could set the number of CPUs in a job scheduler such as the SUN Grid 

Engine.  

 

4.3 Results 

 

A computer cluster, Hanuman, has been used to evaluate the 

performance of ParallLogicReg. This cluster includes five IBM servers XSeries 3362, 

which are comprised by a front-end node and four compute nodes, with two SINGLE-

CORE Intel Xeon (2.8 GHz) CPUs and four GB RAM, respectively. The front-end 

node of the cluster can be connected via the Internet, and can control the compute 

nodes of the cluster through an Ethernet switch. Also, this cluster provides Rocks 

Cluster Distribution version 4.3 [36] including the SUN Grid Engine version 4.3 [32] , 

LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi library version 0.5-6, 

LogicReg version 1.4.9 and ParallLogicReg 1.0. Crohn’s disease data set, a chronic 

inflammatory disease data set of the intestines [18] which contains 1,745 controls and 

2,935 cases with approximately 2,000 SNPs, was used to measure the performance of 

ParallLogicReg.  

Results from logic regression using ParallLogicReg function for the 

Crohn’s disease data are shown in Figure 4.5 with twenty permutations and iterations. 

ParallLogicReg saved the computing time, especially with eight CPUs. For example, 
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on a single CPU, the two hundreds gene analyses on the first chromosome took 7.3 

days, but took only 0.9 day with eight CPUs.  

 

 

Figure 4.5: Ten, one hundred and two hundred genes of Crohn’s disease data were 

executed with ParallLogicReg. Also, these genes were running on one, two, four and 

eight CPUs. The results showed that the more CPUs, the more computing times were 

saved by ParallLogicReg.  

 

If the number of available CPUs is P, the computing time for P CPUs 

is timeP, and the sequential computing time for a CPU is time1, thus, the speedup for P 

CPUs will be:  

 

speedupP = time1 / timeP 

 

The speedups of analyzing Crohn’s disease data using ParallLogicReg 

function applying the above equation are shown in Figure 4.6. It shows that the saved 

time by ParallLogicReg is linearly correlated to the number of CPUs. For instance, 
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the executing speed of the two hundreds gene analyses on eight CPUs was 

approximately eight times faster than that on only one CPU.  

 

 

Figure 4.6: The speedups were extrapolated from Figure 4.5 applying the speedup 

equation. The speedups showed that the more CPUs, the more speedup were increased 

by ParallLogicReg.  

 

4.4 Discussion and summary 

 

  We have developed a novel R-library called ParallLogicReg to speed 

up logic regression analyses using parallel computing components which consist of a 

job scheduler, a MPI library, an Rmpi library and a LogicReg library. ParallLogicReg 

has been designed to be a user-friendly library. Identification of SNPs associated with 

Crohn’s disease is used to measure the performance of the ParallLogicReg function.  

The results showed that ParallLogicReg using parallel computing can save the 

computing time for analyzing massive data. The statistical data from ParallLogicReg 

with the number of CPUs is the same as the statistical data from non-parallel method 
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because ParallLogicReg partitions data into small subsets which have no effect for 

logic regression analyses.  

 

  According to speedup equation, the overhead for P CPUs is  

 

overheadP = timep-(time1 / P) 

 

  Since ParallLogicReg is not sensitive to the number of CPUs, it can be 

run on a large cluster. The overhead of analyses with various numbers of CPUs on a 

large computer cluster can be predicted based on the overhead of eight CPUs as 

shown in Figure 4.7.  
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Figure 4.7:  The computing time on a large cluster for ten, one hundred and two 

hundred genes analyses were extrapolated from Figure 4.5 applying the overhead 

equation.  

 

  The computing time on a large cluster for ten, one hundred and two 

hundred analyses extrapolated from Figure 4.5 applying the above overhead equation 

are shown in Figure 4.8.  
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Figure 4.8: The speedups on a large cluster for ten, one hundred and two hundred 

genes analyses were extrapolated from Figure 4 applying the overhead equation and 

speedup equation.  

