
Copyright of Prince of Songkla University 

 
Modeling Island Coastal Waves with Spring Systems 

Sui  Yifan 

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of 

Master of Engineering in Computer Engineering 

Prince of Songkla University 

2010 



 

Thesis Title      Modeling Island Coastal Waves with Spring Systems 
Author          Mr. Sui  Yifan 
Major Program  Computer Engineering 
 
 
Major Advisor: 
 
 
.…………….………………………. 
(Dr. Andrew  Davison) 
 
 
 
Co-advisor: 
 
 
........................................................... 
(Asst. Prof. Dr. Pichaya  Tandayya) 
 
 
 
 
 

 
Examining Committee: 
 
 
..……….……………………….......Chairperson 
(Dr. Nikom  Suvonvorn) 
 
 
…………….………………………………......... 
(Dr. Andrew  Davison) 
 
 
…………….………………………………......... 
(Asst. Prof. Dr. Pichaya  Tandayya) 
 
 
…………….………………………………......... 
(Assoc. Prof. Dr. Wattanapong  Kurdthongmee)

 
 
The Graduate School, Prince of Songkla University, has approved this thesis as 

partial fulfillment of the requirements for the Master of Engineering Degree in Computer 
Engineering. 

 
 
 

                                  ………….……………………………….. 
(Prof. Dr. Amornrat  Phongdara) 

Dean of Graduate School 
 

ii 



 

 iii

Thesis Title   Modeling Island Coastal Waves with Spring Systems 
Author    Mr. Sui Yifan 
Major Program  Computer Engineering 
Academic Year  2010 

ABSTRACT 

This project is concerned with developing a dynamic 3D model for island coastal 
waters which balances realism with computational efficiently. The land is generated from a height 
map, and waves move using a combined profile function which includes a phase function for 
wave refraction.  

The novel features of this work are a series of spring-based systems that manage 
the interaction of the water and land around the coastline, based on a wave curves data structure. 
Wave motion is controlled with position and wave springs, and employs collision detection for 
water/land and waves collisions. A wave affects the waves around it, and rebounds when it hits 
the land with a suitably changed height and velocity. The movement of waves in the vertical 
plane is controlled with height springs. 

The model’s appearance is enhanced using procedural, detail, and material 
textures. Wave crest shading, water transparency, water spray and breaking waves further 
improve the model’s realism, the later two implemented as particle systems. 

The system animates a 128*128 mesh model at about 56 frames/second (FPS) on 
a PC, illustrating the speed o this approach, and can render 256*256 mesh models at around 22 
FPS. 

Keywords: Spring systems, wave curves, particle systems. 



 

 iv

ACKNOWLEDGEMENT 

First of all, I would like to express my gratitude to Dr. Andrew Davison, my 
supervisor, for his advice, suggestions, teaching, and help with this thesis. 

I would also like to thank to Asst. Prof. Dr. Pichaya Tandayya, my co-advisor, 
for her advice, comments, teaching, and help with this thesis, and my study. 

Thirdly, I would like to thank the other members of my committees Dr. Nikom 
Suvonvorn and Assoc. Prof. Dr, Wattanapong Kurdthongmee, who gave me many useful 
suggestions for finishing my thesis. 

I thank all the lecturers and staff in the Department of Computer Engineering 
who helped me with my studies. In addition, I thank the Department of Computer Engineering, 
Faculty of Engineering, Graduate School, and Prince of Songkla University, who offered me help 
to finish my university work.  

I would like to express my heartfelt gratitude to my family who have supported 
my study in Thailand. I also thank my friends for their help with my study and life. 

Sui Yifan 



 

 

v

CONTENTS 

Page 
CONTENTS......................................................................................................................................v 
LIST OF TABLES...........................................................................................................................ix 
LIST OF FIGURES...........................................................................................................................x 
CHAPTER 
1. INTRODUCTION......................................................................................................................1 
1.1 Problem Statement.....................................................................................................................1 
1.2 Proposed Idea.............................................................................................................................2 
1.3 Objectives...................................................................................................................................3 
1.4 Scope..........................................................................................................................................4 
1.5 Tools...........................................................................................................................................5 
2. LITERATURE REVIEW...........................................................................................................6 
2.1 OpenGL......................................................................................................................................6 
2.2 JOGL..........................................................................................................................................8 
2.3 GLSL Shaders..........................................................................................................................9 
2.3.1 Vertex Shaser.......................................................................................................................9 
2.3.2 Fragment Shader................................................................................................................10 
2.3.3 Using Shaders in Java........................................................................................................11 
2.4 Mesh and Height Map..............................................................................................................13 
2.4.1 Height Map........................................................................................................................14 
2.5 Water Surface and Wave Refraction........................................................................................15 
2.5.1 Water Surface....................................................................................................................16 
2.5.2 Wave Refraction................................................................................................................17 
2.6 Spring Systems.........................................................................................................................20 
2.7 Collision Detection...................................................................................................................22 
2.8 Texture Mapping......................................................................................................................23 
2.8.1 Use a Texture Map............................................................................................................23 
2.8.2 Procedural Texture Generation.........................................................................................24 



 

 

vi

CONTENTS (CONTINUED) 

Page 
2.8.3 Detail Texture....................................................................................................................26 
2.8.4 Multitexturing....................................................................................................................27 
2.9 Particle System.........................................................................................................................27 
2.10 Water Effects...........................................................................................................................29 
2.11 Summary.................................................................................................................................30 
3. MESH CREATION..................................................................................................................31 
3.1 Create the Land Mesh...............................................................................................................31 
3.2 Create the Water Mesh.............................................................................................................33 
3.3 Summary..................................................................................................................................35 
4. THE WATER SURFACE........................................................................................................36 
4.1 Wave Height.............................................................................................................................36 
4.2 Coastline and Wave Curves.....................................................................................................39 
4.2.1 Building the Coastline.......................................................................................................40 
4.2.2 Building Wave Curve 1.....................................................................................................47 
4.2.3 Building the Other Wave Curves......................................................................................49 
4.2.4 Wave Curves as Line Strips..............................................................................................51 
4.3 Implementation Details............................................................................................................53 
4.4 Summary..................................................................................................................................58 
5. ADDING INTERACTION......................................................................................................59 
5.1 Position Springs........................................................................................................................60 
5.2 Wave Springs...........................................................................................................................62 
5.3 Collision Detection...................................................................................................................64 
5.4 More Realistic Wave Curves 3 and 4.......................................................................................66 
5.5 Height Springs..........................................................................................................................69 
5.6 Implementation Details............................................................................................................70 
5.6.1 Position and Wave Springs................................................................................................71 
5.6.2 Collision Detection............................................................................................................72 



 

 

vii

CONTENTS (CONTINUED) 

Page 
5.6.3 Height of Wave Curves.....................................................................................................73 
5.7 Testing......................................................................................................................................74 
5.8 Summary..................................................................................................................................76 
6. MULTITEXTURING AND SHADING..................................................................................77 
6.1 Texturing the Land Surface......................................................................................................77 
6.1.1 Procedural Texturing.........................................................................................................77 
6.1.2 Detail Texturing.................................................................................................................79 
6.1.3 Implementation Details.....................................................................................................80 
6.2 Texturing the Water Surface....................................................................................................81 
6.2.1 Material Texturing.............................................................................................................81 
6.2.2 Detail Texturing.................................................................................................................82 
6.2.3 Wave Crest Shading..........................................................................................................84 
6.2.4 Water Transparency..........................................................................................................85 
6.2.5 Implementation Details Using Shaders.............................................................................88 
6.3 Summary..................................................................................................................................89 
7. PARTICLE SYSTEMS............................................................................................................91 
7.1 Water Spray..............................................................................................................................91 
7.1.1 Implementation..................................................................................................................93 
7.2 Breaking Waves.......................................................................................................................92 
7.2.1 Implementation.................................................................................................................98 
7.3 Summary..................................................................................................................................99 
8. TESTING...............................................................................................................................100 
8.1 Original Model.......................................................................................................................101 
8.2 Five Wave Curves..................................................................................................................103 
8.3 A 256*256 Island...................................................................................................................107 
8.4 Testing with a Harbour...........................................................................................................110 
8.5 Data Analysis........................................................................................................................113 



 

 

viii

CONTENTS (CONTINUED) 

Page 
8.6 Summary................................................................................................................................115 
9. DISCUSSION AND CONCLUSIONS.....................................................................................116 
REFERENCES..............................................................................................................................122 
APPENDICIES.............................................................................................................................126 
Appendix A1 Simple.c..................................................................................................................128 
Appendix A2 Simple.java.............................................................................................................129 
Appendix A3 Simple2.java, draw.vert, draw.frag........................................................................130 
Appendix A4 noise.c.....................................................................................................................132 
Appendix A5 Loadpixels.java.......................................................................................................134 
Appendix A6 Mesh.java................................................................................................................135 
Appendix A7 Phase.java...............................................................................................................151 
Appendix A8 WaveCurves.java....................................................................................................152 
Appendix A9 Velocities.java........................................................................................................156 
Appendix A10 Collision.java........................................................................................................162 
Appendix A11 HeightOfWaveCurve.java....................................................................................174 
Appendix A12 water.vert, water.frag............................................................................................176 
Appendix A13 Particle.java..........................................................................................................177 
Appendix A14 par.vert, par.frag...................................................................................................181 
Apppendix B Published Paper......................................................................................................182 
VIATE...........................................................................................................................................187 



 

 

ix

LIST OF TABLES 

Table                                             Page 
4.1 Methods and their tasks in the WaveCurves class....................................................................54 
8.1 Average FPS of different models............................................................................................113 



 

 

x

LIST OF FIGURES 

Figure                                             Page 
1.1 Peachey’s model (left) and the model of Fournier and Reeves (right) [8].................................1 
1.2 Foster and Fedkiw’s model (left) and the model of Enright, Marschner and Fedkiw [7]..........2 
1.3 Maes, Fujimoto and Chiba’s model [8]......................................................................................2 
1.4 My final model..........................................................................................................................3 
2.1 A preview of the OpenGL fixed-function graphics pipeline....................................................7 
2.2 Output from OpenGL called from C........................................................................................7 
2.3 Output from OpenGL called from Java....................................................................................8 
2.4 A preview of the new OpenGL graphics pipeline with shaders................................................9 
2.5 A model before (left picture) and after (right picture) scaling by a vertex shader.............10 
2.6 A model before (left picture) and after (right picture) being turned green by a fragment 

shader......................................................................................................................................11 
2.7 Java, OpenGL and GLSL shaders..........................................................................................11 
2.8 Output without shaders...........................................................................................................12 
2.9 Output with shaders................................................................................................................12 
2.10 A quadratic mesh...................................................................................................................14 
2.11 A terrain [22]...........................................................................................................................14 
2.12 A height map [22]...................................................................................................................15 
2.13 Hawkins and Astle’s terrains [23, 24].....................................................................................15 
2.14 Sine function applied to a water surface [18]..........................................................................16 
2.15 Guertault’s water surface [14]...............................................................................................16 
2.16 Deep, intermediate and shallow water..................................................................................17 
2.17 Deep and shallow water.........................................................................................................18 
2.18 Phase value.............................................................................................................................18 
2.19 Cosine and quadratic functions.............................................................................................20 
2.20 Hooke's Law............................................................................................................................21 
2.21 A spring system.....................................................................................................................21 
2.22 Spring system and Newton’s law..........................................................................................22 



 

 

xi

LIST OF FIGURES (CONTINUED) 

Figure                                             Page 
2.23 Texture map in (s, t) space and as the original image.............................................................24 
2.24 The height map of the terrain (left) and procedural texturing based on the terrain’s height 

(right) [29]...............................................................................................................................24 
2.25 Procedural texturing applied over the terrain [29]..................................................................25 
2.26 The percentage of four textures combined at different heights...............................................26 
2.27 Detail texture map [28]...........................................................................................................26 
2.28 Color image (left) and gray image (right) for mix-texturing [14]..........................................27 
2.29 Green and blue fireworks (left) and multicolored fireworks (right) made by particle systems 

[15]..........................................................................................................................................28 
2.30 Particles with different positions, velocities and forces.......................................................28 
2.31 Water spray.............................................................................................................................29 
2.32 A breaking wave and water foams.......................................................................................30 
2.33 The wave’s crest angle approaches °120 and the wave breaks...............................................30 
3.1 The height map for the land....................................................................................................31 
3.2 Loadpixels class diagram......................................................................................................31 
3.3 Loading the height map...........................................................................................................32 
3.4 Calculating the height data......................................................................................................32 
3.5 The land mesh........................................................................................................................33 
3.6 A part of the land mesh..........................................................................................................33 
3.7 The water and the land meshes...............................................................................................34 
3.8 A top view of part of the water and land meshes....................................................................34 
4.1 Wave height derived from the final profile function.............................................................37 
4.2 The shapes of the four versions of the profile function and their combination......................38 
4.3 Water surface with waves.......................................................................................................38 
4.4 The crests of the waves parallel to the land............................................................................39 
4.5 The coastline and wave curves at rest position.....................................................................39 
4.6 What the final coastline should look like................................................................................40 



 

 

xii

LIST OF FIGURES (CONTINUED) 

Figure                                             Page 
4.7 Unshaped coastline.................................................................................................................41 
4.8 The steps of get the coastline..................................................................................................41 
4.9 Useless line segment..............................................................................................................42 
4.10 Clear coastline........................................................................................................................42 
4.11 Confusing coastline................................................................................................................43 
4.12 Drawing line segments............................................................................................................43 
4.13 Drawing a line strip...............................................................................................................44 
4.14 Adjusting the line segments..................................................................................................44 
4.15 Coastline made up of vertices...............................................................................................45 
4.16 Vertex deletion in a mesh box.................................................................................................45 
4.17 Simplified coastline................................................................................................................46 
4.18 Shared coastline vertex between four mesh boxes................................................................46 
4.19 The coastline before and after running delete useless vertices again..................................46 
4.20 Entire coastline........................................................................................................................47 
4.21 A part of the coastline............................................................................................................47 
4.22 The coastline and wave curve 1............................................................................................48 
4.23 Neighbors of vertex V............................................................................................................48 
4.24 Calculating wave curve 1......................................................................................................48 
4.25 The coastline and wave curve 1..............................................................................................49 
4.26 A part of the coastline and wave curve 1................................................................................49 
4.27 A diagram of the final wave curve 2 should look like.......................................................50 
4.28 Neighbors of vertex W...........................................................................................................50 
4.29 Calculating wave curve 2........................................................................................................51 
4.30 Coastline, wave curves 1 and 2...............................................................................................51 
4.31 A part of the coastline, wave curves 1 and 2...........................................................................51 
4.32 Some line segments out of order............................................................................................52 
4.33 Line segment 3-4 out of order.................................................................................................52 



 

 

xiii

LIST OF FIGURES (CONTINUED) 

Figure                                             Page 
4.34 The order of line segment 3-4 has been changed.................................................................52 
4.35 Wave curves after adjusting the vertex order......................................................................53 
4.36 WaveCurves class...................................................................................................................53 
4.37 Calculating wave curve 1......................................................................................................56 
4.38 Calculating wave curves 2/3/4..............................................................................................57 
5.1 The rest position of the coastline and wave curves.................................................................59 
5.2 The movement of wave curves...............................................................................................60 
5.3 A position spring P for vertex s...............................................................................................61 
5.4 A position spring  P for vertex s over time.........................................................................62 
5.5 The length change of the position spring P.............................................................................62 
5.6 A Wave spring W between vertices s and r in wave curves 3 and 4 at time t........................63 
5.7 A wave spring W for vertex s and r over time........................................................................64 
5.8 The length change of the wave spring W................................................................................64 
5.9 Water and land collision at time t...........................................................................................65 
5.10 Waves Collision......................................................................................................................66 
5.11 Wave curves 3 and 4 movement under the land.....................................................................67 
5.12 Wave curves 3 and 4 movement into the land.......................................................................67 
5.13 Wave curves 3 and 4 along the gradient of the land...............................................................68 
5.14 Add height offsets to wave curve 3 and 4...............................................................................69 
5.15 A height spring for wave curve 1 or 2 vertex s.......................................................................70 
5.16 Class Velocities.......................................................................................................................70 
5.17 Class Collision........................................................................................................................71 
5.18 Class HeightOfWaveCurve.....................................................................................................71 
5.19 Springs and collisions control the motion of wave curves 3 and 4.........................................71 
5.20 Water moving towards the land..............................................................................................74 
5.21 Wave curves moving towards the land...................................................................................75 
5.22 Water retreating from the land................................................................................................75 



 

 

xiv

LIST OF FIGURES (CONTINUED) 

Figure                                             Page 
5.23 Wave curves rebounding from the land..................................................................................76 
6.1 The percentages of four textures used in the model for a given height..................................78 
6.2 The four textures used for procedural texturing......................................................................79 
6.3 The generated texture and terrain............................................................................................79 
6.4 Detail texture map...................................................................................................................79 
6.5 The terrain with procedural and detail texturing.....................................................................80 
6.6 Without/with Detail Texturing................................................................................................80 
6.7 One color water surface..........................................................................................................81 
6.8 Water Material texturing.........................................................................................................82 
6.9 Water Detail Texturing...........................................................................................................82 
6.10 Combined material and detail texturing..................................................................................83 
6.11 A part of the model with material texturing only, detail texturing only, and multitexturing..83 
6.12 Water around a crest is darker than other place......................................................................84 
6.13 Model without wave crest shading..........................................................................................84 
6.14 Higher water becomes darker..................................................................................................84 
6.15 Wave crest shading.................................................................................................................85 
6.16 Water surface without transparency........................................................................................85 
6.17 Water transparency..................................................................................................................86 
6.18 Water with transparency.........................................................................................................86 
6.19 The shallower water is more transparent................................................................................87 
6.20 Transparent water with a blue box..........................................................................................87 
6.21 A blue box without water (left) and with water (right)...........................................................88 
6.22 Steps of processing the water surface.....................................................................................88 
7.1 Water spray............................................................................................................................91 
7.2 Coastline and wave curves without spray...............................................................................92 
7.3 Water spray particles around a wave curve vertex..................................................................92 
7.4 Texture for a particle..............................................................................................................93 



 

 

xv

LIST OF FIGURES (CONTINUED) 

Figure                                             Page 
7.5 Water spray particles...............................................................................................................93 
7.6 Class Particle...........................................................................................................................93 
7.7 The particle gets smaller at increased heights.........................................................................95 
7.8 Foam on top of a breaking wave.............................................................................................96 
7.9 The model without breaking wave..........................................................................................96 
7.10 Breaking wave particles are around the breaking wave’s vertex............................................97 
7.11 The model with breaking wave particles...............................................................................98 
8.1 Original model/full rendering...............................................................................................101 
8.2 Original model/no particle systems.......................................................................................102 
8.3 Original model/no shaders....................................................................................................102 
8.4 Original model/no shaders/on a notebook.............................................................................103 
8.5 Off-screen model on a notebook...........................................................................................103 
8.6 Five wave curves of the meshed model................................................................................104 
8.7 Calculating wave curve 5......................................................................................................104 
8.8 Springs and collisions control the motion of wave curve 5..................................................105 
8.9 Five wave curves model/full rendering.................................................................................106 
8.10 8.10: Five wave curves model/no particle systems...............................................................106 
8.11 Five wave curves model/no shaders......................................................................................107 
8.12 Five wave curves/no shaders/on a notebook.........................................................................107 
8.13 The height map of the 256*256 island..................................................................................108 
8.14 256*256 mesh/full rendering................................................................................................108 
8.15 256*256 mesh/no particle systems........................................................................................109 
8.16 256*256 mesh/no shaders.....................................................................................................109 
8.17 256*256 mesh/no shaders/on a notebook.............................................................................110 
8.18 The harbour height map........................................................................................................110 
8.19 Harbour model/full rendering...............................................................................................111 
8.20 Harbour model/no particle systems.......................................................................................111 



 

 

xvi

LIST OF FIGURES (CONTINUED) 

Figure                                             Page 
8.21 Harbour model/no shaders....................................................................................................112 
8.22 Harbour model/no shaders/on a notebook.............................................................................112 
8.23 Average FPS of different models on different hardware......................................................114 
9.1 Water moving towards the land............................................................................................118 
9.2 Water moving towards the land (cross-sectional view)........................................................118 
9.3 Wave curves moving towards the land.................................................................................119 
9.4 Water retreating from the land..............................................................................................119 
9.5 Water retreating from the land (cross-sectional view)..........................................................120 
9.6 Wave curves rebounding from the land................................................................................120 
9.7 Breaking wave particles........................................................................................................121 
9.8 Breaking wave particles (side view).....................................................................................121 
A1.1 Output from OpenGL called from C....................................................................................128 
A2.1 Output from OpenGL called from java................................................................................129 
A3.1 Output (left: without shaders; right: with shaders) from simple2.java................................131 
A4.1 Guertault’s water surface.....................................................................................................133 

 



 

 1 

 
The rendering of large areas of water is well understood, and has become 

common in games [1, 2]. Compared to several years ago, the processing power of current graphic 
cards can render moving water in real-time. For example, a Perlin Noise function can create 
real-time waves in a large area of water [3]. Since 1986, considerable effort has been devoted to 
simulating the interaction between fluids and solids, and this thesis contributes to this topic, 
within the domain of coastal water. Previous work has examined ocean waves’ effects, such as 
refraction and collision with obstacles [2]. 

1.1 Problem Statement 

Fast rendering of water is more and more familiar in games, but there is little 
physics-based interaction with the shoreline as waves move up and down, and generate spray and 
foam. There should be a method combines fast rendering and physics for a large body of water. 

Peachey [4], Fournier and Reeves [5] render waves approaching and breaking on 
a sloping beach as shown in Figure 1.1. Particle systems were used to model the foam and the 
spray generated by wave breaking and collisions with obstacles. But there is no force interaction 
between the water and land. For example, the wave profile only changes according to wave 
steepness and water depth in Peachey’s model. 

 
Figure 1.1: Peachey’s model (left) [4] and the model of Fournier and Reeves (right) [5]. 

CHAPTER 1 
 

INTRODUCTION 



 
 

 

2 

Foster and Fedkiw [6], and Enright, Marschner and Fedkiw [7] simulate poured 
liquid and breaking waves by a combination of textures and particles, as shown in Figure 1.2. But 
the computational cost is approximately several minutes per frame. For example, Foster and 
Fedkiw’s model with 150*75*90 cells running on a Pentium II 500MHz takes four minutes per 
frame. 

 
Figure 1.2: Foster and Fedkiw’s model (left) [6] and the model of Enright, Marschner and Fedkiw 

(right) [7]. 

Maes, Fujimoto and Chiba [8] develop three-dimensional fluid animation 
suitable for water flowing on irregular terrains, intended for interactive applications as shown in 
Figure 1.3. Columns are used to render the water, their heights varying due to the flow through 
pipes between neighboring columns. The flow in these virtual pipes is determined by the physics 
of hydrostatics. The water columns have variable heights and lie directly on the terrain, so they 
can not move in the horizontal direction. 

 
Figure 1.3: Maes, Fujimoto and Chiba’s model [8]. 

1.2 Proposed Idea 

A spring system can be used to simulate fluid and waves, with mass-spring 



 
 

 

3 

systems arguably the simplest and most intuitive of all deformable models [9, 10]. It is feasible, 
easy, and intuitive to use spring systems to simulate the motion of water near a coastline while 
still allowing fast rendering with the limited resources of a standard personal computer.  

This thesis proposes the original idea of connecting water vertices by springs, to 
make water move realistically in the vertical and horizontal planes while reducing the complexity 
of the necessary algorithms. The water surface near the land will move forward and back to 
represent water/land interaction based on velocities and forces calculated using spring systems 
following Newton’s and Hooke’s laws [11].  

Some existing technologies will be reused in this system. Wave refraction will 
be based on Peachey’s paper [4], and multitexturing of land and water surfaces will improve 
realism [12]. Other features include wave crest shading [13] and water transparency [14]. Water 
spray and breaking waves will be generated using particle systems [15]. 

To simplify the coding tasks, the implementation is limited to one island, the 
water and land surfaces are based on meshes. Figure 1.4 shows a screenshot of the final model; 
the details and the effects will be explained in later chapters. 

 
Figure 1.4: The final model. 

1.3 Objectives 

1. The code utilizes Java, JOGL (a Java binding for OpenGL) and GLSL 

Land 
Water 

X
Z 

Y 

Land (under the water) 



 
 

 

4 

(OpenGL Shading Language). 
2. 3D rendering elements include: 

1) Terrain: the land surface is built use a 2D mesh and height map. 
2) Water: height functions animate the water surface with different waves. 
3) Terrain and water interaction: phase functions are used to produce wave 

refraction around the land; wave curves are placed around the land in the water mesh; spring 
systems adjust the motion of the water vertices; collision detection checks the water-land 
interaction and the interaction between wave curves. 

4) Terrain and water multitexturing improve the appearance of the land and 
water surface (the water surface also employ shaders). 

5) A particle system represents the spray around the coastline; another particle 
system represents foam on the breaking wave crests. 

1.4 Scope 

1. Programming utilizes JOGL and GLSL shaders. The use of shaders requires 
graphics hardware which supports OpenGL 2.0 or later. 

2. The terrain mesh is created with a height map, and the water mesh is the same 
size (typically 128*128). The terrain is assured to consist of one island or harbour, but there is no 
restriction on the shape of the land. 

3. Water waves are created, and wave refraction is implemented based on the 
depth of the water. 

4. Coastline and wave curves are applied to the water vertices. Since collisions 
occur between the water and the land around the coastline, collision detection is utilized with the 
help of spring systems.  

5. Multitexturing (both procedural and detail texturing) is applied to the land 
surface, and to the water surface (material and detail texturing). 

6. Coastline spray and breaking wave foam are rendered by particle systems. 
 



 
 

 

5 

1.5 Tools 

1. Testing is carried out on two Windows XP machines. A notebook with Core 
T2250 CPU 1.73 GHz, RAM 2GB, and an Intel 950 graphic card which supports OpenGL 1.4. 
This card means that shaders are not supported, making the water texturing less realistic on the 
notebook. A PC with a two-Core CPU 1.86 GHz, RAM 1GB, and a Nvidia 9800GT 1GB graphic 
card which supports OpenGL 3.1 (so shaders are available).  

2. The J2SE Development Kit v1.6.0, from http://www.java.com/en/.  
3. The JOGL v1.1.1 package, from https://jogl.dev.java.net/. 
4. JCreator 4.00 Pro, a Java program editor, from http://www.jcreator.com/. 
5. FRAPS 2.99, a screenshot utility, from http://www.fraps.com/.



 

 6 

CHAPTER 2 

LITERATURE REVIEW 
 

This chapter presents background information on OpenGL, JOGL, 
programmable shaders, mesh and height maps, water surfaces and wave refraction, spring 
systems, collision detection, multitexturing, and particle systems. 

2.1 OpenGL 

OpenGL is a 3D graphics programming API [16]. Since its introduction in 1992, 
OpenGL has become the industry's most widely used and supported 2D and 3D graphics API, 
bringing thousands of applications to a wide variety of computer platforms [17]. 

All OpenGL applications produce consistent visual results on any OpenGL 
API-compliant hardware, regardless of operating system or windowing system [17]. The API is 
supported on Windows, Unix, Linux, MacOS, OS/2.   

OpenGL is well structured with an intuitive design. Efficient OpenGL routines 
typically result in applications with fewer lines of code than those that make up programs 
generated using other graphics libraries or packages. OpenGL drivers encapsulate information 
about the underlying hardware, freeing the application developer from having to design for 
specific hardware features [17].  

Early versions of OpenGL operated using a fixed-function graphics pipeline, 
which took geometry specified as vertices and pixel data as input, and produced pixels in the 
framebuffer as shown in Figure 2.1. 



 

 

7 

 
Figure 2.1: A preview of the OpenGL fixed-function graphics pipeline. 

As geometric data travels down the pipeline, it goes through a series of 
conceptual stages that process the data [18]. 

OpenGL fosters innovation and speeds application development by 
incorporating a broad set of rendering functions, texture mapping, special effects, and other forms 
of visualization [17]. OpenGL contains over 200 functions.  

A small OpenGL example coded in C is outlined below, based on one by Angel 
[16]. It displays a white rectangle in a window as shown in Figure 2.2. 

 
Figure 2.2: Output from OpenGL called from C. 

The following is a fragment of the program; the full code is in Appendix A1. 
glBegin() specifies the type of the object (a polygon) and its vertices. glEnd() denotes the 
end of the vertex list. 
 
glBegin(GL_POLYGON); //specifies the object type  
//set the vertices of the object 

glVertex2f(0, 0); 
glVertex2f(0.5, 0); 
glVertex2f(0.5, 0.5); 
glVertex2f(0, 0.5); 

glEnd(); //end of vertices 

Vertex 
data 

Pixel 
data 

Vertex 
processing 

Fragment 
processing 

Frame 
buffer 

GPU CPU 



 

 

8 

2.2 JOGL 

This code in this thesis calls OpenGL via a Java binding called JOGL. JOGL can 
access most of OpenGL via two packages [19, 20].  

1. The “javax.media.opengl” package, contains Java bindings for all the core 
OpenGL methods through version 2.0, as well as most OpenGL extensions defined at that time. 
OpenGL extensions incorporated into core OpenGL by version 1.3, are excluded. 

2. The “javax.media.opengl.glu” package, contains bindings for the OpenGL 
Graphics System Utility (GLU) Library version 1.3, with the exception of the NURBS routines 
[19]. 

The Java version of the C example is shown in Figure 2.3; it is the same as 
Figure 2.2.  

 
Figure 2.3: Output from OpenGL called from Java. 

The following is a fragment of the program, the full code is in Appendix A2. 
The Java version is very similar to the C version: vertices are defined with gl.glVertex2f(), 
between gl.glBegin() and gl.glEnd(). 
 
gl.glBegin(GL.GL_POLYGON); //specifies the object type  
//set the vertices of the object 

gl.glVertex2f(0,0); 
gl.glVertex2f(0.5f, 0); 
gl.glVertex2f(0.5f, 0.5f); 
gl.glVertex2f(0, 0.5f); 

gl.glEnd(); //end of vertices 
 
 
 



 

 

9 

2.3 GLSL Shaders 

A shader is a program executed on the PC's GPU, a processor attached to the 
graphics card dedicated to calculating floating point operations for the display [18]. A GPU 
executes graphics primitive operations much faster than the host CPU.  

For years, OpenGL operated using a fixed-function graphics pipeline, as shown 
in Figure 2.1, which gave the programmer a limited degree of rendering control through state 
settings. With shaders, the vertex and fragment processing stages become programmable, as 
shown in Figure 2.4. The programmer can write vertex and fragment shaders that will run at these 
stages in the pipeline in place of the predefined operations. 

 
Figure 2.4: A preview of the new OpenGL graphics pipeline with shaders. 

Shaders are can handle special effects such as per-vertex coloring, transparency, 
and particles, so reducing the work of the CPU. Vertex and fragment shaders are written with the 
OpenGL Shading Language (GLSL), a high-level graphics programming language similar to C. 

2.3.1 Vertex Shader 

A vertex shader can replace/enhance the following fixed-function graphics 
pipeline features: 

 Matrix manipulation (modelview, projection, texturing). 
 Normal transformation, rescaling, and normalization. 
 Texture coordinate generation. 

Vertex 
data 

Pixel 
data 

Processing data by 
vertex shader

Processing data by 
fragment shader

Frame 
buffer 

CPU GPU 



 

 

10 

 Per-vertex lighting. 
 Point-size distance attenuation. 

 
void main(void) 
{ 

vec4 a = gl_Vertex; //get vertex position 
 
//scale vertex in x, y, z coordinates 

    a.x = a.x * 0.5; 
    a.y = a.y * 0.5; 

a.z = a.z * 0.5; 
 
//calculate the new vertex position 
gl_Position = gl_ModelViewProjectionMatrix * a;  

} 
 

The vertex shader example below scales each vertex of a model by 0.5. Figure 
2.5 shows the model before scaling (left picture) and after (right picture). A vertex position is 
stored in a 4D variable a, then its x, y, z coordinates are multiplied by 0.5. The new vertex 
position is output as gl_Position. The shader is automatically called for every vertex in the 
teapot shape. 

 
Figure 2.5: A model before (left picture) and after (right picture) scaling by a vertex shader. 

2.3.2 Fragment Shader 

A fragment shader can replace/enhance the following fixed-function pipeline 
steps: 

 Texture application (including texture environment).  
 Fog. 
 Color sum. 



 

 

11 

The fragment shader below changes the color of all the pixels in a model to 
green. Figure 2.6 shows the model before (left picture) and after (right picture).  
 
void main(void) 
{ 

//define the color to green 
gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);   

}  

 
Figure 2.6: A model before (left picture) and after (right picture) being turned green by a 

fragment shader. 

2.3.3 Using Shaders in Java 

A Java/OpenGL shader program must read in the source code of the GLSL 
shaders, have OpenGL compile them, then use them for drawing, as in Figure 2.7. 

 
Figure 2.7: Java, OpenGL and GLSL shaders. 

The code in this subsection is a fragment of a Java program to render a square 
with the help of the vertex and fragment shaders from Sections 2.3.1 and 2.3.2. Figure 2.8 shows 
the output without using shaders – a white polygon. Figure 2.9 shows the output with shaders – 
the white polygon is scaled by 0.5 and turned green.  

CPU GPU 
 
 
 

Java 
Program 

Frame 
buffer 

Vertex and 
fragment shaders 

OpenGL 

Compile source 
code

+ 



 

 

12 

 
Figure 2.8: Output without shaders. 

 
Figure 2.9: Output with shaders. 

The following code segment links the shaders to JOGL, the full code is in 
Appendix A3. Empty vertex and fragment shaders are created first, then an empty shader 
program. 

 
//empty vertex shader 
drawVertex = gl.glCreateShader(GL.GL_VERTEX_SHADER); 
 
//empty fragment shader 
drawFragment = gl.glCreateShader(GL.GL_FRAGMENT_SHADER); 
 
//empty shader program object 
drawShaderProgram = gl.glCreateProgram(); 

 

The vertex shader source code is loaded as a string, stored in the vertex shader, 
and compiled. Once the vertex shader is compiled, the same is done to the fragment shader. Then 
the vertex and fragment shaders are attached to the shader program object. 
 
//load vertex shader source code 
BufferedReader brv = new BufferedReader(new FileReader("draw.vert")); 
String vsrc = ""; 
String lineV; 
while ((lineV = brv.readLine()) != null)  
{ vsrc += lineV + "\n"; } 
String Vsrc [] = new String [1]; 



 

 

13 

Vsrc [0] = vsrc; 
 
//put source code in the vertex shader 
gl.glShaderSource(drawVertex, 1, Vsrc, null); 
 
//compile vertex shader 
gl.glCompileShader(drawVertex);  
 

   //loading, compiling of fragment shader 
 

//attach vertex shader to the shader program object 
gl.glAttachShader(drawShaderProgram, drawVertex); 

 
//attach fragment shader to the shader program object 
gl.glAttachShader(drawShaderProgram, drawFragment); 

 
//link the program object specified by program 
gl.glLinkProgram(drawShaderProgram); 
 

The shaders are employed for drawing the polygon between 
gl.glUseProgram() and gl.glUseProgram(0) calls. 
 
gl.glUseProgram(drawShaderProgram); //use shaders 
gl.glBegin(GL.GL_POLYGON); //draw the polygon  

gl.glVertex2f(0,0); 
    gl.glVertex2f(0.5f, 0); 
    gl.glVertex2f(0.5f, 0.5f); 
    gl.glVertex2f(0, 0.5f); 
gl.glEnd(); 
gl.glUseProgram(0); //stop using shaders 

2.4 Mesh and Height Map 

The most straightforward way of representing a surface is to draw it as a 
rectangular regular mesh [21]. In the 2D plane, the vertices are aligned in a rectangle, a definite 
distance from each other as in a tessellation scheme. The vertices are connected by triangles or 
rectangles, as shown in Figure 2.10. 



 

 

14 

 
Figure 2.10: A quadratic mesh. 

2.4.1 Height Map  

A height map is a gray-scale image, whose pixels vary from 0 to 255: 0 is black, 
255 is white [22]. Each pixel determines a height value using black as the minimum height and 
white as the maximum height. A mesh uses each pixel to determine the height for each of its 
vertices; the terrain is then displaced from 2D into 3D space.  

Figure 2.11 shows a screenshot of the NeHe height map tutorial called 
“Beautiful Landscapes by Means of Height Mapping” written by Humphrey in 2001 [22]. The 
height map is shown in Figure 2.12. 

 

 
Figure 2.11: A terrain [22]. 



 

 

15 

 
Figure 2.12: A height map [22]. 

Similar examples can be found in books by Hawkins and Astle [23, 24]; Figure 
2.13 shows screenshots. 

 
Figure 2.13: Hawkins and Astle’s terrains [23, 24]. 

2.5 Water Surface and Wave Refraction 

The water surface must be rendered as a constantly changing mix of large, 
medium-size, and small waves in real time. 

Water can be represented as a volume, but this is unnecessary in this project 
which is only concern with wave shape. Instead, the water can be represented as a height function 
of points in two-dimensional space (e.g. height = f(x, z)). This height function will displace the 
2D mesh into 3D space. 

 
 



 

 

16 

2.5.1 Water Surface 

A sine function is a familiar and easy way to compute height values as illustrated 
by Astle’s example called “Flag” [18]. The sine equation below can be applied to a water surface 
as shown in Figure 2.14. 

))*)180/)40*)5/(sin(((( πxfloatheight =  

 
Figure 2.14: Sine function applied to a water surface [18]. 

Perlin Noise is another popular way to render water surfaces [3]. Guertault’s 
example combines a sine function and a Perlin Noise function to produce waves as shown in 
Figure 2.15 [14]. Perlin Noise adds various frequencies and amplitudes to the smooth sine 
function to produce large and small waves. The code is in Appendix A4. 

 
Figure 2.15: Guertault’s water surface [14].



 

 

17 

2.5.2 Wave Refraction 

As waves approach the shore from deep water, the crests tend to become parallel 
to the shoreline regardless of their initial orientation, as a result of wave refraction [4]. Peachey 
rendered ocean waves by following the basic equation of liquid dynamics and separating it into 
phase function and wave profile [4].  

The water is considered in three parts: deep-water, intermediate water, and 
shallow water as shown in Figure 2.16. The depth values, d=L/20 and d=L/2, are from Sverdrup’s 
Fundamentals of Oceanography [25]. 

 
Figure 2.16: Deep, intermediate, and shallow water. 

In deep water, the water must be deeper than one-half the wave’s length. The 
propagation speed of a wave can be shown to be:  

π2

2gTL =                        (2.1) 

where L is the wavelength, g is gravity, T is the period [25]. 
When the wave enters shallow water, the water has a depth of less than 

one-twentieth of the wavelength, and the propagation of a wave is determined by: 
gdTL =                        (2.2) 

where d is the depth of the water [25].  
Our model simplifies this three-part division into two, as shown in Figure 2.17. 

Shallow water begins at one-half the wave length. 

d=L/2 

Deep-water  Shallow water  

Land   

Intermediate water 

d=L/20 



 

 

18 

 
Figure 2.17: Deep and shallow water. 

Phase Function 

The implication of the dependence of the wavelength and speed on depth is that 
the phase function depends on the cumulative effects of the depth of the water between the wave 
origin and the point of interest, as shown in Figure 2.18. The phase value has the same period as 
the wave in the range [0, 1). In Figure 2.18, Phase 1 is at the 1/4 period point with the value 0.25; 
Phase 2 is at the 1/2 period point with the value 0.5; Phase 3 is at the 5/4 period point with the 
same value as the 1/4 period point (0.25). 

 
Figure 2.18: Phase value. 

