
i

Speeding up Genome-Wide Association Analyses Applying

Parallel Computing

Unitsa Sangket

A Thesis Submitted in Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in

Molecular Biology and Bioinformatics

Prince of Songkla University

2011
Copyright of Prince of Songkla University

ii

Thesis Title Speeding up Genome-Wide Association Analyses Applying

Parallel Computing

Author Miss Unitsa Sangket

Major Program Molecular Biology and Bioinformatics

Major Advisor Examining Committee:

... ..Chairperson

(Asst. Prof. Dr. Pichaya Tandayya) (Prof. Dr. Amornrat Phongdara)

 ...

Co-advisors (Prof. Dr. Yutaka Yasui)

.. ..

(Assoc. Prof. Dr. Wasun Chantratita) (Assoc. Prof. Dr. Wasun Chantratita)

... ..

(Dr. Surakameth Mahasirimongkol) (Asst. Prof. Dr. Pichaya Tandayya)

 ...

 (Dr. Surakameth Mahasirimongkol)

 The Graduate School, Prince of Songkla University, has approved this

thesis as fulfillment of the requirements for the Doctor of Philosophy Degree in

Molecular Biology and Bioinformatics.

 ...

 (Prof. Dr. Amornrat Phongdara)

 Dean of Graduate School

iii

ชื่อวิทยานิพนธ การเพิ่มความเร็วในการวิเคราะหความสัมพันธทั่วทั้งจีโนมโดยการ
ประยุกตใชการประมวลผลแบบขนาน

ผูเขียน นางสาวอุนิตษา สังขเกตุ
สาขาวิชา ชีววิทยาโมเลกุลและชีวสารเทศ
ปการศึกษา 2554

บทคัดยอ

การศึกษาความสัมพันธทั่วทั้งจีโนม (Genome-Wide Association Study: GWAS)
เปนวิธีการที่มีประสิทธิภาพสําหรับระบุตําแหนงของยีนที่มีสวนเกี่ยวของกับการเปลี่ยนแปลงของ
ลักษณะทางพันธุกรรมที่ซับซอน ซ่ึงอาจมีผลทําใหเกิดโรค การวิเคราะหเพื่อหาคาสถิติสําหรับ
การศึกษา GWA โดยใชกลุมตัวอยางและกลุมควบคุมสามารถทําไดโดยใชไลบรารี GenABEL และ
ไลบรารี LogicReg ซ่ึงเปนไลบรารีที่ทํางานอยูภายใตโปรแกรม R อยางไรก็ตามในการวิเคราะห
เพื่อหาคาสถิติในการศึกษา GWA จากขอมูลที่มีขนาดใหญจะตองใชระยะเวลาในการประมวลผล
นาน ทั้งนี้อาจจะใชเวลานานเปนชั่วโมง สัปดาห หรือเดือน

การประมวลผลแบบขนานเปนวิธีการที่ใชไดผลดีในการเพิ่มประสิทธิภาพในการ
ประมวลผล และสามารถนํามาประยุกตใชกับการประมวลผลเพื่อศึกษา GWA ในแตละขั้นตอนได
เนื่องจากขั้นตอนเหลานั้นมีการประมวลผลขอมูลที่อิสระจากกัน นอกจากนี้ไลบรารี Rmpi เปน
ไลบรารีที่ทํางานภายใตโปรแกรม R ไดเก็บรวบรวมฟงกชันตางๆสําหรับการประมวลผลแบบ
ขนาน โดยใช MPI (Message-Passing Interface) เปนตัวกลางในการสื่อสารระหวางเครื่องแมขาย
กับเครื่องลูกขาย แตผูใชอาจนําไลบรารี Rmpi มาประยุกตใชในการวิเคราะห GWAไดยากลําบาก
เนื่องจากผูใชจําเปนตองมีความรูทางดานการเขียนโปรแกรมแบบขนานขั้นสูง เพื่อแบงขอมูล
กระจายขอมูล ควบคุมงาน และสังเกตการณงานระหวางหนวยประมวลผลกลางหรือคอมพิวเตอร
และสุดทายรวบรวมผลลัพธ

ในวิทยานิพนธนี้ไดนําเสนอไลบรารี ParallABEL และไลบรารี ParallLogicReg
เพื่อเพิ่มประสิทธิภาพในการวิเคราะห GWA โดยการประยุกตใชการประมวลผลแบบขนาน การ
วิเคราะหทางสถิติบนไลบรารี ParallABEL และไลบรารี ParallLogicReg ไดถูกดัดแปลงมาจาก
ไลบรารี GenABEL และไลบรารี LogicReg ตามลําดับ องคประกอบในการวิเคราะห GWA ของ
ไลบรารี ParallABEL สามารถถูกแบงเปนสวนยอยๆ เทากันได ทั้งนี้ขึ้นอยูกับประเภทของขอมูลเขา

iv

(ตาม SNP และตามรายบุคคล) และลักษณะผลลัพธคาสถิติที่ตองการ ขณะที่ขอมูลเขาของ
ParallLogicReg จะถูกแบงเปนสวนยอยตามจํานวนยีนที่นํามาวิเคราะห

ขอมูลจากสมาคมโรคไขขออักเสบอเมริกาเหนือประกอบดวยจํานวนตัวอยาง
2,062 คน และแตละตัวอยางมีจํานวน SNP 545,080 ตําแหนง ไดถูกนํามาใชเพื่อวัดประสิทธิภาพ
ของไลบรารี ParallABEL ผลปรากฏวาไลบรารี ParallABEL ประมวลผลขอมูลไดอยางรวดเร็วขึ้น
มาก ยกตัวอยางเชนไลบรารี ParallABEL สามารถลดระยะเวลาในการประมวลผลขอมูลเพื่อหา
identity-by-state จากเดิมใชเวลาประมาณ 8 ช่ัวโมงเหลือเพียงประมาณ 1 ช่ัวโมงเทานั้นเมื่อใช
หนวยประมวลผลกลาง 8 ตัว ชุดขอมูลโรคลําไสอักเสบจากสมาคม WTCCC ซ่ึงประกอบดวย
จํานวนตัวอยาง 4,680 ตัวอยางและแตละตัวอยางมีจํานวน SNP ประมาณ 2,000 ตัว ถูกนํามาทดลอง
เพื่อวัดประสิทธิภาพของไลบรารี ParallLogicReg ผลการทดสอบปรากฏวาไลบรารี
ParallLogicReg สามารถลดระยะเวลาในการประมวลผลยีน 200 ตัวดวยการเรียงสับเปลี่ยน 20 รอบ
จากเดิมใชเวลาประมาณ 7.3 วันเหลือเพียงประมาณ 0.9 วัน เมื่อใชหนวยประมวลผลกลาง 8 ตัว
ทั้งนี้ผลลัพธจากไลบรารี ParallABEL และไลบรารี ParallLogicReg มีความถูกตองเชนเดียวกับคา
ผลลัพธจากไลบรารี GenABEL และไลบรารี LogicReg เนื่องจากขอมูลที่นํามาวิเคราะหเพื่อศึกษา
GWA มีความเปนอิสระจากกัน

การประมวลผลขอมูลทางดาน GWA โดยใชไลบรารี ParallABEL และไลบรารี
ParallLogicReg บนเครื่องคอมพิวเตอรคลัสเตอรหรือเครื่องคอมพิวเตอรที่มีหนวยประมวลผลกลาง
หลายแกนหรือหลายตัวเปนวิธีการที่มีประสิทธิภาพ เนื่องจากสามารถเพิ่มความเร็วในการ
ประมวลผลและผูใชสามารถใชงานไดงาย โดยถือไดวาไลบรารี ParallABEL และไลบรารี
ParallLogicReg เปนไลบรารี GenABEL และไลบรารี LogicReg เวอรชันที่รองรับการประมวลผล
แบบขนานที่เปนมิตรกับผูใช ยิ่งไปกวานั้นไลบรารีทั้งสองยังสามารถประมวลผลขอมูลในโรคอื่นๆ
ไดอีกดวย เชน ขอมูลโรคมะเร็งที่ลําคอ เพื่อคนหายีนที่มีสวนเกี่ยวของกับการเกิดโรคนั้นๆ ซ่ึงใน
ที่นี้คือโรคมะเร็งที่ลําคอ เปนตน

v

Thesis Title Speeding up Genome-Wide Association Analyses Applying

Parallel Computing

Author Miss Unitsa Sangket

Major Program Molecular Biology and Bioinformatics

Academic Year 2011

ABSTRACT

Genome-Wide Association Study (GWAS) is a powerful method for

identifying loci associated with variations of complex genetic traits such as common

diseases. Statistical analyses for GWAS with both case and control participants can be

processed by GenABEL and LogicReg libraries implemented in R. Nevertheless,

statistical analysis of very large data sets is computationally challenging and may take

hours, weeks or months to complete.

Parallel computing is an intuitive and effective method for increasing

computational throughput. Most tasks solved in GWA analysis are suitable for

parallelization, due to their computational independency and with parallelization

achieved at the data level. In addition, Rmpi [14] is an R library which provides

various functions to parallelize tasks in R using MPI. However, it is very difficult and

complicated for users to apply a parallel computing library such as Rmpi to conduct

statistical analyses of GWA studies because they need advanced programming skills

to correctly partition and distribute data, control and monitor tasks across the

computers and finally merge outputs.

In this thesis, ParallABEL and ParallLogicReg, the novel R libraries,

were presented to boost performance of GWA analyses applying parallel computing

based on Rmpi. Statistical analyses of the ParallABEL and ParallLogicReg are

adapted based on GenABEL and LogicReg, respectively. In ParallABEL, most

components of GWA analysis can be equally divided into subsets depend on the types

of input data (SNPs and individuals) and statistical outputs, while the input data of

ParallLogicReg is partitioned into G subsets (where G is the number of genes to be

analyzed).

vi

 The data set from the North American Rheumatoid Arthritis

Consortium (NARAC) includes 2,062 individuals with 545,080, SNPs' genotyping,

was used to measure the ParallABEL performance. Almost perfect speed-up was

achieved for many types of analyses. For example, the computing time for the

identity-by-state matrix was linearly reduced from approximately eight hours to one

hour when ParallABEL employed eight processors. The Crohn’s disease GWA study

dataset from the Wellcome Trust Case Control Consortium (WTCCC) that includes

4,680 individuals with 2,000 SNPs’ genotypes was analyzed using logic regression on

a computer cluster to evaluate the ParallLogicReg performance. The ParallLogicReg

library also accelerated the logic regression analysis perfectly. For instance, with two

hundred genes and twenty permutation rounds, the computing time was continuously

decreased from 7.3 days to only 0.9 day when ParallLogicReg applied eight CPUs.

The statistical outputs from ParallABEL and ParallLogicReg with any number of

CPUs are as valid as those from GenABEL and LogicReg with one CPU because of

their computational independency of GWA analyses at the data level.

 Executing genome-wide association analysis using the ParallABEL

and ParallLogicReg library on a computer cluster or a computer with multi-core CPUs

is effective way to boost the performance and to simplify the parallelization of GWA

studies. ParallABEL and ParallLogicReg are the user-friendly parallelization versions

of GenABEL and LogicReg respectively. Moreover, ParallABEL and ParallLogicReg

also can process other disease data sets such as a neck cancer data set to find genes

associated the diseases such as the neck cancer.

vii

ACKNOWLEDGEMENTS

This thesis would not complete without helps of many people, whom I

would like to thank.

I would like to express my sincere gratitude and deep appreciation to

my advisors Asst. Prof. Dr. Pichaya Tandayya, Assoc. Prof. Dr. Wasun Chantratita

and Dr. Surakameth Mahasirimongkol for their guidance, unmeasurable advice,

understanding and supports throughout this work.

I am very grateful to Prof. Dr. Yutaka Yasui for giving me a chance to

learn and create a part of my research at the Department of Public Health Sciences,

School of Public Health, University of Alberta, Canada.

I am thankful to Prof. Dr. Amornrat Phongdara and Assoc. Prof. Dr.

Wilaiwan Chotigeat for establishing the PSU research group in Bioinformatics and

supporting my research.

Many thanks go to Dr. Yurii S Aulchenko, Department of

Epidemiology, Erasmus MC Rotterdam, The Netherlands and Qi Liu, Department of

Public Health Sciences, School of Public Health, University of Alberta, Canada for

their collaborating and helps in this research.

I am indebted to the program for Strategic Scholarships for Frontier

Research Network for the Joint Ph.D. Program Thai Doctoral degree from the Office

of the Higher Education Commission and the lecturer scholarship from Prince of

Songkla University.

 I would like to thank examination committee of this thesis for their

invaluable advice and for taking time to review my thesis. I also thank the Thai

National Grid Center and Prince of Songkla University Grid Center for providing the

computer clusters used in this research.

