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ABSTRACT 

 

          For test response compaction in Circuit-Under-Test (CUT) with scan-based 

Design-For-Test (DFT)，the presence of Unknown-Values (X‟s) in test output responses during 

test can cause fault coverage lost and degrade the performance of test compression.  

          In this thesis, the present flexible X-masking logic called selective X-masking to 

handle the X‟s. The basic concept is to combine our X-masking logic with either X-canceling 

Multiple-Input-Signature-Register (MISR) or X-tolerant compactor. The selective X-masking is 

used to handle the majority of X‟s in scan chains, while the remained small number of X‟s can be 

tolerated by either X-canceling MISR or X-tolerant compactor. The experimental results based on 

ISCAS89 benchmark circuits have indicated that the presented selective X-masking logic can 

improve the compression ratio significantly and improve obviously the observability of scan cells. 
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CHAPTER 1 

 

 

INTRODUCTION 

 

 

1.1 Motivation 

 

    The scan based test is one of the best approaches [1-3] in DFT which is 

used to increase the circuit‟s controllability and observability. The objective is to improve the 

testability of a design and to reach the target fault coverage goal. The scan test allows the test data 

coming from CUT to be stored on the Automatic-Test-Equipment (ATE) in a compressed form. 

The test data stored in ATE for stimulus compression and output response compaction determines 

the total test data overhead, and the test application time depends on the length of scan chains [4]. 

In order to reduce test cost in industry design, the initial long scan chains are also cut into large 

number of shorter scan chains. As the increasing huge test data volume in industry design, 

researches have recently being focused on input stimulus compression and output response 

compaction in order to reduce the number of test channels on the ATE, tester memory and test 

time. 

    The response compaction is implemented and received data from the 

outputs of the scan chains. The main purpose of the response compaction is to reduce the amount 

of test response transferred back to the ATE. A large number of test response compaction schemes 

have been proposed. Basically they include the space compaction [5] and the time compaction [6]. 

It is possible to combine time and space compaction, such as finite memory compactor [7] [8] 

which give advantage of time and space dimensions.  

    For the output response compaction, the presence of X‟s in the test 

responses has been the greatest barrier to effect the compaction. If there are no X‟s in the test 

responses, a time compactor, such as MISR, can compact an infinitely long output sequence into a 

fixed-length signature [9]. However, when X‟s appear in the test responses, it can cause an 

unpredictable signature, from which no faulty-circuit signature could be distinguished. When X‟s 

are introduced to the space compactors, the non-X test responses in the current clock cycle going 
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through the compactor are XORed by X‟s , then the non-X values are corrupted and the fault 

coverage might be lost. One of the major issues for test compaction is how to handle test 

responses containing X‟s. The sources of X‟s are caused by several conditions such as bus 

contention, uninitiated memory, un-modeled logic, floating tri-states bus, etc. 

    Lots of schemes have been proposed to handle X‟s in the output response. 

The widely used techniques to handle X‟s are X-blocking [10], X-masking [11-14] and X-tolerant 

[15-17]. The X-blocking scheme needs extra logic in the CUT [15], which can cause fault 

coverage lost and additional area overhead. Several X-masking techniques were proposed in 

previous work [11-13]. In one of X-masking techniques, the conventional Linear- 

Feedback-Shift-Register (LFSR) X-masking scheme [13] guarantees to mask all X‟s and keeps 

specified bits (d‟s) as well, where each value contained by d‟s is used to detect one or more faults. 

However, a large amount of mask data was generated for masking every scan slice. Another 

X-masking scheme is called reiterative X-masking [14], the volume of mask data decreases 

greatly due to reusing the mask bit. It is necessary to use interval counter for controlling. 

    Instead of masking X‟s, X-tolerant schemes have been introduced in [15] 

[17]. In [15], XOR gates are used to minimize the impact of non-X value being masked by X‟s. 

Since it can guarantee to check erroneous compactor output in the presence of limited number of 

X‟s, the errors can be detected by the tester when the errors are propagated to the compactor 

outputs with X‟s appearing in the current cycle. In the schemes of [17], there are N scan chains 

and the compacted test responses outputs are M, where N>M. In order to detect faults, the test 

responses from scan chains containing d‟s and X‟s are propagated to the different compactor 

outputs. However, the compaction ratio is extremely degraded as the increasing X‟s and the 

corrupted outputs by X‟s may decrease the fault coverage. 

    In this research, an efficient approach is developed based on the X-masking 

technique .It can reduce a large amount of mask bits without losing fault coverage in the presence 

of X‟s in test responses. The following main contents will be described from chapter 2 through 

chapter 5: the research background of compaction techniques and impact of X‟s in the test 

responses; the literature review on handling X‟s by focusing on several types of X-masking and 
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X-tolerant techniques; the proposed method; conclusion and discussion, respectively. 

 

1.2 Objective 

1) To reduce masking data overhead for test responses. 

2) To improve the observability for scan cells in the presence of X‟s. 

3) To improve the efficiency of X-masking when the distribution of X‟s has the 

tendency to be clustered in the output responses. 

 

1.3 Scope of Work 

1) Study the scan design in DFT method for Very-Large-Scale-Integration (VLSI) 

and the test architecture for test compression. 

2) Study test response compaction focusing on X-masking and X-tolerant 

techniques. 

3) Implement and analyze X-masking scheme. 

 

1.4 Work Plan 

1) To investigate and research on the basic idea of X-masking and X-tolerant 

schemes.  

2) To find out an efficient X-masking technique for reducing the mask bits 

3) To present the proposal. 

4) To implement the reiterative X-masking scheme and compute the total 

overhead of mask bits based on the ISCAS89 benchmark circuits. 

5) To compare the performance between the proposed scheme and previous 

appproaches. 

6) To combine the selective X-masking for measuring the observability of scan 

cells. 

7) To analyze implementation results and make a conclusion. 

8) To submit the proposed papers in the international conferences and write the 
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final report. 

 

1.5 Outline 

                This document is organized in 5 chapters as follow: 

                Chapter 1: Introduction. The motivation, objective and the scope of thesis 

are presented in this chapter. Then, the work plan for investigating the X-masking schemes is 

given as follow. 

                Chapter 2: Research Background. It includes the DFT architecture, scan 

test compression techniques and the problem statement in the presence of X‟s. 

                Chapter 3: Related schemes for handling unknown values. In this chapter, 

the wildly used schemes are described to handle X‟s in the output responses including 

X-masking and X-tolerant schemes. It discusses the issues about achieving high fault 

coverage and high compression ratio in the presence of X‟s. 

                Chapter 4: The proposed Selective X-masking and Results. A flexible 

X-masking logic is introduced in this section. The basic operation and principle based on the 

distribution of X‟s are presented. 

                Chapter 5: Conclusion and discussion.         
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CHAPTER 2 

 

 

RESEARCH BACKGROUND 

 

 

2.1 Introductory Testing Concepts for VLSI Circuits 

 

                 Testing techniques for VLSI circuits are now facing many excited and 

complex challenges. As the continuously shrinking technologies in the large systems embedded in 

a single System-On-Chip (SOC), the right behavior of the whole systems is very important. The 

electronic testing consists of Integrated-Circuit (IC) testing, Printed-Circuit-Board (PCB) testing, 

and system testing at the various manufacturing stages during the whole system operation. The 

main function of testing is not only to find the fault-free systems but also to improve production 

yield at the various stages of manufacturing by analyzing the cause of defects when faults are 

encountered. In some systems, the periodic testing is implemented to ensure fault-free system 

operation and to initiate repair procedures once the faults are detected. Hence the VLSI testing 

techniques is very important for all the designers, product engineers, test engineers, manufacturers, 

and end-users [18]. 

                  Testing typically includes the parts of applying a set of test stimuli to the 

inputs of CUT and analyzing the output responses, as showed in Figure 2.1.Circuits that produce 

the correct output responses for all input stimuli are considered to be fault-free. The circuits that 

produce an incorrect response at any point during simulation are assumed to be faulty. Testing is 

performed in different stages in the lifecycle of VLSI device, such as during the VLSI 

development process, the electronic system manufacturing process, and, in some cases, 

system-level operation.  

Input 

Test

stimuli

Circuit 

Under

Test(CUT)

Output

Response

Analysis

. . .

. . .

Input 1 Output1

Input n Outputm

Pass/Fail

 

Figure 2.1 Basic testing approach [9] 
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      For the VLSI development process, it can be seen that some form of 

testing is involved at each stage of the process in Figure 2.2. The VLSI device that fulfills the 

customer or project requirement is determined and formulated as a design specification. Design 

verification is a predictive analysis to ensure that the synthesized design can perform the function 

requirement when it is manufactured. Designers are responsible for synthesizing a circuit that 

satisfies the design specification and for verifying the design. Once a design error is found, the 

design is necessary to be modified and design verification must be repeated. As a result, design 

verification can be considered as a form of testing. 

 

Design Specification

Design

Fabrication

Packaging

Quality Assurance

Design Verification

Wafer Test

Package Test

Final Testing
 

Figure 2.2 VLSI development process [9] 

 

    After that, then the VLSI design comes to fabrication. It is necessary to 

develop a test procedure based on the design specification and fault models at the same time. 

Since it is impossible for 100% of any particular kind of IC to be defect-free due to unavoidable 

statistical flaws in the materials, the ICs fabricated test on the wafer is the first test during the 

manufacturing process in order to determine which devices are defective. After passing the 

wafer-level test the chips are extracted and packaged. The packaged devices need to be retested 

because those devices may have been damaged during the packaging process or put into defective 

packages. The last test is the final testing before the chips go to market, including measurement of 

such parameters as input/output timing specifications, voltage, and current. In addition, stress or 

burn-in testing is often performed where chips are subjected to high temperatures and supply 

voltage. In a word, the design verification is very important for the VLSI development process and 
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even for the whole VLSI testing. 

                 For the design specification, it can be divided into several levels, as 

shown in Figure 2.3. The design process is always transformed from a higher level description to 

lower level description. The initial level is a behavioral level which is developed in Very-High 

–Speed-Integrated-Circuit-Hardware-Description-Language (VHDL) or Verilog or as a C program 

and simulated to determine if it is functionally equivalent to the specification. After that, the 

design comes to Register-Transfer-Level (RTL) level description, which is verified with the 

functionality of the behavioral level and performed with more structural information including the 

data paths and control circuits. The logic level is synthesized from the RTL description and is 

designed to guarantee the correct functionality. For the physical level description, the physical 

placement is obtained and the transistors in the VLSI device are interconnected to fabrication.  

 

Design Specification

Behavioral(Architecture) Level

Register-Transfer Level

Logical(Gate) Level

Physical(Transistor)Level
 

Figure 2.3 Design hierarchy [9] 

 

                 Many tools have been developed for design verification process such as 

Computer-Aided-Design (CAD), synthesis, hardware emulation, and formal verification methods. 

However, design verification takes time, and insufficient verification fails to detect design errors. 

Thus, the process of the design verification is extremely important. Moreover, the test stimuli are 

often applied to design verification of the RTL, logical, and physical levels for testing the VLSI 

device. 

    Normally, the following two undesirable situations may occur after ICs are 

tested:  
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          1. A faulty device appears to be a good part passing the test. 

          2. A good device fails the test and appears as faulty. 

                 These two situations happen often due to a poorly designed test or the lack of 

DFT. For the first case, even if all products pass acceptance  test, some faulty devices can be found 

in the manufactured electronic system. The next section will give the basic background for DFT. 

 

2.2 Introduction for DFT 

 

    A substantial amount of time and effort is required when test engineers 

usually have to construct test vectors after the design is completed. However, the effort can be 

avoided if testing is considered early in the design flow to make the design more testable. Hence, 

integration of design and test, referred to as DFT, was first proposed in the 1970s. In order to test 

circuits, we need to control and observe logic values of internal lines. However, it would be very 

difficult to control and observe some nodes in sequential circuits. Testability measures of 

controllability and observability were first defined in the 1970s, which is considered to find some 

parts of a digital circuit that will be most difficult to test in test pattern generation for fault 

detection. Many DFT techniques have been proposed since that time as generally falling into three 

categories: (1) Ad hoc DFT techniques, (2) Scan design (3) Built-In-Self-Test (BIST). 

 

2.2.1 Ad hoc DFT techniques 

 

    Ad hoc methods were the first DFT techniques proposed in the 1970s [1]. It 

targets only those portions of the circuit that would be difficult to test. Ad hoc DFT techniques 

typically involve applying good design practices or replacing a bad design practice with a good 

one. Table 2.1 lists some typical ad hoc techniques. One of the most widely used techniques is test 

point insertion. The conception is to insert test point directly to access internal nodes to improve 

the controllability or observability. 
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Table 2.1 Typical Ad hoc DFT Techniques 

A1 Insert test points 

A2 Avoid asynchronous set/reset for storage elements 

A3 Avoid combinational feedback loops 

A4 Avoid redundant logic 

A5 Avoid asynchronous logic 

A6 Partition a large circuit into small blocks 

 

    The observation point insertion for a logic circuit with three 

low-observability nodes is shown in Figure 2.4. Observation-Point (OP) shows the structure of an 

observation point that consists of a Multiplexer (MUX) and a D flip-flop. It includes the Scan 

–input (SI) and Scan-Output (SO). A low-observability node is connected to the port „0‟ of the 

MUX for an observation point, and all observation points are serially connected into an 

observation shift register using the port ‟1‟ of the MUX. An Scan-Enable (SE) signal is applied to 

select MUX port. The multiplexer uses SE input to select between the Data-Input (DI) and the 

Scan-Input (SI) .When SE is set to 0 and the Clock (CK) is applied, the logic values of the 

low-observability nodes are captured into the D flip-flops. When SE is set to 1, the D flip-flops 

within OP1, OP2, and OP3 operate as a shift register, allowing us to observe the captured logic 

values through OP_output during sequential clock cycles. As a result, the observability of the 

circuit nodes is greatly improved. 

 

Figure 2.4 Observation point insertion [9] 
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     Figure 2.5 shows an example of control point insertion for a logic circuit 

with three low-controllability nodes. The Control-Point (CP) is composed of a MUX and a D 

flip-flop. It includes the basic SI and SO. The original connection at a low-controllability node is 

cut, where a MUX is inserted between the source and destination ends. During normal operation, 

the Test-Mode (TM) is set to 0 and the CK is applied, the value drives from the source end to the 

destination end through the port‟0‟ of the MUX. During test model, TM is set to 1 so that the 

value from the D flip-flop drives the destination end through the port‟1‟ of the MUX. The D 

flip-flops in OP1, OP2, and OP3 are designed to form a shift register so the required values can be 

shifted into the flip-flops using CP_input. Hence, the controllability of the circuit nodes is greatly 

improved. However, the control point insertion can result in additional delay to the logic path. So 

the control points can‟t be inserted on a critical path. 

