

Chemical Constituents from the Green Fruits of Aegle marmelos

Paosiyah Weaaryee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemical Studies Prince of Songkla University 2010 Copyright of Prince of Songkla University

	Thesis Title Author Major Program	Chemical Constituents Miss Paosiyah Weaar Chemical Studies	ents from the Green Fruits of <i>Aegle marmelos</i> eaaryee	
	Major Advisor :		Examining Committee :	
	 (Dr. Suda Chakthong	g)	Chairperson (Dr. Vilailak Prachyawarakorn)	
PW9	Co-advisor :		(Dr. Suda Chakthong)	
	(Assoc. Prof. Dr. Wi	lawan Mahabusarakam)	(Assoc. Prof. Dr. Wilawan Mahabusarakam)	

(Assoc. Prof. Chanita Ponglimanont)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Chemical Studies.

.....

(Assoc. Prof. Dr. Krerkchai Thongnoo) Dean of Graduate School ชื่อวิทยานิพนธ์ ผู้เขียน สาขาวิชา ปีการศึกษา องค์ประกอบทางเคมีจากผลดิบมะตูม (Aegle marmelos) นางสาวเปาซีหยะ แวอายี เคมีศึกษา 2552

บทคัดย่อ

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบอะซีโตนจากผลดิบมะตูม สามารถแยกสารใหม่ได้ 5 สาร เป็นสารประกอบประเภท alkaloid 1 สาร คือ marmesiline (PW11), สาร คือ 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin สารประเภท coumarin 1 (PW15), และสารประเภท dihydrofuranocoumarins 3 สาร คือ marmelonine A (PW17), 8-hydroxysmyrindiol (PW18) และ mamelonine B (PW19) นอกจากนี้ยังได้พบสารที่มีการรายงาน มาแล้ว 16 สาร ประกอบด้วยสารประเภท furanocoumarins 5 สาร คือ imperatorin (PW1), 8-[(3"methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5) และ xanthotoxin (PW6), สารประเภท อนุพันธ์ของกรคเบนโซอิก 1 สาร คือ valencic acid (PW2), สารประเภท dihydropyranocoumarin 1 สาร คือ decursinol (PW8), สารประเภท alkaloid 1 สาร คือ marmeline (PW13), สารประเภท coumarins 5 สาร คือ scoparone (PW7), demethylsuberosin (PW9), 6-formylumbilliferone (PW10), isofraxidin (PW16) une isophellodenol C (PW20) และสารประเภท dihydrofuranocoumarins 3 สาร คือ marmesin (PW12), isoangenomalin (PW14) และ xanthoarnol (PW21) โครงสร้างของสารประกอบเหล่านี้ ้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี UV IR NMR MS และเปรียบเทียบกับสารที่มีรายงาน การวิจัยแล้ว

PW1

PW3

PW5

 $\mathbf{PW4} \quad \mathbf{R} = \mathbf{OH}$

PW6 R = OMe

PW7: $R_1 = OMe$ $R_2 = OMe$ $R_3 = H$ **PW10:** $R_1 = CHO$ $R_2 = OH$ $R_3 = H$ **PW16:** $R_1 = OMe$ $R_2 = OH$ $R_3 = OMe$

PW13

НОш

PW17

٧

Thesis TitleChemical Constituents from the Green Fruits of Aegle marmelosAuthorMiss Paosiyah WeaaryeeMajor ProgramChemical StudiesAcademic Year2009

ABSTRACT

Investigation of the crude acetone extracts of the green fruits of *Aegle* marmelos yielded five new compounds; an alkaloid: marmesiline (PW11), a new coumarin: 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (**PW15**), three dihydrofuranocoumarins: marmelonine A (PW17), 8-hydroxysmyrindiol (PW18) and marmelonine B (PW19), together with sixteen known compounds: five furanocoumarins: imperatorin (PW1), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7Hfuro[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5) and xanthotoxin (PW6), a benzoic acid derivative: valencic acid (PW2), one dihydropyranocoumarin: decursinol (PW8), one alkaloid: marmeline (PW13), five coumarins: scoparone (PW7), demethylsuberosin (PW9), 6-formylumbilliferone (**PW10**), isofraxidin (**PW16**) and isophellodenol C (PW20) and three dihydrofuranocoumarins: marmesin (PW12), isoangenomalin (PW14) and xanthoarnol (PW21). Their structures were determined on the basis of UV, IR, NMR, MS and by comparison of their spectroscopic data with those reported.

