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ABSTRACT

The Riemann-Stieltjes integral is defined in some text books on

analysis. Kenneth A. Ross proved in his Elementary Analysis: The Theory of

Calculus, that if the integrand is a continuous function and integrator is an in-

creasing function then the Riemann-Stieltjes integral exists.

In this thesis, we shall weaken the condition on the Riemann-Stieltjes

integral. More precisely, we prove that if f ∈ RF [a, b] and g ∈ BV [a, b], then

(RS)

∫ b

a

fdg exists.
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CHAPTER 1

Introduction

The Riemann-Stieltjes integral was introduced in some text books

on analysis. This work is a generalization of the Riemann integral. It is important

for probability and statistics areas. Moreover, this integral will be used in other

area in mathematics.

In 1980, Kenneth A. Ross presented Darboux integral, Riemann

integral, Darboux-Stieltjes integral and Riemann-Stieltjes integral in his book El-

ementary Analysis: The Theory of Calculus. In this study, our concern is the

Riemann-Stieltjes integral.

He shown in his book that if the integrand is a continuous function

and integrator is an increasing function then the Riemann-Stieltjes integral exists.

From the condition of existence of integral above, we see that this

condition is too strong and the spaces of the integrands and the integrators small.

Thus, in this study, we shall weaken the condition on the Riemann-Stieltjes in-

tegral. More precisely, we prove that if a function f is a regulated function on

[a, b] and a function g is of bounded variation on [a, b] then the Riemann-Stieltjes

integral exists.
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CHAPTER 2

Preliminaries

In this chapter, We first collect some basic knowledge used in this thesis.

Definition 2.1. Let S be a non empty subset of R.

(a) If a real number M satisfies s ≤ M for all s ∈ S, then M is called an upper

bound of S and the set S is said to be bounded above.

(b) If a real number m satisfies m ≤ s for all s ∈ S, then m is called an lower

bound of S and the set S is said to be bounded below.

(c) The set S is said to be bounded if it is bounded above and bounded below.

Thus S is bounded if there exist real number m and M such that S ⊆ [m,M ].

Definition 2.2. Let S be a non empty subset of R.

(a) If S is bounded above and S has least upper bound, then we will call it the

supremum of S and denote it by sup S.

(b) If S is bounded below and S has greatest lower bound, then we will call it

the infimum of S and denote it by inf S.

Definition 2.3. A real-valued function f defined on A is said to be bounded if

there exists a real number M such that |f(x)| ≤ M for all x ∈ dom(f).

Theorem 2.1. (Triangle Inequality) Let a, b ∈ R. we have

|a + b| ≤ |a|+ |b|.

Definition 2.4. A sequence {sn} of real number is called a Cauchy sequence if

for each ε > 0 there exists a number N such that m,n > N implies |sm − sn| < ε.

2
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Definition 2.5. Let f be a real-valued function defined on A and x0 ∈ A. We

say that f is continuous at x0 if for any ε > 0 there exists δ > 0 such that for

every x ∈ A with |x− x0| < δ imply that

|f(x)− f(x0)| < ε.

Definition 2.6. Let f be a real-valued function defined on A and B ⊆ A. We

say that f is continuous on B if f is continuous at every point in B.



CHAPTER 3

Riemann Integral

In this chapter we will present the definitions of the Darboux integral, the Riemann

integral and give their properties. Some of the results and proofs are known, see

[5]. We give proof here for easy reference.

3.1 Darboux integral

Let P = {[ui, vi]}n
i=1 be a finite collection of non-overlapping subin-

tervals of [a, b], then P is said to be a partition of [a, b]. If, in addition,
n⋃

i=1

[ui, vi] =

[a, b], then P is said to be a partition of [a, b].

If P = {[xi−1, xi]}n
i=1 and Q = {[yj−1, yj]}m

j=1 are partitions of [a, b],

we say that Q is a refinement of P if each one of the interval [xk−1, xk] from P

can be written as the union of intervals from Q that is

[xk−1, xk] = [yr−1, yr] ∪ [yr, yr+1] ∪ . . . ∪ [ys−1, ys].

We now will construct a new partition from partition P and Q by

rearrange the end points of the intervals in P and Q such that a = z0 < z1 <

. . . < zr = b. We see that this new partition {[zt−1, zt]}r
t=1 is a refinement of P

and Q and we denote this partition by P∇Q = {[zt−1, zt]}r
t=1.

Definition 3.1. Let f be a bounded function on [a, b]. For S ⊆ [a, b], we use the

notation

M(f, S) = sup{f(x) : x ∈ S} and m(f, S) = inf{f(x) : x ∈ S}.

The upper Darboux sum is defined by

U(f, P ) =
n∑

k=1

M(f, [xi−1, xi]) · (xi − xi−1)

4
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and the lower Darboux sum is

L(f, P ) =
n∑

k=1

m(f, [xi−1, xi]) · (xi − xi−1).

Note that for any partition P of [a, b], we have

U(f, P ) ≤
n∑

i=1

M(f, [a, b]) · (xi − xi−1) = M(f, [a, b])(b− a).

Similarly, L(f, P ) ≥ m(f, [a, b])(b− a). Thus

m(f, [a, b])(b− a) ≤ L(f, P ) ≤ U(f, P ) ≤ M(f, [a, b])(b− a).

The upper Darboux integral is defined by

U(f) = inf{U(f, P ) : P is a partition of [a, b]}

and the lower Darboux integral is

L(f) = sup{L(f, P ) : P is a partition of [a, b]}.

We say that f is Darboux integrable or D-integrable on [a, b] if

L(f) = U(f). In this case, we write (D)

∫ b

a

fdx = L(f) = U(f).

Lemma 3.1. [5] Let f be a bounded function on [a, b]. If P is a partition of [a, b]

and Q is a refinement of P , then

L(f, P ) ≤ L(f, Q) ≤ U(f, Q) ≤ U(f, P ). (3.1)

Proof. First, we see that the second inequality in (3.1) is obvious. It is sufficient

to show that

L(f, P ) ≤ L(f, Q) and U(f, Q) ≤ U(f, P ).

We may assume that

Q = {[x0, x1], . . . , [xk−1, u], [u, xk], . . . , [xm−1, xm]},

for some k = 1, 2, . . . ,m. The lower Darboux sum for P and Q are the same

except for the terms involving xk−1 or xk. Note that

m(f, [xk−1, xk]) ≤ m(f, [xk−1, u]) and m(f, [xk−1, xk]) ≤ m(f, [u, xk]).
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Hence, we have

m(f, [xk−1, xk])(xk − xk−1) = m(f, [xk−1, xk])[(xk − u) + (u− xk−1)]

≤ m(f, [u, xk])(xk − u) + m(f, [xk−1, u])(u− xk−1).

Therefore L(f, P ) ≤ L(f, Q). Similarly U(f, Q) ≤ U(f, P ).

Lemma 3.2. [5] If f is bounded function on [a, b], and if P and Q are partitions

of [a, b], then L(f, P ) ≤ U(f, Q).

Proof. Let P and Q are partitions of [a, b], we have that P∇Q is also a partition

of [a, b]. We have that P∇Q is a refinement of P and Q, we can apply Lemma 3.1

to have

L(f, P ) ≤ L(f, P∇Q) ≤ U(f, P∇Q) ≤ U(f, Q).

Theorem 3.3. [5] If f is bounded function on [a, b], then L(f) ≤ U(f).

Proof. Fix a partition P of [a, b]. By Lemma 3.2, L(f, P ) is a lower bound of the

set

{U(f, Q) : Q is a partition of [a, b]}.

Hence L(f, P ) is less than or equal to the infimum of the above set. That is

L(f, P ) ≤ U(f).

Hence U(f) is an upper bound for the set of L(f, P ) and we get U(f) ≥ L(f).

Theorem 3.4. [5] A bounded function f on [a, b] is D-integrable if and only if for

each ε > 0 there exists a partition P of [a, b] such that

U(f, P )− L(f, P ) < ε.

Proof. Suppose that f is D-integrable on [a, b]. Let ε > 0 be given. There exists

partition P1 and P2 of [a, b] such that

L(f, P1) > L(f)− ε

2
and U(f) +

ε

2
> U(f, P2).
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Let P = P1∇P2, thus P is a refinement of P1 and P2. By Lemma 3.1 we have

U(f, P ) ≤ U(f, P2) and L(f, P ) ≥ L(f, P1).

Hence,

U(f, P )− L(f, P ) ≤ U(f, P2)− L(f, P1)

< U(f) +
ε

2
− (L(f)− ε

2
)

= U(f)− L(f) + ε

= ε.

The last equation above holds by integrability of f on [a, b].

Conversely, suppose that for each ε > 0, there exists a partition P

of [a, b] such that U(f, P )− L(f, P ) < ε. Then we have

U(f) < U(f, P )

= U(f, P )− L(f, P ) + L(f, P )

< ε + L(f, P )

≤ ε + L(f).

That is U(f)−L(f) ≤ ε. By Theorem 3.3, since ε was arbitrary, we can conclude

that U(f) ≤ L(f). Therefore, we have that f is D−integrable on [a, b].

Let δ be a positive constant, [u, v] ⊆ [a, b]. Then an interval [u, v]

is said to be δ-fine if |v − u| < δ. Let P = {[ui, vi]}n
i=1 be a finite collection of

intervals. Then P is said to be a δ-fine partial partition of [a, b] if P is a partial

partition of [a, b] and each [ui, vi] is δ-fine. In addition, if P is a partition of [a, b],

then P is said to be a δ-fine partition of [a, b].