 

  The time-saving rates are grown when the numbers of CPUs are 

increased until the numbers of CPUs are greater than number of genes. Thus, with 

bigger data, the time-saving rates will be larger in a large computer cluster. Users can 

set the number of CPUs in ParallLogicReg to execute data, which will reduce the 

computing time that growingly correlates to the number of CPUs. Also, if the user 

applies more CPUs, more computing time will be saved by ParallLogicReg. 

Nonetheless, the user should optimize the number of CPUs suitable for the 

computational throughput. In particular, the number of CPUs assigned should be less 

than, or equal to, the number of genes to avoid idling CPUs. Due to the benefit of 

MPI, ParallLogicReg can be run not only on a distributed memory architecture like 

the architecture of Hanuman but also on a shared memory architecture. Nevertheless, 
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a distributed memory architecture produces more overhead than a shared memory 

architecture.  
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CHAPTER 5 

 

Conclusions and Furture Work 
 

5.1 Conclusions 

 

Genome-Wide Association (GWA) analysis is a powerful method for 

identifying loci associated with complex genetic traits such as Crohn’s disease, Type I 

Diabetes Mellitus (DM) and Type II DM. Parts of GWA analyses, especially those 

involving interactions or pair-wise analysis of thousands individuals or millions 

genetic markers consuming hours to months of computation time, will benefit from 

parallel computation. However, it is arduous acquiring the necessary programming 

skills to correctly partition and distribute data, control and monitor tasks on multiple 

CPUs, and merge output files. 

 ParallABEL and ParallLogicReg have been presented to improve the 

performance of GWA analyses by applying parallel computing. With ParallABEL and 

ParallLogicReg libraries, users can immensely accelerate the computing time of 

GWA analyses. For example, the computing time of the Rheumatoid Arthritis data set 

for the identity-by-state matrix was theoretical reduced from approximately eight 

hours to one hour when ParallABEL employed eight processors. Another instance, 

with two hundred genes and twenty permutation rounds, the computing time of the 

Crohn’s disease data set was decreased from about seven days to only one day when 

ParallLogicReg applied eight CPUs. 

 The users can execute ParallABEL and ParallLogicReg to parallelize 

GWA analyses without having the advanced programming skills including 

partitioning and distributing data, controling and monitoring tasks, and merging 

output files.  Moreover, expert users have no waste of time to develop the libraries. 

ParallABEL is a user-friendly parallelization of GenABEL whereas ParallLogicReg is 

a user-friendly parallelization of LogicReg for GWAS analyses. The statistical 

outputs from both libraries with any number of CPUs are valid as the statistical data 

from non-parallel approach (GenABEL and LogicReg). Both novel libraries can be 
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executed not only on multi-core CPUs on a single computer but also on multi-core 

CPUs or single-core CPU distributed across many computers (a computer cluster). 

Nevertheless, the computers must support Rmpi running under a MPI library such as 

LAM/MPI and Open MPI. 

Since ParallABEL and ParallLogicReg can produce statistical outputs 

of GWA analyses faster than the conventional approach, users can save time to find 

genes referred to diseases. Besides, the more CPUs, the more finding times were 

saved by ParallABEL and ParallLogicReg. Researchers can use the information to 

develop better strategies to detect, treat and prevent the diseases more quickly than 

before. 

The user can specify the number of processors employed for data 

execution in ParallABEL and ParallLogicReg. With ParallABEL, users could expect 

the computational performance of GWA analyses to linearly increase with the number 

of processors when using the functions of ParallABEL to compute the SNP 

characterization statistics, the pair-wise individuals statistics and the pair-wise SNPs 

statistics. In addition, ParallABEL using multiple CPUs is faster than GenABEL 

using only one processor. Computing times for the pair-wise individuals statistics  and 

the pair-wise SNPs statistics are longer than those for the the SNP characterization 

statistics because the input data is pairs of individuals and SNPs respectively, which 

are much larger than the SNPs input for the SNP characterization statistics. Also, if 

the number of SNPs is n, then the number of inputs for computation of the SNP 

characterization statistics will be n but the number of input data for computation of 

the pair-wise SNPs statistics will be n*n. ParallABEL can save much more 

computational time when producing the pair-wise individuals statistics and the pair-

wise SNPs statistics than when producing the SNP characterization statistics.  