Special thanks to all members of Thai Students Association at the

University of Alberta (TSA) and all loving friends in Canada and Thailand for their

kind helps, encouragement and friendship.

viii

Finally, I dedicate this work to my beloved father and mother for

giving me their love and help me overcome difficulties and pains. Without their

encouragement and supports, it would not have been possible for me to come up to

this stage.

Unitsa Sangket

ix

CONTENTS

 Page

Contents ix

List of Tables xi

List of Figures xii

Abbreviations and Symbols xiv

Chapter 1 General Introduction

 1.1 Background and rationale 1

 1.2 Objectives 3

 1.3 Scopes 4

 1.4 Benefits 4

 1.5 Summary 4

Chapter 2 Parallel Computing

2.1 Overview 6

2.2 Types of parallel computing 9

2.3 Parallel computer memory architectures 11

2.4 Parallel programming models 14

2.5 Parallel program design 18

2.6 Summary 21

Chapter 3 Speeding up SNP Association Analyses Applying

 Parallel Computing for GWA Studies

3.1 Introduction 22

3.2 Methods 28

3.3 Results 37

3.4 Discussion and summary 42

x

Chapter 4 Speeding up SNP Interaction Analyses Based on Logic

 Regression Applying Parallel Computing for GWA Studies

4.1 Introduction 45

4.2 Methods 47

4.3 Results 53

4.4 Discussion and summary 55

Chapter 5 Conclusions and Furture Work

5.1 Conclusions 60

5.2 Furture work 62

References 63

Appendices

Appendix A Publication 68

Appendix B ParallABEL manual 80

Appendix C ParallLogicReg manual 91

Appendix D Type1_parall_by_SNPs source code 97

Vitae 110

xi

LIST OF TABLES

Tables Page

3.1 The name and descriptions of GenABEL functions in each group 29

3.2 The example of genotype data executed in GenABEL and ParallABEL 33

3.3 The example of phenotype data executed in GenABEL and ParallABEL 34

3.4 The least number of subsets of each chromosome partitioned by

 the number of SNPs 40

xii

LIST OF FIGURES

Figure Page

2.1 The concept and the example of sequential computing 7

2.2 The concept and the example of parallel computing 8

2.3 The von Neumann architecture 10

2.4 Flynn’s Taxonomy matrix 10

2.5 Uniform shared memory architecture (UMA) 12

2.6 Non-uniform shared memory architecture (NUMA) 12

2.7 Distributed memory architecture 13

2.8 Hybrid distributed-shared memory architecture 14

2.9 An example of message passing programming model 15

2.10 An example of data parallel model 16

2.11 An example of hybrid programming model 17

2.12 An example of SPMD 17

2.13 An example of MPMD 18

2.14 An example of domain decomposition 20

2.15 An example of domain decomposition using block and cyclic

 partitioning techniques 20

2.16 An example of functional decomposition 21

3.1 Associations in the IL23R gene region identified by a GWAS

of inflammatory bowel disease 24

3.2 A general architecture for parallel computing 26

3.3 Data partitioning for Type1_parall_by_SNPs

 Type2_parall_by_individuals when M = 800 and P = 4 30

3.4 The first and second data partitioning for

Type3_parall_by_pairs_of_individuals when

 the number of individuals = N. 32

3.5 Sequential GWA computing workflow and

 parallel GWA computing workflow 33

xiii

LIST OF FIGURES (Continued)

Figure Page

3.6 The executable command of the mlreg.p function and type1.p function 36

3.7 The example of executing of the mlreg.p function and

 type1.p function 37

3.8 Trace results from Type1_parall_by_SNPs,

 Type2_parall_by_individuals,

 Type3_parall_by_pairs_of_individual

and Type4_parall_by_pairs_of_SNPs for NARAC data 39

3.9 The computing time on a large cluster for

 Type1_parall_by_SNPs, Type3_parall_by_pairs_of_individuals

and Type4_parall_by_pairs_of_SNPs 42

4.1 SNP interaction associations between SNP1 and SNP2 48

4.2 The example of data partitioning and distribution of ParallLogicReg 50

4.3 Sequential logic regression computing workflow

 and parallel logic regression computing workflow 52

4.4 The example of ParallLogicReg command 53

4.5 Results from logic regression using ParallLogicReg function for

 the Crohn’s disease data 54

4.6 The speedups of Crohn’s disease analyses using ParallLogicReg 55

4.7 The computing time on a large computer cluster 57

4.8 The speedups of ParallLogicReg on a large computer cluster 58

xiv

ABBREVIATIONS AND SYMBOLS

GWA = Genome-wide association

GWAS = Genome-wide association studies

WGA = Whole genome association

WGAS = Whole genome association studies

SNPs = Single-nucleotide polymorphisms

DNA = Deoxyribonucleic acid

CPUs = Central Processing Units

MPI = Message-passing interface

WTCCC = Wellcome Trust Case Control Consortium

NARAC = The Rheumatoid dataset form the North American

 Rheumatoid Arthritis Consortium

SISD = Single instruction, single data

SIMD = Single instruction, multiple data

MISD = Multilple instruction, single data

MIMD = Multilple instruction, multiple data

PCs = Personal Computers

UMA = Uniform memory access

NUMA = Non-uniform memory access

CC-UMA = Cache coherent UMA

SMP = Symmetric multiprocessor

GPUs = Graphics processing units

SPMD = Single program multiple data

MPMD = Multiple program multiple data

API = Application programming interface

BLAST = Basic local alignment search tool

HWE = Hardy-weinberg equilibrium

LAM/MPI = Local area multicomputer/message passing interface

CART = Classification and regression trees

SVMs = Support Vector Machines

xv

ABBREVIATIONS AND SYMBOLS (Continued)

L = A logic expression

G = Gene

500K = 500,000

1

CHAPTER 1

General Introduction

This chapter presents an overview of this thesis. It starts with the

background and rationale of genome-wide association (GWA) studies using parallel

computing. It also introduces the purposes, the scopes, the benefits and the summaries

of this project.

1.1 Background and rationale

In genetic epidemiology, genome-wide association studies (GWA

studies, or GWAS), also called as whole genome association studies (WGA studies,

or WGAS) are comparisons of the genomes of distinct individuals in a particular

species to find variations of genes among individuals. Different variations can be

associated with different traits, such as diseases. Researchers can use the information

to develop better strategies to detect, treat and prevent the diseases. In addition, in the

near future, if there are low cost and high efficiency genome-wide scans and other

novel technologies, health experts can apply the tools to determine from

individualized patients information whether there are possible hazards of causing

certain diseases. Also, when a patient becomes sick, the information can be used to

find the most effecient treatments with the least like probably to develop adverse

reactions for that particular patient [1].

GWA analyses succeed to conduct the research discovery of

associations of specific genes with diseases such as coronary heart disease, diabetes,

rheumatoid, Chrohn’s disease, biolara disorder and hypertension [2-3]. The genomic

discoveries of complex and non-Mendelian diseases are growing, and more than one

hundread loci for as many as fourty common diseases are powerfully determined and

replicated by GWA studies. The hundreds of thousands of the common forms of

genetic variants or single-nucleotide polymorphisms (SNPs) are assayed by high

throughput genotyping technologies and refered to diseases or health-related traits [4].

2

In the National Center for Biotechnology Information’s dbSNP database, closely

twelve million unique human SNPs have been coded a reference SNP (rs) number [5]

and marked as specific alleles (an alternate form of the SNPs). Also, summary allele

frequencies and other genomic information can be calculated from the human SNPs

[6]. In 118 articles, 56,411 significant SNPs related to diseases are found [7]. The

GWA method allows inquiry of the entire human genome at levels of solving

previously unachievable, in thousands of unrelated individuals, unconstrained by prior

hypotheses regarding genetic associations with diseases [8].

The conventional GWA study has 4 processes: (1) selection of a huge

number of individuals with the disorder or trait of interest and an eligible comparison

category; (2) Deoxyribonucleic acid (DNA) isolation, genotyping, and data checking;

(3) statistical analyses for associations between the SNPs passing suitable thresholds

and the disorder or trait; and (4) replication of identified associations [9]. In the

processes, case-control design has been often used to create GWA studies. In this

method, allele frequencies in patients with the disorder of interest are compared to

those in participants with disorder-free of interest. Case-control studies are frequently

easier and less expensive to create than studies applying other designs such as cohort

and trio designs [9]. Statistical analyses for GWA studies with both case and control

participants can be processed by Bioinformatic tools including GenABEL and

LogicReg. GenABEL is a specialized library package for GWA analysis of

quantitative, binary and time-till-event traits to find associations between the SNPs

[10]. GenABEL has been implemented in R, an open source statistics programming

language and environment [11-12]. LogicReg is a famous R library for logic

regression analyses [13] and can be applied to various regression/classification

problems, one of which is the analysis of SNP interactions with each gene related to

diseases. Nevertheless, statistical analysis of very large data sets is computationally

challenging and may take hours, weeks or months to complete. Examples include the

utilization of sophisticated adjustments for population stratification and relationship

structures, the estimation of linkage disequilibriums and the calculation of genome-

wide identity-by-state, haplotypic tests, permutation analyses and deviance of logic

regression analyses.

3

Parallel computing is an intuitive and powerful method for increasing

computational throughput. A task is separated into smaller tasks, and each is

processed independently, in parallel, using multiple Central Processing Units (CPUs)

or a cluster of computers. The outputs from each task must later be merged [14]. Most

tasks solved in GWA analysis are suitable for parallelization, due to their

computational independency, with parallelization achieved at the data level. For

example, association tests can usually be done separately for each SNP and/or a small

group of SNPs. Consequently, parallelization is a beneficial way to reduce the

computing time, with few overheads incurved in large-scale GWA analyses. In

addition, Rmpi [15] is an R library which provides various functions to parallelize

tasks in R using the message-passing interface (MPI) [16]. Rmpi employs various

functions to manage flow analysis in parallel environment, and is applicable for

employing not only multi-core CPUs on a single computer but also multi-core CPUs

distributed across many computers. However, it is very difficult and complicated for

users to apply a parallel computing library such an Rmpi to statistical analyses of

GWA studies because they need advanced programming skills to correctly partition

and distribute data, control and monitor tasks across the computers, and merge

outputs. For example, the analyses will be failed, if the users mistakenly partition the

large data. Another example is that the outputs from the computers are usually messy

and their order may be hard to follow.

1.2 Objectives

1.2.1 To propose the design of novel methods to speed up the computation of

large-scale GWA analyses with valid statistical outputs.

1.2.2 To present development of novel R libraries, which are as easy-to-use as the

more conventional GenABEL and LogicReg, based on the novel methods to

accelerate the computation of large-scale GWA analyses with effective statistical

outputs.

4

1.3 Scopes

1.3.1 Parallel computing is applied to the novel libraries to accelerate the

computing time of large-scale GWA.

1.3.2 Statistical analyses of the novel libraries are adapted based on GenABEL

and LogicReg

1.3.3 Rmpi is applied to parallelize statistical functions of novel libraries.

1.3.4 The novel libraries require Rmpi, GenABEL and LogicReg for data

analyses.

1.3.5 The Crohn’s disease GWAS dataset from the Wellcome Trust Case Control

Consortium (WTCCC) [17] and The Rheumatoid dataset form the North American

Rheumatoid Arthritis Consortium (NARAC) [18] are used to measure the

performance of the novel libraries.

1.4 Benefits

1.4.1 The novel methods implemented in the novel libraries can speed up GWAS

computing using parallel computing.

1.4.2 The novel libraries can be used to boost the performance of GWA analyses

and are user-friendly libraries like the other famous R libraries.

1.4.3 The user can use statistical outputs from the novel libraries to quickly find

genes associated to various diseases

1.5 Summary

 This thesis presents ParallABEL and ParallLogicReg to boost

performance of GWA analyses applying parallel computing. Both novel libraries can

be executed on not only multi-core CPUs on a single computer but also multi-core

CPUs or single-core CPU distributed across many computers (a computer cluster).

ParallABEL is a user-friendly parallelization of GenABEL whereas ParallLogicReg is

a user-friendly parallelization of LogicReg. With ParallABEL and ParallLogicReg

libraries, the users can immensely accelerate the computing time of GWA analyses.

5

Nonetheless, they can easily execute ParallABEL and ParallLogicReg, since they do

not need to be programming experts in parallel computing which concerns

partitioning and distributing data, controling and monitoring tasks, and merging

output files. Moreover, the statistical outputs from ParallABEL and ParallLogicReg

with any number of CPUs are as valid as those from GenABEL and LogicReg due to

their computational independency of GWA analyses at the data level.