Theorem 3.5. [5](Cauchy’s criterion for Darboux intgral)

A bounded function f is D-integrable on [a, b] if and only if for each ε > 0, there

exists a positive constant δ such that for any δ-fine partition P of [a, b] we have

U(f, P )− L(f, P ) < ε.
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Proof. First, assume that for every ε > 0, there exists a positive constant δ such

that for any δ-fine partition P of [a, b], we have

U(f, P )− L(f, P ) < ε.

By Theorem 3.4, f is D-integrable on [a, b].

Conversely, assume that f is D-integrable on [a, b]. Let ε > 0 be

given and there is a partition P0 = {[ti−1, ti]}m
i=1 of [a, b] such that

U(f, P0)− L(f, P0) <
ε

2
. (3.2)

Since f is bounded function, there exists a positive real number B such that

|f(x)| ≤ B for all x ∈ [a, b].

Let δ =
ε

8mB
, where m is a number of interval in P0. Let P =

{[xi−1, xi]}n
i=1 be a δ-fine partition of [a, b]. Since P is a δ-fine partition of [a, b],

thus for any two points in δ-fine partition P , we have |x′−x′′| < δ. Let Q = P∇P0.

Since Q is a refinement of P , we have

L(f, Q)− L(f, P ) ≤ 2mB|x′ − x′′|

< 2mBδ

=
ε

4
.

By Lemma 3.1, we have L(f, P0) ≤ L(f, Q) and so

L(f, P0)− L(f, P ) <
ε

4
.

Similarly we have U(f, P )− L(f, P0) <
ε

4
and so

U(f, P )− L(f, P ) < U(f, P0)− L(f, P0) +
ε

2
.

Now, by an inequality (3.2), we have

U(f, P )− L(f, P ) <
ε

2
+

ε

2
= ε.

Therefore, this proof is complete.
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A finite collection {([xi−1, xi], ξi)}n
i=1 of interval point pairs is said

to be a division of [a, b] if {[xi−1, xi]}n
i=1 is a partition of [a, b] and ξi ∈ [xi−1, xi]

for each i. The point ξi is called a tag or an associate point of [xi−1, xi].

Let δ be a positive constant. An interval point pair ([u, v], ξ) is said

to be δ-fine if |v − u| < δ, ξ is any point in [u, v].

A division {([xi−1, xi], ξi)}n
i=1 is said to be δ-fine if each ([xi−1, xi], ξi)

is δ-fine.

3.2 Riemann integral

Definition 3.2. A function f : [a, b] → R is said to be Riemann integrable or

R-integrable to A on [a,b] if for each ε > 0, there exists a positive constant δ such

that whenever D = {([xi−1, xi], ξi)}n
i=1 is a δ-fine division of [a, b], we have

|S(f, δ, D)− A| ≤ ε,

where S(f, δ, D) =
n∑

i=1

f(ξi)(xi − xi−1). We denoted a constant A by (R)

∫ b

a

fdx.

Theorem 3.6. (Cauchy’s criterion for Riemann integral)

Let f : [a, b] → R. Then f is R-integrable on [a, b] if and only if for each ε > 0,

there exists a positive constant δ such that whenever D1, D2 are two δ-fine divisions

of [a, b], we have

|S(f, δ, D1)− S(f, δ, D2)| ≤ ε.

Proof. First, we assume that f is R-integrable on [a, b]. Let ε > 0 be given. There

exists a positive constant δ on [a, b] such that for every D1, D2 are two δ-fine

divisions of [a, b], we get

|S(f, δ, D1)− A| ≤ ε

2

and

|S(f, δ, D2)− A| ≤ ε

2
.
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By triangle inequality we have that

|S(f, δ, D1)− S(f, δ, D2)| = |(S(f, δ, D1)− A)− (S(f, δ, D2)− A)|

≤ |S(f, δ, D1)− A|+ |S(f, δ, D2)− A|

≤ ε

2
+

ε

2

= ε.

Conversely, we assume that for each ε > 0, there exists a positive

constant δ on [a, b] such that for every δ-fine division D1, D2 of [a, b] we have that

|S(f, δ, D1)− S(f, δ, D2)| ≤
ε

2
.

Let εn =
2

n
for any n ∈ N and δn is a positive constant on [a, b]. We may assume

that if m ≥ n then δm ≤ δn for any m, n ∈ N. Thus for every δm-fine division on

[a, b] is also a δn-fine division on [a, b]. Hence we get∣∣S(f, δm1 , Dm1)− S(f, δm2 , Dm2)
∣∣ ≤ 1

n
,

where m1, m2 ≥ n.

We can conclude that {S(f, δn, Dn)}n∈N is a Cauchy sequence in R.

We have that {S(f, δn, Dn)}n∈N is also a convergent sequence in R, there exists a

constant A such that lim
n→∞

|S(f, δn, Dn)− A| = 0.

Let ε > 0 be given, there exists N1 ∈ N such that for any n ≥ N1,

we have that

|S(f, δn, Dn)− A| ≤ ε

2
.

Let
1

N2

≤ ε

2
, N = max{N1, N2} and δ = δN , we get

|S(f, δ, D)− A| = |S(f, δ, D)− S(f, δN , DN) + S(f, δN , DN)− A|

≤ |S(f, δ, D)− S(f, δN , DN)|+ |S(f, δN , DN)− A|

≤ 1

N
+

ε

2

= ε.

Hence f is R-integrable on [a, b].
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Theorem 3.7. [3] If f is R-integrable on [a, b], then f is bounded on [a, b].

Proof. Let ε = 1 be given, by Cauchy’s criterion for Riemann integral, there exists

positive constant δ such that whenever D1, D2 are δ-fine division of [a, b], we have

|S(f, δ, D1)− S(f, δ, D2)| ≤ 1.

Let D1 = {([xi−1, xi], ξi)}n
i=1 be a fixed δ-fine division of [a, b] and x be a point in

[a, b], so x ∈ [xj−1, xj] for some j. We define a new division D2 form division D1

and replacing a point ξj by x, we have D2 is a δ-fine division of [a, b]. Hence

|(f(ξj)− f(x))(xj − xj−1)| = |S(f, δ, D1)− S(f, δ, D2)|

≤ 1.

Hence we get

|f(x)| ≤ (1 + |f(ξj)(xj − xj−1)|)
(xj − xj−1)

≤
(1 +

n∑
i=1

|f(ξj)(xj − xj−1)|)

β
,

where β = min{|xj−xj−1| : j = 1, 2, . . . , n}. Therefore, f is bounded on [a, b].

Theorem 3.8. [5] A bounded function f on [a, b] is R-integrable on [a, b] if and

only if it is D-integrable on [a, b].

Proof. Assume that f is D-integrable on [a, b]. Let ε > 0 be given. By Theo-

rem 3.5, there exists a positive constant δ such that for any δ-fine partition P of

[a, b], we have

U(f, P )− L(f, P ) < ε.

Let D be a δ-fine division of [a, b]. Let P be an associated partition of D. Clear

that P form a δ-fine partition of [a, b]. Thus

S(f, δ, D) ≤ U(f, P ) < L(f, P ) + ε ≤ L(f) + ε = (D)

∫ b

a

fdx + ε,
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and

S(f, δ, D) ≥ L(f, P ) > U(f, P )− ε ≥ U(f)− ε = (D)

∫ b

a

fdx− ε.

Hence, we have

∣∣∣∣S(f, δ, D)−
∫ b

a

fdx

∣∣∣∣ < ε. We can conclude that f is R-integrable

on [a, b] and

(R)

∫ b

a

fdx = (D)

∫ b

a

fdx.

Conversely, assume that f is R-integrable on [a, b]. Thus for any

ε > 0, there exists a constant δ > 0 such that whenever D = {([xi−1, xi], ξi)}n
i=1 is

a δ-fine division of [a, b], we have∣∣∣∣S(f, δ, D)− (R)

∫ b

a

fdx

∣∣∣∣ < ε.

Let P = {[xi−1, xi]}n
i=1 be a δ-fine partition of [a, b]. For each k, k = 1, 2, . . . , n,

choose γk ∈ [xk−1, xk] such that

f(γk) < m(f, [xk−1, xk]) + ε.

Then D form a δ-fine division of [a, b] such that

S(f, δ, D) ≤ L(f, P ) + ε(b− a).

Thus we have

L(f) ≥ L(f, P ) ≥ S(f, δ, D)− ε(b− a) > (R)

∫ b

a

fdx− ε− ε(b− a).

We see that L(f) ≥ (R)

∫ b

a

fdx. Similarly, U(f) ≤ (R)

∫ b

a

fdx. Since we have

L(f) ≤ U(f), we get

L(f) = U(f) = (R)

∫ b

a

fdx.

Therefore, f is D-integrable on [a, b] and

(D)

∫ b

a

fdx = (R)

∫ b

a

fdx.



CHAPTER 4

The Riemann-Stieltjes Integral

In this chapter, we shall (i) present the definitions of usual Darboux-Stieltjes

integral, usual Riemann-Stieltjes integral and give their properties; (ii) give the

definitions of Darboux-Stieltjes integral, Riemann-Stieltjes integral and give their

properties; (iii) present the definition of regulated function, bounded variation and

prove their properties; (iv) present the definition of null set and give its properties;

(v) prove the main result.

4.1 Usual Darboux-Stieltjes and usual Riemann-Stieltjes

integral

In this section,we give the definitions of usual Darboux-Stieltjes integral and usual

Riemann-Stieltjes integral that can be found in [5]. We also give the useful lemmas

and theorems that Ross stated in [5]. However, he gave them without proof. We

provide proof with detail in this section.

Definition 4.1. Let f be a bounded function and g an increasing functions on

[a, b]. For any subset [xi−1, xi] of [a, b], we use the notation the upper usual

Darboux-Stieltjes sum of f with respect to g is defined by

Ũ(f, g, P ) =
n∑

i=1

M(f, [xi−1, xi])(g(xi)− g(xi−1)),

and the lower usual Darboux-Stieltjes sum of f with respect to g is defined by

L̃(f, g, P ) =
n∑

i=1

m(f, [xi−1, xi])(g(xi)− g(xi−1)).