 

Figure 2.5 Control point insertion [9] 

 

2.2.2 Scan Design 

 

    There are basically two input sources in a scan cell. The first input, data 

input, is driven by the combinational logic of a circuit. The second input, scan input, is driven by 

the output of another scan cell in order to form one or more shift registers called scan chains. The 

scan chain is performed by connecting the scan input of the first scan cell to a primary input and 

the output of the last scan cell to a primary output. In order to allow a scan cell to operate in two 

different modes: normal/capture mode and shift mode, a selection mechanism must be provided. 
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In normal/capture mode, data input is selected to update the output. In shift mode, scan input is 

selected to update the output. 

    The Muxed-D scan design is one of the most widely used schemes in logic 

design. The basic operation is o pass a logic value from its input to its output when a clock is 

applied. The muxed-D scan cell design is shown in Figure 2.6(a). It consists of a D flip-flop and a 

multiplexer. The multiplexer uses SE input to select between the Data-Input (DI) and the 

Scan-Input (SI). During normal/capture mode, SE is set to 0, and the value in the input DI is 

captured into the internal D flip-flop when a rising clock edge is applied. In shift mode, SE is set 

to 1. The SI is now used to shift in new data to the D flip-flop while the content of the D flip-flop 

is being shifted out. Sample operation waveforms are shown in Figure 2.6(b). 

 

Figure 2.6 Edge-triggered muxed-D scan cell design and operation [9] 

 

    A clock-scan cell design was another important approach proposed in [2]. 

Comparing with a muxed-D scan cell, a clocked-scan cell also has a data input DI and a scan input 

SI; however, the input selection in the clocked-scan cell is applied with two independent clocks, 

Data-Clock (DCK) and Shift-Clock (SCK), as shown in Figure 2.7(a). In normal/capture mode, 

the present value at the data input DI is captured into the clocked-scan cell by data clock DCK. 

During shift mode, the shift clock SCK is used to shift in new data from the scan input SI into the 

clocked-scan cell, while the current content of the clocked-scan cell is being shifted out. Sample 
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operation waveforms are shown in Figure 2.7(b). The main advantage is that it can result in no 

performance degradation on the data input. However, it requires additional shift clock routing.  

 

Figure 2.7 Clocked-scan cell design and operation [9] 

 

     Different from muxed-D scan cells or clocked-scan cells using for edge 

triggered, flip-flop-based designs, the Level-Sensitive-Scan-Design (LSSD) scan cell is used for 

level-sensitive, latch-based designs [19] [20] [21]. Figure 2.8(a) shows a polarity-hold 

Shift-Register-Latch (SRL) design described in [19] that can be used as an LSSD scan cell. This 

scan cell consists of two latches, a master two-port D latch L1 and a slave D latch L2. Clocks C, A, 

and B are used to select between the data input D and the scan input I to drive +L1 and +L2, which 

can be used to drive the combinational logic of the design. In capture mode, master latch L1 uses 

the system clock C to latch system data from the data input D and to output this data onto +L1, and 

clock B is used after clock A to latch the system data from latch L1 and to output this data onto 

+L2. In shift mode, clocks A and B are used to latch scan data from the scan input I and to output 

this data onto+L1, and then latch the scan data from latch L1 and to output this data onto +L2. 

Sample operation waveforms are shown in Figure 2.8(b). 

    The main advantage of LSSD is to insert scan into a latch-based design. But 

the technique requires routing for the additional clocks, which increases routing complexity.  
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Figure 2.8 Polarity-hold SRL design and operation [9] 

 

2.2.3 Built-In-Self-Test (BIST) 

 

    BIST was proposed around 1980 [3] [22], which integrate a 

Test-Pattern-Generator (TPG) and an Output-Response-Analyzer (ORA) in the VLSI device to 

perform testing internal to the IC, as illustrated in Figure 2.9. The test pattern can be generated 

automatically by TPG for application to the inputs of the CUT. The ORA is then applied to 

compact the output responses of the CUT into a signature. The logic BIST controller can generate 

specific BIST timing control signal for coordinating the BIST operation among the TPG, CUT, 

and ORA. During the BIST operation, the compacted final signature needs to compare with an 

embedded golden and the logic BIST controller then provides a pass/fail indication. The 

compaction for output responses requires that all storage elements in the TPG, CUT, and ORA 

must be initialized to known state, which means that no X could be propagates from the CUT to 

the ORA. 
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Figure 2.9 Typical logic BIST system [9] 

 

   Scan DFT techniques have been wildly used in the industry. Some of major 

elements for scan test cost are: (1) test data volume, which translates to tester memory requirement; 

(2) total number of tester channels;(3) test time, which translates to the maximum number of flip 

flops in a scan chain. As the IC chip complexity increases, test data volume also increases rapidly. 

Since test data volume is a major factor that determines test cost, several test compression 

techniques to reduce both volume of test patterns and output responses have been developed, 

which is described in next.  

 

2.3 Test Compression Techniques 

   

   For the test compression, it involves the amount of compressing data 

including both stimulus and response that is stored on ATE for testing with a deterministic test set. 

The benefit of test compression is that the amount of test data can achieve a 10× or even 100× 

reduction on the ATE. The ATE memory requirements are greatly reduced and even more 

importantly it reduces test time because less data has to be transferred across the bandwidth 

between the ATE and the chip. Moreover, the test compression techniques are easy to implement 

in industry design because they are compatible with the conventional design rules and test 

generation flows used for scan testing. 
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Figure 2.10 shows the test data bandwidth between the tester and the chip. As 

ATE has limited speed, memory, and I/O channels, the chip cannot be tested any faster than the 

amount of time required to transfer the test data, and the time is equal to: 

Amount of test data on tester

 Number of tester channels (Tester clock rate)
 

 

Test

data

Tester

Chip

/ Test data bandwidth

=(#Channels*Clock Rate)

 

Figure 2.10 Block diagram illustrating test data bandwidth [9] 

 

    Test compression technique is to compress the test data stored on ATE 

including both stimulus and responses, and the structure is illustrated in Figure 2.11. It can largely 

reduce the total amount of tester memory. Moreover, the test time can be obviously reduced due to 

less test data transferred across the low bandwidth link between the tester and the chip. It shows 

that the additional on-chip hardware is integrated before the scan chains to decompress the test 

stimulus coming from the tester and after the scan chains to compact the response going to the 

tester. 
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Figure 2.11 Architecture for test compression [9] 
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2.4 Test Stimulus Compression 

 

Test data is inherently highly compressible. In fact, typically only 1 to 5% of 

the bits have specified values, and majority of unspecified bits that are not assigned values during 

Automatic-Test-Pattern-Generation (ATPG). Consequently, test stimulus compression can be used 

to significantly reduce the amount of test stimulus data that must be stored on the tester. Normally, 

ATPG procedures perform random fill, in which all the unspecified bits in the test cubes are filled 

randomly with 1‟s and 0‟s to create fully specified test vectors. During test stimulus compression 

procedure, the specified (care) bits should be lossless in order to preserve the fault coverage of the 

original test cubes. After decompression, the resulting test patterns shifted into the scan chains 

should match the original test cubes in all the specified bits. Many compressing schemes have 

been proposed, which can be classified into the three categories: (1) Code-based techniques, (2) 

Linear-decompression-based schemes (3) Broadcast-scan-based schemes. 

 

2.4.1 Code-Based Schemes 

 

    In order to encode the test cubes, the data compression codes partition the 

original data into symbols which can be replaced with a codeword to form the compressed data.  

The decompression is performed by using a decoder that simply converts each codeword into the 

corresponding symbol. Depending on whether the size of symbols and codewords is fixed or 

variable, data compression codes can be classified into four categories. 

    Take a dictionary code (fixed-to-fixed) for example, which had been 

proposed in [23]. There are n-bits blocks to form the symbols in the original test cubes, and then 

the symbols are encoded with codewords that each has b bits, where b<n. One can view each 

symbol through dictionary because each codeword has been indexed into the dictionary that points 

to the corresponding symbol. Since there are 2n possible for symbols and 2b possible for 

codewords, no all possible symbols can be in the dictionary. If Sdata is the set of symbols that occur 

in the original data, the number of distinct symbols that occur in the original data |Sdata| is much 

less than 2
n
. The compression ratio is equal to: 

2n− log 2 |sdata   | : 1 
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    The scheme is shown in Figure 2.12. There are n (n>=1) scan chains, and 

the test cubes are partitioned into n-bit symbols such that each scan slice corresponds to a symbol. 

The size of each codeword is b bits, where b =  log2 |sdata  |  .This figure shows that the b 

channels from the tester can be used to load n scan chains. Normally, b channels can just load b 

scan chains from the tester. Thus, the length of each scan chain becomes shorter and less clock 

cycles are required. The dictionary code gives a good example for how test compression reduces 

not only tester storage but also test time. 

Dictionary

Scan chain 1…
… Scan chain 2

… Scan chain n

.
.
.

Scan-slice

(n-bits)

/
b- bitsChannels

From

tester

 
Figure 2.12 Test compression using a complete dictionary [9] 

 

2.4.2 Linear-Decompression-Based Schemes 

 

    Another test stimulus compression scheme is to expand the original data 

from the tester to scan chains by using linear decompressor, which consists of only XOR gates and 

flip-flops. The linear space can be spanned by a Boolean matrix. In other words, the linear 

decompressor can expand an m-bit compressed stimulus from the tester into an n-bit test vector, 

the set of test vectors that can be generated by the linear decompressor is spanned by A, and a 

Boolean matrix is An×m . Any test vector Z can be compressed by a particular linear decompressor 

if and only if there exists a solution to a system of linear equations, AX = Z, where A is the 

characteristic matrix of the linear decompressor and X is a set of free variables stored on the tester. 

There is an example of a sequential linear decompressor shown in Figure 2.13, where each free 

variable coming from the tester is represented by a symbol. The initial state of the LFSR is 

represented by the free variables X1−X4, and the free variables X5−X10 are shifted in by two 

channels as the scan chains are loaded. After symbolic simulation, the characteristic matrix for a 

linear decompressor can be obtained and the final values in the scan chains are represented by the 
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equations for Z1−Z12. 

X1

+

X2

+

X4

X3

+

Z9   Z5   Z1

Z10  Z6   Z2

Z11  Z7   Z3

Z12  Z8   Z4

X9X7X5

X10X8X6

Z9=X1⊕X4⊕X9

Z10=X1⊕X2⊕X5⊕X6

Z11=X2⊕X3⊕X5⊕X7⊕X8

Z12=X3⊕X7⊕X10

Z5=X3⊕X7

Z6=X1⊕X4

Z7=X1⊕X2⊕X5⊕X6

Z8=X2⊕X5⊕X8

Z1=X2⊕X5

Z2=X3
Z3=X1⊕X4

Z4=X1⊕X6  

Figure 2.13 Example of symbolic simulation for linear decompressor [9] 

 

    The operation of symbolic simulation is shown as follow: Assume that the 

initial seed X1−X4 have been already loaded into LFSR. In the first cycle, the top flip-flop is filled 

by the XOR of X2 and X5, the second flip-flop is filled by X3, the third flip-flop is filled by the 

XOR of X1 and X4, and the bottom flip-flop is filled by the XOR of X1 and X6. Finally, it gets 

Z1= X2⊕X5, Z2= X3, Z3= X1⊕X4, andZ4= X1⊕X6.  

     In the second cycle, the top flip-flop is filled by the XOR of X3 and X7, 

where X3 is the contents of the second flip-flop; the second flip-flop is filled by the values of the 

third flip-flop (X1⊕X4); the third flip-flop is filled by the XOR of the values of the first flip-flop 

(X2⊕X5) and the fourth flip-flop (X1⊕X6); and the bottom flip-flop is filled by the XOR of the 

values of the first flip-flop (X2⊕X5) and X8. Thus, it can get Z5= X3 ⊕X7, Z6= X1⊕X4, Z7= 

X1⊕X2⊕X5⊕X6, and Z8= X2⊕X5⊕X8. In the third cycle, the top flip-flop is filled by the XOR of 

the values of the second flip-flop (X1⊕X4) and X9; the second flip-flop is filled by the values of 

the third flip-flop (X1⊕X2⊕X5⊕X6); the third flip flop is filled by the XOR of the values of the 

first flip-flop (X3⊕X7) and the fourth flip-flop (X2⊕X5⊕X8); and the bottom flip-flop is filled by 
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the XOR of the values of the first flip-flop (X3⊕X7) and X10. Thus, it gets Z9= X4⊕X9, 

Z10=X1⊕X6, Z11=X2⊕X5⊕X8, and Z12=X3⊕X7⊕X10. At the moment, the scan chains are fully 

loaded with a test cube and the whole simulation is complete. The corresponding system of linear 

equations for this linear decompressor is shown in Figure 2.14. 
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Figure 2.14 System of linear equations for the decompressor [9] 

 

      For the linear decompressor, the linear equations can be used to encode the 

test cube and can be solved with the Gauss–Jordan elimination [24]. The test cube that does not 

find a solution is called unencodable test cube, In this case, it is not possible to encode the test 

cube with this particular linear decompressor. In order to handle unencodable test cubes, a simple 

way is just to bypass the decompressor when applying those test cubes. Another approach is to 

restart the ATPG to find a different test cube that is encodable. A third approach is to use more 

free variables when decompressing the test cubes, which can make it easier to solve the linear 

equation. Generally, it is very unlikely to be able to encode a test cube as it has more specified bits 

than the number of free variables. In other words, when the number of free variables is sufficiently 

larger than the number of specified bits, the probability of not being able to encode the test cube 

becomes negligibly small. For example, if the number of free variables is 20 more than the 

number of specified bits, then the probability of not finding a solution is less than 10−6. The 

encoding efficiency, for linear decompressors can be defined as follows: 

(Specified Bits in Test Set)/(Bits Stored on Tester) 

The optimality of encoding efficiency is 1. However, it is not possible to achieve higher than an 

encoding efficiency of 1 because there are normally more free variables than specified bits.  
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    Since a sequential linear decompressor allows free variables from earlier 

clock cycles to be used when encoding a scan slice in the current clock cycle, it can provide much 

more flexibility than combinational decompressors and solve the problem of the worst-case most 

highly specified scan slices limiting the overall compression. In other words, the more flip-flops 

that are used in the sequential linear decompressor, the greater flexibility can be achieved. A 

typical design of a sequential linear decompressor were described in [25], [26], and [27], as 

illustrated in Figure 2.15. There are b channels from the tester that load free variables into LFSR 

(one of linear finite-state machines), and the following is the combinational linear XOR network 

that expands the outputs of the LFSR to fill scan chains. In decompressing process for each test 

cube, the state of the LFSR is first reset and then some initial free variables are loaded to LFSR 

within a few clock cycles. After that, additional free variables are loaded into the LFSR in each 

clock cycle. The total number of free variables that are use to fill each test cube is equal to b 

(q+m), where b is the number of channels from the tester, q is the number of clock cycles used to 

initially load the LFSR, and m is the length of the longest scan chain. 

