

Chemical Constituents from the Green Fruits of Aegle marmelos

Paosiyah Weaaryee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Studies Prince of Songkla University

2010
Copyright of Prince of Songkla University

Thesis Title	Chemical Constituents from the Green Fruits of Aegle marmelos
Author	Miss Paosiyah Weaaryee
Major Program	Chemical Studies

Major Advisor :
\qquad
(Dr. Suda Chakthong)
(Dr. Vilailak Prachyawarakorn)
\qquad

Co-advisor :

(Dr. Suda Chakthong)
(Assoc. Prof. Dr. Wilawan Mahabusarakam)
(Assoc. Prof. Dr. Wilawan Mahabusarakam)
\qquad
(Assoc. Prof. Chanita Ponglimanont)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Chemical Studies.

ชื่อวิทยานิพนธ์
 ผู้เขียน
 สาขาวิชา
 ปีการศึกษา
 องค์ประกอบทางเคมีจากผลดิบมะตูม (Aegle marmelos) นางสาวเปาซีหยะ แวอายี
 เคมีศึกษา
 2552

บทคัดย่อ

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบอะซี โตนจากผลดิบมะตูม สามารถแยกสารใหม่ได้ 5 สาร เป็นสารประกอบประเภท alkaloid 1 สาร คือ marmesiline (PW11), สารประเภท coumarin 1 สาร คือ 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (PW15), และสารประเภท dihydrofuranocoumarins 3 สาร คือ marmelonine A (PW17), 8 -hydroxysmyrindiol (PW18) และ mamelonine B(PW19) นอกจากนี้ยังได้พบสารที่มีการรายงาน มาแล้ว 16 สาร ประกอบด้วยสารประเภท furanocoumarins 5 สาร คือ imperatorin (PW1), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5) และ xanthotoxin (PW6), สารประเภท อนุพันธ์ของกรดเบนโซอิก 1 สาร คือ valencic acid (PW2), สารประเภท dihydropyranocoumarin 1 สาร คือ decursinol (PW8), สารประเภท alkaloid 1 สาร คือ marmeline (PW13), สารประเภท coumarins 5 สาร คือ scoparone (PW7), demethylsuberosin (PW9), 6-formylumbilliferone (PW10), isofraxidin (PW16) และ isophellodenol C (PW20) และสารประเภท dihydrofuranocoumarins 3 สาร คือ marmesin (PW12), isoangenomalin (PW14) และ xanthoarnol (PW21) โครงสร้างของสารประกอบเหล่านี้ วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี UV IR NMR MS และเปรียบเทียบกับสารที่มีรายงาน การวิจัยแล้ว

PW1

PW3

PW5

PW4 $\mathrm{R}=\mathbf{O H}$
PW6 $\mathrm{R}=\mathrm{OMe}$

PW7: $\mathbf{R}_{1}=$ OMe $\quad \mathbf{R}_{2}=$ OMe $\quad \mathbf{R}_{3}=\mathrm{H}$
PW10: $\mathrm{R}_{1}=\mathrm{CHO} \quad \mathrm{R}_{2}=\mathrm{OH} \quad \mathrm{R}_{3}=\mathrm{H}$
PW16: $\mathrm{R}_{1}=\mathrm{OMe} \quad \mathrm{R}_{2}=\mathrm{OH} \quad \mathrm{R}_{3}=\mathrm{OMe}$

PW12

Thesis Title Chemical Constituents from the Green Fruits of Aegle marmelos
Author Miss Paosiyah Weaaryee
Major Program Chemical Studies
Academic Year 2009

Abstract

Investigation of the crude acetone extracts of the green fruits of Aegle marmelos yielded five new compounds; an alkaloid: marmesiline (PW11), a new coumarin: 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (PW15), three dihydrofuranocoumarins: marmelonine A (PW17), 8-hydroxysmyrindiol (PW18) and marmelonine B (PW19), together with sixteen known compounds: five furanocoumarins: imperatorin (PW1), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5) and xanthotoxin (PW6), a benzoic acid derivative: valencic acid (PW2), one dihydropyranocoumarin: decursinol (PW8), one alkaloid: marmeline (PW13), five coumarins: scoparone (PW7), demethylsuberosin (PW9), 6-formylumbilliferone (PW10), isofraxidin (PW16) and isophellodenol C (PW20) and three dihydrofuranocoumarins: marmesin (PW12), isoangenomalin (PW14) and xanthoarnol (PW21). Their structures were determined on the basis of UV, IR, NMR, MS and by comparison of their spectroscopic data with those reported.

PW1

PW3

PW5

PW2

$$
\begin{array}{ll}
\text { PW4 } & \mathrm{R}=\mathrm{OH} \\
\text { PW6 } & \mathrm{R}=\mathrm{OMe}
\end{array}
$$

PW7: $\mathrm{R}_{1}=\mathrm{OMe} \quad \mathrm{R}_{2}=\mathrm{OMe} \quad \mathrm{R}_{3}=\mathrm{H}$ PW10: $\mathrm{R}_{1}=\mathrm{CHO} \quad \mathrm{R}_{2}=\mathrm{OH} \quad \mathrm{R}_{3}=\mathrm{H}$
PW16: $\mathrm{R}_{1}=\mathrm{OMe} \quad \mathrm{R}_{2}=\mathrm{OH} \quad \mathrm{R}_{3}=\mathrm{OMe}$

PW12

PW18

PW21

PW13

ACKNOWLEDGEMENT

I wish to express my deepest and sincere gratitude to my supervisor, Dr. Suda Chakthong, for her valuable instruction, expert guidance, excellent suggestion and kindness. I would also like to express my appreciation to Assoc. Prof. Dr. Wilawan Mahabusarakam my co-advisor, for correction of my thesis and her kindness.

My sincere thanks are expressed to Assoc. Prof. Dr. Supayang Piyawan Voravuthikunchai and Asst. Prof Dr. Akkharawit Kanjana-Opas for bioactivity testing and Mr. Ponlawat Pattarakulpisutti for plant identification.

I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible. Dr. Yaowapa Sukpondma and the Scientific Equipment Center, Prince of Songkla University are highly acknowledged for recording NMR spectral data and the MS data, respectively.

This research was supported by a scholarship from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Educaion. I would like to acknowledge the Faculty of Science Research Fund and the Graduate School, Prince of Songkla University for partial financial support.

Paosiyah Weaaryee

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this research is to investigate the chemical constituents from the green fruits of Aegle marmelos. They are a part of the basic research on the Thai medicinal plants. A derivative of benzoic acid, two alkaloids, five furanocoumarins, six coumarins, one dihydropyranocoumarin and six dihydrofuranocoumarins were isolated from the green fruits of Aegle marmelos.

CONTENTS

Page
ABSTRACT (in Thai) iii
ABSTRACT (in English) vi
ACKNOWLEDGMENT ix
THE RELEVANCE OF THE RESEARCH WORK TO THAILAND x
CONTENTS xi
LIST OF TABLES xiii
LIST OF ILLUSTRATIONS xiv
LIST OF ABBREVIATIONS AND SYMBOLS xv
CHAPTER 1 INTRODUCTION 1
1.1 Introduction 1
1.2 Review of literatures 4
1.2.1 The Biological Activity of A. marmelos 4
1.3 Objective 33
CHAPTER 2 EXPERIMENTAL 34
2.1 Instruments and Chemicals 34
2.2 Plant material 34
2.3 Extraction and Isolation 35
2.4 Isolation and Chemical Investigation 35
CHAPTER 3 RESULTS AND DISCUSSION 44
3.1 Structure elucidation of compounds from the green fruits of \boldsymbol{A}.
marmelos44
3.1.1 Compound PW 1 45
3.1.2 Compound PW 2 48
3.1.3 Compound PW 3 50

CONTENTS (Continued)

Page
3.1.4 Compound PW 4 52
3.1.5 Compound PW 5 54
3.1.6 Compound PW 6 56
3.1.7 Compound PW 7 58
3.1.8 Compound PW 8 60
3.1.9 Compound PW 9 62
3.1.10 Compound PW 10 64
3.1.11 Compound PW 11 66
3.1.12 Compound PW 12 68
3.1.13 Compound PW 13 70
3.1.14 Compound PW 14 72
3.1.15 Compound PW 15 74
3.1.16 Compound PW 16 76
3.1.17 Compound PW 17 78
3.1.18 Compound PW 18 80
3.1.19 Compound PW 19 82
3.1.20 Compound PW 20 84
3.1.21 Compound PW 21 86
Conclusion 88
REFERENCES 89
APPENDIX 94
VITAE 178

LIST OF TABLES

Table

Page

1 Compounds from plants of Family Rutaceae 5
2 Physical characteristics and weights of the fractions from acetone extract 36
$3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW1 $\left(\mathrm{CDCl}_{3}\right) 46$
$4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW2 $\left(\mathrm{CDCl}_{3}\right)$
$5 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW3 $\left(\mathrm{CDCl}_{3}\right) \quad 51$
$6 \quad \begin{aligned} & { }^{1} \mathrm{H},{ }^{13} \mathrm{C} \text { NMR and } \mathrm{HMBC} \text { spectral data of PW4 } \\ & \left(\mathrm{CDCl}_{3+} \mathrm{CD}_{3} \mathrm{OD}(1 \text { drop })\right)\end{aligned}$
$7{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW5 $\left(\mathrm{CDCl}_{3}\right) \quad 55$
$8 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW6 $\left(\mathrm{CDCl}_{3}\right) \quad 57$
$9{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW7 $\left(\mathrm{CDCl}_{3}\right) \quad 59$
$10{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW8 $\left(\mathrm{CDCl}_{3}\right) \quad 61$
$11{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 9}\left(\mathrm{CDCl}_{3}\right)$
$12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW10 $\left(\mathrm{CDCl}_{3}\right) \quad 64$
$13{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW11 $\left(\mathrm{CDCl}_{3}\right) \quad 67$
$14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW12 $\left(\mathrm{CDCl}_{3}\right) \quad 69$
$15{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 3}\left(\mathrm{CDCl}_{3}\right) \quad 71$
$16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW14 $\left(\mathrm{CDCl}_{3}\right) \quad 73$
$17{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW15 $\left(\mathrm{CDCl}_{3}\right) \quad 75$
$18{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW16 $\left(\mathrm{CDCl}_{3}\right) \quad 77$
$19{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW17 $\left(\mathrm{CDCl}_{3}\right) \quad 79$
$20 \begin{array}{ll}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \text { NMR and } \mathrm{HMBC} \text { spectral data of PW18 } \\ \left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1 \text { drop) })\right.\end{array}$
$21 \begin{array}{ll}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C} \text { NMR and } \mathrm{HMBC} \text { spectral data of PW19 } \\ \left(\mathrm{CDCl}_{3^{+}} \mathrm{CD}_{3} \mathrm{OD}(1 \text { drop) })\right.\end{array}$
$22{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW20
$\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop))85
$23{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound PW20 $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) 87

LIST OF ILLUSTATIONS

Schemes Page
1 Isolation of crude extract from the green fruits of A. marmelos 35
2 Isolation of compounds PW1-PW21 36
from the acetone extract
Figures Page
1 Different parts of Aegle marmelos 3
2 Selected HMBC correlations of PW1 46
3 Selected HMBC correlations of PW2 48
4 Selected HMBC correlations of PW3 51
5 Selected HMBC correlations of PW4 52
6 Selected HMBC correlations of PW5 54
7 Selected HMBC correlations of PW6 56
8 Selected HMBC correlations of PW7 58
9 Selected HMBC correlations of PW8 60
10 Selected HMBC correlations of PW9 62
11 Selected HMBC correlations of PW10 64
12 Selected HMBC correlations of PW11 66
13 Selected HMBC correlations of PW12 68
14 Selected HMBC correlations of PW13 70
15 Selected HMBC correlations of PW14 72
16 Selected HMBC correlations of PW15 75
17 Selected HMBC correlations of PW16 76
18 Selected HMBC correlations of PW17 79
19 Selected HMBC correlations of PW18 80
20 Selected HMBC correlations of PW19 82
21 Selected HMBC correlations of PW20 84
22 Selected HMBC correlations of PW21 86

LIST OF ILLUSTATIONS (Continued)

Figures Page
$23 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW1 95
24 IR (neat) spectrum of compound PW1 95
$25{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW1 96
$26{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW1 96
27 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW1 97
28 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW1 97
29 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW1 98
30 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW1 98
$31 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW2 99
32 IR (neat) spectrum of compound PW2 99
$33{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW2 100
$34{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW2 100
35 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW2 101
36 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW2 101
37 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW2 102
38 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW2 102
$39 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW3 103
40 IR (neat) spectrum of compound PW3 103
$41{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW3 104
$42{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 3}$ 104
43 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW3 105
44 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW3 105
45 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW3 106
46 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW3 106
$47 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW4 107
48 IR (neat) spectrum of compound PW4 107
$49{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1 \mathrm{drop})\right)$ of compound PW4 108

LIST OF ILLUSTATIONS (Continued)

Figures Page
$50{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop)) of compound PW4 108
51 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1\right.$ drop) $)$ of compound PW4 109
52 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop)) of compound PW4 109
53 2D HMQC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1 drop)) of compound PW4 110
54 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1 drop)) of compound PW4 110
$55 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW5 111
56 IR (neat) spectrum of compound PW5 111
$57{ }^{1} \mathrm{H}$ NMR (300 MHz) (CDCl_{3}) of compound PW5 112
$58{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW5 112
59 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW5 113
60 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW5 113
61 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW5 114
62 UV (MeOH) spectrum of compound PW6 115
63 IR (neat) spectrum of compound PW6 115
$64{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW6 116
$65{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW6 116
66 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW6 117
67 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW6 117
68 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW6 118
69 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW6 118
$70 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW7 119
71 IR (neat) spectrum of compound PW7 119
$72{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW7 120
$73{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW7 120
74 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW7 121
75 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW7 121
76 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW7 122

LIST OF ILLUSTATIONS (Continued)

Figures Page
77 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW7 122
$78 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW8 123
79 IR (neat) spectrum of compound PW8 123
$\mathbf{8 0}{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW8 124
$81{ }^{13} \mathrm{C}$ NMR $(125 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW8 124
82 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW8 125
83 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW8 125
84 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW8 126
$85 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW9 127
86 IR (neat) spectrum of compound PW9 127
$87{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW9 128
$\mathbf{8 8}{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW9 128
89 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW9 129
90 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW9 129
91 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW9 130
92 UV (MeOH) spectrum of compound PW10 131
93 IR (neat) spectrum of compound PW10 131
$94{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW10 132
$\mathbf{9 5}{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW10 132
96 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW10 133
97 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW10 133
98 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW10 134
99 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 0}$ 134

LIST OF ILLUSTATIONS (Continued)

Figures Page
$100 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW11 135
101 IR (neat) spectrum of compound PW11 135
$102{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW11 136
$103{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW11 136
104 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW11 137
105 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW11 137
106 UV (MeOH) spectrum of compound PW12 138
107 IR (neat) spectrum of compound PW12 138
$108{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12 139
$109{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12 139
110 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW12 140
111 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW12 140
112 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12 141
113 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12 141
114 UV (MeOH) spectrum of compound PW13 142
115 IR (neat) spectrum of compound PW13 142
$116{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 3}$ 143
$117{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW13 143
118 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW13 144
119 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW13 144
120 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW13 145
121 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW13 145
122 UV (MeOH) spectrum of compound PW14 146
123 IR (neat) spectrum of compound PW14 146
$124{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW14 147
$\mathbf{1 2 5}{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW14 147
126 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW14 148
127 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW14 148

LIST OF ILLUSTATIONS (Continued)

Figures Page
128 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW14 149
129 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW14 149
$130 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW15 150
131 IR (neat) spectrum of compound PW15 150
$132{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 5}$ 151
$133{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW15 151
134 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW15 152
135 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW15 152
136 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW15 153
137 UV (MeOH) spectrum of compound PW16 154
138 IR (neat) spectrum of compound PW16 154
$139{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW16 155
$140{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW16 155
141 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW16 156
142 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW16 156
143 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW16 157
144 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW16 157
145 UV (MeOH) spectrum of compound PW17 158
146 IR (neat) spectrum of compound PW17 158
$147{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 7}$ 159
$148{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW17 159
149 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 7}$ 160
150 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW17 160
151 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW17 161
152 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW17 161
$153 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound PW18 162

LIST OF ILLUSTATIONS (Continued)

Figures Page
154 IR (neat) spectrum of compound PW18 162
$155{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18 163
$156{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18 163
157 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18 164
158 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18 164
159 2D HMQC ($\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW18 165
160 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW18 165
161 UV (MeOH) spectrum of compound PW19 166
162 IR (neat) spectrum of compound PW19 166
$163{ }^{1} \mathrm{H}$ NMR (300 MHz) ($\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW19 167
$164{ }^{13} \mathrm{C}$ NMR (75 MHz) ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW19 167
165 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW19 168
166 2D HMQC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW19 168
167 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW19 169
168 UV (MeOH) spectrum of compound PW20 170
169 IR (neat) spectrum of compound PW20 170
$170{ }^{1} \mathrm{H}$ NMR (300 MHz) ($\mathrm{CDCl}_{3^{+}} \mathrm{CD}_{3} \mathrm{OD}(1$ drop)) of compound PW20 171
$171{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW20 171
172 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW20 172
173 2D HMQC ($\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW20 172
174 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW20 173
175 UV (MeOH) spectrum of compound PW21 174
176 IR (neat) spectrum of compound PW21 174
$177{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW21 175

LIST OF ILLUSTATIONS (Continued)

Figures Page
$178{ }^{13} \mathrm{C}$ NMR (75 MHz) ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW21 175
179 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW21 176
180 2D HMQC ($\mathrm{CDCl}_{3+} \mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW21 176
181 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW21 177

LIST OF ABBREVIATIONS AND SYMBOLS

s	=	singlet
d	=	doublet
t	$=$	triplet
q	$=$	quartet
m	=	multiplet
$d d$	=	doublet of doublet
$d t$	$=$	doublet of triplet
$b r s$	=	broad singlet
$b r d$	$=$	broad doublet
g	$=$	gram
nm	$=$	nanometer
mp	$=$	melting point
cm^{-1}	$=$	reciprocal centimeter (wave number)
δ	$=$	chemical shift relative to TMS
J	$=$	coupling constant
$[\alpha]_{\text {D }}$	$=$	specific rotation
$\lambda_{\text {max }}$	$=$	maximum wavelength

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

v	$=$	absorption frequencies
ε	$=$	molar extinction coefficient
m / z	$=$	a value of mass divided by charge
${ }^{\circ} \mathrm{C}$	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
c	$=$	concentration
IR	$=$	Infrared
UV	$=$	Ultraviolet
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectroscopy
NMR	$=$	Nuclear Magnetic Resonance
1D NMR	=	One Dimensional Nuclear Magnetic Resonance
2D NMR	$=$	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

HMBC	$=$ Heteronuclear Multiple Bond Correlation
HMQC	$=$ Heteronuclear Multiple Quantum Coherence
NOESY	$=$ Nuclear Overhauser Effect Spectrosopy
CC	$=$ Column Chromatography
QCC	$=$ Quick Column Chromatography
PLC	$=$ Preparative Thin Layer Chromatography
TLC	$=$ Thin Layer Chromatography
TMS	$=$ tetramethylsilane
CDCl_{3}	$=$ deuterochloroform
$\mathrm{CD}_{3} \mathrm{OD}$	$=$ deuteromethanol

CHAPTER 1

INTRODUCTION

1.1 Introduction

Aegle marmelos (L.) Correa ex Roxb. is a large fruit-bearing tree indigenous to dry forests on hills, commonly known as Bael, known in thai as "มะตูม", belonging to the family Rutaceae. This tree, which is the only species in the genus Aegle, grows up to 18 meters tall and bears thorns and fragrant flowers. It has a woody-skinned, smooth fruit $5-15 \mathrm{~cm}$ in diameter. The plant Aegle marmelos is distributed throughout Burma, Pakistan, Bangladesh, Sri Lanka, Thailand and various parts of South-eastern Asia (Mishra et al., 2010). In India, the tree is often found in temple gardens and its leaves are used in religious celebrations. In the traditional culture of Nepal and Bangladesh (Govindachari et al., 1983), Aegle marmelos is part of an important fertility ritual for girls known as the Bel baha.