Therefore, as the amount of input data increases, the time saved by ParallABEL also 

increases.  However, ParallABEL can not reduce the computing time when the data 

size is too small, such as the result shown when employing the hom function (an 

individual characterization statistic) because the computing time is too short. In that 

case, the overheads of data partitioning and output merging overwhelm the 

computational performance. With ParallLogicReg, the time-saving rate grows when 

the number of CPUs increases until the number of CPUs is greater than the number of 
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genes. Therefore, the number of CPUs should be less than, or equal to, the number of 

genes in order to avoid idling CPUs. Nonetheless, the user should optimize the 

number of CPUs suitable for the gained computational throughput. 

  ParallABEL and ParallLogicReg can process not only the Rheumatoid 

Arthritis data set and Crohn's disease data set but also other disease data sets such as a 

neck cancer data set. In addition, the user can use statistical outputs from ParallABEL 

and ParallLogicReg to find genes associated the other diseases such as the neck 

cancer. 

 

5.2 Furture work 

 

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that 

provides resizable computability in the cloud. It supports users with complete control 

of their requiring resources (a large computer cluster) and lets the users run on 

Amazon’s proven computing environment. Amazon EC2 reduces the time required to 

obtain and boot new server instances to minutes. It also allows the users to quickly 

scale capacity both up and down when their computing requirements change. Amazon 

EC2 changes the economics of computing by allowing the users to pay only for 

capacity that the users actually use [47]. If ParallABEL and ParallLogicReg can run 

on Amazon EC2, the computing time of GWA analyses will be much saved. 

Nevertheless, a trouble of executing of ParallABEL and ParallLogicReg on Amazon 

EC2 may occur since we still do not exactly know about infrastructure of Amazon 

EC2. Therefore, we will intensively check the infrastructure before running of 

ParallABEL and ParallLogicReg on Amazon EC2. 
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Type1_parall_by_SNPs source code  
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############################################################## 

#Function: parallel type1 function 

#Programer: Unitsa Sangket 

#Date:  2010 

#Objective: to parallel type1 functions of GenABEL 

#Note:  an example of type1.p function is mlreg.p 

############################################################## 

 

"type1.p" <- function(npro,fun,data,data_f="no",...){  

#Initialize MPI 

library("Rmpi") 

 

# Notice we just say "give us all the slaves you've got." 

mpi.spawn.Rslaves() 

 

if (mpi.comm.size() < 2) { 

    print("More slave processes are required.") 

    mpi.quit() 

    } 

 

.Last <- function(){ 

    if (is.loaded("mpi_initialize")){ 

        if (mpi.comm.size(1) > 0){ 

            print("Please use mpi.close.Rslaves() to close slaves.") 

            mpi.close.Rslaves() 

        } 

        print("Please use mpi.quit() to quit R") 

        .Call("mpi_finalize") 

    } 

} 
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##########  the slaves will call to perform a validation on the 

# fold equal to their slave number. 

# Assumes: fold,foldNumber 

foldslave <- function(){ 

    # Note the use of the tag for sent messages:  

    #     1=ready_for_task, 2=done_task, 3=exiting  

    # Note the use of the tag for received messages:  

    #     1=task, 2=done_tasks  

    junk <- 0  

    done <- 0  

 

    while (done != 1) { 

        # Signal being ready to receive a new task  

        mpi.send.Robj(junk,0,1)  

 

        # Receive a task  

        task <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())  

        task_info <- mpi.get.sourcetag()  

        tag <- task_info[2]  

 

        if (tag == 1) { 

    

   #****** 3. task computation in compute nodes ***** 

   # load GenABEL library 

   library(GenABEL) 

 

   snpsubset  = task$snpsubset 

   foldNumber = task$foldNumber 

   source(temp_fun_type1_f) 

 



 
 
 
 

100 

load(data_f) 

    