 

Figure 2.15 Typical sequential linear decompressor [9] 

 

2.4.3 Broadcast-Scan-Based Schemes 

 

     The third kind of test stimulus compression schemes that broadcast the 

same value to multiple scan chains was first proposed in [28] and [29]. This method has been 

widely used in many test compression architectures. The advantage is the same pattern can be 

extended to multiple circuits as illustrated in Figure 2.16. The problem is how to guide the ATPG 

tool to generate the patterns to be shared. Generally, the inputs here include the primary inputs as 
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well as the pseudo-primary inputs. 

SC1

1 2 3… N1

C1

SC2

1 2 3… N2

C2

SCK

1 2 3… NK

CK

...

...

Scan- input

 

Figure 2.16 Broadcasting to scan chains driving independent circuits [9] 

 

    Since one test vector can detect a fault in a stand-alone circuit then it will 

still be possible to apply this vector to detect the fault in the broadcast structure, the main benefit 

of broadcast scan for independent circuits is that all faults that are detectable in all original circuits 

will also be detectable with the broadcast structure. Thus, the broadcast scan method will not 

affect the fault coverage if all circuits are independent. Moreover, broadcast scan can also be 

applied to a single circuit if all subcircuits driven by the scan chains are independent. 

                After the test stimulus data has been applied to CUT, the response data 

requires to be shifted out for compaction. The compaction technique is described next.   

 

2.5 Test Response Compaction 

 

    Due to a large number of scan cells in complex designs, the test data 

volume would be large and the test time would be long. A common way for reducing test data 

volume and test time is to break original scan chains into a larger number of shorter scan chains, 

and then use a smaller number of ATE channels to specify inputs stimulus and observe output 

responses. Figure 2.17 shows the architecture for input stimulus compression and output response 

compaction in a scan-based design. It contains total k test channels from ATE for input stimulus, 

where (k<n). After compaction, the total bits are m, which is greatly less than the total number of 

scan chains (n). The output response compaction can generate a “signature” for output responses, 

the signature then can be observed through a limited number of channels to compare with the 

good-circuit signature. In order to support a large number of scan chains with a limited number of 
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ATE channels, researchers have recently worked on input stimulus compression and output 

response compaction. 
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Figure 2.17 Compression scheme for scan-based designs 

 

  Test response compaction is performed at the outputs of the scan chains. The 

test data after compaction must be transferred back to the tester. Unlike lossless for test data in 

stimulus compression, the test responses in test compaction can be lossy. The compaction 

techniques generally are classified into three categories: space compaction, time compaction, and 

mixed time and space compaction. 

 

2.5.1 Space Compaction  

 

  The space compaction can be expressed as a linear function of the input vector 

X and the output vector Y 

Y = φ(X) 

where X is an m-bit input vector and Y is an p-bit output vector, p<m, asillustrated in Figure 2.18. 

  

Test 

patterns

Circuit Under

Test

Space

compactor

m-bit wide

input patterns

p-bit wide

output patterns  

Figure 2.18 Space compaction schemes [9]  

 Figure2.19 is a simple example to show the space compactor for compacting 4 
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（m=4）scan chains of the circuit under test to 1(p=1) output, where the combinational circuit 

consists of the network of XOR gates. 

 

 

 

 

 

 

Figure2.19 Basic space compactor structure 

 

2.5.2 Time Compaction  

 

  Different from space compactor using combinational logic, the time 

compactor uses sequential logic. A time compactor compacts n input patterns to q output patterns 

(where q < n), as illustrated in Figure 2.20. Once time compactor is applied, no X‟s from circuit 

under test is allowed to reach the compactor. 

Test 

patterns

Circuit Under

Test

Time

compactor

n input patterns q output patterns
 

Figure 2.20 Time compaction schemes [9]  

 

  The most widely used time compactor is the MISR. The Figure 2.21 

demonstrates the n-stage MISR. The structure of the n-stage MISR can be expressed by a 

specified characteristic polynomial of degree n, f(x), the symbol hi can be set either 1 or 0 based 

on the existence or absence of the feedback path, where: 

F(x) = 1+h1x+h2x
2
 +···+hn−1x

n−1
+x

n 
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r0 ⊕ r1 ⊕ rn-2 ⊕ rn-1⊕……⊕

M0 M1 M2 Mn-2 Mn-1

h1 h2 hn-2 hn-1

 

Figure 2.21 An n-stage MISR [9]  

 

  Take an example for the four-stage MISR applying f(x) = 1+x+x
4
, as 

illustrated in Figure 2.22(a). Set M0= {10010}, M1= {01010}, M2= {11000}, and M3= {10011}. 

After calculating by the formula M(x) =M0(x) +xM1(x) +x
2
M2(x) +x

3
M3(x), it can get M(x) 

=1+x
3
+x

4
+x

6
+x

7
 or M= {10011011}, as shown in Figure 2.22(b). Finally, the signature R is 

represented by the rightmost four bits of the M sequence. Hence, R= {1011}.    

⊕ ⊕ ⊕⊕

M0 M1 M2 M3

(a)

M0  1 0 0 1 0

M1     0 1 0 1 0

M2        1 1 0 0 0

M3           1 0 0 1 1

M   1 0 0 1 1 0 1 1

(b)
 

Figure 2.22 An equivalent M sequence for four-stage MISR [9] 

 

  In this example, there are totally four input patterns (n=4) such as M0, M1, M2, 

and M3. After compaction, there is only one output pattern (q=1) R. 

 

2.5.3 Finite Memory Compaction 

 

                In this section, finite memory compaction is introduced, which combines the 

advantages of time compaction and space compaction. Many finite memory compactors have been 

proposed such as OPMISR [30], convolutional compactor [31], and q-compactor [32] [33] [34]. 

                Figure 2.23 shows a simple example about the basic structure of a 

q-compactor, including six inputs coming from scan chains and one output, where each flip-flop is 
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connected to the corresponding output of XOR network. It shows that every error in a scan cell 

can reach storage elements and then outputs in several possible ways. Since the q-compactor does 

not have feedback path, any error can be shifted out for comparing with the expected data after at 

most five cycles. 

+

D D D D D

+ + + +

Inputs

output

 

Figure 2.23 An example q-compactor with single output [9] 

 

    The list three types of compactor is very efficient for output compaction. 

However, once X‟s occur in output responses, the fault coverage may lost due to error masking, 

which is described in next section. 

 

2.6 Error Masking 

 

    Once these X‟s are introduced into the output response data, the 

performance of the test compression schemes can be significantly degraded. For the class of 

output compactors called time compactors, MISRs for example, once an unknown is introduced, 

the signature quickly becomes corrupted and must be reset, that means no error can be observed. 

For example, the MISR and two scan chain in Figure 2.24. The scan chain 1 contains one error in 

first cycle and scan chain 2 contains an X in second cycle respectively, after two cycles the ε and μ 

are XORed together in MISR bit, then the error is corrupted. 
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                        ε

Scan chain1

         μ   

Scan chain2

+

+

MISR

no error

for observation

μ⊕ ε

 

Figure 2.24 Error masking in MISR 

 

    When the scan-out responses come to output compactors, the scan-out 

responses are compacted by XOR gates. However, an error response may not be observed due to 

unknown-induced error masking. An error means a response different from the good circuit 

response. An X means the value in response is not determined in simulation. Take an example for 

space compactor in Figure 2.25, an error and an X are represented by „ε‟ and „μ‟, respectively, and 

„s‟ means don‟t care bit. The unknown and error can be propagate to the output of XOR operation, 

for example the result of XOR operation between „μ‟ in scan chain 1 and „s‟ in scan chain 2 is „μ‟. 

The error cannot be observed after XOR operation with an X, and the second stage of XOR 

operation shows the result of XOR operation between „ε‟ and „μ‟. This is called unknown-induced 

error masking which happens when there is an X along with some errors at the inputs of the 

compactor. Under such a situation, the good-circuit response at the compactor output is X, Thus, 

no error can be observed. 

                        μ

Scan chain1

         s

Scan chain2

         ε

Scan chain3

         s

Scan chain4

+

+

+

μ

ε

Always μ in 

good-circuit

response 

no error

ε :error

μ:unknowm  

Figure 2.25 Error masking in space compactor 

 

    Since the structure of the finite memory compactors is adding some memory 

elements in the space compactor, the compaction schemes obtained by combining time and space 
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dimensions, so the error masking in finite memory compactors happens in both situation of time 

compactor and space compactor. 

 

2.7 Summary  

 

    In this chapter, the overview of VLSI testing technology development is 

provided and the main challenge of VLSI testing is discussed. In order to illustrate the problem 

statement clearly, the whole picture is draw in this area including the basic DFT concepts, scan 

design and test compression techniques. As shown in this chapter, the presence of X‟s in test 

responses can greatly degrade the output compaction due to the error masking. In order to handle 

this problem, several efficient schemes are proposed in the next chapter. 
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CHAPTER 3 

 

 

RELATED SCHEMES FOR HANDLING UNKNOWN VALUES 

 

 

3.1 Introduction of Schemes for Handling X’s 

 

    Scan design has become main stream for complex digital circuits in test 

industry. For the test compression, the main goal is to achieve high test quality with lower test 

overhead. However, the presence of X‟s in test streams can largely degrade the efficiency of 

compression during test mode. To reduce the impact of X‟s, a large number of schemes for 

handling X‟s have been developed in recent years. The basic methods are X-blocking, X-masking 

and X-tolerant. 

    During response capture, the generated X‟s can be blocked from reaching 

the scan cell. One way is to identify X sources and add additional DFT logic to fix the X sources 

by adding additional test points [35]. Another way is to block the X‟s from reaching the scan cells 

by careful test pattern generation. The approach in [36] is to identify the X-candidates and to 

generate control vectors for reducing the number of X‟s in the scan response. X-blocking can 

ensure that no X‟s will be observed. However, it does not provide a means for observing faults, 

which can cause fault coverage lost. In addition, the approach in [36] is not compatible with the 

test data compression technique. 

   As the X-blocking technique may cause fault coverage lost and it does add 

area overhead and may impact delay due to the inserted logic, the X‟s can also be masked off right 

before the response compactor [37-40]. The X-masking technique can be easily implemented as it 

just adds the X-masking logic in front of compactor. It does cause additional hardware overhead. 

However, it does not cause any circuit delay during the test.   

Meanwhile, the X‟s can be tolerated during the compaction of the test 

response. The X-tolerant technique is used to design a compactor which can guarantee the errors 

are detected even in the presence of X‟s in the same clock cycle. The main advantage is it does not 
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require any additional hardware for X-masking logic and does not degrade the system 

performance during normal operation. For the space compactors, it utilizes XOR gates to compact 

test response coming from N scan chains {0, 1, X}
N
 into a compacted observable test response 

with Q outputs {0,1,X}
Q

 for each scan cycle, where N > Q. The following section lists several 

related schemes for handling X‟s in recent years. 

 

3.2 X-masking Techniques  

 

    As mentioned earlier, the X-masking techniques are applied to mask X‟s 

before the X‟s coming to response compactor. Figure3.1 shows a general structure of X-masking 

circuit with three scan outs. It shows that the mask controller can apply a logic value „1‟ for any 

scan output to mask off X‟s in scan output responses. Notice that the mask date can be generated 

for each scan cycle and it can be stored in compressed format. 

Mask

controller

Scan out1

Scan out2

Scan out3

Mask logic

compactor

 

Figure 3.1 A simple X-masking circuit 

 

   Many schemes for X-masking have been proposed. In this section, some 

important X-masking schemes are list, including conventional LFSR X-masking, reiterative 

X-masking, and X-masking by use of a Hierarchical-Configurable-Mask-Register (HCMR). 

 

3.2.1 Conventional LFSR X-masking 

 

  The conventional LFSR X-masking is wildly used scheme which is described 

in [13]. It creates a mask for every scan slice to ensure that all X‟s in each scan slice get masked, 
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and all d‟s remain unmasked, where d records a value that is required to be observed for the 

detection of one or more faults. The basic architecture of this technique is shown in Figure 3.2. 

We can see the LFSR is used to drive scan chains and create the mask data from the phase shifter 

as well. The compressed mask data stored on the ATE is expanded through LFSR for each scan 

slice. Since the ATE has to store enough mask data to create a mask for every slice, amounts of 

mask data are required. 
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                  Figure 3.2 Architecture of conventional LFSR X-masking [13]  

 

    Figure 3.3a shows the basic operation for conventional LFSR X-masking. For 

an interval of each scan slice, the mask bit is given for each scan cell. The mask bit can be set to „1‟ 

(masked) if X is present in a scan cell ; the mask bit can be set to „0‟ (unmasked) if d is present; if 

there is neither of X and d in a scan cell, the mask bit can be set to „?‟(don‟t care). The results are 

shown in Figure 3.3b where none of X’s is left and all d’s remain after masking. 
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Figure 3.3 Conventional LFSR X-Masking Example 
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   As the conventional LFSR X-masking scheme creates X-mask for each scan 

cell, it ensures that all X‟s can be masked off, but the number of mask bit is huge. In order to 

reduce the mask bit overhead, a further research is given in next section. 

 

3.2.2 Reiterative X-masking  

 

   The reiterative X-masking technique can create a mask for more than one 

scan slice, as described in [14]. This technique lists two efficient methods, including variable 

reiterative LFSR X-Masking and hybrid X-masking approach based on different number of X‟s in 

test response. 

 

3.2.2.1 Variable Reiterative X-masking  

 

      The variable reiterative LFSR X-Masking scheme applies a mask for a 

number of scan slices. It also ensure that all X‟s in each scan slice get masked and all d‟s get 

unmasked, but less number of mask data are used by finding a mask that is usable for a varying 

number of adjacent scan slices. The structure of this approach is shown in Figure 3.4. The 

decompressor is used to load scan chains and create mask data every i clock cycles. 
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Figure 3.4 Structure of variable reiterative LFSR X-Masking [14]  
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                    The way for finding a solution of the masks for a given pattern is list as 

follow: 

1) First find the location of all the d and X bits. 

2) Apply a mask for the first scan slice at the beginning of the current interval. For example, 

the scan slice 1 in Figure 3.5a gets an X in position 6, so the mask bit for this position is 

„1‟. As positions 1 and 2 in scan slice 1 are d‟s, so the mask bits for those positions are 

„0‟s.  

3) Add the interval by one to load the current mask. For scan slice 2, bit position 5 gets a d, 

so the mask bit for this position is set to „0‟. Since position 4 gets an X, the mask bit is 

„1‟. 

4) Rerun step 3 until at least one mask bit position gets a conflict. If the conflict happens, the 

current scan slice needs to be set the beginning of a new interval. Then skip to step 2. For 

example, when load scan slice 5 to the current interval, an X occurs in bit positions 2 and 

5, which can cause a conflict. Finally, M1 creates the mask for scan slices 1-4, and M2 is 

for 5-7. Figure 3.5b shows the results after masking. 
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Figure 3.5 Variable Reiterative LFSR X-Masking Example [14] 
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    As it can reuse masks for multiple adjacent scan slices, the amount of mask 

data stored on the ATE can be reduced significantly. Thus, the output data compression can be 

greatly improved. However, this approach is efficient just for small numbers of X‟s. When the 

number of X‟s gets large, a hybrid X-masking is proposed in next section. 