According to Smitinan (2001), there are twenty four genus of family Rutaceae found in Thailand as follows.

1. Acronychia	13. Melicope
2. Aegle	14. Merope
3. Atalantin	15. Merrillia
4. Citrus	16. Micromelum
5. Clausena	17. Murraya
6. Euodia	18. Naringi
7. Feroniella	19. Paramignya
8. Fortunella	20. Ravenia
9. Glycosmis	21. Ruta
10. Limonia	22. Toddalia
11. Luvunga	23. Triphasia
12. Maclurodendron	24. Zanthoxylum

All parts of this tree, viz. root, leaf, bark, fruit and seed are useful in several aliments (Alam et al., 1990). The leaf extract has been found effective in the regeneration of damaged pancreas (β-cell) in diabetic rat (Das et al., 1996). A decoction of the root and the bark are used in the treatment of fever significantly against malaria (Arumugam et al., 2008). The ripe fruits is a good cure for diabetes, dyspepsia, constipation and body heating problem (Kalaivani et al., 2009). The seed extract is known to exhibit significant activity against Vibrio cholerae, Staphylococus aureus and Escherichia coli (Acharyya et al., 2009). Essential oils isolated from A. marmelos have shown promising antifungal activities against Physalospora tucumanensis, Ceratocystis paradoxa, Sclrrotium rolfsii, Curvularia lunata, Helminthosporium sacchari, Fusarium moniliforme and Cephalosporium sacchari (Runa et al., 1997).

Figure 1 Different parts of Aegle marmelos

1.2 Review of Literatures

The chemical constituents isolated from the five genus and six species of family Rutaceae were summarized in Table 1. Information obtained from SciFinder Scholar copyright in 2009 will be presented and classified into groups: Acridone alkaloids, Alkaloids, Anthraquinones, Aromatics, Coumarins, Flavonoids, Glucoside Limonoids, Sesquiterpenoids and Triterpenoids.

1.2.1 The Biological Activity of \boldsymbol{A}. marmelos

The coumarin compounds isolated from A. marmelos have been investigated for biological activity. For example, (+)-4-(2'-hydroxy-3'-metylbut-3'-enyloxy)$8 H[1,3]$-dioxol[4,5-h]chromen-8-one isolated from seeds of A. marmelos exhibited efficient antifungal activity against A.fumigatus, Candida albicaneoformansns ,T. mentagrophytes and Cryptococus neoformans with the minimum inhibitory concentration (MICs) of $6.25 \mu \mathrm{~g} / \mathrm{disc}, 31.25 \mu \mathrm{~g} / \mathrm{ml}$ and $31.25 \mu \mathrm{~g} / \mathrm{ml}$ in DDA, BMA and PSGIA, respectively (Mishra et al., 2010), 7-(6'R-hydroxy-3', 7'-dimetyl-2'E, 7'octadienylloxy) coumarin and auraptene inhibited MAO activity in a concentrationdependent manner with IC_{50} values of 0.7 and $1.7 \mu \mathrm{M}$ respectively and showed a slight and potentl selective inhibitory effect against MAO-B ($\mathrm{IC}_{50} 0.5$ and $0.6 \mu \mathrm{M}$, respectively) compared to MAO-A ($\mathrm{IC}_{50} 1.3$ and $34.6 \mu \mathrm{M}$, respectively) (Jeong et al., 2006).

Some of alkaloids from A. marmelos have been investigated for biological activity. Anhydroaegeline isolated from leaves of A. marmelos revealed the most potent inhibitory effect against α-glucosidase with IC_{50} value of $35.8 \mu \mathrm{M}$ (Phuwapraisirisan et al., 2008) and shahidine showed activity against a few Grampositive bacteria (Faizi et al., 2009).

Table 1 Compounds from plants of Family Rutaceae.
a. Acridone alkaloids
f. Flavonoids
b. Alkaloids
g. Glucoside
c. Anthraquinones
h. Limonoids
d. Aromatics
i. Sesquiterpenoids
e. Coumarins
j. Triterpenoids

Scientific name	Part	Compounds	Bibliography
Aegle marmelos	Bark Heart wood	(+) Lyoniresinol 3 $\alpha-O-\beta$-Dglucopyranoside, g1 (-) Lyoniresinol $3 \alpha-O-\beta-\mathrm{D}-$ glucopyranoside, $\mathbf{g} 2$ (-)-2 $\alpha-O-(\beta-\mathrm{D}-$ glucopyranosyl)lyoniresinol, g3 (-)-4-epi-lyoniresinol-3 $\alpha-O-\beta$-D- glucopyranoside, $\mathbf{g} 4$ Chloromarmin, e1 Aeglin, e2 Xanthoxol, e3 Marmin, e4 1-Hydroxy-7,8-dimethoxy-2- methylanthraquinone, c1 6-Hydroxy-1-dimethoxy-3- methylanthraquinone, c2 β-Sitosterol, j1	Ohashi et al., 1994 Ohashi et al., 1995 Srivastava et al., 1996 Jain et al., 1991

tific name	Part	Compounds	Bibliography
marmelos	Bark Leaves	Xanthotoxol-8-O- β-D- glucopyranoside, e5 2-(2-hydroxy-4- methoxyphenyl)vinyl acetate, d1 Lupeol, j2 Aegelinoside A, g5 Aegelinoside B, g6 Aegeline, b1 Anhydromarmeline, b2 Tembamide, b3 Dehydromarmeline, b4 Anhydroaegeline, b5 Marmenol, e6 Praealtin D, e7 Valencic acid, d2 4-Methoxybenzoic acid, d3 Betulinic acid, j3 N-(p-trans- coumaroyl)tyramine, b6 Montanine, b7 Rutaretin, e8 Rutin, $\mathbf{f 4}$ β-Sitosterol, $\mathbf{j 1}$ Xanthoxol, e3 β-sitosterol-3-O- β-D-glucoside, j5 Scoparone, e10 Scopoletol, e11 Umbelliferone, e14 Marmesin, e13	Srivastava et al., 1996 Phuwapraisirisan et al., 2008 Ali et al., 2004 Sharma et al., 1980

fic name	Part	Compounds	Bibliography
larmelos	Dry leaves	Skimmianin, b10	
		Marmelin, b8	Govindachari et al.,
		Dehydromarmeline, b4	1983
		O-Demethylaegeline, b9	
	Root	Anhydroaegeline, b5	Shoeb et al., 1973
		Xanthotoxin, e9	
		Scoparone, e10	
		Scopoletol, e11	
		Tembamide, b3	
		Umbelliferone glucoside, e12	
		Marmesin, el3	
		Marmin, e4	
		Skimmianin, b10	
	Root bark	Skimmianin, b10	Basu et al., 1974
		Umbelliferone, e14	
		Xanthotoxin, e9	
		Fagarine, b11	
		Marmesin, e13	
		Marmin, e4	
		Decursinol, e15	
	Ripe fruits	Alloimperatorin methyl ether, e16	Sharma et al., 1981
		O-Isopentenylhalfordinol, b12	
		O-Methylhalfordinol, b13	
	Unripe fruits	Aegeline, b1	Sharma et al., 1981
		Imperatorin, e17	
		Alloimperatorin, e18	
	Matured bark	Xanthoxol, e3	Chatterjee et al.,
		Marmelin, b8	1949
		Marmesin, e13	
		Umbelliferone, e14	

Aegle marmelos	Matured bark	Fagarine, b11 Anhydromarmesin, e19 Nodakenetin, e20 Umbelliferone-6-carboxylic acid, e21 Anhydromarmesin, e19 Marmesic acid, d4 7-Hydroxydimethyl-3,4-dimethy- 2-oxo-2H-1-benzopyran-6- carboxylic acid, e22	Chatterjee et al., 1949
Atalantia ceylantica	Bark Root bark Seed	Atalatine, al Xanthotoxin, e9 Racemosin, e23 Ceylantin, e24 Cycloatalantin, h1 Cycloatalantinone, h2 Cycloatalantin-16-oic acid, h3 Isocycloatalantin, h4 Cycloepiatalantin, h5 Dehydrocycloatalantin, h6 Ataloxime, b14 Xanthotoxine, e9 Imperatorin, e17 Bergapten, e25 Heraclenin, e26 Oxypeucedanin, e27	Fraser et al., 1973 Murray et al., 1985 Bacher et al., 1999

Scientific name	Part	Compounds	Bibliography
Atalantia racemosa	Heart wood	Xanthotoxin, e9 Isoevodionol, e28 Umbelliferone, e14 Luvangetin, e29 Xanthyletin, e30 Rutaretin, e8 Rutarin, e31 Racemosin, e23 Racemoflavone, f1 Atalantaflavone, f2	Banerj et al., 1988b
Atalantia wightii	Root	Kokusaginin, b15 Xanthyletin, e30 Cinnamic acid lactone, e32 Isoimpinellin, e33 Ostol, e34 Marmesin, e13 Xanthotoxin, e9 Obacylactone, h7 Atalantin, h8 Phebalosin, e35 N -methylatalaphyllin, a2 N -methylatalaphyllinine, a3 Auraptene, e36 Umbelliferone, e14 Micromelumin, e37 Murrangatin, e38	Banerj et al., 1982

Scientific name	Part	Compounds	Bibliography
Atalantia wightii	Stem bark	Skimmianin, b10 Heplopine, b16 p-Coumaric acid ethyl ester, $\mathbf{d 5}$ Imperatorin, e17 Scopoletol, e11 Marmin, e4 Limettin, e39 Crenyllatin, e40 Phebalosin, e35	Banerj et al., 1988a
Citrus limonia	Stem	Imperatorin, e17 Xanthotoxin, e9 Bergapten, e25 Isoimpinellin, e33 Limettin, e39 Scopoletol, e11 Umbelliferone, e14 Xanthoxol, e3 Aesculetin, $\mathbf{e 4 1}$ Stigmasterol, $\mathbf{j} 4$ β-sitosterol-3-O- β-glucoside, $\mathbf{j 5}$	Abdel-Fattah et al., 2003

Scientific name	Part	Compounds	Bibliography
Citrus nobilis	Seeds	Citrobilin, h9	Bui et al., 2004
		Limonin, h10	
		Nomilin, h11	
		Deacetyl nomilin, h12	
		Obacunon, h13	
		Limonexic acid, h14	
		β-sitosterol-3-O- β-D-glucoside, $\mathbf{j 5}$	
		2,2-dimethylpyranoflavanol, f3	Wu et al., 1987
		Elemol, i1	
		Suberosin, e42	
		Suberenol, e43	
		Crenyllatin, e40	
		Xanthyletin, e30	
		Xordentatin, e45	
		Citropone A, a4	
		5-Hydroxynoracronycine, a5	
		Citrusinine I, a6	

a. Acridone alkaloids

Atalantine, a1

N-Methylatalaphyllin, a2

N-methylatalaphyllinine, a3

Citropone A, a4

5-Hydroxynoracronycine, a5

Citrusinnine I, a6

Citracridone I, a7

b. Alkaloids

Aegeline, b1

Anhydromarmeline, b2

> Tembamide, b3

Dehydromarmeline, b4

Anhydroaegeline, $\mathbf{b 5}$

N-(p-trans-coumaroyl)tyramine, b6

Montanin, b7

Marmelin, b8

O-Demethylaegeline, $\mathbf{b 9}$

Skimmianin, b10

Fagarine, b11

O-Isopentenylhalfordinol, b12

O-Methylhalfordinol, b13

Ataloxime, b14

Kokusaginin, b15

Heplopine, b16
c. Anthraquinone

1-Hydroxy-7,8-dimethoxy-2methylanthraquinone, c1

6-Hydroxy-1-methoxy-3-
methylanthraquinone, c2
d. Aromatics

2-(2-hydroxy-4-methoxyphenyl)vinyl acetate, d1

Valencic acid, d2

4-Methoxybenzoic acid, d3

Marmesic acid, d4

p-Coumaric acid ethyl ester, d5

e. Coumarins

Chloromarmin, e1

Aeglin, e2

Xanthoxol, e3

Marmin, e4

Xanthoxol-8-O- β-Dglucopyranoside, e5

Marmenol, e6

Praealtin D, e7

Rutaretin, e8

Xanthotoxin, e9

Scoparone, e10

Scopoletol, e11

Umbelliferone glucoside, e12
Marmesin, e13

Imperatorin, e17

Alloimperatorin methyl ether, e16

Alloimperatorin, e18

Racemosin, e23

Ceylantin, e24

Bergapten, e25

Heraclenin, e26

Oxypeucedanin, e27

Isoevodionol, e28

Luvangetin, e29

Xanthyletin, e30

Rutarin, e31

Cinnamic acid lactone, e32

Isoimpinellin, e33

Ostol, e34

Phebalosin, e35

Murrangatin, e38
Auraptene, e36

Micromelumin, e37

Limettin, e39

Crenyllatin, e40

Aesculetin, $\mathbf{e 4 1}$

Suberosin, e42

Suberenol, e43

Xanthoxyletin, e44

Nordentatin, e45

Marmesinin, e46

f. Flavonoids

$\mathrm{R}=\mathrm{OMe}:$ Racemoflavone, $\mathbf{f 1}$
$\mathrm{R}=\mathrm{H}:$ Atalantaflavone, $\mathbf{f} \mathbf{2}$

2,2-dimethylpyranoflavanol, $\mathbf{f 3}$

g. Glucosides

(+) Lyoniresinol $3 \alpha-O$ - β-D-
glucopyranoside, g1

(-)-4-epi-lyoniresinol-3 $\alpha-O-\beta$-Dglucopyranoside, g4

(-) Lyoniresinol $3 \alpha-O-\beta-\mathrm{D}-$
glucopyranoside, g2
(-)-2 α-O-(β-D-glucopyranosyl)lyoniresinol, g3

Aegelinoside A, g5

Aegelinoside B, g6
h. Limonoids

Cycloatalantin, h1

Cycloatalantinone, h2

Cycloatalantin-16-oic acid, h3

Isocycloatalantin, h4

Cycloepiatalantin, h5

Dehydrocycloatalantin, h6

Obacylactone, $\mathbf{h 7}$

Atalantin, h8

Citrobilin, $\mathbf{h} 9$

Limonin, 10

$\mathrm{R}=\mathrm{OAc}$: Nomilin, h11
$\mathrm{R}=\mathrm{OH}$: Deacetyl nomilin, h12
R = H: Obacunon, h13

Limonexic acid, h14
I. Sesquiterpenoids

Elemol, i1

J. Triterpenoids

β-Sitosterol, $\mathbf{j 1}$

Lupeol, $\mathbf{j} 2$

Stigmasterol, j4
β-Sitosterol-3-O- β-D-glucoside, $\mathbf{j} 5$

CHAPTER 2

EXPERIMENTAL

2.1 Instruments and Chemicals

Melting point was recorded in ${ }^{\circ} \mathrm{C}$ on a digital Electrothermal 9100 Melting Point Apparatus. Ultraviolet spectra were measured with a UV-160A spectrophotometer (SHIMADZU) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. The optical rotation $[\alpha]_{\mathrm{D}}$ was measured in chloroform, acetone and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a PerkinElmer 783 FTS165 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ - Nuclear magnetic resonance spectra were recorded on a FT-NMR Bruker Ultra Shield ${ }^{\mathrm{TM}} 300$ and 500 MHz spectrometer at Department of Chemistry, Faculty of Science, Prince of Songkla University and a Unity Inova Varian 500 MHz at Scientific Equipment Center, Prince of Songkla University. Spectra were recorded in deuterochloroform as δ value in ppm down field from TMS (internal standard $\delta 0.00$) and coupling constant (J) are expressed in hertz. EI and HREI mass spectra were measured on MAT 95 XL Mass spectrometer. Quick column chromatography (QCC) and column chromatography was performed by using silica gel 60 H (Merck) and silica gel 100 (70-230 Mesh ASTM, Merck) respectively. For thin-layer chromatography (TLC), aluminum sheets of silica gel $60 \mathrm{~F}_{254}(20 \times 20 \mathrm{~cm}$, layer thickness 0.2 mm , Merck) were used for analytical purposes and the compounds were visualized under ultraviolet light. Solvents for extraction and chromatography were distilled at their boiling ranges prior to use except chloroform was analytical grade reagent.

2.2 Plant material

The green fruits of A. marmelos (L.) Corrêa ex Roxb. were collected from Songkhla province in the Southern part of Thailand, in October, 2008. Identification
was made by Mr. Ponlawat Pattarakulpisutti, Department of Biology, Facutly of Science, Prince of Songkla University. The specimen (Paosiyah 01) has been deposited in the Herbarium of Department of Biology, Facutly of Science, Prince of Songkla University, Thailand.

2.3 Extraction and Isolation

Chopped-dried green fruits of A. marmelos (3.2 kg) were immersed in acetone at room temperature for 5 days. After evaporation, a dark green gum of acetone extract (55.0 g) was obtained. The process of extraction was shown in Scheme 1.