The phase function can be defined as: 

i

i
iii L

x
zx =),(θ                      (2.3) 

where x and z are the coordinates at the current vertex i, L is the wavelength at i.  
Since the wavelength varies in water of varying depth, the phase function is a 

convenient way to calculate the height value. To calculate the phase value in 2D, the x and z 

Amplitude 

Displacement 

Period  

Origin 

Phase 1=0.25  
Phase 2=0.5 

Phase 3=0.25  

d=L/2 

Deep-water  Shallow water 

Land   



 

 

19 

coordinates must be considered at the same time, and the displacement offset from the wave 

origin is 22
ii zx + . The phase function becomes: 

i

ii
iii L

zx
zx

22

),(
+

=θ                   (2.4) 

The phase function has a very simple dependency on the time t. Just as each 
wave component has the same constant period T at all points in space, it is also true that the wave 
component has the same constant rate of phase change at all points in space, namely the 
frequency. Thus, the time phase is added into the phase function: 

T
tt

tzxtzx 0
0 ),,(),,(

−
−= θθ                (2.5) 

The negative sign is necessary to make the waves propagate in the direction of 
increasing phase values. t is the current time, T the period. 0t the start time is usually 0, so the 
phase function can be simplified to: 

T
tzxtzx −= ),(),,( θθ                   (2.6) 

Wave Profile 

The wave profile function is a single-valued periodic function of one parameter 
with a value between 0 and 1. For greater realism, the function is changed according to the wave 
steepness S=H/L, where H is double the amplitude for the simple sine wave, and L is the 
wavelength. When the steepness is small, a cosine function can be employed as the wave profile; 
when the steepness is large, a sharp-crested quadratic function can be substituted [4]: 

1|2/1),,(|8)),,(( 2 −−= tzxtzxwi θθ              (2.7) 
where ),,( tzxθ is the phase value from Equation 2.6. Normally, the amplitude is a constant, the 
steepness changes with wavelength, and the wavelength changes with the water depth (Equation 
2.2). So the steepness is determined by the water depth, which can be simplified to a fixed depth 
for different wave profile functions. 

The quadratic funtion has the effect of steepening the front of the wave crest and 
stretching out the back of the crest [4]. Figure 2.19 shows the difference between the cosine and 
quadratic functions for different phase values. 



 

 

20 

 
Figure 2.19: Cosine and quadratic functions. 

2.6 Spring Systems 

Spring systems will handle the water and land interactions, and collision 
detection will be used to control the interactions between the spring systems.  

Springs that are not stretched or compressed beyond their elastic limit obey 
Hooke's law, which states that the force with which a spring pushes back is linearly proportional 
to the distance from its equilibrium length [11]: 

kxF −=                       (2.8) 
x is the distance the spring is elongated or compressed, F is the restoring force exerted by the 
spring, and k is the spring constant or force constant of the spring.  

Figure 2.20 is an illustration of Hooke’s law from Chapter 7 of Fundamentals of 
Physics [11]. The force exerted by a spring on a block varies with the block’s displacement x 
from the equilibrium position x = 0. (a) When x is positive (a stretched spring), the spring force is 
directed to the left. (b) When x is zero (the natural length for the spring), the spring force is zero. 
(c) When x is negative (a compressed spring), the spring force is directed to the right. 

Cosine function 

Quadratic function 
(Equation 2.7) 

0 0.5 1 

Phase value: ),,( tzxθ  

121),,(8 2 −−tzxθ  

Phase value: ),,( tzxθ  

)),,(cos( tzxθ
Amplitude 



 

 

21 

 

Figure 2.20: Hooke's law. 

A spring system in our model consists of a network of water mesh nodes, 
connected by springs. Each spring has a resting length. When the distance between two nodes 
linked by a spring is equal to the resting length, the spring does not affect the nodes. When the 
distance between the nodes is greater than the resting length, the spring will apply a force to move 
them closer, and vice versa [26]. Figure 2.21 shows a simple spring system: a network of nine 
nodes connected by 12 springs.  

 
Figure 2.21: A spring system. 

Let )(tpi , )(tvi , )(tai , where i=1,…, n, be respectively the positions, velocities, 

sF is negative. 
x is positive. x 

x 

x 

x
x = 0 

(a)

(b)

(c)

x = 0 

x = 0 
x

sF = 0 
x = 0 

sF is negative. 
x is positive. 

Node  

Spring  



 

 

22 

and accelerations of the mass points at time t. The system is governed by Newton’s law ii maf = , 
where m is the mass of each point and if is the sum of all forces applied at point ip as shown in 
Figure 2.22 [27]. 

 
Figure 2.22: Spring system and Newton’s law. 

2.7 Collision Detection 

Collision detection, together with the spring system, helps to control the 
interaction between the water and the land. In this section, the collision detection equations used 
in this model are introduced.  

Collision between a Point and a Circle 

In Section 5.3.1, water/land collision is represented by a point and a circle. The 
equation of a circle is: 

222 )()( rbyax =−+−                 (2.9) 
where a and b are the coordinate of the centre of the circle, r is the radius of the circle, x and y are 
the coordinate of a point on the circumference. So, if the point (x, y) hits or enters the circle, 
which denotes a collision, then the equation will be: 

222 )()( rbyax ≤−+−                (2.10) 

if
 

ip , m 

( )tvi  

( )tai  

if = m ia  



 

 

23 

Collision between a Point and a Line Segment 

In Section 5.3.2, the collision between waves is viewed as a point touching a line 
segment. However, the path of the point over a time interval is a line segment, so line segments 
intersection can be checked instead of point/line touching. Equations 2.11 and 2.23 are the 
equations of two line segments: 

)12/()1()12/()1( yyyyxxxx −−=−−           (2.11) 
)34/()3()34/()3( yyyyxxxx −−=−−           (2.12) 

where (x, y) are the coordinate of the collision point, and (x1, y1), (x2, y2), (x3, y3), (x4, y4) are 
the four end points of the two line segments. If the two line segments intersect (i.e. collide), then 
the two equations can be solved for (x, y). 

2.8 Texture Mapping 

Texture mapping allows us to attach images to polygons to provide more 
realistic graphics. In this section, procedural texture generation, detail texturing, and 
multitexturing are introduced [28]. 

2.8.1 Use a Texture Map 

Once a texture image has been loaded into memory, the texture coordinates 
determine how to map the texture onto a polygon. In OpenGL, the lower-left corner of a texture is 
the coordinate (0, 0), while the upper-right corner is (1, 1) [24]. For a 2D texture, the coordinates 
are assigned the notation (s, t), where s and t can vary from 0 to 1. Figure 2.23 shows a 512*512 
texture in (s, t) space and as the original image [16]. 



 

 

24 

 
Figure 2.23: Texture map in (s, t) space and as the original image. 

2.8.2 Procedural Texture Generation 

For greater realism, a landscape should utilize more than one texture. Franke 
introduced such a technique for adding snowy mountains and sandy beaches to his terrain [29]. 
The left picture of Figure 2.24 shows the height map for the terrain, with black denoting a 0 
height and white 256. The right-hand picture of Figure 2.24 is a procedural texture based on the 
height map with the textures changing with the terrain’s height. Figure 2.25 shows procedural 
texturing applied over the terrain – the highest region is snow, then rocks, grass, and the lowest is 
sand. 

  
Figure 2.24: The height map of the terrain (left) and procedural texturing based on the terrain’s 

height (right) [29]. 

t 

s

(1, 0) 

(0, 1) 

(0, 511) 

(511, 0) 

(511, 511) 

(0, 0) 

(1, 1) 

(0, 0) 



 

 

25 

 
Figure 2.25: Procedural texturing applied over the terrain [29]. 

Franke divided the terrain into four regions based on height values (the lowest 
point is 0, the highest 256):  
Region 1 (Snow): 192-256  
Region 2 (Rock): 128-192  
Region 3 (Grass): 64-128  
Region 4 (Sand): 0-60  

Snow and rocks textures appear on the mountain tops, grass on the plains, and 
sand on the beaches. The four texture maps (Snow, Rock, Grass, Sand) are combined to get a 
single new texture.  

The combination can utilize the RGB color values of each pixel, by deciding 
how many percent of the color values should be visible for each component texture. Franke 
calculates four texture maps percentages according to the height of the terrain at a pixel, as shown 
in Figure 2.26. 



 

 

26 

 
Figure 2.26: The percentage of four textures combined at different heights. 

For example, at a height of 200, the resulting texture is a mix of snow and rock. 
The percentage of snow is 12.5% ( %5.1264/))200256(64( =−− abs ) and the percentage of 
rock is 87.5% (1-12.5%). 

2.8.3 Detail Texture 

When a terrain is large, a normally-sized texture is stretched so much that it 
loses resolution. A larger texture may solve the problem, but impacts performance, and its size 
may be limited by the graphics card. Detail texturing adds high levels of detail, such as cracks, 
bumps, and rocks, to any size of terrain, and is simple to use. 

A detail map is a grayscale texture, like the one in Figure 2.27, that is repeated 
many times over a landscape [28]. 

256 192 
0% 

Height

100% 
Snow  

192 64 
0% 

Height

128 

100% 
Grass  

128 0 
0% 

Height

64 

100% 
Sand 

Percentage

256 128 
0% 

Height

192 

100% 
Rock  

Percentage

Percentage 

Percentage 

128 64 0 64 0 

0 256 256 192 



 

 

27 

 
Figure 2.27: Detail texture map [28]. 

Normally, detail texturing is applied as a second (or even third) texture to a 
terrain, so multitexturing must be utilized [12]. 

2.8.4 Multitexturing 

Multitexturing combines several textures into one. Guertault’s example, called 
“Simple Water Rendering”, applies multitexturing to water [14]. This is sometimes called 
mix-texturing because two images are employed – one is a color image for the texture, the other a 
gray image for alpha values. Figure 2.28 shows the two images used in Guertault’s example. 

 
Figure 2.28: Color image (left) and gray image (right) for mix-texturing [14]. 

The color component of a vertex is obtained from the color image, while its 
alpha value (i.e. its transparency level) is read from the gray image.  

2.9 Particle Systems 

A particle system can model fuzzy objects such as fire, clouds, and water [15]. 



 

 

28 

Figure 2.29 shows green and blue fireworks (left) and multicolored fireworks (right) created by 
particle systems in Reeves’s paper [15]. Particle systems model an object as a cloud of particles 
that define its volume. Over a period of time, new particles are added to the system, move and 
change, and finally disappear. Particle-based special effects will be employed in our model to 
represent water spray and breaking wave foam. 

  
Figure 2.29: Green and blue fireworks (left) and multicolored fireworks (right) made by particle 

systems [15]. 

A particle system is a collection of individual particles. Each particle has 
individual attributes, such as velocity, color, and life, and does not interact with other particles. 
Particles share some attributes, such as mass, and force, which allow them to exhibit common 
behavior [18]. Figure 2.30 shows particles with different positions and velocities, being affected 
by gravity and other forces. 

 
Figure 2.30: Particles with different positions, velocities and forces. 

Normally, particles have the following attributes: 

particles 

x

z 

y 

x 

z

y

Moving 
particles 

time 

gravity 



 

 

29 

 Position: the coordinate of a particle in 3D space, which is affected by 
the particle’s velocity. 

 Velocity: a particle stores its velocity as a vector representing both 
speed and direction in order to update its position. 

 Life: particles are created, age, die, and may be reborn.  
 Size: different particles may vary in size. 
 Mass: a particle’s mass determines how it will be affected by external 

forces. 
 Force: the forces acting on a particle add to its realism. 
 Rendering: a particle may be rendered as a point sprite, very short line, 

or texture-mapped quadrilateral. 

2.10 Water Effects 

The model in this thesis will employ two particle-based water effects – water 
spray and breaking wave foam. 

Water spray particles have random velocities, various sizes, and keep appearing 
and disappearing. Figure 2.31 shows the water spray around a piece of real coastline. 

 
Figure 2.31: Water spray. 

Breaking waves are accompanied by foam on top of the waves as shown in 
Figure 2.32. 



 

 

30 

 
Figure 2.32: A breaking wave and foam. 

There is a maximum possible wave height for any given wavelength, determined 
by the ratio of the wave’s height to its length (steepness). When the steepness H/L exceeds 1:7, 
the wave becomes too steep and breaks. This ratio can be approximated by the angle formed at 
the wave crest, which is about °120 , as shown in Figure 2.33 [25]. 

 
Figure 2.33: The wave’s crest angle approaches °120 and the wave breaks. 

2.11 Summary 

This chapter introduced OpenGL, JOGL, and programmable shaders. Mesh and 
height maps will be used to build the land and water surfaces in Chapter 3; realistic water surfaces 
with waves are examined in Chapter 4; spring systems and collision detection are employed for 
the interaction between water and land in Chapter 5; texture mapping for more realistic land and 
water surfaces is the topic of Chapter 6; particle system are used to create water effects in Chapter 
7.

°120
Wave 
crest

Wave’s crest angle



 

 31 

CHAPTER 3 

 

MESH CREATION 

 

The land and the water surfaces in this project are created from meshes, whose 
construction is explained in this chapter. 

3.1 Create the Land Mesh 

A 128*128 land mesh is created in the 2D plane (x-z plane) and then displaced 
into 3D space with the height map shown in Figure 3.1 [22]. 

 
Figure 3.1: The height map for the land. 

The Loadpixels class reads pixels information from the height map and converts 
it into land heights. Figure 3.2 shows its class diagram, and the full code is in Appendix A5.  

 
Figure 3.2: Loadpixels class diagram.

Loadpixels (in Appendix 5) 

+ Loadpixels(String filename) 

- getImage(String filename) 

- getImagePixels(Image image, int pixels[]) 



 

 

32 

The first stage of Loadpixels (shown in Figure 3.3) is to load the height map into 
an image called bufferImage, and extract its dimensional information. 

 
Figure 3.3: Loading the height map. 

The second stage converts the image into land height data (see Figure 3.4).  

 
Figure 3.4: Calculating the height data. 

The y values for the land mesh are calculated from the height data. The land 
mesh is drawn in 3D space by using triangle strips, as shown in Figure 3.5. Figure 3.6 shows a 
detail of part of the land mesh.  

getImagePixel

Loadpixels() 

bufferImage heightvalue pixels 

imageSize imageHeight 

imageWidth 

Transform 

Outputs  

Height map bufferImage imageHeight 

imageWidth 

imageSize

getImage () 

Loadpixels()

Load 

Get  

Calculate 

Loadpixels() 



 

 

33 

 
Figure 3.5: The land mesh. 

 
Figure 3.6: A part of the land mesh. 

The following pseudocode shows how to adjust the x, y, z values of the land 
vertices (the full code is in Appendix A6). The land’s y value is divided by 8 to make it less steep, 
and the x and z coordinates are offset so the land is centered in the middle of the screen. 
 
for (z less than landsize) 

for (x less than landsize) 
     land’x value = x-(landsize/2);  
     land’y value = heightvalue/8; 
     land’z value = -z+(landsize/2);  

3.2 Create the Water Mesh 

To make it easier to calculate the coastline and wave curves in Chapter 4, the 
water mesh is created using the same x and z values as the land. The initial water height is 19, but 

Land mesh
X 

Y 

Z 



 

 

34 

will be varied in Chapter 4. 
Figure 3.7 shows the water and the land meshes drawn with triangle strips, and 

Figure 3.8 is a top view of the water and land meshes showing that they are structured identically. 

 
Figure 3.7: The water and the land meshes. 

 
Figure 3.8: A top view of part of the water and land meshes. 

The following pseudocode shows how the water mesh is centered on the screen 
and its height fixed at 19 (the full code is in Appendix A6). 
 
for (z less than watersize) 

for (z less than watersize) 
     water’s x value = x-(watersize/2);  
  water’s z value = -z+(watersize/2); 
  water’s y value = 19;   
 
 

Land mesh

Land (under the water) 

Water mesh 

X 
Z 

Y 

Land mesh

Water mesh



 

 

35 

3.3 Summary 

This chapter explained how the 3D land mesh employs a height map, and how a 
static water mesh is combined with it. The water will start to move in the next chapter.



 

 36 

CHAPTER 4 

 
THE WATER SURFACE  

 
In this chapter, phase functions are employed to create a moving water surface 

with wave refraction. Novel water surface data structures are also introduced in this chapter – the 
coastline and four wave curves – which will help us to efficiently model water interaction in 
Chapter 5. 

4.1 Wave Height 

Water vertices need to move up and down to create waves, and thereby produce 
a realistic animated water surface. This is achieved by combining Equations 2.4 and 2.6 of 
Section 2.5.2 to get the phase function:  

( )
T
t

L
zx

tzx
i

ii
iii −

+
=

22

,,θ                (4.1) 

x and z are the coordinates at the current vertex i, t is current time, T is the period, and iL is the 
wavelength at i. Since almost all the water is shallow in our model, it is possible to use Equation 
2.2 in Section 2.5.2 calculate the wavelength.  

The following pseudocode calculates the phase value using Equation 4.1 (the full 
code is in Appendix A7). The water depth is used to decide on the choice of wave length (i.e. 
based on Equation 2.1 or 2.2). 
 
calculate deep-water wavelength; 
calculate water depth; 
if(water depth large than a half deep-water wavelength) 

use deep-water wavelength; 
else  

calculate and use shallow-water wavelength; 
calculate phase function; 



 

 

37 

The sharp-crested quadratic function (Equation 2.7 in Section 2.5.2) is used as 
the wave profile function. The phase function (Equation 4.1 above) should be restricted to the 
range [0, 1) in the wave profile function, which results in the final profile function: 

1)
2
1(*8 2

22

−−−
+

=
T
t

L
zx

Y
i

ii
i                      (4.2) 

i is the index of a vertex, Y is the wave height of the vertex, x and z are the (X, Z) vertex 
coordinate, t is the time which increases by 0.1 in each frame. T is the period of the function, 
which is set to 80 frames to look realistic, and L is the wavelength at the vertex position. The 
function is shown in Figure 4.1.  

 
Figure 4.1: Wave height derived from the final profile function. 

Four versions of this profile function, with different periods and amplitudes, are 
combined. The resulting height function creates pleasingly varied waves and wave refraction. T1 
is the period of the first version of profile function, and A1 is its amplitude. T2, T3, T4 and A2, A3, 
A4 are the periods and amplitudes of the other versions of the profile function. 

framesT 801 = , 8.01 =A ;  

12 2
1 TT = , 12 4

1 AA = ;  

13 4
1 TT = , 13 16

1 AA = ;  

 

Land Water mesh 

L/2 in  
T/2 (40 frames) 

X 
Z 

Y 

iY

Vertices

Water level



 

 

38 

14 8
1 TT = , 14 64

1 AA =  

Figure 4.2 shows the shapes of the four basic profile functions as blue curves. 
The shape of the combined profile function (labeled as Y) is drawn as by a black dotted curve. 

 
Figure 4.2: The shapes of the four versions of the profile function and their combination. 

Figure 4.3 shows that the combined profile function produces a water surface 
with waves. Figure 4.4 is a close-up view showing the wave crests parallel to the land, 
demonstrating wave refraction as defined by Peachey [4].  

 
Figure 4.3: Water surface with waves. 

Land 

X

Y 

Z 
Water  

Land (under the water)  

Y=Y1+Y2+Y3+Y4 (combined final profile function) 

Y1 

Y2
Y3

Y4 

0 

1 

-0.8 
800 frames

height 



 

 

39 

 
Figure 4.4: The crests of the waves parallel to the land. 

4.2 Coastline and Wave Curves 

One of the novel aspects of this work is the utilization of coastline and wave 
curve data structures to represent the interaction between the water and the land. They will be 
utilized in the spring systems and collision detection of Chapter 5, but the creation of these data 
structures will be described in this chapter. 

Figure 4.5 shows that the coastline is the series of water vertices closest to the 
land. They represent the places where water/land interaction will occur.  

 
Figure 4.5: The coastline and wave curves at rest position. 

Wave curves 1 and 2 will be linked by height springs to improve the realism of 
vertical wave movement. Wave curves 3 and 4 will be linked by position and wave springs for 

 

 

Land 
mesh Water 

mesh 

Coastline

1 2 3 4

4 wave curves
Water vertices 

X
Z

Y

Land vertices 

Water 
level 

Water 

Land 



 

 

40 

modeling water/land interaction over the horizontal X-Z plane. It is possible to use more wave 
curves in the model, but four were chosen as a balance between interaction realism and 
computational efficiency. 

Wave curve 1 is the line of vertices one mesh interval away from the coastline, 
wave curve 2 is the line of vertices one mesh interval away from wave curve 1, and so on to wave 
curves 3 and 4. 

4.2.1 Building the Coastline 

As water vertices move up and down, they cut the land mesh along a series of 
line segments. These segments are collected, as the first approximation for the coastline. The cut 
height is made a little higher than the default water level (19). A cut is noted when an edge has 
one end point above the cut height, and one below. 

The aim is to produce a series of edges which form a closed curve, as in Figure 
4.6. Unfortunately, the initial collection of edges looks more like Figure 4.7, which includes 
unnecessary line segments and vertices, and segments that are out of order. 

 
Figure 4.6: What the final coastline should look like. 

Coastline 

Land

Water 



 

 

41 

 
Figure 4.7: Unshaped coastline. 

The sequence diagram in Figure 4.8 shows the steps in ‘tidying up’ the coastline 
– deleting useless line segments, ordering line segments, and deleting useless vertices. 

 
Figure 4.8: The steps of get the coastline. 

Deleting Useless Line Segments 

A useless line segment is one that ‘sticks out’ from the coastline. In Figure 4.9, 
line segment 3 ends with a vertex which is not used by any other line segments, and so line 
segment 3 can be tagged as ‘sticking out’, and so be deleted. 

Land surface 

Unshaped coastline 

Water mesh 

Line stick out 
X 

Z 

Y 

Water 
vertex 

Clear 
coastline (e.g 
Figure 4.6) 

Check height 
Delete useless 
line segments

Order line segments

Transform to vertex
Delete useless 

vertices 

Coastline 

with vertex

Confusing 

coastline

Unshaped 
coastline (e.g 
Figure 4.7) 



 

 

42 

 
Figure 4.9: Useless line segment. 

Figure 4.10 shows the coastline after useless line segments have been deleted.  

 
Figure 4.10: Clear coastline. 

This seems satisfactory until the coastline is stored as an OpenGL line 
strip (an optimized version of the original lines shape which is a smaller size and will render more 
quickly). When the strip is drawn, the result is shown in Figure 4.11. 

Land surface 

Water mesh 

Clear coastline X 

Z 

Y

Line segment 1 Line segment 2 

Line segment 3 



 

 

43 

 
Figure 4.11: Confusing coastline. 

Ordering Line Segments 

When a series of edges are represented as distinct line segments, as in Figure 
4.12, edges can be drawn between any vertices in any order. In this case five edges are drawn 1-2, 
3-4, 5-6, 7-8, 9-10. 

 
Figure 4.12: Drawing line segments. 

However when the same shape is encoded as a line strip, additional lines will be 
drawn between adjacent vertices (between line segments 2-3, 4-5, 6-7, and 8-9). The result is 
shown in Figure 4.13. 

2, 5 3, 9 

4, 6 

7 

8, 10

1 

Water mesh 

Land surface Confusing coastline 
X 

Z 

Y 



 

 

44 

 
Figure 4.13: Drawing a line strip. 

The start and end vertices for each line segment must be adjusted to avoid this 
problem. A line segment is chosen with a given direction, and another line segment found which 
can connect to it. An end point of a line segment must connect to the start point of another line 
segment, except for the two endpoints of the coastline. In Figure 4.14, the gray line is the initial 
line segment with a direction. Lines 1, 2 and 3 need to be adjusted. Line segment 1 can be 
connected to the end point of the gray line segment, but needs to be upended (i.e. the start and end 
points must be exchanged). Line segment 2 can be connected to the start point of the gray line 
segment without upending. Line segment 3 can be connected to the start point of line segment 2 
after upending. 

 
Figure 4.14: Adjusting the line segments. 

After the order of the line segments has been adjusted, the drawn line strip looks 
like Figure 4.10.  

Unfortunately, this is still not satisfactory, which can be seen by looking at the 
vertices making up the coastline in Figure 4.15. There are too many vertices for a simple coastline 
shape. 

2, 5 3, 9 

4, 6 

7 

8, 10

1 

1 2 3 



 

 

45 

 
Figure 4.15: Coastline made up of vertices. 

Deleting Useless Vertices 

Useless vertices are identified by counting how many vertices are used in each 
mesh box. Two vertices are enough to draw a line through a box, so excess vertices are deleted. 
For example, Figure 4.16 is a mesh box with three vertices used by the coastline, and so vertex 2 
is deleted. Figure 4.17 shows the resulting coastline. 

 
Figure 4.16: Vertex deletion in a mesh box. 

3 3 

2 1 1 

Before After 

Land surface 

Water mesh 

Vertices of coastline 
X 

Z 

Y



 

 

46 

 
Figure 4.17: Simplified coastline. 

The algorithm is a little more complicated than outlined since a coastline vertex 
may be shared between at most four mesh boxes (see Figure 4.18). A vertex should only be 
deleted if it will not reduce the number of coastline vertices below two in any of the boxes. 

 
Figure 4.18: Shared coastline vertex between four mesh boxes. 

Often a coastline can be simplified even farther by running the delete useless 
vertices algorithm twice, as in Figure 4.19. 

 
Figure 4.19: The coastline before and after running delete useless vertices again. 

1 2 3 

8 

7 6 5 

4 

Shared coastline vertex 

Water mesh 

Land surface Clear coastline 
X 

Z 

Y

Water mesh 

Land surface 

Coastline 



 

 

47 

Figure 4.20 shows a top view of the entire simplified coastline drawn with points. 
Figure 4.21 shows an enlarged view of part of the coastline. 

 
Figure 4.20: Entire coastline. 

     
Figure 4.21: A part of the coastline. 

4.2.2 Building Wave Curve 1 

Wave curve 1 is the series of water vertices one mesh interval away from the 
coastline, and at a lower height, as shown in Figure 4.22. 

Land 

Water 
X

Z 

Y 

X

Z 

Y

Coastline 



 

 

48 

 
Figure 4.22: The coastline and wave curve 1. 

A coastline vertex V has at most four neighbor vertices, as shown in Figure 4.23. 
However vertices which are higher than V can be excluded, as well as vertices already in the 
coastline or wave curve 1. This leaves two lower vertices in Figure 4.23 

 
Figure 4.23: Neighbors of vertex V. 

The sequence diagram in Figure 4.24 gives the main steps in calculating wave 
curve 1. 

 
Figure 4.24: Calculating wave curve 1. 

Coastline Wave curve 1

Get lower neighbor vertices 

Unshaped wave curve 1

Delete repeated vertices 
already in the coastline and 

unfinished wave curve 1 

Land

Water 

Coastline  Wave curve 1 

Higher vertex 

Land

Lower vertices 
Water 

Vertex V 

Repeated vertex 



 

 

49 

Figure 4.25 shows the coastline drawn as a black curve and wave curve 1 drawn 
as gray vertices. Figure 4.26 shows an enlarged part of Figure 4.25. 

 
Figure 4.25: The coastline and wave curve 1. 

 
Figure 4.26: A part of the coastline and wave curve 1. 

4.2.3 Building the Other Wave Curves 

The other wave curves (2, 3 and 4) are calculated in a similar way to wave curve 
1. For example, wave curve 2 is shown in Figure 4.27. 

Land 

Water  X

Z 

Y 

Coastline Wave curve 1

X

Z 

Y 



 

 

50 

 
Figure 4.27: A diagram of the final wave curve 2 should look like. 

Vertex W in Figure 4.28 has four neighbors, but vertices already in the coastline, 
wave curve 1, or wave curve 2 can be excluded. That leaves just two points to add to wave curve 
2. 

 
Figure 4.28: Neighbors of vertex W. 

The sequence diagram in Figure 4.29 shows the main steps in calculating wave 
curve 2.  

Land

Water 

Coastline  Wave curve 1 

Wave curve 2 

Land

Water 
Vertex W 

Repeated vertex with the wave curve 1 

Repeated vertex with 
the coastline 

Coastline  Wave curve 1 

Members of wave 
curve 2 



 

 

51 

 
Figure 4.29: Calculating wave curve 2. 

Figure 4.30 shows wave curve 2 drawn with gray vertices, wave curve 1 as white 
vertices, and the coastline as a black curve. Figure 4.31 shows an enlarged view of the model. 

 
Figure 4.30: Coastline, wave curves 1 and 2. 

 
Figure 4.31: A part of the coastline, wave curves 1 and 2. 

 

Wave curve 1 Wave curve 2

Get 4 neighbor vertices 
Delete repeated vertices already in the 

coastline, wave curve 1, and 
unfinished wave curve 2 

Land 

Water  X

Z 

Y 

Wave curve 1 

Wave curve 2 

Coastline 

Wave curve 2 
Wave curve 1 

X

Z 

Y 

Unshaped wave curve 2



 

 

52 

4.2.4 Wave Curves as Line Strips 

When a wave curve is drawn as a line strip, some line segments appear out of 
order as shown in Figure 4.32. 

 
Figure 4.32: Some line segments out of order. 

The reason is that the wave curve vertices are not ordered, as shown in Figure 
4.33. The solution is to sort the vertices before storing them as a strip. The result is Figure 4.34. 

 
Figure 4.33: Line segment 3-4 out of order. 

 
Figure 4.34: The order of line segment 3-4 has been changed. 

Figure 4.35 shows a screenshot of the wave curves as line strips after they have 

1 2

3 4

Vertices 

The order number of vertices 

5 

Land surface

Water mesh 

Coastline

Line segment out of order in wave curve 1 

X 

Z 

Y 

1 2

4 3

Vertices 

The order number of vertices 

5 



 

 

53 

been ordered. The coastline is drawn as a white strip. 

 
Figure 4.35: Wave curves after adjusting the vertex order. 

4.3 Implementation Details 

The WaveCurves class is responsible for creating the coastline and wave curves; 
its class diagram is shown in Figure 4.36.  

 
Figure 4.36: WaveCurves class. 

The main actions of the methods in the WaveCurves class are listed in Table 4.1. 
These methods will be explained with pseudocode in the rest of this section; the full code is in 
Appendix A8.  

Land surface

Water mesh 

Coastline

Wave curves

X 

Z 

Y 

1 
2 
3 
4 

WaveCurves (Appendix A8) 

+ getLine(int x1, int z1, int x2, int z2) 

+ getCoastline(List<Points> p1) 

+ getWaveCurve(List<Points> p1, List<Points> p2, List<Points> p3)



 

 

54 

 
Table 4.1: Methods and their tasks in the WaveCurves class. 

Build the Coastline 

All the land mesh triangles are examined, as explained in Section 4.2.1. If a 
mesh edge cuts the water level+1 (a height of 20 units), then it is added to a line segments list. 
 
if((start point of the line segment lower than 20  

&& end point of the line segment higher than 20) || 
 (start point of the line segment higher than 20  
&& end point of the line segment lower than 20)) 

put the line segment in the list; 

Delete Useless Line Segments 

Each line segment is examined. If both points appear in other line segments, then 
this line segment is saved, otherwise it is deleted. 
 
for(k less than list size) 

for(i less than list size) 
is start point of k in i? 

for(j less than list size) 
is end point of k in i? 

if(k’s start point is in i and k’s end point is in j) 
        put k in a new list 
 

getLine() 

Adjust the vertex order. 

 

 

getCoastline() 

getWaveCurve() 

Transform line segments to vertices. 

Build a basic coastline or wave curve. 

Delete useless vertices. 

Delete useless line segments. 

Build and order wave curves 1, 2, 3 and 4. 

Method Tasks 



 

 

55 

Order Line Segments 

The pseudocode determines if a line segment in list l1 has to have its points 
switched in order to connect to the previous line segment. It is then stored in list l2.  
 

for(i less than l1’s size) 
if(the last point of list l2 is the same as a start point of l1’s 

line segment i) 
            put i into the end of the list l2; 

if(the last point of list l2 is the same as a last point of l1’s 
line segment i) 

            Turn around i then put it into the end of the list l2; 

Translate Line Segments to Vertices 

The start point of each line segment, and the end point of the last line segment, 
are saved in a points list. 
 

for(i less than list l’s size) 
    put the start point of i into point list p 
put the end point of the last line segment of l into p; 

Delete Useless Vertices 

The pseudocode compares the first and the third points, by iterating through the 
points list. If they are in the same mesh box (as shown in Figure 4.18), then delete the second 
point. 
 
    n=p’s size; 
     for(i less than n) 
      if(i+2 large than n-1)  

break; 
      if(points i and i+2 in a mesh box) 
       delete point i+1; 
       n=n-1; 
 



 

 

56 

Build Wave Curve 1 

Figure 4.37 shows the main elements in building wave curve 1: deleting repeated 
vertices in the coastline, and deleting the same vertices in unfinished wave curve 1.  

 
Figure 4.37: Calculating wave curve 1. 

The pseudocode checks for repeated vertices, and keeps the last: 
 
for(is less than point list p1’s size) 
    RepeatedPoints=false; 
     for(j from i to p1’s size-1)  
      if(points i and j are the same) 
        RepeatedPoints=true; 
        break; 
      if(RepeatedPoints==false) 
          put point i in a new point list; 
 

The pseudocode removes vertices from wave curve 1 if they are also in the 
coastline: 
 
for(m less than point list points’ size) 
     SamePoints=false; 
     for(n less than point list p2’s size) 
      if(points m and n are the same) 
       SamePoints=true; 
       break; 
     if(SamePoints==false) 
      put point m to a new point list; 
 
 
 
 

Wave curve 1 list 

Delete same vertices in unfinished wave curve 1 

Delete repeated vertices in the coastline 

Temporary list 

Final wave curve 1 list 



 

 

57 

Build the Other Wave Curves 

Wave curves 2, 3, and 4 are calculated in much the same way as wave curve 1. 
Figure 4.38 shows the main steps: delete the first repeated vertices, delete the second repeated 
vertices, and delete the same vertices in unfinished wave curve. The code is very similar to 
Section 4.3.2. 

 
Figure 4.38: Calculating wave curves 2/3/4. 

Ordering the Wave Curves 

The following pseudocode orders a wave curve. Each connectable point is 
copied to its correct position in a new list, and removed from the original list. 
 
for(m less than point list points3’s size) 

for(n from m+1 to points3’s size) 
        if(points at m and at n are connectable) 
            put point n to the final wave curve list; 
             copy the point at n next m; 
            remove the point be copied from old place; 
 
 
 
 
 

The list of wave curve 2/3/4 list 

Delete same vertices in unfinished wave curve 

Delete first repeated vertices 

Temporary list 1 

Final wave curve 2/3/4 list 

Temporary list 2 

Delete second repeated vertices 



 

 

58 

4.4 Summary  

This chapter looked at how to build a moving water surface with wave refraction. 
Also, the coastline and four wave curves data structures were constructed, and will be used in the 
next chapter to implement land/water interaction. 



 

 59 

CHAPTER 5 

 

ADDING INTERACTION 

 
This chapter introduces spring systems and collision detection for modeling 

land/water interaction with moveable wave curves. The model is limited to four wave curves, as a 
balance between interaction realism and computational efficiency. Figure 5.1 shows the position 
of the coastline and wave curves at their rest position (at time 0). 

 
Figure 5.1: The rest position of the coastline and wave curves. 

Wave curves 3 and 4 move in the X-Z plane, towards and away from the 
coastline to simulate tidal activity. Each vertex in the curves has a movement direction pointing 
from its original position toward the nearest coastline vertex. The vertices of wave curve 3 can 
move up to the coastline, while the vertices of wave curve 4 can move up to wave curve 1 (see 
Figure 5.2). Wave curve 4 can not easily pass through wave curve 3.  

Wave curves 1 and 2 are fixed in the X-Z plane because of their proximity to the 
land, which would preclude them from moving in and out by very much in any case. Instead, their 
main purpose is to rise and fall in the vertical plane to simulate wave collision with the land. 

 

 

Land 
mesh Water 

mesh 

Coastline

1 2 3 4

4 wave curves
Water vertices 

X
Z

Y

Land vertices 

Water 
level 



 

 

60 

 
Figure 5.2: The movement of wave curves. 

The tidal effects of wave curves 3 and 4, and the impact simulation of wave 
curves 1 and 2 are intended to produce realistic coastal wave behavior, and be easily implemented 
using a novel mix of spring systems and collision detection, as detailed in the following sections.  

The interaction between the water and land uses position springs and wave 
springs to modify the X- and Z- velocities of the vertices in wave curves 3 and 4. Collision 
detection is used to check the collisions between wave curve 3 and the coastline, and between 
wave curves 3 and 4. Other novel features explained in this chapter include how the Y- velocities 
of wave curves 1-4 are modified to make them more realistic, and how height springs (a third 
spring system) control the movement of wave curves 1 and 2 up and down. 

5.1 Position Springs 

Position springs are used to constrain the horizontal movement of wave curves 3 
and 4 towards and away from the coastline. Every vertex in wave curve 3 and 4 has its own 
position spring, which ensures that it is pulled back to its rest position after moving towards the 
land.  

Figure 5.3 shows a vertex s. At time 0, it is at its rest position, labeled as 0,sN . 
At time t, it has moved to be at position tsN , . The position spring P extends from the 0,sN rest 
position and will pull sN back from its tsN , position. 

 

Land 

Water  

1
Wave curves

Coastline 

234

Move

Move 

StationaryX 

Z 

Y 
 



 

 

61 

 
Figure 5.3: A position spring P for vertex s. 

Figure 5.4 shows a position spring connected to a vertex s moving from time t1 
to t2.  

0,sN is the rest position of vertex s. 
At time t1, s is at the position 1,tsN , P is at 1tP , its length is 1,tPl . 
At time t2, s is at the position 2,tsN , P is at 2tP , its length is 2,tPl . 

Pl is the change in length of P when elongated or compressed over time (see the 
detail in Figure 5.5), so equation 1,2, tPtPP lll −=  can be derived.  

By applying Hooke’s law and Newton’s law [11], the velocity of the spring P is: 
)12(** ttlkV PpP −=  

where pk is the elasticity coefficient of P. 

 

Land  

Water  

0,sN
P

Wave curve movement over time 

3
4

3
4or or

at time 0 later at time t

X 

Z 

Y 

tsN ,

s: node name 
0, t: time 

s 



 

 

62 

 
Figure 5.4: A position spring P for vertex s over time. 

 
Figure 5.5: The length change of the position spring P. 

5.2 Wave Springs 

Wave springs are used to constrain wave curves 3 and 4 from passing through 
each other, a behavior rarely seen in the real world. Wave springs slow down the vertices of wave 
curve 4 as they approach wave curve 3. 

Every neighboring pair of vertices in wave curves 3 and 4 are linked by a wave 
spring. For example, Figure 5.6 shows a wave spring W linking the vertices s and r of wave 
curves 3 and 4.  

  

Land  

Water  

0,sN 2,tsN

s: node name 
0, t1, t2: time 

Pl

1,tsN

1tP

2tP 2,tPl

1,tPl

4 4 4

time 0 time t1 time t2 t2>t1 

later

X 

Z 

Pl

0 

0 t2 

t1 



 

 

63 

 
Figure 5.6: A Wave spring W between vertices s and r in wave curves 3 and 4 at time t. 

Figure 5.7 shows a wave spring W connected to the vertices s and r moving from 
time t1 to t2.  

At time t1, s is at the position 1,tsN , r is at the position 1,trN , W is at 1tW , its 
length is 1,tWl . 

At time t2, s is at the position 2,tsN , r is at the position 2,trN , W is at 2tW , its 
length is 2,tWl . 

Wl is the change in length of W when elongated or compressed over time (see 
the detail in Figure 5.8), so the equation 1,2, tWtWW lll −=  is derived.  

By applying Hooke’s law and Newton’s law, the velocity of the spring W is: 
)12(** ttlkV WWW −=  

where Wk is the elasticity coefficient of W. 

 

Land  

Water  

 tsN , trN ,

Nearest vertex to s 

W 

4 3

X

Z

Y

 

s, r: node name 
t: time 

s r 



 

 

64 

 
Figure 5.7: A wave spring W for vertex s and r over time. 

 
Figure 5.8: The length change of the wave spring W. 

5.3 Collision Detection 

Collision detection helps the spring system to control the motion of wave curves 
3 and 4, in two distinct situations:  
1) when the water collides with the land, as represented by the collision of wave curve 3 with the 
coastline; 

  

Land  

Water  
 

2,tsN 2,trN

s, r: node name 
t1, t2: time 

 

2tW

1tW

1,tsN 1,trN

2,tWl

1,tWl

4 4 3 3

t2 t1 t1 t2
t2>t1

X

Z 

Wl

r 

s 

s 

r 

Wl



 

 

65 

2) when waves collide, as represented by wave curves 3 and 4 hitting each other. 

Water/Land Collision 

The problem of detecting when water hits the land is greatly simplified by 
restricting the problem to the intersection of wave curve 3 with the coastline. 

Each coastline vertex is surrounded by a bounding sphere, whose diameter is 
equal to the initial inter-mesh spacing. If a wave curve 3 vertex moves inside the bounding sphere 
of a coastline vertex, a collision is registered using Equation 2.10 in Section 2.7.1. As a result, the 
velocity of the offending wave curve 3 vertex is reversed, to make it head back towards its rest 
position.  