We define the upper usual Darboux-Stieltjes integral by

Ũ(f, g) = inf
P
{Ũ(f, g, P )}

13
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and the lower usual Darboux-Stieltjes integral is

L̃(f, g) = sup
P
{L̃(f, g, P )}.

We say that f is usual Darboux-Stieltjes integrable or UDS-integrable

on [a, b] with respect to g if L̃(f, g) = Ũ(f, g). In this case, we write (UDS)

∫ b

a

fdg =

Ũ(f, g) = L̃(f, g).

Lemma 4.1. Let f be a bounded fucntion and g an increasing function on [a, b].

If P is a partition of [a, b], and Q is a refinement of P , then

L̃(f, g, P ) ≤ L̃(f, g, Q) ≤ Ũ(f, g, Q) ≤ Ũ(f, g, P ). (4.1)

Proof. First, we see that the second inequality in (4.1) is obvious. It is sufficient

to show that

L̃(f, g, P ) ≤ L̃(f, g, Q) and Ũ(f, g, Q) ≤ Ũ(f, g, P ).

We may assume that

Q = {[x0, x1], . . . , [xk−1, u], [u, xk], . . . , [xm−1, xm]}

for some k = 1, 2, . . . ,m. The lower usual Darboux-Stieltjes sum for P and Q are

the same except for the terms involving xk−1 or xk. Note that

m(f, [xk−1, xk]) ≤ m(f, [xk−1, u]) and m(f, [xk−1, xk]) ≤ m(f, [u, xk])

Hence, we have

m(f, [xk−1, xk])(g(xk)− g(xk−1)) = m(f, [xk−1, xk]) · [(g(xk)− g(u)) + (g(u)− g(xk−1))]

≤ m(f, [u, xk])(g(xk)− g(u))

+m(f, [xk−1, u])(g(u)− g(xk−1)).

Therefore L̃(f, g, P ) ≤ L̃(f, g, Q). Similarly Ũ(f, g, Q) ≤ Ũ(f, g, P ).

Lemma 4.2. If f is a bounded function and g is an increasing function on [a, b],

and if P and Q are partitions of [a, b], then L̃(f, g, P ) ≤ Ũ(f, g, Q).
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Proof. Let P and Q be partition of [a, b], we have that P∇Q is also a partition of

[a, b]. We have that P∇Q is a refinement of P and Q. We can apply Lemma 4.1

to have

L̃(f, g, P ) ≤ L̃(f, g, P∇Q) ≤ Ũ(f, g, P∇Q) ≤ Ũ(f, g, Q).

Theorem 4.3. If f be a bounded function and g is an increasing function on [a, b],

then L̃(f, g) ≤ Ũ(f, g).

Proof. Fix a partition P of [a, b]. By Lemma 4.2, L̃(f, g, P ) is a lower bound of

the set

{Ũ(f, g, Q) : Q is a partition of [a, b]}.

Hence L̃(f, g, P ) is less than or equal to the infimum of the above set. That is

L̃(f, g, P ) ≤ Ũ(f, g).

Hence Ũ(f, g) is an upper bound for the set of L̃(f, g, P ) and we get Ũ(f, g) ≥

L̃(f, g).

Theorem 4.4. Let f be a bounded function and g an increasing function on [a, b].

f is UDS-integrable on [a, b] with respect to g if and only if for each ε > 0 there

exists a partition P of [a, b] such that

Ũ(f, g, P )− L̃(f, g, P ) < ε.

Proof. Suppose that f is UDS-integrable on [a, b] with respect to g. Let ε > 0 be

given. There exists partition P1 and P2 of [a, b] such that

L̃(f, g, P1) > L̃(f, g)− ε

2
and Ũ(f, g) +

ε

2
> Ũ(f, g, P2).

Let P = P1∇P2, thus P is a refinement of P1 and P2. By Lemma 4.1 we have

Ũ(f, g, P ) ≤ Ũ(f, g, P2) and L̃(f, g, P ) ≥ L̃(f, g, P1).



16

Hence,

Ũ(f, g, P )− L̃(f, g, P ) ≤ Ũ(f, g, P2)− L̃(f, g, P1)

< Ũ(f, g) +
ε

2
− (L̃(f, g)− ε

2
)

= Ũ(f, g)− L̃(f, g) + ε

= ε.

The last equation above holds by integrability of f on [a, b].

Conversely, suppose that for each ε > 0, there exists a partition P

of [a, b] such that Ũ(f, g, P )− L̃(f, g, P ) < ε. Thus we have

Ũ(f, g) < Ũ(f, g, P )

= Ũ(f, g, P )− L̃(f, g, P ) + L̃(f, g, P )

< ε + L̃(f, g, P )

≤ ε + L̃(f, g).

That is Ũ(f, g) − L̃(f, g) ≤ ε. By Theorem 4.3, since ε was arbitrary, we can

conclude that Ũ(f, g) ≤ L̃(f, g). Therefore, we have that f is UDS-integrable on

[a, b] with respect to g.

Theorem 4.5. (Cauchy’s criterion for usual Darboux-Stieltjes integral)

Let f be a bounded function and g an increasing function on [a, b]. f is UDS-

integrable on [a, b] with respect to g if and only if for each ε > 0, there exists a

positive constant δ such that for any δ-fine partition P of [a, b] with respect to g,

we have Ũ(f, g, P )− L̃(f, g, P ) < ε.

Proof. Assume that there exists a positive constant δ such that for any δ-fine

partition P of [a, b] with respect to g, we have Ũ(f, g, P ) − L̃(f, g, P ) < ε. By

Theorem 4.4, f is UDS-integrable on [a, b] with respect to g.

Conversely, assume that f is UDS-integrable on [a, b] with respect

to g. Let ε > 0 be given. There is a partition P0 = {[ti−1, ti]}m
i=1 of [a, b] such that

Ũ(f, g, P0)− L̃(f, g, P0) <
ε

2
. (4.2)
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Since f is bounded function, there exists a positive real number B such that

|f(x)| ≤ B for all x ∈ [a, b].

Let δ =
ε

8mB
, where m is a number of interval in P0. Let P =

{[xi−1, xi]}n
i=1 be δ-fine partition of [a, b] with respect to g. Thus for any two

points in δ-fine partition P , we have |x′ − x
′′| < δ.

Let Q = P∇P0. Since Q is a refinement of P , we get

L̃(f, g, Q)− L̃(f, g, P ) ≤ 2mB|x′ − x
′′|

< 2mBδ

=
ε

4
.

By Lemma 4.1, we have L̃(f, g, P0) ≤ L̃(f, g, Q) and so

L̃(f, g, P0)− L̃(f, g, P ) <
ε

4
.

Similarly, we have Ũ(f, g, P )− L̃(f, g, P0) <
ε

4
and so

Ũ(f, g, P )− L̃(f, g, P ) < Ũ(f, g, P0)− L̃(f, g, P0) +
ε

2
.

Now, by inequality (4.2) we have that

Ũ(f, g, P )− L̃(f, g, P ) <
ε

2
+

ε

2
= ε.

Therefore, this proof is complete.

Definition 4.2. A function f : [a, b] → R is said to be usual Riemann-Stieltjes

integrable or URS-integrable to A on [a, b] with respect to g if for each ε > 0,

there exists a positive constant δ such that whenever D = {([xi−1, xi], ξi)}n
i=1 is a

δ-fine division of [a, b] with respect to g, we have

|S̃(f, g, D)− A| ≤ ε,

where S̃(f, g, D) =
n∑

i=1

f(ξi)(g(xi) − g(xi−1)). We denoted a constant A by

(URS)

∫ b

a

fdg.
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Theorem 4.6. (Cauchy’s criterion for usual Riemann-Stieltjes integral)

Let f : [a, b] → R. Then f is URS-integrable on [a, b] with respect to g if and

only if for each ε > 0, there exists a positive constant δ such that whenever D1, D2

are two δ-fine divisions of [a, b], we have

|S̃(f, g, D1)− S̃(f, g, D2)| ≤ ε.

Proof. First, we assume that f is URS-integrable on [a, b] with respect to g and

let ε > 0 be given, there exists a positive constant δ on [a, b] such that for every

D1, D2 are two δ-fine divisions of [a, b] with respect to g, we get

|S̃(f, g, D1)− A| ≤ ε

2

and

|S̃(f, g, D2)− A| ≤ ε

2
.

By triangle inequality we have that

|S̃(f, g, D1)− S̃(f, g, D2)| = |(S̃(f, g, D1)− A)− (S̃(f, g, D2)− A)|

≤ |S̃(f, g, D1)− A|+ |S̃(f, g, D2)− A|

≤ ε

2
+

ε

2

= ε.

Conversely, we assume that for each ε > 0, there exists a positive

constant δ on [a, b] such that for every δ-fine division D1, D2 of [a, b] with respect

to g, we have that

|S̃(f, g, D1)− S̃(f, g, D2)| ≤
ε

2
.

Let εn =
2

n
for any n ∈ N and δn is a positive constant on [a, b]. We may assume

that if m ≥ n then δm ≤ δn for any m, n ∈ N. Thus for every δm-fine division on

[a, b] with respect to g is also a δn-fine division on [a, b] with respect to g. Hence

we get ∣∣S̃(f, g, Dm1)− S̃(f, g, Dm2)
∣∣ ≤ 1

n
,
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where m1, m2 ≥ n.

We can conclude that {S̃(f, g, Dn)}n∈N is a Cauchy sequence in R.

we have that {S̃(f, g, Dn)}n∈N is also a convergent sequence in R, there exists a

constant A such that lim
n→∞

|S̃(f, g, Dn)− A| = 0.