Scheme 1 Isolation of crude extract from the green fruits of A. marmelos

2.4 Isolation and Chemical Investigation

Acetone extract (55.0 g) was subjected to quick column chromatography using silica gel as stationary phase and eluted with hexane-dichloromethane, dichloromethane, dichloromethane-methanol and methanol as eluents. On the basis of their TLC characteristics, the fractions which contained the same major components were combined to give fractions P1-P15. Twenty-one pure compounds were obtained as shown in Scheme 2.

Scheme 2 Isolation of compounds PW1-PW21 from acetone extract

Table 2 Physical characteristics and weights of the fractions from the acetone extract

Fraction	Weight (g)	Physical characteristic
P1	1.0283	white solid
P2	0.5929	white solid
P3	4.9487	yellow solid
P4	2.3342	brown viscous liquid
P5	1.5392	brown viscous liquid
P6	4.9652	brown viscous liquid
P7	6.1923	brown viscous liquid
P8	17.3981	brown viscous liquid
P9	1.0000	brown viscous liquid
P10	2.7849	black viscous liquid
P11	2.1317	black viscous liquid
P12	2.6605	black viscous liquid
P13	2.3373	black viscous liquid

Table 2 continued

Fraction	Weight (g)	Physical characteristic
P14	0.1626	black viscous liquid
P15	1.8644	black viscous liquid
Total	51.9403	-

Fraction P6 (4.9652 g) was further purified by column chromatography over silica gel and eluted with dichloromethane to give 7 fractions (6A-6G).

Subfraction 6B (1.0717 g), containing one major component, was recrystallized from dichloromethane-hexane (1.0:1.0) to give a white solid of PW1: imperatorin (0.8289 g).

Subfraction 6F (0.2795 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.2:9.8) to afford 10 fractions (6F1-6F10). Subfraction 6F9 was a white solid of PW2: valencic acid (0.0477 g).

Subfraction 6F3 (0.0300 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.1:9.9) to afford 5 fractions (6F3A-6F3E).

Subfraction 6F3B (0.0111 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.2:9.8) to give a white powder of PW3: 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (0.0093 g).

Subfraction 6F5 (0.0166 g) was separated by column chromatography with Sephadex LH-20, and eluted with methanol to afford 3 fractions (6F5A-6F5C). Subfraction 6F5C gave a white solid of PW4: xanthotoxol (0.0115 g).

Subfraction 6F6 (0.0199 g) was separated by column chromatography with Sephadex LH-20, eluted with methanol to afford 6 fractions (6F6A-6F6F).

Subfraction 6F6D (0.0087 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.2:9.8) to give a white solid of PW5: isogosferol (0.0036 g).

Fraction P8 (17.3981 g) was further purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 9 fractions (8A-8I). Subfraction 8B was a white solid of PW6: xanthotoxin $(0.0073 \mathrm{~g})$.

Subfraction $8 \mathrm{~F}(0.3778 \mathrm{mg})$ was purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 13 fractions (8F1-8F13). Subfraction 8F7 was a yellow solid of PW7: scoparone (0.048 g).

Subfraction $8 \mathrm{H}(0.2551 \mathrm{~g})$ was purified by column chromatography over silica gel and eluted with a methanol-dichloromethane (0.2:9.8) to give 9 fractions (8H1-8H9).

Subfraction 8H5 (0.0505 g) was further purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.1:9.9) to give 9 fractions (8H5A-8H5I). Subfraction 8H5C was a yellow solid of PW10: 6-formylumbilliferone (0.0051 g).

Subfraction 8 H 5 F (0.0197 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.2:9.8) to give a white solid of PW8: decursinol (0.0018 g) and white powder of PW9: demethylsuberosin $(0.0027 \mathrm{~g})$.

Fraction P9 (1.0000 g) was further purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 7 fractions (9A-9G).

Subfraction 9E (0.2688 g) was purified by column chromatography over silica gel and eluted with a methanol-dichloromethane (0.3:9.7) to give 10 fractions (9E1-9E10).

Subfraction 9E7 (0.0057 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.4:9.6) to give white powder of PW11: marmesiline (0.0020 g).

Subfraction 9F (0.3980 g) was purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 8 fractions (9F1-9F8). Subfraction 9F4 was white powder of PW12: marmesin (0.0071 g).

Subfraction 9F5 (0.0444 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.5:9.5) to give 5 fractions (9F5A-9F5E).

Subfraction 9F5C (0.0183 g) was separated by column chromatography with Sephadex LH-20 and eluted with methanol-dichloromethane (1.0:1.0) to afford 3 fractions (9F5C1-9F5C3).

Subfraction 9F5C3 (0.0140 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.3:9.7) to give white powder of PW13: marmeline (0.0028 g), a white powder of PW14: isoangenomalin (0.0022 g) and white powder of PW15: 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (0.0019 g).

Fraction P11 (2.1317 g) was further purified by column chromatography over silica gel and eluted with methanol-dichloromethane (1.0:9.0) to give 10 fractions (11A-11J).

Subfraction 11C (0.0597 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (4.0:6.0) to give 11 fractions (11C111C11).

Subfraction 11C10 $(0.0130 \mathrm{~g})$ was further purified on preparative TLC and eluted with acetone-dichloromethane (1.0:9.0) to give white powder of PW16: isofraxidin $(0.0032 \mathrm{~g})$ and a yellow solid of PW17: marmelonine A $(0.0039 \mathrm{~g})$.

Subfraction 11E (0.1213 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.3:9.7) to give 8 fractions (11E1-11E8).

Subfraction 11E4 (0.0073 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.3:9.7) to give white powder of PW18: 8hydroxysmyrindiol (0.0035 g).

Subfraction 11E7 (0.0051 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.5:9.5) to give white powder of PW19: marmelonine $\mathrm{B}(0.0025 \mathrm{~g})$.

Subfraction 11F (0.0851 g) was purified by column chromatography over silica gel and eluted with acetone-dichloromethane (1.5:8.5) to give 8 fractions (11F111F8). Subfraction 11F5 was white powder of PW21: xanthoarnol (0.0028 g).

Subfraction 11F4 (0.0046 g) was further purified on preparative TLC and eluted with ethyl acetate-hexane (6.0:4.0) to give white powder of PW20: isophellodenol C (0.0023 g).

Compound PW1: Imperatorin, white solid, m.p. $101-102{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ $(\mathrm{MeOH})(\log \varepsilon): 215$ (4.69), $245(4.55)$ and $298(4.25) \mathrm{nm}$; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 1713$ ($\mathrm{C}=\mathrm{O}$ stretching), 1623, 1587 and 1446 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 3 .

Compound PW2: Valencic acid, white solid, m.p. $189-190^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ $(\mathrm{MeOH})(\log \varepsilon): 202(4.51)$ and 249 (4.43) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3390(\mathrm{O}-\mathrm{H}$ stretching), 1672 ($\mathrm{C}=\mathrm{O}$ stretching) and 1250 (C-O stretching). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 4.

Compound PW3: 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one, white powder, m.p. $145-146{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 220$ (4.66), 249 (4.56) and 300 (4.32) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 1728,1680(\mathrm{C}=\mathrm{O}$ stretching), 1623, 1587 and 1446 (aromatics). For ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 5.

Compound PW4: Xanthotoxol, white solid, m.p. 246-247 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ (MeOH) ($\log \varepsilon$): 219 (4.25), 250 (4.41), 261 (4.53), 268 (4.59) and 307 (4.74) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3307(\mathrm{O}-\mathrm{H}$ stretching), $1705(\mathrm{C}=\mathrm{O}$ stretching), 1594, 1447 and 1414 (aromatics). For ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1 drop), 300 MHz) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1\right.$ drop), 75 MHz$)$ spectral data, see Table 6.

Compound PW5: Isogosferol, white solid, m.p. $166-167{ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ $(\mathrm{MeOH})(\log \varepsilon): 218$ (4.31), 249 (4.53) and 299 (4.69) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3413$ ($\mathrm{O}-\mathrm{H}$ stretching), 1721 ($\mathrm{C}=\mathrm{O}$ stretching), 1620, 1588 and 1442 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 7.

Compound PW6: Xanthotoxin, white solid, m.p. 147-148 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ (MeOH) ($\log \varepsilon$): 217 (4.33), 253 (4.41) and 299 (4.50) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 1716$ ($\mathrm{C}=\mathrm{O}$ stretching), 1617, 1580 and 1456 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 8.

Compound PW7: Scoparone, yellow solid, m.p. 148-149 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ $(\mathrm{MeOH})(\log \varepsilon): 203$ (4.23), 285 (4.57) and 338 (4.54) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 1719$ ($\mathrm{C}=\mathrm{O}$ stretching), 1618, 1514 and 1456 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 9 .

Compound PW8: (+) Decursinol, white solid, m.p. $170-171^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}=$ $+8.7^{\circ}\left(c=0.53, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (4.66) and 331 (4.29) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3410(\mathrm{O}-\mathrm{H}$ stretching), $1717(\mathrm{C}=\mathrm{O}$ stretching), 1625, 1563 and 1488 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ spectral data, see Table 10.

Compound PW9: Demethylsuberosin, white powder, m.p. $132-133^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 205$ (4.40), 224 (4.35), 238 (4.39) and 330 (4.25) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right)$: 3420 ($\mathrm{O}-\mathrm{H}$ stretching), 1717 ($\mathrm{C}=\mathrm{O}$ stretching), 1625, 1571 and 1489 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 11.

Compound PW10: 6-Formylumbilliferone, yellow solid, m.p. 148-150 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 202$ (4.69), 257 (4.58), 336 (4.33) and 392 (3.97) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3484(\mathrm{O}-\mathrm{H}$ stretching), 1741 and $1665(\mathrm{C}=\mathrm{O}$ stretching), 1627, 1559, 1459 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 12 .

Compound PW11: Marmesiline, white powder, m.p. $163-164^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}=$ $+2.3^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 217$ (3.59), 223 (3.58) and 272 (3.43) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3417$ ($\mathrm{O}-\mathrm{H}$ stretching), 1661 ($\mathrm{C}=\mathrm{O}$ stretching), 1621, 1539, 1456 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) spectral data, see Table 13.

Compound PW12: (+) Marmesin, white powder, m.p. $170-171^{\circ} \mathrm{C},[\alpha]_{D}{ }^{26}=$ $+20.6^{\circ}\left(c=0.9, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 203$ (4.44) and $330(4.25) \mathrm{nm} ; \mathrm{IR}$ (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3441(\mathrm{O}-\mathrm{H}$ stretching), $1704(\mathrm{C}=\mathrm{O}$ stretching), 1627, 1563, 1503 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 14.

Compound PW13: Marmeline, white powder, m.p. 128-129 ${ }^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ (MeOH) ($\log \varepsilon$): 202 (4.34), 224 (4.42) and 274 (4.44) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3259$ (O-H stretching), 1660 ($\mathrm{C}=\mathrm{O}$ stretching), 1619, 1569, 1443 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 15.

Compound PW14: Isoangenomalin, white powder, m.p. $120-121{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}$ $=+9.7^{\circ}\left(c=1.0, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 203$ (4.51), 287 (4.48) and 329 (3.43) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 1711$ ($\mathrm{C}=\mathrm{O}$ stretching), 1620, 1567, 1401 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 16.

Compound PW15: 6-(4'-Acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin, white powder, m.p. $133-134^{\circ} \mathrm{C}$; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205(4.18), 297$ (3.58) and 330 (3.70) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3392$ ($\mathrm{O}-\mathrm{H}$ stretching), 1720 ($\mathrm{C}=\mathrm{O}$ stretching), 1618, 1570, 1421 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 75 MHz) spectral data, see Table 17.

Compound PW16: Isofraxidin, white powder, m.p. $151-152^{\circ} \mathrm{C}$; UV $\lambda_{\max }$ (MeOH) ($\log \varepsilon$): 207 (4.55), 343 (4.27) and 383 (4.19) nm; IR (Neat) v $\left(\mathrm{cm}^{-1}\right): 3356$ (O-H stretching), 1712 ($\mathrm{C}=\mathrm{O}$ stretching), 1606, 1576, 1498 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 18.

Compound PW17: Marmelonine A, yellow solid, m.p. 195-196 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}=-$ $3.8^{\circ}(c=1.0, \mathrm{MeOH}) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205(4.41), 257$ (3.57) and 325 (3.95) nm ; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3415$ ($\mathrm{O}-\mathrm{H}$ stretching), 1721 ($\mathrm{C}=\mathrm{O}$ stretching), 1625, 1575, 1491 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data, see Table 19.

Compound PW18: 8-Hydroxysmyrindiol, white powder, m.p. $179-180^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{26}=+20.1^{\circ}(c=1.0, \mathrm{MeOH}) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 210(4.39), 268$ (3.72) and 326 (3.99) nm; IR (Neat) v (cm^{-1}): 3393 (O-H stretching), 1707 ($\mathrm{C}=\mathrm{O}$ stretching), $1623,1588,1418$ (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}(1 \mathrm{drop}), 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1 drop), 75 MHz) spectral data, see Table 20.

Compound PW19: Marmelonine B, white powder, m.p. $279-280^{\circ} \mathrm{C}$; UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 205(4.42), 256$ (3.49) and 331 (3.93) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right)$: 3432 ($\mathrm{O}-\mathrm{H}$ stretching), 1726 ($\mathrm{C}=\mathrm{O}$ stretching), 1621, 1557, 1488 (aromatics). For ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}\left(1\right.$ drop), 300 MHz) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop), 75 MHz) spectral data, see Table 21.

Compound PW20: Isophellodenol C, white powder, m.p. $140-141^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}$ $=+39.7^{\circ}(c=1.0, \mathrm{MeOH}) ; \mathrm{UV} \lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 204$ (4.44) and 331 (4.32) nm; IR (Neat) v (cm^{-1}): 3335 (O-H stretching), 1717 ($\mathrm{C}=\mathrm{O}$ stretching), 1617, 1570, 1457 (aromatics). For ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1 \mathrm{drop}), 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1 \mathrm{drop}), 75 \mathrm{MHz}\right)$ spectral data, see Table 22.

Compound PW21: Xanthoarnol, white powder, m.p. $178-179{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}=$ $+33.1^{\circ}\left(c=0.4\right.$, acetone); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 204$ (4.67), 224 (4.62), 248, (4.56) and 331 (4.47) nm; IR (Neat) $v\left(\mathrm{~cm}^{-1}\right): 3392$ ($\mathrm{O}-\mathrm{H}$ stretching), $1715(\mathrm{C}=\mathrm{O}$ stretching), 1627, 1572, 1488 (aromatics). For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop), 300 $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}(1$ drop), 75 MHz) spectral data, see Table 23.

CHAPTER 3
 RESULTS AND DISCUSSION

3.1 Structure elucidation of compounds from the green fruits of \boldsymbol{A}. marmelos

The crude acetone extract from the green fruits of A. marmelos was subjected to quick column chromatography and repeated column chromatography over silica gel to furnish twenty-one compounds: imperatorin (PW1), valencic acid (PW2), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5), xanthotoxin (PW6), scoparone (PW7), decursinol (PW8), demethylsuberosin (PW9), 6-formylumbilliferone (PW10), marmesiline (PW11), marmesin (PW12), marmeline (PW13), isoangenomalin (PW14), 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (PW15), isofraxidin (PW16), marmelonin A (PW17), 8-hydroxysmyrindiol (PW18), marmelonin B (PW19), isophellodenol C (PW20) and xanthoarnol (PW21).

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. Mass spectra were determined for the new compounds: PW11, PW15, and PW17-PW19. The physical data of the known compounds were also compared with the reported values.

Compound PW1

PW1 was isolated as a white solid, m.p. $101-102^{\circ} \mathrm{C}$ (lit. $102{ }^{\circ} \mathrm{C}$). The UV spectrum exhibited the presence of a linear-type furanocoumarin at 215, 245, 263 and 298 nm . The IR spectrum indicated the presence of a lactone carbonyl at $1718 \mathrm{~cm}^{-1}$, aromatic ring at 1691,1587 and $1446 \mathrm{~cm}^{-1}$ and furan ring at $887 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 3) of PW1 exhibited the signal of two pairs of downfield doublets, one at $\delta_{\mathrm{H}} 7.74$ and $6.31(1 \mathrm{H}$ each, d, $J=9.6 \mathrm{~Hz})$ attributable to $\mathrm{H}-4$ and $\mathrm{H}-3$ of the coumarin nucleus while the second pair of signals at $\delta_{\mathrm{H}} 7.65$ and 6.78 (1 H each, d, $J=2.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-3^{\prime}$) confirmed the presence of the benzofuran moiety. The singlet aromatic proton signal at $\delta_{\mathrm{H}} 7.32$ was assigned to $\mathrm{H}-5$. The upfield region exhibited an oxyprenyl side chain which contained two methyl groups at δ_{H} $1.67(3 \mathrm{H}, \mathrm{s})$ and $1.68(3 \mathrm{H}, \mathrm{s})$ of $\mathrm{H}-4$ " and $\mathrm{H}-5$ ", one methine proton at $\delta_{\mathrm{H}} 5.56(1 \mathrm{H}, \mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right)$ and methylene protons at $\delta_{\mathrm{H}} 4.95\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime \prime}\right)$.

The ${ }^{13} \mathrm{C}$ NMR (Table 3) and DEPT spectral data displayed signal corresponded sixteen carbon atoms, among which were $11 \mathrm{sp}^{2}$ carbon atoms of furanocoumarin nucleus and the five-carbon side chain which included two methyl carbons at $\delta_{\mathrm{C}} 17.9,25.6$, one quaternary carbon at $\delta_{\mathrm{C}} 139.4$, one methine carbon at δ_{C} 119.6 and one oxymethylene carbon at $\delta_{\mathrm{C}} 69.9$. The assignment of the coumarin was confirmed by HMBC correlation of H-4 ($\delta_{\mathrm{H}} 7.74$) with $\delta_{\mathrm{C}} 160.4$ (C-2), 113.1 (C-5) and $143.5(\mathrm{C}-8 \mathrm{a})$, of $\mathrm{H}-3\left(\delta_{\mathrm{H}} 6.31\right)$ with $\delta_{\mathrm{C}} 160.4(\mathrm{C}-2)$ and 116.2 (C-4a), whereas that of a benzofuran ring was confirmed by HMBC correlations of H-2' ($\delta_{\mathrm{H}} 7.65$) with $\delta_{\mathrm{C}} 125.7(\mathrm{C}-6)$ and $148.3(\mathrm{C}-7)$, of $\mathrm{H}-3^{\prime}\left(\delta_{\mathrm{H}} 6.78\right)$ with $\delta_{\mathrm{C}} 146.4$ (C-2') and 148.3 (C-
7), of H-5 ($\delta_{\mathrm{H}} 7.32$) with $\delta_{\mathrm{C}} 106.6$ (C-3'), 148.3 (C-7) 144.3 (C-4) and 143.5 (C-8a). The oxyprenyl group was attached at C-8 due to the correlation between a proton signal at $\delta_{\mathrm{H}} 4.95\left(\mathrm{H}-1{ }^{\prime \prime}\right)$ with $\delta_{\mathrm{C}} 131.3$ (C-8) as well as with $\delta_{\mathrm{C}} 119.6$ (C-2") and 139.4 (C-3"). Based on these data, the structure of PW1 was assigned as imperatorin (Razdan et al., 1987).