Figure 5.9 shows a vertex sN in wave curve 3. At time 0, it is at position 0,sN , 
then moves towards the coastline and ‘hits’ the coastline vertex pC at time t. The velocity 
of sN , tsV , , is reversed to be a little less than 1, +− tsV at the next time interval t+1. A scaling factor 
reduces the velocity to take account of the way a wave loses energy when rebounding. 

 
Figure 5.9: Water and land collision at time t. 

Waves Collision 

Wave springs inhibit wave curve 4 from passing through wave curve 3 as 

 

time 0

Land  

Water 

tsV  ,

tsN ,

0,sN

3 time t 

X 

Z 

Y 

3

Coastline 
1, +− tsV

pC

s, r: node name 
t: time 



 

 

66 

explained in Section 5.2, but if the velocity of wave curve 4 is much higher than wave curve 3 
then crossover may still occur. This is prevented by collision detection between the vertices of 
wave curves 3 and 4. When a vertex in wave curve 4 hits wave curve 3, their velocities are 
equalized, so the two wave curve segments will move together. This is implemented by updating 
the velocity of the vertex in wave curve 4 and its nearest neighbor in wave curve 3. 

Figure 5.10 shows the case when vertex sN is about to hit the wave curve 
segment V1-V2. A collision is detected between sN and the segment, and the velocities of sN , 
V1 and V2 are modified. 

 
Figure 5.10: Waves Collision. 

The overall behavior of sN will be more complicated than this (and more realistic) 
by also being affected by a wave spring linking it to V2 (its nearest neighbor in wave curve 3), 
which is not shown in Figure 5.10. 

5.4 More Realistic Wave Curves 3 and 4 

The position and wave springs used by wave curves 3 and 4 concentrate on 
modeling horizontal wave movement. However, their interaction with the land is still unrealistic, 
as shown in Figure 5.11. As wave curves 3 and 4 move toward the land, their heights are lower 
than land, so it looks like the water is moving into the land.  

Land 
Water 

Coastline 

sN  

V1

V2

3

sN is moving over time 

X 

Z 

Y

4



 

 

67 

 
Figure 5.11: Wave curves 3 and 4 movement under the land. 

In Figure 5.11, wave curve 3 is completely under the land, and half of wave 
curve 4 is hidden. 

Figure 5.12 illustrates the problem in a more abstract fashion – wave curves 3 
and 4 can move horizontally through the land mesh; instead, they should flow over it. 

 
Figure 5.12: Wave curves 3 and 4 movement into the land. 

This problem is avoided by raising wave curves 3 and 4 as they move closer to 
the land, making them appear to flow over the land.  

The first solution to this problem is shown in Figure 5.13, which has wave 
curves 3 and 4 climb the land along the gradient of the land, where s is a water vertex, cN is the 
land vertex c closest to s which has the same (x, z) coordinate as the coastline. 

At time 0, s is at the rest position 0,sN , the horizontal distance between s and c 
is 0D , the vertical distance between s and c is 0H . 

Land 

Water mesh

4 
3 

Wave curve 3

Land Water 

X 

Y

Z Wave curve 4



 

 

68 

At time t, s is at the position tsN , , the horizontal distance between s and c is tD , 
and the vertical distance between s and c is tH . According to the theory of similar 
triangles, 00 /* DHDH tt = . 

Since the height of vertex c is always cY due to the coastline not moving, then the 
height of s at time t is: tcts HYY −=, . 

 
Figure 5.13: Wave curves 3 and 4 along the gradient of the land. 

The problem with this form of gradient following is illustrated in Figure 5.13 – 
sometimes the gradient is lower than the land, so the wave curve will still disappear below the 
land. 

This drawback is fixed in the second version, where height offsets are added to 
wave curve 3 and 4 to keep them a little higher than the land (see Figure 5.14). The offset of wave 
curve 3 is a little smaller than wave curve 4 to enhance the effect of collision detection. 

3 or 4 at time 0 

Coastline 

3 or 4 later at time t

s, c: node name 
0,t: time 

0D Land 
Water 

Move to 

X 

Y 

Z 

Problem: gradient is 
lower than the land here. 

0,sN  

tsN ,

cN  

tH  

0H

tD  

Version 1 



 

 

69 

 
Figure 5.14: Add height offsets to wave curves 3 and 4. 

5.5 Height Springs 

Height springs are used to control the vertical movement of wave curves 1 and 2. 
These curves do not move horizontally because of their proximity to the land.  

Figure 5.15 shows a height spring connected between a vertex s in wave curve 1 
and its rest position. The same approach is also used with vertices in wave curve 2. 

At time 0, s is at the rest position 0,sN , it will get a velocity 0,sV . 
At time t, s arrives at the position tsN , . 
From time 0 to time t, the velocity sV will be damped in each frame by the height 

spring. The velocity is reset after 1 period (80 frames) because wave curves 1 and 2 should lose 
power as they move. The same method as in Section 5.1 (derived from Hooke’s law and 
Newton’s law) is used to calculate the spring’s velocity, which is also reduced a fraction by being 
multiplied by 0.97 in each frame. 

The coastline does not require height springs since it does not move, remaining 
fixed at the default water level, which means it stays hidden beneath the land’s surface. 

Coastline 

3 or 4 later at time t 

s,c: node name 
0,t: time 

Land 
Water 

X 

Y 

Z 

Height 
offset

cN  

tsN ,

0,sN  

Version 2 



 

 

70 

 
Figure 5.15: A height spring for wave curve 1 vertex s. 

5.6 Implementation Details 

Interaction is implemented across three classes whose class diagrams are shown 
in Figures 5.16-5.18. The Velocities class utilizes position wave springs to control the velocities 
of wave curves 3 and 4. Collision detection is managed by the Collision class. The 
HeightOfWaveCurve class controls the heights of wave curves 3 and 4 as they pass over the land, 
and applies height springs to wave curves 1 and 2. 

 
Figure 5.16: Class Velocities. 

Velocities (Appendix A9) 

+ getVelocityForHittingWaveCurve(...) 

+ getVelocityForOtherWaveCurves(...) 

+ getPlusVelocity(...) 

+ getOriginalVelocity(...) 

+ getNearestOutPoints(...) 

+ getNearestInsidePoints(...) 

Coastline 
(Fixed) 

s: node name 
0,t: time 

Land 
Water 

tsN ,

X 

Y 

Z 

Wave curve 
movement 
over time 

at time 0 

later at time t 

Water level 

Water surface 

1

Land vertex 

0,sN 0,sV



 

 

71 

 
Figure 5.17: Class Collision. 

 
Figure 5.18: Class HeightOfWaveCurve. 

The sequence diagram in Figure 5.19 shows how position springs, wave springs, 
and collisions detection control the motion of wave curves 3 and 4. The wave spring force is 
added to the position spring force, and used to calculate the x-z velocity of wave curves 3 and 4. 
This velocity will be modified if water/land or waves collisions occur. The final position of the 
wave curve is calculated from this final velocity. 

 
Figure 5.19: Springs and collisions control the motion of wave curves 3 and 4. 

Waves 
collision

Water/land 
collision 

Calculate 

Calculate 

Wave 

spring 

Position 

spring 

Calculate 

Plus

Change 

Change 

Position 

HeightOfWaveCurve (Appendix A11)

+ adjustHeightOfWaveCurve (...) 

+ adjustHeightOfW12 (...) 

+ getSlope(...) 

Collision (Appendix A10) 

+ getVelocityForWaveCurves (...)

VelocityForce 



 

 

72 

5.6.1 Position and Wave Springs 

getVelocityForHittingWaveCurve() is used to calculate the velocity of 
wave curve 3, and getVelocityForOtherWaveCurves() is used to calculate the velocity of 
wave curve 4. The following pseudocode is the same part of these methods, and the full code of 
the class is in Appendix A9.  
 
for(i less than wave curve size) 

calculate wave spring force in x axis for vertex i; 
calculate wave spring force in z axis for vertex i; 

 
plus position spring force in x axis; 
plus position spring force in z axis; 

 
x velocity = x force effect + previous x velocity; 
z velocity = z force effect + previous z velocity; 
 

The wave spring force is separated into X and Z components, and added to the 
position spring force. Vertex velocity is calculated by adding the velocity due to the springs to the 
previous velocity for the vertex.  

5.6.2 Collision Detection 

getVelocityForWaveCurves() handles water/land collisions and collisions 
between waves. It is explained with the following pseudocode, and the full code is in Appendix 
A10. 
 
for(i less than wave curve 3 size) 

//water/land collision 
if(i hit the land) 

calculate x velocity for i; 
calculate z velocity for i; 
multiply the x and z velocity 0.2;  

... 
//collision between waves 
if(i move through line segment bc of wave curve 4) 

        x velocity is the average x velocities of i, b, c;  
z velocity is the average z velocities of i, b, c; 
 

Water/land collision is processed first using the equation 



 

 

73 

222 5.0)()( ≤−+− byax  from Section 2.7.1. The wave curve vertex (x, y) is compared to 
the nearest coastline vertex (a, b). If their distance apart is equal to or less than 0.5 (the mesh box 
size is 1*1), then a collision has occurred. The new vertex velocity is calculated by using the 
distance and direction between its current position and its rest position. A scaling factor of 0.2 
reduces the velocity to represents the energy lost when rebounding. 

Wave collision uses the vertex and a line segment technique, outlined in 
Sections 5.3.2 and 2.7.2. The vertex’s old position is (x1, y1), its next position is (x2, y2), and the 
end points of the segment are (x3, y3) and (x4, y4). Collision occurs if the following equations 
can be solved for (x, y): 

)12/()1()12/()1( yyyyxxxx −−=−−  
)34/()3()34/()3( yyyyxxxx −−=−−  

The new velocities of the three vertices is calculated by averaging their current 
velocities. 

5.6.3 Height of Wave Curves 

The height of wave curves 3 and 4 as they pass over the land is based on the 
theory in Section 5.4. In the following pseudocode, the height argument refers to a vertex in 
wave curve 3 or 4, as illustrated by Figure 5.13.  
 
for(i less than the size of wave curve 3 or 4) 

height of i = yc - Slope * distance + plus; 
 

yc is the height of vertex c, distance is tD , Slope is 00 / DH , Slope*distance 
means tH , and plus is the height offset in Figure 5.14. The full code is in 
adjustHeightofWaveCurve() in HeightWaveCurve in Appendix A11. 

Height springs control the height of wave curves 1 and 2 by using the following 
pseudocode:  
 
for(i less than the size of wave curve 1 or 2) 
    calculate the force of height spring; 

update the next height use current velocity; 
update the next velocity use current force; 
 



 

 

74 

In the for-loop, the current spring length is used to calculate its force. The height 
of the wave curve is updated by adding the velocity effect, plus the spring effect modified by a 
dampening factor (0.97). The full code is in adjustHeightOfW12() of class 
HeightOfWaveCurve in Appendix A11. 

5.7 Testing 

Figure 5.20 is a cross-sectional view of the model showing water moving 
towards the land. This figure is redrawn in Figure 5.21, from an overhead viewpoint, emphasizing 
the coastline, and wave curves 3 and 4. The wave curves 3 and 4 are moving towards the coastline 
without crossing over each other, which is controlled by a mix of position springs, wave springs, 
and collision detection. 

 
Figure 5.20: Water moving towards the land. 

Coastline 

Land 

Water 
X Z 

Y 



 

 

75 

 
Figure 5.21: Wave curves moving towards the land. 

Figure 5.22 shows the scene later after the water has rebounded from the land. 
This figure is redrawn in Figure 5.23 from an overhead viewpoint to emphasize the coastline and 
wave curves. Again the interaction is managed by a mix of springs and collision detection. 

 
Figure 5.22: Water retreating from the land. 

Land 

Coastline

WaterX Z 

Y 

Coastline

Wave curve 3 Water mesh 

Land

Wave curve 4

X

Z 

Y 



 

 

76 

 
Figure 5.23: Wave curves rebounding from the land. 

Figure 5.23 illustrates that crossover still occurs, as it does in real waves, but is a 
rare event, and is soon followed by the waves either moving in unison or pulling apart. 

5.8 Summary 

Position and wave springs control the horizontal motion of wave curves 3 and 4, 
helped by land/water and waves collision detection. Height springs control the vertical movement 
of wave curves 1 and 2.

Coastline

Wave curve 3 Water 

Land

Wave curve 4

X

Z 

Y 



 

 77 

CHAPTER 6 

 

MULTITEXTURING AND SHADING 

 

In this chapter the appearance of the land and water surface is improved by 
employing multitexturing. The land combines procedural and detail texturing, while the water 
surface uses material and detail texturing. Two other improvements to the realism of the water 
surface are also described: wave crest shading and water transparency. 

6.1 Texturing the Land Surface 

Two kinds of land texturing are used: procedural texture generation which 
combines textures based on simple height calculations, and detail texturing which tiles a small 
texture many times over the land mesh.  

6.1.1 Procedural Texturing 

At different heights the land surface should have different features, which is 
achieved by combining four texture maps (representing soil, rock, silt, and dirt). The combination 
is based on land height, using Franke’s method from Section 2.8.2 [29]. The terrain is divided 
into five regions based on height values, with at most two textures assigned to each region:  
Region 1 (Soil) : height 210-255  
Region 2 (Rock and Soil) : height 160-210 
Region 3 (Silt and Rock) : height 110-160  
Region 4 (Dirt and Silt): height 60-110  
Region 5 (Dirt) : height 0-60



 

 

78 

The percentage of each texture combined into the final land texture is calculated 
using four texture graphs (Soil, Rock, Silt, and Dirt) shown in Figure 6.1. 

 
Figure 6.1: The percentages of four textures used in the model for a given height. 

For example, anywhere in region 3, the percentages of the Silt and Rock textures 
are: 
Percentage (Rock) = (height-110)/(160-110) 
Percentage (Silt) = 1-Percentage (Rock) 

Therefore if the region 3 height is 150, the percentages of (rock, silt) become 
(80%, 20%). These are used to calculate the RGB values for the land texture as: 
RGB(rock)*80% + RGB(silt)*20% 

The textures are shown in the Figure 6.2. The generated land texture and the 
resulting terrain are shown in Figure 6.3. 

0% 
Height

100% 
Soil  

0% 
Height

100% 
Silt  

0% 
Height

100% 
Dirt  

Percentage

0% 
Height

100% 
Rock 

Percentage

Percentage 

Percentage 

0 255 160 21060 110 255 160 210 60 110 

255 160 210 60 110 255 160 21060 110 

0 

0 0 



 

 

79 

 
Figure 6.2: The four textures used for procedural texturing. 

 
Figure 6.3: The generated texture and terrain. 

6.1.2 Detail Texturing 

Even after procedural texturing, the resolution of the resulting texture is still 
poor when viewed up close (e.g. see the left hand side of Figure 6.6). A detail texture, such as the 
one in Figure 6.4 can solve this problem.  

 
Figure 6.4: Detail texture map. 

The detail texture is tiled 36 times over the terrain resulting in Figure 6.5. The 
right hand side of Figure 6.6 shows an enlarged view of part of the model which is a clear 
improvement over the left hand picture.  

The generated texture The textured terrain 

Rock

Silt

Dirt

Soil

Rock Silt Dirt Soil 



 

 

80 

 
Figure 6.5: The terrain with procedural and detail texturing. 

 
Figure 6.6: Without/with Detail Texturing. 

6.1.3 Implementation Details 

Pseudocode for the multitexturing carried out by the Mesh class is shown below; 
the full code is in Appendix A6.  
 
active No.0 texture; 
enable 2D texture; 
bind generated texture to No.0 texture; 

 
set mode for combine multitexture; 
active No.1 texture; 
enable 2D texture; 

 
choose No.0 texture; 
enable texture coordinate array; 
set generated texture coordinate array; 

 
choose No.1 texture; 
enable texture coordinate array; 
set detail texture coordinate array; 
 

Two texture units must be activated one after the other, the first for procedural 

Without detail texturing. With detail texturing 



 

 

81 

texturing, the second for detail texturing. 

6.2 Texturing the Water Surface 

The drawback of using a single color for the water is illustrated in Figure 6.7. 
Multitexturing improves the image quality by combining: 
1) a single mesh-wide texture representing the water material, and 
2) a tiled texture representing water detail. 

In addition, wave crest shading and water transparency are employed to further 
enhance the realism, as detailed in later sub-sections. 

 
Figure 6.7: One color water surface. 

6.2.1 Material Texturing 

The water material texture is a texture covering all the water mesh, as shown in 
Figure 6.8. 

Land

Land (under the water) 

Water surface 

X 
Z 

Y 



 

 

82 

 
Figure 6.8: Water Material texturing. 

6.2.2 Detail Texturing 

As with the land, a single texture lacks resolution when viewed up close, and so 
a water detail texture is added. It is tiled sixteen times over the water mesh, as shown in Figure 
6.9. 

 
Figure 6.9: Water Detail Texturing. 

The material and detail textures are combined using multitexturing in a similar 
way to Section 6.1.2. Figure 6.10 shows the result. 

Water
Land 

X Z 

Y 

Texture  

Water

Land 

X Z 

Y 



 

 

83 

 
Figure 6.10: Combined material and detail texturing. 

Figure 6.11 shows an enlarged part of the water surface with only material 
texturing, only detail texturing, and their combination with multitexturing. The latter displays 
various shades of blue and ripple shapes. 

 
Figure 6.11: A part of the model with material texturing only, detail texturing only, and 

multitexturing. 

Water 

Land 

X 
Z 

Y 

+

= 

Material texturing only 

multitexturing 

Detail texturing only 



 

 

84 

6.2.3 Wave Crest Shading 

A wave crest is normally darker than other parts of the water surface, as shown 
in Figure 6.12. Without this darkening, it is hard to see wave behavior in the model, as shown in 
Figure 6.13. 

 
Figure 6.12: Water around a crest is darker than other place. 

 
Figure 6.13: Model without wave crest shading. 

This problem can be corrected by making the water darker as it rises above the 
default water level, as shown in Figure 6.14.  

 
Figure 6.14: Higher water becomes darker. 

x 

y 

z 

Water surface 

Default 
water level 

X 
Z

Y

Water 

Land 



 

 

85 

The y- value is transformed into a color in the range of (0, 1) by adding a scale 
factor of 0.25 and multiplying by -1. Extremes of brightness and darkness are avoided by 
subtracting 0.1 from the RGB pixel. 

Figure 6.15 shows that wave crest shading makes the waves more visible. 

 
Figure 6.15: Wave crest shading. 

6.2.4 Water Transparency 

Of course, real water is partially transparent, but up to now the model’s water 
surface has been opaque, as in Figure 6.16. 

 
Figure 6.16: Water surface without transparency. 

X 
Z 

Y 

Water 

Land 

X
Z 

Y 

Water 

Land 

Land (under the water) 



 

 

86 

The added transparency ranges over (1, 0.01] for land heights between (15, 19]. 
In other words, the water is not transparent for heights lower than 15 but gradually becomes more 
transparent between heights 15 to 19, as shown in Figure 6.17.  

 
Figure 6.17: Water transparency. 

After adding transparency, the water surface looks more realistic since the 
transparency varies with land height as shown in Figure 6.18. 

 
Figure 6.18: Water with transparency. 

The invisible nature of transparency makes it hard to observe, as illustrated by 

Land 

Water 

X
Z 

Y 

Land (under the water) 

Water 

Land 

X 

Y 

Z 

0.01 (nearly 
transparent)

1 (opaque)

0.01 

to 

1 

Land 
height 

15 

Transparency 

19 



 

 

87 

Figure 6.19. 

 
Figure 6.19: The shallower water is more transparent. 

To make the varying transparency easier to check, a blue box was added to the 
water near the coastline, as shown in Figure 6.20.  

 
Figure 6.20: Transparent water with a blue box. 

The left hand picture of Figure 6.21 shows the land model without water. The 
right hand picture adds the water, whose varying transparency is evident by the way that the box 
is easier to see nearer the water’s surface. 

Land

Transparent water 

Blue box 

X 
Z

Y

Land

The more transparent water 

X 
Z 

Y 



 

 

88 

 
Figure 6.21: A blue box without water (left) and with water (right). 

6.2.5 Implementation Details Using Shaders 

A vertex shader and a fragment shader implement water surface multitexturing, 
wave crest shading, and transparency (see Appendix A12). Figure 6.22 shows the main steps: 
each pixel of the water surface is assigned a mix of the water material and detail texture, and then 
crest shading and transparency are added. 

 
Figure 6.22: Steps of processing the water surface. 

The pseudocode for the vertex shader reads in the texture data, the water 
coordinates, and the land coordinates which will be used by the fragment shader. The shader is 
called separately for each vertex of the model. 

50% 

Add  

50% 

Add 

Material 
texture 

Finished 
water pixels

Blue box 

Detail 
texture 

Crest 
shading 

Water 
transparent 



 

 

89 

 
Vertex shader 
{ 

read water coordinate; 
read land coordinate; 
read the coordinate of water material texture; 
read the coordinate of water detail texture; 

} 
 

The pseudocode for the textures fragment shader textures the water surface, 
adjusts its crest color, and adds transparency. The shader is called separately for each fragment in 
the model (a fragment is roughly equivalent to a pixel). 
 
Fragment shader 
{ 

H = water height - 19; 
color value = -H*0.25 – 0.1; 
 
tex1 = water material texture pixel; 
tex2 = water detail texture pixel; 
 
if(land height in the range 15, 19) 
    water transparency = 1.01 – (land height - 15)*0.25; 
else if(land height less than or equal to 15) 
    water transparency = 1; 
else if(land height more than 19) 
    water transparency = 0.01; 
 
water pixel = ((tex1 R value + tex2 R value)*0.5 + color value, 

(tex1 G value + tex2 G value)*0.5 + color value, 
(tex1 B value + tex2 B value)*0.5 + color value, 
water transparency); 

} 
 

The color of a water pixel is calculated using: 
 
color value = -H*0.25 – 0.1; 
 

H*0.25 limits the color to a range smaller than (0, 1), and, the negative sign 
makes larger values darker. The reduction by 0.1 keeps the pixel from being too bright or dark. 

6.3 Summary  

Procedural and detail texturing were added to the land surface to make it have 
different features at different heights and improve the detail. Material and detail texturing applied 



 

 

90 

to the water surface improved its look in a similar way. Wave crest shading and transparency 
were incorporated make the water more realistic.



 

 91 

CHAPTER 7 

 

PARTICLE SYSTEMS 

 
This chapter describes the use of particle systems to render two kinds of water 

special effects: water spray and breaking waves. 

7.1 Water Spray 

Water spray around the coastline (as in Figure 7.1) can be viewed as a particle 
system. 

 
Figure 7.1: Water spray. 

Aside from improving the realism of the model, the particle system will also 
hide some of the jagged edges of wave curves 3 and 4 as they move over the land (as seen in 
Figure 7.2).



 

 

92 

 
Figure 7.2: Coastline and wave curves without spray. 

The spray particles will originate from the vertices of wave curves 3 and 4 as 
shown in Figure 7.3. The particle projectiles can be summarized as: 

Position: there are 25 particles assigned to each vertex of the wave curves, 
randomly offset in the x-z plane to avoid excessive uniformity. 

Velocity: a particle’s vertical velocity is random, while it’s horizontal velocity 
will be inherited from its wave curve vertex. The velocities will be assigned a random offset to 
avoid excessive uniformity. 

Life time: A particle disappears when it drops below the water surface, and is 
recreated in the next frame. 

Force: the only force is gravity. 
Rendering: a particle is rendered using a texture (see Figure 7.4). Each particle is 

a point sprite rendered using a fragment shader, with its size adjusted by a vertex shader. 
Time interval: the time interval is 0.1 in each frame. 

 
Figure 7.3: Water spray particles around a wave curve vertex. 

Land 

Water 

Unsmooth coastline
Wave curves 

3 and 4 

Water spray will be added here 

x 

z 

y 

Moving particles 
(spray) 

Wave curve 
vertex 

velocity



 

 

93 

 
Figure 7.4: Texture for a particle. 

Figure 7.5 shows the model after spray particles have been added to wave curves 
3 and 4. 

 
Figure 7.5: Water spray particles. 

7.1.1 Implementation 

The water spray particle system (and the breaking wave particle system 
described in Section 7.2) are managed by the Particle class (see Figure 7.6) and two shaders listed 
in Appendices A13 and A14 respectively. 

 
Figure 7.6: Class Particle. 

Particle (Appendix A13) 

+ buildWaterSprayParData (...) 

+ buildWaterSprayParticle(...) 

+ buildBreakingWaveParticle(...) 

+ buildBreakingWaveParData(...) 

Land 

Water Water spray particles 



 

 

94 

The following two subsections explain the Particle class and shaders using 
pseudocode. 

Water Spray Particle Code  

Data must be initialized in a particle when it is created or reused. Its position 
must be assigned the current wave curve vertex position plus a random offset. Similarly, a 
particle’s horizontal velocity must be assigned that of the wave curve vertex, plus a random 
offset. 
 
for(i less than wave curve 3 or 4 size) 
    for(j less than 25 (particles size)) 
        particle’s x = x value of wave curve i + random (-1, 1); 

particle’s y = y value of wave curve i + random (-0.5, 0.5); 
particle’s z = z value of wave curve i + random (-1, 1); 

       
particle’s x velocity = x velocity of wave curve 1 + (-0.5, 0.5); 
particle’s y velocity = (-0.5, 0.5); 
particle’s z velocity = z velocity of wave curve 1 + (-0.5, 0.5); 

 

In each rendering frame, a particle’s data must be updated. It’s position will be 
updated by its velocity multiplied by the time interval (0.1). It’s y velocity particle needs to be 
updated due to the affects of gravity, and, a particle disappears when it drops below the water 
surface. 
 
for(i less than wave curve 3 or 4 size) 
    for(j less than 25) 

particle’s x += 0.1*particle’s x velocity;  
particle’s y += 0.1*particle’s y velocity; 
particle’s z += 0.1*particle’s z velocity; 
 
particle’s y velocity -= 9.8 * 0.1; 
 
if(particle’s y < 19) //default water surface level 

particle disappears; 

Particle System Shaders 

The same vertex and fragment shaders are used by both the water spray and 



 

 

95 

breaking waves particle systems. The vertex shader gathers vertex and texture data, and adjusts 
the particle size in the range (2, 6). 
 
Vertex shader 
{ 

particle position = vertex position; 
read particle texture coordinate; 
particle size = 8 - (particle y value - 19)*3; 
if(particle size less than 2)  

particle size = 2; 
else if (particle size more than 6)  

particle size = 6; 
} 
 

The particle size change is intended to reflect the idea that spray gets smaller as 
it travels upwards, away from the water (see Figure 7.7). The equation is: 
 

particle size = 8 - (particle y value - 19)*3; 
 

The height of particle is offset by the default water level (19), then multiplied by 
3 to increase its size difference. Subtraction from 8 makes higher particles smaller.  

 
Figure 7.7: The particle gets smaller at increased heights. 

The fragment shader applies a texture to the particle, using the texture in Figure 
7.4. 
 
Fragment shader 
{ 

tex = particle texture pixel    
particle pixel = (tex R, tex G, tex B, 1); 

} 
 
 
 
 

particles x

zy Smaller particles 

Bigger particles 



 

 

96 

7.2 Breaking Waves 

A breaking wave is visible because of the foam which appears along its top edge 
as illustrated by Figure 7.8.  

 
Figure 7.8: Foam on top of a breaking wave. 

Figure 7.9 shows wave crests in the model without any breaking waves. The 
crests are quite hard to see even with crest shading (explained in Chapter 6). Adding foam will 
increase their realism. The foam will be created with a particle system whose particles originate 
on top of the wave crests as shown in Figure 7.10. 

 
Figure 7.9: The model without breaking waves. 

Land under the water 

Water  Breaking wave’s particles will be added here



 

 

97 

 
Figure 7.10: Breaking wave particles around the breaking wave’s vertex. 

The particle properties can be summarized as: 

Position: 15 particles are assigned to each wave curve vertex, randomly offset to 
avoid excessive uniformity. 

Velocity: the particles do not move in the horizontal plane but have a random 
vertical velocity. 

Life time: particles disappear when they drop below the water, but are reused 
when the wave breaks again. 

Force: the only force is gravity. 
Rendering: each particle is rendered as a textured point sprite (the texture is 

shown in Figure 7.4). Rendering employs the same shaders as the water spray particle system.  
Time interval: the time interval is 0.1 in each frame. 
Figure 7.11 shows the model with particles added to the crests of the breaking 

waves. 

gravity

x 

z 

y 

velocity 
Breaking 

wave vertex



 

 

98 

 
Figure 7.11: The model with breaking wave particles. 

7.2.1 Implementation 

As mentioned earlier, the Particle class in Appendix A13 generates both the 
water spray particle system and the breaking wave particle system. Also the same shaders are 
used for both particle systems (see Appendix A14). As a consequence, the pseudocode in this 
section only describes the parts of the Particle class used by the breaking wave system; the 
shaders will not be explained again. 

Breaking Wave Particle Code 

Data must be initialized in a particle when it is created or reused. It’s position 
must be assigned the current wave curve vertex position plus a random offset. Since a breaking 
wave particle has no horizontal velocity, only it’s vertical velocity is assigned a random, small 
value. 
 
for(z less than mesh size -1) 

for(x less than mesh size -1) 
        for(i less than 15 (particle size)) 
            particle’s x =  x value of vertex (x, z) + random(-0.5, 0.5); 

particle’s y =  y value of vertex (x, z) + random(-0.5, 0.5); 
particle’s z =  z value of vertex (x, z) + random(-0.5, 0.5); 

Land under the water 

Water 

Breaking wave particles



 

 

99 

 
particle’s y velocity = (-0.5, 0.5); 

 

In each rendering frame, a particle’s data must be updated. Its vertical position is 
updated by its velocity multiplied by the time interval (0.1), and the vertical velocity is affected 
by gravity. A particle disappears when it drops below the wave curve vertex. 
 
for(z less than mesh size -1) 

for(x less than mesh size -1) 
        for(i less than 15 (particle size)) 

particle’s y += 0.1f * particle’s y velocity; 
 
particle’s y velocity += 9.8 * 0.1; 
 
if(particle’s y less than vertex’s y value - 0.5)   

particle disappears; 

7.3 Summary 

Water spray and breaking waves were added to the model in this chapter, 
implemented using particle systems and shaders. Water spray particles represent spray around the 
coastline, and improve the realism of the water surface. The breaking waves particle system 
increases the realism of the water crests by generating foam on the top of the crests.



 

 100 

CHAPTER 8 

 

TESTING 

 
This chapter presents data on the computational speed in frames/sec (FPS) of our 

model, by examining at four versions of it: 

 the original model – a 128*128 island mesh with four wave curves 

 the same island model, but with five wave curves 

 a larger 256*256 mesh island, with four wave curves 

 land in the form of a harbour rather than an island, using a 128*128 
mesh and four wave curves 

The five wave curves and harbour versions of the model allow us to briefly 
outline how to extend and change the model.  

Each version will be timed with different rendering aspects enabled or disabled 
to see how they affect overall FPS speed: 

 all rendering enabled: spring systems, collision detection, multitexturing, 
shaders, and particle systems 

 rendering without particle systems (so water spray and breaking wave 
foam will not be available) 

 rendering without shaders, so allowing the hardware to function without 
a GPU and/or a less advanced OpenGL driver (wave crest shading, water transparent and particles 
will not be available) 

Each scenario will be tested on a PC and a less powerful notebook. The PC has a 
two-core 1.86 GHz 1GB DDRII-533 RAM, a Nvidia 9800GT 1GB graphics card. The notebook 
is a Core T2250 CPU 1.73 GHz device, with 2GB of RAM, and an Intel 950 graphic card which 
does not support shaders. Both machines are running Windows XP SP3 Professional. The FPS 
information is obtained using a screenshot utility called FRAPS, version 2.99 [30] which can also



 

 

101 

display FPS values for applications. The FPS for a particular run can be seen in the screenshots in 
this chapter, displayed in the top left corner (e.g. see Figure 8.1). 

8.1 Original Model 

The original model is a 128*128 size mesh containing a single island, and four 
wave curves. Figure 8.1 shows the “all rendering” case utilizing multitextured land and water, 
crest shading, water transparency, spray and breaking waves. The model executes at about 54 FPS 
(the FPS numbers supplied in this chapter are averages, calculating over 10 or more runs of a 
model, and rounded to the nearest integer).  

 
Figure 8.1: Original model/full rendering. 

Figure 8.2 shows the model without particle systems for the spray and breaking 
waves. The rendering FPS value is 135, a much improved value, which indicates the resource 
intensive nature of the particle systems.  

Land Water 

X
Z 

Y 

Land (under the water) 

Water spray 

Breaking wave



 

 

102 

 
Figure 8.2: Original model/no particle systems. 

Figure 8.3 displays the model without shaders (shaders support water 
multitexturing, wave crest shading, water transparency, and particles). The much less realistic 
model executes at about 138 FPS, which is almost unchanged from the “no particles” version. 
This suggests that shaders have little impact on the frame rate, probably because they are 
processed by the GPU; the real bottleneck is the CPU. Shaders are used to carry out 
multitexturing, but this is so important for the model realism, that it has been reimplemented to 
use fixed pipeline operations in the models with no shaders.  

 
Figure 8.3: Original model/no shaders. 

If this model version (no shaders) is run on the notebook, then the FPS drops 

Land 
Water 

X 
Z 

Y 

Land under the water 

Land 
Water 

X
Z 

Y 

Land under the water 



 

 

103 

drastically to 83. Its not possible to run the full or no particles version of the model on the 
notebook since it does not support shaders. Figure 8.5 uses the same model as in Figure 8.4 but 
moved off-screen. This relieves the machine of almost all its rendering tasks, and the FPS goes up 
to 111. This same scenario on a PC gives a FPS of 138, which indicates that the notebook is about 
27 frames slower than the PC or (111/138)% as fast. 

 
Figure 8.4: Original model/no shaders/on a notebook. 

 
Figure 8.5: Off-screen model on a notebook. 

8.2 Five Wave Curves 

This version of the model is the same as in Section 8.1: a 128*128 mesh, but 

Land 
Water 

X
Z 

Y 

Land under the water 



 

 

104 

with five wave curves (see Figure 8.6).  

 
Figure 8.6: Five wave curves of the meshed model. 

The extra curve has its own springs, waves collisions, and water spray particles. 
Wave curve 5 is similar to wave curves 3 and 4, in that it uses position springs and wave springs 
to connect it to inner curve (wave curve 4). Waves collision is monitored between wave curves 4 
and 5, and water spray particles are utilized as in wave curves 3 and 4. 

Wave curve 5 is built in a similar way to wave curves 2, 3 and 4, as explained in 
Section 4.2.3; the sequence diagram in Figure 8.7 shows the main steps: getWaveCurve()in the 
WaveCurves class (Appendix A8) is used to build wave curve 5. 

 
Figure 8.7: Calculating wave curve 5. 

The sequence diagram in Figure 8.8 shows how position springs, wave springs, 
and collisions detection control the motion of wave curve 5. The wave spring force is added to the 
position spring force, to calculate the x-z velocity of wave curve 5. This velocity will be modified 
if waves collisions occur. The final position of the wave curve is calculated from this final 

Land mesh 

Water 
mesh 

X 
Z

Y

Coastline 

542 31 

Wave curve 4 Wave curve 5

Get 4 neighbor vertices 
Delete repeated vertices already in the 
wave curves 3 and 4, and unfinished 

wave curve 5 

Unshaped wave curve 5



 

 

105 

velocity. 

 
Figure 8.8: Springs and collisions control the motion of wave curve 5. 

getVelocityForOtherWaveCurves() in the Velocity class (Appendix A9) 
is used to calculate the velocity of wave curve 5.  

The getVelocityForWaveCurves() method in the Collision class 
(Appendix A10) controls the velocity of wave curve 5. Its water/land collision features are not 
utilized, because that type of collision can not occur with wave curve 5. The following 
pseudocode shows getVelocityForWaveCurves()for wave curve 5. 
 
for(i less than wave curve 4 size) 

//collision between waves 
if(i move through line segment bc of wave curve 5) 

        x velocity (i, b, c) is the average x velocities of i, b, c;  
z velocity (i, b, c) is the average z velocities of i, b, c; 
 

The height of wave curve 5 is adjusted by adjustHeightOfWaveCurve() in 
the HeightOfWaveCurve class (Appendix A11), and the water spray particles are created using 
the unchanged buildWaterSprayParData() and buildWaterSprayParticle() in the 
Particle class (Appendix 13) and in the shaders code in Appendix 14. 

On a PC, the FPS for the model is about 42 (Figure 8.9) which is less than the 
version with four wave curves (5 frames/sec). This reduction is to be expected because of the 
increased calculations required for the position and wave springs, waves collisions, and water 
spray particles. If no particle systems are employed, then the model runs much faster at 123 FPS, 

Waves 
collision

Calculate 

Calculate 

Wave 

spring 

Position 

spring 

Calculate 

Plus

Change 

Position VelocityForce 



 

 

106 

as shown in Figure 8.10.  

 
Figure 8.9: Five wave curves model/full rendering. 

 
Figure 8.10: Five wave curves model/no particle systems. 

Figure 8.11 shows the model running without shaders (126 frame/sec) which 
suggests that the bottleneck is CPU rendering, not shader support. 

Land Water 

X 
Z 

Y 

Land under the water 

Land Water 

X
Z 

Y 

Land under the water 

Water spray 

Breaking wave



 

 

107 

 
Figure 8.11: Five wave curves model/no shaders. 

When this model version is run on a notebook, the frame rate drops to 84 FPS 
(Figure 8.12) compared to 99 FPS when the model is completely off-screen. This suggests that 
the graphics card of the notebook is limiting the FPS rate. 

 
Figure 8.12: Five wave curves/no shaders/on a notebook. 

8.3 A 256*256 Island 

In this section, the land and water mesh is increased in size from 128*128 to 

Land Water 

X 
Z 

Y 

Land under the water 

Land Water 

X 
Z 

Y 

Land under the water 



 

 

108 

256*256. The increase requires a 256*256 height map, shown in Figure 8.13.  

 
Figure 8.13: The height map of the 256*256 island. 

In addition, the landsize and watersize parameters in the Mesh class (Appendix 6) 
must be changed to 256; no other changes are necessary.  

The increased size of the model mesh (four times bigger) has a drastic effect on 
the FPS, since rendering speeds depend closely on the number of vertices in the model. Figure 
8.14 shows that the application runs at about 18 FPS (the original model uses 54 frames/sec). The 
increased size affects all aspects of the model including the springs, collision detections, and the 
particle systems.  

 
Figure 8.14: 256*256 mesh/full rendering. 

Figures 8.15 and 8.16 shows that this model runs faster without particle systems 
and shaders. 

Land Water 

X 
Z 

Y 

Land under the water 



 

 

109 

 
Figure 8.15: 256*256 mesh/no particle systems. 

 
Figure 8.16: 256*256 mesh/no shaders. 

The difference between the “no particle systems” and “no shaders” versions is 
about 3 FPS (42-39), which is the same as the difference for the original model (138-135=3). This 
again shows that shaders have little impact on the frame rate. The 256*256 mesh without shaders 
can be run on the notebook, giving a frame rate at 24 (see Figure 8.17). 

Land 
Water 

X 
Z 

Y 

Land under the water 

Land 
Water 

X 
Z 

Y 

Land under the water 



 

 

110 

 
Figure 8.17: 256*256 mesh/no shaders/on a notebook. 

Figure 8.17 again shows that the increased mesh size is costly in resources since 
the original model on the notebook runs at 83 frame/sec (in Figure 8.4). 

8.4 Testing with a Harbour 

The code developed in this thesis makes the assumption that the model only 
contains one land mass, which can be any shape. In this section the land is changed to be a 
‘harbour’ shown in Figure 8.19. This requires a new height map, shown in Figure 8.18. Its 
animation frame rate is 93, as shown in Figure 8.19. It is faster than the same-size island (see 
Figure 8.14), because the island has a large area of water which require more calculations of the 
water profile functions and breaking wave particles. The calculations for the spring systems and 
collisions detection depend on the coastline or wave curves’ lengths, which are similar in both 
models. 

 
Figure 8.18: The harbour height map. 

Land 
Water 

X 
Z 

Y 

Land under the water 



 

 

111 

 
Figure 8.19: Harbour model/full rendering. 

Figure 8.20 shows that the same model without particles runs at about 312 FPS, 
which is much faster than original model without particles (135 FPS in Figure 8.2). It shows that 
the small area of water greatly reduces the number of calculations required for the water profile 
functions, water spray, breaking wave particles, spring systems, collisions detection, which all 
depend on the number of water vertices. 