Let ε > 0 be given, there exists N1 ∈ N such that for any n ≥ N1,

we have that

|S̃(f, g, Dn)− A| ≤ ε

2
.

Let
1

N2

≤ ε

2
, N = max{N1, N2} and δ = δN , we get

|S̃(f, g, D)− A| = |S̃(f, g, D)− S̃(f, g, DN) + S̃(f, g, DN)− A|

≤ |S̃(f, g, D)− S̃(f, g, DN)|+ |S̃(f, g, DN)− A|

≤ 1

N
+

ε

2

= ε.

Hence f is URS-integrable on [a, b] with respect to g.

It is known that the URS-integrability criterion implies the UDS-

integrability criterion.

Example 4.1. Let s : [0, 1] → R be a step function defined by

s(x) =


0, if 0 ≤ x <

1

2
;

1, if
1

2
≤ x ≤ 1.

We shall show that a step function s above neither UDS-integrable nor URS-

integrable with respect to s on [a, b].

Consider

L(s, s, P ) =
n∑

i=1

m(f, [tk−1, tk]) · (g(tk)− g(tk−1)) = 0 · 1 = 0

and

U(s, s, P ) =
n∑

i=1

M(f, [tk−1, tk]) · (g(tk)− g(tk−1)) = 1 · 1 = 1.
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Hence, we have

U(s, s) 6= L(s, s).

Thus, a step function s neither UDS-integrable nor URS-integrable with respect

to s on [0, 1].

4.2 Darboux-Stieltjes integral

In this section, let f be a bounded function and g an increasing function on [a, b].

Definition 4.3. For a bounded function f , increasing function g on [a, b] and a

partial partition P = {[xi−1, xi]}n
i=1, we write

g(x+) = lim
t→x+

g(t) and g(x−) = lim
t→x−

g(t),

and let

J(f, g, P ) =
n∑

i=1

f(xi)(g(x+
i )− g(x−i )).

The upper Darboux-Stieltjes sum is defined by

U(f, g, P ) = J(f, g, P ) +
n∑

i=1

M(f, (xi−1, xi)) · (g(x−i )− g(x+
i−1))

and the lower Darboux-Stieltjes sum is defined by

L(f, g, P ) = J(f, g, P ) +
n∑

i=1

m(f, (xi−1, xi)) · (g(x−i )− g(x+
i−1)).

We define the upper Darboux-Stieltjes integral by

U(f, g) = inf{U(f, g, P ) : P is a partition of [a, b]},

and the lower Darboux-Stieltjes integral is defined by

L(f, g) = sup{L(f, g, P ) : P is a partition of [a, b]}.

We say that f is Darboux-Stieltjes integrable or DS-integrable on

[a, b] with respect to g if L(f, g) = U(f, g). In this case, we write (DS)

∫ b

a

fdg =

L(f, g) = U(f, g).
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Lemma 4.7. Let f be a bounded function and g an increasing function on [a, b].

Let P and Q be partitions of [a, b] such that Q is a refinement of P . Then

L(f, g, P ) ≤ L(f, g, Q) ≤ U(f, g, Q) ≤ U(f, g, P ) (4.3)

Proof. First, We see that the second inequality in (4.3) is obvious. Hence we will

show that

L(f, g, P ) ≤ L(f, g, Q) and U(f, g, Q) ≤ U(f, g, P ).

We may assume that

Q = {[x0, x1], . . . , [xk−1, u], [u, xk], . . . , [xm−1, xm]}

for some k = 1, 2, . . . , n. The lower Darboux-Stieltjes sum for P and Q are the

same except for the terms involving xk−1 or xk. Note that

m(f, (xk−1, xk)) ≤ m(f, (xk−1, u)) and m(f, (xk−1, xk)) ≤ m(f, (u, xk)).

Hence, we have

m(f, (xk−1, xk))(g(x−x )− g(x+
k−1)) ≤ m(f, (xk−1, xk))(g(x−x )− g(u+))

+f(u)(g(u+)− g(u−))

+m(f(xk−1, xk))(g(u−)− g(x+
k−1))

≤ m(f, (xk−1, u))(g(x−x )− g(u+))

+f(u)(g(u+)− g(u−))

+m(f(u, xk))(g(u−)− g(x+
k−1))

Therefore, L(f, g, P ) ≤ L(f, g, Q). Similarly U(f, g, Q) ≤ U(f, g, P ).

Lemma 4.8. If f is a bounded function and g an increasing function on [a, b]. If

P and Q are partition of [a, b], then L(f, g, P ) ≤ U(f, g, Q).

Proof. Let P and Q be partition of [a, b]. Thus P∇Q is also a partition of [a, b].

We have that P∇Q is a refinement of P and Q. We can apply Lemma (4.7) to

have that L(f, g, P ) ≤ L(f, g, P∇Q) ≤ U(f, g, P∇Q) ≤ U(f, g, Q).
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Theorem 4.9. For every bounded function f and increasing function g on [a, b],

we have L(f, g) ≤ U(f, g)

Proof. Fix a partition P of [a, b]. By Lemma 4.8, L(f, g, P ) is a lower bound of

the set

{U(f, g, Q) : Q is a partition of [a, b]}.

Hence L(f, g, P ) is less than or equal to the infimum of the above set. That is

L(f, g, P ) ≤ U(f, g).

Hence U(f, g) is an upper bound for the set of L(f, g, P ) and we have L(f, g) ≤

U(f, g).

4.3 Basic properties for Darboux-Stieltjes integral

Theorem 4.10. Let f be a bounded function and g an increasing function on

[a, b]. f is DS-integrable on [a, b] with respest to g if and only if for each ε > 0

there exists a partition P of [a, b] such that

U(f, g, P )− L(f, g, P ) < ε.

Proof. Suppose that f is DS-integrable on [a, b] with respect to g. Let ε > 0 be

given. There exists partition P1 and P2 of [a, b] such that

L(f, g, P1) > L(f, g)− ε

2
and U(f, g) +

ε

2
> U(f, g, P2).

Let P = P1∇P2, thus P is a refinement of P1 and P2. By Lemma 4.7 we have

U(f, g, P ) ≤ U(f, g, P2) and L(f, g, P ) ≥ L(f, g, P1).

Hence,

U(f, g, P )− L(f, g, P ) ≤ U(f, g, P2)− L(f, g, P1)

< U(f, g) +
ε

2
− (L(f, g)− ε

2
)

= U(f, g)− L(f, g) + ε

= ε.
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The last equation above holds by integrability of f on [a, b].

Conversely, suppose that for each ε > 0, there exists a partition P

of [a, b] such that U(f, g, P )− L(f, g, P ) < ε. Then we have

U(f, g) < U(f, g, P )

= U(f, g, P )− L(f, g, P ) + L(f, g, P )

< ε + L(f, g, P )

≤ ε + L(f, g).

That is U(f, g) − L(f, g) ≤ ε. By Theorem 4.9, since ε was arbitrary, we can

conclude that U(f, g) ≤ L(f, g). Therefore, we have that f is DS-integrable on

[a, b] with respect to g.

Let δ be a positive constant, [u, v] ⊆ [a, b] then an interval [u, v] is

said to be δ-fine with respect to g if

|g(v−)− g(u+)| < δ.

Let P = {[ui, vi]}n
i=1 be a finite collection of intervals. Then P is

said to be a δ-fine partial partition with respect to g of [a, b] if P is a partial

partition of [a, b] and each [ui, vi] is δ-fine with respect to g. In addition, if P is a

partition of [a, b], then P is said to be a δ-fine partition with respect to g of [a, b].

Note that for any increasing function g on [a, b], given a positive

constant δ, there exists a δ-fine partition on [a, b] with respect to g.

Theorem 4.11. (Cauchy’s criterion for Darboux-Stieltjes intgral)

Let f be a bounded function and g an increasing function on [a, b]. f is DS-

integrable on [a, b] with respect to g if and only if for each ε > 0, there exists a

positive constant δ such that for any δ-fine partition P of [a, b] with respect to g,

we have U(f, g, P )− L(f, g, P ) < ε.

Proof. Assume that there exists a positive constant δ such that for any δ-fine

partition P of [a, b] with respect to g, we have U(f, g, P ) − L(f, g, P ) < ε. By

Theorem 4.10, f is DS-integrable on [a, b] with respect to g.
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Conversely, assume that f is DS-integrable on [a, b] with respect to

g. Let ε > 0 be given. There is a partition P0 = {[ti−1, ti]}m
i=1 of [a, b] such that

U(f, g, P0)− L(f, g, P0) <
ε

2
. (4.4)

Since f is bounded function, there exists a positive real number B such that

|f(x)| ≤ B for all x ∈ [a, b].

Let δ =
ε

8mB
, where m is a number of interval in P0. Let P = {[xi−1, xi]}n

i=1

be δ-fine partition of [a, b] with respect to g. Since P is a δ-fine partition of [a, b]

with respect to g, for any two points in δ-fine partition P , we have |x′ − x′′| < δ.

Let Q = P∇P0. Since Q is a refinement of P , we get

L(f, g, Q)− L(f, g, P ) ≤ 2mB|x′ − x′′|

< 2mBδ

=
ε

4
.

By Lemma 4.7 we have L(f, g, P0) ≤ L(f, g, Q) and so

L(f, g, P0)− L(f, g, P ) <
ε

4
.

Similarly we have U(f, g, P )− L(f, g, P0) <
ε

4
and so

U(f, g, P )− L(f, g, P ) < U(f, g, P0)− L(f, g, P0) +
ε

2
.

Now, by inequality (4.4) we have that

U(f, g, P )− L(f, g, P ) <
ε

2
+

ε

2
= ε.

Therefore, this proof is complete.