 

3.2.2.2 Hybrid X-masking Approach  

 

                  Hybrid X-masking approach uses fixed-interval reiterative X-masking 

combined with conventional LFSR X-masking. The primary advantage of the reiterative 

X-masking logic is to mask all of the easy to mask X‟s by reusing masks for many scan slices, and 

the conventional LFSR X-masking can handles the rest. The structure of this approach is shown in 

Figure3.6. 
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Figure 3.6  Hybrid X-Masking architecture [14] 

 

   In this Figure, the decompressor is used to drive scan chains and the LFSR 

with phase shifter is applied to generate the mask bits. For m scan chains, the hardware 

architecture consists of an m-bit masking register, an i-bit interval counter, 2m OR gates. This 

LFSR is not only used to generate the mask for each slice for the conventional LFSR X-masking 

part of this approach, but also generate the mask bits to load the mask register for the reiterative 
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X-masking part. Reiterative LFSR X-masking logic is designed to reuse a mask data when 

adjacent scan slices got X’s mask X’s for a number of scan slices and keep all d’s. In order to keep 

the overhead of storing the mask data small, a reseedable LFSR is used to encode just the X and d 

bits. The interval counter is loaded one time at the beginning of the test from the b tester channels. 

The interval counter counts down the number of shift cycles until the interval counter becomes 

zero. Once that happens, a new mask is loaded into the mask register and the interval counter is 

returned to the initial value. 

    The operation for fixed-interval reiterative X-masking is shown in Figure 

3.7a, For an interval of five scan slices, mask bits can be set to „1‟ (masked) in scan chains 2, 3, 

and 6 if X‟s are present without d‟s, and mask bits can be set to „0‟ (unmasked) in scan chains 1, 4, 

and 5 since d‟s are present. If there are neither of X‟s and d‟s in scan chains 0, 7, 8, and 9, the 

mask bits is set to „?‟(don‟t care). The results are shown in Figure 3.7b where in two X‟s are left in 

scan chains 1 and 5, which can be handled by conventional X-masking logic. Note that the size of 

the interval counter determines the overall effectiveness of this hybrid approach. If the size of 

interval counter gets smaller, the remaining of X‟s usually presents less, but more mask bits are 

required, otherwise the mask bits will be smaller. Thus, the minimum size of interval counter has 

been determined and can be re-loaded in different test patterns. 
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Figure 3.7 Reiterative X-Masking Example [14] 

 

  Comparing conventional LFSR X-masking, this approach can provide 
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significant reduction of mask bits overhead as masks are reused for multiple scan slices. Moreover, 

this approach handles the X‟s into two cases: small number of X‟s and large number of X‟s. Using 

Variable Reiterative LFSR X-masking can significantly increase the amount of compression for 

smaller numbers of X‟s. When the number of X‟s gets large, then a hybrid approach is applied.  In 

order to mask X‟s more specifically, another X-masking scheme called hierarchical configurable 

mask register is proposed to apply optimal mask bit based on the different distribution of X‟s in 

the next. 

 

3.2.3 Hierarchically Configurable Register  

 

                 In this section, a hierarchical method is proposed in [41] for X-masking by 

use of a HCMR. The main idea of this approach is to select a subset of l of the k scan chains first. 

Then an optimized X-mask is applied only for selected l scan chains in each test pattern. A single 

control signal is used to determine whether the X-mask will be applied or not for every scan cycle. 

After the X-mask operation, the remaining X-values can be tolerated by an X-tolerant compactor. 

The basic implement of this approach is described as follow.  

 

3.2.3.1 Implement of Hierarchical Configurable Mask Register 
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Figure 3.8 Structure of hierarchical configurable mask register [41] 
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     The hardware structure of the proposed HCMR is described in Figure 3.8. 

There are four (k=4) scan chains, and the HCMR have two separate shift register 

Configuration-Register (CR) and Mask-Register (MR) in it. The CR consists of flip-flops 

CR1,…,CRk and MR consists of flip-flops MR1,…,MRk. A multiplexer MUXi is connected to the 

every output of MRi. The Mask Enable signal is used to allow the activation of X-mask. Once 

Mask Enable signal is active, the selected scan chains are allowed to be masked based on the 

values stored in MR. 

                  Figure 3.9 shows a simple integration of the HCMR. There is a single 

module of HCMR for one scan chain, as shown in Figure 3.9a. The configuration register CR 

selects a subset of l scan chains. Since the i-th bit of configuration register CRi is set to logic „true‟, 

the i-th scan chain needs to be masked. If the logic is set to „false‟, it means the scan chain is no 

need to be masked. Note that the configuration register CR is only loaded one time at the 

beginning of test. 

                  For the each pattern, the mask can be shifted into mask register MR for l 

selected scan chains. The case whether or not the i-th scan chain is masked is determined by the 

value of output mi which is provided by an AND gate from MRi and CRi.. Therefore, the value of 

MRi can be propagated to output mi if and only if the value of CRi. is „true‟. This approach is 

efficient as the load process of mask register MR loads only l bits of mask bit. The multiplexer 

MUXi is controlled by the value of CRi. Once the value in CRi. is logic „true‟, the value stored in 

MRi is propagated to multiplexer output. Otherwise the value at the input of MRi is propagated to 

multiplexer output. The both cases are shown in Figure 3.9b and Figure 3.9c, respectively. Thus, it 

just needs to load l positions to MR because the CR only defines l bit for HCMR. 
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Figure 3.9 Mask register element for a single scan chain [41] 
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                 Figure 3.10 shows a simple example to demonstrate HCMR with k=4. As the 

value in CR1. and CR4 are logic „true‟, the mask register just generates two mask bits s1 and s4 for 

the first and last flip-flop. Thus, the mask bit is only loaded to the first and fourth scan chain as the 

output m2 and m3 are logic „false‟. The HCMR is required two tester channels for controlling. The 

first channel is used to transfer the information for configuration register CR and mask register 

MR. the second is use to drive the Mask Enable signal. 
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Figure 3.10 4-stage mask register [41] 

   After understand the implement of hierarchical configurable mask register, 

the next step is to apply an optimal value for register CR and MR to achevie a high observability 

of scan cells. 

 

3.2.3.2 Optimal X-mask Determination  

 

                 In this section , a nearly optimal X-masking for a test pattern is proposed. For 

the first step, the configuration of register CR is determined by l, where l also represents the 

number of selected scan chains. If the masks are not sufficiently efficient, the number of l can be 

increased to 2l,3l,.... Note that the configuration select l scan chains with most X‟s during the 

whole test. Only the bits CRi corresponding to these l scan chains are set to logic „true‟. The set 

values are unchangeable during whole test. 

                 For the second step, it defines the optimal X-mask M(m, p) for each pattern p, 

and X-mask M(m,p) selects m ( 0<m<l) scan chains with most X‟s. However, the optimal X-mask 

M(m,p) needs to be iteratively determined. For convenience, the value m is modified by the value  

s ( 0≤s≤ 𝑙)for every iteration . Define CM : the number of observable scan cells using the X-mask 

M(m,p) and CnotM: the number of observable scan cells without X-mask. So the additional number 
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of observable scan cell is ∆c = CM- CnotM. 

                 For the basic operation of the iterative process, it set the s a fix value first if 

additional number of observable scan cell ∆c increases for each iteration. Once ∆c decreases, 

the value of s is reduced by half for each iteration. The iteration process requires to stop as long as 

the same X-mask is generated. Finally, several X-mask M(m, p) are produced for one test pattern. 

The best X-mask which gets the largest amount of additional observable scan cells can be 

selected.        

The iterative process can be illustrated in Figure3.11 and Table 3.1. In Table 

3.1, the initial value of s is set to10 for the first iteration. As the value of ∆c increases , the value 

of s is unchanged within first two iterations. For the third iteration, the value of ∆c reduces 

comparing with the second iteration. So the value of s reduces half. For the iteration process of 

five and six ,the value of ∆c increases again. The iteration process will stop after the sixth 

iteration because the value of m=25 has been generated twice. Comparing six X-mask for whole 

iteration process, the maximum additional observable scan cell can be achieved in second iteration, 

where ∆c is 90. Thus ,the final X-mask is to select m=20 masked scan chains for this pattern. 

Table 3.1 Example of iterative process 

Iteration        1          2          3          4          5          6          7

   Δc           50        90        70        60        80        85        60

    s            10        10        10         5          2          1          1

   m            10        20        30        25        23        24        25

 

0 10 20 3025

Amount of selected scan 

chains
 

Figure 3.11 Development of the amount of masked scan chains during iterative process [41] 

 

  This proposed X-mask scheme a HCMR is very efficient as it utilizes the fact 

that most of X‟s are only located in a subset of scan chains. As mentioned before, the mask logic is 
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performed in two steps. For the first step, a subset of scan chains is selected to consider for 

X-mask. The second, an optimal X-mask is applied to the HCMR for each test pattern. The HCMR 

can be easily integrated in arbitrary designs. 

                  In order to detect fault, one valid way is to mask off X‟s directly by 

specified X-masking logic in the list X-masking techniques. However, the fault can also be 

detected without using X-masking logic in the presence of X‟s, which is presented in X-tolerant 

scheme in next section. 

 

3.3 X-tolerant Schemes 

        

   Since the time compactor such as MISR cannot tolerate even one X, it is 

necessary to develop an X-masking scheme to mask all the X‟s in test response. However, another 

type compaction scheme such as space compactor can allow the existence of X ‟s, so it is more 

suitable to develop an X-tolerant scheme for space compactor in general. The main advantage of 

X-tolerant schemes is that it does not need to generate mask bits to mask X‟s and it causes 

negligible hardware overhead. 

   Instead of masking X‟s directly by specified mask logic in X-masking 

technique, the X-tolerant scheme is performed to minimize the impact of non-X value being 

masked by X‟s. It can guarantee to check erroneous compactor output in the presence of limited 

number of X‟s, or the errors can be detected by the tester when the errors are propagated to the 

compactor outputs with X‟s appearing in the current cycle. In this section, several important 

X-tolerant schemes are presented, such as response shaper, X-canceling MISR, X-compactor and 

i-compactor. 

 

3.3.1 Response Reshape 

 

    In this section, a circuit module called response shaper is proposed in [4], 

which can reduce the masking effect due to X‟s for space compactor. In Figure 3.12, we can see 

the response shaper logic is added in front of space compactor, so that the scan-out responses need 

to be “reshaped” first by response shaper logic before compaction. After the proper control signals 
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based on the simulation results applied to configure the response shapers, the space compactor can 

detect faults more easily. Thus, the compaction scheme can improve obviously the fault coverage 

as well as the number of observable scan-out responses in the presence of unknown values(X’s). 
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Figure 3.12 Input compression and output compaction scheme with response shaper [4] 

 

   The objective of this work is to improve the tolerance of X’s by adding the 

response shaper logic to “reshape” the scan-output responses before compaction, which means 

ATE can detect as many modeled faults as possible in the presence of X’s. Meanwhile, this 

scheme is applied to maximize the number of observable scan-out responses in the presence of X’s. 

The basic operation response shaper is shown in next section.   

 

3.3.1.1 Design of a Response Shaper 

 

   There is an example of a 4-scan-chain response shaper shown in Figure 3.13. 

Each input ini and output outi of this response shaper correspond to the scan chain i. In the 

response shaper logic, a 2-to-4 decoder is applied to select scan chain by assigning a proper value 

at signal chain sel. Since a scan chain i is not selected by the decoder, outi will directly connect to 

the first scan cell in scan chain i (denoted as Ci,1). For a selected scan chain i, if shi f t_sel is equal 

to 0, outi will connect to a delay element which stored the scan-out response in the previous cycle. 

If shi f t_ sel = 1, outi will connect to a constant value (1 in this example). The operation (shi f t_ 

sel = 0) can be called the shift operation and the operation (shi f t_ sel = 1) is replacement 

operation. 
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Figure 3.13 An example of a 4-scan-chain response shaper [4] 

 

   Figure 3.14 demonstrates the operation for rearranging the scan-output 

responses going to the space compactor after a shift operation and a replacement operation. SOi, j 

represents the scan-out response of scan cell Ci, j. For the scan chain i, there is neither a shift 

operation nor a replacement operation. Therefore , the scan-out responses coming to the space 

compactor for scan chain i are SOi,1, SOi,2, SOi,3 and SOi,4 in order in Figure 3.13 (a). After a shift 

operation applied on scan chain i ,the order is changed to SOi,4, SOi,1, SOi,2, and SOi,3,as shown in 

Figure 3.14 (b), where SOi,4 is the same as SOi,4 propagating to the space compactor in the 

previous clock cycle. In Figure 3.14 (c) shows all scan-out responses become a constant as a 

replacement operation is applied on scan chain i. 

……     SOi,1     SOi,4    SOi,3     SOi,2     SOi,1       SOi,4    SOi,3     SOi,2     SOi,1

(a)                               scan-out cycles

……    SOi,1     SOi,3    SOi,2     SOi,1     SOi,4       SOi,4    SOi,3     SOi,2     SOi,1

(b)                           under response shift

……     SOi,1      1          1           1           1          SOi,4    SOi,3     SOi,2     SOi,1

(c)                      under constant replacement

 

Figure 3.14 An example of shift operation and the replacement operation 
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  By the way, a shift operation can perform not only a one-cycle delay. With 

more storage elements and its corresponding MUX, a shift operation can perform a multiple-cycle 

delay. However, such flexibility needs more control bits for shi f t_ sel. In order to further reduce 

the data overhead of the control signals applied to a response shaper, we do not change the signals 

of chain_ sel and shi f t_ sel during the entire scan-out cycles for one test pattern. For the 

following parts, the detail of fault detection and improvement for observable scan cells with a 

response shaper is described. 

 

3.3.1.2 Fault Detection with a Response Shaper 

 

   Once values are applied to the control signals chain_ sel and shi f t _sel, the 

main issue of control signal generation is to maximize the fault coverage. A fault could be 

detected if one of its error responses is propagated to an output of the space compactor. Figure  

3.15 shows an example of applying a response shaper to avoid the masking effect. In the scan-out 

responses, there are three errors and three X’s produced in simulation. Without shift operation, 

after the XOR operation, none of these errors can be observed due to either even-error masking 

(the third scan-out cycle) or unknown-induced error masking (the second scan-out cycle).As a 

shift operation is applied on the first scan chain, the scan-out response will change to Figure 3.15 

(b). In this situation, one error can be observed in the third cycle. Hence, the shift operation or 

replacement operation may help to detect some faults. But sometimes, some detectable faults may 

become undetectable after a shift operation or a replacement operation. So the reshaping algorithm 

for control signal generation is important. 