 
Figure 8.20: Harbour model/no particle systems. 

Figure 8.21 shows that the model without shaders executes at 315 FPS, which is 
also much faster than the original model without shaders (138 FPS in Figure 8.3). It again shows 

Land 

Water 

X 
Z 

Y 

Land under the water 

Land 
Water 

X 
Z 

Y 

Land under the water 



 

 

112 

that the water area has a direct relation to rendering speed. 

 
Figure 8.21: Harbour model/no shaders. 

Figure 8.22 shows the model running on a notebook at 114 FPS. The 
corresponding island on the notebook (Figure 8.4) runs at 83 FPS. This shows that the water area 
greatly affects the rendering speed.  

 
Figure 8.22: Harbour model/no shaders/on a notebook. 

If the model requires more than one island or harbour, then each will need to be 
modeled independently with their own coastline, wave curves, spring systems, collision 
detections and water spray particles. In other words, the required model will need to be separated 

Land 
Water 

X 
Z

Y

Land under the water 

Land 
Water 

X 
Z 

Y 

Land under the water 



 

 

113 

into component islands/harbours, and then the results combined. This combination will require 
non-trivial changes to the model. 

8.5 Data Analysis 

Table 8.1 shows the average frame rate (FPS) of the different versions of the 
models running on a PC and a notebook. The notebook does not support shaders, and so it was not 

possible to test the full versions or particle-free versions of the models on that hardware. Only the 
versions of the models without shaders were tested on the notebook. Figure 8.23 shows the table 
data in graph form. The average FPSs were obtained by running each model at least 10 times.  

 
Table 8.1: Average FPS of different models. 

Full version 

Without particles 

Without shaders 

Full version 

Without particles 

Full version 

Without particles 

Full version 

Without shaders 

Original island 
with four wave 

curves (128*128) 

Original island 
(five wave curves) 

Without particles 

Without shaders 

A 256*256 island 
with four wave 

curves  

A harbour with four 
wave curves 

54 

135 

138 

42 

123 

18 

39 

93 

42 

312 

315 

FPS on PC Model version 

– 

– 

83 

– 

– 

– 

– 

– 

24 

– 

114 

FPS on notebook 

Without shaders 126 84 



 

 

114 

 
Figure 8.23: Average FPS of different models on different hardware. 

The particle systems use a large amount of resources, as can be seen by the 
increase in FPS when particles are not used. Also GPU-based shaders are very efficient, hardly 
affecting the FPS. This suggests that more effects should be moved into the shaders, such as 
particle dynamics (at present only particle size and texturing are done by the shaders). 

Model mesh size has a significant effect on frame rate, since it impacts the 
calculations of the water profile functions and breaking wave particles. One possible optimization 
is to use a single profile function to calculate the height of the water vertices in deep water, since 
there is no need to model wave refraction except in shallow water [25]. 

Increasing the number of wave curves reduces the rendering speed only slightly, 
which is somewhat surprising since wave curves affect the spring systems and collision detection. 
This is a good result since adding more wave curves will make the model more realistic. 

The notebook used in these tests is typical of current low-end devices in that it 

100 200 300 

FPS

Original 
island 

Five wave 
curves 

256*256 
island 

128*128 
harbour 

0 

Model version

PC/full model PC/without particles PC/without shaders 

Notebook/without shaders 

114

54

24 

39 

312

123

315

18 

135

93

42 

84

42

126

83

138



 

 

115 

does not support shaders. For improved realism and speed, it is better to choose a device that has 
a GPU. 

8.6 Summary 

This chapter tested the system with four models – the original model, the model 
with five wave curves, a 256*256 island, and a harbour. Each model was timed with various 
rendering aspects turned on or off, including without particle systems and without shaders. The 
models were tested on a typical PC and notebook. 

The rendering speeds were compared, speed factors identified, and suggestions 
made about how to speed up the system. This chapter also explained how to change the mesh size 
of the model, and change the shape of the island into a harhour.



 

 116 

CHAPTER 9 

 

DISCUSSION AND CONCLUSIONS 

 
The system described in this thesis models the interaction of water and coastal 

land using a novel combination of three types of springs (position, wave, and height springs), and 
two forms of collision detection. The simulation exhibits realistic behavior between waves and 
the coastline, and between the waves themselves, while rendering at good speeds. The spring 
system is relatively simple to understand and fine-tune, and is based on the physical 
characteristics of real waves. 

The land and water surfaces are created from mesh of the same size and box 
structure, land height is obtained from a height map (Chapter 3). 

Water waves, including wave refraction, are constructed from a combination of 
profile functions, obtained from a phase function (Chapter 4). Although our use of profile 
functions comes from Peachey [4], the combination of several functions to produce more natural 
looking waves is our own work.  

Novel coastline and wave curves data structures are employed to represent the 
interaction between the water and the land at different depths (Chapter 4). Wave curves 1 and 2 
model the vertical movement of waves as they impact the land, while wave curve 3 and 4 
represent the water’s tidal behavior, including wave/wave impact and crossover. Our use of 
coastline and wave curves to represent water/land interaction is original. Fournier and Reeves [5] 
do not address this issue while Maes, Fujimoto and Chiba’s model [8] can not move in the 
horizontal plane. 

The most novel aspects of this thesis are discussed in Chapter 5. In our system, 
three spring systems are employed together to control the water motion in the vertical and 
horizontal planes. The tidal behavior of wave curve 3 and 4 are defined using position and wave 
spring systems and collision detection, while wave curves 1 and 2 utilize a height spring system.  

Multitexturing is introduced in Chapter 6 to improve the realism of the land and 
water surfaces. The land uses procedural texturing to combine different textures at different land 



 

 

117 

heights, and detail texturing for increased resolution. The water utilizes a material texture, and its 
own detail texturing. Wave crests shading and water transparency are also included by the use of 
shaders. 

Chapter 7 utilizes particle systems to represent water spray and foam on 
breaking waves. 

Chapter 8 investigates the speed of our approach by comparing the average 
frames/second (FPS) across four models running on a PC and a notebook. The 128*128 original 
model runs at about 54 FPS on a PC; with no shaders it can run at 135 FPS, and at about 83 FPS 
on a notebook. A 256*256 mesh model runs at 18, 42 and 24 FPS in similar situations. Chapter 8 
also illustrates that it is straight-forward to change the shape and size of the landmass, but the 
system is restricted to a single landmass. Adding more islands or harbours would require some 
classes in the implementation to be redesigned.  

Compared with the models of Peachey [4], Fournier and Reeves [5], this system 
can render real force interactions between water and land because of its spring systems. Unlike 
Maes, Fujimoto and Chiba’s model [8], water vertices around the coastline in this model really 
move in the horizontal direction instead of as variable height water columns. This model can 
render a large water surface much faster than in Foster and Fedkiw [6] or Enright, Marschner and 
Fedkiw’s simulations [7]. 

My long term goal is to use this approach to model tsunami-land interaction. The 
spring system will need to be modified to deal with large waves (over 30m in height) moving at 
very high speeds (more than 800 km/h) [31]. The coastline interaction will need to be more 
complicated to deal with the way a tsunami can wash over a large body of land. Perhaps, more 
than eight wave curves will be needed, four of them close to the coastline moving up and down as 
wave curves 1 and 2 do in the existing model. The others waves will need to move over long 
horizontal distances from their rest positions towards the coastline. 

Model Features Illustrated 

Figure 9.1 shows water moving towards the land, and water spray particles 



 

 

118 

around the coastline. The coastline is hidden under the land normally, but is made visible in the 
figures of this chapter to show its relationship to the wave curves. 

 
Figure 9.1: Water moving towards the land. 

Figure 9.2 is a cross-sectional view of the water moving towards the land and 
producing water spray particles. 

 
Figure 9.2: Water moving towards the land (cross-sectional view). 

Figure 9.3 shows the land, coastline, wave curves, and water spray particles of 
Figure 9.2 from overhead. The red and white lines in the water mesh are wave curves 3 and 4, 
which are normally invisible. Wave springs and collision detection mean these wave curves can 
never cross-over. 

Coastline 

Land 
Water 

X Z 

Y 

Water spray particles 

Coastline 
Land 

Water 

X Z 

Y 

Water spray particles 



 

 

119 

 
Figure 9.3: Wave curves moving towards the land. 

Figure 9.4 shows the scene from Figure 9.1 after the water has rebounded from 
the land. 

 
Figure 9.4: Water retreating from the land. 

Figure 9.5 shows the cross-sectional view of the scene in Figure 9.4, as the water 
retreats from the land. 

Coastline 

Land 
Water 

X Z

Y

Water spray particles 

Coastline

Wave curve 3 Water mesh 

Land 

Wave curve 4 

X

Z 

Y 

Water spray particles 



 

 

120 

 
Figure 9.5: Water retreating from the land (cross-sectional view). 

Figure 9.6 is a view of Figure 9.5 from overhead. It shows wave curves 3 and 4 
being pulled back to their rest positions by their position springs. The interaction between wave 
curves 3 and 4 are controlled by wave springs and collision detection. 

 
Figure 9.6: Wave curves rebounding from the land. 

Figure 9.7 shows particles appearing on the crests of breaking waves. 

Coastline Land 

Water 

X Z

Y

Water spray particles 

Coastline

Wave curve 3 Water mesh 

Land 

Wave curve 4

X 

Z 

Y 

Water spray particles 



 

 

121 

 
Figure 9.7: Breaking wave particles. 

Figure 9.8 is a side view of Figure 9.7 showing particles covering the crests of 
the breaking waves, and also that the crests are darker than other parts of the waves. 

 
Figure 9.8: Breaking wave particles (side view). 

Land under the water

Water X 

Z 

Y 

Breaking wave particles

Land under the water

Water 
X Z

Y
Breaking wave particles 



 

 

122 

REFERENCES 

[1] Jerry Tessendorf, 1999, “Simulating Ocean Water”, SIGGRAPH Course Notes, 
http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessendorf.pdf (last accessed Aug 
26, 2010) 

[2] A. Iglesias, November, 2004, “Computer Graphics for Water Modeling and Rendering: A 
Survey”, Future Generation Computer Systems, 
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V06-4CVX0RT-2&_user
=267327&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000015658&_version
=1&_urlVersion=0&_userid=267327&md5=34819df33b7809dc786b2110ddffd855 (last 
accessed Aug 26, 2010)  

[3] Hugo Elias, “Perlin Noise”, 1998, http://freespace.virgin.net/hugo.elias/models/m_perlin.htm 
(last accessed Aug 26, 2010) 

[4] Darwyn R. Peachey, 1986, “Modeling Waves and Surf”, ACM SIGGRAPH Computer 
Graphics, August, http://portal.acm.org/citation.cfm?id=15893&dl=ACM&coll=portal (last 
accessed Aug 26, 2010) 

[5] Alain Fournier, William T. Reeves, 1986, “A Simple Model of Ocean Waves”, ACM 
SIGGRAPH Computer Graphics, August, http://portal.acm.org/citation.cfm?id=15894 (last 
accessed Aug 26, 2010) 

[6] Nick Foster, Ronald Fedkiw, 2001, “Practical Animation of Liquids”, Proceedings of the 
28th Annual Conference on Computer Graphics and Interactive Techniques, 
http://physbam.stanford.edu/~fedkiw/papers/stanford2001-02.pdf (last accessed Aug 26, 
2010) 

[7] Douglas Enright, Stephem Marschner, Ronald Fedkiw, 2002, “Animation and Rendering of 
Complex Water Surfaces”, ACM Transaction on Graphics, July, 
http://portal.acm.org/citation.cfm?id=566645 (last accessed Aug 26, 2010)  

[8] Marcelo M. Maes, Tadahiro Fujimoto, Norishige Chiba, 2006, “Efficient Animation of 



 

 

123 

Water Flow on Irregular Terrains”, Proceedings of the 4th International Conference on 
Computer Graphics and Interactive Techniques in Australasia and Southeast Asia, 
http://portal.acm.org/citation.cfm?id=1174447 (last accessed Aug 26, 2010) 

[9] Stephen Manley, 1999, “OpenGL Fluid & Gel Modeling”, 
http://www.nyx.net/~smanley/fluid/fluid.html (last accessed Aug 26, 2010) 

[10] Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, Mark Carlson, 2006, 
“Physically Based Deformable Models in Computer Graphics”, Computer Graphics Forum, 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.124.4664&rep=rep1&type=pdf 
(last accessed Aug 26, 2010) 

[11] David Halliday, Robert Resnick, Jearl Walker, 2005, Fundamentals of Physics, 7th Edition, 
Wiley. 

[12] Dave Shreiner; Mason Woo; Jackie Neider; Tom Davis, 2007, OpenGL Programming Guide: 
The Official Guide to Learning OpenGL, 6th edition, Addison-Wesley Professional. 

[13] Viorel Mihalef, Dimitris Metaxas, Mark Sussman, 2004, “Animation and control of breaking 
waves”, ACM SIGGRAPH/Eurographics symposium on Computer animation, 
http://portal.acm.org/citation.cfm?id=1028523.1028565 (last accessed Oct 6, 2010) 

[14] Julien Guertault, 2005, “Yet Another OpenGL Tutorial: Simple Water Rendering”, 
http://zavie.free.fr/opengl/index.html.en (last accessed Aug 26, 2010) 

[15] W.T.Reeves, 1983, “Particle Systems—a Technique for Modeling a Class of Fuzzy Objects”, 
ACM Transactions on Graphics, Volume 2, Issue 2, pp. 91-108. April, 
http://portal.acm.org/citation.cfm?id=357320 (last accessed Aug 26, 2010) 

[16] Edward Angel, 2005, OpenGL A Primer, Second Edition. Pearson Education. 

[17] OpenGL Overview, 2010, http://www.opengl.org/about/overview/ (last accessed Aug 26, 
2010) 

[18] Dave Astle, 2005, More OpenGL Game Programming, 2th Edition, Course Technology 
PTR. 



 

 

124 

[19] JOGL document, v1.6.0, 2006, http://jogamp.org/jogl/www/ (last accessed Aug 26, 2010) 

[20] Andrew Davison, 2007, Pro Java 6 3D Game Development, Apress, April. 

[21] Claes Johanson, 2004, “Real-time Water Rendering Introducing the Projected Grid Concept”, 
Master of Science Thesis, Lund University, March, 
http://habib.wikidot.com/projected-grid-ocean-shader-full-html-version (last accessed Aug 
26, 2010) 

[22] Ben Humphrey, 2001, “NeHe Productions OpenGL Lesson 34: Beautiful Landscapes by 
Means of Height Mapping”, http://nehe.gamedev.net/data/lessons/lesson.asp?lesson=34 (last 
accessed Aug 26, 2010) 

[23] Kevin Hawkins, Dave Astle, 2002, OpenGL Game Programming, Course Technology PTR, 
May, http://glbook.gamedev.net/source.asp (last accessed Aug 26, 2010) 

[24] Dave Astle, Kevin Hawkins, 2004, Beginning OpenGL Game Programming, Course 
Technology PTR, March, 
http://www.torrentreactor.net/torrents/1149913/Beginning-OpenGL-Game-Programming-So
urce-Code-rar (last accessed Aug 26, 2010) 

[25] Keith A. Sverdrup, Alison B. Duxbury, Alyn C. Duxbury, 2006, Fundamentals of 
Oceanography, 5th edition, McGraw-Hill. 

[26] Marcelo Alonso, Edward J. Finn, 1992, Physics, Addison-Wesley, June. 

[27] Tzvetomir Vassilev, Bernhard Spanlang, 2002, “A Mass-Spring Model for Real Time 
Deformable Solids”, East-West-Vision, September, http://www.cs.ucl.ac.uk/staff/b.spanlang/ 
(last accessed Aug 26, 2010) 

[28] Trent Polack, 2002, Focus On 3D Terrain Programming, Course Technology PTR. 

[29] Tobias Franke, 2001, “Terrain Texture Generation”, 
http://www.flipcode.com/archives/Terrain_Texture_Generation.shtml (last accessed Aug 26, 
2010) 

[30] FRAPS, 2009, http://www.fraps.com/ (last accessed Sep 26, 2010) 



 

 

125 

[31] Emilio Lorca, Margot Recabarren, 2005, “Earthquakes and Tsunamis”, ITIC, March, 
http://ioc3.unesco.org/itic/contents.php?id=155 (last accessed Aug 26, 2010)



 

 

126 

APPENDICIES 

Appendix A1: Simple.c 

Display a white polygon using OpenGL in C. 

Appendix A2: Simple.java 

Display a white polygon using JOGL. 

Appendix A3: Simple2.java, draw.vert, draw.frag 

Display a polygon using JOGL, a vertex shader to scale it, and fragment shader to 
change it green. 

Appendix A4: noise.c 

Perlin noise for adding waves to a water surface. 

Appendix A5: Loadpixels.java 

Load a map, and use it’s blue pixels as height values. 

Appendix A6: Mesh.java 

Render land and water surface. 

Appendix A7: Phase.java 

Create a phase function for the heights of water vertices. 

Appendix A8: WaveCurves.java 

Calculate the coastline and wave curves. 



 

 

127 

Appendix A9: Velocities.java 

Calculate the velocities for wave curves employing spring system. 

Appendix A10: Collision.java 

Process water/land collisions, and the collisions between waves. 

Appendix A11: HeightOfWaveCurve.java 

Adjust the height of wave curves 1-4. 

Appendix A12: water.vert, water.frag 

Vertex and fragment shaders for the water surface, which apply multitexturing, 
crest shading, and transparency. 

Appendix A13: Particle.java 

Water spray and breaking wave particle systems. 

Appendix A14: par.vert, par.frag 

Vertex and fragment shaders for the particle systems. 

Appendix B: Published Paper 

Rendering Water and Land Interaction Using a Spring System 
 



 

 Appendix A1 

/
*
 
S
i
m
p
l
e
.
c
 
2
0
1
0
/
6
/
2
8
 

 *
 
B
y
 
S
u
i
 
Y
i
f
a
n
 

 *
 
E
-
m
a
i
l
:
 
s
u
i
s
u
i
g
e
@
y
a
h
o
o
.
c
o
m
.
c
n
 

 *
 

 *
 
D
i
s
p
l
a
y
 
a
 
w
h
i
t
e
 
p
o
l
y
g
o
n
 
u
s
i
n
g
 
O
p
e
n
G
L
 
i
n
 
C
.
 

 *
 
S
e
e
 
s
e
c
t
i
o
n
 
2
.
1
 
f
o
r
 
d
e
t
a
i
l
s
.
 

*
/
 

 #
i
n
c
l
u
d
e
 
<
G
L
/
g
l
u
t
.
h
>
 

v
o
i
d
 
d
i
s
p
l
a
y
(
v
o
i
d
)
 

{
 

 
g
l
C
l
e
a
r
(
G
L
_
C
O
L
O
R
_
B
U
F
F
E
R
_
B
I
T
)
;
 
/
/
c
l
e
a
r
s
 
c
o
l
o
r
 
b
u
f
f
e
r
 

 
g
l
C
o
l
o
r
3
f
(
1
,
1
,
1
)
;
 
/
/
s
e
t
 
t
h
e
 
c
o
l
o
r
 
o
f
 
t
h
e
 
o
b
j
e
c
t
 

g
l
B
e
g
i
n
(
G
L
_
P
O
L
Y
G
O
N
)
;
 
/
/
s
p
e
c
i
f
i
e
s
 
t
h
e
 
o
b
j
e
c
t
 
t
y
p
e
 
w
i
l
l
 
b
e
 
d
r
a
w
 

 
/
/
s
e
t
 
t
h
e
 
v
e
r
t
i
c
e
s
 
l
o
c
a
t
i
o
n
 
o
f
 
t
h
e
 
p
o
l
y
g
o
n
 

 
 

g
l
V
e
r
t
e
x
2
f
(
0
,
 
0
)
;
 

 
 

g
l
V
e
r
t
e
x
2
f
(
0
.
5
,
 
0
)
;
 

 
g
l
V
e
r
t
e
x
2
f
(
0
.
5
,
 
0
.
5
)
;
 

 
g
l
V
e
r
t
e
x
2
f
(
0
,
 
0
.
5
)
;
 

 
g
l
E
n
d
(
)
;
 
/
/
e
n
d
 
t
o
 
s
p
e
c
i
f
i
e
s
 
t
h
e
 
v
e
r
t
i
c
e
s
 

 
g
l
F
l
u
s
h
(
)
;
 
/
/
f
o
r
c
e
s
 
t
o
 
o
u
t
p
u
t
 
t
h
e
 
r
e
s
u
l
t
 
i
m
m
e
d
i
a
t
e
l
y
 

}
 

 i
n
t
 
m
a
i
n
(
i
n
t
 
a
r
g
c
,
c
h
a
r
*
*
 
a
r
g
v
)
 

{
  

 

 
g
l
u
t
I
n
i
t
(
&
a
r
g
c
,
a
r
g
v
)
;
 
/
/
i
n
i
t
i
a
l
i
z
e
s
 
G
L
U
T
 

 
g
l
u
t
C
r
e
a
t
e
W
i
n
d
o
w
(
"
s
i
m
p
l
e
"
)
;
 
/
/
c
r
e
a
t
e
 
a
 
w
i
n
d
o
w
 
c
a
l
l
e
d
 
s
i
m
p
l
e
 

 
g
l
u
t
D
i
s
p
l
a
y
F
u
n
c
(
d
i
s
p
l
a
y
)
;
 
/
/
c
a
l
l
 
t
h
e
 
m
e
t
h
o
d
 
d
i
s
p
l
a
y
(
)
 

 
g
l
u
t
M
a
i
n
L
o
o
p
(
)
;
 
/
/
e
n
t
e
r
 
a
n
 
e
v
e
n
t
-
p
r
o
c
e
s
s
i
n
g
 
l
o
o
p
 

}
 

 

 

 
Figure A1.1: Output from OpenGL called from C. 

128



 

 

Appendix A2 

/* Simple.java 2010/6/28 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Display a white polygon using JOGL. 
 * See section 2.2 for details. 
*/ 
 
import javax.swing.*; 
import javax.media.opengl.*; 
 
public class Simple extends JFrame implements GLEventListener 
{  
 private GLCapabilities caps; 
 private GLCanvas canvas; 
 
 public Simple() 
 {   
 super("Simple"); //set the JFrame title 
 //create GLcanvas 
 caps = new GLCapabilities();  
 canvas = new GLCanvas(caps); 
 //open event listener 
 canvas.addGLEventListener(this); 
 getContentPane().add(canvas); //add canvas content into window 
 } 
  
 public void createwindow() 
 { 
 setSize(256, 256); //set window size 
 //kill the process when the JFrame is closed 
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
  setVisible(true);  //display result in window 
 } 
 
 public static void main(String[] args) //main function 
 { 
 //Create our Simple and run the method createwindow() 
 new Simple().createwindow ();  } 
  
 public void polygon(GL gl) 
 { 
   gl.glClear(GL.GL_COLOR_BUFFER_BIT); //clears color buffer 
   gl.glColor3f(1,1,1); //set the color of the object 

//specifies the object type will be draw 
   gl.glBegin(GL.GL_POLYGON);  

//set the vertices location of the polygon 
  gl.glVertex2f(0,0); 
 gl.glVertex2f(0.5f, 0); 
 gl.glVertex2f(0.5f, 0.5f); 
 gl.glVertex2f(0, 0.5f); 

 

 

 gl.glEnd(); //end to specifies the vertices 
 gl.glFlush(); //forces to output the result immediately 

} 
 

 public void display(GLAutoDrawable drawable) 
 { 
 GL gl = drawable.getGL();  
  polygon(gl); //Draw the model 
 } 
  
 //I do not need these methods  

public void init(GLAutoDrawable drawable) {}  
public void reshape(GLAutoDrawable drawable, int x, int y, int w,  

int h) {} 
public void displayChanged(GLAutoDrawable drawable,  

boolean modeChanged,  
boolean deviceChanged) {} 

} 

 
Figure A2.1: Output from OpenGL called from Java. 

12
9



 

 

Appendix A3 

/* Simple2.java 2010/7/5 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Display a polygon using JOGL, a vertex shader to scale  
* it, and a fragment shader to change it green. 
* See section 2.3.3 for details 
*/ 
 
import javax.swing.*; 
import javax.media.opengl.*; 
import java.io.IOException; 
import java.io.BufferedReader; 
import java.io.FileReader; 
import java.nio.*; 
import com.sun.opengl.util.*; 
 
public class Simple2 extends JFrame implements GLEventListener 
{  
 private GLCapabilities caps; 

private GLCanvas canvas; 
private int drawVertex, drawFragment, drawShaderProgram; 

 
 public Simple2() 
 {   
 super("Simple2"); //set the JFrame title 
 //create GLcanvas 
 caps = new GLCapabilities();  
 canvas = new GLCanvas(caps); 
 //open event listener 
 canvas.addGLEventListener(this); 
 getContentPane().add(canvas); //add canvas content into window 
 } 
  
 public void createwindow() 
 { 
 setSize(256, 256); //set window size 
 //kill the process when the JFrame is closed 
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 
 setVisible(true);  //display result in window 
 } 
 
 public static void main(String[] args) //main function 
 { 
 //Create our Simple2 and run the method createwindow() 
 new Simple2().createwindow ();  } 
  

public void init(GLAutoDrawable drawable)  
{ 

GL gl = drawable.getGL(); 
  buildShader(gl); 

 

 

}  

 
private void buildShader(GL gl) 
{ 
 //build vertex shader 

   drawVertex = gl.glCreateShader(GL.GL_VERTEX_SHADER); 
 //build fragment shader 
 drawFragment = gl.glCreateShader(GL.GL_FRAGMENT_SHADER); 
 //build shader program 
 drawShaderProgram = gl.glCreateProgram(); 
 try { drawShader(gl); } catch (IOException e) { } 
 } 
  
 private void drawShader(GL gl)throws IOException 

{ 
 //load vertex shader source code 

 BufferedReader brv =  
new BufferedReader(new FileReader("draw.vert")); 

 String vsrc = ""; 
 String lineV; 
 while ((lineV = brv.readLine()) != null)  

{ vsrc += lineV + "\n"; } 
 String Vsrc [] = new String [1]; 
 Vsrc [0] = vsrc; 
 //replaces source code in the vertex shader 
 gl.glShaderSource(drawVertex, 1, Vsrc, null); 
 //compile vertex shader 
 gl.glCompileShader(drawVertex);  
  IntBuffer vertBuffer = BufferUtil.newIntBuffer(1); 
 gl.glGetShaderiv(drawVertex, GL.GL_COMPILE_STATUS, 

 vertBuffer);  
   
 //load fragment shader source code 
   BufferedReader brf =  

new BufferedReader(new FileReader("draw.frag")); 
 String fsrc = ""; 
 String line; 
 while ((line = brf.readLine()) != null)  
 { fsrc += line + "\n"; } 
 String Fsrc [] = new String [1]; 
 Fsrc [0] = fsrc; 
 //replaces source code in the fragment shader 
  gl.glShaderSource(drawFragment, 1, Fsrc, null); 
 //compile fragment shader 
 gl.glCompileShader(drawFragment);  
 IntBuffer fragBuffer = BufferUtil.newIntBuffer(1); 
 gl.glGetShaderiv(drawFragment, GL.GL_COMPILE_STATUS, 

 fragBuffer);  
   
 //attach vertex shader to the shader program 
 gl.glAttachShader(drawShaderProgram, drawVertex); 
 //attach fragment shader to the shader program 
 gl.glAttachShader(drawShaderProgram, drawFragment); 
 //links the program object specified by program 

13
0



 

 

 gl.glLinkProgram(drawShaderProgram);  
 } 
 
 public void polygon(GL gl) 
 { 
   gl.glClear(GL.GL_COLOR_BUFFER_BIT); //clears color buffer 
   gl.glColor3f(1,1,1); //set the color of the object 
  gl.glUseProgram(drawShaderProgram); //use shaders 

//specifies the object type will be draw 
   gl.glBegin(GL.GL_POLYGON);  

//set the vertices location of the polygon 
 gl.glVertex2f(0,0); 
 gl.glVertex2f(0.5f, 0); 
 gl.glVertex2f(0.5f, 0.5f); 
 gl.glVertex2f(0, 0.5f); 
 gl.glEnd(); //end to specifies the vertices 

gl.glUseProgram(0); //end to use shaders 
 gl.glFlush(); //forces to output the result immediately 

} 
 

 public void display(GLAutoDrawable drawable) 
 { 
 GL gl = drawable.getGL();  
  polygon(gl); //Draw the model 
 } 
  
 //I do not need these methods  

public void reshape(GLAutoDrawable drawable, int x, int y, int w,  
int h) {} 

public void displayChanged(GLAutoDrawable drawable,  
boolean modeChanged,  
boolean deviceChanged) {} 

} 

Vertex Shader 

/* draw.vert 2010/7/5 
* By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 
* Vertex shader for simple2.java 
* Scale polygon by multiply 0.5 in x, y, z coordinate 
* See section 2.3.2 for details 
*/ 
 
void main(void) 
{ 
 vec4 a = gl_Vertex; //get vertex position 
 //scale vertex in x, y, z coordinates 
 a.x = a.x * 0.5; 
 a.y = a.y * 0.5; 

 

 

 a.z = a.z * 0.5; 
 //calculate the new vertex position 
 gl_Position = gl_ModelViewProjectionMatrix * a;  
} 

Fragment Shader 

/* draw.frag 2010/7/5 
* By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 
* Fragment shader for simple2.java 
* change the polygon color to green 
* See section 2.3.2 for details 
*/ 
 
void main (void) 
{ 
 //define the color to green 
 gl_FragColor = vec4(0.0, 1.0, 0.0, 1.0);  
} 

 
Figure A3.1: Output (left: without shaders; right: with shaders) from simple2.java. 

 

13
1



 

 

Appendix A4 

/*=============================================================== 
** 
** Perlin noise 
** Copyright (C) 2005  Julien Guertault 
** 
** This program is free software; you can redistribute it and/or 
** modify it under the terms of the GNU General Public License 
** as published by the Free Software Foundation; either version 2 
** of the License, or (at your option) any later version. 
** 
** This program is distributed in the hope that it will be useful, 
** but WITHOUT ANY WARRANTY; without even the implied warranty of 
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the 
** GNU General Public License for more details. 
** 
** You should have received a copy of the GNU General Public License 
** along with this program; if not, write to the Free Software 
** Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, 
** USA. 
**  
** See section 2.5.1 for details 
** 
** ============================================================= */ 
 
/* 
** Improved Perlin noise. 
** Original Perlin noise implementation can be found at : 
** http://mrl.nyu.edu/~perlin/doc/oscar.html#noise 
*/ 
 
#include <stdlib.h> 
 
#define MOD 0xff 
Static int permut[256]; 
static const char gradient[32][4] = 
{ 
 { 1,  1,  1,  0},{ 1,  1,  0,  1},{ 1,  0,  1,  1},{ 0,  1,  1,  1}, 
 { 1,  1, -1,  0},{ 1,  1,  0, -1},{ 1,  0,  1, -1},{ 0,  1,  1, -1}, 
 { 1, -1,  1,  0},{ 1, -1,  0,  1},{ 1,  0, -1,  1},{ 0,  1, -1,  1}, 
 { 1, -1, -1,  0},{ 1, -1,  0, -1},{ 1,  0, -1, -1},{ 0,  1, -1, -1}, 
 {-1,  1,  1,  0},{-1,  1,  0,  1},{-1,  0,  1,  1},{ 0, -1,  1,  1}, 
 {-1,  1, -1,  0},{-1,  1,  0, -1},{-1,  0,  1, -1},{ 0, -1,  1, -1}, 
 {-1, -1,  1,  0},{-1, -1,  0,  1},{-1,  0, -1,  1},{ 0, -1, -1,  1}, 
 {-1, -1, -1,  0},{-1, -1,  0, -1},{-1,  0, -1, -1},{ 0, -1, -1, -1}, 
}; 
 
Void InitNoise (void) 
{ 

unsigned int i = 0; 
while (i < 256) 

 permut[i++] = rand () & MOD; 

 

 

} 
 
/* 
** Function finding out the gradient corresponding to the coordinates */ 
static int Indice(const int i, const int j, const int k,  

const int l) 
{ 

return (permut[(l + permut[(k + permut[(j + permut[i & MOD]) 
    & MOD]) & MOD]) & MOD] & 0x1f); 
} 
 
/* 
** Functions computing the dot product of the vector and the gradient */ 
static float Prod (const float a, const char b) 
{ 
 if (b > 0) return a; 
 if (b < 0) return -a; 
 return 0; 
} 
 
static float Dot_prod (const float x1, const char x2, 
    const float y1, const char y2, 
    const float z1, const char z2, 
    const float t1, const char t2) 
{ 

return (Prod (x1, x2) + Prod (y1, y2) + Prod (z1, z2)  
+ Prod (t1, t2)); 

} 
 
/* Functions computing interpolations */ 
static float Spline5 (const float state) 
{ 
 /* 
 ** Enhanced spline : 
 ** (3x^2 + 2x^3) is not as good as (6x^5 - 15x^4 + 10x^3) 
 */ 
 const float sqr = state * state; 
 return state * sqr * (6 * sqr - 15 * state + 10); 
} 
 
static float Linear (const float start, const float end, 
    const float state) 
{ return start + (end - start) * state; } 
 
/* Noise function, returning the Perlin Noise at a given point */ 
Float Noise (const float x, const float y, const float z,  

const float t) 
{ 
 /* The unit hypercube containing the point */ 
 const int x1 = (int) (x > 0 ? x : x - 1); 
 const int y1 = (int) (y > 0 ? y : y - 1); 
 const int z1 = (int) (z > 0 ? z : z - 1); 
 const int t1 = (int) (t > 0 ? t : t - 1); 
 const int x2 = x1 + 1; 
  const int y2 = y1 + 1; 

13
2



 

 

 const int z2 = z1 + 1; 
 const int t2 = t1 + 1; 
 
 /* The 16 corresponding gradients */ 
 const char * g0000 = gradient[Indice (x1, y1, z1, t1)]; 
 const char * g0001 = gradient[Indice (x1, y1, z1, t2)]; 
 const char * g0010 = gradient[Indice (x1, y1, z2, t1)]; 
 const char * g0011 = gradient[Indice (x1, y1, z2, t2)]; 
 const char * g0100 = gradient[Indice (x1, y2, z1, t1)]; 
 const char * g0101 = gradient[Indice (x1, y2, z1, t2)]; 
 const char * g0110 = gradient[Indice (x1, y2, z2, t1)]; 
 const char * g0111 = gradient[Indice (x1, y2, z2, t2)]; 
 const char * g1000 = gradient[Indice (x2, y1, z1, t1)]; 
 const char * g1001 = gradient[Indice (x2, y1, z1, t2)]; 
 const char * g1010 = gradient[Indice (x2, y1, z2, t1)]; 
 const char * g1011 = gradient[Indice (x2, y1, z2, t2)]; 
 const char * g1100 = gradient[Indice (x2, y2, z1, t1)]; 
 const char * g1101 = gradient[Indice (x2, y2, z1, t2)]; 
 const char * g1110 = gradient[Indice (x2, y2, z2, t1)]; 
 const char * g1111 = gradient[Indice (x2, y2, z2, t2)]; 
 
 /* The 16 vectors */ 
 const float dx1 = x - x1; 
 const float dx2 = x - x2; 
 const float dy1 = y - y1; 
 const float dy2 = y - y2; 
 const float dz1 = z - z1; 
 const float dz2 = z - z2; 
 const float dt1 = t - t1; 
 const float dt2 = t - t2; 
 
 /* The 16 dot products */ 
 const float b0000 = Dot_prod(dx1, g0000[0], dy1, g0000[1], 
    dz1, g0000[2], dt1, g0000[3]); 
 const float b0001 = Dot_prod(dx1, g0001[0], dy1, g0001[1], 
    dz1, g0001[2], dt2, g0001[3]); 
 const float b0010 = Dot_prod(dx1, g0010[0], dy1, g0010[1], 
    dz2, g0010[2], dt1, g0010[3]); 
 const float b0011 = Dot_prod(dx1, g0011[0], dy1, g0011[1], 
    dz2, g0011[2], dt2, g0011[3]); 
 const float b0100 = Dot_prod(dx1, g0100[0], dy2, g0100[1], 
    dz1, g0100[2], dt1, g0100[3]); 
 const float b0101 = Dot_prod(dx1, g0101[0], dy2, g0101[1], 
    dz1, g0101[2], dt2, g0101[3]); 
 const float b0110 = Dot_prod(dx1, g0110[0], dy2, g0110[1], 
    dz2, g0110[2], dt1, g0110[3]); 
 const float b0111 = Dot_prod(dx1, g0111[0], dy2, g0111[1], 
    dz2, g0111[2], dt2, g0111[3]); 
 const float b1000 = Dot_prod(dx2, g1000[0], dy1, g1000[1], 
    dz1, g1000[2], dt1, g1000[3]); 
 const float b1001 = Dot_prod(dx2, g1001[0], dy1, g1001[1], 
     dz1, g1001[2], dt2, g1001[3]); 
 const float b1010 = Dot_prod(dx2, g1010[0], dy1, g1010[1], 
    dz2, g1010[2], dt1, g1010[3]); 
 const float b1011 = Dot_prod(dx2, g1011[0], dy1, g1011[1], 

 

 

     dz2, g1011[2], dt2, g1011[3]); 
 const float b1100 = Dot_prod(dx2, g1100[0], dy2, g1100[1], 
    dz1, g1100[2], dt1, g1100[3]); 
 const float b1101 = Dot_prod(dx2, g1101[0], dy2, g1101[1], 
     dz1, g1101[2], dt2, g1101[3]); 
 const float b1110 = Dot_prod(dx2, g1110[0], dy2, g1110[1], 
    dz2, g1110[2], dt1, g1110[3]); 
 const float b1111 = Dot_prod(dx2, g1111[0], dy2, g1111[1], 
     dz2, g1111[2], dt2, g1111[3]); 
 
 /* Then the interpolations, down to the result */ 
 const float idx1 = Spline5 (dx1); 
 const float idy1 = Spline5 (dy1); 
 const float idz1 = Spline5 (dz1); 
 const float idt1 = Spline5 (dt1); 
 
 const float b111 = Linear (b1110, b1111, idt1); 
 const float b110 = Linear (b1100, b1101, idt1); 
 const float b101 = Linear (b1010, b1011, idt1); 
 const float b100 = Linear (b1000, b1001, idt1); 
 const float b011 = Linear (b0110, b0111, idt1); 
 const float b010 = Linear (b0100, b0101, idt1); 
 const float b001 = Linear (b0010, b0011, idt1); 
 const float b000 = Linear (b0000, b0001, idt1); 
 
 const float b11 = Linear (b110, b111, idz1); 
 const float b10 = Linear (b100, b101, idz1); 
 const float b01 = Linear (b010, b011, idz1); 
 const float b00 = Linear (b000, b001, idz1); 
 
 const float b1 = Linear (b10, b11, idy1); 
 const float b0 = Linear (b00, b01, idy1); 
 
 return Linear (b0, b1, idx1); 
} 

 

Figure A5.1: Guertault’s water surface. 