PW1

PW3

PW5

 $\mathbf{PW4} \quad \mathbf{R} = \mathbf{OH}$ PW6 R = OMe

PW7: $\mathbf{R}_1 = \mathbf{OMe}$ $\mathbf{R}_2 = \mathbf{OMe}$ $\mathbf{R}_3 = \mathbf{H}$ **PW10:** $R_1 = CHO$ $R_2 = OH$ $R_3 = H$ **PW16:** $R_1 = OMe$ $R_2 = OH$ $R_3 = OMe$

vii

PW14

ACKNOWLEDGEMENT

I wish to express my deepest and sincere gratitude to my supervisor, Dr. Suda Chakthong, for her valuable instruction, expert guidance, excellent suggestion and kindness. I would also like to express my appreciation to Assoc. Prof. Dr. Wilawan Mahabusarakam my co-advisor, for correction of my thesis and her kindness.

My sincere thanks are expressed to Assoc. Prof. Dr. Supayang Piyawan Voravuthikunchai and Asst. Prof Dr. Akkharawit Kanjana-Opas for bioactivity testing and Mr. Ponlawat Pattarakulpisutti for plant identification.

I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible. Dr. Yaowapa Sukpondma and the Scientific Equipment Center, Prince of Songkla University are highly acknowledged for recording NMR spectral data and the MS data, respectively.

This research was supported by a scholarship from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Educaion. I would like to acknowledge the Faculty of Science Research Fund and the Graduate School, Prince of Songkla University for partial financial support.

Paosiyah Weaaryee

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this research is to investigate the chemical constituents from the green fruits of *Aegle marmelos*. They are a part of the basic research on the Thai medicinal plants. A derivative of benzoic acid, two alkaloids, five furanocoumarins, six coumarins, one dihydropyranocoumarin and six dihydrofuranocoumarins were isolated from the green fruits of *Aegle marmelos*.

CONTENTS

	Page
ABSTRACT (in Thai)	iii
ABSTRACT (in English)	vi
ACKNOWLEDGMENT	ix
THE RELEVANCE OF THE RESEARCH WORK	
TO THAILAND	X
CONTENTS	xi
LIST OF TABLES	xiii
LIST OF ILLUSTRATIONS	xiv
LIST OF ABBREVIATIONS AND SYMBOLS	XV
CHAPTER 1 INTRODUCTION	1
1.1 Introduction	1
1.2 Review of literatures	4
1.2.1 The Biological Activity of A. marmelos	4
1.3 Objective	33
CHAPTER 2 EXPERIMENTAL	34
2.1 Instruments and Chemicals	34
2.2 Plant material	34
2.3 Extraction and Isolation	35
2.4 Isolation and Chemical Investigation	35
CHAPTER 3 RESULTS AND DISCUSSION	44
3.1 Structure elucidation of compounds from the green fruits of <i>A</i> .	
marmelos	44
3.1.1 Compound PW 1	45
3.1.2 Compound PW 2	48
3.1.3 Compound PW 3	50

CONTENTS (Continued)

	3.1.4 Compound PW 4	52
	3.1.5 Compound PW 5	54
	3.1.6 Compound PW 6	56
	3.1.7 Compound PW 7	58
	3.1.8 Compound PW 8	60
	3.1.9 Compound PW 9	62
	3.1.10 Compound PW 10	64
	3.1.11 Compound PW 11	66
	3.1.12 Compound PW 12	68
	3.1.13 Compound PW 13	70
	3.1.14 Compound PW 14	72
	3.1.15 Compound PW 15	74
	3.1.16 Compound PW 16	76
	3.1.17 Compound PW 17	78
	3.1.18 Compound PW 18	80
	3.1.19 Compound PW 19	82
	3.1.20 Compound PW 20	84
	3.1.21 Compound PW 21	86
	Conclusion	88
REFERE	NCES	89
APPEND	IX	94
VITAE		178