6

CHAPTER 2

Parallel Computing

 This chapter presents overview of parallel computing. There are five

sections including overview, types of parallel computing, parallel computer memory

architectures, parallel programming models and parallel program design [19].

2.1 Overview

2.1.1 What is parallel computing?

 Basically, a computer program is coded for sequential computing to be

executed on a single computer having a single central processing unit (CPU). A

problem or a job is divided into a discrete series of commands. Then, the commands

will be running one after another. Figure 2.1 shows the concept and an example of

sequential computing [19].

 Nowadays, many programs need more computational power than

conventional sequential computing can offer. Consequently, parallel computing has

been developed to speed up the computational power by growing the number of CPUs

in a computer or a computer cluster. Parallel computing is a useful methodology,

enabling the concurrent handling of multiple computing resources to gain

computational throughput. In parallel computing, a problem or a job will be divided

into unassociated smaller tasks including series of commands. Each task will then be

executed freely using multiple or multi-core CPUs on a computer or a computer

cluster; after that, one of these CPUs will combine the outputs from all tasks. Figure

2.2 shows the concept and an example of parallel computing [19].

7

a) The concept of sequential computing [19]

b) The example of sequential computing [19]

Figure 2.1: The concept and the example of sequential computing. The CPU

sequentially executes N commands [19]

8

a) The concept of parallel computing [19]

b) The example of parallel computing [19]

Figure 2.2: The concept and the example of parallel computing [19]. The problem is

divided into four unassociated tasks containing series of commands. Each task will be

executed on each CPU [19]

 Parallel computing can be used to solve arduous problems not only in

Bioinformatics but also other fields of Science and Engineering such as Atmosphere,

Physics, Chemistry, Biology, Geology, Mechanical Engineering and Computer

Science [19].

9

2.1.2 Why apply parallel computing?

 When parallel computing is applied to any computer program, there

are many benefits, which are saving of computing time and/or cost, carrying out of

bigger problems, supporting of concurrency, and applying of non-local resources [19].

 First of all, parallel computing will save computing time and/or cost

since it can exploit more resources such as computers or CPUs than sequential

computing, with possible cost reduction. A cluster computer for executing parallel

computing can be set up from cheap and profitable components; in contrast, it is

expensive to build a single CPU providing the same or better performance [19].

 The second benefit is that parallel computing can figure out larger or

complicated problems, which can be solved by sequential computing slowly and

arduously. For instance, web search engines or databases perform millions of

transactions per second as parallel computing can help reducing their computing time

[19].

 In addition to save computing time or cost and carry out bigger

problems, supporting concurrency is another advantage of parallel computing.

Sequential computing can only execute one job at a time, while parallel computing

can be run many tasks concurrently. For example, users from anywhere can see and

do work “virtually” using the Access Grid (www.accessgrid.org) supporting a

worldwide cooperation network [19].

 Finally, parallel computing can access compute resources on a wide

area network or the Internet while local computer resources are unavailable. For

instance, SETI@home (setiathome.berkeley.edu) works with million computers in

253 countries, whereas Folding@home (folding.stanford.edu) consumes more than

450,000 CPUs universally [19].

2.2 Types of parallel computing

 Parallel computing includes many parts of von Neumann architecture.

The von Neumann architecture consists of four main components, which are memory,

control unit, arithemetic logic unit, input and output as shown in Figure 2.3 [19].

10

Figure 2.3: The von Neumann architecture [19]

 The program commands and data are stored in read/write random

access memory. The computers process data using the program commands. The

control unit conveys commands and data from memory, translates and sequentially

performs the commands to fulfil the programmed job. The aritmetic unit works on

arithmetic operations. Input/output is the interface to the human operator [19].

 Parallel computing can be grouped in various ways. The famous

grouping is called Flynn’s Taxonomy. It groupeds parallel computing using two

independent dimensions of instructions and data. Only one of two possible states,

single or multiple, can be included in each of dimensions. According to Flynn’s

Taxonomy, The four possible groupings can be shown in the matrix in Figure 2.4

[19].

SISD

Single instruction, single data

SIMD

Single instruction, multiple data

MISD

Multiple instruction, single data

MIMD

Multiple instruction, multiple data

Figure 2.4: Flynn’s Taxonomy matrix [19]

 First of all, SISD is the only sequential computing that only one

instruction stream and one data stream are executed by the CPU at any clock cycle. It

11

is the most common type of computing performed on older generation mainframes,

minicomputers and workstations, and most modern day Personal Computers (PCs).

SIMD is next type of parallel computing that parallel CPUs process the same set of

instructions but with different data sets on each at any supplied clock cycle. This type

is famous for operatingto operate on most modern computers. Another type of parallel

computing is MISD. Parallel CPUs perform different instruction streams with the

same data set. The example of applications for MISD is that multiple cryptography

algorithm tries to crack a single coded message. The last parallel computing type is

MIMD. Different instruction streams with various data sets may be executed on each

CPU. MIMD is commonly applied to supercomputers, networked parallel computer

clusters and “grids”, multi-CPUs computers, and multi-core PCs. Basically, SIMD

execution elements are contained in many MIMD [19].

2.3 Parallel computer memory architectures

 There are three kinds of parallel computer memory architectures

including shared memory, distributed memory and hybrid distributed-shared memory

[19].

2.3.1 Shared memory architecture

Shared memory architecture allows all CPUs to fetch any memory as

they appear in the global address space. Although each CPU shares the same memory

resource, it processes a task simultaneously and independently. The main

characteristic of shared memory architecture is cache coherent of which concept is

that the CPU can modify any memory location also seen by other CPUs. Based on

memory access times, shared memory architecture can be divided into two groups,

which are uniform memory access (UMA) and non-uniform memory access

(NUMA). UMA architecture called cache coherent UMA (CC-UMA) or symmetric

multiprocessor (SMP) computer is shown in Figure 2.5. Each CPU can equally access

the global memory and also take equal duration to do as well. Access and access time

for each CPU to memory is equally. NUMA architecture or CC-NUMA is shown in

12

Figure 2.6. NUMA is frequently contains two or more physically linked SMPs. The

memory of a SMP can directly be accessed by another SMP. However, access and

access time for each CPU to all memories are not equal. Memory access in a SMP is

faster than between SMPs. The benefit of this architecture is that global address space

supports a user-friendly programming viewing to memory. Also, data sharing between

tasks is speedy and uniform because of the adjacency of memory to CPUs.

Nevertheless, there are three disadvantages of the architecture. First, the lack of

scalability between memory and CPUs, increasing more CPUs can relatively gain

traffic on the shared memory-CPU path and for cache coherent systems. Another

disadvantage is that programmers need a special skill to synchronize constructs

accessing to global memory correctly. The last disadvantage is that it is difficult and

expensive to add new CPUs on a shared memory computer [19].

Figure 2.5: Uniform shared memory architecture (UMA) [19]

Figure 2.6: Non-uniform shared memory architecture (NUMA) [19]

13

2.3.2 Distributed memory architecture

Distributed memory architecture is another type of parallel computer

memory architectures as shown in Figure 2.7. Each CPU has its own memory.

Memory addresses in a CPU are not mapped for another CPU. Therefore, distributed

memory architecture does not support global address space across all CPUs and cache

coherence. The programmers must write a program to define how and when data is

communicated via Ethernet when a CPU requires an access to data located in control

of another CPU. The benefit of distributed memory architecture is that memory can be

increased easily with the number of CPUs. Each CPU can quickly fetch its own

memory without conflict or without overhead. Nonetheless, the programmers need a

special skill to manage data communication between CPUs [19].

Figure 2.7: Distributed memory architecture [19]

2.3.3 Hybrid distributed-shared memory architecture

The last architecture is hybrid distributed-shared memory as shown in

Figure 2.8. It is applied to the recent largest and fastest computers in the world. A

cache coherent SMP machine and/or graphics processing units (GPUs) can be shared

memory components, whereas the network of multiple SMP/GPU machines can be

the distributed memory components. Each machine can only access its own memory.

Hence, network communication is needed to transfer data from a SMP/GPU to

another SMP/GPU. The hybrid distributed-shared memory is widespread today and

tends to grow at the high end of computing in the future. Advantages and

14

disadvantages of hybrid distributed-shared memory can be inferred from both shared

and distributed memory architectures [19].

Figure 2.8: Hybrid distributed-shared memory architecture [19]

2.4 Parallel programming models

 There are seven programming models in common use including share

memory (without threads), threads, distributed memory/message passing, data

parallel, hybrid, single program multiple data (SPMD) and multiple program multiple

data (MPMD) [19].

2.4.1 Shared memory model (without threads)

In shared memory programming model, a common address space is

shared by tasks, and it can be read and written asynchronously. The shared memory

can be controlled by several mechanisms such as locks and semaphores. The

advantage of this model is that programmers do not have to explicitly specify the

communication of data between tasks. The downside of shared memory programming

model is that it is difficult to understand and to manage a data locality when multiple

CPUs use the same data [19].

2.4.2 Thread model

 The thread model is a type of shared memory programming that a

single process can have multiple and concurrent execution paths. A thread’s work can

be explained like a subroutine within the main program. Each thread can execute any

15

subroutine at the same time as other threads. Threads communicate with each other

via global memory (updating address locations). Synchronization is needed to ensure

that only one thread can update the global address at a time. POSIX threads and

OpenMP are the implementations of thread programming model [19].

2.4.3 Distributed memory/message passing model

 Message passing programming model is commonly applied in

distributed memory computers. Several tasks consume their own local memory while

processing. A set of tasks can be executed on the same physical machine or different

machines. Communication methods including sending and receiving messages are

used to exchange data between tasks as shown in Figure 2.9. Message passing

interface (MPI), an implementation of this model, is an application programming

interface (API) specification that allows processes to communicate with each other by

sending and receiving messages [19].

Figure 2.9: An example of message passing programming model [19]

16

2.4.4 Data parallel model

 In data parallel model, each task performs the same operation on a

different portion of the same data structure as shown in Figure 2.10. On shared

memory architecture, all tasks may fetch the data structure via global memory.

Whereas on distributed memory architecture the data structure is partitioned into

“chunks” in the local memory of each task [19].

Figure 2.10: An example of data parallel model [19]

2.4.5 Hybrid model

 A hybrid programming model contains more than one of the already

explained programming models. A combination of the message passing model (MPI)

with the thread model (OpenMP) is a general example of a hybrid programming

model as shown in Figure 2.11. Computationally intensive kernels using local or on-

node data are performed by thread, while communication between processes on other

nodes over the network are operated by MPI [19].

17

Figure 2.11: An example of hybrid programming model [19]

2.4.6 Single program multiple data (SPMD)

 SPMD is an advanced level programming model combined the

previously described programming models. All tasks perform their copy of the same

program concurrently but may use different data as shown in Figure 2.12. The

program can be threads, message passing, data parallel or hybrid. The SPMD

programming model using message passing or hybrid programming is the most

basically applied for multi-node clusters [19].

 Figure 2.12: An example of SPMD [19]

2.4.7 Mutilple Program Multiple Data (MPMD)

MPMD programming model is also an advanced level programming

model combined the previously described programming models. Each task performs a

different program at the same time, and may process different data as shown in Figure

2.13. Like SPMD, The program can be threads, message passing, data parallel or

hybrid [19].

18

 Figure 2.13: An example of MPMD [19]

However, these programming models are not specific to a certain type

of computer or memory architecture. For instance, the shared memory programming

model can be employed to a distributed memory computer. Physical memory of the

computer is distributed but presented to the user as a single shared memory (global

address space) called “virtual shared memory.” Another instance, distributed memory

programming model (MPI) can be applied to a shared memory computer. Tasks

directly access to global address space of all computers. Nonetheless, MPI is used to

send and receive massages over shared memory [19].

2.5 Parallel program design

2.5.1 Automatic vs. manual parallelization

Generally, manual parallelization is applied to design and develop

parallelable programs more than automatic parallelization. However, manual

parallelization is a time consuming, complex, error-prone and iterative process. For

this reason, various tools for automatic parallelization have been released, for

example, a compiler or pre-processor used to convert sequential programs into

parallel programs. Nevertheless, automatic parallelization is limited to a subset

(mostly loops) of code and may produce incorrect outputs and give poor performance

[19].

19

2.5.2 Understand the problem and the program

 Before develop the parallel program, we have to understand how the

problem to be solved in parallel. If we begin with a sequential program, we must

understand the existing code. Since not all problems can be solved by parallel

computing, we should check whether parallel computing can be applied before

starting to develop a parallel program. An example of a parallelizable problem is

sequence similarity finding using the basic local alignment search tool (BLAST). This

problem can be divided into a set of independent tasks. In contrast, an example of a

non-parallelizable problem is the Fibonacci sequence, which can not be divided to

independent tasks. Moreover, parallel computing should only be applied to the

program’s hotspots. Therefore, those sections of the program that consume little CPU

usage can be ignored [19].