13
3



 

 

Appendix A5 

/* Loadpixels.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Load a map, and use it’s blue pixels as height values 
 * See section 3.1 for details. 
*/ 
 
package demos; 
 
import java.awt.*; 
import java.net.*; 
import java.awt.event.*; 
import java.awt.image.*; 
import javax.swing.*; 
 
public class Loadpixels extends JFrame  
{ 
 private static int imageWidth, imageHeight, imageSize;  
 private static int[] pixels; 
 static int[] heightvalue;  
 private static Image bufferImage[] = new Image[1];  
    
 public void Loadpixels(String filename) 

{ 
//call getImage method to load a image into image buffer 

   bufferImage[0] = getImage(filename);  
   imageWidth = bufferImage[0].getWidth(this); //get image width 

//get image height 
 imageHeight = bufferImage[0].getHeight(this);  
 imageSize = imageWidth* imageHeight; //compute image size 
  

//initialize pixels array of the image 
 pixels=new int[imageSize];  

//initialize height value array  
heightvalue=new int[imageSize];  
//get pixels from image buffer and store into pixels array 

 getImagePixels(bufferImage[0], pixels);  
 //copy the blue value of the pixels array to height value array  
 for(int i=0; i<imageSize; i++) 
 {  
   heightvalue[i]=pixels[i] & 0xff;   
 }    
 } 
  
 private Image getImage(String filename)  
 { 
   //new a URLClassLoader method 
 URLClassLoader urlLoader =  

(URLClassLoader)this.getClass().getClassLoader(); 
 URL url = null; //clear url 

 

 

 Image image = null; //clear image 
//appoint a image's url by use its name 

 url = urlLoader.findResource(filename);  
//load the image from url 

 image = Toolkit.getDefaultToolkit().getImage(url);  
//new a MediaTracker 

 MediaTracker mediatracker = new MediaTracker(this);  
 try  
 { 

//add a image into mediatracker's list 
 mediatracker.addImage(image, 0); 

//start to load image and wait until finish 
 mediatracker.waitForID(0);  
 } 
 //if it have exception catch the exception and let image return //null 
 catch (InterruptedException _ex)  
 { image = null; } 
 //if the image id is error let image return null too 
 if (mediatracker.isErrorID(0))  
 { image = null; } 
 return image;  
 } 
  
 private boolean getImagePixels(Image image, int pixels[])  
 { 
 //new a PixelGrabber method to get image pixels 
 PixelGrabber pixelgrabber =  

new PixelGrabber(image, 0, 0, imageWidth, imageHeight,  
pixels, 0, imageWidth); 

 //try to get image pixels 
 try  
 { pixelgrabber.grabPixels(); } 
 //if it have exception catch the exception and return false 
 catch (InterruptedException _ex)  
 { return false; } 
 return true; 
 } 
} 

 

  
 

13
4



 

 

Appendix A6 

/* Mesh.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Render land and water 
 * surface. 
 * See sections 3.1, 3.2, 6.1.2 for details. 
*/ 
package demos; 

 

import javax.swing.*; 

import javax.media.opengl.*; 

import javax.media.opengl.glu.*; 

import java.awt.event.*; 

import com.sun.opengl.util.*; 

import java.awt.*; 

import java.io.IOException; 

import java.util.Arrays; 

import java.util.List; 

import java.util.ArrayList; 

import java.nio.*; 

import java.io.BufferedReader; 

import java.io.FileReader; 

 

 

public class Mesh extends JFrame implements GLEventListener, KeyListener, 

MouseMotionListener, MouseListener 

{  

  private FPSAnimator animator; 

  private GLU glu; 

  private GLUT glut; 

  private GLCapabilities caps; 

  private GLCanvas canvas; 

  

  //land mesh  

private int landsize = 128; //land mesh size 

//land vertex coordinate 

private float landvalue[][][] = new float[landsize][landsize][3]; 

//land vertex array 

private float landArray[] = new float [landsize*landsize*3]; 

 

 

//land vertex buffer 

private FloatBuffer landBuffer  

= BufferUtil.newFloatBuffer(landsize*landsize*3); 

  //land color array 

private float landCArray[] = new float [landsize*landsize*3]; 

//land color buffer 

private FloatBuffer landCBuffer  

= BufferUtil.newFloatBuffer(landsize*landsize*3); 

  //land combine texture 

  private float combineTArray[] = new float [landsize*landsize*2]; 

private FloatBuffer combineTBuffer  

= BufferUtil.newFloatBuffer(landsize*landsize*2); 

  //land detail texture 

  private float detailTArray[] = new float [landsize*landsize*2]; 

private FloatBuffer detailTBuffer  

= BufferUtil.newFloatBuffer(landsize*landsize*2); 

  //land index 

  private int landIndex [] = new int [landsize*landsize*3*2];  

private IntBuffer landIndexBuffer  

= BufferUtil.newIntBuffer(landsize*landsize*3*2); 

  

  //water mesh 

private int watersize = 128; //water mesh size 

//water vertex coordinate 

private float watervalue[][][]  

= new float[watersize][watersize][3]; 

//this is the copy of watervalue[][][] which will not move in X-Z 

//plane, and it will not control by height function. 

private float watervalue2[][][] 

= new float[watersize][watersize][3];  

 //water vertex array 

private float waterArray[] = new float [watersize*watersize*3]; 

//water vertex buffer 

private FloatBuffer waterBuffer  

= BufferUtil.newFloatBuffer(watersize*watersize*3); 

  //water color  

  private float waterCArray[] = new float [watersize*watersize*3]; 

private FloatBuffer waterCBuffer  

= BufferUtil.newFloatBuffer(watersize*watersize*3); 

  //water combine texture 

private float materialTArray[]  

= new float [watersize*watersize*2]; 

13
5



 

 

private FloatBuffer materialTBuffer  

= BufferUtil.newFloatBuffer(watersize*watersize*2); 

  //water detail texture 

  private float waterTArray[] = new float [watersize*watersize*2]; 

private FloatBuffer waterTBuffer  

= BufferUtil.newFloatBuffer(watersize*watersize*2); 

  //water index 

  private int waterIndex [] = new int [watersize*watersize*3*2];  

private IntBuffer waterIndexBuffer  

= BufferUtil.newIntBuffer(watersize*watersize*3*2); 

  //height of bottom, equal to the height of land at that vertex 

  private float bottomvalue[][] = new float[watersize][watersize]; 

//height of bottom, equal to the height of land at that vertex 

WaterData waterData = new WaterData(); 

//for water shaders 

private int waterVertex, waterFragment, waterShaderProgram, 

  texWParam1, texWParam2; 

  

 //for the camera, move and rotate the model 

private float width, length, xdirection, ydirection,  

zdirection=20, rotatex, rotatey, rotatez, newx,  

newy, newx2, newy2; 

  private boolean button1 = false, button2 = false; //botton of mouse 

  private boolean fill=true, land=true, water=true, mesh=false, 

 move=true, blend=true, wavecurves=false; //key of keyboard 

  

private float t, tt = 0, T1=8, T2=4, T3=2, T4=1,  

profileHeight = 12, waterLevel = 19;  

//coastline 

  private List< Points > points1 = new ArrayList< Points >();  

  //wave curve 1 

private List< Points > points2 = new ArrayList< Points >(); 

//wave curve 2 

private List< Points > points3 = new ArrayList< Points >(); 

//wave curve 3  

private List< Points > points4 = new ArrayList< Points >(); 

//wave curve 4 

private List< Points > points5 = new ArrayList< Points >();  

 

private Velocities velocities = new Velocities();  

//for wave curve 1 

  private List< Vel > velocity2 = new ArrayList< Vel >(); 

 

 

  private List< Points > inNumbers1For2 =new ArrayList< Points >(); 

  private List< Points > outNumbers4For2 =new ArrayList< Points >();  

private List< FloatNum > originDistancew4For2  

= new ArrayList< FloatNum>(); 

private List<FloatNum> verticalVel2 = new ArrayList< FloatNum>();  

//for wave curve 2 

  private List< Vel > velocity3 = new ArrayList< Vel >(); 

  private List< Points > inNumbers1For3 =new ArrayList< Points >(); 

  private List< Points > outNumbers4For3 =new ArrayList< Points >(); 

private List< FloatNum > originDistancew4For3  

= new ArrayList< FloatNum>(); 

  private List<FloatNum> verticalVel3 = new ArrayList< FloatNum>(); 

  

 //for wave curve 3 

  private List< Vel > velocity4 = new ArrayList< Vel >(); 

  private List< Vel > originalVelocity4 = new ArrayList< Vel >(); 

private List< Points > positiveDirection4  

= new ArrayList< Points >(); 

  private List< Points > outNumbers5For4 = new ArrayList< Points >(); 

  private List< Points > inNumbers1For4 = new ArrayList< Points>(); 

  private List< FloatNum > SlopeFor4 = new ArrayList< FloatNum>(); 

  

 //for wave curve 4 

   private List< Vel > velocity5 = new ArrayList< Vel >(); 

  private List< Vel > originalVelocity5 = new ArrayList< Vel >(); 

private List< Points > positiveDirection5  

= new ArrayList< Points >(); 

  private List< Points > inNumbers1For5 = new ArrayList< Points>(); 

  private List< Points > inNumbers4For5 = new ArrayList< Points>(); 

  private List< FloatNum > SlopeFor5 = new ArrayList< FloatNum>(); 

  

 //for textures 

private int landTexture, detailTexture, waterDetailTexture,  

materialTexture, parTex, texParam; 

 //particle shaders 

int parVertex, parFragment, parShaderProgram; 

 

Particle particle = new Particle(); 

//water spray particle 

  private int waterSprayParSize = 25;  

  private List <Vel3D> parvalue3 = new ArrayList< Vel3D >(); 

  private List <FloatNum> parLife3 = new ArrayList< FloatNum >(); 

13
6



 

 

  private List <Vel3D> parVel3 = new ArrayList< Vel3D >(); 

  

  private List <Vel3D> parvalue4 = new ArrayList< Vel3D >(); 

  private List <FloatNum> parLife4 = new ArrayList< FloatNum >(); 

   private List <Vel3D> parVel4 = new ArrayList< Vel3D >(); 

  

 //breaking wave particle 

  private int breakingWaveParSize = 15; 

private float breakingWaveParValue[][][][]  

= new float [128][128][breakingWaveParSize][3];  

  private List<Vel3D> breakingWaveParVel = new ArrayList <Vel3D> (); 

private List<FloatNum> breakingWaveParLife  

= new ArrayList <FloatNum> ();  

  

  private Mesh() 

  {  

  super("mesh"); //set the JFrame title  

  //create GLcanvas 

  caps = new GLCapabilities();  

  canvas = new GLCanvas(caps); 

  //open event, keyboard, mouse and mouse motion listener 

  canvas.addGLEventListener(this); 

  canvas.addKeyListener(this); 

  canvas.addMouseListener(this); 

  canvas.addMouseMotionListener(this); 

  getContentPane().add(canvas); //add canvas content into window 

//set fps of animator 

  animator = new FPSAnimator(canvas, 999, true); 

  animator.start(); //start animator 

  } 

  

 

  private void createWindow() 

  {   

  setSize(800, 600); //set window size 

//set window in the middle of our desktop 

  setLocationRelativeTo(null);  

  //kill the process when the JFrame is closed 

  setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); 

  setVisible(true);  //display result in window 

  canvas.requestFocusInWindow(); //request window 

  } 

 

 

 

 

  public static void main(String[] args) //main function 

  { 

  //Create mesh and run the method createwindow() 

  new Mesh().createWindow ();    

   } 

  

  

  public void init(GLAutoDrawable drawable) 

  { 

  GL gl = drawable.getGL(); 

  glu = new GLU(); 

  int textureSize = 512; //land and water texture map size 

  

  //for load pixels, land textures, water textures 

Loadpixels loadpixels =new Loadpixels(); 

  LoadLandTexture loadLandTexture = new LoadLandTexture(); 

  LoadWaterTexture loadWaterTexture = new LoadWaterTexture();  

   

  buildLandData(); //build data for land mesh and get wave curves 

  buildWaterData(gl); //build data for water mesh 

  

  gl.glShadeModel(GL.GL_SMOOTH); //set model to smooth 

  gl.glEnable(GL.GL_DEPTH_TEST); //Enables Depth Testing  

// The Type Of Depth Testing To Do 

  gl.glDepthFunc(GL.GL_LESS);   

  

  //create land textures 

landTexture = genTexture(gl); 

  detailTexture = genTexture(gl); 

  ByteBuffer landTextureBuffer  

= BufferUtil.newByteBuffer(textureSize * textureSize * 3); 

  ByteBuffer landDetailTextureBuffer  

= BufferUtil.newByteBuffer(textureSize * textureSize * 3); 

  loadLandTexture.LoadLandTexture(gl, glu, landTexture, 

  detailTexture, landTextureBuffer,  

landDetailTextureBuffer); 

  

 //create water textures 

  waterDetailTexture = genTexture(gl); 

  materialTexture = genTexture(gl); 

13
7



 

 

  ByteBuffer waterTextureBuffer  

= BufferUtil.newByteBuffer(textureSize * textureSize * 3); 

  ByteBuffer materialTextureBuffer  

= BufferUtil.newByteBuffer(textureSize * textureSize * 3); 

  loadWaterTexture.LoadWaterTexture(gl, glu, 

  waterDetailTexture, materialTexture, waterTextureBuffer, 

materialTextureBuffer); 

  

 //build data for particles 

  buildParShader(gl); 

  parTex = genTexture(gl); 

  ByteBuffer waterSprayParTexBuffer  

= BufferUtil.newByteBuffer(32 * 32 * 3);  

  particle.buildBreakingWaveParData(breakingWaveParValue, 

  breakingWaveParSize, landsize, watersize, watervalue,  

breakingWaveParVel, breakingWaveParLife); 

  particle.buildWaterSprayParData(gl, glu, waterSprayParSize, 

 points4, parvalue3, watervalue, parLife3, parVel3,  

   parTex, waterSprayParTexBuffer); 

  particle.buildWaterSprayParData(gl, glu, waterSprayParSize, 

 points5, parvalue4, watervalue, parLife4, parVel4,  

   parTex, waterSprayParTexBuffer);  

 }  

 

/*****************************Land******************************/ 

 //build data for land and get wave curves 

  private void buildLandData() 

  { 

    //Load a map and read its pixels 

   Loadpixels loadpixels =new Loadpixels(); 

   loadpixels.Loadpixels("data/1285.jpg"); 

    //Set land vertices array 

    for (int z = 0; z < landsize; z++) 

   { 

    for (int x = 0; x < landsize; x++) 

    { 

     landvalue[x][z][0] = x-(landsize>>1);  

     landvalue[x][z][1]  

= loadpixels.heightvalue[(z*landsize + x)]/8f; 

     if(landvalue[x][z][1] == waterLevel+1) 

//this number mutiply 8 must be an integer 

landvalue[x][z][1]=19.875f;    

 

 

      landvalue[x][z][2] = -z+(landsize>>1); 

    } 

   } 

 

  //get wave curves 

  new getWaveCurves().getWaveCurves(points1, points2, points3, 

points4, points5, landsize, landvalue, waterLevel+1); 

 

  //put land data into array buffer for draw the land 

LandData landData = new LandData(); 

//land vertex 

  landData.triangleSArray(landsize, landsize, landvalue, 

 landArray, landBuffer); 

 //land vertex index 

  landData.getTriangleSIndex(landsize, landsize, landIndex, 

 landIndexBuffer); 

 //land color and textures 

  landData.getColorAndTexture(landsize, landsize, landvalue, 

 landCArray, combineTArray, detailTArray, landCBuffer,  

   combineTBuffer, detailTBuffer);  

  } 

  

  

 //draw land surface 

  private void buildLandPolygon(GL gl) 

  {  

    //define combine texture in texture unit 0 

    gl.glActiveTexture(GL.GL_TEXTURE0); 

  gl.glEnable(GL.GL_TEXTURE_2D); //enable 2D texture 

//bind texture 

   gl.glBindTexture(GL.GL_TEXTURE_2D, landTexture); 

 //set multitexture mode 

  gl.glTexEnvi(GL.GL_TEXTURE_ENV, GL.GL_TEXTURE_ENV_MODE, 

  GL.GL_COMBINE); 

  gl.glTexEnvi(GL.GL_TEXTURE_ENV, GL.GL_COMBINE_RGB, 

 GL.GL_ADD_SIGNED);  

  //define detail texture in texture unit 1 

   gl.glActiveTexture (GL.GL_TEXTURE1); 

  gl.glEnable(GL.GL_TEXTURE_2D);//enable 2D texture 

 //bind texture 

  gl.glBindTexture(GL.GL_TEXTURE_2D, detailTexture); 

    //vertex array  

13
8



 

 

    gl.glEnableClientState(GL.GL_VERTEX_ARRAY); 

    gl.glVertexPointer(3, GL.GL_FLOAT, 0, landBuffer); 

    //color array 

    gl.glEnableClientState(GL.GL_COLOR_ARRAY); 

  gl.glColorPointer(3, GL.GL_FLOAT, 0, landCBuffer); 

  //combine texture array  

  gl.glClientActiveTexture(GL.GL_TEXTURE0); 

  gl.glEnableClientState(GL.GL_TEXTURE_COORD_ARRAY);  

  gl.glTexCoordPointer(2, GL.GL_FLOAT, 0, combineTBuffer); 

  //detail texture array 

   gl.glClientActiveTexture (GL.GL_TEXTURE1); 

   gl.glEnableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

   gl.glTexCoordPointer(2, GL.GL_FLOAT, 0, detailTBuffer); 

  

   //draw array  

   for(int z=0; z<landsize-1; z++) 

   { 

 //draw land surface with triangle strip 

  gl.glDrawElements(GL.GL_TRIANGLE_STRIP, landsize*2, 

 GL.GL_UNSIGNED_INT, landIndexBuffer);  

  landIndexBuffer.position(z*landsize*2); //to next vertex 

  } 

  landIndexBuffer.rewind(); //rewind land index buffer 

  

  //disable all   

  gl.glDisableClientState(GL.GL_VERTEX_ARRAY); 

  gl.glDisableClientState(GL.GL_COLOR_ARRAY);  

   gl.glClientActiveTexture(GL.GL_TEXTURE0); 

  gl.glDisableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

  gl.glClientActiveTexture(GL.GL_TEXTURE1); 

  gl.glDisableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

  gl.glActiveTexture(GL.GL_TEXTURE0); 

  gl.glDisable(GL.GL_TEXTURE_2D); 

   gl.glActiveTexture(GL.GL_TEXTURE1); 

   gl.glDisable(GL.GL_TEXTURE_2D); 

  gl.glActiveTexture(GL.GL_TEXTURE0);   

}  

 

/*******************************Water***************************/ 

  //build data for water 

   private void buildWaterData(GL gl) 

   { 

 

 

   //Set water vertices array  

   for (int z = 0; z < watersize; z++) 

  { 

   for (int x = 0; x < watersize; x++) 

   { 

    watervalue[x][z][0] = x-(watersize>>1);  

    watervalue2[x][z][0]=watervalue[x][z][0];  

    watervalue[x][z][2] = -z+(watersize>>1); 

    watervalue2[x][z][2]=watervalue[x][z][2]; 

    watervalue2[x][z][1]=19;   

    bottomvalue[x][z] = 0; //build bottomvalue 

   } 

  } 

  

 //put water data to array buffer for draw the water 

 //water vertex index 

  waterData.getTriangleSIndex(watersize, watersize,  

waterIndex, waterIndexBuffer); 

 //water color and textures 

  waterData.getColorAndTexture(watersize, watersize, 

  watervalue, landvalue, bottomvalue, waterCArray, 

  materialTArray, waterTArray, waterCBuffer, 

  materialTBuffer, waterTBuffer); 

  

 //input bottomvalue by copy land height 

  for(int z=(watersize-landsize)>>1;  

z<(watersize+landsize)>>1; z++) 

  { 

   for(int x=(watersize-landsize)>>1; 

 x<(watersize+landsize)>>1; x++) 

   { 

    bottomvalue[x][z] = landvalue 

[x-((watersize-landsize)>>1)] 

[z-((watersize-landsize)>>1)][1]; 

   } 

  } 

  

  //get the nearest vertex of coastline for wave curve 4  

  velocities.getNearestInsidePoints(points4, points1, 

 landvalue, inNumbers1For4); 

 //get the nearest vertex of coastline for wave curve 5 

  velocities.getNearestInsidePoints(points5, points1, 

13
9



 

 

  landvalue, inNumbers1For5); 

  //get the nearest vertex of wave curve 4 for wave curve 5 

  velocities.getNearestInsidePoints(points5, points4, 

 landvalue, inNumbers4For5); 

  //get the direction of velocity of wave curve 3 

  velocities.getOriginalVelocity(points1, points4,  

watervalue2, velocity4, originalVelocity4,  

positiveDirection4);  

 //get the direction of velocity of wave curve 4 

  velocities.getOriginalVelocity(points1, points5, 

  watervalue2, velocity5, originalVelocity5, 

  positiveDirection5); 

//get the outside vertex for wave curve 3 

  velocities.getNearestOutPoints(points4, points5, landvalue, 

 outNumbers5For4);  

  HeightOfWaveCurve heightOfWaveCurve  

= new HeightOfWaveCurve(); 

 //get slope for wave curve 3 for adjust its height 

  heightOfWaveCurve.getSlope(landvalue, points1, points4, 

 inNumbers1For4, SlopeFor4); 

 //get slope for wave curve 4 for adjust its height 

  heightOfWaveCurve.getSlope(landvalue, points1, points5,  

inNumbers1For5, SlopeFor5); 

  

 //create vertical velocity for wave curve 1 

  for(int n=0; n<points2.size(); n++) 

  { 

   verticalVel2.add(new FloatNum(0)); 

  }  

 //create vertical velocity for wave curve 2 

  for(int n=0; n<points3.size(); n++) 

  { 

   verticalVel3.add(new FloatNum(0));  

  } 

  

 //create water shaders and shader program 

  waterVertex = gl.glCreateShader(GL.GL_VERTEX_SHADER); 

  waterFragment = gl.glCreateShader(GL.GL_FRAGMENT_SHADER); 

  waterShaderProgram = gl.glCreateProgram(); 

  try { waterShader(gl); } catch (IOException e) { }  

  } 

  

 

 

 //build water shader 

  private void waterShader(GL gl)throws IOException 

{ 

 //read vertex shader code, and put it into string 

    BufferedReader brv  

= new BufferedReader(new FileReader("water.vert")); 

  String vsrc = ""; 

   String lineV; 

  while ((lineV = brv.readLine()) != null) { 

  vsrc += lineV + "\n"; 

  } 

  String Vsrc [] = new String [1]; 

  Vsrc [0] = vsrc; 

  gl.glShaderSource(waterVertex, 1, Vsrc, null); 

  gl.glCompileShader(waterVertex); //compile vertex shader 

 //new vertex shader buffer 

  IntBuffer vertBuffer = BufferUtil.newIntBuffer(1); 

   gl.glGetShaderiv(waterVertex, GL.GL_COMPILE_STATUS, 

 vertBuffer); //get vertex shader information 

 

//read fragment shader code, and put it into string 

    BufferedReader brf  

= new BufferedReader(new FileReader("water.frag")); 

 String fsrc = ""; 

 String line; 

 while ((line=brf.readLine()) != null)  

 { 

  fsrc += line + "\n"; 

 } 

 String Fsrc [] = new String [1]; 

 Fsrc [0] = fsrc; 

 gl.glShaderSource(waterFragment, 1, Fsrc, null); 

 gl.glCompileShader(waterFragment); //compile fragment shader 

  //new fragment shader buffer 

 IntBuffer fragBuffer = BufferUtil.newIntBuffer(1); 

//get fragment shader information 

 gl.glGetShaderiv(waterFragment, GL.GL_COMPILE_STATUS,  

fragBuffer);  

    

 //attach shader objects to shader program 

 gl.glAttachShader(waterShaderProgram, waterVertex); 

 gl.glAttachShader(waterShaderProgram, waterFragment); 

14
0



 

 

 gl.glLinkProgram(waterShaderProgram); //link program 

  

 //get the textures location for shaders 

 texWParam1 = gl.glGetUniformLocation 

(waterShaderProgram, "texture1"); 

 texWParam2 = gl.glGetUniformLocation 

(waterShaderProgram, "texture2"); 

  } 

  

 

 //draw water surface 

  private void buildWaterPolygon(GL gl) 

  {  

   int X1, Z1, X2, Z2, X, Z; 

   Phase phase=new Phase(); 

 

   //create wave profile using phase function 

   for (int z = 0; z < watersize; z++) 

  { 

   for (int x = 0; x < watersize; x++) 

   {  

 //water over the land 

    if(bottomvalue[x][z]<waterLevel) 

     { 

 //combine 4 wave profile functions to get basic wave 

//heiht 

    watervalue[x][z][1]  = 

(8*(float)Math.pow((phase.Phase(x, 0, T1, t, 

bottomvalue[x][z])-0.5),2)-1)*phase.A 

      +(8*(float)Math.pow((phase.Phase(x, 0, T2, t, 

bottomvalue[x][z])-0.5),2)-1)*phase.A*0.25f 

     +(8*(float)Math.pow((phase.Phase(x, 0, T3, t, 

bottomvalue[x][z])-0.5),2)-1)*phase.A*0.0625f 

     +(8*(float)Math.pow((phase.Phase(x, 0, T4, t, 

bottomvalue[x][z])-0.5),2)-1)*phase.A 

*0.015625f;  

 //plus water level  

    watervalue[x][z][1] += waterLevel;  

} 

    else //water under the land at height of water level 

     watervalue[x][z][1] = waterLevel; 

   } 

 

 

  } 

  

  //adjust height value of wave curves 

  HeightOfWaveCurve heightOfWaveCurve  

= new HeightOfWaveCurve(); 

  //let the height of wave curve 3 always cover the land 

  heightOfWaveCurve.adjustHeightOfWaveCurve(landvalue,  

watervalue, points4, SlopeFor4,  

inNumbers1For4, points1, 0.2f); 

//let the height of wave curve 4 always cover the land 

  heightOfWaveCurve.adjustHeightOfWaveCurve(landvalue, 

 watervalue, points5, SlopeFor5, 

   inNumbers1For5, points1, 0.5f); 

  //adjust height value of wave curve 1, 2 

heightOfWaveCurve.adjustHeightOfW12(watervalue, points2, 

 verticalVel2, watervalue2); 

heightOfWaveCurve.adjustHeightOfW12(watervalue, points3,  

verticalVel3, watervalue2); 

 //give vertical velocity to wave curve 1 and 2 

  if((t-1)%8==0&&t!=0) 

  { 

   for(int n=0; n<verticalVel3.size(); n++) 

   { 

    verticalVel3.get(n).N = 0.15f;   

   }  

   for(int n=0; n<verticalVel2.size(); n++) 

   { 

    verticalVel2.get(n).N = 0.25f; 

   }  

  } 

 //keep wave curve 3&4 not under the water level to much 

  for(int c=0; c<points4.size(); c++) 

  { 

   X=points4.get(c).X; 

   Z=points4.get(c).Z; 

   if(watervalue[X][Z][1]<=18.5f) 

    watervalue[X][Z][1]=19f; 

  } 

  for(int c=0; c<points5.size(); c++) 

  { 

   X=points5.get(c).X; 

   Z=points5.get(c).Z; 

14
1



 

 

   if(watervalue[X][Z][1]<=18.5f) 

    watervalue[X][Z][1]=19f; 

  } 

 //put water vertex data into array buffer for draw it 

  waterData.triangleSArray(watersize, watersize, watervalue, 

  waterArray, waterBuffer); 

  gl.glUseProgram(waterShaderProgram);//use shaders 

 //set water detail texture in unit 0 

  gl.glActiveTexture(GL.GL_TEXTURE0); 

  gl.glEnable(GL.GL_TEXTURE_2D); //enable 2D texture 

 //bind texture 

  gl.glBindTexture(GL.GL_TEXTURE_2D, waterDetailTexture); 

  gl.glUniform1i(texWParam1, 0); //link to shaders 

 //set water material texture in unit 1 

  gl.glActiveTexture(GL.GL_TEXTURE1); 

 gl.glEnable(GL.GL_TEXTURE_2D); //enable 2D texture 

 //bind texture 

  gl.glBindTexture(GL.GL_TEXTURE_2D, materialTexture); 

 gl.glUniform1i(texWParam2, 1); //link to shaders  

    //vertex array  

     gl.glEnableClientState(GL.GL_VERTEX_ARRAY); 

     gl.glVertexPointer(3,   GL.GL_FLOAT,   0,   waterBuffer); 

    //color array 

    gl.glEnableClientState(GL.GL_COLOR_ARRAY); 

  gl.glColorPointer(3, GL.GL_FLOAT, 0, waterCBuffer); 

  //material texture array  

  gl.glClientActiveTexture(GL.GL_TEXTURE0); 

   gl.glEnableClientState(GL.GL_TEXTURE_COORD_ARRAY);  

   gl.glTexCoordPointer(2, GL.GL_FLOAT, 0, materialTBuffer); 

   //water texture array 

   gl.glClientActiveTexture (GL.GL_TEXTURE1); 

  gl.glEnableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

  gl.glTexCoordPointer(2, GL.GL_FLOAT, 0, waterTBuffer); 

  

  //draw array  

  for(int z=0; z<watersize-1; z++) 

  { 

  //draw water surface with triangle strip 

  gl.glDrawElements(GL.GL_TRIANGLE_STRIP, watersize*2, 

 GL.GL_UNSIGNED_INT, waterIndexBuffer);  

   waterIndexBuffer.position(z*watersize*2);//to next vertex 

  } 

 

 

   waterIndexBuffer.rewind(); //rewind water index buffer 

   //disable all   

  gl.glDisableClientState(GL.GL_VERTEX_ARRAY); 

   gl.glDisableClientState(GL.GL_COLOR_ARRAY);  

   gl.glClientActiveTexture(GL.GL_TEXTURE0); 

   gl.glDisableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

   gl.glClientActiveTexture(GL.GL_TEXTURE1); 

   gl.glDisableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

   gl.glClientActiveTexture(GL.GL_TEXTURE2); 

   gl.glDisableClientState(GL.GL_TEXTURE_COORD_ARRAY); 

   gl.glActiveTexture(GL.GL_TEXTURE0); 

   gl.glDisable(GL.GL_TEXTURE_2D); 

   gl.glActiveTexture(GL.GL_TEXTURE1); 

   gl.glDisable(GL.GL_TEXTURE_2D); 

   gl.glActiveTexture(GL.GL_TEXTURE0); 

   gl.glUseProgram(0); 

  

   gl.glDisable(GL.GL_BLEND); //disable blend 

   gl.glLineWidth(3); //set line width to 3 

   gl.glPointSize(6); //set point size to 6 

  //draw wave curves 

  if(wavecurves==true) 

   { 

   //draw the wave curve 1 

   gl.glColor3f(1,1,0); //wave curve 1 color 

   gl.glBegin(GL.GL_LINE_STRIP); 

   for (int c=0; c<points2.size(); c++) 

   { 

    X=points2.get(c).X; 

     Z=points2.get(c).Z; 

    gl.glVertex3f(watervalue[X][Z][0],  

watervalue[X][Z][1], watervalue[X][Z][2]); 

   } 

   gl.glEnd();   

    //draw the wave curve 2 

   gl.glColor3f(1,0,1); //wave curve 2 color 

    gl.glBegin(GL.GL_LINE_STRIP); 

    for (int c=0; c<points3.size(); c++) 

   { 

    X=points3.get(c).X; 

     Z=points3.get(c).Z; 

    gl.glVertex3f(watervalue[X][Z][0],  

14
2



 

 

watervalue[X][Z][1], watervalue[X][Z][2]); 

   } 

   gl.glEnd();   

   //draw the wave curve 3 

     gl.glColor3f(1,0,0); //wave curve 3 color 

    gl.glBegin(GL.GL_LINE_STRIP); 

   for (int c=0; c<points4.size(); c++) 

   { 

    X=points4.get(c).X; 

     Z=points4.get(c).Z; 

    gl.glVertex3f(watervalue[X][Z][0],  

watervalue[X][Z][1], watervalue[X][Z][2]); 

    } 

   gl.glEnd(); 

   //draw the wave curve 4 

   gl.glColor3f(1,1,1); //wave curve 4 color 

    gl.glBegin(GL.GL_LINE_STRIP); 

    for (int c=0; c<points5.size(); c++) 

   { 

    X=points5.get(c).X; 

     Z=points5.get(c).Z; 

    gl.glVertex3f(watervalue[X][Z][0],  

 watervalue[X][Z][1], watervalue[X][Z][2]); 

   } 

   gl.glEnd(); 

  }   

 

  gl.glLineWidth(1); //set line width to 1 

  gl.glPointSize(1); //set point size 1 

  gl.glEnable(GL.GL_BLEND); //enable blend 

  

  //velocity about the wave curve 3 

  for(int n=0; n<points4.size(); n++) 

  { 

   X=points4.get(n).X; 

   Z=points4.get(n).Z; 

 //update x and z value of wave curve 3 

    watervalue[X][Z][0]+=0.1f*velocity4.get(n).X; 

    watervalue[X][Z][2]+=0.1f*velocity4.get(n).Z;  

  } 

 //update wave curve 3 velocity 

  velocities.getVelocityForHittingWaveCurve(points4, 

 

 

  watervalue, watervalue2, points1, points5, 

   velocity4, positiveDirection4, outNumbers5For4, 

  inNumbers1For4, originalVelocity4);  

 //give velocity to wave curve 3 to keep it move 

  for(int n=0; n<points4.size(); n++) 

  { 

    if((t-5)%8==0&&t!=0) 

   { 

 //update wave curve 3 original velocity 

    velocities.getPlusVelocity(points1, inNumbers1For4,  

points4, watervalue2, watervalue, 

  originalVelocity4); 

 //plus original velocity to wave curve 3 

   velocity4.get(n).X += 2f*originalVelocity4.get(n).X; 

    velocity4.get(n).Z += 2f*originalVelocity4.get(n).Z;  

    }  

  } 

  

  //velocity about the wave curve 4 

  for(int n=0; n<points5.size(); n++) 

  { 

   X=points5.get(n).X; 

   Z=points5.get(n).Z; 

 //update x and z value of wave curve 3 

   watervalue[X][Z][0]+=0.1f*velocity5.get(n).X; 

    watervalue[X][Z][2]+=0.1f*velocity5.get(n).Z;  

  } 

 //update wave curve 4 velocity 

  velocities.getVelocityForOtherWaveCurves(points5, 

watervalue, watervalue2, points4, velocity5,  

   positiveDirection5, inNumbers4For5,originalVelocity5); 

 //give velocity to wave curve 4 to keep it move 

  for(int n=0; n<points5.size(); n++) 

  { 

   if((t-5)%8==0&&t!=0) 

   { 

 //update wave curve 4 original velocity 

    velocities.getPlusVelocity(points1, inNumbers1For5, 

  points5, watervalue2, watervalue,  

originalVelocity5); 

 //plus original velocity to wave curve 4 

   velocity5.get(n).X += 1f*originalVelocity5.get(n).X; 

14
3



 

 

   velocity5.get(n).Z += 1f*originalVelocity5.get(n).Z; 

   }  

  } 

  

 //create and copy wave curve 3&4 velocity for collision detction 

  List< Vel > copyOfvelocity4 = new ArrayList< Vel >(); 

  List< Vel > copyOfvelocity5 = new ArrayList< Vel >(); 

  for(int v4 = 0; v4 < velocity4.size(); v4++) 

{ 

   copyOfvelocity4.add(new Vel(velocity4.get(v4).X, 

 velocity4.get(v4).Z)); 

  } 

  for(int v5 = 0; v5 < velocity5.size(); v5++) 

{ 

   copyOfvelocity5.add(new Vel(velocity5.get(v5).X, 

  velocity5.get(v5).Z)); 

  } 

  

 //deal with water/land and waves collisions 

  Collision collision = new Collision(); 

  collision.getVelocityForWaveCurves(points4, watervalue, 

  points5, velocity4, copyOfvelocity4, velocity5, 

  copyOfvelocity5, outNumbers5For4, watervalue2,  

originalVelocity4, originalVelocity5, points1, 

  inNumbers1For4); 

  

  //check the new condition of breaking wave particles 

  boolean p1, p2, p3, p4, p5, p6, p7, p8; 

  for (int z = 1; z < watersize-1; z++) 

  { 

   for (int x = 1; x < watersize-1; x++) 

   {  

    p1=false; p2=false; p3=false; p4=false; p5=false; 

  p6=false; p7=false; p8=false; 

 

 //find the highest vertex by compare neighbors 

    if(watervalue[x-1][z][1]<watervalue[x][z][1])  

p1=true; 

    if(watervalue[x-1][z+1][1]<watervalue[x][z][1])  

 p2=true; 

    if(watervalue[x][z+1][1]<watervalue[x][z][1])  

 p3=true; 

 

 

    if(watervalue[x+1][z+1][1]<watervalue[x][z][1])  

  p4=true; 

    if(watervalue[x+1][z][1]<watervalue[x][z][1])  

 p5=true; 

    if(watervalue[x+1][z-1][1]<watervalue[x][z][1])  

 p6=true; 

    if(watervalue[x][z-1][1]<watervalue[x][z][1])  

  p7=true; 

    if(watervalue[x-1][z-1][1]<watervalue[x][z][1])  

 p8=true; 

  

 //check the condition of breaking wave 

    if(p1==true && p2==true && p3==true && p5==true  

&& p6==true && p7==true && p8==true) 

    { 

 //check left front and right back vertices 

     if(getTan(watervalue[x][z][1], 

 watervalue[x-1][z+1][1])  

+ getTan(watervalue[x][z][1],  

watervalue[x+1][z-1][1]) < 2.1f) 

     {      

    for(int i=0; i<breakingWaveParSize; i++) 

    { 

 //give particle coordinate 

     breakingWaveParValue[x][z][i][0]  

= watervalue[x][z][0] 

+ (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][1]  

 = watervalue[x][z][1] 

 + (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][2]  

= watervalue[x][z][2] 

+ (float)Math.random()-0.5f;  

 //give particle vertical velocity 

breakingWaveParVel.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).Y  

      = (float)Math.random()-0.5f; 

 //give particle life 

     breakingWaveParLife.get( 

   (z-1)*(watersize-2)*breakingWaveParSize 

  + (x-1)*breakingWaveParSize + i).N = 1;  

14
4



 

 

    } 

   } 

//check left and right vertices 

   else if(getTan(watervalue[x][z][1], 

  watervalue[x-1][z][1])  

+ getTan(watervalue[x][z][1], 

 watervalue[x+1][z][1]) < 2.1f) 

     {      

     for(int i=0; i<breakingWaveParSize; i++) 

     { 

//give particle coordinate 

       breakingWaveParValue[x][z][i][0]  

 = watervalue[x][z][0] 

 + (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][1]  

 = watervalue[x][z][1] 

  + (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][2]  

 = watervalue[x][z][2] 

+ (float)Math.random()-0.5f;  

//give particle vertical velocity 

     breakingWaveParVel.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).Y  

      = (float)Math.random()-0.5f; 

//give particle life 

breakingWaveParLife.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).N = 1;  

    } 

   } 

//check front and back vertices 

   else if(getTan(watervalue[x][z][1], 

  watervalue[x][z+1][1])  

+ getTan(watervalue[x][z][1], 

 watervalue[x][z-1][1]) < 2.1f) 

     {      

     for(int i=0; i<breakingWaveParSize; i++) 

     { 

//give particle coordinate 

      breakingWaveParValue[x][z][i][0]  

 = watervalue[x][z][0] 

 

 

+ (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][1]  

 = watervalue[x][z][1] 

+ (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][2]  

= watervalue[x][z][2] 

+ (float)Math.random()-0.5f;  

//give particle vertical velocity 

breakingWaveParVel.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).Y  

      = (float)Math.random()-0.5f; 

//give particle life 

breakingWaveParLife.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).N = 1;  

    } 

   } 

//check left back and right front vertices 

   else if(getTan(watervalue[x][z][1], 

   watervalue[x-1][z-1][1])  

  + getTan(watervalue[x][z][1], 

  watervalue[x+1][z+1][1]) < 2.1f) 

     {      

     for(int i=0; i<breakingWaveParSize; i++) 

     { 

//give particle coordinate 

      breakingWaveParValue[x][z][i][0]  

= watervalue[x][z][0] 

+ (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][1]  

= watervalue[x][z][1] 

 + (float)Math.random()-0.5f; 

     breakingWaveParValue[x][z][i][2]  

 = watervalue[x][z][2] 

+ (float)Math.random()-0.5f;  

//give particle vertical velocity 

breakingWaveParVel.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).Y  

      = (float)Math.random()-0.5f; 

//give particle life 

14
5



 

 

breakingWaveParLife.get( 

(z-1)*(watersize-2)*breakingWaveParSize  

+ (x-1)*breakingWaveParSize + i).N = 1;  

    } 

   } 

  } 

   } 

  } 

 //time interval 

  tt+=1; 

  t=tt/10;      

  } 

  

 

 //get arc tangent 

  private float getTan(float y, float y1) 

  { 

  return (float)Math.atan(1/(y-y1)); 

}  

 

 

//======================Partilces shader=======================  

   //build particle shaders and program 

private void buildParShader(GL gl) 

   { 

   parVertex = gl.glCreateShader(GL.GL_VERTEX_SHADER); 

  parFragment = gl.glCreateShader(GL.GL_FRAGMENT_SHADER); 

  parShaderProgram = gl.glCreateProgram(); 

  try { parShader(gl); } catch (IOException e) { } 

  } 

  

 

 //build particle shaders 

  private void parShader(GL gl)throws IOException 

{ 

 //read vertex shader code, and put it into string 

    BufferedReader brv = new BufferedReader( 

new FileReader("par.vert")); 

 String vsrc = ""; 

 String lineV; 

 while ((lineV = brv.readLine()) != null)  

{ 

 

 

  vsrc += lineV + "\n"; 