LIST OF TABLES

Table		Page
1	Compounds from plants of Family Rutaceae	5
2	Physical characteristics and weights of the fractions from acetone extract	36
3	¹ H, ¹³ C NMR and HMBC spectral data of PW1 (CDCl ₃)	46
4	¹ H, ¹³ C NMR and HMBC spectral data of PW2 (CDCl ₃)	49
5	¹ H, ¹³ C NMR and HMBC spectral data of PW3 (CDCl ₃)	51
6	¹ H, ¹³ C NMR and HMBC spectral data of PW4	
	(CDCl ₃ +CD ₃ OD(1drop))	53
7	¹ H, ¹³ C NMR and HMBC spectral data of PW5 (CDCl ₃)	55
8	¹ H, ¹³ C NMR and HMBC spectral data of PW6 (CDCl ₃)	57
9	¹ H, ¹³ C NMR and HMBC spectral data of PW7 (CDCl ₃)	59
10	¹ H, ¹³ C NMR and HMBC spectral data of PW8 (CDCl ₃)	61
11	¹ H, ¹³ C NMR and HMBC spectral data of PW9 (CDCl ₃)	69
12	¹ H, ¹³ C NMR and HMBC spectral data of PW10 (CDCl ₃)	64
13	¹ H, ¹³ C NMR and HMBC spectral data of PW11 (CDCl ₃)	67
14	¹ H, ¹³ C NMR and HMBC spectral data of PW12 (CDCl ₃)	69
15	¹ H, ¹³ C NMR and HMBC spectral data of PW13 (CDCl ₃)	71
16	¹ H, ¹³ C NMR and HMBC spectral data of PW14 (CDCl ₃)	73
17	¹ H, ¹³ C NMR and HMBC spectral data of PW15 (CDCl ₃)	75
18	¹ H, ¹³ C NMR and HMBC spectral data of PW16 (CDCl ₃)	77
19	¹ H, ¹³ C NMR and HMBC spectral data of PW17 (CDCl ₃)	79
20	¹ H, ¹³ C NMR and HMBC spectral data of PW18	
	$(CDCl_3+CD_3OD (1drop))$	81
21	¹ H, ¹³ C NMR and HMBC spectral data of PW19	
	(CDCl ₃ +CD ₃ OD (1drop))	83
22	¹ H, ¹³ C NMR and HMBC spectral data of PW20	
	(CDCl ₃ +CD ₃ OD (1drop))	85
23	¹ H, ¹³ C NMR and HMBC spectral data of compound PW20	
	(CDCl ₃ +CD ₃ OD (1drop))	87

LIST OF ILLUSTATIONS

Schemes	Page
1 Isolation of crude extract from the green fruits of A. marmelos	35
2 Isolation of compounds PW1-PW21	36
from the acetone extract	

Figures	Page
1 Different parts of Aegle marmelos	3
2 Selected HMBC correlations of PW1	46
3 Selected HMBC correlations of PW2	48
4 Selected HMBC correlations of PW3	51
5 Selected HMBC correlations of PW4	52
6 Selected HMBC correlations of PW5	54
7 Selected HMBC correlations of PW6	56
8 Selected HMBC correlations of PW7	58
9 Selected HMBC correlations of PW8	60
10 Selected HMBC correlations of PW9	62
11 Selected HMBC correlations of PW10	64
12 Selected HMBC correlations of PW11	66
13 Selected HMBC correlations of PW12	68
14 Selected HMBC correlations of PW13	70
15 Selected HMBC correlations of PW14	72
16 Selected HMBC correlations of PW15	75
17 Selected HMBC correlations of PW16	76
18 Selected HMBC correlations of PW17	79
19 Selected HMBC correlations of PW18	80
20 Selected HMBC correlations of PW19	82
21 Selected HMBC correlations of PW20	84
22 Selected HMBC correlations of PW21	86

Figures	Page
23 UV (MeOH) spectrum of compound PW1	95
24 IR (neat) spectrum of compound PW1	95
25 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW1	96
26 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW1	96
27 Dept 135° (CDCl ₃) of compound PW1	97
28 Dept 90° (CDCl ₃) of compound PW1	97
29 2D HMQC (CDCl ₃) of compound PW1	98
30 2D HMBC (CDCl ₃) of compound PW1	98
31 UV (MeOH) spectrum of compound PW2	99
32 IR (neat) spectrum of compound PW2	99
33 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW2	100
34 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW2	100
35 Dept 135° (CDCl ₃) of compound PW2	101
36 Dept 90° (CDCl ₃) of compound PW2	101
37 2D HMQC (CDCl ₃) of compound PW2	102
38 2D HMBC (CDCl ₃) of compound PW2	102
39 UV (MeOH) spectrum of compound PW3	103
40 IR (neat) spectrum of compound PW3	103
41 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW3	104
42 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW3	104
43 Dept 135° (CDCl ₃) of compound PW3	105
44 Dept 90° (CDCl ₃) of compound PW3	105
45 2D HMQC (CDCl ₃) of compound PW3	106
46 2D HMBC (CDCl ₃) of compound PW3	106
47 UV (MeOH) spectrum of compound PW4	107
48 IR (neat) spectrum of compound PW4	107
49 ¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD (1 drop)) of compound PW4	108