2.5.3 Decomposition methods

 Two simple methods to create parallel tasks which are domain

decomposition and functional decomposition [19].

 In domain decomposition, the data related with the problem is to be

decomposed. After that, each parallel task will process only a portion of data as

shown in Figure 2.14. In addition, there are two data partitioning techniques which are

block and cyclic partitioning. Figure 2.15 shows the examples of one-dimension and

two-dimensions data decomposition using block and cyclic partitioning techniques

[19].

20

Figure 2.14: An example of domain decomposition

Figure 2.15: An example of domain decomposition using block and cyclic

partitioning techniques [19]

 Functional decomposition is another parallelization technique. In this

technique, the instruction set is decomposed into a set of tasks as shown in figure

2.16. Then, each task is processed on parallel machines [19].

21

Figure 2.16: An example of functional decomposition [19]

2.5.4 Load Balancing

 Load balancing is a method concerning task distribution to keep each

CPU busy working. Better load balancing can produce higher performance of parallel

computing. There are two approaches to achieve load balance. The first approach is

equal work partitioning that each task processes within need the same period of

computing time. Another approach is dynamic work assignment. An example of

dynamic work assignment is the task pool method. If a task is finished, the next task

in a queue will be executed [19].

2.6 Summary

Since ParallABEL and ParallLogic analyze genotype and phenotype

data containing SNPs and individuals, the libraries are developed based on the SIMD

parallel computing and distributed memory/message passing programming model.

ParallABEL and ParallLogic also can be run on shared memory architecture and

distributed memory architecture. Manual parallelization is applied to design and

develop the libraries.

22

CHAPTER 3

Speeding up SNP Association Analyses Applying Parallel Computing

for GWA Studies

3.1 Introduction

 GWA analysis [9] is a well established and powerful method for

identifying loci associated with variations of complex genetic traits such as common

diseases. For non-Mendlian consideration, GWA studies are more effective than

family-based linkage studies, which have arduously assembled results related to

several hundred markers throughout the genome. Eventhough family-based linkage

studies can identify genes of large effect in Mendelian diseases such as

neurofibromatosis, it limits to only common diseases like asthma [20]. The

disadvantages of linkage studies are low proficiency for complex disorders influenced

by multiple genes, and that it is hard to identify a causative gene due to the large size

of the chromosomal regions shared among family members. GWA studies are

developed based on the benefits of candidate genes, family linkage studies and the

expanding knowledge of the relationships among SNP variants created by the

International Hapmap Project [21-22]. GWA studies aim to acquire the important

differences among individuals and associate them to health and illness. Hundreds of

new genes have been implicated in human health and diseases during the last few

years in various GWA studies [23]. GWA analyses succeed to lead discovery of

associations of specific genes with diseases such as coronary heart disease, diabetes,

rheumatoid, Chrohn’s disease, biolara disorder and hypertension [2-3]. The case-

control design has often been used to create GWA studies. In this method, allele

frequencies in patients with the disorder of interest are compared to those in

participants with disorder-free of interest. Case-control studies are frequently easier

and less expensive to create than studies applying other designs [9]. In a typical study,

hundreds of thousands of the common form of genetic variants or SNPs are assayed

by high throughput genotyping technologies in order to detect genetic risk factors [4].

23

In the National Center for Biotechnology Information’s dbSNP database, closely

twelve million unique human SNPs have been coded a reference SNP (rs) number [5]

and marked as to specific alleles (alternate form of the SNPs). Also, summary allele

frequencies and other genomic information can be calculated from the human SNPs

[6]. There are 56,411 significant SNPs from 118 articles related to diseases [7].

Basically, the GWA study has 4 processes: (1) selection from a huge

number of individuals with the disorder or trait of interest and an eligible comparison

category; (2) DNA isolation, genotyping, and data checking; (3) statistical analyses

for associations between the SNPs passing suitable thresholds and the disorder or

trait; and (4) replication of identified associations [9].

Figure 3.1 shows the statistical output for genome-wide association

study of inflammatory bowel disease. The IL23R gene has two blocks of linkage

disequilibrium. The association signals are strongest in the centromeric block

containing exons 5 to 11, whereas markers in the block encompassing the IL12RB2

gene do not demonstrate significant association [24].

24

Figure 3.1: Associations in the IL23R gene region identified by a GWAS of

inflammatory bowel disease [9].

GenABEL is a specialized library package for GWA analysis [10]

implemented in R, an open source statistics programming language and environment

[11-12]. GenABEL enables GWA analysis to be done using a regular desktop

computer due to its efficient data storage and memory management. Nevertheless,

analysis of very large data sets is computationally challenging and may take hours or

25

weeks or months to complete. Examples include the utilization of sophisticated

adjustments for population stratification and relationship structures, the estimation of

linkage disequilibriums and the calculation of genome-wide identity-by-state,

haplotypic tests, and permutation analyses.

To increase the computational throughput, a user can partition their

data into sets, and perform the analysis of the sets across a network of computers; a

concept known as parallel and/or distributed computing. It is arduous acquiring the

necessary programming skills to correctly partition and distribute data, control and

monitor tasks on clustered computers, and merge output files. Occasionally, a data set

may fail to be processed, e.g. if the user did not partition the data into small enough

subsets to be processed on a particular machine. Also, the outputs from the computers

may be scattered and their order is hard to follow.

 Parallel computing is an intuitive and powerful method for increasing

computational throughput. A task is separated into smaller tasks which are processed

simultaneously on multiple Central Processing Units (CPUs) or a cluster of

computers. The outputs from each task must later be merged [19]. A general

architecture for parallel computing is shown in Figure 3.2.

26

Figure 3.2: The user can submit tasks to the cluster of computers via the Internet.

Once the user submits a job to the computer cluster, the front-end node schedules and

distributes the smaller partitioned tasks to be processed on the compute nodes. The

output from each compute node will then be merged by the front-end node.

 Most tasks solved in GWA analysis are suitable for parallelization due

to their computational independency so that parallelization can be achieved at the data

level. For example, association tests can usually be done separately for each SNP

and/or a small group of SNPs. Consequently, parallelization is a beneficial way to

reduce the computing time, with few overheads incurved in large-scale GWA

analyses.

 Several attempts had been made to parallelize genetic association

analyses. Grid Engine, a cutting-edge parallel tool, can schedule parallel tasks

involving genetic association analysis programs [25] such as FBAT [26] and

UNPHASED [27]. The approach, first proposed by Mishima et al., is based on non-

parallel code combined through process-based parallelization. The downside is that

the user still needs to monitor when each task is finished, and when the outputs from

all the tasks can be merged. Moreover, each process may take a very long time to

finish, and load balance can be problematic. A granularity problem (a high

27

computation to communication ratio) may occur. However, using higher power

compute nodes or code parallelization are possible solutions. The R/parallel package

has been used to automate loop parallel execution, but the application must run on a

single computer with multi-core CPUs, and does not currently support cluster

computing [28]. Its inclusion of cluster computing would eliminate the computing

time limit of the package. Misawa and Kamatani [29] developed the ParaHaplo

package for haplotype-based whole-genome association studies using parallel

computing. It is aimed at correcting multiple comparisons in multiple SNP loci in

linkage disequilibrium. Also, Ma et al. [30] developed EPISNPmpi, a parallel system

for epistasis testing in large scale GWA analysis. However, there are other statistical

analyses requirements in GWA studies, such as obtaining statistics for a particular

SNP or a trait, association test, characterizing an individual in the study, and pair-wise

statistics between individuals.

 Rmpi [15] is an R library which provides various functions to

parallelize tasks on R using the MPI (Message-Passing Interface) [16]. Rmpi employs

various functions to manage flow analysis in parallel environment, and is applicable

for employing multi-core CPUs distributed across many computers, not only multi-

core CPUs on a single computer. However, it is difficult, if not impossible, for a non-

programmer to write a parallel Rmpi program. Therefore, SPRINT [31] was

developed to implement parallel R functions. Although users can use SPRINT easily,

it does not specifically support GWA studies.

 In this chapter, we present the development of our ParallABEL library,

a new R library for parallelization of GWA studies based on Rmpi and GenABEL.

ParallABEL aims to speed up the computation of GWA studies for various statistical

analysis requirements and also simplify analysis parallelization. With ParallABEL,

the users do not need to be experts in parallel programming, no need to know about

partitioning and distributing data, controling and monitoring tasks, and merging

output files.

28

3.2 Methods

3.2.1 GWA Function Grouping

Statistical analyses in GWA studies can be categorized into four

groups based on the nature of the statistics computed and types of data used. These

four groups can be parallelized in distinct ways. Table 3.1 shows the names and

descriptions of the GenABEL functions in each group. The first group contains

statistics computed for a particular SNP, or a trait, such as the SNP characterization

statistics (e.g. call rates, hardy-weinberg equilibrium (HWE) testing [10]), produced

by GenABEL’s summary.snp.data or association test statistics (the qtscore, mlreg and

mmscore GenABEL functions [10]). The second group holds statistics characterizing

an individual in the study, such as, summary statistics of genotype quality for each

sample (obtained with the GenABEL perid.summary and hom GenABEL functions

[10]). The third group consists of pair-wise statistics derived from analyses between

each pair of individuals in the study, including genome-wide identity-by-state and

genomic kinship analyses. This is one of the most computationally intensive analyses,

obtained through GenABEL’s ibs function [10]. The final group concerns pair-wise

statistics derived for pairs of SNPs, such as linkage disequilibrium characterisation

(the dprfast, rhofast and r2fast functions [10]). While the number of SNP pairs is

generally very large, analyses are usually limited by their pair-wise physical distance,

making them less demanding than pair-wise individual analyses, such as IBS

computations [10].

29

Table 3.1: The names and descriptions of GenABEL functions in each group

function name of GenABEL Description group

summary.snp.data Provides summary of observed genotypes,

allelic frequency, genotypic distribution, P-

value of the exact test for HWE and

chromosome 1

qtscore Fast score test for association between a trait

and genetic polymorphism 1

mlreg Linear and logistic regression and Cox

models for genome-wide SNP data 1

mmscore Score test for association between a trait and

genetic polymorphism, in samples of related

individuals 1

perid.summary Produces call rate and heterozygosity per

person 2

hom Computes average homozygosity (inbreeding)

for a set of people, across multiple markers.

Can be used for Quality Control (e.g.

contamination checks) 2

ibs Given a set of SNPs, computes a matrix of

average IBS for a group of people 3

dprfast Given a set of SNPs, computes a matrix of D' 4

rhofast Given a set of SNPs, computes a matrix of

rho 4

r2fast Given a set of SNPs, computes a matrix of r2 4

We have developed the ParallABEL library to parallelize the serial

functions of these groups using Rmpi library. The four implementation groups are

named Type1_parall_by_SNPs for the first group, Type2_parall_by_individuals for

the second group, Type3_parall_by_pairs_of_individuals for the third group and

Type4_parall_by_pairs_of_SNPs for the fourth group.

30

3.2.2 Data Partitioning

An advantage of ParallABEL is usage simplicity, hiding otherwise

tedious scripts for file management monitoring tools. These functions not only

partition input data with automatic load balancing, but also gather output from each

CPU automatically. Load balancing is critical because an unbalanced work load will

result in higher loads for particular CPUs, which eventually undermines the overall

performance.

The input data of Type1_parall_by_SNPs are SNPs equally partitioned

into P subsets (where P is the number of available CPUs). If the number of SNPs is

M, the number of SNPs in a subset is:

num_SNPs = floor(M/ P)

If there are M SNPs and 4 CPUs, the SNPs will be partitioned into 4

smaller subsets. Each contains M/4 SNPs as shown in Figure 3.3.

Figure 3.3: Data partitioning for Type1_parall_by_SNPs

Type2_parall_by_individuals when M = 800 and P = 4

31

However, the last subset to be generated may contain more SNPs than

others, caused by integer division. For example, if there are 801 SNPs and 4 CPUs,

Subset 1 to Subset 3 will contain 200 SNPs, but Subset 4 will have 201 SNPs. The

SNPs in each subset will be executed on separate CPUs.

The input data for Type2_parall_by_individuals are individuals,

partitioned like Type1_parall_by_SNPs.