Figure 2 Selected HMBC correlations of PW1

Table $3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW1 $\left(\mathrm{CDCl}_{3}\right)$

Position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type	HMBC
1	-	-	-
2	-	$160.4(\mathrm{C})$	-
3	$6.31(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	$114.3(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.74(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	$144.3(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$116.2(\mathrm{C})$	-
5	$7.32(\mathrm{~s})$	$113.1(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-3^{\prime}$
6	-	$125.7(\mathrm{C})$	-
7	-	$148.3(\mathrm{C})$	-
8	-	$131.3(\mathrm{C})$	-
8 a	-	$143.5(\mathrm{C})$	-
1^{\prime}	-	-	-
2^{\prime}	$7.65(\mathrm{~d}, J=2.2 \mathrm{~Hz})$	$146.4(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-3^{\prime}$
3^{\prime}	$6.78(\mathrm{~d}, J=2.2 \mathrm{~Hz})$	$106.6(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-2^{\prime}$
$1^{\prime \prime}$	$4.95(\mathrm{~d}, J=7.2 \mathrm{~Hz})$	$\left.69.9(\mathrm{CH})_{2}\right)$	$\mathrm{C}-8, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$

Table 3 continued

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC
$2^{\prime \prime}$	$5.56(\mathrm{~d}, J=7.2 \mathrm{~Hz})$	$119.6(\mathrm{CH})$	$\mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$
$3^{\prime \prime}$	-	$139.4(\mathrm{C})$	-
$4^{\prime \prime}$	$1.67(\mathrm{~s})$	$17.9\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$
$5^{\prime \prime}$	$1.68(\mathrm{~s})$	$25.6\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$

Compound PW2

PW2 was isolated as a white solid, m.p. $189-190^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands at 202 and 249 nm . The IR spectrum showed absorption bands for hydroxyl at $3390 \mathrm{~cm}^{-1}$, carbonyl group at $1672 \mathrm{~cm}^{-1}$, and ether at $1250 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 4) of PW2 showed the signals of $\mathrm{AA}^{\prime} \mathrm{BB}^{\prime}$ aromatic system at $\delta_{\mathrm{H}} 6.94(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$ and $\delta_{\mathrm{H}} 8.04(2 \mathrm{H}, \mathrm{d}, J=8.9 \mathrm{~Hz})$ of $\mathrm{H}-4$, H-6 and H-3, H-7 respectively, which was a characteristic of a para-disubstituted benzene. The substituent at $\mathrm{C}-5$ was identified as an oxyprenyl group according to these signals: two singlets at $\delta_{\mathrm{H}} 1.75$ and 1.80 (3 H each, $\mathrm{s}, \mathrm{H}-4$ ' and $\mathrm{H}-5$ ', respectively) for two methyl protons, one doublet at $\delta_{\mathrm{H}} 4.57\left(2 \mathrm{H}, \mathrm{d}, J=6.7 \mathrm{~Hz}, \mathrm{H}_{2}-1{ }^{\prime}\right)$ for methylene protons and one triplet at $\delta_{\mathrm{H}} 5.48(1 \mathrm{H}, \mathrm{t}, J=6.7 \mathrm{~Hz}, \mathrm{H}-2$ ') for a methine proton.

The ${ }^{13} \mathrm{C}$ NMR spectral data (Table 4) exhibited 10 carbon signals, of which four [$\delta_{\mathrm{C}} 114.3(\mathrm{C}-4), 121.6(\mathrm{C}-2), 132.2(\mathrm{C}-3)$ and $163.3(\mathrm{C}-5)$] were attributed to aromatic ring, whereas five [$\delta_{\mathrm{C}} 18.2$ (C-5'), 25.8 (C-4'), 65.0 (C-1'), 118.9 (C-2') and 138.8 (C-3')] were characteristic of the carbons an oxyprenyl side chain. A signal of carboxyl carbon was shown at $\delta_{\mathrm{C}} 171.6$ (C-1). The locations of an oxyprenyl side chain at C-5 was confirmed by HMBC correlations of $\mathrm{H}_{2}-1^{\prime}\left(\delta_{\mathrm{H}} 4.57\right)$ with $\delta_{\mathrm{C}} 163.3$ (C-5), 118.9 (C-7) and 138.8 (C-8), whereas that of a carboxyl group at C-2 was confirmed by HMBC correlations of H-3 ($\delta_{\mathrm{H}} 8.04$) with $\delta_{\mathrm{C}} 171.6(\mathrm{C}-1), 121.6$ (C-2), 114.3 (C-4) and 163.3 (C-5). Accordingly, the structure of PW2 was assigned as valencic acid (Ito et al., 1988).

Figure 3 Selected HMBC correlations of PW2

Table $4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW2 $\left(\mathrm{CDCl}_{3}\right)$

Position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{type})$	HMBC
1	-	$121.6(\mathrm{C})$	-
2,6	$8.04(\mathrm{~d}, J=8.9 \mathrm{~Hz})$	$132.2(\mathrm{CH})$	$\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-4, \mathrm{C}-5$
3,5	$6.94(\mathrm{~d}, J=8.9 \mathrm{~Hz})$	$114.3(\mathrm{CH})$	$\mathrm{C}-1, \mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-5$
4	-	$163.3(\mathrm{C})$	-
7	-	$171.6(\mathrm{C})$	-
1^{\prime}	$4.57(\mathrm{~d}, J=6.7 \mathrm{~Hz})$	$65.0\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8$
2^{\prime}	$5.48(\mathrm{t}, J=6.7 \mathrm{~Hz})$	$118.9(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-9, \mathrm{C}-10$
3^{\prime}	-	$138.8(\mathrm{C})$	-
4^{\prime}	$1.80(\mathrm{~s})^{*}$	$25.8\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-10$
5^{\prime}	$1.75(\mathrm{~s})^{*}$	$18.2\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-9$

* May be interchangeable

Compound PW3

PW3 was isolated as white powder, m.p. $145-146^{\circ} \mathrm{C}$. The UV spectrum exhibited the presence of a linear-type furanocoumarin at 220,249 and 300 nm . The IR spectrum indicated the presence of a lactone carbonyl at $1728 \mathrm{~cm}^{-1}$, a keto carbonyl at $1680 \mathrm{~cm}^{-1}$, aromatic ring at 1623,1587 and $1446 \mathrm{~cm}^{-1}$ and furan ring at $871 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 5) of PW3 showed the signals of a furanocoumarin which were similar to those of compound PW1 (Table 3). The difference was shown as the absence of signals for a dimethylallyl side chain as in PW1 but the presence of a 3-methyl-2-oxo-3-butenyl side chain in PW3. The ${ }^{1} \mathrm{H}$ NMR signals of the latter side chain were shown as a singlet methylene protons at δ_{H} 5.52: $\delta_{\mathrm{C}} 73.5$, olefinic methylene protons at $\delta_{\mathrm{H}} 5.83$ and 5.98: $\delta_{\mathrm{C}} 125.3$ and a methyl singlet at $\delta_{\mathrm{H}} 1.85: \delta_{\mathrm{C}} 17.5$ including a carbonyl carbon at δ_{C} 195.3. The oxybutenyl side chain was placed at C-8 from HMBC correlations (Table 5) of the methylene protons at $\delta_{\mathrm{H}} 5.52\left(\mathrm{H}_{2}-1{ }^{\prime \prime}\right)$ with the signals at $\delta_{\mathrm{C}} 131.1(\mathrm{C}-8), \delta_{\mathrm{C}} 195.3\left(\mathrm{C}-2^{\prime \prime}\right)$ and δ_{C} 142.1 (C-3"). Therefore, compound PW3 was assigned as 8-[(3"-methyl-2"-oxo-3"-buten-1"-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (De Mol et al., 1984).

Figure 4 Selected HMBC correlations of PW3

Table $5 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW3 $\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\text {C }}(\mathrm{C}-$ type $)$	HMBC
1	-	-	-
2	-	160.1 (C)	-
3	$6.29(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	114.7 (CH)	C-2, C-4a
4	7.69 (d, $J=9.6 \mathrm{~Hz})$	144.3 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.5 (C)	-
5	7.28 (s)	113.2 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3'
6	-	126.0 (C)	-
7	-	147.1 (C)	-
8	-	131.1 (C)	-
8a	-	142.5 (C)	
$1{ }^{\prime}$	-	-	-
2	$7.58(\mathrm{~d}, ~ J=2.2 \mathrm{~Hz})$	146.7 (CH)	C-6, C-7, C-3'
3 '	6.73 (d, $J=2.2 \mathrm{~Hz})$	106.7 (CH)	C-5, C-6, C-2
1 "	5.52 (s)	$73.5\left(\mathrm{CH}_{2}\right)$	C-8, C-2", C-3"
2"	-	195.3 (C)	-
3 "	-	142.1 (C)	-
4 "	1.85 (s)	$17.5\left(\mathrm{CH}_{3}\right)$	C-2", C-3", C-5"
5"	$\begin{gathered} 5.83(\mathrm{~d}, J=1.4 \mathrm{~Hz}) \\ 5.98(\mathrm{~s}) \end{gathered}$	$125.3\left(\mathrm{CH}_{2}\right)$	C-2", C-3', C-4"

Compound PW4

PW4 was isolated as a white solid, m.p. $246-247{ }^{\circ} \mathrm{C}$ (lit. $248{ }^{\circ} \mathrm{C}$). The UV spectrum indicated the presence of a linear-type furanocoumarin at maximum absorptions 219, 250, 261, 268 and 307 nm . The IR spectrum showed absorptions of hydroxyl at $3307 \mathrm{~cm}^{-1}$, lactone carbonyl at $1705 \mathrm{~cm}^{-1}$, aromatic ring at 1594,1447 and $1414 \mathrm{~cm}^{-1}$ and furan ring at $864 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 6) of PW4 were comparable to those of $\mathbf{P W} 3$, except for the absence of signals for an oxyoxobutenyl side chain $\left(\mathrm{OCH}_{2} \mathrm{COC}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}\right)$. Since the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{P W 4}$ displayed only five proton resonance signals, it was possible to conclude that there was a hydroxyl group positioned at C-8 ($\delta_{\mathrm{C}} 130.5$). The complete HMBC correlations were summarized in Table 6. Therefore, compound PW4 was assigned as xanthotoxol (Razdan et al., 1987).

Figure 5 Selected HMBC correlations of PW4

Table $6 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW4 ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1$ drop))

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{type})$	HMBC
1	-	-	-
2	-	$161.9(\mathrm{C})$	-
3	$6.28(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$113.4(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.78(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$145.7(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$116.0(\mathrm{C})$	-
5	$7.16(\mathrm{~s})$	$109.8(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-3^{\prime}$
6	-	$125.9(\mathrm{C})$	-
7	-	$145.6(\mathrm{C})$	-
8	-	$130.5(\mathrm{C})$	-
8 a	-	$139.3(\mathrm{C})$	-
1^{\prime}	-	-	-
2^{\prime}	$7.64(\mathrm{~d}, J=2.1 \mathrm{~Hz})$	$146.8(\mathrm{CH})$	C
3^{\prime}	$6.73(\mathrm{~d}, J=2.1 \mathrm{~Hz})$	$106.6(\mathrm{CH})$	$\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-3^{\prime}$

Compound PW5

PW5 was isolated as a white solid, m.p $166-167{ }^{\circ} \mathrm{C}$. The UV spectrum exhibited the presence of a linear-type furanocoumarin at 218, 249 and 299 nm . The IR spectrum indicated the presence of a hydroxyl group at $3413 \mathrm{~cm}^{-1}$, lactone carbonyl at $1721 \mathrm{~cm}^{-1}$, aromatic ring at 1620,1588 and $1442 \mathrm{~cm}^{-1}$ and furan ring at $871 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 7) of PW5 were similar to those of PW3 except in the side chain. A 3-methyl-2-oxo-3-butenyl side chain of PW3 was replaced by a 3-methyl-2-hydroxy-3-butenyl side chain in PW5. The signals of the latter side chain were shown as an oxymethine proton at $\delta_{\mathrm{H}} 4.47(\mathrm{dd}, J=8.3,2.8 \mathrm{~Hz}$, $\mathrm{H}-2^{\prime \prime}$), oxymethylene protons at $\delta_{\mathrm{H}} 4.53\left(\mathrm{dd}, J=9.9,2.8 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime \prime}\right)$ and $\delta_{\mathrm{H}} 4.25(\mathrm{dd}, J$ $=9.9,8.3 \mathrm{~Hz}, \mathrm{H}-1 ")$, a methyl singlet at $\delta_{\mathrm{H}} 1.76$ (Me-4") and terminal olefinic methylene protons $\mathrm{H}_{2}-5$ " at $\delta_{\mathrm{H}} 4.93(\mathrm{~d}, J=0.6 \mathrm{~Hz})$ and 5.10 (s). The side chain was placed at C-8 of furanocoumarin moiety due to HMBC correlation of $\mathrm{H}_{2}-1$ " $\left(\delta_{\mathrm{H}} 4.53\right)$ with C-8 (δ_{C} 131.6). Based on these data, the structure of PW5 was assigned as isogosferol (Adebajo et al., 2000).

Figure 6 Selected HMBC correlations of PW5

Table $7 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW5 $\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\text {C }}(\mathrm{C}$ - type $)$	HMBC
1	-	-	-
2	-	160.3 (C)	-
3	6.31 (d, $J=9.6 \mathrm{~Hz})$	114.7 (CH)	C-2, C-4a
4	7.72 (d, $J=9.6 \mathrm{~Hz})$	144.4 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.5 (C)	-
5	7.33 (s)	113.7 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3'
6	-	126.0 (C)	-
7	-	148.0 (C)	-
8	-	131.6 (C)	-
8a	-	143.4 (C)	-
1^{\prime}	-	-	-
2^{\prime}	7.63 (d, $J=2.2 \mathrm{~Hz})$	146.8 (CH)	C-6, C-7, C-3
3^{\prime}	6.77 (d, $J=2.2 \mathrm{~Hz})$	106.8 (CH)	C-5, C-6, C-7, C-2
1 "	4.53 (dd, $J=9.9,2.8 \mathrm{~Hz})$	$77.3\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-8, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$
	4.25 (dd, $J=9.9,8.3 \mathrm{~Hz})$	-	$\mathrm{C}-8, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$
2"	4.47 (dd, $J=8.3,2.8 \mathrm{~Hz})$	73.8 (CH)	$\mathrm{C}-1^{\prime \prime}, \mathrm{C}-3^{\prime \prime}$
3 "	-	142.8 (C)	-
4"	1.76 (s)	$19.0\left(\mathrm{CH}_{3}\right)$	C-2", C-3", C-5"
5"	4.93 (d, $J=0.6 \mathrm{~Hz})$	$112.8\left(\mathrm{CH}_{2}\right)$	C-2", C-4"
	5.10 (s)		C-2", C-3", C-4"

Compound PW6

PW6 was isolated as a white solid, m.p. 147-148 ${ }^{\circ} \mathrm{C}$ (lit. $147{ }^{\circ} \mathrm{C}$). The UV spectrum exhibited the absorption bands at 217, 253 and 299 nm . The IR spectrum showed absorption bands for lactone carbonyl at $1716 \mathrm{~cm}^{-1}$, aromatic ring at 1617 , 1580 and $1456 \mathrm{~cm}^{-1}$ and furan ring at $750 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 8) of PW6 were closely related to compound PW4, except that PW6 had an additional singlet signal of methoxyl protons at $\delta_{\mathrm{H}} 4.15(3 \mathrm{H}, \mathrm{s})\left(\delta_{\mathrm{C}} 60.9\right)$. The position of the methoxyl group at C-8 was determined through HMBC correlations of $\delta_{\mathrm{H}} 4.15$ ($8-\mathrm{OMe}$) with the signal at $\delta_{\mathrm{C}} 132.3$ (C-8). Based on these data, the structure of PW6 was assigned as xanthotoxin (Razdan et al., 1987).

Figure 7 Selected HMBC correlations of PW6

Table $8 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW6 $\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC
1	-	-	-
2	-	$160.2(\mathrm{C})$	-
3	$6.22(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	$114.2(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-8 \mathrm{a}$
4	$7.66(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	$144.3(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$116.1(\mathrm{C})$	-
5	$7.21(\mathrm{~s})$	$112.8(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-3^{\prime}$
6	-	$125.9(\mathrm{C})$	-
7	-	$147.2(\mathrm{C})$	-
8	-	$132.3(\mathrm{C})$	-
8 a	-	$142.5(\mathrm{C})$	-
1^{\prime}	-	-	-
2^{\prime}	$7.57(\mathrm{~d}, J=2.2 \mathrm{~Hz})$	$146.4(\mathrm{CH})$	C
3^{\prime}	$6.70(\mathrm{~d}, J=2.2 \mathrm{~Hz})$	$106.5(\mathrm{CH})$	$\mathrm{C}-7, \mathrm{C}-3^{\prime}$
$8-\mathrm{OMe}$	$4.15(\mathrm{~s})$	$\left.60.9(\mathrm{CH})_{3}\right)$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-2^{\prime}$

Compound PW7

PW7 was isolated as a yellow solid, m.p. $148-149{ }^{\circ} \mathrm{C}$ (lit. $147{ }^{\circ} \mathrm{C}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 203, 285 and 338 nm . The IR spectrum showed absorption bands for lactone carbonyl at $1719 \mathrm{~cm}^{-1}$ and aromatic ring at 1618,1514 and $1456 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 9) of PW7 showed the signals of a typical pair of doublets at $\delta_{\mathrm{H}} 6.25$ and 7.61 (1 H each, d, $J=9.6 \mathrm{~Hz}$,) for $\mathrm{H}-3$ and $\mathrm{H}-4$, respectively, and two uncoupled aromatic protons at $\delta_{\mathrm{H}} 6.84$ and $6.79(1 \mathrm{H}$ each, s) of $\mathrm{H}-5$ and $\mathrm{H}-8$, characteristic of $1,2,4$, 5 -tetrasubstituted benzene. In addition, the ${ }^{1} \mathrm{H}$ NMR spectrum exhibited two methoxyl singlet signals at $\delta_{\mathrm{H}} 3.89$ and 3.92 (3 H each), indicating that these two methoxyl groups were attached to C-6 and C-7 in coumarin moiety.