  } 

  String Vsrc [] = new String [1]; 

  Vsrc [0] = vsrc; 

   gl.glShaderSource(parVertex, 1, Vsrc, null); 

    gl.glCompileShader(parVertex); //compile vertex shader 

 //new vertex shader buffer 

   IntBuffer vertBuffer = BufferUtil.newIntBuffer(1); 

   gl.glGetShaderiv(parVertex, GL.GL_COMPILE_STATUS, 

 vertBuffer); //get vertex shader information 

 

//read fragment shader code, and put it into string 

     BufferedReader brf = new BufferedReader( 

new FileReader("par.frag")); 

 String fsrc = ""; 

 String line; 

 while ((line=brf.readLine()) != null)  

 { 

  fsrc += line + "\n"; 

 } 

 String Fsrc [] = new String [1]; 

 Fsrc [0] = fsrc; 

 gl.glShaderSource(parFragment, 1, Fsrc, null); 

 gl.glCompileShader(parFragment); //compile fragment shader 

 //new fragment shader buffer 

 IntBuffer fragBuffer = BufferUtil.newIntBuffer(1); 

 //get fragment shader information 

 gl.glGetShaderiv(parFragment, GL.GL_COMPILE_STATUS,  

fragBuffer);    

 //attach shader objects to shader program 

 gl.glAttachShader(parShaderProgram, parVertex); 

 gl.glAttachShader(parShaderProgram, parFragment); 

 gl.glLinkProgram(parShaderProgram); 

 

  //get the textures location for shaders 

 texParam = gl.glGetUniformLocation(parShaderProgram, 

 "texture"); 

}  

 

 

/***********************Draw The Model************************/  

   public void display(GLAutoDrawable drawable) 

14
6



 

 

  { 

  GL gl = drawable.getGL(); 

  gl.glClearColor(0.3f,0.3f,0.3f,0f); //set clear color 

  gl.glClearDepth(1.0f); //set clear depth 

//clear window 

  gl.glClear(GL.GL_COLOR_BUFFER_BIT|GL.GL_DEPTH_BUFFER_BIT);  

 gl.glMatrixMode(GL.GL_MODELVIEW); //At modelview mode 

//Set the current matrix to an identity matrix 

  gl.glLoadIdentity();  

  //Translatef in x, y direction with the value of  

//xdirection/40, ydirection/40  

  gl.glTranslatef(xdirection/40, ydirection/40,0); 

  //Scale the model in x,y,z direction with the value of 

//zdirection/40, zdirection/40, zdirection/40  

  gl.glScalef(zdirection/40, zdirection/40, zdirection/40); 

  gl.glScalef(0.3f, 0.3f, 0.3f); 

//Rotate 90 angle with a axes(0,0,0)to (1,0,0)  

gl.glRotatef(30,1,0,0); 

  gl.glRotatef(rotatex,1,0,0);//Rotate rotatex angle with x axes 

  gl.glRotatef(rotatey,0,1,0);//Rotate rotatey angle with y axes 

  gl.glRotatef(rotatez,0,0,1);//Rotate rotatez angle with z axes 

 

  buildCoordinate(gl); //Draw the coordinate axes 

      

  if(land==true) 

  { 

    if(mesh==true) 

 //set polygon mode to mesh 

     gl.glPolygonMode(GL.GL_FRONT_AND_BACK,GL.GL_LINE); 

   else 

 //set polygon mode to surface 

   gl.glPolygonMode(GL.GL_FRONT_AND_BACK,GL.GL_FILL);  

   buildLandPolygon(gl); //Draw the land surface  

  } 

   

  if(fill==true)  

 //set polygon mode to surface 

   gl.glPolygonMode(GL.GL_FRONT_AND_BACK,GL.GL_FILL); 

  else 

 //set polygon mode to mesh 

   gl.glPolygonMode(GL.GL_FRONT_AND_BACK,GL.GL_LINE);  

     

 

 

  if(blend==true) 

    gl.glEnable(GL.GL_BLEND); //enable blend 

 //set blend mode 

   gl.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE);  

    

  if(water==true) 

    buildWaterPolygon(gl); //Draw the water surface 

   

 //draw breaking wave particle 

  particle.buildBreakingWaveParticle(gl, parShaderProgram, 

  parTex, texParam, watersize, breakingWaveParSize,  

   breakingWaveParLife, breakingWaveParVel, 

 breakingWaveParValue, watervalue);  

 

 //draw water spray particle 

  particle.buildWaterSprayParticle(gl, waterSprayParSize,  

points4, parvalue3, watervalue, velocity4, parLife3,  

   parVel3, parShaderProgram, parTex, texParam); 

  particle.buildWaterSprayParticle(gl, waterSprayParSize, 

 points5, parvalue4, watervalue, velocity5, parLife4,  

   parVel4, parShaderProgram, parTex, texParam); 

      

  gl.glDisable(GL.GL_BLEND); //disable blend 

 

  gl.glFlush(); //output the results immediately 

   drawable.swapBuffers(); //swap buffers 

  } 

  

  

   private void buildCoordinate(GL gl) //draw 3D coordinate axes 

  { 

   glut = new GLUT(); 

   gl.glLineWidth(3);   

   //x axis 

   gl.glColor3f(1,0,0); 

   gl.glBegin(GL.GL_LINES); 

     gl.glVertex3i(0, 30, 0); 

    gl.glVertex3i(5, 30, 0); 

   gl.glEnd(); 

    gl.glPushMatrix();  

 gl.glTranslatef(5, 30, 0);  

 gl.glRotatef(90, 0, 1, 0);  

14
7



 

 

  glut.glutWireCone(0.3f, 1, 5, 5);  

 gl.glPopMatrix(); 

    //y axis 

 gl.glColor3f(0,1,0); 

   gl.glBegin(GL.GL_LINES); 

    gl.glVertex3i(0, 30, 0); 

    gl.glVertex3i(0, 35, 0); 

   gl.glEnd(); 

gl.glPushMatrix();  

    gl.glTranslatef(0, 35, 0);  

   gl.glRotatef(-90, 1, 0, 0);  

  glut.glutWireCone(0.3f, 1, 5, 5);  

  gl.glPopMatrix(); 

 //z axis  

   gl.glColor3f(0,0,1); 

   gl.glBegin(GL.GL_LINES); 

    gl.glVertex3i(0, 30, 0); 

    gl.glVertex3i(0, 30, 5); 

   gl.glEnd(); 

    gl.glPushMatrix();  

    gl.glTranslatef(0, 30, 5);  

    glut.glutWireCone(0.3f, 1, 5, 5);  

 gl.glPopMatrix(); 

   gl.glLineWidth(1);  

   } 

  

  

   public void reshape(GLAutoDrawable drawable, int x, int y, int w, 

 int h)  

   { 

   GL gl = drawable.getGL(); 

   gl.glViewport(0, 0, w, h); //Set area of viewport 

   gl.glMatrixMode(GL.GL_PROJECTION); //At projection mode 

   gl.glLoadIdentity(); 

   //Set area of projection view by window size 

   if (w <= h) 

   gl.glOrtho(-10.0, 10.0, -10.0 * (float) h / (float) w,  

10.0 * (float) h/ (float) w, -500.0, 500.0); 

   else 

   gl.glOrtho(-10.0 * (float) w / (float) h,  

10.0 * (float) w/ (float) h, -10.0, 10.0, -500.0, 500.0); 

  gl.glMatrixMode(GL.GL_MODELVIEW); //At modelview mode 

 

 

  gl.glLoadIdentity(); 

   width=w; 

   length=h; 

  } 

 

 

 //for build texture 

 private int genTexture(GL gl)  

 { 

   final int[] tmp = new int[1]; 

   gl.glGenTextures(1, tmp, 0); 

    return tmp[0]; 

} 

 

 

 //for build buffer 

 private int genBuffer(GL gl)  

 { 

   final int[] tmp = new int[1]; 

   gl.glGenBuffers(1, tmp, 0); 

   return tmp[0]; 

   } 

  

  

   public void keyPressed(KeyEvent e)  

   { 

 switch (e.getKeyCode())  

 { 

 case KeyEvent.VK_UP: //up key is down 

 rotatex -= 3f;  

 break; 

 case KeyEvent.VK_DOWN: //down key is down 

 rotatex += 3f;  

 break; 

 case KeyEvent.VK_LEFT: //Left key is down 

 rotatey -= 3f;  

 break; 

 case KeyEvent.VK_RIGHT: //right key is down 

 rotatey += 3f;  

 break; 

 case KeyEvent.VK_Z: //Z key is down 

  rotatez -= 3f;  

14
8



 

 

 break; 

 case KeyEvent.VK_X: //X key is down 

 rotatez += 3f;  

 break; 

 case KeyEvent.VK_ESCAPE: //esc key is down 

 System.exit(0); 

 break; 

 case KeyEvent.VK_PAGE_UP: //pageup key is down 

 zdirection+=1f; 

 break; 

 case KeyEvent.VK_PAGE_DOWN: //pagedown key is down 

 zdirection-=1f; 

 break;  

 case KeyEvent.VK_F: //F key is down 

 fill=!fill;  

 break; 

 case KeyEvent.VK_W: //W key is down 

 water=!water;  

 break; 

 case KeyEvent.VK_L: //L key is down 

 land=!land;  

 break;  

 case KeyEvent.VK_M: //M key is down 

 mesh=!mesh;  

 break;  

 case KeyEvent.VK_S: //S key is down 

 move=!move;  

 break;  

 case KeyEvent.VK_B: //B key is down 

 blend=!blend; 

 break; 

 case KeyEvent.VK_O: //O key is down 

 wavecurves=!wavecurves; 

 break; 

 }  

  } 

  

  

  public void mousePressed(MouseEvent e) 

 {  

  //mouse left key is down 

  if(e.getButton()==MouseEvent.BUTTON1)  

 

 

  { 

    button1=true; 

  //update mouse coordinate 

    newx=e.getX();newy=e.getY(); 

   } 

  else button1=false;  

 //mouse right key is down 

   if(e.getButton()==MouseEvent.BUTTON3) 

   { 

    button2=true; 

    newx2=e.getX(); 

  newy2=e.getY();  

  }  

   else button2=false;     

  } 

  

  

  public void mouseDragged(MouseEvent e) 

   { 

    if(button1) 

  { 

   //compute the change of the mouse coordinate 

    xdirection+=e.getX()-newx; 

  ydirection+=newy-e.getY(); 

   //check the mouse coordinate 

  newx=e.getX(); 

  newy=e.getY(); 

   } 

  if(button2) 

  { 

   //compute the change of the mouse coordinate 

    rotatey+=(e.getX()-newx2)/5f; 

   rotatex+=(e.getY()-newy2)/5f;  

   if (rotatex>90) 

   rotatex=90; 

   if (rotatex<-90) 

   rotatex=-90; 

   //check the mouse coordinate 

  newx2=e.getX(); 

  newy2=e.getY(); 

   } 

  } 

14
9



 

 

 

 

  //I do not need these methods 

public void displayChanged(GLAutoDrawable drawable,  

boolean modeChanged, boolean deviceChanged){}  

  public void keyReleased(KeyEvent key){} 

  public void keyTyped(KeyEvent key){} 

  public void mouseClicked(MouseEvent key){} 

  public void mouseEntered(MouseEvent key){} 

   public void mouseExited(MouseEvent key){} 

   public void mouseReleased(MouseEvent key){} 

 public void mouseMoved(MouseEvent e){} 

} 

 

 

15
0



 

 

Appendix A7 

/* Phase.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Create a phase function for the heights of water vertices. 
 * See section 4.1 for details. 
*/ 
 
package demos; 
 
import java.lang.Math.*; 
 
public class Phase 
{ 
 float g = 9.8f, A; 
 public float Phase(float x, float z, float T, float t, float h) 
 { 
  float u, Ld, L, depth, deep; 

//deep-water wavelength 
  Ld = g*(float)Math.pow(T,2)*(1/(2*(float)Math.PI));  
  deep = Ld*0.5f; //condition of deep-water 
  depth = 20-h; //depth of water 
  if(depth >= deep)  
   L = Ld; 
  Else 
 //shallow-water wavelength  
   L = T*(float)Math.sqrt(g*depth);  
  A = L*(1/Ld); //keeping amplitude over wavelength is a constant 
 
  u = (float)Math.sqrt(x*x + z*z)*(1/L); //basic phase function 
  u = u-(t*(1/T)); //phase function with time 
  u = Math.abs(u%1); //make the phase value in the area of [0,1) 
  
  //control the asymmetry of the wave profile 
  if(depth < Ld*0.02f) //depth/L < 0.02f 
   u = (float)Math.pow(u,2); 
  return u; 
 } 
} 

 

 

15
1



 

 

Appendix A8 

/* WaveCurves.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Calculate the coastline and wave curves. 
 * See section 4.3 for details. 
*/ 
 
package demos; 
 
import java.util.List; 
import java.util.ArrayList; 
 
public class WaveCurves 
{ 
 private List< Line > list = new ArrayList< Line >(); 
 private List< Line > list2 = new ArrayList< Line >(); 
 private List< Line > list3 = new ArrayList< Line >(); 
 private List< Line > list4 = new ArrayList< Line >(); 
  
 private boolean startPoint, endPoint; 
  
 
 //put a line segment into list 
 public void getLine(int x1, int z1, int x2, int z2) 
 { 
 //put line segment into a list 
 list.add( new Line(x1, z1, x2, z2) );  
 } 
  
 
 //if each point of a line segment appear at least twice, get this 

//line segment 
 private void compareLineSegment() 
 { 
  for(int k=0; k<list.size(); k++) 
  { 
 startPoint=false; endPoint=false; 
   for(int i=0; i<list.size(); i++) 
   {  
    if(i==k) i++; if(i==list.size()) break; 

  //compare the start point of a line segment 
compareStartPoint(list.get(k), list.get(i)); 

    if(startPoint==true) 
    break; 
   } 
   for(int j=0; j<this.list.size(); j++) 
   { 
    if(j==k) j++; if(j==list.size()) break; 

//compare the end point of a line segment 
    compareEndPoint(list.get(k), list.get(j)); 

 

 

    if(endPoint==true) 
    break;   
   } 
   if(startPoint==true&&endPoint==true) 
   { 

//put useful line segment into a new list 
    list2.add(list.get(k));     
   } 
  } 
  list.clear();     
 } 
  
 
 //make sure is or not the start vertex of line segment 1 can connect  

//line segment 2 
 private void compareStartPoint(Line line1, Line line2 ) 
 {  
 if(line1.X1==line2.X1 && line1.Z1==line2.Z1 || 

 line1.X1==line2.X2 && line1.Z1==line2.Z2) 
  startPoint=true;   
 } 
  
 

//make sure is or not the end vertex of line segment 1 can connect  
//line segment 2 

 private void compareEndPoint(Line line1, Line line2) 
 { 
  if(line1.X2==line2.X2 && line1.Z2==line2.Z2 ||  

line1.X2==line2.X1 && line1.Z2==line2.Z1) 
  endPoint=true; 
 } 
  
 
 //get all the continuous lines and connect them 
 private void getOrder() 
 { 
  adjustOrder(list2, list3); 
  while(!list2.isEmpty()) 
  { 
   adjustOrder(list2, list4); 
   list3.addAll(list3.size(), list4); 
   list4.clear(); 
  } 
 } 
  
 

//find out a continuous line and make the end point of a line segment  
//can connect to the start point of next line segment 

 private void adjustOrder(List<Line> l1, List<Line> l2) 
 { 
  boolean add1=true, add2=true; 
  l2.add(l1.get(0)); 
  l1.remove(0); 
   
  while(add2==true) 

15
2



 

 

  { 
   add2=false; 
   for(int i=0; i<l1.size(); i++) 
    { 

//compare the end point of the list l2 with the end 
//point of a line segment 

    if(l2.get(l2.size()-1).X2==l1.get(i).X2 &&  
l2.get(l2.size()-1).Z2==l1.get(i).Z2) 

    { 
 //put the order line segment into the end of the list 

//l2 after turn it around 
     l2.add(turnAround(l1.get(i))); 
     l1.remove(i); 
     add2=true; 
     break; 
    } 

//compare the end point of the list l2 with the start 
//point of a line segment 

    if(l2.get(l2.size()-1).X2==l1.get(i).X1 &&  
l2.get(l2.size()-1).Z2==l1.get(i).Z1) 

    { 
 //put the order line segment into the end of the list  

//l2 
     l2.add(l1.get(i)); 
     l1.remove(i); 
     add2=true; 
     break; 
    } 
   } 
  } 
   
  while(add1==true) 
  { 
   add1=false; 
   for(int i=0; i<l1.size(); i++) 
   { 

//compare the start point of the list l2 with the start 
//point of a line segment 

    if(l2.get(0).X1==l1.get(i).X1 &&  
l2.get(0).Z1==l1.get(i).Z1) 

    { 
//put the order line segment into the start of the  
//list l2 

     l2.add(0, turnAround(l1.get(i))); 
     l1.remove(i); 
     add1=true; 
     break; 
    } 

//compare the start point of the list l2 with the end 
//point of a line segment 

    if(l2.get(0).X1==l1.get(i).X2 &&  
l2.get(0).Z1==l1.get(i).Z2) 

    { 
//put the order line segment into the start of the  
//list l2 

 

 

     l2.add(0, l1.get(i)); 
     l1.remove(i); 
     add1=true; 
     break; 
    } 
   } 
  }   
 } 
  
 
 //turn around the line segment  
 private Line turnAround(Line line) 
 { 
  int x, z; 
  x=line.X1; line.X1=line.X2; line.X2=x; 
  z=line.Z1; line.Z1=line.Z2; line.Z2=z; 
  return line; 
 } 
  
 
 //get the start point from a line segment 
 private void translateToPoints(List<Line> l, List<Points> p) 
 { 
  for(int i=0; i<l.size(); i++) 
  { 

//put the start point of each line segment into point list 
   p.add( new Points(l.get(i).X1, l.get(i).Z1) );    
  } 

//put the end point of the last line segment into point list 
  p.add( new Points(l.get(l.size()-1).X2,  

l.get(l.size()-1).Z2) ); 
 } 
  
 
 //if the continuous 3 points in a square, delete the middle point 
 private void deleteSuperfluousPoint(List<Points> p) 
 { 
  int n=p.size(); 
  for(int i=0; i<n; i++) 
  { 
   if(i+2>n-1) break; 
   if(checkConnective(p.get(i+2), p.get(i))) 
   { 
    p.remove(i+1); 
    n--; 
   } 
  } 
 } 
  
 
 //check out is point a beside point b 
 private boolean checkConnective(Points a, Points b) 
 { 
  if(   a.X==b.X+1 && a.Z==b.Z 
   || a.X==b.X   && a.Z==b.Z+1 

15
3



 

 

   || a.X==b.X+1 && a.Z==b.Z+1 
   || a.X==b.X-1 && a.Z==b.Z 
   || a.X==b.X   && a.Z==b.Z-1 
   || a.X==b.X-1 && a.Z==b.Z-1 
    || a.X==b.X-1 && a.Z==b.Z+1 
   || a.X==b.X+1 && a.Z==b.Z-1  ) 
   return true; 
  else  
   return false; 
 } 
  
 
 //call other method to get coastline 
 public void getCoastline(List<Points> p1) 

{ 
 //delete Useless Line Segment 
  compareLineSegment();  
 //dealing with Disordered Line Segments 
  getOrder(); 
 //translate line segment to vertex 
  translateToPoints(list3, p1); 
 //delete useless vertex 
  deleteSuperfluousPoint(p1); 
  deleteSuperfluousPoint(p1); 
  p1.remove(p1.size()-1); 
 } 
  
  
 //get wave curves 

public void getWaveCurve(List<Points> p1, List<Points> p2,  
List<Points> p3) 

 { 
 List< Points > points = new ArrayList< Points >(); 
 List< Points > points2 = new ArrayList< Points >(); 
 List< Points > points3 = new ArrayList< Points >(); 
  boolean RepeatedPoints, SamePoints; 
  //delete repeated points in list p1 

for(int i=0; i<p1.size(); i++) 
  { 
   RepeatedPoints=false; 
   for(int j=i; j<p1.size()-1; j++)  
   { 
 //check repeated points 
    if(p1.get(i).X==p1.get(j+1).X &&  

p1.get(i).Z==p1.get(j+1).Z) 
    { 
     RepeatedPoints=true; 
     break; 
    } 
   } 
 //get the point which is not repeated to new list points 
   if(RepeatedPoints==false) 
    points.add(p1.get(i)); 
  } 
  p1.clear(); 

 

 

   
 //delete same point with list p2 
  for(int m=0; m<points.size(); m++) 
  { 
   SamePoints=false; 
   for(int n=0; n<p2.size(); n++) 
   { 
 //check the same point 
    if(points.get(m).X==p2.get(n).X &&  

points.get(m).Z==p2.get(n).Z) 
    { 
     SamePoints=true; 
     break; 
    } 
   } 
 //get the point which is not same to p2 to new list points2 
   if(SamePoints==false) 
    points2.add(points.get(m)); 
  } 
 
  //for the wave curves 2, 3, 4 
 //delete same point with list p3 
  if(p2!=p3) 
  { 
   for(int m=0; m<points2.size(); m++) 
   { 
    SamePoints=false; 
    for(int n=0; n<p3.size(); n++) 
    { 
 //check the same point 
     if(points2.get(m).X==p3.get(n).X &&  

points2.get(m).Z==p3.get(n).Z) 
     { 
      SamePoints=true; 
      break; 
      } 
    } 
 //get the point which is not same to p3 to new list points3 
    if(SamePoints==false)   
    points3.add(points2.get(m)); 
  } 
  //adjust the order 
 //put first two point to the wave curve list p1 
  p1.add(points3.get(0)); 
   p1.add(points3.get(1)); 
   for(int m=1; m<points3.size(); m++) 
  {  
   for(int n=m+1; n<points3.size(); n++) 
   { 
    if(checkConnective(points3.get(m), 

 points3.get(n))) 
    { 
 //put the point to the wave curve list 
     p1.add(points3.get(n)); 
     //cut the neighbor point on the neighbor order,  

15
4



 

 

//so that the order for look through (first for  
//loop) is right 

      points3.add(m+1, points3.get(n)); 
     points3.remove(n+1); 
    } 
   }     
  } 
 } 
 
 //for wave curve 1 
  else 
  { 
   //adjust the order 
 //put first two point to the wave curve list p1 
   p1.add(points2.get(0)); 
   p1.add(points2.get(1)); 
   for(int m=1; m<points2.size(); m++) 
  {  
   for(int n=m+1; n<points2.size(); n++) 
   { 
    if(checkConnective(points2.get(m),  

points2.get(n))) 
    { 
 //put the connectable point to the final wave 

//curve list 
     p1.add(points2.get(n)); 

//copy the connectable point to the right  
//position 

     points2.add(m+1, points2.get(n)); 
//remove the connectable point from the original  
//position 

     points2.remove(n+1); 
    } 
   }     
  } 
  } 

} 
} 

 

 

15
5



 

 

Appendix A9 

/* Velocities.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Calculate the velocities for wave curves employing spring system. 
 * See section 5.6.1 for details. 
*/ 
 
package demos; 
 
import java.util.List; 
import java.util.ArrayList; 
 
public class Velocities 
{ 
 private float t=0.1f, kw=0.2f, kp=0.5f, n=0f;  
 private boolean hit=false; 
   
 //spring for inside wave curves in X axis 
 private float setInsideSpringForX(float x1, float x2) 
 { 
  float fx2=0, distanceX2=0; 
  //force from inside wave curve x2 
  distanceX2 = (float)Math.abs(x2-x1)-n; 
  if(distanceX2>0 && x2!=x1) 
   fx2 = kw*distanceX2*(x2-x1)*(1/(float)Math.abs(x2-x1)); 
  else if(distanceX2<0 && x2!=x1) 
   fx2 = -kw*distanceX2*(x1-x2)*(1/(float)Math.abs(x1-x2)); 
  return fx2; 

} 
 
 
//spring for outside wave curves in X axis 

 private float setOutsideSpringForX(float x0, float x1) 
 { 
  float fx0=0, distanceX0=0; 
  //force from outside wave curve x0 
  distanceX0 = (float)Math.abs(x1-x0)-n; 
  if(distanceX0>0 && x0!=x1) 
   fx0 = kw*distanceX0*(x0-x1)*(1/(float)Math.abs(x0-x1)); 
  else if(distanceX0<0 && x0!=x1) 
   fx0 = -kw*distanceX0*(x1-x0)*(1/(float)Math.abs(x1-x0)); 
  return fx0; 

} 
 
 
//position spring in X axis 

 private float setPSpringForX(float x1, float wx1) 
 { 
  return -kp*(x1-wx1);//force from origin 
 } 

 

 

 
 

//spring for inside wave curves in Z axis 
 private float setInsideSpringForZ(float z1, float z2) 
 { 
  float fz2=0, distanceZ2=0; 
  //force from inside wave curve z2 
  distanceZ2 = (float)Math.abs(z2-z1)-n; 
  if(distanceZ2>0 && z2!=z1) 

//minus different from x axis 
   fz2 = kw*distanceZ2*(z2-z1)*(1/(float)Math.abs(z2-z1)); 
  else if(distanceZ2<0 && z2!=z1) 

//minus different from x axis 
   fz2 = -kw*distanceZ2*(z1-z2)*(1/(float)Math.abs(z1-z2)); 
  return fz2; 
 } 
 
 

//spring for outside wave curves in Z axis 
 private float setOutsideSpringForZ(float z0, float z1) 
 { 
  float fz0=0, distanceZ0=0; 
  //force from outside wave curve z0 
  distanceZ0 = (float)Math.abs(z1-z0)-n; 
  if(distanceZ0>0 && z0!=z1) 
   fz0 = kw*distanceZ0*(z0-z1)*(1/(float)Math.abs(z0-z1)); 
  else if(distanceZ0<0 && z0!=z1) 
   fz0 = -kw*distanceZ0*(z1-z0)*(1/(float)Math.abs(z1-z0)); 
  return fz0; 
 } 
 
 
 //position spring in Z axis 
 private float setPSpringForZ(float z1, float wz1) 
 { 
  return -kp*(z1-wz1);//force from origin 
 } 
  
 
/***************************************************************/ 
 //deal with the wave curve which will hit the land 

public void getVelocityForHittingWaveCurve( 
List<Points> currentPoints, float Currentposition[][][], 
float originposition[][][], List<Points> neighborPoints, 

  List<Points> outerNeighborPoints,  List<Vel> v,  
List<Points> positiveDirection,  

   List<Points> outNumbers, List<Points> insideNearestVertex, 
  List<Vel> originalVelocity) 
 {  
  float x=0, z=0, xo=0, zo=0, vx=0, vz=0, a, b, c, d, fx=0, fz=0; 
  int dx=1, dz=1, dvx=1, dvz=1, o=0;       
  for(int i=0; i<currentPoints.size(); i++) 
  {       
   fx=0; fz=0;    
  //current position of current point     

15
6



 

 

x = Currentposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z][0]; 

   x = Currentposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z][2]; 

//two nearest outside vertices 
if(outNumbers.get(i).Z != -1) 

   { 
    int m=0, n=0; 
    float x1=0, z1=0, x2=0, z2=0;     
    m = outNumbers.get(i).X; 
    //current position of the point 1 which will be hit by 

//current point 
    x1 = Currentposition[outerNeighborPoints.get(m).X] 

[outerNeighborPoints.get(m).Z] 
[0]; 

    z1 = Currentposition[outerNeighborPoints.get(m).X] 
[outerNeighborPoints.get(m).Z] 
[2]; 

 //force of wave spring     
    fx = setOutsideSpringForX(x1, x); 
   fz = setOutsideSpringForZ(z1, z); 
     
    n = outNumbers.get(i).Z; 
    //current position of the point 2 which will be hit by 

//current point 
    x2 = Currentposition[outerNeighborPoints.get(n).X] 

[outerNeighborPoints.get(n).Z] 
[0]; 

    z2 = Currentposition[outerNeighborPoints.get(n).X] 
[outerNeighborPoints.get(n).Z] 

 //force of wave spring 
    fx += setOutsideSpringForX(x2, x); 
   fz += setOutsideSpringForZ(z2, z); 
 //velocity only in one axis 
   if(originalVelocity.get(i).X == 0) fx = 0;  
    else if(originalVelocity.get(i).Z == 0)  fz = 0; 
   }  
   //one outside vertex 
   else 
   { 
    int m=0; 
    float x1=0, z1=0; 
    m = outNumbers.get(i).X; 
    //current position of the point which will be hit by 

//current point 
    x1 = Currentposition[outerNeighborPoints.get(m).X] 

[outerNeighborPoints.get(m).Z] 
[0]; 

    z1 = Currentposition[outerNeighborPoints.get(m).X] 
[outerNeighborPoints.get(m).Z] 
[2];  

 //force of wave spring    
    fx = 2f*setOutsideSpringForX(x1, x); 
   fz = 2f*setOutsideSpringForZ(z1, z); 
 //velocity only in one axis 

 

 

   if(originalVelocity.get(i).X == 0) fx = 0; 
    else if(originalVelocity.get(i).Z == 0) fz = 0; 
   } 
    
 //force of position spring 
 fx += setPSpringForX(x, 

 originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[0]); 

   fz += setPSpringForZ(z, 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[2]);  

   //normal velocity 
   vx = fx*t + v.get(i).X; 
   vz = fz*t + v.get(i).Z; 
    
   //current position of the point in coastline which will  

//be hit by current point 
   o = insideNearestVertex.get(i).X; 
   xo = Currentposition[neighborPoints.get(o).X] 

[neighborPoints.get(o).Z][0]; 
   zo = Currentposition[neighborPoints.get(o).X] 

[neighborPoints.get(o).Z][2]; 
   //hitting: if the wave curve hit the coastline, let it come 

//back to its origin 
   if(anotherGetDistance(xo, zo, x, z)<=0.5f) 
   { 
    a = originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]-x; 
    b = originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]-z; 
vx = 0.1f*a; 
vz = 0.1f*b; 

   } 
    
   //the direction of current position compare to origin 
   c = Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0] 
-originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]; 
   d = Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2] 
-originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]; 
    if(c>0)        dx  =  1; 
 else if(c<0)   dx  = -1; 
 if(d>0)        dz  =  1; 
 else if(d<0)   dz  = -1; 
 if(vx>0)       dvx =  1; 
 else if(vx<0)  dvx = -1; 
 if(vz>0)       dvz =  1; 
  else if(vz<0)  dvz = -1; 
 //if current point come back to its origin and leave the 

//bank, let it stop at origin quickly 

15
7



 

 

   if((dx == -positiveDirection.get(i).X &&  
dvx == -positiveDirection.get(i).X)  

    || (dz == -positiveDirection.get(i).Z &&  
 dvz == -positiveDirection.get(i).Z)) 

   { 
    vx*=0.8f; 
    vz*=0.8f; 
   } 
      
   //final velocity 
   v.get(i).X = vx; 
   v.get(i).Z = vz; 
  }   
 } 
  
 
  //deal with the other wave curves  

public void getVelocityForOtherWaveCurves( 
List<Points> currentPoints, float Currentposition[][][], 
float originposition[][][], List<Points> neighborPoints, 
List<Vel> v, List<Points> positiveDirection,  
List<Points> insideNearestVertex,  
List<Vel> originalVelocity) 

 { 
  float x=0, z=0, vx=0, vz=0, fx=0, fz=0, c, d; 
  int dx=1, dz=1, dvx=1, dvz=1; 
  for(int i=0; i<currentPoints.size(); i++) 
  {  
   fx=0; fz=0;    
   //current position of current point 
   x = Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]; 
   z = Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]; 
   //two nearest inside vertices 
   if(insideNearestVertex.get(i).Z != -1) 
   { 
    int p=0, q=0; 
    float x3=0, z3=0, x4=0, z4=0; 
    p = insideNearestVertex.get(i).X; 
    //current position of the inpoint 1 which will be hit 

//by current point 
    x3 = Currentposition[neighborPoints.get(p).X] 

[neighborPoints.get(p).Z][0]; 
    z3 = Currentposition[neighborPoints.get(p).X] 

[neighborPoints.get(p).Z][2];  
 //force of wave spring 
    fx += setInsideSpringForX(x, x3); 
   fz += setInsideSpringForZ(z, z3); 
    
 q = insideNearestVertex.get(i).Z; 
    //current position of the inpoint 1 which will be hit 

//by current point 
    x4 = Currentposition[neighborPoints.get(q).X] 

[neighborPoints.get(q).Z][0]; 

 

 

    z4 = Currentposition[neighborPoints.get(q).X] 
[neighborPoints.get(q).Z][2];  

  //force of wave spring 
    fx += setInsideSpringForX(x, x4); 
   fz += setInsideSpringForZ(z, z4); 
   if(originalVelocity.get(i).X == 0) fx = 0; 
    else if(originalVelocity.get(i).Z == 0) fz = 0; 
   } 
 //one inside nearest vertex 
   else 
   { 
    int p=0; 
    float x3=0, z3=0; 
    p = insideNearestVertex.get(i).X; 
    //current position of the inpoint 1 which will be hit 

//by current point 
    x3 = Currentposition[neighborPoints.get(p).X] 

[neighborPoints.get(p).Z][0]; 
    z3 = Currentposition[neighborPoints.get(p).X] 

[neighborPoints.get(p).Z][2];  
 //force of wave spring 
    fx += 2f*setInsideSpringForX(x, x3); 
   fz += 2f*setInsideSpringForZ(z, z3); 
    if(originalVelocity.get(i).X == 0) fx = 0;  
    else if(originalVelocity.get(i).Z == 0) fz = 0; 
   } 
     
   //force of position spring 
  fx += setPSpringForX(x,  
 originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0]); 

   fz += setPSpringForZ(z, 
 originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[2]);      

   //normal velocity 
   vx = fx*t + v.get(i).X; 
   vz = fz*t + v.get(i).Z; 
    
   //the direction of current position compare to origin 
   c = Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0] 
- originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]; 
   d = Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2] 
- originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]; 
   if(c>0)        dx  =  1; 
 else if(c<0)   dx  = -1; 
 if(d>0)        dz  =  1; 
 else if(d<0)   dz  = -1; 
 if(vx>0) dvx =  1; 
 else if(vx<0)  dvx = -1; 

15
8



 

 

 if(vz>0)       dvz =  1; 
 else if(vz<0)  dvz = -1; 
 //if current point come back to its origin and leave the  

//bank, let it stop at origin quickly  
   if((dx == -positiveDirection.get(i).X &&  

dvx == -positiveDirection.get(i).X)  
    || (dz == -positiveDirection.get(i).Z &&  

dvz == -positiveDirection.get(i).Z)) 
   { 
    vx*=0.8f; 
    vz*=0.8f; 
   } 
       
   //final velocity 
   v.get(i).X = vx; 
   v.get(i).Z = vz; 
  }   
 } 
    
 

//get the direction of the velocity of currentPoints in each wave 
//curve 
public void getPlusVelocity(List<Points> neighborPoints,  

List<Points> inNumbers, List<Points> currentPoints,  
float originposition[][][],  
float currentposition[][][], List<Vel> v) 

 { 
  float a=0, b=0; 
  for(int i=0; i<currentPoints.size(); i++) 
  {  
   int m = inNumbers.get(i).X; 

//the direction of current position compare to origin  
   a = originposition[neighborPoints.get(m).X] 

[neighborPoints.get(m).Z][0] 
- currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]; 
   b = originposition[neighborPoints.get(m).X] 

[neighborPoints.get(m).Z][2] 
- currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2];  
   v.get(i).X=0.5f*a; 
   v.get(i).Z=0.5f*b;   
  } 

} 
 

  
//get the direction of the original velocity of currentPoints in  
//each wave curve 
public void getOriginalVelocity(List<Points> neighborPoints, 

 List<Points> currentPoints, float originposition[][][],  
   List<Vel> v, List<Vel> v0,  

List<Points> positiveDirection) 
 { 
  List< Points > point = new ArrayList< Points >(); 
  float a=0, b=0; 

 

 

  int m=0; 
  for(int i=0; i<currentPoints.size(); i++) 
  { 
   int X=0, Z=0; 
   point.add(neighborPoints.get(0)); 
   for(int j=1; j<neighborPoints.size(); j++) 
   { 
 //find the nearest vertex  
  if(anotherGetDistance( 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[0], 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

      originposition[neighborPoints.get(j).X] 
[neighborPoints.get(j).Z] 
[0], 

originposition[neighborPoints.get(j).X] 
[neighborPoints.get(j).Z] 
[2]) 

<= anotherGetDistance( 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0], 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

originposition[point.get(0).X] 
[point.get(0).Z][0], 

  originposition[point.get(0).X] 
[point.get(0).Z][2])) 

 //get the nearest vertex’s index 
    { 
     point.add(0, neighborPoints.get(j)); 
     m=j; 
    } 
   } 
   point.clear(); //clear list 
 //the direction of current position compare to  

//nearest vertex 
   a = originposition[neighborPoints.get(m).X] 

[neighborPoints.get(m).Z][0] 
-originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]; 
   b = originposition[neighborPoints.get(m).X] 

[neighborPoints.get(m).Z][2] 
-originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]; 
   v.add(new Vel(a*0.1f, b*0.1f )); //first velocity 
   v0.add(new Vel(a*0.1f, b*0.1f )); //original velocity 
   //get positiveDirection for current point  
 if(a > 0)      X = 1; 
 else if(a < 0) X = -1; 
 if(b > 0)      Z = 1; 

15
9



 

 

 else if(b < 0) Z = -1; 
 positiveDirection.add(new Points(X, Z)); 
  } 
 } 
 
 

//get nearest outside points for each wave curve 
public void getNearestOutPoints(List<Points> currentPoints, 

  List<Points> outPoints,  
float originposition[][][], 
List<Points> outNumbers) 

 { 
  List< Points > point = new ArrayList< Points >(); 
  List< Numbers > m = new ArrayList< Numbers >(); 
  for(int i=0; i<currentPoints.size(); i++) 
  {    
   point.add(outPoints.get(0)); 
   point.add(outPoints.get(1)); 
   m.add(0, new Numbers(0)); 
   for(int j=1; j<outPoints.size(); j++) 
   { 
 //find the nearest vertex 
  if(anotherGetDistance( 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[0], 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

originposition[outPoints.get(j).X] 
[outPoints.get(j).Z][0], 

originposition[outPoints.get(j).X] 
[outPoints.get(j).Z][2]) 

  <=anotherGetDistance( 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0], 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

originposition[point.get(0).X] 
[point.get(0).Z][0], 

originposition[point.get(0).X] 
[point.get(0).Z][2])) 

 //get the nearest vertex’s index 
    { 
     point.add(0, outPoints.get(j)); 
     m.add(0, new Numbers(j)); 
    } 
  } 
 //check if there are two nearest vertices 

if(anotherGetDistance( 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0], 

 

 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

originposition[point.get(1).X] 
[point.get(1).Z][0], 

originposition[point.get(1).X] 
[point.get(1).Z][2]) 

     == anotherGetDistance( 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0], 

  originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

 originposition[point.get(0).X] 
[point.get(0).Z][0], 

  originposition[point.get(0).X] 
[point.get(0).Z][2])) 

   { 
 //put two nearest vertices in the list 
 outNumbers.add(new Points(m.get(0).N, m.get(1).N)); 
   } 
   else 
   { 
  //put one nearest vertex in the list 
 outNumbers.add(new Points(m.get(0).N, -1)); 
   }       
   point.clear(); //clear list 
   m.clear(); //clear index list 
   } 
  } 
   
 
  //get nearest inside points for each wave curve 

public void getNearestInsidePoints(List<Points> currentPoints, 
  List<Points> insidePoints, 
  float originposition[][][], 
   List<Points> insideNumbers) 

 { 
  List< Points > point = new ArrayList< Points >(); 
  List< Numbers > m = new ArrayList< Numbers >(); 
  for(int i=0; i<currentPoints.size(); i++) 
  {    
   point.add(insidePoints.get(0)); 
   point.add(insidePoints.get(1)); 
   m.add(0, new Numbers(0)); 
   for(int j=1; j<insidePoints.size(); j++) 
   { 
 //find the nearest vertex 
    if(anotherGetDistance( 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[0], 

   originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 

16
0



 

 

[2],  
originposition[insidePoints.get(j).X] 

[insidePoints.get(j).Z] 
[0], 

  originposition[insidePoints.get(j).X] 
[insidePoints.get(j).Z] 
[2]) 

<=anotherGetDistance( 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0], 

 originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

      originposition[point.get(0).X] 
[point.get(0).Z][0],  

originposition[point.get(0).X] 
[point.get(0).Z][2])) 