We shall use the short hand notation in following prove,

U ′(f, g, P ) =
n∑

i=1

M(f, (xi−1, xi))(g(x−i )− g(x+
i−1))

and

L′(f, g, P ) =
n∑

i=1

m(f, (xi−1, xi))(g(x−i )− g(x+
i−1)).
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Theorem 4.12. Let f and h be bounded functions and g an increasing function

on [a, b]. If f and h are DS-integrable on [a, b] with respect to g and if α ≥ 0,

then

(i) f + h is DS-integrable on [a, b] with respect to g and

(DS)

∫ b

a

(f + h)dg = (DS)

∫ b

a

fdg + (DS)

∫ b

a

hdg.

(ii) αf is DS-integrable on [a, b] with respect to g and

(DS)

∫ b

a

αfdg = α(DS)

∫ b

a

fdg.

Proof. (i) Let f and h be bounded functions on [a, b]. Assume that f and h are

DS-integrable on [a, b] with respect to g, we have

J(f + h, g, P ) =
n∑

i=1

(f + h)(xi)(g(x+
i )− g(x−i ))

=
n∑

i=1

(f(xi) + h(xi))(g(x+
i )− g(x−i ))

=
n∑

i=1

f(xi)(g(x+
i )− g(x−i )) +

n∑
i=1

h(xi)(g(x+
i )− g(x−i ))

= J(f, g, P ) + J(h, g, P )

and

U ′(f + h, g, P ) =
n∑

i=1

M((f + h), (xi−1, xi))(g(x−i )− g(x+
i−1))

≤
n∑

i=1

M(f, (xi−1, xi))(g(x−i )− g(x+
i−1))

+
n∑

i=1

M(h, (xi−1, xi))(g(x−i )− g(x+
i−1))

= U ′(f, g, P ) + U ′(h, g, P ).

Similarly, L′(f + h, g, P ) ≥ L′(f, h, P ) + L′(h, g, P ).
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For any partition P of [a, b], we have

U(f + h, g, P ) = J(f + h, g, P ) + U ′(f + h, g, P )

≤ J(f, g, P ) + J(h, g, P ) + U ′(f, g, P ) + U ′(h, g, P )

= J(f, g, P ) + U ′(f, g, P ) + J(h, g, P ) + U ′(h, g, P )

= U(f, g, P ) + U(h, g, P ).

Similarly, we have L(f + h, g, P ) ≥ L(f, g, P ) + L(h, g, P ).

Let ε > 0 be given, Since f and h are DS-integrable on [a, b] with

respect to g, by Theorem 4.11, there exists a δ > 0 such that for any δ-fine

partition P of [a, b] we have

U(f, g, P )− L(f, g, P ) <
ε

2
and U(h, g, P )− L(h, g, P ) <

ε

2
.

Hence we have

U(f + h, g, P )− L(f + h, g, P ) ≤ U(f, g, P )− L(f, g, P ) + U(h, g, P )− L(h, g, P )

<
ε

2
+

ε

2

= ε.

Theorem 4.11 implies that f + h is DS-integrable on [a, b] with respect to g, and

we have

(DS)

∫ b

a

(f + h)dg ≤ U(f + h, g, P )

≤ U(f, g, P ) + U(h, g, P )

≤ L(f, g, P ) + L(h, g, P ) + ε

≤ (DS)

∫ b

a

fdg + (DS)

∫ b

a

hdg + ε

and

(DS)

∫ b

a

(f + h)dg ≥ L(f + h, g, P )

≥ L(f, g, P ) + L(h, g, P )

≥ U(f, g, P ) + U(h, g, P )− ε

= (DS)

∫ b

a

fdg + (DS)

∫ b

a

hdg − ε.
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Thus we have

(DS)

∫ b

a

(f + h)dg = (DS)

∫ b

a

fdg + (DS)

∫ b

a

hdg

(ii) In case of α = 0, it clearly that

(DS)

∫ b

a

0 · fdg = 0 = 0 · (DS)

∫ b

a

fdg.

Next, we let α > 0 be given. We consider

J(αf, g, P ) =
n∑

i=1

αf(xi)(g(x+
i )− g(x−i ))

= α

n∑
i=1

f(xi)(g(x+
i )− g(x−i ))

= αJ(f, g, P )

and

U ′(f, g, P ) =
n∑

i=1

M(αf, (xi−1, xi))(g(x−i )− g(x+
i−1))

= α
n∑

i=1

M(f, (xi−1, xi))(g(x−i )− g(x+
i−1))

= αU ′(f, g, P ).

Similarly, we have L′(αf, g, P ) = αL′(f, g, P ).

Since f is DS-integrable on [a, b] with respect to g, by Theorem 4.11, there exists

δ > 0 such that for any δ-fine partition P of [a, b] with respect to g we have

U(f, g, P )− L(f, g, P ) <
ε

α
.

Hence we have

U(αf, g, P )− L(αf, g, P ) = αU(f, g, P )− αL(f, g, P )

= α(U(f, g, P )− L(f, g, P ))

< α
ε

α

= ε.
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Theorem 4.11 implies that αf is DS-integrable on [a, b] with respect to g and we

have

(DS)

∫ b

a

αfdg ≤ U(αf, g, P ) < L(αf, g, P ) + ε

= αL(f, g, P ) + ε

≤ α(DS)

∫ b

a

fdg + ε

and (DS)

∫ b

a

αfdg ≥ α(DS)

∫ b

a

fdg − ε.

Thus we have

(DS)

∫ b

a

αfdg = α(DS)

∫ b

a

fdg.

Theorem 4.13. Let f be a bounded function and g, h be increasing functions on

[a, b]. If f is DS-integrable on [a, b] with respect to g and h and α ≥ 0, then

(i) f is DS-integrable on [a, b] with respect to g + h and

(DS)

∫ b

a

fd(g + h) = (DS)

∫ b

a

fdg + (DS)

∫ b

a

fdh.

(ii) f is DS-integrable on [a, b] with respect to αg and

(DS)

∫ b

a

fd(αg) = α(DS)

∫ b

a

fdg.

Proof. (i) Let g and h be increasing functions on [a, b]. If f is DS-integrable on

[a, b] with respect to g and h, we have

(g + h)(x+) = lim
t→x+

(g(t) + h(t))

= lim
t→x+

g(t) + lim
t→x+

h(t)

= g(x+) + h(x+).

Similarly, we have (g + h)(x−) = g(x−) + h(x−).
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We consider

J(f, g + h, P ) =
n∑

i=1

f(xi)((g + h)(x+
i )− (g + h)(x−i ))

=
n∑

i=1

f(xi)(g(x+
i ) + h(x+

i )− g(x−i )− h(x−i ))

=
n∑

i=1

f(xi)((g(x+
i )− g(x−i )) + (h(x+

i )− h(x−i )))

=
n∑

i=1

f(xi)((g(x+
i )− g(x−i )) +

n∑
i=1

f(xi)(h(x+
i )− h(x−i ))

= J(f, g, P ) + J(f, h, P )

and

U ′(f, g + h, P ) =
n∑

i=1

M(f, (xi−1, xi))((g + h)(x−i )− (g + h)(x+
i−1))

=
n∑

i=1

M(f, (xi−1, xi))(g(x−i ) + h(x−i )− (g(x+
i−1) + h(x+

i−1))

=
n∑

i=1

M(f, (xi−1, xi))((g(x−i )− g(x+
i−1)) + (h(x−i )− h(x+

i−1)))

=
n∑

i=1

M(f, (xi−1, xi))(g(x−i )− g(x+
i−1))

+
n∑

i=1

M(f, (xi−1, xi))(h(x−i )− h(x+
i−1))

= U ′(f, g, P ) + U ′(f, h, P ).

Similarly, L′(f, g + h, P ) = L′(f, g, P ) + L′(f, h, P ).

For any partition P of [a, b], we have

U(f, g + h, P ) = J(f, g + h, P ) + U ′(f, g + h, P )

= J(f, g, P ) + J(f, h, P ) + U ′(f, g, P ) + U ′(f, h, P )

= J(f, g, P ) + U ′(f, g, P ) + J(f, h, P ) + U ′(f, h, P )

= U(f, g, P ) + U(f, h, P ).

Similarly, we have L(f, g + h, P ) = L(f, g, P ) + L(f, h, P ).
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Let ε > 0 be given, Since f is DS-integrable on [a, b] with respect to

g and h, by Theorem 4.11, there exists a δ > 0 such that for any δ-fine partition

P of [a, b] with respect to g, we have

U(f, g, P )− L(f, g, P ) <
ε

2
and U(f, h, P )− L(f, h, P ) <

ε

2
.

Hence we have

U(f, g + h, P )− L(f, g + h, P ) = U(f, g, P )− L(f, g, P ) + U(f, h, P )− L(f, h, P )

<
ε

2
+

ε

2

= ε.

Theorem 4.11 implies that f is DS-integrable on [a, b] with respect to g + h, and

we have

(DS)

∫ b

a

fd(g + h) ≤ U(f, g + h, P )

< L(f, g + h, P ) + ε

= L(f, g, P ) + L(f, h, P ) + ε.

≤ (DS)

∫ b

a

fdg + (DS)

∫ b

a

fdh + ε

and (DS)

∫ b

a

fd(g + h) ≥ (DS)

∫ b

a

fdg + (DS)

∫ b

a

fdh− ε.

Thus we have

(DS)

∫ b

a

fd(g + h) = (DS)

∫ b

a

fdg + (DS)

∫ b

a

fdh.

(ii) In the case of α = 0, it clearly that

(DS)

∫ b

a

fd(0 · g) = 0 = 0 · (DS)

∫ b

a

fdg.