The ${ }^{13} \mathrm{C}$ NMR (Table 9) and DEPT spectral data exhibited 11 carbon resonances including two methoxyl groups at $\delta_{\mathrm{C}} 56.2\left(2 \times \mathrm{OCH}_{3}\right)$, two olefinic methine carbons at $\delta_{\mathrm{C}} 113.4(\mathrm{C}-3)$ and 143.3 (C-4), two aromatic methine carbons at $\delta_{\mathrm{C}} 107.9(\mathrm{C}-5)$ and $99.8(\mathrm{C}-8)$, four quaternary aromatic carbons at $\delta_{\mathrm{C}} 111.3(\mathrm{C}-4 \mathrm{a})$, 152.7 (C-6), 146.2 (C-7) and 149.8 (C-8a), and one carbonyl carbon at $\delta 161.3(\mathrm{C}-2)$. In HMBC correlations two methoxyl proton signals at $\delta_{\mathrm{H}} 3.92$ and 3.89 showed correlations with the signals at $\delta_{\mathrm{C}} 152.7$ (C-7) and 146.2 (C-6), respectively, as well as correlations from $\delta_{\mathrm{H}} 6.84(\mathrm{H}-5)$ and $6.79(\mathrm{H}-8)$ to $\delta_{\mathrm{C}} 152.7$ (C-7) and 146.2 (C-6) which confirmed that these methoxyl groups were located at the C-7 and C-6, respectively. Based on these data, the structure of PW7 was assigned as scoparone (Razdan et al., 1987).

Figure 8 Selected HMBC correlations of PW7

Table $9 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W} 7\left(\mathrm{CDCl}_{3}\right)$

Position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC
1	-	-	-
2	-	$161.3(\mathrm{C})$	-
3	$6.25(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$113.4(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.61(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$143.3(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-8 \mathrm{a}$
4 a	-	$111.3(\mathrm{C})$	-
5	$6.84(\mathrm{~s})$	$107.9(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8 \mathrm{a}$
6	-	$146.2(\mathrm{C})$	-
7	-	$152.7(\mathrm{C})$	-
8	$6.79(\mathrm{~s})$	$99.8(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
8 a	-	$149.8(\mathrm{C})$	-
$6-\mathrm{OMe}$	$3.89(\mathrm{~s})^{*}$	$56.2(\mathrm{CH} 3)$	$\mathrm{C}-6$
$7-\mathrm{OMe}$	$3.92(\mathrm{~s})^{*}$	$56.2\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-7$

* May be interchangeable

Compound PW8

PW8 was isolated as a white solid, m.p. $170-171{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{25}=+8.7^{\circ}(c=0.53$, $\left.\mathrm{CHCl}_{3}\right)\left(\right.$ lit. $\left.[\alpha]_{\mathrm{D}}^{22}=+6.8^{\circ}\left(c=0.65, \mathrm{CHCl}_{3}\right)\right)$. The UV spectrum exhibited the absorption bands characteristic of coumarin at 205 and 331 nm . The IR spectrum showed absorption bands for hydroxyl group at $3410 \mathrm{~cm}^{-1}$, lactone carbonyl at 1717 cm^{-1} and aromatic ring at 1625,1563 and $1488 \mathrm{~cm}^{-1}$.

In the ${ }^{1} \mathrm{H}$ NMR spectra of PW8, characteristic signals were observed for a geminal dimethyl group at $\delta_{\mathrm{H}} 1.30$ and 1.33 (3 H each, s), a $\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{O}$ system (δ_{H} 2.77 and 3.04 , each $1 \mathrm{H}, \mathrm{H}-4$ ' and $\left.\delta_{\mathrm{H}} 3.81,1 \mathrm{H}, \mathrm{H}-3^{\prime}\right)$, two aromatic para protons at δ_{H} 6.72 and 7.11 (1 H each, s), and $\mathrm{H}-3$ and $\mathrm{H}-4$ of the coumarin nucleus ($\delta_{\mathrm{H}} 6.16$ and 7.51, each $1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}$), showing that PW8 contained the decursinol moiety, a dihydropyranocoumarin.

The ${ }^{13} \mathrm{C}$ NMR (Table 10) and DEPT spectral data exhibited 14 carbons signal, attributable to five methine, one methylene, two methyl and six quaternary carbons. The key HMBC correlations between H-3' ($\delta_{\mathrm{H}} 3.81$) and C-6 ($\delta_{\mathrm{C}} 116.4$), H-4' ($\delta_{\mathrm{H}} 2.77$ and 3.04) and $\mathrm{C}-5\left(\delta_{\mathrm{C}} 129.0\right), \mathrm{C}-7\left(\delta_{\mathrm{C}} 156.5\right)$ and $\mathrm{C}-2^{\prime}\left(\delta_{\mathrm{C}} 78.2\right)$ suggested that the 2,2dimethylpyran ring was fused to the coumarin nucleus with linear orientation at C-6 and C-7. Based on these data, the structure of PW8 was assigned as (+) decursinol (Nemoto et al., 2003).

Figure 9 Selected HMBC correlations of PW8

Table $10 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 8}\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}$ - type)	HMBC
1	-	-	-
2	-	$161.3(\mathrm{C})$	-
3	$6.16(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$113.4(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.51(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$143.1(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$113.0(\mathrm{C})$	-
5	$7.11(\mathrm{~s})$	$129.0(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-1^{\prime}$
6	-	$116.4(\mathrm{C})$	-
7	-	$156.5(\mathrm{C})$	-
8	$6.72(\mathrm{~s})$	$104.8(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-1^{\prime}$
8 a	-	$154.2(\mathrm{C})$	-
4^{\prime}	$2.77(\mathrm{dd}, J=16.7,5.8 \mathrm{~Hz})$	$\left.30.7(\mathrm{CH})_{2}\right)$	$\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$
	$3.04(\mathrm{dd}, J=16.7,4.7 \mathrm{~Hz})$		
3^{\prime}	$3.81(\mathrm{dd}, J=5.8,4.7 \mathrm{~Hz})$	$69.2(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-1^{\prime \prime}, \mathrm{C}-2^{\prime \prime}$
2^{\prime}	-	$78.2(\mathrm{C})$	-
1^{\prime}	-	-	-
$1^{\prime \prime}$	$1.30(\mathrm{~s})$	$\left.25.0(\mathrm{CH})_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-2^{\prime \prime}$
$2^{\prime \prime}$	$1.33(\mathrm{~s})$	$22.1\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-7, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-1^{\prime \prime}$

Compound PW9

PW9 was isolated as a white powder, m.p. $132-133^{\circ} \mathrm{C}$ (lit. $134-136{ }^{\circ} \mathrm{C}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 205, 224, 238 and 330 nm . The IR spectrum showed absorption bands for hydroxyl group at $3420 \mathrm{~cm}^{-1}$, lactone carbonyl at $1717 \mathrm{~cm}^{-1}$ and aromatic ring at 1625,1571 and 1489 cm^{-1}.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 11) of PW9 showed the signals of 6,7disubstituted coumarin unit at $\delta_{\mathrm{H}} 6.16(1 \mathrm{H}, \mathrm{d}, J=9.4 \mathrm{~Hz}, \mathrm{H}-3), 7.55(1 \mathrm{H}, \mathrm{d}, J=9.4$ $\mathrm{Hz}, \mathrm{H}-4), 7.12(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5), 6.77(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$. An isoprenyl group was shown as signals at $\delta_{\mathrm{H}} 3.31\left(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}, \mathrm{H}-11^{\prime}\right), 5.24(1 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}, \mathrm{H}-2 '), 1.73,1.71$ (3 H each, $\mathrm{s}, \mathrm{H}-5$ ', $\mathrm{H}-6^{\prime}$), whose HMBC correlations of $\mathrm{H}_{2}-1$ ' at $\delta_{\mathrm{H}} 3.31$ with the carbons at $\delta_{\mathrm{C}} 135.7$ (C-3'), 120.8 (C-2'), 158.3 (C-7), 124.8 (C-6) and 128.4 (C-5), indicated a connection of an isoprenyl group at C-6 and a hydroxyl group at C-7 Therefore, compound PW9 was assigned as demethylsuberosin (Patre et al., 2009).

Figure 10 Selected HMBC correlations of PW9

Table $11 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 9}\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC
1	-	-	-
2	-	$162.8(\mathrm{C})$	-
3	$6.16(\mathrm{~d}, J=9.4 \mathrm{~Hz})$	$112.4(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.55(\mathrm{~d}, J=9.4 \mathrm{~Hz})$	$143.7(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8 \mathrm{a}$
4 a	-	$112.5(\mathrm{C})$	-
5	$7.12(\mathrm{~s})$	$128.4(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-7, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-1^{\prime}$
6	-	$124.8(\mathrm{C})$	-
7	-	$158.3(\mathrm{C})$	-
8	$6.77(\mathrm{~s})$	$103.4(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
8 a	-	$154.3(\mathrm{C})$	-
1^{\prime}	$3.31(\mathrm{~d}, J=7.2 \mathrm{~Hz})$	$\left.28.9(\mathrm{CH})_{2}\right)$	$\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$
2^{\prime}	$5.24(\mathrm{t}, J=7.2 \mathrm{~Hz})$	$120.8\left(\mathrm{CH}^{\prime}\right)$	-
3^{\prime}	-	$135.7(\mathrm{C})$	-
5^{\prime}	$1.73(\mathrm{~s})$	$25.8\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}^{\prime} 2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-6^{\prime}$
6^{\prime}	$1.71(\mathrm{~s})$	$17.9\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}$

Compound PW10

PW10 was isolated as a yellow solid, m.p. $148-150{ }^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands characteristic of coumarin at 202, 257, 336 and 392 nm . The IR spectrum showed absorption bands for hydroxyl group at $3484 \mathrm{~cm}^{-1}$, lactone carbonyl at $1741 \mathrm{~cm}^{-1}$, aldehyde group at $1665 \mathrm{~cm}^{-1}$ and aromatic ring at 1627, 1559 and $1459 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 12) of PW10 were similar to those of PW9 except for the disappearance of the signals of an isoprenyl group at C-6 and appearance of a singlet of an aldehydic group at $\delta_{\mathrm{H}} 9.86(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}-6)$. A chelated proton singlet signal of a phenolic hydroxyl at C-7 was displayed at δ_{H} 11.34. The location of the aldehyde group at C-6 was assigned by HMBC correlations (Figure 12) of the aldehyde proton at $\delta_{\mathrm{H}} 9.86$ to the carbons at $\delta_{\mathrm{C}} 134.5$ (C-5), 118.3 (C-6), 164.5 (C-7) and 105.2 (C-8), and phenolic hydroxyl proton showed correlations with the carbons at $\delta_{\mathrm{C}} 118.3$ (C-6), 164.5 (C-7), 105.2 (C-8) and 159.8 (C-8a). The complete HMBC data were summarized in Table 12. Therefore, compound PW10 was identified as 6 -formylumbilliferone (Ito et al, 1988).

Figure 11 Selected HMBC correlations of PW10

Table $12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 0}\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC
1	-	-	-
2	-	$159.5(\mathrm{C})$	-
3	$6.27(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	$114.6(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.61(\mathrm{~d}, J=9.6 \mathrm{~Hz})$	$142.4(\mathrm{CH})$	$\mathrm{C}-5, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$112.6(\mathrm{C})$	-
5	$7.66(\mathrm{~s})$	$134.5(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-7, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-1{ }^{\prime}$
6	-	$118.3(\mathrm{C})$	-
7	-	$164.5(\mathrm{C})$	-
8	$6.82(\mathrm{~s})$	$105.2(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
8 a	-	$159.8(\mathrm{C})$	-
$6-\mathrm{CHO}$	$9.86(\mathrm{~s})$	$194.5(\mathrm{CH})$	$\mathrm{C}-5, \mathrm{C}-7, \mathrm{C}-8$
$7-\mathrm{OH}$	$11.34(\mathrm{~s})$	-	C-6, C-7, C-8, C-8a, C-4a

Compound PW11

PW11 was isolated as a white powder, m.p. $163-164{ }^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands characteristic of cinnamide moiety at 217,223 and 272 nm . The IR spectrum showed absorption bands for hydroxyl group at $3417 \mathrm{~cm}^{-1}$, conjugated carbonyl at $1661 \mathrm{~cm}^{-1}$, aromatic ring at 1621,1539 and $1456 \mathrm{~cm}^{-1}$.

The ${ }^{1}$ H NMR spectral data (Table 13) of PW11 displayed characteristic sets of signals of the cinnamide group at $\delta_{\mathrm{H}} 6.37\left(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right), 7.64(1 \mathrm{H}, \mathrm{d}, J=$ $\left.15.6 \mathrm{~Hz}, \mathrm{H}-7{ }^{\prime}\right)$, 7.49 ($2 \mathrm{H}, \mathrm{dd}, J=7.6,1.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}, \mathrm{H}-6^{\prime}$) and 7.34-7.36 (3H, m, H-3', H-4', H-5'). Furthermore, the ${ }^{1} \mathrm{H}$ NMR spectrum exhibited the doublet of doublet signals of the benzylic oxymethine proton at $\delta_{\mathrm{H}} 4.86(J=7.8,2.9 \mathrm{~Hz}, \mathrm{H}-2)$ which was coupled with non-equivalent methylene protons adjacent to the nitrogen of amide at δ_{H} 3.43 (ddd, $J=13.8,8.0,4.8 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{a}$) and 3.80 (ddd, $J=13.8,7.0,2.7 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{~b}$). The aromatic proton signals at $\delta_{\mathrm{H}} 7.30\left(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-6^{\prime \prime}\right)$ and $6.90(2 \mathrm{H}, \mathrm{d}, J=$ $\left.8.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right)$ could be assigned as 1,4-disubstituted aromatic protons. Additionally, the ${ }^{1} \mathrm{H}$ NMR signals at $\delta_{\mathrm{H}} 4.04\left(1 \mathrm{H}, \mathrm{ddd}, J=9.5,3.2,1.0 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime \prime} \mathrm{a}\right.$), $4.46(1 \mathrm{H}, \mathrm{d}, J=5.1 \mathrm{~Hz}, \mathrm{H}-1 \mathrm{l'b}): \delta_{\mathrm{C}} 71.2,3.90\left(1 \mathrm{H}, \mathrm{dt}, J=8.8,1.0 \mathrm{~Hz}, \mathrm{H}-2{ }^{\prime \prime}\right): \delta_{\mathrm{C}} 73.6$, $5.00(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4 \mathrm{l'a}), 5.13(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4 \mathrm{lb}): \delta_{\mathrm{C}} 112.8$ and a singlet at $\delta 1.80(3 \mathrm{H}): \delta_{\mathrm{C}}$ 18.9 were assigned to an oxyisoprenyl unit. In the HMBC spectrum, the $\mathrm{H}-\mathbf{2}^{\prime \prime} / \mathrm{H}-6^{\prime \prime}$ aromatic protons showed long-range correlations with $\mathrm{C}-2$ ($\delta_{\mathrm{C}} 73.4$), $\mathrm{C}-1 "\left(\delta_{\mathrm{C}} 134.5\right)$ and $\mathrm{C}-4$ " ($\delta_{\mathrm{C}} 158.2$) and the remaining $\mathrm{H}-3^{\prime \prime} / \mathrm{H}-5$ " aromatic protons correlated with C $1^{\prime \prime}\left(\delta_{\mathrm{C}} 134.5\right)$ and $\mathrm{C}-4$ " ($\delta_{\mathrm{C}} 158.2$). The side chain methylene protons $\mathrm{H}_{2}-1$ "' correlated with C-2"' ($\delta_{\mathrm{C}} 73.6$) and C-4" ($\delta_{\mathrm{C}} 158.2$), indicating the attachment of a hydroxyethylcinnamamide chain at $\mathrm{C}-1$ " and a hydroxyloxyprenyl group at $\mathrm{C}-4$ " of the benzene ring. The structure of PW11 was a new compound and named as marmesiline.

Figure 12 Selected HMBC correlations of PW11

Table $13 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of PW11

position	δ_{H} (multiplicity)	$\delta_{\text {C }}(\mathrm{C}-$ type $)$	HMBC
1	3.43 (ddd, $J=13.8,8.0,4.8 \mathrm{~Hz})$	$47.7\left(\mathrm{CH}_{2}\right)$	-
	3.80 (ddd, $J=13.8,7.0,2.7 \mathrm{~Hz})$		
2	4.86 (dd, $J=7.8,2.9 \mathrm{~Hz})$	73.4 (CH)	-
1^{\prime}	-	134.5 (C)	
$2^{\prime}, 6^{\prime}$	7.49 (dd, $J=7.6,1.9 \mathrm{~Hz})$	127.9 (CH)	C-4'
$3^{\prime}, 5^{\prime}$	7.34-7.36 (m)	128.9 (CH)	C-1
4^{\prime}	7.34-7.36 (m)	129.9 (CH)	C-2', C-6
7^{\prime}	7.64 (d, $J=15.6 \mathrm{~Hz})$	141.8 (CH)	C-2', C-6', C-9'
8^{\prime}	6.37 (d, $J=15.6 \mathrm{~Hz})$	119.9 (CH)	C-1', C-9'
9^{\prime}	-	167.1 (C)	-
1 "	-	134.5 (C)	-
2",6"	7.30 (d, $J=8.5 \mathrm{~Hz})$	127.1 (CH)	C-2, C-1", C-4", C-5"
3",5"	6.90 (d, $J=8.5 \mathrm{~Hz})$	114.7 (CH)	C-1", C-4"
4"		158.2 (C)	-
$1^{\prime \prime}$	$\begin{gathered} 4.04(\mathrm{ddd}, J=9.4,3.2,1.0 \mathrm{~Hz}) \\ 4.46(\mathrm{dd}, J=9.4,8.3 \mathrm{~Hz}) \end{gathered}$	$71.2\left(\mathrm{CH}_{2}\right)$	C-4", C-2'"
$2^{\prime \prime}$	3.90 (dd, $J=8.3,3.2 \mathrm{~Hz})$	73.6 (CH)	-
$3^{\prime \prime}$	-	143.3 (C)	-
$4^{\prime \prime}$	5.00 (s)	$112.8\left(\mathrm{CH}_{2}\right)$	C-2'", C-5"'
	5.13 (s)		
$5^{\prime \prime}$	1.80 (s)	$18.9\left(\mathrm{CH}_{3}\right)$	C-2'", $\mathrm{C}-3^{\prime \prime \prime}, \mathrm{C}-4^{\prime \prime}$
N-H	6.00 (br t, $J=7.8 \mathrm{~Hz}$)		-