   ## edit fro test eigth_core 

   start = task$start 

   stop = task$stop 

   data <- data[,start:stop] 

   ### 

 

   args_oth$data = data 

   args_oth$snpsubset = snpsubset 

   args_oth$fun = fun 

   formals(temp_fun) = args_oth 

   output=temp_fun() 

 

   results <- list(foldNumber=foldNumber,output=output)  

   rm(data) 

   #********* end of task computation ********* 

 

            mpi.send.Robj(results,0,2) 

            } 

        else if (tag == 2) { 

            done <- 1 

            } 

        # We'll just ignore any unknown messages 

    } 

 

    mpi.send.Robj(junk,0,3) 

} 
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########## We're in the parent.  

 

#************ 1. task separatation   ************* 

# load GenABEL library 

library(GenABEL) 

 

if (missing(npro))  

    stop("Missing number of processors") 

if (missing(fun))  

    stop("Missing function name") 

 

if (missing(data) && missing(data_f))  

    stop("Missing data") 

 

# generate subscript file 

t_subscript <- 1:99999999 

subscript = sample(t_subscript,1) 

 

if(data_f == "no"){ # there are no data file 

 data_f = paste("data_",subscript,".Rdata",sep = "") 

 save(data,file=data_f) 

 data_f_n = 1 

} 

else{  

 data_f_n = 0 

 load(data_f) 

} 

##### check number of snps 

number_of_snps = data@gtdata@nsnps 
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if (number_of_snps < 11) 

    stop("The data is too small.") 

 

##### check arguments 

snpsubset <- data@gtdata@snpnames[1:10] 

a = fun(data=data,snpsubset=snpsubset,...) 

 

##### separate data 

nsnps = length(data@gtdata@snpnames)  

nsnps_p = floor(nsnps/npro) 

pointer = 0 

 

#create data@gtdata@snpnames = data@gtdata@snpnames[start:stop]  

#Create task list 

tasks <- vector('list') 

for (i in 1:(npro-1)) { 

    tasks[[i]] <- list(foldNumber=i,snpsubset=data@gtdata@snpnames[(pointer 

+ 1):(pointer + nsnps_p)], start = (pointer + 1), stop = (pointer + nsnps_p)) 

    pointer = pointer + nsnps_p 

} 

#last process 

i = i + 1 

tasks[[i]] <- list(foldNumber=i, snpsubset=data@gtdata@snpnames[(pointer + 

1):(nsnps)], start = (pointer + 1), stop = nsnps)  

 

# initial results 

results <- vector('list') 

for (i in 1:npro) { 

    results[[i]] <- list(output=i) 

} 

#********************* end of task separation ********************
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# Now, send the data to the slaves 

 

# Send the function to the slaves 

mpi.bcast.Robj2slave(foldslave) 

 

#******************* 2. task distribution   ******************** 

# Call the function in all the slaves to get them ready to 

# undertake tasks 

 

### prepairing args 

 

"temp" <- function(data,...){ 

 # argument must add later 

 rm(data) 

 rm(snpsubset) 

  

 # check this argument before remove 

 if (missing(idsubset))  

  rm(idsubset) 

 

 args=ls() 

 

 old_formals = formals(temp) 

 n_old_formals = names(old_formals) 

 

 match_args = match(args, n_old_formals) 

 temp = old_formals 
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#update arguments of new_formals 

 for(i in 1:length(args)){ 

  if( !is.na(match_args[i])){ 

   if (temp[[match_args[i]]] == get(args[i])) # default arg 

value 

    temp[[match_args[i]]] = ""  

   else temp[[match_args[i]]] = get(args[i]) 

    

  } 

 } 

 

 # delete empty value arguments 

 i = 1  

 n_temp = names(temp) 

 while ( i <= length(n_temp)){ 

  if (temp[i] == "") 

   temp[i] <- NULL 

  else  

   i = i + 1 

 } 

    

 return(temp)  # return all arguments except data, snpsubset and the 

argument which have default value 

} 

 

formals(temp) = formals(fun) 

args_oth = temp(data=data,...) 