The input data for Type3_parall_by_pairs_of_individuals is a pair of

individuals, and performs a more complicated partitioning than

Type1_parall_by_SNPs and Type2_parall_by_individuals. The data is divided until

the number of CPUs is equal to, or less than, the number of subsets for load balancing

on each CPU. If the number of CPUs is equal to the number of subsets, then each

CPU executes an individual pair of each subset. If the number of CPUs is less than the

number of subsets, then each CPU executes an equal number of individual pairs

(where it is possible). Figure 3.4 shows Type3_parall_by_pairs_of_individuals with N

individuals. The statistics is calculated from the cross operation of an individual in a

row with an individual in a column. The input data is partitioned into 4 subsets using

the data partitioning shown in Figure 3.4A. However, if the number of CPUs is more

than 4, the subsets will be partitioned again. Subset 1 and Subset 4 are split into 8

subsets during the first stage of the data partitioning, while Subset 2 and Subset 3 are

divided into 8 subsets by row, as shown in Figure 3.4B. There are 16 subsets

altogether in the second stage of the data partitioning.

32

Figure 3.4: A) The first data partitioning for Type3_parall_by_pairs_of_individuals

when the number of individuals = N. There are 4 equal subsets. B) The second data

partitioning for Type3_parall_by_pairs_of_individuals when the number of

individuals = N. There are 16 equal subsets.

The SNPs input of Type4_parall_by_pairs_of_SNPs will be partitioned

in a similar way to Type3_parall_by_pairs_of_individuals.

3.2.3 Implementation

The workflow for GWA analysis on a single CPU or computer is

presented in Figure 3.5A. This workflow runs properly. The genotype and phenotype

data (as shown in Table 3.2 and Table 3.3 respectively) is processed by the GenABEL

library that works under the R program. GenABEL sequentially processes the raw

data, producing statistical data as its outputs.

33

Figure 3.5: A) Sequential GWA Computing Workflow, which runs on a single CPU

or computer. B) Parallel GWA Computing Workflow that runs on a multiprocessor or

a set of computers.

Table 3.2: The example of genotype data executed in GenABEL and ParallABEL

snpid chrom chromEnd strand id199 id287 id300

rs7435137 1 4259040 - CT CT CT

rs7725697 3 10806991 - CC CG CC

rs664063 2 7288020 - GG GC GG

rs4670072 X 13387482 + AA -- AA

rs546570 2 6120257 + AA AA AA

rs7908680 1 2311762 - CC CA CC

rs166732 1 4716343 - TT TG TT

rs4257079 1 3455895 - AA AA AA
rs5150804 2 7178160 + AG AG GG

34

Table 3.3: The example of phenotype data executed in GenABEL and ParallABEL

id sex age disease height weight

id199 1 59 1 164 80

id287 0 43 1 169 139

id300 1 42 1 177 81

This sequential workflow may take a very long time to produce some

demanding statistical analyses. Our novel parallel workflow for producing statistical

data in GWA studies shown in Figure 3.5B can save the computing time. The

genotype and phenotype data (as shown in Table 3.2 and Table 3.3 respectively) is

passed for distribution to the SUN Grid Engine [32], a job scheduler. It queues jobs

and assigns them to CPUs in a cluster. LAM/MPI (Local Area

Multicomputer/Message Passing Interface) [33] has various functions which can be

called by Rmpi to parallelize R operations. ParallABEL parallelizes GenABEL using

this Rmpi library. The statistical data from this workflow has been validated by

comparing it with the outputs from the non-parallel approach. ParallABEL runs not

only on Linux cluster, such as the Rocks Cluster Distribution, but also on any

Operating System that supports R and LAM/MPI or Open MPI, such as the Unix and

Solaris operating systems. It can also run on computer clusters not using the Sun Grid

Engine but it will fully occupy the CPUs until the end of the program, so that other

applications can not share the execution time of the occupied CPUs. However,

normally the administrator will not allow a user to run a parallel program without

utilizing a queuing process from the Sun Grid Engine or a scheduler.

ParallABEL is developed based on SIMD parallel computing and

distributed memory/message passing programming model. ParallABEL can also be

run on shared memory architecture and distributed memory architecture. Manual

parallelization is applied to design and develop ParallABEL for more flexibility in

programming.

To parallelize GWA studies, ParallABEL running on the front-end

node partitions input data into smaller subsets so that tasks can be fairly distributed

among the CPUs. It sends tasks to idle CPUs on compute nodes. When the

35

computation on a compute node has finished, the front-end node will send another

task to the idle CPU – a cycle that continues until all the tasks are completed, which is

known as the ‘task pull’ method [34]. When all the tasks are finished, the front-end

node automatically merges all the outputs.

The task pull template [35] has been adapted for all types of

ParallABEL. The example of Type1_parall_by_SNPs is shown in the source code of

Appendix D. To parallelize Type1_parall_by_SNPs, there are five steps: (1) task

separation (2) task distribution; (3) task computation in compute nodes; (4) result

storing; and (5) result combination. The detail of each step can be seen in 3.2.2 Data

Partitioning section, and the source code of Type2_parall_by_individuals,

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs has been

published at https://r-forge.r-project.org/R/?group_id=505.

Users can use ParallABEL to parallelize GenABEL GWA functions as

easily as using GenABEL for sequential analyses. An example of the mlreg.p

command sequentially run on a CPU is shown in Figures 3.6A and 3.7A. The

executable command that parallelizes mlreg.p to run on multiple CPUs using

Type1_parall_by_SNPs is shown in Figures 3.6B and 3.7B.

36

Figure 3.6: A) Executing the mlreg.p function sequentially on a CPU B) Parallelizing

the mlreg.p function on more than one CPU. The user supplies the function name and

number of available CPUs to the parallel function. However, if the user does not

specify the number of CPUs, ParallABEL will automatically get it from Sun Grid

Engine or from the default value (2).

37

Figure 3.7: A) Execute the mlreg.p function sequentially on a CPU B) Parallelize the

mlreg.p function on more than one CPU.

3.3 Results

Our computer cluster, Hanuman, runs Rocks Cluster Distribution

version 4.3 which includes the SUN Grid Engine version 4.3 [36]. The cluster consists

of 5 IBM servers xSeries 336s, comprising of a front-end node and four compute

nodes. All servers have 2 SINGLE-CORE Intel Xeon (2.8 GHz) CPUs and 4 GB

RAM. The front-end node and all the compute nodes are connected through an

Ethernet switch, and the user can connect to the system via the Internet. The cluster

provides LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi library version 0.5-

6, and GenABEL version 1.4-2, which are utilized as components by our ParallABEL

library.

38

The North American Rheumatoid Arthritis Consortium (NARAC) data

is part of a dataset employed to observe associations between disease and variants in

the major-histocompatibility-complex locus [17]. The NARAC genotype data

contains 545,080 SNPs from 2,062 individuals. The data was used to measure the

performance of ParallABEL by employing 868 individuals for cases, and 1,194

individuals as controls.

Trace results from Type1_parall_by_SNPs,

Type2_parall_by_individuals, Type3_parall_by_pairs_of_individuals, and

Type4_parall_by_pairs_of_SNPs for the NARAC data are shown in Figure 3.8.

Type1_parall_by_SNPs was executed by the GenABEL mlreg function,

Type2_parall_by_individuals was executed by the GenABEL hom function,

Type3_parall_by_pairs_of_individuals was executed by the GenABEL ibs function,

and Type4_parall_by_pairs_of_SNPs was executed by the GenABEL r2fast function.

ParallABEL reduced the computing time for Type3_parall_by_pairs_of_individuals,

especially with 8 CPUs. The Type3_parall_by_pairs_of_individuals executing speed

on eight CPUs was approximately seven times faster than on one CPU. On a single

CPU, the complete analysis took 8.1 hours, but only 1.1 hours with 8 CPUs. The

computing time for Type1_parall_by_SNPs also tends to be like that for

Type3_parall_by_pairs_of_individuals.

39

Figure 3.8: Trace results from Type1_parall_by_SNPs, Type2_parall_by_individuals,

Type3_parall_by_pairs_of_individuals, and Type4_parall_by_pairs_of_SNPs for

NARAC data. When Type1_parall_by_SNPs is executed by the GenABEL mlreg

function, Type2_parall_by_individuals is executed by the GenABEL hom function,

Type3_parall_by_pairs_of_individuals is executed by the GenABEL ibs function, and

Type4_parall_by_pairs_of_SNPs is executed by the GenABEL r2fast function. If

there is only one CPU, then the data will be analysed using GenABEL. If there are

more than one CPU, the data will be analysed using ParallABEL package.

40

The computing time for the sequential version of

Type2_parall_by_individuals can be very short (e.g. 20 seconds). While the parallel

version took longer (5.3 minutes for 2 CPUs), due to the overhead of data

partitioning, data distribution, and data merging. Data distribution can be time

consuming because the data must be saved on the front-end node before the compute

nodes can load it, and the front-end node must also spend time communicating with

the compute nodes. In addition, ParallABEL is tailored to quickly retrieve subsets of

SNPs, as this is a typical GWA scanning procedure, but is much less efficient in

retrieving subsets of individuals, which is less typical. Thus, the overhead of data

partitioning in subsets of individuals prevailed over the gain achieved by parallel

processing. These results highlighted a place where ParallABEL data storage and

processing is ineffective. It is a waste of time to speed up Type2_parall_by_individual

because the computation of Type2_parall_by_individuals on a CPU is fast.

Type4_parall_by_pairs_of_SNPs was executed by the GenABEL

r2fast function. A single CPU can not pass all the SNPs in the NARAC data to r2fast

due to CPU memory limitations so the analysis was done separately for each

chromosome. Even then, a single CPU can not call r2fast with a chromosome with

more than 10,000 SNPs, which affects 20 chromosomes in the data. However,

ParallABEL can run r2fast with a chromosome with more than 10,000 SNPs by

employing a set of CPUs. The chromosome data is automatically partitioned based on

the number of SNPs as shown in Table 3.4.

Table 3.4: The least number of subsets of each chromosome partitioned by the

number of SNPs

Chromosome name Number of SNPs Number of subsets

19,20,21,22,X,Y 11-14,000 4

9,11,12,13,14,15,16,17,18 14,001-28,000 16

1,2,3,4,5,6,7,8,10 28,001-56,000 64

If the number of SNPs for a chromosome is between 11 and 14,000,

then the data will be partitioned into at least 4 balanced subsets. If the number of the

SNPs is between 14,001 and 28,000, then the data wil be divided into at least 16

41

balanced subsets. If the number of SNPs is between 28,001 and 65,000, then the data

will be split into at least 64 balanced subsets. The data will be automatically

partitioned until the number of CPUs is equal to, or less than, the number of subsets

for load balancing on each CPU. The trace example results for

Type4_parall_by_pairs_of_SNPs of NARAC data are shown in Figure 3.8.

Type4_parall_by_pairs_of_SNPs took only 1.4 days to execute on

eight CPUs, indicating that time-saving with ParallABEL is linearly correlated to the

number of nodes. This suggests that with more SNPs, more computing time will be

saved by ParallABEL.

If the number of available CPUs is P, the parallel computing time for P

CPUs is time_P_cpus, and the serial computing time for a CPU is time_a_cpu; the

overhead for P CPUs will be:

overhead = time_P_cpus – time_a_cpu/P

Different numbers of CPUs produce different overheads depending on

data partitioning, network communication, and data merging. However, the overheads

can be predicted based on the overhead of eight CPUs shown in Figure 3.8. The

computing time on a large cluster for Type1_parall_by_SNPs,

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs

extrapolated from Figure 3.8 applying the above overhead equation are shown in

Figure 3.9. It is clear that ParallABEL also saves the computing time on a large

cluster. In addition, the time-saving rates for these types will be much increased when

the number of CPUs is in between 2 and 50. Nevertheless, the time-saving rates will

be slowly increased when the number of CPUs is greater than 50. This applies to the

particularly and relatively small data set analyzed here. With bigger data sets, the

time-saving rates can be larger. However, the user should optimize the number of

CPUs according to the gain in computational throughput.

42

Figure 3.9: The computing time on a large cluster for Type1_parall_by_SNPs,

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs

extrapolated from Figure 3.8 applying the overhead equation.

3.4 Discussion and summary

We have presented the ParallABEL library which employs parallel

computing to reduce computing time for data intensive tasks. ParallABEL can run on

clustered computers that support LAM/MPI and R. With clustered computers, CPUs

or even personal computers can be easily added as new compute nodes. ParallABEL

runs on both distributed and shared memory architectures as it was developed with

MPI. For a distributed memory architecture, MPI usually uses a computer network for

task communications. For a shared memory architecture, MPI employs shared

43

variables instead of the network for task communications. This means that a

distributed memory architecture may exhibit more overhead than a shared memory

architecture (for example, eight single-core CPUs versus a single eight-core CPU). In

our experiments, Type1_parall_by_SNPs took only 6 minutes to execute on a shared

memory architecture but 14 minutes on a distributed memory architecture. The

overhead of the shared memory architecture was tested on a server, which has 2

QUAD-CORE Intel Xeon(R) (2.8 GHz) CPUs and 8 GB. The server runs on CentOS

version 5.4, and provides Open MPI version 1.4.1. Whereas, the overhead of the

distributed memory architecture was measured on the computer cluster comprising of

a front-end node and four compute nodes. Each node has 2 SINGLE-CORE Intel

Xeon (2.8 GHz) CPUs and 4 GB RAM. Although the specification of the shared

memory server is lower than the specification of the distributed memory cluster, its

performance is still better than the performance of the distributed memory cluster.