Compound PW12

PW12 was isolated as white powder, m.p. $170-171{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}=+20.6^{\circ}(c=0.9$, $\left.\mathrm{CHCl}_{3}\right)\left[\right.$ lit. $[\alpha]_{\mathrm{D}}^{22}=+21.7^{\circ},\left(c=0.9, \mathrm{CHCl}_{3}\right)($ Nemoto et al., 2003)]. The UV spectrum exhibited the absorption bands characteristic of coumarin at 203 and 330 nm . The IR spectrum showed absorption bands for hydroxyl group at $3441 \mathrm{~cm}^{-1}$, lactone carbonyl at $1704 \mathrm{~cm}^{-1}$ and aromatic ring at 1627,1563 and $1503 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 14) of PW12 showed the signals of $6,7-$ disubstituted coumarin unit as signals at $\delta_{\mathrm{H}} 6.22(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3), 7.60(1 \mathrm{H}, \mathrm{d}$, $J=9.5 \mathrm{~Hz}, \mathrm{H}-4), 7.23(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-5)$ and $6.75(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-8)$. In addition three mutually coupled protons at $\delta_{\mathrm{H}} 4.75(1 \mathrm{H}, \mathrm{dd}, J=9.1,8.5 \mathrm{~Hz}, \mathrm{H}-2 '), 3.18(1 \mathrm{H}, \mathrm{ddd}, J=15.9,8.8$, $1.2 \mathrm{~Hz}, \mathrm{H}-3 ')$ and $3.26\left(1 \mathrm{H}\right.$, ddd, $\left.J=15.9,8.3,1.2 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$ and two methyls at δ_{H} $1.25(3 \mathrm{H}, \mathrm{s}), 1.38(3 \mathrm{H}, \mathrm{s})$ suggested that $\mathbf{P W 1 2}$ contained a hydroxyisopropyldihydrofurano moiety whose location was placed between C-6 and C-7 of the coumarin unit. The location of the hydroxyisopropyldihydrofurano group was confirmed by HMBC correlations of $\mathrm{H}-3^{\prime}\left(\delta_{\mathrm{H}} 3.18\right.$ and 3.26) with the carbons at $\delta_{\mathrm{C}} 123.4$ (C-5), 125.5 (C-6), 163.2 (C-7), 91.1 (C-2') and 71.1 (C-4'). A methine proton at $\delta_{\mathrm{H}} 4.75\left(\mathrm{H}-2^{\prime}\right)$ showed correlations with the carbon at $\delta_{\mathrm{C}} 163.2$ (C-7), 26.1 (C-6') and 24.3 (C-5'), methyl protons at $\delta_{\mathrm{H}} 1.25\left(\mathrm{H}_{3}-5^{\prime}\right)$ with the carbons at $\delta 26.1\left(\mathrm{C}-6{ }^{\prime}\right)$, 71.7 (C-4') and $91.1\left(\mathrm{C}-2^{\prime}\right)$ and $\delta_{\mathrm{H}} 1.38$ ($\mathrm{H}-6^{\prime}$) with the carbons at $\delta 24.3$ (C-5'), 71.7 (C-4') and 91.1 (C-2'). The complete HMBC data were summarized in Table 14. Therefore, compound PW12 was marmesin (Kim et al., 2006).

Figure 13 Selected HMBC correlations of PW12

Table $14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 2}\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{type})$	HMBC
1	-	-	-
2	-	$161.4(\mathrm{C})$	-
3	$6.22(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$112.4(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.60(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$143.8(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$112.8(\mathrm{C})$	-
5	$7.23(\mathrm{~s})$	$123.4(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-7, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-3^{\prime}$
6	-	$125.0(\mathrm{C})$	-
7	-	$163.2(\mathrm{C})$	-
8	-	$98.0(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-3^{\prime}$
8 a	-	$155.7(\mathrm{C})$	-
1^{\prime}	$-74(\mathrm{~s})$	-	-
2^{\prime}	$4.75(\mathrm{dd}, J=9.1,8.5 \mathrm{~Hz})$	$91.1(\mathrm{CH})$	$\mathrm{C}-7, \mathrm{C}-5^{\prime}, \mathrm{C}-6^{\prime}$
3^{\prime}	$3.18(\mathrm{ddd}, J=15.9,8.8,1.2 \mathrm{~Hz})$	$29.5\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}$
	$3.26(\mathrm{ddd}, J=15.9,8.3,1.2 \mathrm{~Hz})$		
4^{\prime}	-	$71.1(\mathrm{C})$	-
5^{\prime}	$1.25(\mathrm{~s})$	$24.3\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-6^{\prime}$
6^{\prime}	$1.38(\mathrm{~s})$	$26.1\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}$

Compound PW13

PW13 was isolated as a white powder, m.p. 128-129 ${ }^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands characteristic of cinnamide structure at 202, 224 and 274 nm . The IR spectrum showed absorption bands for hydroxyl group at $3259 \mathrm{~cm}^{-1}$, carbonyl at $1660 \mathrm{~cm}^{-1}$ and aromatic ring at 1619,1569 and $1443 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 15) of PW13 were closely comparable with those of PW11 except for the disappearance of the terminal olefinic methylene protons at $\delta_{\mathrm{H}} 5.00$ and 5.13: $\delta_{\mathrm{C}} 112.8$ and a hydroxymethine proton at δ_{H} 3.90: $\delta_{\mathrm{C}} 73.6$ in PW11 but the appearance of an additional olefinic methyl singlet at δ_{H} 1.72: $\delta_{\mathrm{C}} 25.8$ and an olefinic methine proton at $\delta_{\mathrm{H}} 5.42$: $\delta_{\mathrm{C}} 119.6$ in PW13. The HMBC spectrum showed correlations of $\mathrm{H}-4{ }^{\prime \prime}$ at $\delta_{\mathrm{H}} 1.72$ with the carbons at $\delta_{\mathrm{C}} 18.2$ (C-5"'), 138.2 (C-3"') and 119.6 (C-2"'). Based on these data, the structure of PW13 was assigned as marmeline (Sharma et al., 1981).

Figure 16 Selected HMBC correlations of PW13

Table $17 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 3}\left(\mathrm{CDCl}_{3}\right)$

Position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{type})$	HMBC
1	$3.80(\mathrm{~m})$	$47.6\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}^{\prime} 8^{\prime}, \mathrm{C}-9^{\prime}$
	$3.40(\mathrm{~m})$		
2	$4.80(\mathrm{dd}, J=7.7,3.3 \mathrm{~Hz})$	$73.5(\mathrm{CH})$	$\mathrm{C}-1^{\prime \prime}, \mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}$
1^{\prime}	-	$134.7(\mathrm{C})$	-
$2^{\prime}, 6^{\prime}$	$7.43(\mathrm{~m})$	$127.9(\mathrm{CH})$	$\mathrm{C}-1^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}, \mathrm{C}-8^{\prime}$
$3^{\prime}, 5^{\prime}$	$7.30(\mathrm{~m})$	$128.8(\mathrm{CH})$	$\mathrm{C}-1^{\prime}$
4^{\prime}	$7.30(\mathrm{~m})$	$129.9(\mathrm{CH})$	$\mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}$
7^{\prime}	$7.59(\mathrm{~d}, J=15.6 \mathrm{~Hz})$	$141.7(\mathrm{CH})$	$\mathrm{C}-1^{\prime}, \mathrm{C}-2^{\prime}, \mathrm{C}-6^{\prime}, \mathrm{C}-8^{\prime}, \mathrm{C}-9^{\prime}$,
8^{\prime}	$6.33(\mathrm{~d}, J=15.6 \mathrm{~Hz})$	$120.1(\mathrm{CH})$	$\mathrm{C}-1^{\prime}, \mathrm{C}-9^{\prime}$
9^{\prime}	-	$167.0(\mathrm{C})$	-
$1^{\prime \prime}$	-	$133.8(\mathrm{C})$	-
$2^{\prime \prime}, 6^{\prime \prime}$	$7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz})$	$127.1(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-4^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$
$3^{\prime \prime}, 5^{\prime \prime}$	$6.84(\mathrm{~d}, J=8.7 \mathrm{~Hz})$	$114.8(\mathrm{CH})$	$\mathrm{C}-1^{\prime \prime}, \mathrm{C}-4^{\prime \prime}$
$4^{\prime \prime}$	-	$158.7(\mathrm{C})$	-
$1^{\prime \prime \prime}$	$4.45(\mathrm{~d}, J=6.7 \mathrm{~Hz})$	$\left.64.9(\mathrm{CH})_{2}\right)$	$\mathrm{C}-4^{\prime \prime}, \mathrm{C}-2^{\prime \prime \prime}, \mathrm{C}-3^{\prime \prime \prime}$
$2^{\prime \prime \prime}$	$5.42(\mathrm{t}, J=6.7 \mathrm{~Hz})$	$119.6(\mathrm{C})$	$\mathrm{C}-4^{\prime \prime \prime}, \mathrm{C}-5^{\prime \prime \prime}$
$3^{\prime \prime \prime}$	-	$138.2(\mathrm{C})$	-
$4^{\prime \prime \prime}$	$1.72(\mathrm{~s})$	$\left.25.8(\mathrm{CH})_{3}\right)$	$\mathrm{C}-2^{\prime \prime \prime}, \mathrm{C}-5^{\prime \prime \prime}$
$5^{\prime \prime \prime}$	$1.67(\mathrm{~s})$	$\left.18.2(\mathrm{CH})_{3}\right)$	$\mathrm{C}-2^{\prime \prime \prime}, \mathrm{C}-4^{\prime \prime \prime}$
$\mathrm{N}-\mathrm{H}$	$5.98(\mathrm{t}, J=5.4 \mathrm{~Hz})$	-	-

Compound PW14

PW14 was isolated as a white powder, m.p. 120-121 ${ }^{\circ} \mathrm{C}$ (lit. 116-117 ${ }^{\circ} \mathrm{C}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 203, 287 and 329 nm . The IR spectrum showed absorption bands for lactone carbonyl at 1711 cm^{-1} and aromatic ring at 1620,1567 and $1401 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 16) of PW14 were similar to those of PW12, except for the presence of the two singlet signals of terminal olefinic methylene protons at $\delta_{\mathrm{H}} 4.84$ and $4.93\left(\mathrm{H}_{2}-5^{\prime}\right)$ and only one methyl singlet at $\delta_{\mathrm{H}} 1.73$ $\left(\mathrm{H}_{3}-6^{\prime}\right)$ corresponding to an isopropenyl group in PW14. The location of an isopropenyl group at C-2' was confirmed by HMBC correlations of $\mathrm{H}_{2}-5^{\prime}$ ($\delta_{\mathrm{H}} 4.84$ and 4.93) and H-6' ($\delta_{\mathrm{H}} 1.73$) with the carbons at $\delta_{\mathrm{C}} 78.0$ (C-2'). The complete HMBC data were summarized in Table 16. Therefore, compound PW14 was isoangenomalin (Yamaguchi et al., 2003).

Figure 15 Selected HMBC correlations of PW14

Table $16 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W} 14\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\text {C }}$ (C-type)	HMBC
1	-	-	-
2	-	161.5 (C)	-
3	$6.14(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	112.9 (CH)	C-2, C-4a
4	7.50 (d, $J=9.5 \mathrm{~Hz})$	143.2 (CH)	C-2, C-5, C-8a
4 a	-	112.2 (C)	-
5	7.04 (s)	130.2 (CH)	C-4, C-7, C-8a, C-3'
6	-	123.0 (C)	-
7	-	159.8 (C)	-
8	6.80 (s)	105.1 (CH)	C-6, C-7, C-4a, C-8a
8a	-	155.0 (C)	-
$1{ }^{\prime}$	-	-	-
2^{\prime}	4.36 (dd, $J=7.9,2.4 \mathrm{~Hz})$	78.0 (CH)	-
3 '	$2.82(\mathrm{dd}, J=15.0,2.4 \mathrm{~Hz})$	$37.6\left(\mathrm{CH}_{2}\right)$	C-5, C-6, C-7, C-2
	2.92 (dd, $J=15.0,7.9 \mathrm{~Hz})$		
4^{\prime}	-	145.8 (C)	-
5^{\prime}	4.84 (s)	$111.7\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime \prime}$
	4.93 (s)		
6^{\prime}	1.73 (s)	$18.2\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-1^{\prime \prime}, \mathrm{C}-2^{\prime \prime}$

Compound PW15

PW15 was isolated as white powder, m.p. $133-134^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands characteristic of coumarin at 205, 297 and 330 nm . The IR spectrum showed absorption bands for hydroxyl group at $3392 \mathrm{~cm}^{-1}$, lactone carbonyl at $1720 \mathrm{~cm}^{-1}$ and aromatic ring at 1618,1570 and $1421 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ NMR spectral data (Table 17) of PW15 showed the signals of 6,7disubstituted coumarins which were similar to those of compound PW9, except for the presence of characteristic signals of a 4-acetoxy-3-methyl-2-butenyl side chain at δ_{H} $3.36\left(2 \mathrm{H}, \mathrm{d}, J=7.1 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.58\left(1 \mathrm{H}, \mathrm{t}, J=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 4.46\left(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-4^{\prime}\right), 1.73$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-5^{\prime}$) and 2.02 ($3 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime \prime}$) in PW15 instead of the signal of an isoprenyl group as in PW9.

The ${ }^{13} \mathrm{C}$-NMR spectrum showed sixteen carbons; two methyl at $\delta_{\mathrm{C}} 14.1$ (H$\left.5^{\prime}\right)$ and $20.9\left(\mathrm{H}-2{ }^{\prime \prime}\right)$, two methylene at $\delta_{\mathrm{C}} 27.9$ (C-1') and 69.7 (C-4'), five methine at $\delta_{\mathrm{C}} 112.9$ (C-3), 143.7 (C-4), 128.5 (C-5), 103.2 (C-8) and 125.6 (C-2'), five quaternary at $\delta_{\mathrm{C}} 112.0(4 \mathrm{a}), 154.1(\mathrm{C}-8 \mathrm{a}), 124.5(\mathrm{C}-6), 157.6(\mathrm{C}-7)$ and 132.7 (C-3') and two carbonyl carbons at $\delta_{\mathrm{C}} 161.6$ (C-2) and 171.0 (C-1"). In the HMBC spectrum, the methylene protons at $\delta_{\mathrm{H}} 3.36\left(\mathrm{H}-11^{\prime}\right)$ correlated with the carbons at $\delta_{\mathrm{C}} 128.5$ (C-5), 124.5 (C-6), 157.6 (C-7), 125.6 (C-2') and 132.7 (C-3'), indicating the location of a side chain positioned at C-6 and a hydroxyl group at C-7. Furthermore, the methylene protons at $\delta_{\mathrm{H}} 4.46$ (C-4') correlated with signals at $\delta_{\mathrm{C}} 171.0(\mathrm{C}-1$ "), 132.7 (C-3') and $125.6\left(\mathrm{C}-2^{\prime}\right)$ and a methyl signal at $\delta_{\mathrm{H}} 2.02\left(\mathrm{H}-2^{\prime \prime}\right)$ correlated with the resonance at δ_{C} 171.0 (C-1"), resulting in the assignment of an acetoxyl group at C-4'. The methyl acetyl group was trans with respect to the methylene group of the prenyl substituent on the basis of a NOESY correlation between $\mathrm{H}_{2}-1^{\prime}$ and $\mathrm{H}_{3}-5^{\prime}$, and $\mathrm{H}-2^{\prime}$ and $\mathrm{H}_{2}-4$. Based on these data, PW 15 was a new compound and named as 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin.

Figure 16 Selected HMBC correlations of PW15

Table $17 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W} 15\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\text {C }}(\mathrm{C}$ - type $)$	HMBC	NOESY
1	-	-	-	
2	-	161.6 (C)	-	
3	6.17 (d, $J=9.5 \mathrm{~Hz})$	112.9 (CH)	C-2, C-4a	H-4
4	7.56 (d, $J=9.5 \mathrm{~Hz})$	143.7 (CH)	C-2, C-5, C-4a, C-8a	H-3
4a	-	112.0 (C)	-	
5	7.12 (s)	128.5 (CH)	C-4, C-7, C-8a, C-1	
6	-	124.5 (C)	-	
7	-	157.6 (C)	-	
8	6.80 (s)	103.2 (CH)	C-6, C-7, C-4a, C-8a	
8 a	-	154.1 (C)	-	
1^{\prime}	3.36 (d, $J=7.1 \mathrm{~Hz})$	$27.9\left(\mathrm{CH}_{2}\right)$	C-5, C-6, C-7, C-2', C-3'	H-5'
2^{\prime}	5.58 (t, $J=7.1 \mathrm{~Hz})$	125.6 (CH)	3'-Me	H-4'
3'	-	132.7 (C)	-	
4^{\prime}	4.46 (s)	$69.7\left(\mathrm{CH}_{2}\right)$	C-2', C-3', C-5', $3^{\prime}-\mathrm{Me}$	H-2'
5^{\prime}	1.72 (s)	$14.1\left(\mathrm{CH}_{3}\right)$	C-2', C-3', C-4'	H-1'
$1 "$		171.0 (C)	-	
2"	2.02 (s)	$20.9\left(\mathrm{CH}_{3}\right)$	C-5'	
7-OH	6.44 (br s)	-	-	

Compound PW16

PW16 was isolated as white powder, m.p. $151-152^{\circ} \mathrm{C}$ (lit. $149-150{ }^{\circ} \mathrm{C}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 207, 343 and 383 nm . The IR spectrum showed absorption bands for hydroxyl group at 3356 cm^{-1}, lactone carbonyl at $1712 \mathrm{~cm}^{-1}$ and aromatic ring at 1606,1576 and $1498 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 18) of PW16 were closely related to those of PW10. The differences were shown as a replacement of a singlet signal of an aromatic proton ($\delta_{\mathrm{H}} 6.81$) at $\mathrm{C}-8$ and aldehyde group ($\delta_{\mathrm{H}} 9.86$) at C-6 in PW10 by signals of two methoxyl groups ($\delta_{\mathrm{H}} 4.10$ and 3.94) in PW10. The positions of the methoxyl group ($\delta_{\mathrm{H}} 4.10$) at C-8 was confirmed by its HMBC correlation with the carbon at $\delta_{\mathrm{C}} 134.5(\mathrm{C}-8)$ and $6-\mathrm{OMe}\left(\delta_{\mathrm{H}} 3.94\right)$ with the carbon at $\delta_{\mathrm{C}} 144.6(\mathrm{C}-6)$. In addition an aromatic proton $\mathrm{H}-5\left(\delta_{\mathrm{H}} 6.66\right)$ showed correlation with the carbons at δ_{C} 143.8 (C-4), 144.6 (C-6), 142.4 (C-7) and 143.1 (C-8a), confirming the presence of 6,7,8-trioxygenatedcoumarin. Based on these data, the structure of PW16 was assigned as isofraxidin (Banthorpe et al., 1989).