 ε         μ 
scan chain 1

scan chain 2

scan chain 3

scan chain 4

 ε   ε   

 μ        μ 

response shift

on scan chain 1

observable

ε:error

 ε   ε   

μ:unknown

 ε         μ 

 μ        μ 

(a) (b)

+

+

+ +

+

+

 

Figure 3.15 An example of fault detection with a response shaper [4] 
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3.3.1.3 Observable scan-out Response with a Response Shaper 

 

   Another application for control signal generation is to improve the 

percentage of observable scan-out responses. The definition of observable scan-out response is a 

scan-out response does not be masked by an unknown-induced error masking. For example, a 

scan-out response on a scan chain is observable if there is no X’s on any other scan chain fed to 

compactor at the same cycle. The basic operation for increasing the number of observable 

scan-out responses is described in Figure 3.16. At first, the scan-out responses in C1,3, C2,3,C3,3, 

andC4,3 are observable due to no X’s in current cycle, as shown in Figure 3.16(a). After a shift 

operation applied on the first scan chain in Figure 3.16(b), four more scan-out responses in C1,1, 

C2,1, C3,1, and C4,1 become observable as the X’s in C1,1 is shifted to C1,2. When a replacement 

operation is applied on the first scan chain in Figure 3.16(c), six more scan-out responses in C1,2, 

C3,2, C4,2, C1,4, C3,4, and C4,4 can become observable because the two X’s on the second scan chain 

are replaced by a constant 1. However, the scan-out response in C2,3 is no longer observable 

because it has already been replaced by a constant 1. 

 σ    μ    σ 

 σ          σ   

 μ   σ     μ    

C1,4C1,3C1,2C1,1

 σ   σ   σ     

 σ   σ   σ    μ 

1   1    1   1

(b) (c)

+

+

+ +

+

+

 σ         μ 

σ

 μ    σ    μ 

(a)

+

+

+
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 σ

 σ          σ    σ   σ   σ     

C2,4C2,3C2,2C2,1

C3,4C3,3C3,2C3,1

C4,4C4,3C4,2C4,1

C1,4C1,3C1,2C1,1C1,4C1,3C1,2C1,1

C2,4C2,3C2,2C2,1 C2,4C2,3C2,2C2,1

C3,4C3,3C3,2C3,1
C3,4C3,3C3,2C3,1

C4,4C4,3C4,2C4,1C4,4C4,3C4,2C4,1

         μ :unknown  σ:observable scan-out response 

 

Figure 3.16 An example for observable scan-out response [4] 

 

   This scheme proposes a simple circuit module called the response shaper to 

enhance the X’s tolerance for output response compaction. With the response shapers, the faults 

detection can be maximized for a space compactor. Meanwhile, the reshaping algorithm is 

important for control signal generation.  

   The method for enhancing the X‟s tolerance in this scheme is to reduce the 
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occurrence of error masking (including even error masking and unknown- error masking) for test 

responses. However, another method for enhancing the X‟s tolerance is to cancel out unknown 

value by itself, which is described in next section. 

 

3.3.2 X-Canceling MISR 

 

                 In this section, a X-tolerant MISR compaction methodology called 

X-Canceling MISR is introduced in [15]. Unlike conventional X-masking schemes, it does not 

require any masking logic at the input of the MISR. The basic idea is that each X in the output 

stream is represented by a unique symbol, which is used to determine the final state of the MISR. 

Each bit of MISR signature corresponds to a linear combination of symbols, and some linear 

combinations are guaranteed to be linearly dependent in terms of the symbols corresponding to the 

X’s when there are more bits of MISR than symbols. Once some combinations of MISR bits 

which are linearly dependent the symbols corresponding to the X’s are XORed together, the X’s 

can cancel out each other and produce a deterministic value during the test. After comparing the 

value of the XORed combination of MISR bits and the fault-free value, an error can be detected if 

the values mismatch each other. The q such combinations can provide the error coverage of 

approximately 1-2
-q

. Therefore, if 7 such combinations are checked, the error coverage is given 

over 99%. Checking 16 such combinations can provide the error coverage 99.998%. To apply an 

appropriate set of MISR bit combinations for checking, it is possible to guarantee 100% coverage 

for some fault model. By the following part, a symbolic simulation is described.    

 

3.3.2.1 Symbolic Simulation 

 

   After the output response that has been captured in the scan chains, each scan 

cell can be represented by a symbol. For example, in Figure 3.17, assume each symbol Xi has an X 

value and each symbol Oi has a non-X value. The final state of the MISR in terms of the symbols 

has been obtained since the output response is shifted in to the MISR. Finally, each bit of the 

MISR is equal to a linear combination of the scan cells. For example in Figure 3.17, the final 

value of the top bit of the MISR will be equal to X1⊕ O3⊕ O8⊕ O13. 
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O13  X3    X1

O14  O8   O2

O15  O9   O3

O16 O10  X2

O17 O11 O5

X4    O12  O6 

M1=X1⊕O3⊕O8⊕O13

M2=X1⊕O2⊕X2⊕X3⊕O9⊕O14

M3=O2⊕X3⊕O5⊕O10⊕O15

M4=X1⊕O6⊕O11⊕O16

M5=X1⊕O2⊕X3⊕O12⊕O17

M6=O2⊕X3⊕X4

 

Figure 3.17 Example of Symbolic Simulation of MISR [15] 

 

   The Figure 3.17 shows the X dependence of the MISR bits, where each X 

take on value 0 or1. If there are k X‟s, then there are totally 2
k
 different combinations for the X‟s. 

Take an example in figure 2, there are 4 X‟s in the output response (X1-X4), and each could be 

either 0 or 1 in a fault-free circuit. So there are 16 possible signatures in all produced in the MISR 

for a fault-free circuit. Each possible combination of values for the X’s can be thought of as 

producing a valid fault-free signature in the MISR. If an m-bit MISR contains k X’s, which means 

2
k
 valid signatures out of 2

m
 possible signatures can be produced in a fault-free circuit. Once an 

error occurs, it will change a fault-free signature to a faulty signature. So the probability for the 

faulty signature which belongs to the 2k valid fault-free signatures is 2
k
 /2

m
. Therefore, the 

probability of aliasing is 2
k
/2

m
. If k is 20 less than m, the probability of aliasing is 2

-20
 which less 

than one in a million. It means that an m-bit MISR can compact at most (m-20) X‟s in output 

streams with negligible loss of error coverage. 
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Figure 3.18 Linear Equations for MISR in Figure3.16 [15] 

 

   After the output response is shifted in to the MISR, the linear equations of 

MISR bits can be represented by a matrix, where each row corresponds to a MISR bit and each 

column corresponds to an X. The entry in the matrix is a “1” since X’s present in each MISR bit 

corresponding to each row. Take an example in Figure 3.18, the second row corresponds to M2 in 

the matrix, and three “1” located in the first three columns indicate dependence on X1, X2, and X3, 

respectively. In order to guarantee linearly dependent for some combinations of rows, the number 

of X‟s must be less than the size of the MISR because there are more rows than columns. The 

linearly dependent row combinations can be identified by Gauss-Jordan elimination [24], which 

includes performing rows operations that transform a set of columns into an identity matrix.  

   After Gauss-Jordan elimination, all-0 rows in the matrix have no dependence 

on the value of the X‟s, as shown in Figure 3.19, where the first all-0 row is got from M1⊕M3⊕M5. 

This indicates that if the MISR bits M1, M3, and M5 are XORed together, all the X‟s cancel out 

and the final value has no dependence on the X‟s. This can be calculated as follow: 

M1⊕ M3⊕ M5 = (X1⊕ O3⊕ O8⊕ O13)⊕ (O2⊕ X3⊕ O5⊕ O10⊕ O15)⊕ (X1⊕ O2⊕ X3⊕ O12⊕ O17)= 

O3⊕ O5⊕ O8⊕ O10⊕ O12⊕ O13⊕ O15⊕ O17 

   By applying XOR operation on these three bits together, the final equation 

depends only on non-X values, and each of the all-0 rows correspond to MISR bit combinations 

where the X‟s cancel out. During test mode, these X-canceled MISR bit combinations can be 

compared with their fault-free values for error detection. 
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Figure 3.19 Gauss-Jordan Reduction of MISR Equations [15] 

 

   Since q X-canceled combinations are checked, the error coverage is 

approximately equal to 1-2
-q

. In other words, the error coverage is equivalent to using a q-bit 

MISR with no X’s for signature analysis. Table 3.2 lists the error coverage for different values of q. 

Generally, if 7 X-canceled combinations are checked, then over 99% error coverage can be 

achieved; and if we check 13 X-canceled combinations, 99.99% error coverage can be obtained. 

 

Table 3.2 Error coverage versus Number of 

X-canceled combination (q) [15] 

X-Canceled 

Combination(q) 

Error 

Coverage 

1 50% 

2 75% 

3 87.5% 

4 93.75% 

5 96.88% 

6 98.44% 

7 99.2% 

8 99.6% 

9 99.8% 

10 99.9% 

11 99.95% 

12 99.97% 

13 99.99% 

14 99.994% 

15 99.997% 

16 99.998% 

 



48 
 

3.3.2.2 X-Canceling MISR Architecture 

 

   The architecture of X-canceling MISR is shown in Figure 3.20. After passing 

through a phase-shifter, the output response is scanned into an m-bit conventional MISR, after that 

we can get the X-canceled combinations by using a programmable XOR network. Linear 

dependent combinations of MISR bits are generated by symbolic simulation. The m-bit selection 

register is performed to select a set of MISR bits which are XORed together to generate an “X-free” 

value that is compacted in the X-free MISR. As each X-free value has no dependence on X‟s in the 

output responses, the final signature in the X-free MISR during test is deterministic and can be 

directly compared with the fault-free value to detect faults. 
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Figure 3.20 X-Canceling MISR Architecture [15] 

 

   As the m-bit MISR can compact up to m-q X‟s with an error coverage of 

1-2
-q

, a 256 bit MISR with a value of q=12 can give the error coverage over 99.97%, and up to 

244 (MISR bit-q) X‟s can be compacted in the MISR with any number of non-X outputs. For the 

operation, the MISR can keep compacting output response data from the scan chains until the 

number of X‟s reach up to 244, after that 12 X-canceled combinations are generated and shifted 

into the X-free MISR. Then the MISR need to be reset and can compact the output response data 

again. 

   The main advantage of X-canceling MISR is that the error coverage depends 

only on the number of X-canceled combinations that are checked instead of the total number of 

X‟s in a scan slice. And tester storage overhead don not relate to the scan architecture, design size, 
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or number of test vectors, it just depends on the total number of X‟s in the output response. Thus, 

this scheme is extremely efficient when the percentage of X‟s is small. However, if the percentage 

of X‟s becomes large, this scheme is not efficient due to increasing huge tester storage overhead. 

So it conducts a hybrid approach which combines X-masking logic with X-canceling MISR, as 

described in the next section. 

 

3.3.2.3 Combining X-masking and X-canceling MISR 

 

   Since the X-canceling MISR scheme is not suitable for large amount of X‟s 

becomes large, a hybrid method is proposed in [42] by combining X-masking with the X-canceling 

MISR. The basic idea of the hybrid method is to handle majority of the X‟s that can be easily and 

efficiently masked, and the residual X‟s is handled by the X-canceling MISR. One of main 

advantages of this approach is that it is very efficient to handle large amount of X‟s in output 

response. 
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Figure 3.21 Combining X-masking and X-canceling MISR [42] 

 

   Figure 3.21 shows the architecture for m scan chains with a control signal, an 

m-bit masking register, an interval counter, and two logic gates per internal scan chain for a total 

of 2m logic gates. The control signal is applied to determine whether or not to mask on each scan 

slice. Consider the case where the control signal is a „1‟, then the mask is applied, if the control 

signal is set to „0‟, the mask data is useless and cannot affect the scan output response data. Once 
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the control signal is a „1‟, and if a given mask data bit is set to „1‟, the corresponding output 

response data bit is masked; if mask bit is given to „0‟, it means no masking will occur. The goal is 

to consider as many adjacent scan slices as possible as well as mask as many X‟s in those scan 

slices as possible without losing fault coverage. After masking, the majority of X’s is killed and 

the residual small number of X’s in the output response can be handled by X-canceling MISR.  

  Comparing the scheme of response shaper, the proposed X-canceling MISR 

also applies external control logic before compaction. Without using external control logic, the 

next section will show the X-tolerant compactor which can tolerate X‟s by itself. 

 

3.3.3 X-compactor 

 

  X-compact is a typically X-tolerant test response compaction technique 

presented in [5]. With the X-Compact design technique, the data volume can enable up to 

exponential reduction in the test response and very few pins are required. For example, by 

applying the X-compact technique, the 500 parallel scan chains where each scan chain contains 

1000 flip-flops use only 12 scan-out pins. Thus, the total overhead of test response data volume is 

only 90 MBs instead of 3.75 GBs. The compaction hardware has negligible area overhead and 

does not degrade the system performance during normal operation. Meanwhile, it guarantees the 

error detection and diagnosis capability of scan-based DFT even in the presence of X’s. Another 

advantage is the X-Compact technique can minimum impact on current design and test flow and is 

independent of the fault models and test patterns. The main benefit of X-Compact technique can 

be list as follow: 1) test time reduction due to few pins with more scan chains; 2) test data volume 

reduction due to exponential reduction in the response data; 3) less the number of input/output  

pins; 4) low cost testers due to very few scan channels. The next two sections will show the basic 

algorithm for designing X-compactor with and without X‟s, respectively.  

 

3.3.3.1 Compactor Design in the Absence of X’s 

 

  In this section, we consider the case where none of scan chains contains X‟s in 

simulation. Figure 3.22 shows a design with eight scan chains which are directly connected to the 



51 
 

inputs of a compactor with eight inputs and four outputs. Consider the following two situations:    

1) For a test pattern, flip-flop 4 of scan chain 1 and flip-flop 6 of scan chain 2 contain errors. The 

errors can be produced on pin Out1 on the fourth (sixth) clock cycle when the XOR of scan 

chain 1 and scan chain 2 is scanned out. 

2) For a test pattern, only flip-flop 4 of scan chain 1 and scan chain 2 contain errors. 

No error can be observed because the errors will cancel out when the XOR of scan chain 1 and 

scan chain 2on the fourth clock cycle. 
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Out 1
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Scan

Out 3

Scan

Out 4

XOR
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Out 5
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Figure 3.22 Compactor with eight inputs and outputs [5] 

 

   Figure 3.23 shows a compactor generated by the X-compact design 

technique with eight inputs and four outputs. This design has the following rules. When one, two, 

three, or a larger odd number of scan chains produce errors and no scan chain produces X at the 

same scan-out cycle, then the output produced by the compactor is guaranteed to be different from 

the expected compactor output at that scan-out cycle. Thus, the errors at the scan chain outputs can 

be detected by the compactor. This compactor designs is applied to exclusive-OR gates due to the 

information loss-less property of XORs. 
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Figure 3.23 Another compactor with eight inputs and four outputs [5] 
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   Consider a design with n scan chains. Then the compactor will contain n 

inputs. Suppose that the compactor m circuit has outputs. The compactor circuit can be 

represented as a binary matrix (a matrix with only 0s and 1s) with n rows and m columns. The 

binary matrix is called the X-compact matrix. In the matrix, each row corresponds to a scan chain 

and each column corresponds to a compactor output. The entry in row i and column j of the 

X-Compact matrix is 1 if and only if the jth compactor output depends on the output of the ith 

scan chain; otherwise, the entry is 0. Figure 3.24 shows the X-compact matrices corresponding to 

Figure3.22 and Figure3.23. The first column of the corresponding X-Compact matrix in Figure 

3.24(a) has 1s in the first and the second rows because Out1 depends only on scanout1 and 

scanout2; The first column of the corresponding X-Compact matrix in Figure 3.24(b) has 1s in the 

first , second ,fifth and seventh rows because Out1 depends on scanout1, scanout2, scanout5, and 

scanout7. 