Figures	Page
50 ¹³ C NMR (75 MHz) (CDCl ₃ +CD ₃ OD (1 drop)) of compound PW4	108
51 Dept 135° (CDCl ₃₊ CD ₃ OD (1 drop)) of compound PW4	109
52 Dept 90° (CDCl ₃ +CD ₃ OD (1 drop)) of compound PW4	109
53 2D HMQC (CDCl ₃ +CD ₃ OD (1 drop)) of compound PW4	110
54 2D HMBC (CDCl ₃ +CD ₃ OD (1 drop)) of compound PW4	110
55 UV (MeOH) spectrum of compound PW5	111
56 IR (neat) spectrum of compound PW5	111
57 1 H NMR (300 MHz) (CDCl ₃) of compound PW5	112
58 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW5	112
59 Dept 135° (CDCl ₃) of compound PW5	113
60 2D HMQC (CDCl ₃) of compound PW5	113
61 2D HMBC (CDCl ₃) of compound PW5	114
62 UV (MeOH) spectrum of compound PW6	115
63 IR (neat) spectrum of compound PW6	115
64 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW6	116
65 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW6	116
66 Dept 135° (CDCl ₃) of compound PW6	117
67 Dept 90° (CDCl ₃) of compound PW6	117
68 2D HMQC (CDCl ₃) of compound PW6	118
69 2D HMBC (CDCl ₃) of compound PW6	118
70 UV (MeOH) spectrum of compound PW7	119
71 IR (neat) spectrum of compound PW7	119
72 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW7	120
73 13 C NMR (75 MHz) (CDCl ₃) of compound PW7	120
74 Dept 135° (CDCl ₃) of compound PW7	121
75 Dept 90° (CDCl ₃) of compound PW7	121
76 2D HMQC (CDCl ₃) of compound PW7	122

Figures	Page
77 2D HMBC (CDCl ₃) of compound PW7	122
78 UV (MeOH) spectrum of compound PW8	123
79 IR (neat) spectrum of compound PW8	123
80 ¹ H NMR (500 MHz) (CDCl ₃) of compound PW8	124
81 ¹³ C NMR (125 MHz) (CDCl ₃) of compound PW8	124
82 Dept 135° (CDCl ₃) of compound PW8	125
83 2D HMQC (CDCl ₃) of compound PW8	125
84 2D HMBC (CDCl ₃) of compound PW8	126
85 UV (MeOH) spectrum of compound PW9	127
86 IR (neat) spectrum of compound PW9	127
87 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW9	128
88 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW9	128
89 Dept 135° (CDCl ₃) of compound PW9	129
90 2D HMQC (CDCl ₃) of compound PW9	129
91 2D HMBC (CDCl ₃) of compound PW9	130
92 UV (MeOH) spectrum of compound PW10	131
93 IR (neat) spectrum of compound PW10	131
94 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW10	132
95 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW10	132
96 Dept 135° (CDCl ₃) of compound PW10	133
97 Dept 90° (CDCl ₃) of compound PW10	133
98 2D HMQC (CDCl ₃) of compound PW10	134
99 2D HMBC (CDCl ₃) of compound PW10	134