Figure 17 Selected HMBC correlations of PW16

Table $18 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 6}\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}$ - type)	HMBC
1	-	-	-
2	-	$160.5(\mathrm{C})$	-
3	$6.28(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$113.6(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$
4	$7.59(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$143.8(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$
4 a	-	$111.2(\mathrm{C})$	-
5	$6.66(\mathrm{~s})$	$103.3(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-8, \mathrm{C}-8 \mathrm{a}$
6	-	$144.6(\mathrm{C})$	-
7	-	$142.4(\mathrm{C})$	-
8	-	$134.5(\mathrm{C})$	-
8 a	-	$143.1(\mathrm{C})$	-
6-OMe	$3.94(\mathrm{~s})$	$56.5\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-6$
$8-\mathrm{OMe}$	$4.10(\mathrm{~s})$	$61.6\left(\mathrm{CH}_{3}\right)$	$\mathrm{C}-8$

Compound PW17

PW17 was isolated as a yellow solid, m.p. $195-196^{\circ} \mathrm{C}$. The UV spectrum exhibited the presence of the absorption bands characteristic of coumarin at 205, 257, 325 nm . The IR spectrum showed absorption bands for hydroxyl group at $3415 \mathrm{~cm}^{-1}$, lactone carbonyl at $1721 \mathrm{~cm}^{-1}$ and aromatic ring at 1625,1575 and 1491 cm^{-1}.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were closely related with those of marmesin (PW 12). However, instead of two gem-dimethyl groups as in PW12, the appearance of only one methyl singlet ($\delta_{\mathrm{H}} 1.52$) on C-4' was proposed for PW17. Furthermore, the ${ }^{1} \mathrm{H}$ NMR spectrum also showed the signal of oxymethine proton at $\delta_{\mathrm{H}} 5.70(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, \mathrm{H}-3^{\prime}$) and the signal of non-equivalent oxymethylene protons at $\delta_{\mathrm{H}} 3.67$ and 3.27 (1 H each, $d, J=9.0 \mathrm{~Hz}, \mathrm{H}-5$ ') which linked to the carbon signal at $\delta_{\mathrm{C}} 73.8$ in HMQC spectrum. The methyl protons at $\delta_{\mathrm{H}} 1.52$ (Me-4') showed long-range correlations with C-2' ($\delta_{\mathrm{C}} 90.7$), $\mathrm{C}-4^{\prime}\left(\delta_{\mathrm{C}} 77.7\right)$ and an oxymethylene carbon $\mathrm{C}-5^{\prime}\left(\delta_{\mathrm{C}} 73.8\right)$. In turn, the methylene protons at $\delta_{\mathrm{H}} 3.67$ and $3.27\left(\mathrm{H}_{2}-5^{\prime}\right)$ correlated with $\mathrm{C}-3^{\prime}(\delta 80.8), \mathrm{C}-2^{\prime}\left(\delta_{\mathrm{C}}\right.$ 90.7) and a tertiary methyl carbon ($\delta_{\mathrm{C}} 23.6$), as well as the small coupling between H 5^{\prime} and the methyl protons in the COSY spectrum, suggesting the location of a methyl group at C-4'. The large vicinal coupling constant (5.8 Hz) of two doublets at $\delta 5.70$ (H-3') and 4.78 (H-2') indicated their cis orientation. Moreover, the NOESY spectrum showed correlation between H-2' and H-3' and H-2' and Me-4'. These results confirmed the cis-relationship between H-2', H-3' and Me-4'. Thus, compound PW17 was assigned as 1-hydroxy-1-methyl-1,2,3a,10a-tetrahydro-3,8,10-trioxa-pentaleno[1,2-b]naphthalen-7-one and named as marmelonine A.

Figure 18 Selected HMBC correlations of PW17

Table $19{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 7}\left(\mathrm{CDCl}_{3}\right)$

position	δ_{H} (multiplicity)	$\delta_{\text {C }}$ (C-type)	HMBC	NOESY
1	-	-	-	
2	-	160.6 (C)	-	
3	6.30 (d, $J=9.6 \mathrm{~Hz})$	113.4 (CH)	C-2, C-4a	H-4
4	7.67 (d, $J=9.6 \mathrm{~Hz})$	143.4 (CH)	C-2, C-5, C-8, C-4a, C-8a	H-3
4 a	-	114.1 (C)	-	
5	7.53 (s)	125.6 (CH)	C-4, C-7, C-8, C-8a, C-3'	
6	-	123.6 (C)	-	
7	-	163.1 (C)	-	
8	6.87 (s)	98.7 (CH)	C-6, C-7, C-4a, C-8a	
8 a	-	157.1 (C)	-	
1^{\prime}	-	-	-	
2^{\prime}	4.78 (d, $J=5.8 \mathrm{~Hz})$	90.7 (CH)	$\begin{gathered} \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}, \mathrm{Me}- \\ 4^{\prime} \end{gathered}$	H-3', Me-4'
3 '	5.70 (d, $J=5.8 \mathrm{~Hz})$	80.8 (CH)	C-5, C-6, C-7, C-4', C-5	H-2'
4^{\prime}	-	77.7 (C)	-	
5^{\prime}	3.27 (d, $J=9.0 \mathrm{~Hz})$	$73.8\left(\mathrm{CH}_{2}\right)$	C-2', C-4', Me-4 ${ }^{\prime}$	
	3.67 (d, $J=9.0 \mathrm{~Hz})$		C-2', C-3', C-4', Me-4'	
Me-4'	1.52 (s)	$23.6\left(\mathrm{CH}_{3}\right)$	C-2', C-4', C-5'	H-2
OH-4'	2.55 (s)	-	$\mathrm{C}-4^{\prime}, \mathrm{Me}-4^{\prime}$	

Compound PW18

PW18 was isolated as a white powder, m.p. $179-180^{\circ} \mathrm{C},[\alpha]_{D}{ }^{26}=+20.1^{\circ}$ ($c=1.0, \mathrm{MeOH}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 210, 268 and 326 nm . The IR spectrum showed absorption bands for hydroxyl group at $3393 \mathrm{~cm}^{-1}$, lactone carbonyl at $1707 \mathrm{~cm}^{-1}$ and aromatic ring at 1623 , 1588 and $1418 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 19) of PW18 were similar to those of PW12, except for the appearance of a doublet signal at $\delta_{\mathrm{H}} 5.36(1 \mathrm{H}, \mathrm{d}, J=5.9$ Hz) assignable to an oxymethine proton, instead of two doublet of doublet signals of methylene protons at C-3' in PW12, indicating a hydroxyl substituent at C-3' in PW18. The oxymethine proton ($\delta_{\mathrm{H}} 5.36, \delta_{\mathrm{C}} 72.3$) was located at C-3' on the basis of HMBC correlations between $\delta_{\mathrm{H}} 5.36\left(\mathrm{H}-3^{\prime}\right)$ and $\delta_{\mathrm{C}} 114.8$ (C-5), 128.4 (C-6), 150.5 (C7) and 91.1 (C-2'). Furthermore, the disappearance of an aromatic proton at $\delta_{\mathrm{H}} 6.74$ (H-8) of PW12 implied a hydroxyl group at C-8 of PW18 which was confirmed by additional quaternary carbon signal at δ_{C} 129.3. NOESY spectrum showed cross peak between H-2' and H-3' supporting PW18 to possess cis configuration. On the basis of the above analysis, the structure of PW18 was a new compound and named as 8hydroxysmyrindiol.

Figure 19 Selected HMBC correlations of PW18

Table $20 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 8}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1\right.$ drop) $)$

position	δ_{H} (multiplicity)	$\delta_{\text {C }}($ C- type $)$	HMBC	NOESY
1	-		-	
2	-	161.7 (C)	-	
3	6.20 (d, $J=9.5 \mathrm{~Hz})$	111.9 (CH)	C-2, C-4a	H-4
4	7.68 (d, $J=9.5 \mathrm{~Hz})$	145.1 (CH)	C-2, C-5, C-8a	H-3, H-5
4a	-	114.1 (C)		
5	7.08 (s)	114.8 (CH)	C-4, C-7, C-8, C-4a, C-8a, C-3'	H-4
6	-	128.4 (C)	-	
7	-	150.5 (C)	-	
8	-	129.3 (C)	-	
8 a	-	144.3 (C)	-	
1 '	-	-	-	
2^{\prime}	4.33 (d, $J=5.9 \mathrm{~Hz})$	91.0 (CH)	C-3', C-4'	H-3'
3 '	5.36 (d, $J=5.9 \mathrm{~Hz})$	72.3 (CH)	C-5, C-6, C-7, C-2'	H-2
4^{\prime}	-	72.4 (C)	-	
5^{\prime}	1.54 (s)	$27.5\left(\mathrm{CH}_{3}\right)$	C-2', C-4', C-6'	
6	1.56 (s)	$25.7\left(\mathrm{CH}_{3}\right)$	C-2', C-4', C-5'	

Compound PW19

PW19 was isolated as a white powder, m.p. $279-280^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands characteristic of coumarin at 205, 256, 331 nm . The IR spectrum showed absorption bands for hydroxyl group at $3432 \mathrm{~cm}^{-1}$, lactone carbonyl at $1726 \mathrm{~cm}^{-1}$ and aromatic ring at 1621,1557 and $1488 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 20) of PW19 and PW14 showed structural similarity, except for PW19 a methyl singlet at $\delta_{\mathrm{H}} 1.75$ as in PW14 disappeared but two doublets of methylene protons at $\delta_{\mathrm{H}} 4.10$ and $4.07(1 \mathrm{H}$ each, $J=$ 13.6 Hz) were evidenced, indicating that the methyl group in PW14 was oxidized to a hydroxymethyl group in PW19. The hydroxymethyl was connected to C-4' due to the HMBC correlations with the carbons at $\delta_{\mathrm{C}} 73.1$ (C-2'), 149.5 (C-4') and 111.3 (C-5'). The complete HMBC data were summarized in Table 21. Based on these data, PW19 was assigned as 2-(3-hydroxyprop-1-en-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one and named as marmelonine B.

Figure 20 Selected HMBC correlations of PW19

Table $21{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 1 9}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop))

position	δ_{H} (multiplicity)	$\delta_{\text {C }}(\mathrm{C}-$ type $)$	HMBC	NOESY
1	-	-	-	
2	-	162.5 (C)	-	
3	$6.08(\mathrm{~d}, J=9.4 \mathrm{~Hz})$	111.5 (CH)	C-2, C-4a	H-4
4	7.57 (d, $J=9.4 \mathrm{~Hz})$	144.3 (CH)	C-2, C-5, C-8a	H-3
4 a	-	111.6 (C)	-	
5	7.13 (s)	130.2 (CH)	C-4, C-7, C-8a, C-3'	H-3'
6	-	123.6 (C)	-	
7	-	159.8 (C)	-	
8	6.67 (s)	103.1 (CH)	C-6, C-7, C-4a, C-8a	
8 a	-	154.4 (C)	-	
1^{\prime}	-	-	-	
2^{\prime}	4.43 (dd, $J=7.9,4.3 \mathrm{~Hz})$	73.1 (CH)	C-5	
3 '	$2.81(\mathrm{dd}, J=14.3,8.0 \mathrm{~Hz})$	37.4 (CH)	C-5, C-6, C-7, C-2', C-4'	H-5
	2.89 (dd, $J=14.3,4.3 \mathrm{~Hz})$			
4^{\prime}	-	149.5 (C)	-	
5^{\prime}	4.98 (s)	$111.3\left(\mathrm{CH}_{2}\right)$	C-2', C-4', C-6', C-4'	H-6'
	4.99 (s)			
6^{\prime}	4.10 (d, $J=13.6 \mathrm{~Hz})$	$62.8\left(\mathrm{CH}_{2}\right)$	C-2', C-4', C-5'	H-5'
	4.07 (d, $J=13.6 \mathrm{~Hz})$			

Compound PW20

PW20 was isolated as white powder, m.p. $140-141^{\circ} \mathrm{C}$. The UV spectrum exhibited the absorption bands characteristic of coumarin at 204 and 331 nm . The IR spectrum showed absorption bands for hydroxyl group at $3335 \mathrm{~cm}^{-1}$, lactone carbonyl at $1717 \mathrm{~cm}^{-1}$ and aromatic ring at 1617,1570 and $1457 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 22) of PW20 were similar to those of PW15, except for the disappearance of an acetoxyl signal in PW15. In addition the signal of the methylene protons at $\mathrm{C}-4$ ' had shifted more highfield than those in PW15. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum of PW20 showed only twelve protons and fourteen carbons, so it was possible to conclud that there was a hydroxyl group at C-4' ($\delta_{\mathrm{C}} 68.2$). The NOESY spectrum of PW20 showed correlations between $\mathrm{H}-1$ ' and H-5', and H-2' and H-4', supporting that PW20 possessed the same configuration as PW15, implying trans configuration of the double bond. The complete HMBC data were summarized in Table 22. Therefore, compound PW20 was isophellodenol C (Nakamori et al., 2008).

Figure 21 Selected HMBC correlations of PW20

Table $22 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 2 0}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop))

position	δ_{H} (multiplicity)	$\delta_{\text {C }}($ C- type $)$	HMBC	NOESY
1	-	-	-	
2	-	162.4 (C)	-	
3	6.11 (d, $J=9.4 \mathrm{~Hz})$	111.6 (CH)	C-2, C-4a	H-4
4	7.58 (d, $J=9.4 \mathrm{~Hz})$	144.2 (CH)	C-2, C-3, C-5, C-4a, C-	H-3
			8 a	
4a	-	111.6 (C)	-	
5	7.12 (s)	128.1 (CH)	C-4, C-7, C-8a, C-1	
6	-	125.8 (C)	-	
7	-	159.1 (C)	-	
8	6.68 (s)	102.2 (CH)	C-6, C-7, C-4a, C-8a	
8 a	-	154.1 (C)	-	
$1{ }^{\prime}$	3.32 (d, J=7.3 Hz)	$27.5\left(\mathrm{CH}_{2}\right)$	C-5, C-6, C-7, C-2', C-3'	H-5'
2^{\prime}	$5.53(\mathrm{t}, J=7.3 \mathrm{~Hz})$	122.8 (CH)	C-4', C-5'	H-4'
3'	-	136.4 (C)	-	
4^{\prime}	3.96 (s)	$68.2\left(\mathrm{CH}_{2}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}-\mathrm{Me}$	H-2'
$5 '$	1.69 (s)	$13.5\left(\mathrm{CH}_{3}\right)$	C-2', C-3', C-4'	H-1

Compound PW21

PW21 was isolated as white powder, m.p. $178-179^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{26}=+33.1^{\circ}(c=0.4$, acetone) (lit. $[\alpha]_{\mathrm{D}}{ }^{26}=+37.0^{\circ}(c=0.4$, acetone $)$. The UV spectrum exhibited the absorption bands characteristic of coumarin at 204, 224, 248 and 331 nm . The IR spectrum showed absorption bands for hydroxyl group at $3392 \mathrm{~cm}^{-1}$, lactone carbonyl at $1715 \mathrm{~cm}^{-1}$ and aromatic ring 1627,1572 and $1488 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of PW21 (Table 23) and PW18 showed structural similarity, except that in PW21 an additional aromatic proton at $\delta_{\mathrm{H}} 6.80$ (s, H-8) replaced the hydroxyl group of PW18 at C-8, whose HMBC correlations with the carbons at $\delta_{\mathrm{C}} 126.7$ (C-6), 163.0 (C-7), 113.4 (C-4) and 156.9 (C-8a) supported the assignment. A small vicinal coupling constant $(3.9 \mathrm{~Hz})$ of two doublets at $\delta_{\mathrm{H}} 4.42(\mathrm{H}-$ 2^{\prime}) and 5.44 (H-3') as well as a lack of NOESY cross peak between H-2' and H-3', supported $2^{\prime}, 3^{\prime}$-trans-configuration of PW21. The complete HMBC data were summarized in Table 23. Therefore, compound PW21 was xanthoarnol (Zou et al., 2005).

Figure 22 Selected HMBC correlations of PW21

Table $23 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of $\mathbf{P W 2 1}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop))

position	δ_{H} (multiplicity)	$\delta_{\mathrm{C}}(\mathrm{C}-$ type $)$	HMBC	NOESY
1	-	-	-	
2	-	$160.9(\mathrm{C})$	-	
3	$6.25(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$112.9(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-4 \mathrm{a}$	$\mathrm{H}-4$
4	$7.64(\mathrm{~d}, J=9.5 \mathrm{~Hz})$	$143.6(\mathrm{CH})$	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-8 \mathrm{a}$	$\mathrm{H}-3, \mathrm{H}-5$
4 a	-	$113.4(\mathrm{C})$	-	
5	$7.48(\mathrm{~s})$	$124.7(\mathrm{CH})$	$\mathrm{C}-4, \mathrm{C}-7, \mathrm{C}-8 \mathrm{a}, \mathrm{C}-3^{\prime}$	$\mathrm{H}-4$
6	-	$126.7(\mathrm{C})$	-	
7	-	$163.0(\mathrm{C})$	-	
8	$6.80(\mathrm{~s})$	$98.7(\mathrm{CH})$	$\mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-4 \mathrm{a}, \mathrm{C}-8 \mathrm{a}$	
8 a	-	$156.9(\mathrm{C})$	-	
1^{\prime}	-	-	-	
2^{\prime}	$4.42(\mathrm{~d}, J=3.9 \mathrm{~Hz})$	$98.4(\mathrm{CH})$	$\mathrm{C}-7, \mathrm{C}-3^{\prime}, \mathrm{C}-5^{\prime}, \mathrm{C}-6^{\prime}$	
3^{\prime}	$5.44(\mathrm{brd}, J=3.9 \mathrm{~Hz})$	$72.3(\mathrm{CH})$	-	
4^{\prime}	-	$71.2(\mathrm{C})$	-	
5^{\prime}	$1.33(\mathrm{~s})$	$\left.24.9(\mathrm{CH})_{3}\right)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-6^{\prime}$	
6^{\prime}	$1.37(\mathrm{~s})$	$25.7(\mathrm{CH} 3)$	$\mathrm{C}-2^{\prime}, \mathrm{C}-4^{\prime}, \mathrm{C}-5^{\prime}$	

Conclusion

Investigation of the crude acetone extract of the green fruits of Aegle marmelos led to the isolation of twenty-one compounds of five furanocoumarins: imperatorin (PW1), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5) and xanthotoxin (PW6), one acid: valencic acid (PW2), six coumarins: scoparone (PW7), demethylsuberosin (PW9), 6-formylumbilliferone (PW10), 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (PW15), isofraxidin (PW16) and isophellodenol C (PW20), one dihydropyranocoumarin: decursinol (PW8), two alkaloids: marmesiline (PW11), marmeline (PW13), six dihydrofuranocoumarins: marmesin (PW12), isoangenomalin (PW14), marmelonine A (PW17), 8-hydroxysmyrindiol (PW18), marmelonine B (PW19) and xanthoarnol (PW21).