    { 
 //get the nearest vertex’s index 
     point.add(0, insidePoints.get(j)); 
     m.add(0, new Numbers(j)); 
    } 
   }  
 //check if there are two nearest vertices 
   if(anotherGetDistance( 

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[0], 

  originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

  originposition[point.get(1).X] 
[point.get(1).Z][0], 

  originposition[point.get(1).X] 
[point.get(1).Z][2]) 

     == anotherGetDistance( 
originposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z] 
[0],  

originposition[currentPoints.get(i).X] 
[currentPoints.get(i).Z] 
[2],  

     originposition[point.get(0).X] 
[point.get(0).Z][0], 

originposition[point.get(0).X] 
[point.get(0).Z][2])) 

   { 
 //put two nearest vertices in the list 
     insideNumbers.add(new Points(m.get(0).N,  

m.get(1).N)); 
   } 
   else 
   { 
 //put one nearest vertex in the list 

 

 

     insideNumbers.add(new Points(m.get(0).N, -1)); 
   }       
   point.clear(); //clear list    
   m.clear();//clear index list 
   } 
  } 
   
 
 //get the distance of two points by input point’s list 
 private float getDistance(Points p1, Points p2) 
 { 
  return (float)Math.sqrt((float)Math.pow(p2.Z-p1.Z, 2) 

+(float)Math.pow(p2.X-p1.X, 2)); 
 } 
  
 
  //get the distance of two points by input x and z value 

private float anotherGetDistance(float x1, float z1, float x2, 
 float z2) 

 { 
  return (float)Math.sqrt((float)Math.pow(z2-z1, 2) 

+(float)Math.pow(x2-x1, 2)); 
 } 
  
 
 //get the distance of two line segments 

private float distanceBetweenPointAndLine(float x, float z,  
float x1, float z1, 
float x2, float z2) 

 { 
  return (float)Math.abs((z2-z1)*x - (x2-x1)*z + z1*x2 - z2*x1) 

 *(1/anotherGetDistance(x1, z1, x2, z2)); 
 } 
  
 
 //get square root 
 private float sumOfXAndZ(float x, float z) 
 { 
  return (float)Math.sqrt((float)Math.pow(x, 2) 

+(float)Math.pow(z, 2)); 
 }  
} 

16
1



 

 

Appendix A10 

/* Collision.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Process water/land collisions, and the collisions between waves. 
 * See section 5.6.2 for details. 
*/ 

 

package demos; 

 
import java.util.List; 
import java.util.ArrayList; 
 
public class Collision 
{ 
 private float t=0.1f;    

//deal with the collision for wave curves. The vertex of outside 
//wave curve is a, the vertices of inside wave curve are b, c, d. 
//the wave spring is between a and c, and a will hit line segment 
//bc or cd. 
public void getVelocityForWaveCurves(List<Points> currentPoints, 

  float Currentposition[][][],  List<Points> neighborPoints,  
   List<Vel> velocitya, List<Vel> copyOfVelocitya,  

List<Vel> velocitybcd, List<Vel> copyOfVelocitybcd, 
 List<Points> outsideNearestVertex, 

  float originalposition[][][],List<Vel> originalVelocitya, 
 List<Vel> originalVelocitybcd, List<Points> hitPoint, 
 List<Points> insideNearestVertex) 

 { 
  int o; 
  float x, z, x1, z1, xo, zo, intelx=0, intelz=0, longx, longz; 
  boolean interaction; 
 
  for(int i=0; i<currentPoints.size(); i++) 
  {    
   interaction=false; 
   boolean hit = false;  
   //current position of current point a 
   x=Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]; 
   z=Currentposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]; 
   //next position of current point a 
   x1=x + t*velocitya.get(i).X; 
   z1=z + t*velocitya.get(i).Z;       
   longx = x + (x - x1)*100; 
   longz = z + (z - z1)*100; 
    
   //has one inside nearest vertex  

 

 

   if(insideNearestVertex.get(i).Z == -1) 
   { 
    //current position of the point which will be hit by 

//current point 
   o = insideNearestVertex.get(i).X; 
    xo = Currentposition[hitPoint.get(o).X] 

[hitPoint.get(o).Z][0]; 
    zo = Currentposition[hitPoint.get(o).X] 

[hitPoint.get(o).Z][2]; 
   //hitting: if the wave curve hit the bank, let it come 

//back to its origin 
   if(anotherGetDistance(xo, zo, x, z)<=0.5f) 
    { 
     float ox, oz; 
     ox = originalposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]-x; 
   oz = originalposition[currentPoints.get(i).X]  

[currentPoints.get(i).Z][2]-z; 
     velocitya.get(i).X = 0.2f*ox; 
     velocitya.get(i).Z = 0.2f*oz; 
     hit=true; 
     } 
   } 
   //has two inside nearest vertices 
   else 
   { 
    //current position of the point which will be hit by 

//current point 
   o = insideNearestVertex.get(i).Z; 
    xo = Currentposition[hitPoint.get(o).X] 

[hitPoint.get(o).Z][0]; 
    zo = Currentposition[hitPoint.get(o).X] 

[hitPoint.get(o).Z][2]; 
   //hitting: if the wave curve hit the bank, let it come 

//back to its origin 
   if(anotherGetDistance(xo, zo, x, z)<=0.5f) 
    { 
     float ox, oz; 
     ox = originalposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][0]-x; 
     oz = originalposition[currentPoints.get(i).X] 

[currentPoints.get(i).Z][2]-z; 
     velocitya.get(i).X = 0.2f*ox; 
     velocitya.get(i).Z = 0.2f*oz; 
     hit=true; 
    } 
   }    
   
    //has one outside nearest vertex  
    if(outsideNearestVertex.get(i).Z == -1) 
    { 
     int b, c, d; 
     float cx, cz, bx, bz, dx, dz, cx1, cz1, bx1, bz1, dx1, 

 dz1; 
    c = outsideNearestVertex.get(i).X;   

16
2



 

 

 //outside vertex’s left vertex 
    b=c-1; if(c==0) b=neighborPoints.size()-1;  
 //outside vertex’s right vertex 
    d=c+1; if(c==neighborPoints.size()-1) d=0; 
    //current position of the point c which will be hit by 

//current point  
    cx=Currentposition[neighborPoints.get(c).X] 

[neighborPoints.get(c).Z][0]; 
    cz=Currentposition[neighborPoints.get(c).X] 

[neighborPoints.get(c).Z][2]; 
    //next position of point c 
    cx1=cx+ t*velocitybcd.get(c).X; 
    cz1=cz+ t*velocitybcd.get(c).Z; 
    //current position of point b beside c 
    bx=Currentposition[neighborPoints.get(b).X] 

[neighborPoints.get(b).Z][0]; 
    bz=Currentposition[neighborPoints.get(b).X] 

[neighborPoints.get(b).Z][2]; 
    //next position of point b 
    bx1=bx+ t*velocitybcd.get(b).X; 
    bz1=bz+ t*velocitybcd.get(b).Z; 
    //current position of point d beside c 
     dx=Currentposition[neighborPoints.get(d).X] 

[neighborPoints.get(d).Z][0];  
    dz=Currentposition[neighborPoints.get(d).X] 

[neighborPoints.get(d).Z][2];  
    //next position of point d 
    dx1=dx+ t*velocitybcd.get(d).X; 
     dz1=dz+ t*velocitybcd.get(d).Z; 
             
    //only waves collision 

if(hit == false) 
    { 
     //the interaction of a and bc happen 
     if(TwoLineIsIntersect(longx, longz, x1, z1, cx1, 

 cz1, bx1, bz1, intelx, intelz)==true) 
     {  
      interaction=true;  
      float newVx , newVz ;  
           
 //velocitices of b and c are not changed in X axis 
  if(velocitybcd.get(c).X == 
   copyOfVelocitybcd.get(c).X  

&& velocitybcd.get(b).X ==  
copyOfVelocitybcd.get(b).X) 

  { 
 //average velocity in X axis 
    newVx = (velocitya.get(i).X 
   + velocitybcd.get(c).X  

+ velocitybcd.get(b).X)*0.3333f;  
 //if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).X==0)  

  velocitya.get(i).X = 0; 
     else  
  velocitya.get(i).X = newVx; 

 

 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c).X==0) 

 velocitybcd.get(c).X = 0; 
    else  

  velocitybcd.get(c).X = newVx; 
//if original velocity is 0, keep it, or update 

    if(originalVelocitybcd.get(b).X==0) 
 velocitybcd.get(b).X = 0; 

    else 
 velocitybcd.get(b).X = newVx; 
  } 

//velocity of b or c be changed in X axis 
  else  
  { 
 //average velocity 
    newVx = (velocitya.get(i).X 
   + copyOfVelocitybcd.get(c).X  

+ copyOfVelocitybcd.get(b).X) 
*0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).X==0) 

 velocitya.get(i).X = 0; 
    else  
  velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c).X==0) 
  velocitybcd.get(c).X = 0; 

    else if(Math.abs(newVx)  
> Math.abs(velocitybcd.get(c).X))  

velocitybcd.get(c).X = newVx; 
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

   if(originalVelocitybcd.get(b).X==0)  
 velocitybcd.get(b).X = 0; 

    else if(Math.abs(newVx)  
> Math.abs(velocitybcd.get(b).X))  

velocitybcd.get(b).X = newVx; 
  } 
  

//velocitices of b and c are not changed in Z axis 
  if(velocitybcd.get(c).Z  

== copyOfVelocitybcd.get(c).Z  
&& velocitybcd.get(b).Z  
== copyOfVelocitybcd.get(b).Z) 

  {  
//average velocity in X axis 

    newVz = (velocitya.get(i).Z 
  + velocitybcd.get(c).Z  

+ velocitybcd.get(b).Z)*0.3333f;  
//if original velocity is 0, keep it, or update 

    if(originalVelocitya.get(i).Z==0) 
 velocitya.get(i).Z = 0; 

    else  
 velocitya.get(i).Z = newVz; 

16
3



 

 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c).Z==0)  

velocitybcd.get(c).Z = 0; 
     else  

 velocitybcd.get(c).Z = newVz; 
//if original velocity is 0, keep it, or update 

    if(originalVelocitybcd.get(b).Z==0)  
velocitybcd.get(b).Z = 0; 

    else 
  velocitybcd.get(b).Z = newVz; 
  } 

//velocity of b or c be changed in Z axis 
  else  
  { 
 //average velocity 
    newVz = (velocitya.get(i).Z  

+ copyOfVelocitybcd.get(c).Z  
+ copyOfVelocitybcd.get(b).Z) 
*0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).Z==0) 
  velocitya.get(i).Z = 0; 
     else 
  velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c).Z==0) 
  velocitybcd.get(c).Z = 0; 
    else if(Math.abs(newVz)  

> Math.abs(velocitybcd.get(c).Z))  
velocitybcd.get(c).Z = newVz;  

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(b).Z==0)  
  velocitybcd.get(b).Z = 0; 

    else if(Math.abs(newVz) 
  > Math.abs(velocitybcd.get(b).Z))  
  velocitybcd.get(b).Z = newVz;  
  } 
     } 
     //the interaction of a and cd happens 
     else if(TwoLineIsIntersect(longx, longz, x1, z1,  

cx1, cz1, dx1, dz1, intelx, intelz)==true) 
     {  
      interaction=true;  
       float newVx, newVz; 
         

//velocitices of c and d are not changed in X axis 
  if(velocitybcd.get(c).X  

== copyOfVelocitybcd.get(c).X  
&& velocitybcd.get(d).X  
== copyOfVelocitybcd.get(d).X) 

  { 
 //average velocity 
    newVx = (velocitya.get(i).X 

 

 

   + velocitybcd.get(c).X  
+ velocitybcd.get(d).X)*0.3333f;  

//if original velocity is 0, keep it, or update  
    if(originalVelocitya.get(i).X==0) 

 velocitya.get(i).X = 0;  
   else  
 velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c).X==0) 

 velocitybcd.get(c).X = 0; 
   else  
 velocitybcd.get(c).X = newVx; 

//if original velocity is 0, keep it, or update 
   if(originalVelocitybcd.get(d).X==0) 

 velocitybcd.get(d).X = 0; 
   else  
   velocitybcd.get(d).X = newVx;  
 } 

//velocity of c or d be changed in X axis 
 else  
  { 
 //average velocity 
   newVx = (velocitya.get(i).X  

 + copyOfVelocitybcd.get(c).X  
 + copyOfVelocitybcd.get(d).X) 

*0.3333f; 
//if original velocity is 0, keep it, or update 

    if(originalVelocitya.get(i).X==0) 
 velocitya.get(i).X = 0; 

    else  
     velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c).X==0) 
 velocitybcd.get(c).X = 0; 

   else if(Math.abs(newVx) 
    > Math.abs(velocitybcd.get(c).X)) 
     velocitybcd.get(c).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

   if(originalVelocitybcd.get(d).X==0) 
 velocitybcd.get(d).X = 0; 

      else if(Math.abs(newVx) 
    > Math.abs(velocitybcd.get(d).X))  
    velocitybcd.get(d).X = newVx;  
 } 
 

//velocitices of c and d are not changed in Z axis 
  if(velocitybcd.get(c).Z  

 == copyOfVelocitybcd.get(c).Z  
 && velocitybcd.get(d).Z  
 == copyOfVelocitybcd.get(d).Z) 

 {  
//average velocity 

   newVz = (velocitya.get(i).Z 

16
4



 

 

     + velocitybcd.get(c).Z  
 + velocitybcd.get(d).Z)*0.3333f;  

//if original velocity is 0, keep it, or update 
   if(originalVelocitya.get(i).Z==0) 

 velocitya.get(i).Z = 0;  
   else 
  velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update 
   if(originalVelocitybcd.get(c).Z==0) 

 velocitybcd.get(c).Z = 0; 
   else 
  velocitybcd.get(c).Z = newVz; 

//if original velocity is 0, keep it, or update 
   if(originalVelocitybcd.get(d).Z==0) 

 velocitybcd.get(d).Z = 0; 
   else  
  velocitybcd.get(d).Z = newVz;  
 } 

//velocity of c or d be changed in Z axis 
 else  
 { 
 //average velocity 
   newVz = (velocitya.get(i).Z  

 + copyOfVelocitybcd.get(c).Z  
 + copyOfVelocitybcd.get(d).Z) 

*0.3333f; 
//if original velocity is 0, keep it, or update 

   if(originalVelocitya.get(i).Z==0) 
  velocitya.get(i).Z = 0; 
    else 
  velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c).Z==0) 
  velocitybcd.get(c).Z = 0; 
    else if(Math.abs(newVz)  

 > Math.abs(velocitybcd.get(c).Z))  
 velocitybcd.get(c).Z = newVz;  
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

   if(originalVelocitybcd.get(d).Z==0) 
  velocitybcd.get(d).Z = 0; 
     else if(Math.abs(newVz)  

 > Math.abs(velocitybcd.get(d).Z))  
 velocitybcd.get(d).Z = newVz;  

 } 
    } 
    }  

//////////////////////////////////////////////////// 
 //water/land and waves collisions happen at the same time 

    else 
    { 
    //the interaction of a and bc happens 
    if(TwoLineIsIntersect(longx, longz, x1, z1, cx1, 
   cz1, bx1, bz1, intelx, intelz)==true) 

 

 

    {  
     interaction=true;  

//velocitices of c and b are not changed in X axis 
      if(velocitybcd.get(c).X  

 == copyOfVelocitybcd.get(c).X  
 && velocitybcd.get(b).X  
 == copyOfVelocitybcd.get(b).X) 

 {  
 //update to vertex a’s velocity 
   velocitybcd.get(c).X = velocitya.get(i).X; 
   velocitybcd.get(b).X = velocitya.get(i).X; 
 } 

//velocity of c or b be changed in X axis 
 else  
 { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

   if(Math.abs(velocitya.get(i).X)  
 > Math.abs(velocitybcd.get(c).X)) 

   velocitybcd.get(c).X  
= velocitya.get(i).X; 

   if(Math.abs(velocitya.get(i).X)  
> Math.abs(velocitybcd.get(b).X))  

velocitybcd.get(b).X  
= velocitya.get(i).X;  

  } 
//velocitices of c and b are not changed in Z axis 

 if(velocitybcd.get(c).Z  
 == copyOfVelocitybcd.get(c).Z  
 && velocitybcd.get(b).Z  
 == copyOfVelocitybcd.get(b).Z) 

 {  
  //update to vertex a’s velocity  
   velocitybcd.get(c).Z = velocitya.get(i).Z; 
   velocitybcd.get(b).Z = velocitya.get(i).Z; 
 } 

//velocity of c or b be changed in Z axis 
 else  
 { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

   if(Math.abs(velocitya.get(i).Z)  
 > Math.abs(velocitybcd.get(c).Z))  
 velocitybcd.get(c).Z  

= velocitya.get(i).Z;  
   if(Math.abs(velocitya.get(i).Z)  

 > Math.abs(velocitybcd.get(b).Z))  
 velocitybcd.get(b).Z  

= velocitya.get(i).Z;  
 } 
    } 
    //the interaction of a and cd happens 
    else if(TwoLineIsIntersect(longx, longz, x1, z1,  

cx1, cz1, dx1, dz1, intelx, intelz)==true) 
    {  

16
5



 

 

     interaction=true;  
 

//velocitices of c and d are not changed in X axis 
 if(velocitybcd.get(c).X  

 == copyOfVelocitybcd.get(c).X  
 && velocitybcd.get(d).X  
 == copyOfVelocitybcd.get(d).X) 

 {  
 //update to vertex a’s velocity  
   velocitybcd.get(c).X = velocitya.get(i).X; 
   velocitybcd.get(d).X = velocitya.get(i).X; 
 } 

//velocity of c or d be changed in X axis 
 else  
 { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

   if(Math.abs(velocitya.get(i).X)  
 > Math.abs(velocitybcd.get(c).X))  
 velocitybcd.get(c).X  

= velocitya.get(i).X; 
     if(Math.abs(velocitya.get(i).X)  

 > Math.abs(velocitybcd.get(d).X))  
 velocitybcd.get(d).X  

= velocitya.get(i).X; 
 } 

//velocitices of c and d are not changed in Z axis 
 if(velocitybcd.get(c).Z  

 == copyOfVelocitybcd.get(c).Z  
 && velocitybcd.get(d).Z  
 == copyOfVelocitybcd.get(d).Z) 

 {  
 //update to vertex a’s velocity 
   velocitybcd.get(c).Z = velocitya.get(i).Z; 
   velocitybcd.get(d).Z = velocitya.get(i).Z; 
 } 

//velocity of c or d be changed in Z axis 
 else  
 { 
 //keep the velocity if it is bigger than a’s,  

//or update to a’s velocity 
    if(Math.abs(velocitya.get(i).Z)  

 > Math.abs(velocitybcd.get(c).Z))  
 velocitybcd.get(c).Z  

= velocitya.get(i).Z;  
     if(Math.abs(velocitya.get(i).Z)  

 > Math.abs(velocitybcd.get(d).Z))  
 velocitybcd.get(d).Z  

= velocitya.get(i).Z;  
 }  
    } 
    }  
   } 
   /////////////////////////////////////////////////////// 
   //has two outside nearest vertices 

 

 

   else 
   { 
     int b, c1, c2, d; 
      float c1x, c1z, c2x, c2z, bx, bz, dx, dz, c1x1, c1z1, 

  c2x1, c2z1, bx1, bz1, dx1, dz1; 
 //index of two outsider vertices 
    c1 = outsideNearestVertex.get(i).X; 
    c2 = outsideNearestVertex.get(i).Z; 
    c1 = Math.min(c1, c2); 
    c2 = c1+1;    
 //the vertex before c1 
    b=c1-1; if(c1==0) b=neighborPoints.size()-1;  
 //the vertex after c2 
    d=c2+1; if(c2==neighborPoints.size()-1) d=0; 
    //current position of the point c1 which will be hit by 

 //current point  
   c1x=Currentposition[neighborPoints.get(c1).X] 

 [neighborPoints.get(c1).Z][0]; 
   c1z=Currentposition[neighborPoints.get(c1).X] 

 [neighborPoints.get(c1).Z][2]; 
     //next position of point c1 
    c1x1=c1x+ t*velocitybcd.get(c1).X; 
    c1z1=c1z+ t*velocitybcd.get(c1).Z; 
    //current position of the point c2 which will be hit by 

 //current point  
   c2x=Currentposition[neighborPoints.get(c2).X] 

 [neighborPoints.get(c2).Z][0]; 
   c2z=Currentposition[neighborPoints.get(c2).X] 

 [neighborPoints.get(c2).Z][2]; 
    //next position of point c2 
    c2x1=c2x+ t*velocitybcd.get(c2).X; 
    c2z1=c2z+ t*velocitybcd.get(c2).Z; 
    //current position of point b beside c 
    bx=Currentposition[neighborPoints.get(b).X] 

 [neighborPoints.get(b).Z][0]; 
    bz=Currentposition[neighborPoints.get(b).X] 

 [neighborPoints.get(b).Z][2]; 
    //next position of point b 
    bx1=bx+ t*velocitybcd.get(b).X; 
    bz1=bz+ t*velocitybcd.get(b).Z; 
    //current position of point d beside c 
   dx=Currentposition[neighborPoints.get(d).X] 

 [neighborPoints.get(d).Z][0];  
    dz=Currentposition[neighborPoints.get(d).X] 

 [neighborPoints.get(d).Z][2];  
    //next position of point d 
    dx1=dx+ t*velocitybcd.get(d).X; 
    dz1=dz+ t*velocitybcd.get(d).Z; 
 
 //only waves collision 
    if(hit == false) 
    { 
      //the interaction of a and bc1 happens 
     if(TwoLineIsIntersect(longx, longz, x1, z1, c1x1, 
  c1z1, bx1, bz1, intelx, intelz)==true) 

16
6



 

 

      {  
      interaction=true;  
      float newVx, newVz;  
       

//velocitices of c1 and b are not changed in X 
//axis 

   if(velocitybcd.get(c1).X  
 == copyOfVelocitybcd.get(c1).X  
 && velocitybcd.get(b).X  
 == copyOfVelocitybcd.get(b).X) 

   { 
//average velocity 

     newVx = (velocitya.get(i).X  
 + velocitybcd.get(c1).X  
 + velocitybcd.get(b).X)*0.3333f;  

//if original velocity is 0, keep it, or update 
      if(originalVelocitya.get(i).X==0)  
    velocitya.get(i).X = 0;  
     else  
   velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c1).X==0) 

  velocitybcd.get(c1).X = 0; 
    else 
   velocitybcd.get(c1).X = newVx; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(b).X==0) 

  velocitybcd.get(b).X = 0; 
    else 
   velocitybcd.get(b).X = newVx;  
   } 

//velocity of c1 or b be changed in X axis 
   else  
   { 

//average velocity 
     newVx = (velocitya.get(i).X  

 + copyOfVelocitybcd.get(c1).X  
 + copyOfVelocitybcd.get(b).X) 

*0.3333f; 
//if original velocity is 0, keep it, or update 

     if(originalVelocitya.get(i).X==0) 
   velocitya.get(i).X = 0; 
    else  
   velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

     if(originalVelocitybcd.get(c1).X==0) 
   velocitybcd.get(c1).X = 0; 

    else if(Math.abs(newVx)  
 > Math.abs(velocitybcd.get(c1).X))  

 velocitybcd.get(c1).X = newVx; 
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(b).X==0) 
    velocitybcd.get(b).X = 0; 

 

 

    else if(Math.abs(newVx) 
     > Math.abs(velocitybcd.get(b).X))  

 velocitybcd.get(b).X = newVx;  
   } 

//velocitices of c1 and b are not changed in Z  
//axis 

   if(velocitybcd.get(c1).Z  
 == copyOfVelocitybcd.get(c1).Z  
 && velocitybcd.get(b).Z  
 == copyOfVelocitybcd.get(b).Z) 

   {  
//average velocity 

    newVz = (velocitya.get(i).Z  
 + velocitybcd.get(c1).Z  
 + velocitybcd.get(b).Z)*0.3333f;  

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).Z==0) 

  velocitya.get(i).Z = 0;  
    else  
   velocitya.get(i).Z = newVz;  

//if original velocity is 0, keep it, or update 
     if(originalVelocitybcd.get(c1).Z==0) 

  velocitybcd.get(c1).Z = 0; 
    else  
   velocitybcd.get(c1).Z = newVz; 

//if original velocity is 0, keep it, or update 
     if(originalVelocitybcd.get(b).Z==0) 

  velocitybcd.get(b).Z = 0; 
    else  
   velocitybcd.get(b).Z = newVz;  
   } 

//velocity of c1 or b be changed in Z axis 
    else  
   { 

//average velocity 
    newVz = (velocitya.get(i).Z  

 + copyOfVelocitybcd.get(c1).Z  
 + copyOfVelocitybcd.get(b).Z) 

*0.3333f; 
//if original velocity is 0, keep it, or update 

    if(originalVelocitya.get(i).Z==0) 
    velocitya.get(i).Z = 0; 
    else  
   velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c1).Z==0) 
   velocitybcd.get(c1).Z = 0; 

    else if(Math.abs(newVz)  
 > Math.abs(velocitybcd.get(c1).Z))  

 velocitybcd.get(c1).Z = newVz;  
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(b).Z==0) 
   velocitybcd.get(b).Z = 0; 

16
7



 

 

    else if(Math.abs(newVz) 
     > Math.abs(velocitybcd.get(b).Z))  
    velocitybcd.get(b).Z = newVz;  
  } 
      } 
      //the interaction of a and c1c2 happens 
      else if(TwoLineIsIntersect(longx, longz, x1, z1, 

 c1x1, c1z1, c2x1, c2z1, intelx, intelz)==true) 
      {  
      interaction=true;  
      float newVx , newVz ;  
       

//velocitices of c1 and c2 are not changed in X 
//axis 

    if(velocitybcd.get(c1).X  
 == copyOfVelocitybcd.get(c1).X  
 && velocitybcd.get(c2).X  
 == copyOfVelocitybcd.get(c2).X) 

   { 
//average velocity 

    newVx = (velocitya.get(i).X  
 + velocitybcd.get(c1).X  
 + velocitybcd.get(c2).X)*0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).X==0) 
    velocitya.get(i).X = 0;  
    else 
    velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c1).X==0) 
    velocitybcd.get(c1).X = 0; 
    else 
    velocitybcd.get(c1).X = newVx; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c2).X==0) 
    velocitybcd.get(c2).X = 0; 
    else  
   velocitybcd.get(c2).X = newVx;  
   } 

//velocity of c1 or c2 be changed in X axis 
   else  
   { 

//average velocity 
    newVx = (velocitya.get(i).X  

 + copyOfVelocitybcd.get(c1).X  
 + copyOfVelocitybcd.get(c2).X) 
 *0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).X==0) 
    velocitya.get(i).X = 0; 
    else 
   velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c1).X==0) 

 

 

    velocitybcd.get(c1).X = 0; 
    else if(Math.abs(newVx) 

   > Math.abs(velocitybcd.get(c1).X))  
 velocitybcd.get(c1).X = newVx; 
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

     if(originalVelocitybcd.get(c2).X==0) 
   velocitybcd.get(c2).X = 0; 

    else if(Math.abs(newVx)  
 > Math.abs(velocitybcd.get(c2).X))  

 velocitybcd.get(c2).X = newVx;    
    } 

//velocitices of c1 and c2 are not changed in Z 
//axis 

   if(velocitybcd.get(c1).Z  
 == copyOfVelocitybcd.get(c1).Z  
 && velocitybcd.get(c2).Z  
 == copyOfVelocitybcd.get(c2).Z) 

   {  
//average velocity 

    newVz = (velocitya.get(i).Z  
 + velocitybcd.get(c1).Z  
 + velocitybcd.get(c2).Z)*0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).Z==0) 
     velocitya.get(i).Z = 0;  
    else  
   velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update 
     if(originalVelocitybcd.get(c1).Z==0)  
     velocitybcd.get(c1).Z = 0; 
    else 
   velocitybcd.get(c1).Z = newVz; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c2).Z==0) 

  velocitybcd.get(c2).Z = 0; 
    else  
   velocitybcd.get(c2).Z = newVz;  
   } 

//velocity of c1 or c2 be changed in Z axis 
   else  
   { 

//average velocity 
    newVz = (velocitya.get(i).Z  

 + copyOfVelocitybcd.get(c1).Z  
 + copyOfVelocitybcd.get(c2).Z) 
 *0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).Z==0) 
    velocitya.get(i).Z = 0; 
    else 
     velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

     if(originalVelocitybcd.get(c1).Z==0) 

16
8



 

 

   velocitybcd.get(c1).Z = 0; 
    else if(Math.abs(newVz)  

 > Math.abs(velocitybcd.get(c1).Z))  
 velocitybcd.get(c1).Z = newVz;  
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c2).Z==0) 
   velocitybcd.get(c2).Z = 0; 

    else if(Math.abs(newVz)  
 > Math.abs(velocitybcd.get(c2).Z))  

 velocitybcd.get(c2).Z = newVz;   
   } 
      } 
      //the interaction of a and c2d happens  
     else if(TwoLineIsIntersect(longx, longz, x1, z1,  

c2x1, c2z1, dx1, dz1, intelx, intelz)==true) 
     {  
      interaction=true;  
      float newVx , newVz ; 
 

//velocitices of c2 and d are not changed in X 
//axis 

   if(velocitybcd.get(c2).X  
 == copyOfVelocitybcd.get(c2).X  
 && velocitybcd.get(d).X  
  == copyOfVelocitybcd.get(d).X) 

   { 
//average velocity 

     newVx = (velocitya.get(i).X  
 + velocitybcd.get(c2).X  
 + velocitybcd.get(d).X)*0.3333f;  

//if original velocity is 0, keep it, or update 
      if(originalVelocitya.get(i).X==0) 
    velocitya.get(i).X = 0;  
    else 
   velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update 
      if(originalVelocitybcd.get(c2).X==0) 
    velocitybcd.get(c2).X = 0; 
    else  
   velocitybcd.get(c2).X = newVx; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(d).X==0)  
    velocitybcd.get(d).X = 0; 
    else  
   velocitybcd.get(d).X = newVx; 
    } 

//velocity of c2 or d be changed in X axis 
   else  
   { 

//average velocity 
     newVx = (velocitya.get(i).X  

 + copyOfVelocitybcd.get(c2).X  
 + copyOfVelocitybcd.get(d).X) 
 *0.3333f; 

 

 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).X==0) 
   velocitya.get(i).X = 0; 
    else 
   velocitya.get(i).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c2).X==0) 
    velocitybcd.get(c2).X = 0; 
     else if(Math.abs(newVx)  

 > Math.abs(velocitybcd.get(c2).X))  
    velocitybcd.get(c2).X = newVx; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

     if(originalVelocitybcd.get(d).X==0) 
    velocitybcd.get(d).X = 0; 
       else if(Math.abs(newVx)  

 > Math.abs(velocitybcd.get(d).X))  
 velocitybcd.get(d).X = newVx;  

   } 
 

//velocitices of c2 and d are not changed in Z 
//axis 

   if(velocitybcd.get(c2).Z  
 == copyOfVelocitybcd.get(c2).Z  
 && velocitybcd.get(d).Z  
 == copyOfVelocitybcd.get(d).Z) 

   {  
//average velocity 

    newVz = (velocitya.get(i).Z  
 + velocitybcd.get(c2).Z  
 + velocitybcd.get(d).Z)*0.3333f; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitya.get(i).Z==0)  
    velocitya.get(i).Z = 0;  
    else  
    velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(c2).Z==0) 
     velocitybcd.get(c2).Z = 0; 
    else  
    velocitybcd.get(c2).Z = newVz; 

//if original velocity is 0, keep it, or update 
    if(originalVelocitybcd.get(d).Z==0) 
     velocitybcd.get(d).Z = 0; 
    else 
    velocitybcd.get(d).Z = newVz;  
   } 

//velocity of c2 or d be changed in Z axis 
   else  
   { 

//average velocity 
    newVz = (velocitya.get(i).Z  

 + copyOfVelocitybcd.get(c2).Z  
 + copyOfVelocitybcd.get(d).Z) 

16
9



 

 

*0.3333f; 
//if original velocity is 0, keep it, or update 

     if(originalVelocitya.get(i).Z==0) 
    velocitya.get(i).Z = 0; 
     else 
   velocitya.get(i).Z = newVz; 

//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(c2).Z==0) 
    velocitybcd.get(c2).Z = 0; 
    else if(Math.abs(newVz) 
    > Math.abs(velocitybcd.get(c2).Z))  

 velocitybcd.get(c2).Z = newVz;  
//if original velocity is 0, keep it, or update  
//it if the new velocity is bigger 

    if(originalVelocitybcd.get(d).Z==0) 
    velocitybcd.get(d).Z = 0; 
       else if(Math.abs(newVz) 

  > Math.abs(velocitybcd.get(d).Z))  
 velocitybcd.get(d).Z = newVz;  

    }  
      } 
    }  
 ////////////////////////////////////////////////// 
 //water/land and waves collisions at the same time 
    else 
    { 
     //the interaction of a and bc1 happens 
     if(TwoLineIsIntersect(longx, longz, x1, z1, c1x1, 
  c1z1, bx1, bz1, intelx, intelz)==true) 
      {  
      interaction=true;  

//velocitices of c1 and b are not changed in X 
//axis 

   if(velocitybcd.get(c1).X  
 == copyOfVelocitybcd.get(c1).X  
 && velocitybcd.get(b).X  
 == copyOfVelocitybcd.get(b).X) 

   {  
//update to vertex a’s velocity 

    velocitybcd.get(c1).X = velocitya.get(i).X; 
     velocitybcd.get(b).X = velocitya.get(i).X; 
   } 

//velocity of c1 or b be changed in X axis 
   else  
   { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

    if(Math.abs(velocitya.get(i).X)  
 > Math.abs(velocitybcd.get(c1).X))  
 velocitybcd.get(c1).X  

= velocitya.get(i).X; 
    if(Math.abs(velocitya.get(i).X)  

 > Math.abs(velocitybcd.get(b).X))  
 velocitybcd.get(b).X  

 

 

= velocitya.get(i).X;  
     } 

 
//velocitices of c1 and b are not changed in Z 
//axis 

  if(velocitybcd.get(c1).Z  
 == copyOfVelocitybcd.get(c1).Z  
 && velocitybcd.get(b).Z  
 == copyOfVelocitybcd.get(b).Z) 

   {  
//update to vertex a’s velocity 

    velocitybcd.get(c1).Z = velocitya.get(i).Z; 
    velocitybcd.get(b).Z = velocitya.get(i).Z; 
   } 

//velocity of c1 or b be changed in Z axis 
   else  
   { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

    if(Math.abs(velocitya.get(i).Z)  
 > Math.abs(velocitybcd.get(c1).Z))  
 velocitybcd.get(c1).Z  

= velocitya.get(i).Z;  
    if(Math.abs(velocitya.get(i).Z)  

 > Math.abs(velocitybcd.get(b).Z))  
 velocitybcd.get(b).Z  

= velocitya.get(i).Z;  
    } 
      } 
 
      //the interaction of a and c1c2 happens 
   else if(TwoLineIsIntersect(longx, longz, x1, 

 z1, c1x1, c1z1, c2x1, c2z1, intelx, intelz)==true) 
     {  
      interaction=true;  
 

//velocitices of c1 and c2 are not changed in X 
//axis 

   if(velocitybcd.get(c1).X  
 == copyOfVelocitybcd.get(c1).X  
 && velocitybcd.get(c2).X  
 == copyOfVelocitybcd.get(c2).X) 

   {  
//update to vertex a’s velocity 

     velocitybcd.get(c1).X = velocitya.get(i).X; 
     velocitybcd.get(c2).X = velocitya.get(i).X; 
   } 

//velocity of c1 or c2 be changed in X axis 
   else  
    { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

    if(Math.abs(velocitya.get(i).X)  
 > Math.abs(velocitybcd.get(c1).X))  
 velocitybcd.get(c1).X  

17
0



 

 

= velocitya.get(i).X; 
        if(Math.abs(velocitya.get(i).X)  

 > Math.abs(velocitybcd.get(c2).X))  
 velocitybcd.get(c2).X  

= velocitya.get(i).X; 
   } 
 

//velocitices of c1 and c2 are not changed in Z 
//axis 

   if(velocitybcd.get(c1).Z  
 == copyOfVelocitybcd.get(c1).Z  
 && velocitybcd.get(c2).Z  
 == copyOfVelocitybcd.get(c2).Z) 

  {  
//update to vertex a’s velocity 

     velocitybcd.get(c1).Z = velocitya.get(i).Z; 
      velocitybcd.get(c2).Z = velocitya.get(i).Z; 
   } 

//velocity of c1 or c2 be changed in Z axis 
   else  
   { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

      if(Math.abs(velocitya.get(i).Z)  
 > Math.abs(velocitybcd.get(c1).Z))  
 velocitybcd.get(c1).Z  
 = velocitya.get(i).Z;  

      if(Math.abs(velocitya.get(i).Z)  
> Math.abs(velocitybcd.get(c2).Z))  
velocitybcd.get(c2).Z  

= velocitya.get(i).Z;  
   }  
      } 
 
      //the interaction of a and c2d happens 
      else if(TwoLineIsIntersect(longx, longz, x1, z1,  

c2x1, c2z1, dx1, dz1, intelx, intelz)==true) 
     {  
      interaction=true;  
 

//velocitices of c2 and d are not changed in X 
//axis 

      if(velocitybcd.get(c2).X  
 == copyOfVelocitybcd.get(c2).X  
 && velocitybcd.get(d).X  
 == copyOfVelocitybcd.get(d).X) 

   {  
//update to vertex a’s velocity 

    velocitybcd.get(c2).X = velocitya.get(i).X; 
    velocitybcd.get(d).X = velocitya.get(i).X; 
   } 

//velocity of c2 or d be changed in X axis 
   else  
   { 

//keep the velocity if it is bigger than a’s,  

 

 

//or update to a’s velocity 
     if(Math.abs(velocitya.get(i).X)  

 > Math.abs(velocitybcd.get(c2).X))  
  velocitybcd.get(c2).X  

= velocitya.get(i).X; 
      if(Math.abs(velocitya.get(i).X)  

 > Math.abs(velocitybcd.get(d).X))  
 velocitybcd.get(d).X  

= velocitya.get(i).X;  
   } 

//velocitices of c2 and d are not changed in Z 
//axis 

   if(velocitybcd.get(c2).Z  
 == copyOfVelocitybcd.get(c2).Z  
 && velocitybcd.get(d).Z  
 == copyOfVelocitybcd.get(d).Z) 

   {  
//update to vertex a’s velocity 

     velocitybcd.get(c2).Z = velocitya.get(i).Z; 
    velocitybcd.get(d).Z = velocitya.get(i).Z; 
   } 

//velocity of c2 or d be changed in Z axis 
  else  
   { 

//keep the velocity if it is bigger than a’s,  
//or update to a’s velocity 

    if(Math.abs(velocitya.get(i).Z)  
> Math.abs(velocitybcd.get(c2).Z))  

 velocitybcd.get(c2).Z  
= velocitya.get(i).Z;  

      if(Math.abs(velocitya.get(i).Z)  
> Math.abs(velocitybcd.get(d).Z))  

 velocitybcd.get(d).Z  
= velocitya.get(i).Z;  

  }  
     } 
    } 
   }  
 }  
 } 
 
 

//get distance of two points with points input 
 private float getDistance(Points p1, Points p2) 
 { 
  return (float)Math.sqrt((float)Math.pow(p2.Z-p1.Z, 2) 

+(float)Math.pow(p2.X-p1.X, 2)); 
 } 
  
 
 //get distance of two points with coordinate input 

private float anotherGetDistance(float x1, float z1, float x2, 
 float z2) 

 { 
  return (float)Math.sqrt((float)Math.pow(z2-z1, 2) 

17
1



 

 

+(float)Math.pow(x2-x1, 2)); 
 } 
  
 
 //get distance between a point and a line 

private float distanceBetweenPointAndLine(float x, float z,  
float x1, float z1, float x2, float z2) 

 { 
  return (float) Math.abs((z2-z1)*x - (x2-x1)*z + z1*x2 - z2*x1)  

*(1/anotherGetDistance(x1, z1, x2, z2)); 
 } 
  
 
 //get square root 
 private float sumOfXAndZ(float x, float z) 
 { 
  return (float)(Math.sqrt(Math.pow(x, 2)+Math.pow(z, 2))); 
 } 
  