Figures	Page
100 UV (MeOH) spectrum of compound PW11	135
101 IR (neat) spectrum of compound PW11	135
102 ¹ H NMR (500 MHz) (CDCl ₃) of compound PW11	136
103 ¹³ C NMR (125 MHz) (CDCl ₃) of compound PW11	136
104 2D HMQC (CDCl ₃) of compound PW11	137
105 2D HMBC (CDCl ₃) of compound PW11	137
106 UV (MeOH) spectrum of compound PW12	138
107 IR (neat) spectrum of compound PW12	138
108 1 H NMR (300 MHz) (CDCl ₃) of compound PW12	139
109 13 C NMR (75 MHz) (CDCl ₃) of compound PW12	139
110 Dept 135° (CDCl ₃) of compound PW12	140
111 Dept 90° (CDCl ₃) of compound PW12	140
112 2D HMQC (CDCl ₃) of compound PW12	141
113 2D HMBC (CDCl ₃) of compound PW12	141
114 UV (MeOH) spectrum of compound PW13	142
115 IR (neat) spectrum of compound PW13	142
116 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW13	143
117 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW13	143
118 Dept 135° (CDCl ₃) of compound PW13	144
119 Dept 90° (CDCl ₃) of compound PW13	144
120 2D HMQC (CDCl ₃) of compound PW13	145
121 2D HMBC (CDCl ₃) of compound PW13	145
122 UV (MeOH) spectrum of compound PW14	146
123 IR (neat) spectrum of compound PW14	146
124 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW14	147
125 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW14	147
126 Dept 135° (CDCl ₃) of compound PW14	148
127 Dept 90° (CDCl ₃) of compound PW14	148

Figures	Page
128 2D HMQC (CDCl ₃) of compound PW14	149
129 2D HMBC (CDCl ₃) of compound PW14	149
130 UV (MeOH) spectrum of compound PW15	150
131 IR (neat) spectrum of compound PW15	150
132 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW15	151
133 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW15	151
134 Dept 135° (CDCl ₃) of compound PW15	152
135 2D HMQC (CDCl ₃) of compound PW15	152
136 2D HMBC (CDCl ₃) of compound PW15	153
137 UV (MeOH) spectrum of compound PW16	154
138 IR (neat) spectrum of compound PW16	154
139 ¹ H NMR (300 MHz) (CDCl ₃) of compound PW16	155
140 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW16	155
141 Dept 135° (CDCl ₃) of compound PW16	156
142 Dept 90° (CDCl ₃) of compound PW16	156
143 2D HMQC (CDCl ₃) of compound PW16	157
144 2D HMBC (CDCl ₃) of compound PW16	157
145 UV (MeOH) spectrum of compound PW17	158
146 IR (neat) spectrum of compound PW17	158
147 1 H NMR (300 MHz) (CDCl ₃) of compound PW17	159
148 ¹³ C NMR (75 MHz) (CDCl ₃) of compound PW17	159
149 Dept 135° (CDCl ₃) of compound PW17	160
150 Dept 90° (CDCl ₃) of compound PW17	160
151 2D HMQC (CDCl ₃) of compound PW17	161
152 2D HMBC (CDCl ₃) of compound PW17	161
153 UV (MeOH) spectrum of compound PW18	162

Figures		Page
154 IR (neat) spectru	um of compound PW18	162
155 ¹ H NMR (300 M	MHz) (CDCl ₃ +CD ₃ OD (1drop)) of compound PW18	163
156 ¹³ C NMR (75 M	(Hz) (CDCl ₃₊ CD ₃ OD (1drop)) of compound PW18	163
157 Dept 135° (CDC	Cl ₃₊ CD ₃ OD (1drop)) of compound PW18	164
158 Dept 90° (CDCl	₃ +CD ₃ OD (1drop)) of compound PW18	164
159 2D HMQC (CD	Cl ₃ +CD ₃ OD (1drop)) of compound PW18	165
160 2D HMBC (CD	Cl ₃ +CD ₃ OD (1drop)) of compound PW18	165
161 UV (MeOH) spe	ectrum of compound PW19	166
162 IR (neat) spectru	um of compound PW19	166
163 ¹ H NMR (300 M	MHz) (CDCl ₃ +CD ₃ OD (1drop)) of compound PW19	167
164 ¹³ C NMR (75 M	(Hz) (CDCl ₃₊ CD ₃ OD (1drop)) of compound PW19	167
165 Dept 135° (CDC	Cl ₃₊ CD ₃ OD (1drop)) of compound PW19	168
166 2D HMQC (CD	Cl ₃ +CD ₃ OD (1drop)) of compound PW19	168
167 2D HMBC (CD	Cl ₃ +CD ₃ OD (1drop)) of compound PW19	169
168 UV (MeOH) spe	ectrum of compound PW20	170
169 IR (neat) spectru	um of compound PW20	170
170 ¹ H NMR (300 M	MHz) (CDCl ₃ +CD ₃ OD (1drop)) of compound PW20	171
171 ¹³ C NMR (75 M	(Hz) (CDCl ₃₊ CD ₃ OD (1drop)) of compound PW20	171
172 Dept 135° (CDC	Cl ₃ +CD ₃ OD (1drop)) of compound PW20	172
173 2D HMQC (CD	Cl ₃ +CD ₃ OD (1drop)) of compound PW20	172
174 2D HMBC (CD	Cl ₃ +CD ₃ OD (1drop)) of compound PW20	173
175 UV (MeOH) spe	ectrum of compound PW21	174
176 IR (neat) spectru	um of compound PW21	174
177 ¹ H NMR (300 M	Hz) (CDCl ₃ +CD ₃ OD (1drop)) of compound PW21	175