ParallABEL allows the user to specify the number of CPUs employed

for data execution. We expect the computational performance to increase linearly with

the number of CPUs when using Type1_parall_by_SNPs,

Type3_parall_by_pairs_of_individuals, and Type4_parall_by_pairs_of_SNPs. In

addition, ParallABEL using multiple CPUs is faster than GenABEL using only one

CPU. Computing times for Type3_parall_by_pairs_of_individuals and

Type4_parall_by_pairs_of_SNPs are longer than those for Type1_parall_by_SNPs

because the input data are pairs of individuals and SNPs respectively, which are much

larger than the SNPs input for Type1_parall_by_SNPs. In addition, if the number of

SNPs is n, then the number of inputs for Type1_parall_by_SNPs will be n but the

number of inputs data for Type4_parall_by_pairs_of_SNPs will be n*n. ParallABEL

can save much more computational time when utilizing

Type3_parall_by_pairs_of_individuals and Type4_parall_by_pairs_of_SNPs than

when using Type1_parall_by_SNPs. Therefore, as the amount of input data increases,

the time saved by ParallABEL also increases. ParallABEL does not only reduce the

computing time but also is as easy-to-use as the more conventional GenABEL.

ParallABEL can not reduce the computing time when the data size is

too small, such as the result shown when employing the hom function of

Type2_parall_by_individuals, because the computing time is too short. In that case,

44

the overheads of data partitioning and output merging overwhelm the computational

performance.

45

CHAPTER 4

Speeding up SNP Interaction Analyses Based on Logic Regression

Applying Parallel Computing for GWA Studies

4.1 Introduction

Logic regression, developed by Ruczinski et al., is a flexible method of

regression with Boolean combinations of binary covariates as explanatory variables

[37]. It has certain advantages over other analyses, such as Classification and

Regression Trees (CART) [38] and random forests [39], which relate only the main

effects and simple (two to three-way at most) interactions between predictors. The

strength of logic regression is its capacity for finding complex interactions between

predictors. Logic regression can be applied to various regression/classification

problems, one of which is the analysis of Single Nucleotide Polymorphism (SNP)

interactions.

 SNPs refer to genetic variations at the single nucleotide level. There

are more than one million SNPs in the human genome. From a large set of SNP

measurements, finding SNPs whose variations are associated with a disorder is an

important analytic goal of bioinformatics. Such analyses can help researchers discover

genes that predispose individuals to a higher risk of the disorder. In addition, SNP

analyses may assist researchers to explain possible heterogeneity in individuals'

responses to a certain medicine [40].

Schwender and Ickstadt suggested that it is usually not an individual

SNP that plays an imperative role in the risk of a complex disorder. Rather, it is SNP

interactions that strongly influence the risk of a complex disorder [41]. This suggests

that SNP interactions may identify high risk groups [42], to whom an intervention

strategy for decreasing the risk or detecting the disorder early for treatment may be

considered. Logic regression can be employed to search for multi-way SNP

interactions, e.g., 4-way interactions: such an analysis is often difficult with other

methods including random forests, CART, and Support Vector Machines (SVMs) [41,

46

43]. For this reasons, logic regression is a powerful methodology for identifying SNPs

interactions associated with risks of complex disorders.

LogicReg is an R library for logic regression analyses [13]

implemented in R [11], a well-known open source statistics programming language

and environment. To allow a large number of permutation rounds for a large dataset

such as ones from GWAS, it is advantageous to create an R-library that allows

parallel computation of logic regression. For instance, for the gene-level SNP analysis

of Crohn’s disease dataset from the Wellcome Trust Case Control Consortium

(WTCCC) including approximately 13,500 genes, we need more than 400,000 runs of

logic regressions when SNP interactions within each gene must be analyzed with

thirty permutations. Moreover, to the size of the dataset is large: for example, the

WTCCC Crohn’s disease dataset includes 4,680 individuals. Accordingly, without

parallel computing, the logic regression analysis requires massive computing time,

hours to months, depending on the size of the dataset being analyzed and the

computer capacities.

Possible ways to speed up the computing time of any program include

editing of the algorithm and using parallel computing. Since it is not simple to alter

the logic regression algorithm, the best way to speed up the logic regression analysis

is to employ parallel computing. Parallel computing is a useful methodology, enabling

concurrent handling of multiple computing resources to gain computational

throughput. In parallelization, a problem or a job is partitioned into unassociated

smaller tasks including series of commands. Each task will then be executed freely

using multiple Central Processing Units (CPUs) on compute nodes of a cluster; after

that, one of these CPUs on the front-end node will combine the outputs from all tasks

[44].

Rmpi [15], an R library, supports many functions to parallelize broken

tasks on R using the MPI (Message Passing Interface) [16]. Besides, Rmpi can be

applied to control the flow of computation in a parallel environment with both single-

core CPUs and multi-core CPUs, and on a single computer or on a computer cluster.

Nonetheless, it is arduous for general users to write a parallel Rmpi program including

partitioning and distributing data, controlling and monitoring tasks, and merging

output files.

47

In this chapter, we propose a development of ParallLogicReg, a new R

library for parallelization of logic regression analyses using Rmpi. ParallLogicReg

aims not only to accelerate the computation of logic regression analyses, but also

simplify analysis parallelization. Moreover, using ParallLogicReg, users do not need

to be proficient with parallel programming because it will automatically partition and

distribute data, control and monitor tasks across the computers, and merge output

files.

4.2 Methods

4.2.1 Logic regression analyses

Logic regression aims to find Boolean combinations of the predictors.

We consider that all predictors are binary (0 or 1, yes or no), for identification of SNP

associations. Specifically, the predictor Xi = 1 if the ith SNP has a certain genotype,

and Xi = 0 otherwise. Each Boolean combination of SNPs could use three operators,

� (AND), � (OR), and c (NOT) to form a logic expression, Lj, j = 1,…, t such as:

Lj = (X1 � X2) � X3
c

This example of Boolean logic expression means:

Lj = (SNP1 � SNP2) � SNP3
c

 Figure 4.1 shows the example of SNP interaction associations between

SNP1 and SNP2 that both SNP1 and SNP2 high risk; or either SNP1 or SNP2 high risks.

48

Figure 4.1: SNP interaction associations between SNP1 and SNP2 [45].

Logic regression uses L’s instead of X’s in its linear predictor and takes

the form:

 f(E[Y]) = β0 + Σ βj Lj

where Y is a response variable, f is a link function, and parameters βj, j

= 0,…, t are concurrently estimated with the search for the Boolean expressions Lj’s

in the above equation that minimizes the scoring function related with this model type

[37].

4.2.2 Data partitioning and distribution

The computation of logic regression is demanding as it explores a large

space for an optimal set of logics and needs a large number of permutation tests to

assess signals in the data. Hence, parallel computing is very important as it decreases

the computing time. To parallelize a logic regression analysis, ParallLogicReg

t

j = 1

49

running on the front-end node automatically partitions the input dataset into G

subsets, where G is the number of genes to be analyzed. The ‘task full’ approach [34]

is used to keep load balancing when ParallLogic is being executed. Also, this

approach is not sensitive to the number of CPUs or compute nodes .The front-end

node sends these subsets to idle CPUs on compute nodes. The example of data

partitioning and distribution are shown in Figure 4.2. If there are four compute nodes,

and each compute node has only one CPU, SNPs of G1 - G4 (Gene1 - Gene4) will

separately be executed on these compute nodes as shown in Figure 4.2A. When the

execution of the second compute node has finished, the front-end node will send the

SNPs of the next gene (G5) to it – a cycle that proceeds until all the genes are sent as

shown in Figure 4.2B. After all the compute nodes has finished their tasks, the front-

end node will combine all the outputs automatically.

50

Figure 4.2: A) The data is partitioned into fifteen subsets, and each subset contains

SNPs of a gene. G1 - G4 subsets will then be executed on different compute nodes. B)

The G5 is sent to be executed on the second compute node after the execution of G1

has finished.

51

4.2.3 Implementation

The sequential workflow for a logic regression analysis on a single

CPU/computer is shown in Figure 4.3A. The genotype and phenotype data are

analyzed by the LogicReg library, working under the R program. LogicReg

sequentially analyzes the raw data, and produces statistical data (e.g., deviance) as

outputs.

Since this sequential workflow generally takes great computing time to

conduct statistical analyses, we have developed a novel parallel workflow for

ParallLogicReg to save the computing time. The novel parallel workflow in a logic

regression analysis is shown in Figure 4.3B. A job scheduler such as the SUN Grid

Engine [32] distributes the genotype and phenotype data to each compute node on a

cluster to queue jobs and reserve a set of CPUs required by the employed MPI

(Message Passing Interface) library such as LAM/MPI (Local Area

Multicomputer/Message Passing Interface) [33] and Open MPI [46]. The MPI library

has various functions called by Rmpi to parallelize R functions. ParallLogicReg uses

this Rmpi library to parallelize LogicReg. In addition, ParallLogicReg partitions a job

into several smaller tasks on a front-end node using basic R commands and distributes

them with genotype and phenotype data to the reserved CPUs using Rmpi. These

CPUs execute the tasks on compute nodes and call the LogicReg. Later, the outputs

will return to Rmpi and be combined by ParallLogicReg on the front-end node. The

statistical data from the parallel workflow can be approved by comparison with the

statistical data from the sequential workflow. ParallLogicReg can run on any

Operating System supporting components for the parallel workflow such as Linux and

Solaris.

52

Figure 4.3: A) Sequential logic regression computing workflow runs on a single CPU

or a computer. B) Parallel logic regression computing workflow runs on a multiple

CPUs or a set of computers.

ParallLogic is designed based on SIMD parallel computing and

distributed memory/message passing programming model and can be executed on

shared memory architecture and distributed memory architecture. Manual

parallelization is applied to design and develop ParallLogic.

Users can easily use ParallLogicReg to parallelize logic regression

function. The executable command that parallelizes logic regression on multiple

CPUs is shown in Figure 4.4. To run the function, the number of CPUs can be

specified in the Sun Grid Engine.

53

Figure 4.4: The example of parallel execution used to analyze Crohn’s disease data

when gene ids were between one and ten, and the numbers of permutations and

iterations were twenty. The data contained 1,745 cases and 2,935 controls. Besides,

the user could set the number of CPUs in a job scheduler such as the SUN Grid

Engine.

4.3 Results

A computer cluster, Hanuman, has been used to evaluate the

performance of ParallLogicReg. This cluster includes five IBM servers XSeries 3362,

which are comprised by a front-end node and four compute nodes, with two SINGLE-

CORE Intel Xeon (2.8 GHz) CPUs and four GB RAM, respectively. The front-end

node of the cluster can be connected via the Internet, and can control the compute

nodes of the cluster through an Ethernet switch. Also, this cluster provides Rocks

Cluster Distribution version 4.3 [36] including the SUN Grid Engine version 4.3 [32] ,

LAM/MPI version 7.1.2, R program version 2.8.1, Rmpi library version 0.5-6,

LogicReg version 1.4.9 and ParallLogicReg 1.0. Crohn’s disease data set, a chronic

inflammatory disease data set of the intestines [18] which contains 1,745 controls and

2,935 cases with approximately 2,000 SNPs, was used to measure the performance of

ParallLogicReg.

Results from logic regression using ParallLogicReg function for the

Crohn’s disease data are shown in Figure 4.5 with twenty permutations and iterations.

ParallLogicReg saved the computing time, especially with eight CPUs. For example,

54

on a single CPU, the two hundreds gene analyses on the first chromosome took 7.3

days, but took only 0.9 day with eight CPUs.

Figure 4.5: Ten, one hundred and two hundred genes of Crohn’s disease data were

executed with ParallLogicReg. Also, these genes were running on one, two, four and

eight CPUs. The results showed that the more CPUs, the more computing times were

saved by ParallLogicReg.

If the number of available CPUs is P, the computing time for P CPUs

is timeP, and the sequential computing time for a CPU is time1, thus, the speedup for P

CPUs will be:

speedupP = time1 / timeP

The speedups of analyzing Crohn’s disease data using ParallLogicReg

function applying the above equation are shown in Figure 4.6. It shows that the saved

time by ParallLogicReg is linearly correlated to the number of CPUs. For instance,

55

the executing speed of the two hundreds gene analyses on eight CPUs was

approximately eight times faster than that on only one CPU.