Matrix of Figure3.22: 

 
 
 
 
 
 
 
 
1 0
1 0
0 1
0 1

0 0
0 0
0 0
0 0

0 0
0 0
0 0
0 0

1 0
1 0
0 1
0 1 

 
 
 
 
 
 
 

 Matrix of Figure3.23: 

 
 
 
 
 
 
 
 
1 0
1 1
0 1
0 1

0 0
0 1
0 0
1 1

1 1
0 0
1 0
0 0

1 0
1 0
1 1
0 1 

 
 
 
 
 
 
 

 

(a)                                (b) 

      Figure 3.24 X-compact matrices of (a) and (b) [5] 

 

  There are several theorems for systematically designing X-Compactor circuits 

in the absence of X‟s. Theorems 1–3 can be found on the theory of error-correcting codes [17]. 

  Theorem 1: If any single scan chain produces an error at any scan-out cycle, 

the compactor circuit is guaranteed to produce error at that scan-out cycle if and only if no row of 

the X-Compact matrix contains all 0s. 

  Theorem 2: Errors from any one or any two scan chains at the same scan-out 

cycle are guaranteed to produce errors at the compactor outputs at that scan-out cycle if and only 

if all rows of the X-Compact matrix are nonzero and distinct.  

  The first two rows of the X-Compact matrix of Figure 3.22 are identical, 

which is against the Theorem 2.Thus, the errors from scan chains 1 and 2 at the same scan-out 
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cycle do not produce error on Out1. Based on Theorem 2, all rows of the X-compact matrix of 

Figure3.23 are distinct, simultaneous errors from any two scan chains at the same scan-out cycle 

are guaranteed to be detected. 

   Theorem 3: Errors from any one, two, or odd number of scan chains at the 

same scan-out cycle are guaranteed to produce errors at the compactor outputs at that scan-out 

cycle if every row of the X-compact matrix is nonzero, distinct, and contains an odd number of 1s. 

   As all rows of the X-Compact matrix are distinct and contain an odd number 

of 1s, the XOR of any two rows and any odd number of rows is nonzero. Thus, errors from any 

one, two, or odd number of scan chains at the same scan-out cycle are guaranteed to produce 

errors at the compactor outputs at that scan-out cycle. The matrix corresponding to compactor 

design in Figure 3.23 satisfies Theorem 3. 

   Consider X-compactor matrix with m columns (m outputs for compactor), a 

maximum number of distinct nonzero rows with an odd number of 1s is 2
m-1

. To satisfy Theorem 

3, the design must follow: n ≤ 2m−1 , where n is the number of scan chains. By transforming the 

format to: m ≥ 1 + log2 n, the relationship between scan chains(n) and compactors outputs (m) 

can be got , as shown in Table 3.3. It shows that 512 scan chains just need only 10 scan-out pins. 

 

Table 3.3 Scan chains and compactor outputs: guaranteed error detection when 1, 2, or any odd 

number of scan chains produce errors and no scan chain produces X‟s at the same scan-out cycle 

[5] 

 Scan chains 

(n) 

Compactor outputs 

(m) 

5-8 4 

9-16 5 

17-32 6 

33-64 7 

65-128 8 

129-256 9 

257-512 10 

513-1,024 11 

1,025-2,048 12 
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                 In this section, it assumes that no scan chains produce logic values X’s 

during simulation at the same scan-out cycle. However, once X’s occur in scan chains, the error 

can get masked by X’s and the defective chip is not detected. In this case, the design for 

X-compactor should be more sufficient in order to detect error.   

 

3.3.3.2 Compactor Design in the Presence of X’s 

 

    If a scan chain produces an X at a particular scan cycle, all compactor outputs 

that depend on this scan chain will be masked by X on the tester. Take an example in Figure 3.22. 

If flip-flop 4 of scan chain 1 records error as well as flip-flop 4 of scan chain 2 produces an X for a 

test pattern, the fourth bit of pin Out1 must be masked out by X for this test pattern and no error 

can be observed. Another example is taken in the compactor design of Figure 3.23. Assume that 

scan chain 1 produces an error with an X produced in scan chain 2 at the current scan-out cycle. In 

this case, the error on the output of scan chain 1 will not be detected as Out1 is the only compactor 

output that depends on the output of scan chain 1. Therefore, in order to guarantee error detection 

in this situation, more sufficient conditions are given in Theorem 4. 

   Theorem 4: An error from any scan chain and an X from any other scan 

chain at the same scan-out cycle are guaranteed to produce error at the compactor outputs at that 

scan-out cycle if and only if: 

1) No row of the X-compact matrix contains all 0s; 

2) For any X-compact matrix row, the submatrix obtained by removing that row and the  

X-compact matrix columns having 1s in that row does not contain a row with all 0s.  

   Figure 3.25 gives a simple example to show the compactor circuit, and the 

corresponding X-compact matrix is shown in Figure 3.26. 
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Figure 3.25 Compactor with eight inputs and five outputs with guaranteed error detection in the 

presence of X‟s [5] 

 
 
 
 
 
 
 
 
1 1 1
1 0 1
1 1 0
1 1 0

0 0
1 0
1 0
0 1

1 0 1
1 0 0
0 1 0
0 0 1

0 1
1 1
1 1
1 1 

 
 
 
 
 
 
 

 

Figure 3.26 X-compact matrix of Figure3.25 compactor [5] 

 

   Suppose that scan chain 1 produces an error with an X produced in scan 

chain 2 at the same scan-out cycle. Since compactor outputs Out1, Out3, and Out4 depend on the 

output of scan chain 2, logic values on Out1, Out3, and Out4 will X. However, the error produced 

by scan chain 1 can be detected on compactor output Out2. 

    For the X-compactor matrix of Figure 3.25, if the second row and columns 

1, 3, and 4, are removed, we obtain the submatrix shown in Figure 3.27. The submatrix does not 

have any row with all 0s. Thus, the design of X-compactor circuit satisfies Theorem 4. However, 

the compactor design in Figure 3.23 does not satisfy Theorem 4. This is because, after removing 

the second row and the first, second, and fourth columns of the X-Compact matrix, the submatrix 

contains all 0‟s in the first row. 
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Figure 3.27 Submatrix of Figure 3.25 [5] 

 

    Corollary 1: Theorems 3 and 4 are satisfied if every row of the X-compact 

matrix is distinct, has an equal number of 1s, and the number of 1s in every row is odd.  

   The X-compact matrix of Figure also satisfies Corollary 1 because every row 

has only three 1s. Consider an X-compact matrix with ten columns. In order to satisfy Corollary 1, 

the maximum number of rows is 255 if the number of 1s in each row is five, which means the 

design for a compactor uses only ten outputs if it gets 252 scan chains. Table 3.4 lists the 

relationship between the number of scan chains and the number of compactor outputs by 

following Corollary 1. 

 

Table 3.4 Scan chains and compactor outputs: guaranteed error detection when 1 scan chain 

produces errors and another scan chain produces X at the same scan-out cycle, or when 1, 2, or an 

odd number of scan chains produces errors and no scan chain produces X at the same scan-out 

cycle [5] 

 

 

 

 

 

 

 

 

 

 

 

 

Scan chains 

(n) 

Compactor outputs 

(m) 

5-10 5 

11-20 6 

21-35 7 

36-56 8 

57-126 9 

127-252 10 

253-462 11 

463-792 12 

793-1,716 13 

1,717-3,432 14 
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   In order to detect errors when any one or two scan chains produce errors at 

the same scan-out cycle together with another scan chain producing an X at that scan-out cycle, 

Theorem 5 gives sufficient conditions for detecting these errors. 

   Theorem 5: Errors from any one or two scan chains and X from any other 

scan chain at the same scan-out cycle are guaranteed to produce error at the compactor outputs at 

that scan-out cycle if and only if: 

1) No row of the X-compact matrix contains all 0s; 

2) For any X-compact matrix row, all rows in the submatrix obtained by removing that row and 

the X-compact matrix columns having 1s in that row are distinct and nonzero. 

    In this case, the compactor of Figure 3.25 does not satisfy Theorem 5 

because the submatrix of Figure 3.25 has identical rows. For the multiple errors and X’s, 

Theorems 4 and 5 can be directly extended to Theorem 6. 

   Theorem 6: Errors from any k1 or fewer scan chains and unknown logic 

values (X’s) from any k2 or fewer scan chains (k1+k2≤ n, the total number of scan chains) at the 

same scan-out cycle are guaranteed to produce error at the compactor outputs at that scan-out 

cycle if and only if: 

1) No row of the X-compact matrix contains all 0s; 

2) For any set of X-compact matrix rows, any set of rows in the submatrix obtained by removing 

the rows in and the X-compact matrix columns having 1s in the rows in are linearly independent. 

  The X-Compact technique for compactor circuits is very efficient as it can 

significantly reduce test application time and test data volume without sacrificing test quality. 

Meanwhile, the X-compact technique provides a solution for handling simultaneous errors from 

multiple scan chains and sources of X‟s. Furthermore, the X-compact design technique is easy to 

implement as it does not require any significant change to the existing design and test flows. In 

next section, it shows different algorithm for designing an X-tolerant compactor. 
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3.3.4 i-compactor  

 

   In this section, another X-tolerant compaction scheme, i-compact, is 

presented in [43]. It provides an alternative solution for a compactor circuit. Comparing 

X-compact technique, this scheme requires comparable tester memory but fewer pins. In addition, 

the scheme of i-compact can provide varying degrees of error detection capability in the presence 

of a varying number of X’s for the same compactor. 

 

3.3.4.1 Design binary linear codes 

 

   The technique of i-compactor is applied to design binary linear codes. For 

example, a binary (n, k) includes 2
k
 code words with n bits, and H (m=n-k) is an m× 𝑛 check 

matrix to represent a binary code. The valid code words is defined by the equation HD=0, where 

D is an n×1 vector. The test system of i-compact approach is presented in Figure 3.28, which 

shows the whole process for error detection in the absence of X‟s. For the right side, the expected 

n-bit test response D goes into the compactor, then the compactor applies the code matrix H to 

produce a check word C = HD of m bits which is considered as the compacted test response. 

Meanwhile, the actual test response D‟ and check word are produced by a chip under test on the 

left side of this Figure. As the actual response may contain errors, it can be represented by by 

adding error term E to the expected response D. An i-Compact compactor matrix with distance d 

can follow the rules: 

(1) detect up to d − 1 single-bit errors, 

(2) detect up to e errors in the presence of up to x unknowns, where e +x < d or 

(3) correct up to t errors and identify up to x unknowns, where 2t +x < d. 
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  Figure 3.28 The test system of i-compact [43] 
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3.3.4.2 Examples 

 

   To discuss the error control capabilities of Saluja Karpovsky compactors, a 

series of example is shown based on the check matrix for the (7,4) Hamming Code extended the 

(8,4) SEC-DED code by adding a parity bit over all data bits, and the matrix is  

H= 

1   0   0   0   0   1   1   1
0   1   0   0   1   0   1   1
0   0   1   0   1   1   0   1
1   1   1   1   1   1   1   1

  

   The expected test response D is represented by d1d2d3d4d5d6d7d8, and the 

expected check word C is c1c2c3c4. The following equation C: 

c1 = d1⊕d5d6⊕d7⊕d8 

c2= d2⊕d5⊕d7⊕d8 

c3 = d3⊕d5⊕d6⊕d8 

c4= d1⊕d2⊕d3⊕d4⊕d5⊕d6⊕d7⊕d8 

   The expected check word C is pre-computed and stored in ATE memory, and 

the actual test response D’ is also compacted by the same encoder, after that the actual check word 

C’ = HD’ is sent to ATE for comparing with C. Notice that the check code H is a distance-4 code, 

so it can correct up to x ≤ 3 erasures; or detect up to e errors in the presence of up to x ≤ 3 − e 

erasures. The following examples show the error control capabilities. 

1) Three unknown values and no errors 

   Consider D= X1X2X301101 and D’=01101101. By using C’=HD’, we can 

get actual check word C’ is 0101. We can also get C which depends on Xi, then C and C’ need to 

be XORed in order to find error syndrome. In this case, the XORed result is set to 0 due to no 

errors, then we can solve for the Xi by the equations: 

0 = 𝑋1 

0 = 𝑋2
    

0 = 𝑋3
    

       0 = X1 ⊕ X2 ⊕ X3 

   It gets X1 = 0, X2 = 1, and X3 = 1 by the equation. However, when some errors 

are produced such as changing d8 to 0, the error cannot be detected as the equations are not solved. 
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In this situation, since the number of X‟s and the code distance is small, all possible binary 

combinations of X‟s can be list, after that all possible check words C are picked to matches C’. 

2 ) Two unknown values and one error 

  If there are two inputs including unknown values, the distance-4 code can 

detect any single error. Consider D=001X1101X20 and D‟=00101110. The actual check word is 

C‟=HD‟=0010. In order to check the expected check word C, all possible values require to be list 

for X1X2=00,01,10,11,then the corresponding values for C is 1000,0101,1001,0100,respectively. 

As none of these matches C‟, an error is checked.  

3) One error and one unknown value 

   The code H can also be used to identify a single error in the presence of an 

unknown value. Consider D = 0100100X1 and D’ = 01011001. The actual check value C‟ is 

HD‟=1100, and the corresponding values of C is 0010 and 1101. If X1=0, it gets C+C‟=1110, it 

can match none of columns of H; but if X1=1, it gets C+C‟=0001, it can match the fourth column 

of H which corresponds to the bit position 4 in D‟, indicating that d4 is an error.  

 

3.3.4.3 Handling more X’s 

 

   Consider the situation where the chip produces more than two X‟s on many 

scan-out cycles. In this situation, the Hamming distance-4 code can also be used instead of more 

expensive codes to detect errors. However, it cannot guarantee that we always detect such errors. 

For example, it stores 32 alternate check words in ATE in the presence of five X‟s. If a circuit gets 

500 scan outputs and check word width is 10, then the compaction ratio is 50 and the total number 

of check words is 1024. The probability of a random error mapping in to the 32 stored responses is 

just 32/1024, which means a 96.8% detection probability can be achieved for a response with five 

X‟s. The fault coverage can be further improved by using less efficient compaction. For example, 

it uses more bits of check word such as 12 instead of 10, it still provides compaction factor of 40. 