We now let α > 0, we have (αg)(x+) = αg(x+), (αg)(x−) = αg(x−), U(f, αg, P ) =

αU(f, g, P ) and L(f, αg, P ) = αL(f, g, P ). Since f is DS-integrable on [a, b] with

respect to g, by Theorem 4.11, there exists a δ > 0 such that for any δ-fine

partition P of [a, b] with respect to g, we have

U(f, g, P )− L(f, g, P ) <
ε

α
.
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Hence we have

U(f, αg, P )− L(f, αg, P ) = αU(f, g, P )− αL(f, g, P )

= α(U(f, g, P )− L(f, g, P ))

< α
ε

α

= ε.

Theorem 4.11 implies that f is DS-integrable on [a, b] with respect to αg and we

have

(DS)

∫ b

a

fd(αg) ≤ U(f, αg, P ) < L(f, αg, P ) + ε

= αL(f, g, P ) + ε

≤ α(DS)

∫ b

a

fdg + ε

and (DS)

∫ b

a

fd(αg) > α(DS)

∫ b

a

fdg − ε.

Thus we have

(DS)

∫ b

a

fd(αg) = α(DS)

∫ b

a

fdg.

4.4 Regulated functions

Definition 4.4. Let f : [a, b] → R. Then f is said to be regulated if f has one side

limits at every point of [a, b], i.e., lim
x→a+

f(x), lim
x→b−

f(x), lim
x→c+

f(x) and lim
x→c−

f(x)

exist, for each c ∈ (a, b). The set of all regulated function defined on [a, b] is

denoted by RF [a, b].

Lemma 4.14. If f : [a, b] → R is regulated, then for every ε > 0 there exists

a partition P = {[xi−1, xi]}n
i=1 such that for each i = 1, 2, . . . , n whenever ξ, η ∈

(xi−1, xi), we have

|f(ξ)− f(η)| < ε. (4.5)
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Proof. Let ε > 0 be given and let B be the set of all ζ ∈ (a, b] such that there is a

finite sequence a = x1 < x2 < . . . xk+1 = ζ satisfying (4.5) for i = 1, 2, . . . , k + 1.

Since f(a+) = lim
x→a+

f(x) exists, there is ζ > a such that for any

x ∈ (a, ζ)

|f(x)− f(a+)| < ε

2
.

Then for all x
′
, x

′′ ∈ (a, ζ) we have that

|f(x
′
)− f(x

′′
)| = |f(x

′
)− f(a+)− f(x

′′
) + f(a+)|

= |f(x
′
)− f(a+) + (f(a+)− f(x

′′
))|

≤ |f(x
′
)− f(a+)|+ |f(a+)− f(x

′′
)|

= |f(x
′
)− f(a+)|+ |f(x

′′
)− f(a+)|

<
ε

2
+

ε

2

= ε.

Hence we get

|f(x
′
)− f(x

′′
)| < ε.

Hence, ζ ∈ B thus B is nonempty. Let d = sup{B}. We will show that d ∈ B.

Since f(d−) = lim
x→d−

f(x) exists, there is δ > 0 such that for every x ∈ (d − δ, d),

|f(x) − f(d−)| ≤ ε

2
. Let ζ ∈ B ∪ (d − δ, d). Since ζ ∈ B, there exists a finite

sequence a = x1 < x2 < . . . xk+1 = ζ such that (4.5) holds for i = 1, 2, . . . , k + 1.

We denote xk+2 = d, thus for any x
′
, x

′′ ∈ (ζ, d) = (ζ, xk+2). Similar above we

have that

|f(x
′
)− f(x

′′
)| ≤ |f(x

′
)− f(d−)|+ |f(x

′′
)− f(x−)| ≤ ε.

Thus d ∈ B. We now suppose that d 6= b, i.e., d < b . Since f(d+) = lim
x→d+

f(x)

exists, there is x∗ > d with x∗ < b such that for any x ∈ (d, x∗) we have

|f(x)− f(d+)| < ε

2
.

Hence for any x
′
, x

′′ ∈ (d, x∗)

|f(x
′
)− f(x

′′
)| ≤ |f(x

′
)− f(d+)|+ |f(x

′′
)− f(d+)| ≤ ε.
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Hence x∗ ∈ B, we get contradiction with d = sup{B}.

Therefore, we can conclude that d = b.

4.5 Bounded p-variation

Definition 4.5. Let f be a real-valued function defined on [a, b] and let 0 < p <

∞. Given a partition P = {[xi−1, xi]}n
i=1 of [a, b], let

Vp(f, P, [a, b]) =
[ n∑

i=1

|f(xi)− f(xi−1)|p
] 1

p .

The p-variation of f defined by

Vp(f, [a, b]) = sup
P

Vp(f, P, [a, b]),

where supremum is taken over all partition P . We say that f ∈ BVp[a, b] if

Vp(f, [a, b]) < ∞.

In this study, we consider as p = 1 and the set of all function of bounded

variation defined on [a, b] is denoted by BV [a, b].

Lemma 4.15. Let f : [a, b] → R. If f is monotonically increasing function. Then

for any partition P = {[xi, xi−1]}n
i=1 of [a, b], we have that f ∈ BV [a, b].

Proof. Let f is monotonically increasing function. Thus we have

n∑
i=1

|f(xi)− f(xi−1)| =
n∑

i=1

[f(xi)− f(xi−1)]

= f(xn)− f(x0)

= f(b)− f(a).

Hence f ∈ BV [a, b].

Theorem 4.16. If f, g ∈ BV [a, b] and α, β ∈ R, then αf + βg ∈ BV [a, b] and

V (αf + βg, [a, b]) ≤ |α|V (f, [a, b]) + |β|V (g, [a, b]).
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Proof. Let f, g ∈ BV [a, b] and a partition P = {[xi−1, xi]}n
i=1 be given, we have

that

n∑
i=1

|(αf + βg)(xi) − (αf + βg)(xi−1)|

=
n∑

i=1

|αf(xi) + βg(xi)− αf(xi−1)− βg(xi−1)|

=
n∑

i=1

|αf(xi)− αf(xi−1) + (βg(xi)− βg(xi−1))|

≤
n∑

i=1

{
|α||f(xi)− f(xi−1)|+ |β||g(xi)− g(xi−1)|

}
= |α|

n∑
i=n

|f(xi)− f(xi−1)|+ |β|
n∑

i=n

|g(xi)− g(xi−1)|

≤ |α|V (f, [a, b]) + |β|V (g, [a, b]).

Therefore, this prove is complete.

Lemma 4.17. If f ∈ BVp[a, b], p > 0, then f ∈ RF [a, b].

Proof. Assume that f /∈ RF [a, b], without lost of generality, there exists x0 ∈ [a, b]

such that right limit of f at x0 does not exist. Hence there exists ε > 0, such that

for every δi, there exists [ui, vi] ∈ (x0, x0 + δi) such that

|f(vi)− f(ui)| > ε,

for each i. We may assume that [ui, vi], i = 1, 2, . . . , are pairwise disjoint. Thus

we have

Vp(f, [a, b]) ≥
[ n∑

i=1

|f(vi)− f(ui)|p
] 1

p > n
1
p ε.

for every integer n. Hence, f /∈ BVp[a, b], it leads to a contradiction. Therefore,

f ∈ RF [a, b].

4.6 Riemann-Stieltjes integral

Definition 4.6. Let g : [a, b] → R. g is said to satisty γ-condition if for every

δ > 0, there exists a δ-fine partition with respect to g of [a, b].
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Let δ < 0 be a positive constant. An interval point pair ([u, v], ξ)

is said to be δ-fine with respect to g if |g(v−) − g(u+)| < δ and ξ is any point in

[u, v].

A division {([xi−1, xi], ξi)}n
i=1 is said to be δ-fine of [a, b] with respect

to g if each ([xi−1, xi], ξi) is δ-fine with respect to g.

Definition 4.7. Let g : [a, b] → R satisfy γ-condition. A function f : [a, b] → R

is said to be Riemann-Stieltjes integrable or RS-integrable to A on [a, b] with

respect to g, if for each ε > 0, there exists a positive constant δ such that whenever

D = {([xi−1, xi], ξi)}n
i=1 is a δ-fine division of [a, b] with respect to g, we get

|S(f, g, D)− A| ≤ ε,

where S(f, g, D) = J(f, g, D)+
n∑

i=1

f(ξi)(g(x−i )−g(x+
i−1)). We denoted a constant

A by (RS)

∫ b

a

fdg.

Lemma 4.18. If g ∈ RF , then g satisfy γ-condition.

Proof. Let δ > 0 be given. Since g ∈ RF [a, b], by Lemma 4.14, there exists a

partition P = {[xi−1, xi]}n
i=1 of [a, b] such that for each i = 1, 2, . . . , n, whenever

ξ, η ∈ (xi−1, xi), we have,

|g(ξ)− g(η)| < δ.

Hence g satisfy γ-condition.

Theorem 4.19. Let f, g ∈ RF [a, b]. If f is RS-integrable on [a, b] with respect

to g, then f is bounded on [a, b].

Proof. Let ε = 1 be given, by Cauchy’s criterion for RS-integrable, there exists

positive constant δ such that whenever D1, D2 are two δ-fine divisions of [a, b] with

respect to g, we have

|S(f, g, D1)− S(f, g, D2)| ≤ 1.

Let D1 = {([xi−1, xi], ξi)}n
i=1 be a fixed δ-fine division of [a, b] with respect to g

and x be a point in [a, b], so x ∈ (xj−1, xj) for some j. We define a new division
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D2 form division D1 and replacing a point ξj by x, we have D2 is a δ-fine division

of [a, b] with respect to g. Hence

|(f(ξj)− f(x))(g(x−j )− g(x+
j−1))| = |S(f, g, D1)− S(f, g, D2)|

≤ 1

Hence we get

|f(x)| ≤
(1 + |f(ξj)(g(x−j )− g(x+

j−1))|)
(g(x−j )− g(x+

j−1))

≤
(1 +

n∑
i=1

|f(ξj)(g(x−j )− g(x+
j−1))|)

β
,

where β = min{|g(x−j ) − g(x+
j−1)| : j = 1, 2, . . . , n}. Therefore, f is bounded on

[a, b].