REFERENCES

Abdel-Fattah, M. E.; Taha, K. E.; Abdel Aziz, M. H.; Missalem, A. A.; El-Khrisy, E. A. M. 2003. "Chemical constituents of Citrus limonia and Foeniculum vulgare", Indian J. Heterocycl. Chem., 13(1), 45-48.

Acharyya, S.; Patra, A.; Bag, P. K. 2009. "Evaluation of the antimicrobial activity of some medicinal plants against enteric bacteria with particular reference to multi-drug resistant Vibrio cholerae", Trop. J. Pharm. Res., 8, 231-237.
Adebajo, A. C.; Reisch, J. 2000. "Minor furanocoumarins of Murraya koenigil", Fitoterapia, 71, 334-337.

Alam, M. M.; Siddiqui, M. B.; Husain, W. 1990. "Treatment of diabetes through herbal drug in rural India", Fitoterapia, 61, 240-242.

Ali, M. S.; Pervez, M. K. 2004. "Marmenol: A 7-geranyloxycoumarin from the leaves of Aegle marmelos Corr.", Nat. Prod. Res., 18(2), 141-146.
Arumugam, S.; Kavimani, S.; Kadalmani, B.; Ahmed, A. B. A.; Akbarshac, M. A.; Rao, M. V. 2008. "Antidiabetic activity of leaf and callus extracts of Aegle marmelos in rabbit", Sci. Asia, 34, 317-321.

Bacher, M.; Brader, G.; Hofer, O.; Greger, H. 1999. "Oximes from seeds of Atalantia ceylanica", Phytochemistry, 50(6), 991-994.

Banerji, J.; Das, A. K.; Ghoshal, N.; Das B. 1988a. "Studies on Rutaceae. Part VIII. Chemical investigation on the constituents of Atalantia wightii Tanaka, Aegle marmelos Correa ex Koen, Ruta gravelens Linn. And Micromelum pubescens Blume", Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 27B(6), 594-596.
Banerji, J.; Ghoshal, N.; Sarkar, S.; Kumar, M. 1982. "Studies on Rutaceae. Part II. Chemical investigations of the constituents of Atalantia wightii, Limonia crenulata, Feronia limonia, Citrus limon and synthesis of luvangetin, xanthyletin, and marmin", Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 21B(5), 496-498.

Banerji, A.; Luthria, D. L; Prabhu, B. R. 1988b. "Prenylated compounds from Atalantia racemosa: isolation and synthesis of two pyranoflavones", Phytochemistry, 27(11), 3637-3640.

Banthorpe, D. V.; Brown, G. D. 1989. "Two unexpected coumarin derivatives from tissue cultures of compositae species", Phytochemistry, 28(11), 3003-3007.

Basu, D.; Sen, R. 1974. "Alkaloids and coumarins from root bark of Aegle marmelos", Phytochemistry, 13(10), 2329-2330.

Bui, K. A.; Duong, A. T.; Tran, V. S.; Seip, S. 2004. "Isolation and structure elucidation of a new limonoid from Vietnamese Citrus nobilis seeds", Tap Chi Hoa Hoc, 42(4), 520-523.

Chatterjee, A.; Mitra, S. S. 1949. "Constitution of the active principles isolated from the matured bark of Aegle marmelos Correa", J. Am. Chem. Soc., 71, 606609.

Das, A. V.; Padayatti, P. S.; Paulose, C. S. 1996. "Effect of leaf extract of Aegle marmelos (L) Correa ex Roxb. On histological and ultra-structural changes in tissue of streptozotocin induced diabetic rats", Indian J. Exp. Biol., 34, 341-345.

De Mol, N. J.; Reisch, J.; Van Henegouwen, G. M. J. B.; Gerardus, M. J. B. 1984. "On the involvement of singlet oxygen in the biosynthesis of oxygenation products of the furocoumarin imperatorin", Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie, Organische Chemie, 39B(10), 1433-1441.

Faizi, S.; Farooqi, F.; Zikr-Ur-Rehman, S.; Naz, A.; Norr, F.; Ansari, F.; Ahmad, A.; Khan, S. A. 2009. "Shahidine, a novel and highly labile oxazoline from Aegle marmelos: the parent compound of aegeline and related amides", Tetrahedron, 65, 998-1004.

Fraser, A. W.; Lewis, J. R. 1973. "Two novel acridone alkaloids from Atalantia ceylanica", J. Chem. Soc., Chem. Commun., 17, 615-616.

Govindachari, T. R.; Premila, M. S. 1983. "Some alkaloids from Aegle marmelos", Phytochemistry, 22, 755-757.
Ito, C.; Matsuoka, M.; Mizuno, T.; Sato, K.; Kimura, Y.; Jiichi, M.; Inoue, M.; Kajiura, I.; Omura, M.; Furukawa, H. 1988. "Constituents of domestic Citrus plants. Part VIII. New coumarins from some Citrus plans", Chem. Pharm. Bull., 36(10), 3805-3810.

Ito, C.; Mizono, C.; Matsuoka, M.; Kimura, Y.; Sato, K.; Kajiura, I.; Omura, M.; JuIchi, M.; Furukawa, H. 1988. "A new flavonoid and other components from Citrus Plants", Chem. Pharm. Bull., 36(9), 3292-3295.

Jain, A. K.; Srivastava, S. K.; Srivastava, S. D. 1991. "Some new constituents from heartwood of Aegle marmelos Corr.", J. Indian Chem. Soc., 68(8), 452-454.
Jeong, S. H.; Han, X. H.; Hong, S. S.; Hwang, J. S.; Hwang, J. H.; Lee, D.; Lee, M. K.; Ro, J. S.; Hwang, B. Y. 2006. "Monoamine oxidase inhibitory coumarins from the aerial parts of Dictamnus albus", Arch. Pham. Res., 29(12), 11191124.

Kalaivani, T.; Premkumar, N.; Ramya, S.; Siva, R.; Vijayakumar, V.; Meignanam, E.; Rajasekaran, C.; Jayakumararaj, R. 2009. "Investigations on hepatoprotective activity of leaf extracts of Aegle marmelos (L.) Corr. (Rutaceae)", Ethnobot. Leafl, 13, 47-50.
Kim, J. S.; Kim, J. C.; Shim, S. H.; Lee, E. J.; Jin, W. Y.; Bae, K.; Son, K. H.; Kim, H. P.; Kang, S. S.; Chang, H. W. 2006. "Chemical constituents of the root of Dystaenia takeshimana and their anti-inflammatory activity", Arch. Pharm. Res., 29(8), 617-623.

Mishra, B. B.; Singh, D. D.; Kishore, N.; Tiwari, V. K.; Tripathi, V. 2010. "Antifungal constituents isolated from the seeds of Aegle marmelos", Phytochemistry, 71, 230-234.

Murray, R. D. H; Hall, D. A. 1985. "Structure revision of the coumarin, ceylantin", Phytochemistry, 24(10), 2465-2466.

Nakamori, T.; Taniguchi, M.; Shibano, M.; Wang, N.-H.; Baba, K. 2008. "Chemical studies on the root of Heracleum candicans WALL.", J. Nat. Med., 62, 403412.

Nemoto, T.; Ohshima, T.; Shibasaki, M. 2003. "Enantioselective total syntheses of (+)decursin and related natural compounds using catalytic asymmetric epoxidation of an enone", Tetrahedron, 59, 6889-6897.
Ohashi, K.; Watanabe, H.; Ohi, K.; Arimoto, H.; Okumura, Y. 1995. "Two new 7geranyloxycoumarins from the bark of Aegle marmelos, and Indonesian medicinal plant", Chemistry Lett., (10), 881-882.

Ohashi, K.; Watanabe, H.; Okumura, , H.; Okumura, Y.; Uji, T.; Kitagawa, I. 1994. "Indonesian medicinal plants. XII. Four isomeric lignan-glucosides from the bark of Aegle marmelos (Rutaceae)", Chem. Pharm. Bull., 42(9), 1924-1926.

Patre, R. E.; Shet, J. B.; Parameswaran, P. S.; Tilve, S. G. 2009. "Cascade Wittig reaction-double Claisen and Cope rearrangements: one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8diprenylumbelliferone", Tetrahedron, 50, 6488-6490.
Phuwapraisirisan, P.; Puksasook, T.; Jong-aramruang, J.; Kokpol, U. 2008. "Phenylethyl cinnamides: A new series of α-glucosidase inhibitors from the leaves of Aegle marmelos", Bioorg. Med. Chem. Lett., 18, 4956-4958.
Razdan,T. K.; Qadri, B.; Harkar, S.; Waight, E. S. 1987. "Chromones and coumarins from Skimmia laureola", Phytochemistry, 26(7), 2063-2069.

Runa, B. K.; Singh, U. P.; Taneja, V. 1997. "Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of Aegle marmelos (L.) Corr.", J. Ethnopharmacol., 57, 29-34.

Saha, S. K.; Chatterjee, A. 1957. "Isolation of alloimperatorin and β-sitosterol from the fruits of Aegle marmelos", J. Indian Chem. Soc., 34, 228-230.

Sharma, B. R.; Rattan, R. K.; Sharma, P. 1981. "Marmeline, an alkaloid, and other components of unripe fruits of Aegle marmelos", Phytochemistry, 20(11), 2606-2607.

Sharma, B. R.; Rattan, R. K.; Sharma, P. 1980. "Constituents of leaves and fruits of Aegle marmelos", Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 19B(2), 162.

Sharma, B. R.; Sharma, P. 1981. "Constituents of Aegle marmelos. II. Alkaloids and coumarin from fruits", Planta Med., 43(1), 102-103.

Shoeb, A.; Kapil, R. S.; Popli, S. P. 1973. "Coumarins and alkaloids of Aegle marmelos", Phytochemistry, 12(8), 2071-2072.

Smittinan, T. 2001. "Thai Plant Names". Prachachon publisher: Bangkok.

Srivastava, S. D.; Srivastava, S.; Srivastava, S. K. 1996. "New anthraquinones from the heartwood of Aegle marmelos", Fitoterapia, 67(1), 83-84.

Wu, T. S. 1987. "A 2,2-dimethylpyranoflavonol from Citrus nobilis", Phytochemistry, 26(11), 3094-3095.
Yamaguchi, S.; Muro, S.; Kobayashi, M.; Miyazawa, M.; Hirai, Y. 2003. "Absolute structures of some naturally occurring isopropenyldihydrobenzofurans, remirol, remiridiol, angenomalin and isoangenomalin", J. Org. Chem., 68, 6274-6278.

Zou, Y.; Lobera, M.; Snider, B. B. 2005. "Synthesis of 2,3-dihydro-3-hydroxy-2hydroxyalkylbenzofurans from epoxy aldehydes. One-step syntheses of brosimacutin G, vaginidiol, vaginol, smyrindiol, xanthoarnol, and avicenol A. Biomimetic Syntheses of angelicin and psoralen", J. Org. Chem., 70, 1761-1770.

APPENDIX

Figure 23 UV (MeOH) spectrum of compound PW1

Figure 24 IR (neat) spectrum of compound PW1

Figure $25{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1}$

Figure $26{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1}$

Figure 27 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW1

Figure 28 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW1

Figure 29 2D HMQC (CDCl_{3}) of compound PW1

Figure 30 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW1

Figure 31 UV (MeOH) spectrum of compound PW2

Figure 32 IR (neat) spectrum of compound PW2

Figure $33{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W} 2$

Figure $34{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 2}$

Figure 35 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW2

Figure 36 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW2

Figure 37 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW2

Figure 38 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW2

Figure 39 UV (MeOH) spectrum of compound PW3

Figure 40 IR (neat) spectrum of compound PW3

Figure $41{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W} 3$

Figure $42{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 3}$

Figure 43 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW3

Figure 44 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 3}$

Figure 45 2D HMQC (CDCl_{3}) of compound PW3

Figure 46 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW3

Figure 47 UV (MeOH) spectrum of compound PW4

Figure 48 IR (neat) spectrum of compound PW4

Figure $49{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1\right.$ drop $\left.)\right)$ of compound $\mathbf{P W 4}$

Figure $50{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop)) of compound PW4

Figure 51 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1\right.$ drop $\left.)\right)$ of compound PW4

Figure 52 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}(1 \mathrm{drop})\right)$ of compound PW4

Figure 53 2D HMQC $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop)) of compound PW4

Figure 54 2D $\mathrm{HMBC}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1 drop)) of compound PW4

Figure 55 UV (MeOH) spectrum of compound PW5

Figure 56 IR (neat) spectrum of compound PW5

Figure $57{ }^{1} \mathrm{H}$ NMR (300 MHz$)\left(\mathrm{CDCl}_{3}\right)$ of compound PW5

Figure $58{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW5

Figure 59 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW5

Figure 60 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW5

Figure 61 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW5

Figure 62 UV (MeOH) spectrum of compound PW6

Figure 63 IR (neat) spectrum of compound PW6

Figure $64{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW6

Figure $65{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW6

Figure 66 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW6

Figure 67 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW6

Figure 68 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW6

Figure 69 2D HMBC (CDCl_{3}) of compound PW6

Figure 70 UV (MeOH) spectrum of compound PW7

Figure 71 IR (neat) spectrum of compound PW7

Figure $72{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W} 7$

Figure $73{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W} 7$

Figure 74 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W} 7$

Figure 75 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW7

Figure 76 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW7

Figure 77 2D HMBC (CDCl_{3}) of compound $\mathbf{P W} 7$

Figure 78 UV (MeOH) spectrum of compound PW8

Figure 79 IR (neat) spectrum of compound PW8

Figure $80{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 8}$

Figure $81{ }^{13} \mathrm{C}$ NMR (125 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 8}$

Figure 82 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW8

Figure 83 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW8

Figure 84 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 8}$

Figure 85 UV (MeOH) spectrum of compound PW9

Figure 86 IR (neat) spectrum of compound PW9

Figure $87{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW9

Figure $88{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 9}$

Figure 89 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW9

Figure 90 2D HMQC (CDCl_{3}) of compound PW9

Figure 91 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW9

Figure 92 UV (MeOH) spectrum of compound PW10

Figure 93 IR (neat) spectrum of compound PW10

Figure $94{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 0}$

Figure $95{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 0}$

Figure 96 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW10

Figure 97 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 0}$

Figure 98 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW10

Figure 99 2D HMBC (CDCl_{3}) of compound PW10

Figure 100 UV (MeOH) spectrum of compound PW11

Figure 101 IR (neat) spectrum of compound PW11

Figure $102{ }^{1} \mathrm{H}$ NMR (500 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 1}$

Figure $103{ }^{13} \mathrm{C}$ NMR (1255 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 1}$

Figure 104 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW11

Figure 105 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW11

Figure 106 UV (MeOH) spectrum of compound PW12

Figure 107 IR (neat) spectrum of compound PW12

Figure $108{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 2}$

Figure $109{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12

Figure 110 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW12

Figure 111 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW12

Figure 112 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12

Figure 113 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW12

Figure 114 UV (MeOH) spectrum of compound PW13

Figure 115 IR (neat) spectrum of compound PW13

Figure $116{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 3}$

Figure $117{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound PW13

Figure 118 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW13

Figure 119 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW13

Figure 120 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 3}$

Figure 121 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 3}$

Figure 122 UV (MeOH) spectrum of compound PW14

Figure 123 IR (neat) spectrum of compound PW14

Figure $124{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 4}$

Figure $125{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 4}$

Figure 126 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW14

Figure 127 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW14

Figure 128 2D HMQC (CDCl_{3}) of compound PW14

Figure 129 2D HMBC (CDCl_{3}) of compound PW14

Figure 130 UV (MeOH) spectrum of compound PW15

Figure 131 IR (neat) spectrum of compound PW15

Figure $132{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 5}$

Figure $133{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 5}$

Figure 134 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 5}$

Figure 135 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW15

Figure 136 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW15

Figure 137 UV (MeOH) spectrum of compound PW16

Figure 138 IR (neat) spectrum of compound PW16

Figure $139{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ of compound PW16

Figure $140{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 6}$

Figure 141 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW16

Figure 142 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW16

Figure 143 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW16

Figure 144 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound PW16

Figure 145 UV (MeOH) spectrum of compound PW17

Figure 146 IR (neat) spectrum of compound PW17

Figure $147{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 7}$

Figure $148{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 7}$

Figure 149 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound PW17

Figure 150 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 7}$

Figure 151 2D HMQC (CDCl_{3}) of compound PW17

Figure 152 2D HMBC $\left(\mathrm{CDCl}_{3}\right)$ of compound $\mathbf{P W 1 7}$

Figure 153 UV (MeOH) spectrum of compound PW18

Figure 154 IR (neat) spectrum of compound PW18

Figure $155{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18

Figure $156{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3^{+}} \mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18

Figure 157 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW18

Figure 158 Dept $90^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound $\mathbf{P W 1 8}$

Figure 159 2D HMQC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW18

Figure 160 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW18

Figure 161 UV (MeOH) spectrum of compound PW19

Figure 162 IR (neat) spectrum of compound PW19

Figure $163{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW19

Figure $164{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW19

Figure 165 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW19

Figure 166 2D HMQC $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW19

Figure 167 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW19

Figure 168 UV (MeOH) spectrum of compound PW20

Figure 169 IR (neat) spectrum of compound PW20

Figure $170{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound $\mathbf{P W 2 0}$

Figure $171{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW20

Figure 172 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW20

Figure 173 2D HMQC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW20

Figure 174 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW20

Figure 175 UV (MeOH) spectrum of compound PW21

Figure 176 IR (neat) spectrum of compound PW21

Figure $177{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound $\mathbf{P W 2 1}$

Figure $178{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW21

Figure 179 Dept $135^{\circ}\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right.$ (1drop)) of compound PW21

Figure180 2D HMQC ($\mathrm{CDCl}_{3}{ }^{+} \mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW21

Figure 181 2D HMBC ($\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}$ (1drop)) of compound PW21

VITAE

Name	Miss Poasiyah Weaaryee
Student ID	5010220186

Educational Attainment

Degree Name of Institution Year of Graduation
Bachelor of Science Prince of Songkla University 2005
(Education)

Scholarship Awards during Enrolment

Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education

List of Publication and Proceeding

1. Paosiyah Weaaryee, Pongsak Puangphet and Suda Chakthong. "Furanocoumarins and Valencic acid from Unripe Fruits of Aegle marmelos". $4^{\text {th }}$ BUU Grad Research Conference, Burapha University, Chon Buri, Thailand, 13 March 2009. (Poster presentation)