The random error detection probability is enhanced to (1- 32/4096) = 99.2%. Similarly, more 

alternate check words can be stored to handle more X‟s. As storing multiple responses a few times 

out of several hundred thousand scan cycles, the storage requirement is small.  
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   The presented i-compact is very applicable as it provide varying degrees of 

error detection capability in the presence of a varying number of X’s, and it is efficient in 

providing a compaction factor of 50 for 500 outputs or a factor of 90 for 1000. The well -known 

codes for i-compact are Hamming and BCH. In the process, there are several possible approaches 

to trade off between test time and ATE memory requirements, and the proposed technique is also 

ATPG independent. 

 

3.4 Summary 

   For the output response compaction, the occurrences of X‟s in the test 

responses have been the greatest barrier to improve the compaction. In this chapter, several 

relevant X-masking and X-tolerant schemes are list to handle X‟s and illustrate the benefit and 

limitation of each approach. There is a conclusion for all the presented schemes including the 

objective, basic concept, advantage, and disadvantage, as illustrated in Table3.5.  
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Table 3.5 The discussion for list schemes 

Schemes Objective Main concept Advantage Disadvantage 

X
-m

ask
in

g
 

Conventional  

X-masking 

Mask all the X‟s 

Create a mask for every 

scan slice 

Mask all the X‟s Cost too much mask bit 

Reiterative 

X-masking 

Reduce overhead of 

mask bit 

Ensure to reuse the same 

mask bit 

Reduce the mask 

bits significantly  

Be efficient when just 

there are less number of 

X‟s 

Hierarchically  

configurable 

register 

Achieve the high 

observability of 

scan cell 

Apply an optimal 

X-masking for each scan 

chain 

Improve the 

efficiency of 

X-masking 

Require lots of time for 

the iteration process 

 

X
-to

leran
t 

Response 

shape 

Reduce the number 

of undetectable 

fault 

Shift test response by the 

selection logic 

Implement to space 

compactor easily 

Require additional area 

overhead, input control 

data, and runtime. 

X-canceling 

MISR 

Achieve high 

compression ratio 

Produce  X-canceled 

combination by control 

logic 

Achieve high 

compression ratio 

as it gets less 

number of X‟s(less 

than 0.1%) 

Cost  too much overhead 

for X-mask as the number 

of X‟s increase 

X-compactor 

Increase the ability 

for fault detection 

Design space compactor 

by efficient algorithm 

No require 

additional 

X-masking logic 

Tolerate limited number 

of X‟s 

i-compactor 

Increase the ability 

for fault detection 

Design the space 

compactor by distance 

code 

Increase the error 

detection capability 

Involves postprocessing 

of test responses and 

cannot be easily 

implemented using 

current testers 
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CHAPTER4 

 

 

THE PROPOSED SELECTIVE X-MASKING AND RESULTS 

 

 

4.1 Selective X-masking  

 

  In this chapter, an X-masking logic is presented to improve the efficiency for 

X-masking. Comparing with previous X-masking schemes [13] [14], this scheme is more flexible 

and adds a few hardware overhead considered negligible. The basic idea is illustrated in this 

section. 

  As the distribution of X‟s has the tendency to be clustered in output responses, 

the majority of X‟s may just locate in a small number of scan chains in actual designs [8]. It is 

possible to mask as many X‟s as possible with the smallest mask data overhead. The proposed 

method arranges all scan chains into two groups. One group contains large amount of X‟s, which 

can be handled by the X-mask logic. Another group which consists of the small number of X‟s can 

directly go through input of the compactor without masking. The main purposes of this scheme are 

not only to get rid off X‟s, but also to decrease the mask data overhead as much as possible.  

  Figure 4.1 shows the architecture of proposed approach. The architecture of m 

scan chains contains m-bit mask register, an interval counter, m 2-to-1 MUX and m-bit selection 

register. The selection register is used to determine whether one scan chain can directly be sent to 

the compactor. For example, if the port „0‟of the MUX connected with scan chain 1 is selected by 

selection register, the test responses of scan chain 1 can directly be sent to compactor. Otherwise, 

if this value is „1‟, the scan chain needs to be sent to the mask logic first. As the selection register 

is only loaded one time during whole test cycle, the overhead of this controlling data could be 

considered negligible. 
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Figure 4.1 Architecture of selective X-masking for output compaction 

 

  Figure 4.1 gives the basic idea for the proposed approach. In order to 

understand the operation of producing the mask bit and filling the controlling data in detail, the 

following section describe the operations of mask bit generation, interval counter, and selection 

register. 

 

4.1.1The Process of Mask Bit Generation 

 

  In this section, it shows the process of mask bit generation. In general, it 

includes the parts of LFSR, Phase shifter and m-bit mask register, as shown in Figure 4.2. In order 

to get mask bit for masking the X‟s in test output responses, the seeds coming from b test channels 

are loaded to LFSR, after that the bit sequences produced by LFSR are shifted by phase shifter, 

where the phase shifter is used to reduce the correlations among bit sequences through using 

networks of XOR gates. The mask bits generated by phase shifter are then used to mask test 

responses in scan chains. Notice that the total bits of mask bit generated by phase shifter are m, 

where m >b. 
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Figure 4.2 m-bit mask bit generation 

 

   Figure 4.3 shows a simple example with two test channels and a 4-stage 

LFSR for mask bit generation. Assume that the initial seed bits S1-S4 have been filled in LFSR, 

and the seed bits S5-S10 are shifted in from two test channels. After simulation, the mask bits in 

mask register are represented by Z1-Z12. In the first clock cycle, the top stage of LFSR is filled by 

the XOR of S2 and S5, the second stage of LFSR is filled by S3 XOR S6, the third stage of LFSR is 

filled by the XOR of S1 and S4, and the bottom flip-flop is filled by S1. After that, the value in all 

stage of LFSR is XORed by phase shifter. The top output of phase shifter produces the value by 

the XOR of the second stage of LFSR and the third stage of LFSR, the second output of phase 

shifter produces the value by the XOR of the second stage of LFSR and the fourth stage of LFSR, 

the third output of phase shifter produces the value by the XOR of the top stage of LFSR and the 

fourth stage of LFSR, and the bottom output of phase shifter is shifted by the fourth stage of LFSR. 

Finally, it gets Z1= S1⊕S3⊕ S4⊕S6, Z2= S1⊕S3⊕S6, Z3= S1⊕S2⊕ S5, and Z4= S1.  
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Z3=S1⊕S2⊕S5             Z7=S2⊕S3⊕S5⊕S6⊕S7    Z11=S1⊕S3⊕S4⊕S6⊕S7⊕S8⊕S9

Z4=S1                          Z8=S2⊕S5                        Z12=S3⊕S6⊕S7

 
Figure 4.3 A 4-stage LFSR for mask bit generation 

 

  In the second cycle, the top stage of LFSR is filled by the XOR of the values 

of the second stage of LFSR (S3⊕S6) and S7; the second stage of LFSR is filled by the values of 

the third stage of LFSR (S1⊕S4) and S8; the third stage of LFSR is filled by the XOR of the values 

of the first stage of LFSR (S2⊕S5) and the fourth stage of LFSR (S1); and the fourth stage of LFSR 

is filled by the XOR of the values of the first stage of LFSR (S2⊕S5). After the value in all stages 

of LFSR is XORed by phase shifter, we get Z5= S2 ⊕S4 ⊕S5 ⊕S8, Z6= S1⊕S2 ⊕S4 ⊕S5 ⊕S8, Z7= 

S2⊕S3 ⊕S5 ⊕S6 ⊕S7, and Z8= S2⊕S5. In the third cycle, the top stage of LFSR is filled by the 

XOR of the values of the second stage of LFSR (S1⊕S4⊕S8) and S9; the second stage of LFSR is 

filled by the values of the third stage of LFSR (S1⊕S2⊕S5) and S10; the third stage of LFSR is 

filled by the XOR of the values of the first stage of LFSR (S3⊕S6⊕S7) and the fourth stage of 

LFSR (S2⊕S5); and the fourth stage of LFSR is filled by the XOR of the values of the first stage 

of LFSR (S3⊕S6⊕S7). After the value in all stages of LFSR is XORed by phase shifter, it gets Z9= 

S1⊕S3⊕S6⊕S7⊕S10, Z10=S1⊕S2⊕S3⊕S5⊕S6⊕S7⊕S10, Z11= S1⊕S3⊕S4⊕S6⊕S7⊕S8⊕S9, and 

Z12=S3⊕S6⊕S7. At the moment, the mask bits are fully generated. 
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4.1.2 Interval Counter  

 

   The interval counter is applied to reusing masks for multiple adjacent scan 

slices. It is loaded one time at the beginning of the test and controls the loading of mask register. 

Once the value of interval counter is set, it counts down the number of shift cycles until the value 

equal zero, then it is reset and returned to the initial value. As the mask bits are generated by 

LFSR in Figure 4.3, the mask bits are reused for three clock cycles to create a mask for test 

responses when the value of interval counter is set to „3‟, as shown in Figure 4.4.  

Z9  Z9  Z9 Z5  Z5  Z5 Z1  Z1  Z1

Z10Z10  Z10 Z6  Z6  Z6 Z2  Z2  Z2

Z11 Z11 Z11 Z7  Z7  Z7 Z3  Z3  Z3

Z12 Z12 Z12 Z8  Z8  Z8 Z4  Z4  Z4

9   8    7    6    5   4     3   2    1Clock cycle

repeat 3 cycles

 

Figure 4.4 Creation of a mask for test responses (interval counter=3) 

 

4.1.3 Selection register 

 

   The selection register is used to determine whether one scan chain requires a 

mask or not. The total bits of selection register are m, which is the same number of scan chains, as 

shown in Figure 4.5(a). Notice that the value of selection register can only be set „1‟or „0‟. If the 

value of some bit is „0‟, the corresponding scan chain is not  necessary to mask; otherwise if the 

value is „1‟, the scan chain requires to be masked. Figure 4.5(b) gives an example with 4-bit 

selection register to create a mask. As the second bit and third bit of the selection register are set 

to‟0‟, it is not necessary to create a mask for the corresponding second and third scan chains, so 

the corresponding mask bit is „?‟ (don‟t care). Since the first bit and fourth bit of the selection 

register are set to‟1‟, the corresponding first and fourth scan chains are considered to be masked. 

As a subset of scan chains are selected to mask, less mask bits are required in comparison with a 

mask in Figure 4.4. 
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Z9  Z9  Z9 Z5  Z5  Z5 Z1  Z1  Z1

?    ?   ? ?    ?    ? ?    ?   ?

?   ?    ? ?   ?    ? ?    ?   ?

Z12 Z12 Z12 Z8  Z8  Z8 Z4  Z4  Z4

9   8    7    6    5   4     3   2    1Clock cycle

1     0     0    1

Bit 1    2     3         …        m
Selection 

register

4-bit selection 

register

Bit  1    2     3    4

(a)

(b)
 

Figure 4.5 Creation of a mask for test response with selection register (interval counter=3) 

 

  As described the whole the process for mask bit generation and the principle 

of filling data for selection register, a simple example is given in following section to demonstrate 

the operation. 

 

4.2 An Example for Selective X-masking 

 

  The basic idea is to select a subset of scan chains with most X‟s during the 

complete test for masking. The Figure 4.6(a) gives a simple example on how to select the selection 

register value. The example of this approach consists of only five output response patterns, each 

pattern includes four scan chains and five scan slices. First determine the location of all d‟s and 

X‟s during simulation, where d‟s correspond to a scan cell that needs to be observed to ensure 

detection of the necessary faults. As there are no X‟s or just less number of X‟s in scan chain 1, 3 

and 4, the available way is to sent these scan chains directly to compactor rather than X-masking 

logic in these scan chains. However, the scan chain 2 contains eight X‟s and two d‟s, the density 

of X‟s in chain 2 is much lager the chain 1, 3 and 4, the scan chain 2 can be sent to the X-masking 

circuitry first. As a result, the bit 1, 3 and 4 in selection register is equal to „0‟ and the bit 2 is set 

to „1‟in Figure 4.2(a). Meanwhile, the mask data in mask register is given in this diagram. In this 

example, the value of interval counter is set to „5‟. For an interval of five scan slices, mask bits 
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can be set to „mask‟ the pattern 3, 4, and 5 in scan chain 2 since X‟s are present but d‟s are not. 

Then, mask bits can be set to „not mask‟ for pattern 2 in scan chain 2 since d‟s are present.(„?‟ 

means no need to concern the given bits).The results are shown in Figure 4.6(b) wherein three X‟s 

are left for the selective X-masking logic to handle.  
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Figure 4.6 An example for filling selection register and mask register 

 

  The interval counter counts down the number of shift cycles until the value 

equal zero, then it is reset at the beginning of the scan test and a new mask data is loaded .If there 

are m scan chains and b tester channels, it will be take m/b clock cycles to fully load the mask 

data .The following section will display the approach of combining selective X-masking and 

X-canceling MISR and shows the process for basic operation. 

 

4.7 Combining with X-canceling MISR 

 

  In this scheme, the presented a selective X-masking is used to handle the 

majority of X‟s, while the X-canceling MISR is used to handle the remained X‟s, as shown in 

Figure 4.7. The objective of this approach is to decrease the mask data overhead as much as 

possible. Notice that this scheme gives flexible choice between the scheme hybrid X-masking and 

X-canceling MISR [42] and the scheme X-canceling MISR alone [15]. If all bits of selective 

register are set to „1‟, this scheme becomes the scheme hybrid X-masking and X-canceling MISR; 

otherwise if all bits are „0‟, this scheme becomes the scheme X-canceling MISR. Generally, the 

list two cases cannot happen due to the large different distribution of X‟s among scan chains. To 

illustrate the operation of X-masking and fault detection in X-canceling MISR, a simple will be 
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given as follow. 
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Figure 4.7 hybrid selective X-masking and X-canceling MISR 

 

4.3.1 The Operation of the Hybrid Approach 

 

   In order to illustrate the operation of the hybrid approach, a simple example 

is given in Figure 4.8. It includes total eight scan chains with each five scan slices for output 

responses.  

Scan 

chain
1                  x x s s s

2                  s s s s s

3                  s s d x x

5                  s s s s x

4                  s s x x x

6                  s s d s s

7                  d d s s s

8                  x s s s d

Scan slice

 

Figure 4.8 Output responses with eight scan chains 

 

   Assume that the interval counter in this example is set to‟5‟. As mentioned 

before, only the scan chains with large number of X‟s require to be masked. Thus, when the scan 

slices come to selective X-masking logic, the selection register only selects scan chain 1, 3, and 4 

to mask due to more X‟s in comparison with other scan chains. After apply a mask bit for each 

scan chain, five X‟s are masked and four X‟s remain, as shown in Figure 4.9.  
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Selection

register

1         x x s s s    1    

0         s s s s s    ?

1         s s d x x    0

1         s s x x x    1

0         s s d s s    ?

0         d d s s s    ?