4.7 Basic properties for Riemann-Stieltjes integral

For the proof of Theorems 4.20 - 4.21, we shall use the shorthand

notation

S ′(f, g, D) =
n∑

i=1

f(ξi)(g(x−i )− g(x+
i−1))

Theorem 4.20. Let α ∈ R. If f, h : [a, b] → R are RS-integrable on [a,b] with

respect to g, then

(i) f+h is RS-integrable on [a, b] with respect to g and

(RS)

∫ b

a

(f + h)dg = (RS)

∫ b

a

fdg + (RS)

∫ b

a

hdg.

(ii) αf is RS-integrable on [a, b] with respect to g and

(RS)

∫ b

a

αfdg = α(RS)

∫ b

a

fdg.

Proof. (i) Let ε > 0 and assume that f, h are RS-integrable function on [a, b] with

respect to g such that

(RS)

∫ b

a

fdg = A
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and

(RS)

∫ b

a

hdg = B.

Then there exist a positive constant δ1 and δ2 such that

|S(f, g, D1)− A| ≤ ε

2
,

and

|S(h, g, D2)−B| ≤ ε

2
.

for every δ1, δ2-fine division D1, D2 of [a, b] with respect to g, respectively.

Let δ = min{δ1, δ2}. Then, for every δ-fine division D of [a, b] with

respect to g, we have |S(f, g, D)−A| ≤ ε

2
and |S(h, g, D)−B| ≤ ε

2
. We have that

S ′(f + h, g, D) =
n∑

i=1

(f + h)(ξi)(g(x−i )− g(x+
i−1))

=
n∑

i=1

(f(ξi) + h(ξi))(g(x−i )− g(x+
i−1))

=
n∑

i=1

f(ξi)(g(x−i )− g(x+
i−1)) +

n∑
i=1

h(ξi)(g(x−i )− g(x+
i−1))

= S ′(f, g, D) + S ′(h, g, D)

and

J(f + h, g, D) =
n∑

i=1

(f + h)(xi)(g(x+
i )− g(x−i ))

=
n∑

i=1

f(xi)(g(x+
i )− g(x−i )) +

n∑
i=1

h(xi)(g(x+
i )− g(x−i ))

= J(f, g, D) + J(h, g, D).

Hence

S(f + h, g, D) = S ′(f + h, g, D) + J(f + h, g, D)

= S ′(f, g, D) + S ′(h, g, D) + J(f, g, D) + J(h, g, D)

= S(f, g, D) + S(h, g, D).
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Thus

|S(f + h, g, D)− (A + B)| = |S(f, g, D) + S(h, g, D)− (A + B)|

≤ |S(f, g, D)− A|+ |S(h, g, D)−B|

≤ ε

2
+

ε

2

= ε.

Hence f + h is RS-integrable on [a, b] with respect to g and

(RS)

∫ b

a

(f + h)dg = (RS)

∫ b

a

fdg + (RS)

∫ b

a

hdg.

(ii) It is clearly that

(RS)

∫ b

a

0 · fdg = 0 = 0 · (RS)

∫ b

a

fdg.

Assume that α 6= 0 and let ε > 0 be given, then there exists a positive constant δ

such that for every δ-fine division D of [a, b], we have

|S(f, g, D)− A| ≤ ε

|α|
, where A = (RS)

∫ b

a

fdg.

We know that

S(αf, g,D) = α · S(f, g, D).

Thus

|S(αf, g,D)− αA| = |αS(f, g, D)− αA|

= |α| |S(f, g, D)− A|

≤ |α|( ε

|α|
)

= ε.

Hence αf is RS-integrable function on [a, b] with respect to g and

(RS)

∫ b

a

αfdg = α · (RS)

∫ b

a

fdg.
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Theorem 4.21. Let α ∈ R. If f : [a, b] → R is RS-integrable on [a,b] with respect

to g, h, then

(i) f is RS-integrable on [a, b] with respect to g + h, and

(RS)

∫ b

a

fd(g + h) = (RS)

∫ b

a

fdg + (RS)

∫ b

a

fdh.

(ii) f is RS-integrable on [a, b] with respect to αg, and

(RS)

∫ b

a

fd(αg) = α(RS)

∫ b

a

fdg.

Proof. (i) Let ε > 0 and assume that f, h are RS-integrable function on [a, b] with

respect to g such that

(RS)

∫ b

a

fdg = A

and

(RS)

∫ b

a

fdh = B.

Then there exist a positive constant δ1 and δ2 such that

|S(f, g, D1)− A| ≤ ε

2
,

and

|S(f, h, D2)−B| ≤ ε

2
.

for every δ1, δ2-fine division D1, D2 of [a, b] with respect to g, respectively.

Let δ = min{δ1, δ2}. Then, for every δ-fine division D of [a, b] with

respect to g, we have |S(f, g, D) − A| ≤ ε

2
and |S(f, h, D) − B| ≤ ε

2
. We know

that

S ′(f, g + h,D) =
n∑

i=1

f(ξi)((g + h)(x−i )− (g + h)(x+
i−1))

=
n∑

i=1

f(ξi)(g(x−i ) + h(x−i )− g(x+
i−1)− h(x+

i−1))

=
n∑

i=1

f(ξi)(g(x−i )− g(x+
i−1) + h(x−i )− h(x+

i−1))

=
n∑

i=1

f(ξi)(g(x−i )− g(x+
i−1)) +

n∑
i=1

f(ξi)(h(x−i )− h(x+
i−1))

= S ′(f, g, D) + S ′(f, h, D)
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and

J(f, g + h,D) =
n∑

i=1

(f(ξi))((g + h)(x+
i )− (g + h)(x−i ))

=
n∑

i=1

(f(ξi))(g(x+
i ) + h(x+

i )− g(x−i )− h(x−i ))

=
n∑

i=1

(f(ξi))(g(x+
i )− g(x−i ) + h(x+

i )− h(x−i ))

=
n∑

i=1

(f(ξi))(g(x+
i )− g(x−i )) +

n∑
i=1

(f(ξi))(h(x+
i )− h(x−i ))

= J(f, g, D) + J(f, h, D).

Thus

S(f, g + h,D) = S ′(f, g + h,D) + J(f, g + h,D)

= S ′(f, g, D) + S ′(f, h, D) + J(f, g, D) + J(f, h, D)

= S(f, g, D) + S(f, h, D).

So we have that

|S(f, g + h,D)− (A + B)| = |S(f, g, D) + S(f, h, D)− (A + B)|

≤ |S(f, g, D)− A|+ |S(f, h, D)−B|

≤ ε

2
+

ε

2

= ε.

Hence f is RS-integrable on [a, b] with respect to g + h and

(RS)

∫ b

a

fd(g + h) = (RS)

∫ b

a

fdg + (RS)

∫ b

a

fdh.

(ii) It easy to see that

(RS)

∫ b

a

fd0 · g = 0 = 0 · (RS)

∫ b

b

fdg.

Assume that α 6= 0 and let ε > 0 be given, then there exists a positive constant δ

such that for every δ-fine division D of [a, b], we have

|S(f, g, D)− A| ≤ ε

|α|
, where A = (RS)

∫ b

a

fdg.
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We know that

S(f, αg,D) = S ′(f, αg,D) + J(f, αg,D)

= αS ′(f, g, D) + αJ(f, g, D)

= α[S ′(f, g, D) + J(f, g, D)]

= αS(f, g, D).

Then ∣∣S(f, αg,D)− αA
∣∣ =

∣∣αS(f, g, D)− αA
∣∣

= |α|
∣∣S(f, g, D)− A

∣∣
≤ |α| ε

|α|
= ε.

Therefore, f is RS-integrable function on [a, b] with respect to αg and

(RS)

∫ b

a

fdαg = α · (RS)

∫ b

a

fdg.

Theorem 4.22. (Cauchy’s criterion for Riemann-Stieltjes integral)

Let f : [a, b] → R. Then f is RS-integrable on [a, b] with respect to g if and only

if for each ε > 0 there exists a positive constant δ such that whenever D1, D2 are

two δ-fine divisions of [a, b] with respect to g, we have

|S(f, g, D1)− S(f, g, D2)| ≤ ε.

Proof. First, we assume that f is RS-integrable on [a, b] with respect to g and

let ε > 0 be given, there exists a positive constant δ on [a, b] such that for every

D1, D2 are two δ-fine divisions of [a, b] with respect to g, we get

|S(f, g, D1)− A| ≤ ε

2

and

|S(f, g, D2)− A| ≤ ε

2
,
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By triangle inequality we have that

|S(f, g, D1)− S(f, g, D2)| = |(S(f, g, D1)− A)− (S(f, g, D2)− A)|

≤ |S(f, g, D1)− A|+ |S(f, g, D2)− A|

≤ ε

2
+

ε

2

= ε.

Conversely, we assume that for each ε > 0, there exists a positive

constant δ on [a, b] such that for every δ-fine division D1, D2 of [a, b] with respect

to g, we have that

|S(f, g, D1)− S(f, g, D2)| ≤
ε

2
.

Let εn =
2

n
for any n ∈ N and δn is a positive constant on [a, b]. We may assume

that if m ≥ n then δm ≤ δn for any m, n ∈ N. Thus for every δm-fine division on

[a, b] with respect to g is also a δn-fine division on [a, b] with respect to g. Hence

we get ∣∣S(f, g, Dm1)− S(f, g, Dm2)
∣∣ ≤ 1

n
,

where m1, m2 ≥ n.