   
 //check is two line segments intersect or not 

private boolean TwoLineIsIntersect(float x0, float y0, float x1, 
  float y1, float x2, float y2, float x3,  

float y3, float InterX, float InterY) 
{  

//Two lines X0X1 AND X2X3 
 float x, y; 
 float Minx01 = Math.min(x0, x1); 
 float Miny01 = Math.min(y0, y1); 
 float Minx23 = Math.min(x2, x3); 
 float Miny23 = Math.min(y2, y3); 
 float Maxx01 = Math.max(x0, x1); 
  float Maxy01 = Math.max(y0, y1); 
 float Maxx23 = Math.max(x2, x3); 
 float Maxy23 = Math.max(y2, y3); 
  
 if(x1!=x0 && x2!=x3) 
 { 
 //slopes of two lines 
 float k1 = (y1-y0)*(1/(x1-x0)); 
 float k2 = (y3-y2)*(1/(x3-x2)); 
 float Den = (y1-y0)*(x3-x2) - (y3-y2)*(x1-x0); 
 if(k1==k2) 
 {  

//parallel 
  float d1 = Math.abs(y0*(x1-x0)-x0*(y1-y0) 

-y2*(x3-x2)+x2*(y3-y2));  
  if(d1==0) 
   { 

//superposition 
  if((x2>Minx01 && x2<Maxy01  

&& y2>Miny01 && y2<Maxy01) 
  ||(x3>Minx01 && x3<Maxy01  

&& y3>Miny01 && y3<Maxy01) 
  ||(x0>Minx23 && x0<Maxy23  

 

 

&& y0>Miny23 && y0<Maxy23) 
  ||(x1>Minx23 && x1<Maxy23  

&& y1>Miny23 && y1<Maxy23)) 
   {  

//superposition is intersect 
  return true; 
  } 
  else 
  { 
  return false; 
   } 
  } 
  else 
  { 
  return false; 
  }  
 } 
 //coordinate of the point of intersection 
 x = ((y2-y0)*(x1-x0)*(x3-x2)+(y1-y0)*(x3-x2)*x0 

-(y3-y2)*(x1-x0)*x2)*(1/Den); 
 y = ((y1-y0)*(x-x0))*(1/(x1-x0)) + y0; 
 
 if(Minx01<=x && x<=Maxx01 && Miny01<=y && y<=Maxy01  

&& Minx23<=x && x<=Maxx23 && Miny23<=y && y<=Maxy23) 
 { 

//Intersect point 
  InterX = x; 
  InterY = y; 
  return true; 
 } 
 } 
 
 else if(x1==x0 && x2!=x3) 
 { 
 //coordinate of the point of intersection 
 x = x0; 
 y = ((y3-y2)*(x0-x2))*(1/(x3-x2)) + y2; 
 if(Minx01<=x && x<=Maxx01 && Miny01<=y && y<=Maxy01  

&& Minx23<=x && x<=Maxx23 && Miny23<=y && y<=Maxy23) 
 { 
  InterX = x; 
  InterY = y; 
  return true; 
 } 
 } 
 
 else if(x1!=x0 && x2==x3) 
 { 
 //coordinate of the point of intersection 
 x = x2; 
 y = ((y1-y0)*(x2-x0))*(1/(x1-x0)) + y0; 
 if(Minx01<=x && x<=Maxx01 && Miny01<=y && y<=Maxy01  

&& Minx23<=x && x<=Maxx23 && Miny23<=y && y<=Maxy23) 
 { 
  InterX = x; 

17
2



 

 

  InterY = y; 
  return true; 
 }  
 } 
 return false; 

} 
} 

 

 

17
3



 

 

Appendix A11 

/* HeightOfWaveCurve.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Adjust the height of wave curves 1-4. 
 * See section 5.6.3 for details. 
*/ 
 
package demos; 
 
import java.util.List; 
import java.util.ArrayList; 
 
public class HeightOfWaveCurve 
{ 
 //increase the heights of wave curves 3 and 4 when they are close 

//to the land. 
 public void AdjustHeightOfWaveCurve(float landValue[][][], 
  float waterValue[][][], List<Points> waveCurve,  

List<FloatNum> Slope, List<Points> inNumbers,  
List<Points> points, float plus) 

 { 
  for(int i = 0; i<waveCurve.size(); i++) 
  { 
 //coordinate of wave curve vertex’s current position 
   float x = waterValue[waveCurve.get(i).X] 

[waveCurve.get(i).Z][0]; 
   float z = waterValue[waveCurve.get(i).X] 

[waveCurve.get(i).Z][2]; 
 //coordinate of land at the same position as wave curve  

//vertex’s rest position 
   float xc = landValue[points.get(inNumbers.get(i).X).X] 

[points.get(inNumbers.get(i).X).Z][0]; 
   float zc = landValue[points.get(inNumbers.get(i).X).X] 

[points.get(inNumbers.get(i).X).Z][2]; 
   float yc = landValue[points.get(inNumbers.get(i).X).X] 

[points.get(inNumbers.get(i).X).Z][1]; 
 //distance of wave curve vertex’s current and rest postion 
   float distance = GetDistance(x, z, xc, zc); 
 
   //adjust wave curve vertex’s height by make wave curve vertex 

//climb the land along the gradient of the land, and add 
//a height offset to keep them a little higher than the land 
//all the time 

 waterValue[waveCurve.get(i).X][waveCurve.get(i).Z][1]  
= yc - Slope.get(i).N * distance + plus; 

  } 
 } 
  
 
 //height spring for wave curves 1 and 2 

 

 

 private float SpringOfW12(float x) 
 { 
  float k = 3; //constant of height spring 
  float f = -k*x; //force of height spring  
  return f; 
 } 
  
 
 //control the height of wave curves 1 and 2 by using height spring 
 public void AdjustHeightOfW12(float landValue[][][],  

float waterValue[][][], List<Points> waveCurve,  
    List<Points> inNumbers, List<Points> outnumbers,  

List<Points> points, List<Points> waveCurve4,  
    List<FloatNum> originDistance,  

List<FloatNum> verticalVel) 
 { 
  float t = 0.1f; //time interval 
  for(int i=0; i<waveCurve.size(); i++) 
  { 
 //distance of wave curve vertex height from water level 
   float x = waterValue2[waveCurve.get(i).X] 

[waveCurve.get(i).Z][1]-19; 
 

 //force from height spring 
   float f = SpringOfW12(x); 
 //wave curve vertex height change by its velocity  
   waterValue2[waveCurve.get(i).X][waveCurve.get(i).Z][1]  

+= verticalVel.get(i).N*t; 
 //wave curve vertex velocity change by spring force and be 

//damp 
   verticalVel.get(i).N = (verticalVel.get(i).N + f*t)*0.97f; 
 //output the wave curve vertex height 
   waterValue[waveCurve.get(i).X][waveCurve.get(i).Z][1]  

= waterValue2[waveCurve.get(i).X] 
[waveCurve.get(i).Z][1];  

  } 
 } 
     
 //get slope of the land  
 public void GetSlope(float landValue[][][],  

List<Points> coastline, List<Points> waveCurve,  
List<Points> inNumbers, List<FloatNum> Slope) 

 { 
  float hCoastline, hWaveCurve, h, l; 
  for(int i = 0; i < waveCurve.size(); i++) 
  { 
 //the height of current vertex’s nearest vertex in coastline 
   hCoastline = landValue 

[coastline.get(inNumbers.get(i).X).X] 
[coastline.get(inNumbers.get(i).X).Z][1]; 

  //the height of current vertex in rest position 
   hWaveCurve = landValue 

[waveCurve.get(i).X][waveCurve.get(i).Z][1]; 
 //distance of wave curve vertex and its coastline vertex 

//in y axis  

17
4



 

 

   h = hCoastline - hWaveCurve; 
 //distance of wave curve vertex and its coastline vertex 

//in x-z plane 
   l = GetDistance( 

landValue[coastline.get(inNumbers.get(i).X).X] 
[coastline.get(inNumbers.get(i).X).Z] 
[0],  

landValue[coastline.get(inNumbers.get(i).X).X] 
[coastline.get(inNumbers.get(i).X).Z] 
[2], 

landValue[waveCurve.get(i).X] 
[waveCurve.get(i).Z][0], 

landValue[waveCurve.get(i).X] 
[waveCurve.get(i).Z][2]); 

   Slope.add(new FloatNum(h * (1/l))); //get the slope 
  } 
 } 
       
 
 //get distance between two points 
 private float GetDistance(float x1, float z1, float x2, float z2) 
 { 
  return ((float)Math.sqrt((float)Math.pow(z2-z1, 2)  

+ (float)Math.pow(x2-x1, 2))); 
 } 
} 

 

 

17
5



 

 

Appendix A12 

Vertex Shader 

/* water.vert 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * vertex shader for the water surface, which apply multitexturing, crest 
* shading, and transparency. 
* See section 6.2.5 for details. 
*/ 
 

varying vec3 position;  

varying vec3 landHeight;  

void main(void) 

{  

 position = gl_Vertex.xyz; //read water coordinate 

 landHeight = gl_Color.xyz; //read land coordinate (in color) 

  

 //read the coordinate of water material texture 

gl_TexCoord[0] = gl_MultiTexCoord0;  

//read the coordinate of water detail texture 

 gl_TexCoord[1] = gl_MultiTexCoord1; 

 gl_Position = ftransform(); //output water coordinate 

} 

 

Fragment Shader 

/* water.frag 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * fragment shader for the water surface, which apply multitexturing, crest 
* shading, and transparency. 
* See section 6.2.5 for details. 
*/ 
 

varying vec3 position; //load water coordinate 

varying vec3 landHeight; //load land coordinate 

 

 

//load textures 

uniform sampler2D texture1; 

uniform sampler2D texture2; 

 

void main(void) 

{  

//get the water vertex height base on water level 

float waterVHeight = position.y - 19; 

//calculate the color value of water vertex 

 float colorValue = -waterVHeight*0.25-0.1; 

 

//set pixel data using the texture coordinate  

vec4 tex1 = texture2D(texture1, gl_TexCoord[0].st); 

 vec4 tex2 = texture2D(texture1, gl_TexCoord[1].st); 

 

float transparency = 1.0; //build transparency 

//the land height in the range (15, 19], the transparency in the 

//range (1, 0.01] 

if(landHeight.y>15 && landHeight.y<=19)  

transparency = 1.01-(landHeight.y-15)*0.25; 

// the land height equal and lower than 15, the transparency is 

// fixed to 1 

else if(landHeight.y<=15) transparency = 1; 

//The land height higher than 19, the transparency is fixed to 0.01 

 else if(landHeight.y>19) transparency = 0.01; 

  

//sum a half of RGB pixel data of each texture and plus color pixel, 

//then add transparency 

gl_FragColor = vec4((tex1.r+tex2.r)*0.5f+colorValue, 

  (tex1.g+tex2.g)*0.5f+colorValue, 

  (tex1.b+tex2.b)*0.5f+colorValue, 

 transparency); 

} 

 

17
6



 

 

Appendix A13 

/* Particle.java 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * Water spray and breaking wave particle systems. 
 * See sections 7.1.1 and 7.2.1 for details. 
*/ 
 

 

package demos; 

 

import javax.media.opengl.*; 

import javax.media.opengl.glu.*; 

import java.util.List; 

import java.util.ArrayList; 

import java.nio.*; 

import java.io.IOException; 

 

 

public class Particle 

{ 

 //build data for water spray particles 

 public void buildWaterSprayParData(GL gl, GLU glu, int parsize, 

List <Points> wavecurve, List<Vel3D> parvalue,  

   float watervalue [][][], List <FloatNum> parLife,  

List<Vel3D> parVel, int waterSprayParTex,  

ByteBuffer parTexBuffer) 

 {  

 //build particle array 

 byte parTexArray [] = new byte [32*32*3];  

 //set particle texture null 

 TextureReader.Texture parTex = null;  

 //read particle texture 

  ReadTexture(parTex, "data/particle.bmp", parTexArray); 

  parTexBuffer.put(parTexArray); //put par data into buffer 

  parTexBuffer.rewind(); //rewind buffer 

   

 //bind particle texture 

  gl.glBindTexture(GL.GL_TEXTURE_2D, waterSprayParTex);  

 //build particle texture 

 

 

 glu.gluBuild2DMipmaps(GL.GL_TEXTURE_2D, GL.GL_RGB, 32, 32, 

 GL.GL_RGB, GL.GL_UNSIGNED_BYTE, parTexBuffer); 

 //set texture parameters 

 gl.glTexParameteri(GL.GL_TEXTURE_2D, 

 GL.GL_TEXTURE_MIN_FILTER, GL.GL_LINEAR); 

 gl.glTexParameteri(GL.GL_TEXTURE_2D, 

 GL.GL_TEXTURE_MAG_FILTER, GL.GL_LINEAR); 

   

  for(int i=0; i<wavecurve.size(); i++) 

   { 

    for(int j=0; j<parsize; j++) 

   { 

 //create particle position 

    parvalue.add(new Vel3D(watervalue[wavecurve.get(i).X] 

[wavecurve.get(i).Z][0], 

watervalue[wavecurve.get(i).X] 

[wavecurve.get(i).Z][1],  

         watervalue[wavecurve.get(i).X] 

[wavecurve.get(i).Z][2])); 

 //create particle velocity 

   parVel.add(new Vel3D(0, 0, 0)); 

 //create particle life 

   parLife.add(new FloatNum(1)); 

   } 

   } 

 } 

    

  

 //build water spray particles 

 public void buildWaterSprayParticle(GL gl, int parsize,  

List <Points> wavecurve, List<Vel3D> parvalue,  

   float watervalue [][][], List < Vel > velocity, 

 List <FloatNum> parLife, List<Vel3D> parVel,  

int shaderProgram, int parTex, int texParam) 

 {  

   gl.glColor4f(0.7f, 0.7f, 0.7f, 1f); //set particle color 

 //set parameter for point distance attenuation 

   float att [] = new float [3]; 

   att [0] = 0.0f; 

   att [1] = 1f; 

   att [2] = 0.0f; 

     

17
7



 

 

   gl.glEnable (GL.GL_BLEND); //enable blend 

 //set blend function 

gl.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE); 

 gl.glEnable(GL.GL_TEXTURE_2D); //enable texture 

 //enable vertex program point size 

 gl.glEnable(GL.GL_VERTEX_PROGRAM_POINT_SIZE);  

   gl.glPointSize(5); //set point size 

 //set point distance attenuation 

   gl.glPointParameterfv(GL.GL_POINT_DISTANCE_ATTENUATION,  

att, 0); 

 //limit point size 

   gl.glPointParameterf(GL.GL_POINT_SIZE_MIN, 1); 

   gl.glPointParameterf(GL.GL_POINT_SIZE_MAX, 8); 

 //set point sprite parameter 

   gl.glTexEnvf(GL.GL_POINT_SPRITE,  

GL.GL_COORD_REPLACE, GL.GL_TRUE); 

 //set point fade threshold size 

   gl.glPointParameterf(GL.GL_POINT_FADE_THRESHOLD_SIZE, 8); 

   gl.glEnable(GL.GL_POINT_SPRITE); //enable point sprite 

    

   gl.glUseProgram(shaderProgram); //use shaders 

  gl.glBindTexture(GL.GL_TEXTURE_2D, parTex); //bind texture 

 gl.glUniform1i(texParam, 0); //transfer texture 

   for(int i=0; i<wavecurve.size(); i++) 

   { 

    for(int j=0; j<parsize; j++) 

   {  

    gl.glPushMatrix(); //push matrix 

 //draw particles in matrix      

 gl.glBegin(GL.GL_POINTS);  

      gl.glVertex3f(parvalue.get(i*parsize + j).X, 

  parvalue.get(i*parsize + j).Y, 

   parvalue.get(i*parsize + j).Z);  

  gl.glEnd();  

 gl.glPopMatrix(); //pop matrix 

 //update particle attribute when it is alive 

   if(parLife.get(i*parsize + j).N > 0) 

   {   

   //update the position 

   parvalue.get(i*parsize + j).X  

+= 0.1f*parVel.get(i*parsize + j).X;  

   parvalue.get(i*parsize + j).Y  

 

 

+= 0.1f*parVel.get(i*parsize + j).Y; 

    parvalue.get(i*parsize + j).Z  

+= 0.1f*parVel.get(i*parsize + j).Z;  

   //update the velocity  

   parVel.get(i*parsize + j).Y -= 9.8f*0.1f;  

   //limit the life 

   if(parvalue.get(i*parsize + j).Y < 18) 

 parLife.get(i*parsize + j).N = -1; 

   } 

   else //give new attribute to dead particle 

   { 

 //give new position around its vertex 

    parvalue.get(i*parsize + j).X = watervalue 

[wavecurve.get(i).X][wavecurve.get(i).Z][0] 

+(float)(Math.random()-0.5f)*2; 

     parvalue.get(i*parsize + j).Y = watervalue 

[wavecurve.get(i).X][wavecurve.get(i).Z][1] 

+(float)(Math.random())-0.5f; 

     parvalue.get(i*parsize + j).Z = watervalue 

[wavecurve.get(i).X][wavecurve.get(i).Z][2] 

+(float)(Math.random()-0.5f)*2; 

 //give new velocity equal to its vertex plus a random  

//offset in x and z axes, and give new random  

//velocity in y axis 

     parVel.get(i*parsize + j).X = velocity.get(i).X 

+(float)(Math.random())-0.5f; 

     parVel.get(i*parsize + j).Y  

= (float)(Math.random())-0.5f; 

     parVel.get(i*parsize + j).Z = velocity.get(i).Z 

+(float)(Math.random())-0.5f; 

 //give new life 

     parLife.get(i*parsize + j).N = 1; 

   }     

   } 

   }  

   gl.glUseProgram(0); //end to use shaders 

   gl.glBindTexture(GL.GL_TEXTURE_2D, 0); //cancel to texture 

   gl.glDisable(GL.GL_POINT_SPRITE); //disable point sprite 

 } 

  

 

 //build breaking wave particle 

17
8



 

 

public void buildBreakingWaveParticle(GL gl,  

int parShaderProgram, int parTex, int texParam,  

int watersize, int parSize, List <FloatNum> parLife, 

 List < Vel3D > parVel, float parValue[][][][], 

  float watervalue[][][]) 

{  

gl.glColor4f(0.7f, 0.7f, 0.7f, 1f); //set particle color 

 //set parameter for point distance attenuation 

   float att [] = new float [3]; 

   att [0] = 0.0f; 

   att [1] = 1f; 

   att [2] = 0.0f; 

     

   gl.glEnable (GL.GL_BLEND); //enable blend 

 //set blend function 

gl.glBlendFunc(GL.GL_SRC_ALPHA, GL.GL_ONE); 

 gl.glEnable(GL.GL_TEXTURE_2D); //enable texture 

 //enable vertex program point size 

 gl.glEnable(GL.GL_VERTEX_PROGRAM_POINT_SIZE);  

   gl.glPointSize(5); //set point size 

 //set point distance attenuation 

   gl.glPointParameterfv(GL.GL_POINT_DISTANCE_ATTENUATION,  

att, 0); 

 //limit point size 

   gl.glPointParameterf(GL.GL_POINT_SIZE_MIN, 1); 

   gl.glPointParameterf(GL.GL_POINT_SIZE_MAX, 8); 

 //set point sprite parameter 

   gl.glTexEnvf(GL.GL_POINT_SPRITE,  

GL.GL_COORD_REPLACE, GL.GL_TRUE); 

 //set point fade threshold size 

   gl.glPointParameterf(GL.GL_POINT_FADE_THRESHOLD_SIZE, 1); 

   gl.glEnable(GL.GL_POINT_SPRITE); //enable point sprite 

    

   gl.glUseProgram(shaderProgram); //use shaders 

  gl.glBindTexture(GL.GL_TEXTURE_2D, parTex); //bind texture 

 gl.glUniform1i(texParam, 0); //transfer texture 

 

   for(int z = 1; z < watersize-1; z++) 

   { 

   for(int x = 1; x < watersize-1; x++) 

   { 

    for(int i=0; i<parSize; i++) 

 

 

   {  

 //update particle attribute when it is alive 

   if(parLife.get((z-1)*(watersize-2)*parSize  

+ (x-1)*parSize + i).N > 0) 

   {   

     gl.glPushMatrix(); //push matrix 

 //draw particles  

  gl.glBegin(GL.GL_POINTS); 

      gl.glVertex3f(parValue[x][z][i][0], 

  parValue[x][z][i][1], 

  parValue[x][z][i][2]);   

     gl.glEnd();  

 gl.glPopMatrix(); //pop matrix 

             

   //update the position 

   parValue[x][z][i][1]  

+= 0.1f*parVel.get((z-1)*(watersize-2) 

*parSize + (x-1)*parSize + i).Y; 

   //update the velocity  

   parVel.get((z-1)*(watersize-2)*parSize  

+ (x-1)*parSize + i).Y  

-= 9.8f*0.1f;  

   //limit the life 

    if(parValue[x][z][i][1]  

< watervalue[x][z][1]-0.5f)  

    parLife.get((z-1)*(watersize-2)*parSize  

+ (x-1)*parSize + i).N = -1; 

   } 

   } 

   } 

   }  

   gl.glDisable(GL.GL_POINT_SPRITE); //disable point sprite 

   gl.glUseProgram(0);  //end to use shaders 

 }  

  

 

 //build breaking wave particle data 

public void buildBreakingWaveParData( 

float breakingWaveParValue[][][][], int parSize, 

  int landsize, int watersize, float watervalue[][][], 

 List < Vel3D > parVel, List <FloatNum> parLife) 

 { 

17
9



 

 

   for(int z = 1; z < watersize-1; z++) 

   { 

   for(int x = 1; x < watersize-1; x++) 

   { 

    for(int i=0; i<parSize; i++) 

   { 

 //create particle position 

    breakingWaveParValue[x][z][i][0]  

= watervalue[x][z][0]; 

    breakingWaveParValue[x][z][i][1]  

= watervalue[x][z][1]; 

    breakingWaveParValue[x][z][i][2]  

= watervalue[x][z][2]; 

 //create particle velocity 

   parVel.add(new Vel3D(0, 0, 0)); 

 //create particle life 

   parLife.add(new FloatNum(1)); 

   } 

    }  

   }   

 } 

   

 

 //read texture from a file 

private void ReadTexture(TextureReader.Texture texutre,  

String textureName, byte textureArray[]) 

 {   

  try  

  { 

 //read texture with file name 

  texutre = TextureReader.readTexture(textureName); 

  }  

  catch (IOException e)  

  { 

   e.printStackTrace(); 

   throw new RuntimeException(e); 

  }  

 //get texture pixels in a array 

  texutre.getPixels().get(textureArray, 0, 

 textureArray.length);  

 }  

} 

 

 

18
0



 

 

Appendix A14 

Vertex Shader 

/* par.vert 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * vertex shader for the particle systems. 
 * See sections 7.1.1 and 7.2.1 for details. 
*/ 
 
void main(void) 
{  

vec4 position = gl_Vertex; //read particle coordinate 
//read particle texture coordinate 

 gl_TexCoord[0] = gl_MultiTexCoord0;  
 
 gl_PointSize = 8-(position.y-19)*3; //change particle size 
 if(gl_PointSize < 2) gl_PointSize = 2; //limit particle size 
 else if (gl_PointSize > 5) gl_PointSize = 5; //limit particle size 
  
 gl_Position = ftransform(); //output particle coordinate  
} 

Fragemnt shader 

/* par.frag 2010/7/8 
 * By Sui Yifan 
 * E-mail: suisuige@yahoo.com.cn 
 * 
 * fragment shader for the particle systems 
* See sections 7.1.1 and 7.2.1 for details. 
*/ 
 
uniform sampler2D texture; 
 
void main(void) 
{  
 //set pixel data using the texture coordinate 

vec4 tex = texture2D(texture, gl_TexCoord[0].st);  
//output particle color by using coordinate 

 gl_FragColor = vec4(tex.r, tex.g, tex.b, 1); 
} 
 

18
1



 

 
RENDERING WATER AND LAND INTERACTION 

USING A SPRING SYSTEM 
 

Yifan Sui 
Andrew Davison 

Department of Computer Engineering 
Faculty of Engineering 

Prince of Songkla University 
Hat Yai, Songkla, Thailand 

E-mail: suisuige@yahoo.com.cn 
E-mail: ad@fivedots.coe.psu.ac.th 

 
 
 

 
KEYWORDS 
Spring system, wave curve, collision detection, mesh, height 
value. 
 
ABSTRACT 
 
This paper describes a spring-based model for the interaction 
of water and land, which reconciles realism and fast 
rendering. The system controls the motion and 
interdependences of water vertices utilizing two kinds of 
springs and collision detection. As a consequence, a wave's 
movement affects the waves around it, and a wave 'hits' the 
land, rebounding with a suitably changed height and velocity. 
 
1. INTRODUCTION 

The rendering of large areas of water is well understood 
(Tessendorf 1999; Johanson 2004), and has become common 
in games. However, there is little physics-based interaction 
with the shoreline as waves move up and down, and generate 
spray and foam. 
 
Most 3D systems employ Perlin noise functions (Johanson 
2004), although some ocean effects (such as refraction and 
obstacle collision) have been utilized (Iglesias 2004). For 
instance, Peachey (Peachey 1986) and Fournier and Reeves 
(Fournier and Reeves 1986) model waves that approach and 
break on a sloping beach. However, there is no real force 
connection between the water and the land, since the wave 
profile is changed according to wave steepness and water 
depth. 
 
Foster and Fedkiw (Foster and Fedkiw 2001), and Enright, 
Marschner and Fedkiw (Enright et al. 2002) simulate 
breaking waves using a combination of textures and particles. 
The computational cost of the former is several minutes per 
frame on a PentiumII 500MHz. 
 
Mass-spring systems are arguably the simplest and most 
intuitive of all deformable models for simulating fluid 
(Nealen et al. 2006). Using a spring system to simulate the 
motion of water over a coastline is compulationally feasible, 
as this paper illustrates. 

2. WAVE CURVES AND THE COASTLINE 

The land is a 128*128 textured mesh contoured with a height 
map. The waves in the water mesh are modeled using 
Peachey’s method (Peachey 1986), so the height of the water 
vertices varies as a sum of water level and wave height. The 
color of each vertex is based on its current height. Our 
prototype was created using JOGL (a Java binding for 
OpenGL (JOGL, 2009)). Figure 1 shows a screenshot of the 
model with its elements. 
 

 
Figure 1: An overview of the model. 

 
The coastline is the series of water vertices that are closest to 
the land, (see Figure 2). Wave curve 1 is the line of vertices 
one mesh interval away from the coastline, wave curve 2 is 
the line of vertices one mesh interval away from wave curve 1. 
In this way, we define a coastline and four wave curves, 
which are linked with springs as explained in section 3. 
 

 
Figure 2: A view of the model from overhead, showing the 

coastline and four wave curves. 

Land

Land (under the water) 

Water 
X 

Z 

Y 

See Figure2 

X

Z

Y
Coastline Land 

Water 

1 

2 

3 

4 

4 wave curves 

182



 

2.1 Vertical Water Mesh Movement 
In shallow water, the water vertices move up and down by 
employing a summed combination of four versions of the 
height function (1): 

1)
2
1(*8 2

22

−−−
+

=
T
t

L
zx

Y
i

ii
i  (1) 

where i is the index of a vertex, Y is the wave height of the 
vertex, x and z are the (X, Z) coordinate values of the vertex, t 
is the time which increases by 0.1 in each frame. T is the 
period of the function, equal to 80 frames to look realistic. L 
is the wavelength at the vertex position.  
 
When a wave enters the shallows, where the depth is less than 
one-twentieth of the wavelength, the wave length L is 
determined by Equation (2): 

gdTL =  (2) 

where d is the depth of water, and g the gravity (Alonso and 
Finn 1992; Sverdrup 2006). 
 
Figure 3 illustrates how these equations affect the height of 
the water mesh as it approaches the shallows. 
 

 
Figure 3: The height of water vertices in shallow water. 

 
2.2 The Coastline 
The coastline is the line of water mesh vertices closest to the 
land mesh, as shown in Figure 2 and Figure 4. 
 

 
Figure 4: The position of the coastline. 

 
The coastline boundary moves up and down due to waves, 
but doesn't shift in the X-Z plane. 
 
2.3 Wave Curves 
Wave curve 1 is the line of water mesh vertices adjacent to 
the coastline, but one mesh interval away from the land. 
Wave curve 2 is the line of water mesh vertices adjacent to 
wave curve 1, but one mesh interval further away. Wave 
curve 3 and 4 are calculated in a similar way. Our model is 

limited to four wave curves as a balance between interaction 
realism and computational efficiency. 
 
Wave curves 3 and 4 can move in the X-Z plane, towards and 
away from the coastline. Each vertex in the curves has a 
movement direction pointing from its original position 
toward the nearest coastline vertex. The vertices of wave 
curve 3 can move up to the coastline, while the vertices of 
wave curve 4 can move up to wave curve 1 (see Figure 5). 
Wave curve 4 can not easily pass through wave curve 3. 
These restrictions on curve interaction produce realistic wave 
behavior, and are implemented using our spring system and 
collision detection, as detailed in sections 3 and 4. 
 

 
Figure 5: The movement of wave curves. 

 
Wave curves 1 and 2 can not move in the X-Z plane, which 
means that the ebb and flow of the water against the coastline 
is driven by wave curves 3 and 4. 
 
3. INTERACTION BETWEEN WAVE CURVES 

The interaction between the water and land use position 
springs and wave springs to modify the X- and Z- velocities 
of the vertices in wave curves 3 and 4. 
 
3.1 Position Springs 
A position spring ensures that a vertex is pulled back to its 
original position after moving towards the land. Every vertex 
in wave curve 3 and 4 has its own position spring. 
 
Figure 6 shows a vertex sN . At time 0, it is at its rest position, 
labeled as

0,sN . At time t, it has moved to be at position tsN , . 

The position spring P extends from the
0,sN rest position and 

will pull sN back from its tsN , position. 

 

Land Water mesh 

  

T/2 (40 frames) 

iY
Vertices 

0   

d 

X 
Z 

Y 

 

 

Land 
mesh Water 

mesh 

Coastline 

1 2 3 4

4 wave curves 
Water vertices

X
Z

Y

Land vertices 

  

Land  

Water  

1 

Wave curves 

Coastline 

234

Move  

Move 

Stationary X

Z

Y

183



 

 
Figure 6: A position spring P for vertex sN . 

 
3.2 Wave Springs 
Every neighboring pair of vertices in wave curves 3 and 4 are 
linked by a wave spring. For example, Figure 7 shows a wave 
spring W linking the vertices sN and rN of wave curves 3 
and 4.  
 
Wave springs help to deal with crossover behavior when 
vertices in wave curve 4 are moving faster than those in wave 
curve 3, and attempt to pass through it. Wave springs slow 
down wave curve 4 vertices as they approach wave curve 3. 
 

 
Figure 7: A Wave spring W between vertices sN and rN in 

wave curves 3 and 4. 
 
4. COLLISION DETECTION 

Our model deals with two kinds of collision:  
 
1) between the water and the land, as represented by wave 
curve 3 and the coastline; 
 
2) between waves, as represented by wave curves 3 and 4. 
 
Our approach builds upon real time collision detection 
(Ericson 2005) by applying it in the context of our spring 
system. 
 
4.1 Water and Land Collision 
The collision detection algorithm is simplified by utilizing the 
coastline to represents the land, and wave curve 3 as the 
leading edge of the water. 
 
Each coastline vertex is surrounded by a bounding sphere, 
whose diameter is equal to the initial inter-mesh spacing. 
 
If a wave curve 3 vertex moves inside the bounding sphere of 
a coastline vertex, a collision has happened. The velocity of 

the wave curve 3 vertex is reversed, to make it head back 
towards its rest position.  
 
Figure 8 shows a vertex sN in wave curve 3. At time 0, it is at 
position

0,sN , then moves towards the coastline and ‘hits’ 

the coastline vertex pC at time t. The velocity of sN , tsV , , is 

reversed to be
1, +− tsV at the next time interval t+1. A scaling 

factor also reduces the velocity, to take account of the way a 
wave loses energy when rebounding. 
 

 
Figure 8: Water and land collision. 

 
4.2 Wave Collision 
As explained in section 3, wave springs implement crossover 
slowdown, but if the velocity of wave curve 4 is much higher 
than wave curve 3 then crossover could still occur. This is 
prevented by collision detection between the vertices of wave 
curves 3 and 4. When a vertex in wave curve 4 hits wave 
curve 3, their velocities are equalized, so the two wave curve 
segments will move together, or perhaps separate. This is 
implemented by updating the velocity of the vertex in wave 
curve 4 and its nearest neighbor in wave curve 3. 
 
Figure 9 shows the case when vertex sN is about to hit the 
wave curve segment V1-V2. A collision is detected 
between sN and the segment, and the velocities of sN and V2 
are modified. 
 

 
Figure 9: Wave Collision. 

 
The overall behavior of sN will be more complicated than 
this (and more realistic) by also being affected by a wave 
spring linking it to V2 (its nearest neighbor in wave curve 3), 
which is not shown in Figure 9. 

 

Land

Water  

0,sN
P 

Wave curve movement over time 

3 
4

3
4or or

at time 0 later at time t 

X

Z 

Y 

tsN ,

 

 

Land  

Water  

tsN , trN ,

Nearest vertex to s 

W 

4 3 

X 

Z 

Y 

 

time 0 

  
Land  

Water  

 

tsV  ,

tsN ,

0,sN

3 time t 

X

Z

Y

3 

Coastline 

1, +− tsV

pC

Land 
Water 

Coastline 

sN

V1 

V2 

3 

sN is moving over time 

X

Z 

Y 

4

184



 

5. TESTING 
On a single core 1.73 GHz 2GB DDRII-533 RAM Intel GMA 
950, the model executes at about 70 FPS; on a two-core 1.86 
GHz 1GB DDRII-533 RAM X300 graphics card, about 140 
FPS are achieved, and our OS both are Windows XP SP3 
Professional. When we extend the mesh size to 256*256, the 
model executes on two machines at about 54 FPS and 26 FPS. 
 
Figure 10 is a cross-sectional view of the model showing 
water moving towards the land.  
 

 
Figure 10: Water moving towards the land. 

 
Figure 11 shows the land, coastline, and wave curves of 
Figure 10 from overhead. 
 

 
Figure 11: Wave curves moving towards the land. 

 
Figure 12 shows the scene later after the water has rebounded 
from the land. 
 

 
Figure 12: Water retreating from the land. 

 
Figure 13 is a view of Figure 12 from overhead. It shows that 
the position springs in wave curves 3 and 4 are drawing their 
vertices back to their rest positions. The interaction between 
wave curves 3 and 4, as controlled by wave springs and 
collision detection, is also visible. 
 

 
Figure 13: Wave curves rebounding from the land. 

 
Figure 13 illustrates that crossover still occurs, as it does in 
real waves, but is a rare event, and is soon followed by the 
waves either moving in unison or pulling apart. 
 
6. CONCLUSIONS 

Our system models the interaction of water and land using a 
novel combination of two types of springs (position and wave 
springs) and two forms of collision detection. The simulation 
exhibits realistic behavior between waves and the coastline, 
and between the waves themselves, while rendering at very 
acceptable speeds. The spring system is relatively simple to 
understand and fine-tune, and is based on the physical 
characteristics of real waves. 
 
We plan to improve the visualization by adding 
particle-based foam and spray. It will appear on wave crests, 
the coastline, and wherever collisions occur. 
 
When the water recedes from the land, the exposed areas 
should look wet. We intend to color these areas accordingly, 
and let the color gradually fade over time. 
 
Our long term goal is to use this approach to model 
Tsunami-land interaction. The spring system will need to be 
modified to deal with large waves (over 30m in height) 
moving at very high speeds (more than 800 km/h) (Kaitoku 
2008). The coastline interaction will need to be more 
complicated to deal with the way a tsunami can wash over a 
large body of land. 
 
REFERENCES 
 
A. Iglesias. 2004. “Computer Graphics for Water Modeling and 

Rendering: A Survey”. Future Generation Computer Systems, 
Volume 20, Issue 8, (Nov), 1355-1374. 
http://www.sciencedirect.com/science?_ob=MImg&_imagekey
=B6V06-4CVX0RT-2-3&_cdi=5638&_user=267327&_orig=s
earch&_coverDate=11%2F01%2F2004&_sk=999799991&vie

Land 

Coastline 

Water X 
Z 

Y 

Coastline 

Land 

Water X 
Z 

Y 

Coastline 

Wave curve 3 Water 

Land 

Wave curve 4 

X

Z

Y

Coastline 

Wave curve 3 Water 

Land 

Wave curve 4 

X 

Z 

Y 

185



 

w=c&wchp=dGLbVzz-zSkzV&md5=c4eea2bb7547c6e532e21
7a9ec196151&ie=/sdarticle.pdf (last accessed Oct 30, 2009) 

Alain Fournier and William T. Reeves. 1986. “A Simple Model of 
Ocean Waves”. ACM SIGGRAPH Computer Graphics, Volume 
20, Issue 4, (Aug), 75-84. 
http://portal.acm.org/citation.cfm?id=15894 (last accessed Oct 
30, 2009) 

Andrew Nealen; Matthias Müller; Richard Keiser; Eddy Boxerman 
and Mark Carlson. 2006. “Physically Based Deformable Models 
in Computer Graphics”. Computer Graphics Forum, Volume 25, 
Number 4, (Dec), 809-836. 
http://www.matthiasmueller.info/publications/egstar2005.pdf 
(last accessed Oct 30, 2009) 

Christer Ericson. 2005. Real-Time Collision Detection. Morgan 
Kaufmann. 

Claes Johanson. 2004. "Real-time Water Rendering- Introducing the 
Projected Grid Concept". Master’s thesis. Department of 
Computer Science, Lund University, (Mar). 
http://fileadmin.cs.lth.se/graphics/theses/projects/projgrid/ (last 
accessed Oct 30, 2009) 

Darwyn R. Peachey. 1986. “Modeling Waves and Surf”. ACM 
SIGGRAPH Computer Graphics, Volume 20, Issue 4, (Aug), 
65-74. http://portal.acm.org/citation.cfm?id=15893 (last 
accessed Oct 30, 2009) 

Douglas Enright; Stephem Marschner and Ronald Fedkiw. 2002. 
“Animation and Rendering of Complex Water Surfaces”. ACM 
Transaction on Graphics, Volume 21, Issue 3, (Jul), 
736-744. http://physbam.stanford.edu/~fedkiw/papers/stanford2
002-03.pdf (last accessed Oct 30, 2009) 

Jerry Tessendorf. 1999. “Simulating Ocean Water”. SIGGRAPH 
Course Notes. 
http://graphics.ucsd.edu/courses/rendering/2005/jdewall/tessen
dorf.pdf (last accessed Oct 30, 2009) 

JOGL. 2009. http://kenai.com/projects/jogl/pages/Home (last 
accessed Oct 30, 2009) 

Keith A. Sverdrup; Alison B. Duxbury and Alyn C. Duxbury. 2006. 
“Waves and Tides”. In Fundamentals of Oceanography, 5th 
edition, McGraw-Hill, 180-192 

Marcelo Alonso and Edward J. Finn. 1992. “Wave Motion”. In 
Physics, Addison-Wesley, 747-766 

Nick Foster and Ronald Fedkiw. 2001. “Practical Animation of 
Liquids”. SIGGRAPH 2001, Proceedings of the 28th annual 
conference on Computer graphics and interactive techniques, 
23-30. 
http://physbam.stanford.edu/~fedkiw/papers/stanford2001-02.p
df (last accessed Oct 30, 2009) 

Tammy Kaitoku. 2008. Tsunami, the Great Waves. 5th edition, 
International Tsunami Information Center. 
http://ioc3.unesco.org/itic/contents.php?id=169 (last accessed 
Oct 30, 2009) 

186



  187 

VITAE 

Name   Mr. Sui  Yifan 
Student ID  5010120159 
Educational Attainment 
   Degree       Name of Institution       Year of Graduation 
Bachelor of Engineering         JiangXi University of        2006 
         Science and Technology 

List of Publication and Proceedings 

[1] Sui, Y. and Davison, A. 2009. “Rendering Water and Land Interaction using a Spring 
System”, Game-On 2009: 10th Int. Conf. on Intelligent Games and Simulation, Dusseldorf, 
Germany, Nov. 26-28th, pp.25-29. 


	Cover_P1
	Cover_P2-P3
	abstract
	acknowledgement
	Content
	Chapter
	appendix A
	appendix B
	vitae