Figure 4.6: The speedups were extrapolated from Figure 4.5 applying the speedup

equation. The speedups showed that the more CPUs, the more speedup were increased

by ParallLogicReg.

4.4 Discussion and summary

 We have developed a novel R-library called ParallLogicReg to speed

up logic regression analyses using parallel computing components which consist of a

job scheduler, a MPI library, an Rmpi library and a LogicReg library. ParallLogicReg

has been designed to be a user-friendly library. Identification of SNPs associated with

Crohn’s disease is used to measure the performance of the ParallLogicReg function.

The results showed that ParallLogicReg using parallel computing can save the

computing time for analyzing massive data. The statistical data from ParallLogicReg

with the number of CPUs is the same as the statistical data from non-parallel method

56

because ParallLogicReg partitions data into small subsets which have no effect for

logic regression analyses.

 According to speedup equation, the overhead for P CPUs is

overheadP = timep-(time1 / P)

 Since ParallLogicReg is not sensitive to the number of CPUs, it can be

run on a large cluster. The overhead of analyses with various numbers of CPUs on a

large computer cluster can be predicted based on the overhead of eight CPUs as

shown in Figure 4.7.

57

Figure 4.7: The computing time on a large cluster for ten, one hundred and two

hundred genes analyses were extrapolated from Figure 4.5 applying the overhead

equation.

 The computing time on a large cluster for ten, one hundred and two

hundred analyses extrapolated from Figure 4.5 applying the above overhead equation

are shown in Figure 4.8.

58

Figure 4.8: The speedups on a large cluster for ten, one hundred and two hundred

genes analyses were extrapolated from Figure 4 applying the overhead equation and

speedup equation.

 The time-saving rates are grown when the numbers of CPUs are

increased until the numbers of CPUs are greater than number of genes. Thus, with

bigger data, the time-saving rates will be larger in a large computer cluster. Users can

set the number of CPUs in ParallLogicReg to execute data, which will reduce the

computing time that growingly correlates to the number of CPUs. Also, if the user

applies more CPUs, more computing time will be saved by ParallLogicReg.

Nonetheless, the user should optimize the number of CPUs suitable for the

computational throughput. In particular, the number of CPUs assigned should be less

than, or equal to, the number of genes to avoid idling CPUs. Due to the benefit of

MPI, ParallLogicReg can be run not only on a distributed memory architecture like

the architecture of Hanuman but also on a shared memory architecture. Nevertheless,

59

a distributed memory architecture produces more overhead than a shared memory

architecture.

60

CHAPTER 5

Conclusions and Furture Work

5.1 Conclusions

Genome-Wide Association (GWA) analysis is a powerful method for

identifying loci associated with complex genetic traits such as Crohn’s disease, Type I

Diabetes Mellitus (DM) and Type II DM. Parts of GWA analyses, especially those

involving interactions or pair-wise analysis of thousands individuals or millions

genetic markers consuming hours to months of computation time, will benefit from

parallel computation. However, it is arduous acquiring the necessary programming

skills to correctly partition and distribute data, control and monitor tasks on multiple

CPUs, and merge output files.

 ParallABEL and ParallLogicReg have been presented to improve the

performance of GWA analyses by applying parallel computing. With ParallABEL and

ParallLogicReg libraries, users can immensely accelerate the computing time of

GWA analyses. For example, the computing time of the Rheumatoid Arthritis data set

for the identity-by-state matrix was theoretical reduced from approximately eight

hours to one hour when ParallABEL employed eight processors. Another instance,

with two hundred genes and twenty permutation rounds, the computing time of the

Crohn’s disease data set was decreased from about seven days to only one day when

ParallLogicReg applied eight CPUs.

 The users can execute ParallABEL and ParallLogicReg to parallelize

GWA analyses without having the advanced programming skills including

partitioning and distributing data, controling and monitoring tasks, and merging

output files. Moreover, expert users have no waste of time to develop the libraries.

ParallABEL is a user-friendly parallelization of GenABEL whereas ParallLogicReg is

a user-friendly parallelization of LogicReg for GWAS analyses. The statistical

outputs from both libraries with any number of CPUs are valid as the statistical data

from non-parallel approach (GenABEL and LogicReg). Both novel libraries can be

61

executed not only on multi-core CPUs on a single computer but also on multi-core

CPUs or single-core CPU distributed across many computers (a computer cluster).

Nevertheless, the computers must support Rmpi running under a MPI library such as

LAM/MPI and Open MPI.

Since ParallABEL and ParallLogicReg can produce statistical outputs

of GWA analyses faster than the conventional approach, users can save time to find

genes referred to diseases. Besides, the more CPUs, the more finding times were

saved by ParallABEL and ParallLogicReg. Researchers can use the information to

develop better strategies to detect, treat and prevent the diseases more quickly than

before.

The user can specify the number of processors employed for data

execution in ParallABEL and ParallLogicReg. With ParallABEL, users could expect

the computational performance of GWA analyses to linearly increase with the number

of processors when using the functions of ParallABEL to compute the SNP

characterization statistics, the pair-wise individuals statistics and the pair-wise SNPs

statistics. In addition, ParallABEL using multiple CPUs is faster than GenABEL

using only one processor. Computing times for the pair-wise individuals statistics and

the pair-wise SNPs statistics are longer than those for the the SNP characterization

statistics because the input data is pairs of individuals and SNPs respectively, which

are much larger than the SNPs input for the SNP characterization statistics. Also, if

the number of SNPs is n, then the number of inputs for computation of the SNP

characterization statistics will be n but the number of input data for computation of

the pair-wise SNPs statistics will be n*n. ParallABEL can save much more

computational time when producing the pair-wise individuals statistics and the pair-

wise SNPs statistics than when producing the SNP characterization statistics.

Therefore, as the amount of input data increases, the time saved by ParallABEL also

increases. However, ParallABEL can not reduce the computing time when the data

size is too small, such as the result shown when employing the hom function (an

individual characterization statistic) because the computing time is too short. In that

case, the overheads of data partitioning and output merging overwhelm the

computational performance. With ParallLogicReg, the time-saving rate grows when

the number of CPUs increases until the number of CPUs is greater than the number of

62

genes. Therefore, the number of CPUs should be less than, or equal to, the number of

genes in order to avoid idling CPUs. Nonetheless, the user should optimize the

number of CPUs suitable for the gained computational throughput.

 ParallABEL and ParallLogicReg can process not only the Rheumatoid

Arthritis data set and Crohn's disease data set but also other disease data sets such as a

neck cancer data set. In addition, the user can use statistical outputs from ParallABEL

and ParallLogicReg to find genes associated the other diseases such as the neck

cancer.

5.2 Furture work

Amazon Elastic Compute Cloud (Amazon EC2) is a web service that

provides resizable computability in the cloud. It supports users with complete control

of their requiring resources (a large computer cluster) and lets the users run on

Amazon’s proven computing environment. Amazon EC2 reduces the time required to

obtain and boot new server instances to minutes. It also allows the users to quickly

scale capacity both up and down when their computing requirements change. Amazon

EC2 changes the economics of computing by allowing the users to pay only for

capacity that the users actually use [47]. If ParallABEL and ParallLogicReg can run

on Amazon EC2, the computing time of GWA analyses will be much saved.

Nevertheless, a trouble of executing of ParallABEL and ParallLogicReg on Amazon

EC2 may occur since we still do not exactly know about infrastructure of Amazon

EC2. Therefore, we will intensively check the infrastructure before running of

ParallABEL and ParallLogicReg on Amazon EC2.

63

REFERENCES

[1] Genome-Wide Association Studies. Available:

http://www.genome.gov/20019523

[2] Largest ever study of genetics of common diseases published today. Available:

http://www.wtccc.org.uk/info/070606.shtml

[3] "Genome-wide association study of 14,000 cases of seven common diseases

and 3,000 shared controls," Nature, vol. 447, pp. 661-78, Jun 7, 2007.

[4] K. Christensen and J. Murray, "What genome-wide association studies can do

for medicine," N Engl J Med, vol. 356, 2007.

[5] Database of Single Nucleotide Polymorphisms. Available:

http://www.ncbi.nlm.nih.gov/snp

[6] D. L. Wheeler, et al., "Database resources of the National Center for

Biotechnology Information," Nucleic Acids Res, vol. 36, pp. D13-21, Jan

2008.

[7] A. D. Johnson and C. J. O'Donnell, "An open access database of genome-wide

association results," BMC Med Genet, vol. 10, p. 6, 2009.

[8] J. N. Hirschhorn and M. J. Daly, "Genome-wide association studies for

common diseases and complex traits," Nat Rev Genet, vol. 6, pp. 95-108, Feb

2005.

[9] T. A. Pearson and T. A. Manolio, "How to Interpret a Genome-wide

Association Study," The Journal of the American Medical Association, vol.

299, pp. 1335-1344, 2008.

[10] Y. S. Aulchenko, et al., "GenABEL: an R library for genome-wide association

analysis," Bioinformatics, vol. 23, pp. 1294-6, May 15, 2007.

[11] The Comprehensive R Archive Network (CRAN). Available: http://www.r-

project.org/

[12] R. Ihaka and R. Gentleman, "R: A language for data analysis and graphics,"

Journal of Computational and Graphical Statistics, vol. 5, pp. 299-314, 1996.

[13] C. Kooperberg and I. Ruczinski. Mar 23, 2011). LogicReg: Logic Regression.

Available: http://cran.r-project.org/web/packages/LogicReg/index.html

64

[14] Introduction to Parallel Computing. Available:

https://computing.llnl.gov/tutorials/parallel_comp/

[15] Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface). Available:

http://www.stats.uwo.ca/faculty/yu/Rmpi/

[16] Message-Passing Interface Forum (MPI). Available: http://www.mpi-

forum.org/

[17] R. M. Plenge, et al., "TRAF1-C5 as a risk locus for rheumatoid arthritis--a

genomewide study," N Engl J Med, vol. 357, pp. 1199-209, Sep 20, 2007.

[18] M. Parkes, et al., "Sequence variants in the autophagy gene IRGM and

multiple other replicating loci contribute to Crohn's disease susceptibility,"

Nat Genet, vol. 39, pp. 830-2, Jul 2007.

[19] B. Barney. (2009, Apr 21,2009). Introduction to Parallel Computing.

Retrieved on Apr 21, 2009. Available:

https://computing.llnl.gov/tutorials/parallel_comp/

[20] J. Altmüller, et al., "Genomewide Scans of Complex Human Diseases: True

Linkage Is Hard to Find," Am J Hum Genet, vol. 69, p. 1413, 2001.

[21] "A haplotype map of the human genome," Nature, vol. 437, pp. 1299-320, Oct

27, 2005.

[22] K. A. Frazer, et al., "A second generation human haplotype map of over 3.1

million SNPs," Nature, vol. 449, pp. 851-61, Oct 18, 2007.

[23] L. A. Hindorff, et al., "Potential etiologic and functional implications of

genome-wide association loci for human diseases and traits," Proc Natl Acad

Sci U S A, vol. 106, pp. 9362-7, Jun 9, 2009.

[24] R. H. Duerr, et al., "A genome-wide association study identifies IL23R as an

inflammatory bowel disease gene," Science, vol. 314, pp. 1461-3, Dec 1, 2006.

[25] H. Mishima, et al., "Application of the Linux cluster for exhaustive window

haplotype analysis using the FBAT and Unphased programs," BMC

Bioinformatics, vol. 9 Suppl 6, p. S10, 2008.

[26] N. M. Laird, et al. (2000, Implementing a unified approach to family-based

tests of association. Genet Epidemiol 19 Suppl 1, S36-42

[http://biosun1.harvard.edu/~fbat/fbat.htm]. Available:

http://biosun1.harvard.edu/~fbat/fbat.htm

65

[27] F. Dudbridge, "Pedigree disequilibrium tests for multilocus haplotypes,"

Genet Epidemiol, vol. 25, pp. 115-21

[http://portal.litbio.org/Registered/Help/unphased/], Sep 2003.

[28] G. Vera, et al., "R/parallel--speeding up bioinformatics analysis with R," BMC

Bioinformatics, vol. 9, p. 390, 2008.

[29] K. Misawa and N. Kamatani, "ParaHaplo: A program package for haplotype-

based whole-genome association study using parallel computing," Source

Code Biol Med, vol. 4, p. 7, 2009.

[30] L. Ma, et al., "Parallel and serial computing tools for testing single-locus and

epistatic SNP effects of quantitative traits in genome-wide association

studies," BMC Bioinformatics, vol. 9, p. 315, 2008.