0         x s s s d    ?

mask bit

(Interval counter=5)

s s s s s     

s s s s s     

s s d x x     

s s s s s     

s s s s x     

s s d s s     

d d s s s     

x s s s d     

After 

mask

0         s s s s x    ?

 

Figure 4.9 An example for selective X-masking 
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+

s26 s19 s13 s6  s1

+

+

+

+

+

+

+

s27 s20 s14 s7 s2

s28 s21 d2  x3  x1

s29s22 s15 s8  s3

s30s23 s16 s9  x2

s31s24 d3 s10  s4

d5 d4  s17 s11 s5

x4 s25 s18 s12 d1

M1=s1⊕s8⊕s20⊕s26⊕d2⊕x2

M2=s2⊕s4⊕s6⊕s9⊕s15⊕s21⊕s27

M3=s1⊕s5⊕s7⊕s10⊕s13⊕s16⊕

       s22⊕s28⊕x1

M4=s1⊕s2⊕s3⊕s6⊕s11⊕s14⊕s19

       ⊕s23⊕s29⊕d1⊕d3⊕x3

M5=s1⊕s2⊕s6⊕s7⊕s12⊕s13⊕s17

       ⊕s24⊕s30⊕x1

M6=s3⊕s6⊕s7⊕s13⊕s14⊕s18⊕s19

       ⊕s31⊕d4⊕x1⊕x3

M7=s3⊕s7⊕s13⊕s14⊕s19⊕s25⊕d5

       ⊕x1⊕x3

M8=s3⊕s14⊕s19⊕x3⊕x4

 

               Figure 4.10 Example for symbolic simulation of MISR 

 

  After apply a mask in Figure 4.9, the scan slices are then sent to X-Canceling 

MISR. Figure 4.10 shows the process that the scan slices are shifted to MISR, where each scan 

cell is represented by a symbol. Symbol simulation is performed to obtain the final state of MISR 

after five clock cycles in this example. Each bit of MISR is equal to a linear combination of scan 

cells. For example, the final value of top bit of MISR is equal to s1⊕s8⊕s20⊕s26⊕d2⊕X2.  

  Assume that each symbol Xi has an X value and each symbol di and si has a 
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non-X value. Moreover, assume each symbol di corresponds to a scan cell that needs to be 

observed to ensure detection of the necessary faults for this particular test vector. Only the X 

dependence is considered and all non-X values are observed. 

M1 =x2                               0  1  0  0

M2 =0                                0  0  0  0

M3 =x1                               1  0  0  0

M4 =x3                               0  0  1  0

M5 =x1                               1  0  0  0

M6 =x1⊕x3                         1  0  1  0

M7 =x1⊕x3                         1  0  1  0

M8 =x3⊕x4                         0  0  1  1

 

Figure 4.11 Linear equation for Figure 4.10 

 

   The linear equations for each MISR bit can be represented as a matrix, where 

each row corresponds to a MISR bit and each column corresponds to an X. Notice that each entry 

in the matrix is a 1 if the MISR bit corresponding to the row depends on the X corresponding to 

the column, as shown in Figure 4.11. For example, the sixth row of the matrix corresponds to M6, 

and the 1‟s in the first and third columns indicate dependence on X1 and X3. If the number of X‟s 

is less than the size of the MISR, then there are more rows than columns. Thus, some 

combinations of rows are guaranteed to be linearly dependent.  

   Gauss-Jordan elimination [24] is used to determine the linearly dependent 

row combinations, and the operation is to transform a set of columns into an identity matrix. 

Figure 4.12 shows the matrix in Figure 4.11 after Gauss-Jordan elimination has been performed. 

We can get the all-0 rows in the matrix after Gauss- Jordan elimination, where the all-0 row is that 

it has no dependence on the value of the X‟s. For example, the combination rows are XORed 

together to get the all-0 row such as M3⊕M5. In this matrix, it gets total four all-0 rows,which can 

be used to compare with fault-free values for fault detection as the corresponding MISR bit 

combinations get all X‟s cancelled out. 
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0  1  0  0     M1

0  0  0  0     M2

1  0  0  0     M3

0  0  1  0     M4

1  0  0  0     M5

1  0  1  0     M6

1  0  1  0     M7

0  0  1  1     M8

1  0  0  0     M3

0  1  0  0     M1

0  0  1  0     M4

0  0  0  0     M2

0  0  0  0     M4⊕M5⊕M6   

0  0  0  1     M4⊕M8  

0  0  0  0     M3⊕M5  

0  0  0  0     M6⊕M7  

 
Figure 4.12 Gauss- Jordan elimination 

 

  After apply a mask in Figure 4.9, the scan slices are not only sent to 

X-Canceling MISR, but also it can be sent to X-tolerant compactor for compaction, as shown in 

next section. 

 

4.8 The X-tolerant Compactor with Selective X-masking 

 

  In this scheme, we apply X-tolerant compactor with selective X-masking logic, 

as shown in Figure 4.13. The selective X-masking is used to handle the majority of X‟s, while the 

remained X‟s is handled by X-tolerant compactor. The main objective of this approach is to 

improve the observability of the test responses. 
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Figure 4.13 The X-tolerant compactor with selective X-masking logic 

 

  In order to illustrate the approach of the selective X-masking for X-tolerant 

compactor, it takes a simple X- compactor with eight inputs and five outputs, and the compactor 

circuit is shown in Figure 4.14 .The corresponding X-compact matrix is shown in Figure 3.15. 
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Figure 4.14 Compactor with eight inputs and five outputs 
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Figure 4.15 X-compact matrix for Figure 4.14 compactor 

 

    After apply a mask in Figure 4.9, the scan slices can also be sent to the 

X-compactor for compaction. The operation is shown in Figure 4.16. The masked scan slices are 

sent to the input of X-compactor, where di corresponds specified bit that needs to be observed to 

detect faults and bit s is don‟t care bit. After five clock cycle, the final values are propagated to the 

output of the compactor, which can be used to compare with fault-free values for fault detection. 

Finally, all the specified bits (d1-d5) can be observed with the presence of four X‟s. 
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Figure 4.16 Example for compaction with X-compactor 

 

 

4.5 Results 

 

   Experiments are performed on four ISCAS89 benchmark circuits to 

implement the proposed method. In Table 4.1, the first column lists the circuit used in this 

experiment. The second column gives the total number of the scan elements. The third column 

lists the number of scan chains. The last column shows the number of test patterns.  
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Table 4.1 ISCAS 89 benchmark circuit 

Circuit 
Scan 

element 

# of 

chain 

# of 

test 

pattern 

s15850 534 107 229 

s13207 638 126 343 

s38417 1636 164 485 

s38584 1426 143 464 

 

  For the scheme in Figure 4.7, experiments were performed using proposed 

method with four ISCAS 89 benchmark circuits. The results are shown in Table  4.2. The 0.5% of 

X‟s are randomly assigned in the test responses-specifically, 90% of X‟s from 10% of the scan 

chains. The first column shows the benchmark circuits. The remaining columns give the 

comparison of the compression ratio for X-canceling, X-masking and X-canceling, and proposed 

method, respectively. It can easily see that the proposed method provides the significant reduction 

of test data overhead in all cases. 

 Table 4.2 compression ratio with 0.5% X‟s 

 

 

 

 

 

 

 

 

  By observing the positions of both d‟s and X‟s in a set of test patterns, the 

values of the selection register and mask data can be calculated for dividing scan chains into two 

groups: a large number of X‟s and few X‟s. The X-masking logic is inserted between the output of 

scan chains and the input of X-canceling MISR to handle the group containing a large number of 

X‟s. The group with few X‟s can be handled directly by the X-canceling MISR. The experimental 

results were shown that the proposed method provides significantly improvement on the amount 

of compression. By inspecting the distribution of X‟s, the proposed method will give more 

effective when the majority of X‟s is located in small parts of scan chains.  

  For the scheme in Figure 4.13, it reports the results to show how the selective 

X-masking logic can improve the percentage of observability for output responses (%of Obs. 

Circuit 
X-canceling 

MISR alone 

X-masking& 

X-canceling 

Proposed 

method 

s15850 19.8x 10.5x 35.4x 

s13207 24.2x 30.1x 69.8x 

s38584 23.1x 14.8x 39.2x 

s38417 23.2x 26.7x 66.9x 
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response) for the X-compactor (one of X-tolerant compactors). In this experiment, 1% of X‟s are 

randomly generated in the test responses-specifically, 90% of X‟s filled in 10% of the scan chains.  

  In Table 4.3, in the second column it shows the percentage of X‟s masked in 

the test cubes by the selective X-masking logic (S. mask). The total overhead of mask bits is 

shown in the third column. The fourth column (or fifth column) shows the percentage of 

observability for output responses with (or without) selective X-masking logic. The sixth column 

is the improvement of observability for output responses. By comparing the fourth and fifth 

columns, the percentage of observability for output responses is improved in the range of 7.93% to 

14.32% (11.67% on the average for four circuits).The results indicate that the selective X-masking 

logic can achieve a significant improvement of observability for output responses in the 

comparison.  

Table 4.3 Comparison between with and without using 

selective X-masking with 1% X‟s 

 

Circuit 

 

X-compactor 

With S. mask 
W/o S. 

mask Improve 

-ment% 

(a-b)/a 
%X‟s 

mask 

Total 

Mask 

bits 

% of Obs. 

Response(a) 

% of Obs. 

Response(b) 

s15850 64.8 1,511 96.33 82.53 14.32 

s13207 80.9 2,130 98.85 85.29 13.73 

s38417 83.6 7,658 99.63 88.98 10.69 

s38584 65.2 8,024 97.71 89.96 7.93 

Avg. 73.6  98.13 84.60 11.67 

 

     When the number of X‟s has been increased to 2%, the percentage of 

observability was enhanced by 34.11% on average for four circuits as shown in Table 4.4. 
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Table 4.4 Comparison between with and without using 

selective X-masking with 2% X‟s 

 

Circuit 

 

X-compactor 

With S. mask 
W/o S. 

mask Improve 

-ment% 

(a-b)/a 
%X‟s 

mask 

Total 

Mask 

bits 

% of Obs. 

Response(a) 

% of Obs. 

Response(b) 

s15850 63.1 1,854 89.05 56.22 36.87 

s13207 81.6 3,187 96.80 61.55 36.42 

s38417 83.9 11,171 98.58 69.34 29.66 

s38584 64.8 10,316 92.20 61.34 33.47 

Avg. 73.4  94.16 62.11 34.11 

 

   In Tables 4.5 and Tables 4.6, it shows the results comparing the overhead of 

mask bits between our approach and reiterative X-masking [14] in the presence of 1% and 2% of 

X‟s. As the results show, the reduction of mask bits is 77.67% and 72.20% on average, 

respectively. 

Table 4.5 The overhead of mask bits based on 1% of X‟s 

Circuit 

Mask bits 

Reduction 

%(b-a)/b 

Our 

approach 

(a) 

Reiterative 

X-masking 

[14] (b) 

s15850 1,511 9,532 84. 14 

s13207 2,310 7,937 73.16 

s38417 7,658 29,732 74.32 

s38584 8,024 38,303 79.05 

 

Table 4.6 The overhead of mask bits based on 2% of X‟s 

Circuit 

Mask bits 

Reduction 

%(b-a)/b 

Our 

approach 

(a) 

Reiterative 

X-masking 

[14] (b) 

s15850 1,854 9,975 81.41 

s13207 3,184 9,199 65.38 

s38417 11,171 33,964 67.10 

s38584 10,316 41,122 74.91 
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   The experimental results were shown that the proposed method can achieve 

significant improvement of observability for scan cells and reduce the X-masking data overhead 

significantly. In addition, the proposed method is effective as the majority of X‟s is located in 

small parts of scan chains.  

 

4.6 Summary 

 

                 In this section, the general idea of a selective X-masking is firstly presented. 

Then, it combines the selective X-masking logic with X-canceling MISR and X-tolerant 

compactor, respectively. To show the performance, the results are implemented with using the 

proposed masking logic and without using the proposed masking logic. For the experimental 

results, the presented X-masking logic can achieve 53.94% improvement of the compression ratio 

on average based on 0.5% X‟s for X-canceling MISR and can improve obviously the observability 

of scan cells (34.11% improvement on average based on 2% X‟s and 11.67% improvement on 

average based on 1% X‟s) for X-tolerant compactor. 
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CHAPTER 5 

 

 

CONCLUSION AND DISCUSSION 

 

 

5.1 Conclusion  

 

   For the output response compaction, an efficient X-masking scheme 

requires to be developed to handle X‟s appeared in the test responses. The good performance for 

an X-masking logic is that the masking logic can handle more number of X ‟s with smaller mask 

bits without losing fault coverage. 

    Since the X-canceling MISR is extremely efficient only when the 

percentage of X‟s is very small (less than 0.1%) while X-tolerant compactor can just tolerant 

limited number of X‟s, As the number of X‟s increase in test responses, the present scheme of 

X-canceling MISR and X-tolerant compactor are not efficient anymore. In this case, this work 

adds the additional X-masking logic in front of either X-canceling MISR or X-tolerant compactor. 

As the majority of X‟s may just locate in a small number of scan chains in actual design, the 

presented selective X-masking logic is applied to mask a subset of scan chains with large density 

of X‟s to improve efficiency of X-masking, and the few remaining small number of X‟s can be 

handled by either X-canceling MISR or X-tolerant compactor.  

    For the implementation, it mainly computes the overhead of mask data and 

the observability of scan cells for compactor with the presented X-masking logic. In experimental  

results, the selective masking logic can give a better performance compared with the previous 

X-masking schemes [13] [14]. 

 

5.2 Discussion 

 

    The proposed selective X-masking gets lots of advantages based on the 

large different distribution of X‟s in scan chains. However, it gets several limitations discussed as 

follow.   
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5.2.1 Advantages 

 

1) The presented selective X-masking logic can be easily integrated in digital 

circuits as the additional selection register requires only one 1-bit wide test 

channel. 

2) By inspecting the distribution of X‟s, the proposed method is extremely 

efficient when most X‟s is only distributed in a small subset of scan chains. 

3) Comparing with several X-masking schemes [13] [14], the presented method 

is more flexible because the partial scan chains are masked. 

 

5.2.2 Limitations  

 

1) When the percentage of X‟s is very small, the either scheme of X-canceling 

MISR or X-tolerant compactor is very efficient. Then, it is not necessary to 

combine with either X-canceling MISR or X-tolerant compactor as the 

proposed approach. 

2) The presented approach is very efficient only if the majority of X‟s locate in 

a small number of scan chains (no more than 10% of all scan chains). 

However, the distribution of X‟s among scan chains might be large different 

in actual circuits. 

 

5.2.3 The future work 

 

1) Another type of benchmark circuits may be selected for the further 

implementation based on the proposed X-masking logic. Notice that the four 

ISCAS89 benchmark circuit are performed based on large number of scan 

cells and complexity. 

2) Another efficient X-masking logic requires to be developed for the further 

research. 
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