 

### peparing call_fun 

n_args_oth = names(args_oth) 
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call_fun = paste("temp_fun <- function(fun){", "\n", sep="") 

 

call_fun = paste(call_fun, "output <- fun(data=data, snpsubset=snpsubset",sep 

= "") 

 

if (length(n_args_oth) > 0 ){ 

 for(i in 1:length(n_args_oth)){ 

  call_fun = paste(call_fun,", ",n_args_oth[i], "=args_oth$", 

n_args_oth[i],sep="") 

 }    

} 

 

# insert ) and } 

call_fun = paste(call_fun,")","\n", "return(output)", "\n", "}",sep="") 

 

temp_fun_type1_f = paste("temp_fun_type1_",subscript,".R",sep = "") 

 

write(call_fun, temp_fun_type1_f) 

 

### send argument 

mpi.bcast.Robj2slave(temp_fun_type1_f) 

mpi.bcast.Robj2slave(data_f) 

mpi.bcast.Robj2slave(args_oth) 

mpi.bcast.Robj2slave(fun) 

mpi.bcast.cmd(foldslave()) 

 

rm(data) 

 

#**************end of task distribution ************** 
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junk <- 0  

closed_slaves <- 0  

n_slaves <- mpi.comm.size()-1  

 

while (closed_slaves < n_slaves) {  

    # Receive a message from a slave  

    message <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())  

    message_info <- mpi.get.sourcetag()  

    slave_id <- message_info[1]  

    tag <- message_info[2]  

 

    if (tag == 1) {  

        # slave is ready for a task. Give it the next task, or tell it tasks  

        # are done if there are none.  

        if (length(tasks) > 0) {  

            # Send a task, and then remove it from the task list  

            mpi.send.Robj(tasks[[1]], slave_id, 1);  

            tasks[[1]] <- NULL  

            }  

        else{  

            mpi.send.Robj(junk, slave_id, 2)  

            }  

    }  

    else if (tag == 2) { 

 

  #************** 4. result storing ************ 

  # The message contains results. Do something with the results.  

  # Store them in the data structure 

  results[[message$foldNumber]] = message$output 

  #*************** end of result storing *********** 
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    }  

    else if (tag == 3) {  

        # A slave has closed down.  

        closed_slaves <- closed_slaves + 1  

    }  

 

}  

 

mpi.close.Rslaves() 

 

#****************** 5. result combining *************** 

# combine order by snpnames because may be slave2 finish before slave1  

 

#return(results) 

 

#stop("pause") 

 

results_list = results 

results = results_list[[1]] 

 

##check structure of result 

# if data.frame use rbind 

if (is.data.frame(results)) {  

 for (i in 2:npro) { 

  results = rbind(results,results_list[[i]]) 

 } 

 

}else if (is.list(results)){ 

 # create flag_do array 

 # flag = 1 -> will combine, flag = 0 -> not combine 
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 n_results = names(results_list[[1]]) 

 flag_do = n_results  

 for(i in 1:length(flag_do)){ 

  if ( (length(results_list[[1]][[n_results[i]]]) == 

length(results_list[[1]][["snpnames"]]) ) && (n_results[i] != "idnames") )  

   flag_do[i] = 1 

  else flag_do[i] = 0 

 } 

 

 # combine results 

 results = results_list[[1]] 

 for (i in 2:npro) { 

  for (j in 1:length(n_results)){ 

   if (flag_do[j] == 1) 

    results[[n_results[j]]] = c(results[[n_results[j]]], 

results_list[[i]][[n_results[j]]]) 

  }  

 } 

  

}else { 

 message_error = paste("Error: structure of result from ", fun, " doesn't a 

list or a data.frame", sep = "") 

 stop(message_error) 

} 

 

# remove data_f, temp_fun_type1_f  

 

if (data_f_n==1){ # if data is loaded from a file, then 

file.remove(data_f) 

} 
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file.remove(temp_fun_type1_f) 

 

#************* end of result combining ************ 

 

return(results) 

 

} # End of function 
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