[31] J. Hill, et al., "SPRINT: a new parallel framework for R," BMC

Bioinformatics, vol. 9, p. 558, 2008.

[32] Sun Grid Engine. Available: http://www.rocksclusters.org/roll-

documentation/sge/5.4/using-sge.html

[33] Local Area Multicomputer/Message Passing Interface. Available:

http://www.lam-mpi.org/

[34] Rmpi Program Structure. Available:

http://math.acadiau.ca/ACMMaC/Rmpi/structure.html

[35] "Task pull method."

[36] Rocks Cluster Distribution. Available:

http://www.rocksclusters.org/wordpress/

[37] I. Ruczinski, et al., "Logic regression," Journal of Computational and

Graphical Statistics, vol. 12, pp. 475-511, Sep 2003.

[38] L. Breiman, Classification and regression trees. Belmont, Calif.: Wadsworth

International Group, 1984.

[39] L. Breiman, "Random forests," Machine Learning, vol. 45, pp. 5-32, Oct

2001.

[40] Mar 9,2011). Genetics Home Reference. Available:

http://ghr.nlm.nih.gov/handbook/genomicresearch/snp

[41] H. Schwender and K. Ickstadt, "Identification of SNP interactions using logic

regression," Biostatistics, vol. 9, pp. 187-98, Jan 2008.

66

[42] S. Garte, "Metabolic susceptibility genes as cancer risk factors: time for a

reassessment?," Cancer Epidemiol Biomarkers Prev, vol. 10, pp. 1233-7, Dec

2001.

[43] I. Guyon, et al., "Gene selection for cancer classification using support vector

machines," Machine Learning, vol. 46, pp. 389-422, 2002.

[44] U. Sangket, et al., "ParallABEL: an R library for generalized parallelization of

genome-wide association studies," BMC Bioinformatics, vol. 11, p. 217, 2010.

[45] Y. Yutaka, "Crohn’s Disease GWAS Gene-level logic regression analysis,"

2011.

[46] Open MPI. Available: http://www.open-mpi.org/

[47] October 24 th, 2011). Amazon Elastic Compute Cloud (Amazon EC2).

Available: http://aws.amazon.com/ec2/

67

APPENDICES

68

Appendix A

Publication

69

70

71

72

73

74

75

76

77

78

79

80

Appendix B

ParallABEL manual

81

82

83

84

85

86

87

88

89

90

91

Appendix C

ParallLogicReg manual

92

93

94

95

96

97

Appendix D

Type1_parall_by_SNPs source code

98

#Function: parallel type1 function

#Programer: Unitsa Sangket

#Date: 2010

#Objective: to parallel type1 functions of GenABEL

#Note: an example of type1.p function is mlreg.p

"type1.p" <- function(npro,fun,data,data_f="no",...){

#Initialize MPI

library("Rmpi")

Notice we just say "give us all the slaves you've got."

mpi.spawn.Rslaves()

if (mpi.comm.size() < 2) {

 print("More slave processes are required.")

 mpi.quit()

 }

.Last <- function(){

 if (is.loaded("mpi_initialize")){

 if (mpi.comm.size(1) > 0){

 print("Please use mpi.close.Rslaves() to close slaves.")

 mpi.close.Rslaves()

 }

 print("Please use mpi.quit() to quit R")

 .Call("mpi_finalize")

 }

}

99

########## the slaves will call to perform a validation on the

fold equal to their slave number.

Assumes: fold,foldNumber

foldslave <- function(){

 # Note the use of the tag for sent messages:

 # 1=ready_for_task, 2=done_task, 3=exiting

 # Note the use of the tag for received messages:

 # 1=task, 2=done_tasks

 junk <- 0

 done <- 0

 while (done != 1) {

 # Signal being ready to receive a new task

 mpi.send.Robj(junk,0,1)

 # Receive a task

 task <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())

 task_info <- mpi.get.sourcetag()

 tag <- task_info[2]

 if (tag == 1) {

 #****** 3. task computation in compute nodes *****

 # load GenABEL library

 library(GenABEL)

 snpsubset = task$snpsubset

 foldNumber = task$foldNumber

 source(temp_fun_type1_f)

100

load(data_f)

 ## edit fro test eigth_core

 start = task$start

 stop = task$stop

 data <- data[,start:stop]

 ###

 args_oth$data = data

 args_oth$snpsubset = snpsubset

 args_oth$fun = fun

 formals(temp_fun) = args_oth

 output=temp_fun()

 results <- list(foldNumber=foldNumber,output=output)

 rm(data)

 #********* end of task computation *********

 mpi.send.Robj(results,0,2)

 }

 else if (tag == 2) {

 done <- 1

 }

 # We'll just ignore any unknown messages

 }

 mpi.send.Robj(junk,0,3)

}

101

########## We're in the parent.

#************ 1. task separatation *************

load GenABEL library

library(GenABEL)

if (missing(npro))

 stop("Missing number of processors")

if (missing(fun))

 stop("Missing function name")

if (missing(data) && missing(data_f))

 stop("Missing data")

generate subscript file

t_subscript <- 1:99999999

subscript = sample(t_subscript,1)

if(data_f == "no"){ # there are no data file

 data_f = paste("data_",subscript,".Rdata",sep = "")

 save(data,file=data_f)

 data_f_n = 1

}

else{

 data_f_n = 0

 load(data_f)

}

check number of snps

number_of_snps = data@gtdata@nsnps

102

if (number_of_snps < 11)

 stop("The data is too small.")

check arguments

snpsubset <- data@gtdata@snpnames[1:10]

a = fun(data=data,snpsubset=snpsubset,...)

separate data

nsnps = length(data@gtdata@snpnames)

nsnps_p = floor(nsnps/npro)

pointer = 0

#create data@gtdata@snpnames = data@gtdata@snpnames[start:stop]

#Create task list

tasks <- vector('list')

for (i in 1:(npro-1)) {

 tasks[[i]] <- list(foldNumber=i,snpsubset=data@gtdata@snpnames[(pointer

+ 1):(pointer + nsnps_p)], start = (pointer + 1), stop = (pointer + nsnps_p))

 pointer = pointer + nsnps_p

}

#last process

i = i + 1

tasks[[i]] <- list(foldNumber=i, snpsubset=data@gtdata@snpnames[(pointer +

1):(nsnps)], start = (pointer + 1), stop = nsnps)

initial results

results <- vector('list')

for (i in 1:npro) {

 results[[i]] <- list(output=i)

}

#********************* end of task separation ********************

103

Now, send the data to the slaves

Send the function to the slaves

mpi.bcast.Robj2slave(foldslave)

#******************* 2. task distribution ********************

Call the function in all the slaves to get them ready to

undertake tasks

prepairing args

"temp" <- function(data,...){

 # argument must add later

 rm(data)

 rm(snpsubset)

 # check this argument before remove

 if (missing(idsubset))

 rm(idsubset)

 args=ls()

 old_formals = formals(temp)

 n_old_formals = names(old_formals)

 match_args = match(args, n_old_formals)

 temp = old_formals

104

#update arguments of new_formals

 for(i in 1:length(args)){

 if(!is.na(match_args[i])){

 if (temp[[match_args[i]]] == get(args[i])) # default arg

value

 temp[[match_args[i]]] = ""

 else temp[[match_args[i]]] = get(args[i])

 }

 }

 # delete empty value arguments

 i = 1

 n_temp = names(temp)

 while (i <= length(n_temp)){

 if (temp[i] == "")

 temp[i] <- NULL

 else

 i = i + 1

 }

 return(temp) # return all arguments except data, snpsubset and the

argument which have default value

}

formals(temp) = formals(fun)

args_oth = temp(data=data,...)

peparing call_fun

n_args_oth = names(args_oth)

105

call_fun = paste("temp_fun <- function(fun){", "\n", sep="")

call_fun = paste(call_fun, "output <- fun(data=data, snpsubset=snpsubset",sep

= "")

if (length(n_args_oth) > 0){

 for(i in 1:length(n_args_oth)){

 call_fun = paste(call_fun,", ",n_args_oth[i], "=args_oth$",

n_args_oth[i],sep="")

 }

}

insert) and }

call_fun = paste(call_fun,")","\n", "return(output)", "\n", "}",sep="")

temp_fun_type1_f = paste("temp_fun_type1_",subscript,".R",sep = "")

write(call_fun, temp_fun_type1_f)

send argument

mpi.bcast.Robj2slave(temp_fun_type1_f)

mpi.bcast.Robj2slave(data_f)

mpi.bcast.Robj2slave(args_oth)

mpi.bcast.Robj2slave(fun)

mpi.bcast.cmd(foldslave())

rm(data)

#**************end of task distribution **************

106

junk <- 0

closed_slaves <- 0

n_slaves <- mpi.comm.size()-1

while (closed_slaves < n_slaves) {

 # Receive a message from a slave

 message <- mpi.recv.Robj(mpi.any.source(),mpi.any.tag())

 message_info <- mpi.get.sourcetag()

 slave_id <- message_info[1]

 tag <- message_info[2]

 if (tag == 1) {

 # slave is ready for a task. Give it the next task, or tell it tasks

 # are done if there are none.

 if (length(tasks) > 0) {

 # Send a task, and then remove it from the task list

 mpi.send.Robj(tasks[[1]], slave_id, 1);

 tasks[[1]] <- NULL

 }

 else{

 mpi.send.Robj(junk, slave_id, 2)

 }

 }

 else if (tag == 2) {

 #************** 4. result storing ************

 # The message contains results. Do something with the results.

 # Store them in the data structure

 results[[message$foldNumber]] = message$output

 #*************** end of result storing ***********

107

 }

 else if (tag == 3) {

 # A slave has closed down.

 closed_slaves <- closed_slaves + 1

 }

}

mpi.close.Rslaves()

#****************** 5. result combining ***************

combine order by snpnames because may be slave2 finish before slave1

#return(results)

#stop("pause")

results_list = results

results = results_list[[1]]

##check structure of result

if data.frame use rbind

if (is.data.frame(results)) {

 for (i in 2:npro) {

 results = rbind(results,results_list[[i]])

 }

}else if (is.list(results)){

 # create flag_do array

 # flag = 1 -> will combine, flag = 0 -> not combine

108

 n_results = names(results_list[[1]])

 flag_do = n_results

 for(i in 1:length(flag_do)){

 if ((length(results_list[[1]][[n_results[i]]]) ==

length(results_list[[1]][["snpnames"]])) && (n_results[i] != "idnames"))

 flag_do[i] = 1

 else flag_do[i] = 0

 }

 # combine results

 results = results_list[[1]]

 for (i in 2:npro) {

 for (j in 1:length(n_results)){

 if (flag_do[j] == 1)

 results[[n_results[j]]] = c(results[[n_results[j]]],

results_list[[i]][[n_results[j]]])

 }

 }

}else {

 message_error = paste("Error: structure of result from ", fun, " doesn't a

list or a data.frame", sep = "")

 stop(message_error)

}

remove data_f, temp_fun_type1_f

if (data_f_n==1){ # if data is loaded from a file, then

file.remove(data_f)

}

109

file.remove(temp_fun_type1_f)

#************* end of result combining ************

return(results)

} # End of function

110

VITAE

Name Miss Unitsa Sangket

Student ID 5110230013

Education Attainment

 Degree Name of Institute Year of Graduation

Bachelor of Science Prince of Songkla University 2002

(Computer Science)

Master of Science Prince of Songkla University 2006

(Computer Science)

Scholarship Awards during Enrolment

1. The program for Strategic Scholarships for Frontier Research

Network for the Joint Ph.D. Program Thai Doctoral degree from the Office of the

Higher Education Commission, Thailand.

2. The lecturer scholarship from Prince of Songkla University,

Thailand.

Work – Position and Address

 I am a lecturer at Center for Genomics and Bioinformatics, Faculty of

Science, Prince of Songkla University, Kanchanawanish Rd., Hat-Yai, Songkhla,

Thailand, 90112.

List of Publications and Proceedings

Publication

U. Sangket, S. Mahasirimongkol, W. Chantratita, P. Tandayya and

Y.S. Aulchenko, "ParallABEL: an R library for generalized parallelization of

genome-wide association studies," BMC Bioinformatics, vol. 11, p. 217, 2010.

111

Presentation

Poster presentation

U. Sangket, S. Mahasirimongkol, W. Chantratita, P. Tandayya and

Y.S. Aulchenko, " ParallABEL: an R library for speedup of GWAS applying parallel

computing," The International Conference on Bioinformatics/International Society for

Computational Biology-Asia (InCoB/ISCB-Asia) Joint Conference 2011, Kuala

Lumpur, Malaysia, November 30th, 2011.