We can conclude that {S(f, g, Dn)}n∈N is a Cauchy sequence in R.

we have that {S(f, g, Dn)}n∈N is also a convergent sequence in R, there exists a

constant A such that lim
n→∞

|S(f, g, Dn)− A| = 0.

Let ε > 0 be given, there exists N1 ∈ N such that for any n ≥ N1,

we have that

|S(f, g, Dn)− A| ≤ ε

2
.

Let
1

N2

≤ ε

2
, N = max{N1, N2} and δ = δN , we get

|S(f, g, D)− A| = |S(f, g, D)− S(f, g, DN) + (S(f, g, DN)− A)|

≤ |S(f, g, D)− S(f, g, DN)|+ |S(f, g, DN)− A|

≤ 1

N
+

ε

2

= ε.

Hence f is RS-integrable on [a, b].
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Theorem 4.23. Let f be a bounded function and g an increasing function. f is

RS-integrable on [a, b] with respect to g if and only if it is DS-integrable on [a, b]

with respect to g.

Proof. Assume that f is DS-integrable on [a, b] with respect to g. By Theorem

4.11, there exists a positive constant δ such that for any δ-fine partition P of [a, b]

with respect to g, we have

U(f, g, P )− L(f, g, P ) < ε.

Let D be a δ-fine division of [a, b] and P an associated partition of D. We have

that P form δ-fine partition of [a, b] with respect to g. Thus

S(f, g, D) ≤ U(f, g, P )

< L(f, g, P ) + ε

≤ L(f, g) + ε

= (DS)

∫ b

a

fdg + ε

and

S(f, g, D) ≥ L(f, g, P )

> U(f, g, P )− ε

≥ U(f, g)− ε

= (DS)

∫ b

a

fdg − ε.

Hence we have ∣∣∣∣S(f, g, D)− (DS)

∫ b

a

fdg

∣∣∣∣ < ε.

We can conclude that f is RS-integrable on [a, b] with respect to g and

(RS)

∫ b

a

fdg = (DS)

∫ b

a

fdg.

Conversely, assume that f is RS-integrable on [a, b] with respect to

g. Thus g is satisfy γ-condition and for any ε > 0, there exists a constant δ > 0
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such that whenever D = {([xi−1, xi], ξi)}n
i=1 is a δ-fine division of [a, b] with respect

to g, we have ∣∣∣∣S(f, g, D)− (RS)

∫ b

a

fdg

∣∣∣∣ < ε.

Let P = {[xi−1, xi]}n
i=1 be a δ-fine partition of [a, b] with respect to g. For each k,

k = 1, 2, . . . , n. We choose γk ∈ (xk−1, xk) such that

f(γk) < m(f, (xk−1, xk)) + ε.

Then D form a δ-fine division of [a, b] with respect to g such that

S(f, g, D) ≤ L(f, g, P ) + ε(b− a).

Thus we have

L(f, g) ≥ L(f, g, P ) ≥ S(f, g, D)− ε(b− a)

> (RS)

∫ b

a

fdg − ε− ε(b− a).

We have that L(f, g) ≥ (RS)

∫ b

a

fdg. Similarly, U(f, g) ≤ (RS)

∫ b

a

fdg. Since

we have L(f, g) ≤ U(f, g), we get

L(f, g) = U(f, g) = (RS)

∫ b

a

fdg.

Therefore, f is DS-integrable on [a, b] with respect to g and

(DS)

∫ b

a

fdg = (RS)

∫ b

a

fdg.

4.8 Null set

In this section, we follow ideas of Chew, see [3], to prove the results.

Definition 4.8. Let E ⊂ [a, b]. Denote the characteristic function of E by

IE(x)

 1, x ∈ E;

0, x ∈ [a, b] \ E.
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Then E is said to be null set if IE is RS-integrable on [a, b] with respect to g.

and (RS)

∫ b

a

IEdg = 0.

It is clear that any subset of null set is a null set.

Lemma 4.24. Let E be a null subset of [a, b] and f : [a, b] → R a bounded function.

Then fIE is RS-integrable on [a, b] with respect to g and (RS)

∫ b

a

fIEdg = 0.

Proof. Let E be a null set and f : [a, b] → R a bounded function. We have that

|S(fIE, g, D)− 0| = |S(fIE, g, D)|

≤ M |S(IE, g, D)|

= M |S(IE, g, D)− 0|

≤ M
ε

M

= ε,

where M = sup |f |. Thus fIE is is RS-integrable on [a, b] with respect to g and

(RS)

∫ b

a

fIEdg = 0.

Corollary 4.25. Let f be RS-integrable on [a, b] with respect to g and E a null

subset of [a, b]. Then fI[a,b]\E is RS-integrable on [a, b] with respect to g and

(RS)

∫ b

a

fI[a,b]\Edg = (RS)

∫ b

a

fdg.

Proof. We know that

f = fI[a,b]\E + fIE.

By assumption and Lemma 4.24, we have that fI[a,b]\E is RS-integrable on [a, b]

with respect to g and

(RS)

∫ b

a

fI[a,b]\Edg = (RS)

∫ b

a

fdg.

Theorem 4.26. Let f, h : [a, b] → R and f = h except on a null set E. Suppose

f is RS-integrable on [a, b] with respect to g. Then h is RS-integrable on [a, b]

with respect to g.
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Proof. Assume that f is RS-integrable on [a, b] with respect to g. Let f = h

except on a null set E. We have that

(RS)

∫ b

a

fdg = (RS)

∫ b

a

fI[a,b]\Edg

= (RS)

∫ b

a

hI[a,b]\Edg

= (RS)

∫ b

a

hdg.

Hence h is RS-integrable on [a, b] with respect to g.

Definition 4.9. A property is said to hold almost everywhere (abbreviated a.e.)

if the set of points where it fails to hold is a null set.

4.9 Integrable functions

Lemma 4.27. If f ∈ RF [a, b] and g is an increasing function, then f is DS-

integrable on [a, b] with respect to g.

Proof. Let f ∈ RF [a, b], we may assume that f is bounded. Let g be an increasing

function. by Lemma 4.14, we have that for every ε > 0, there exists a partition

P = {[xi−1, xi]}n
i=1 of [a, b] such that for each i = 1, 2, . . . , n whenever ξ, η ∈

(xi−1, xi) we have

|f(ξ)− f(η)| < ε

g(b)− g(a) + 1
.

Then we have

M(f, (xi−1, xi))−m(f, (xi−1, xi)) <
ε

g(b)− g(a) + 1
.

Hence
n∑

i=1

[M(f, (xi−1, xi))−m(f, (xi−1, xi))](g(x−i )− g(x+
i−1))

<

n∑
i=1

ε

g(b)− g(a) + 1
(g(x−i )− g(x+

i−1))

=
ε

g(b)− g(a) + 1

n∑
i=1

(g(x−i )− g(x+
i−1)).
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Since g is an increasing function,
n∑

i=1

(g(x−i )− g(x+
i−1)) ≤ g(b)− g(a).

Thus

[J(f, g, P ) +
n∑

i=1

M(f, (xi−1, xi))(g(x−i )− g(x+
i−1))]

−[J(f, g, P ) +
n∑

i=1

m(f, (xi−1, xi))(g(x−i )− g(x+
i−1))]

<
ε

g(b)− g(a) + 1
g(b)− g(a)

< ε.

Hence, we have

U(f, g, P )− L(f, g, P ) < ε.

Therefore, by Cauchy’s criterion for Darboux-Stieltjes integral, f is DS-integrable

on [a, b] with respect to g.

Corollary 4.28. If f ∈ RF [a, b] and g an increasing function, then f is RS-

integrable on [a, b] with respect to g.

Proof. By Lemma 4.27 and Theorem 4.23, we have this prove.

Theorem 4.29. If f ∈ BV [a, b], then the function V (f, [a, x]) and V (f, [a, x])−

f(x) are both increasing function on [a, b].

Proof. Let a ≤ x1 ≤ x2 ≤ b and assume that V (x) = V (f, [a, x]). Since [a, x1] ⊂

[a, x2], we have

V (x1) = V (f, [a, x1]) ≤ V (f, [a, x2]) = V (x2).

Thus

[V (x2)− f(x2)] − [V (x1)− f(x1)]

= V (f, [a, x2])− f(x2)− V (f, [a, x1]) + f(x1)

= V (f, [a, x2])− V (f, [a, x1])− [f(x2)− f(x1)]

= V (f, [x1, x2])− [f(x2)− f(x1)]

≥ V (f, [x1, x2])− |f(x2)− f(x1)|.
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So the inequality [V (x2)− f(x2)] ≥ [V (x1)− f(x1)] follows from

|f(x2)− f(x1)| =
∑

{x1,x2}

|f(xi)− f(xi−1)| ≤ V (f, [x1, x2]).

Theorem 4.30. The function f ∈ BV [a, b] if and only if it is the difference of

two increasing functions.

Proof. First, assume that f ∈ BV [a, b] then

f(x) = V (f, [a, x])− [V (f, [a, x])− f(x)].

By Theorem 4.29 we have that f is the difference of two increasing functions.

Conversely, assume that f is the difference of two increasing func-

tion, thus we have

f = g − h,

where g, h are increasing functions.

By Lemma 4.15 and Theorem 4.16, we have that g, h ∈ BV [a, b] and g − h ∈

BV [a, b].

Theorem 4.31. If f ∈ RF [a, b] and g ∈ BV [a, b], then f is RS-integrable on

[a,b] with respect to g .

Proof. Let f ∈ RF [a, b] and g ∈ BV [a, b]. Since g ∈ BV [a, b], by Theorem 4.30,

we have that g is the difference of two increasing functions. By Theorem 4.21 and

Corollary 4.28, we have that f is RS-integrable with respect to g on [a,b].
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