Figures	Page
178 ¹³ C NMR (75 MHz) (CDCl ₃ +CD ₃ OD (1drop)) of compound PW21	175
179 Dept 135° (CDCl ₃₊ CD ₃ OD (1drop)) of compound PW21	176
180 2D HMQC (CDCl ₃₊ CD ₃ OD (1drop)) of compound PW21	176
181 2D HMBC (CDCl ₃ +CD ₃ OD (1drop)) of compound PW21	177

LIST OF ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
q	=	quartet
т	=	multiplet
dd	=	doublet of doublet
dt	=	doublet of triplet
br s	=	broad singlet
br d	=	broad doublet
g	=	gram
nm	=	nanometer
mp	=	melting point
cm ⁻¹	=	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
[α] _D	=	specific rotation
λ_{max}	=	maximum wavelength

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

ν	=	absorption frequencies
З	=	molar extinction coefficient
m/z	=	a value of mass divided by charge
°C	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
С	=	concentration
IR	=	Infrared
UV	=	Ultraviolet
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectroscopy
NMR	=	Nuclear Magnetic Resonance
1D NMR	=	One Dimensional Nuclear Magnetic Resonance
2D NMR	=	Two Dimensional Nuclear Magnetic Resonance
COSY	=	Correlation Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOESY	=	Nuclear Overhauser Effect Spectrosopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
TLC	=	Thin Layer Chromatography
TMS	=	tetramethylsilane
CDCl ₃	=	deuterochloroform
CD ₃ OD	=	deuteromethanol

CHAPTER 1 INTRODUCTION

1.1 Introduction

Aegle marmelos (L.) Correa ex Roxb. is a large fruit-bearing tree indigenous to dry forests on hills, commonly known as Bael, known in thai as "uequ", belonging to the family Rutaceae. This tree, which is the only species in the genus *Aegle*, grows up to 18 meters tall and bears thorns and fragrant flowers. It has a woody-skinned, smooth fruit 5-15 cm in diameter. The plant *Aegle marmelos* is distributed throughout Burma, Pakistan, Bangladesh, Sri Lanka, Thailand and various parts of South-eastern Asia (Mishra *et al.*, 2010). In India, the tree is often found in temple gardens and its leaves are used in religious celebrations. In the traditional culture of Nepal and Bangladesh (Govindachari *et al.*, 1983), *Aegle marmelos* is part of an important fertility ritual for girls known as the *Bel baha*.

According to Smitinan (2001), there are twenty four genus of family Rutaceae found in Thailand as follows.

1. Acronychia	13. Melicope
2. Aegle	14. Merope
3. Atalantin	15. Merrillia
4. Citrus	16. Micromelum
5. Clausena	17. Murraya
6. Euodia	18. Naringi
7. Feroniella	19. Paramignya
8. Fortunella	20. Ravenia
9. Glycosmis	21. Ruta
10. Limonia	22. Toddalia
11. Luvunga	23. Triphasia
12. Maclurodendron	24. Zanthoxylum

All parts of this tree, viz. root, leaf, bark, fruit and seed are useful in several aliments (Alam *et al.*, 1990). The leaf extract has been found effective in the regeneration of damaged pancreas (β -cell) in diabetic rat (Das *et al.*, 1996). A decoction of the root and the bark are used in the treatment of fever significantly against malaria (Arumugam *et al.*, 2008). The ripe fruits is a good cure for diabetes, dyspepsia, constipation and body heating problem (Kalaivani *et al.*, 2009). The seed extract is known to exhibit significant activity against *Vibrio cholerae*, *Staphylococus aureus* and *Escherichia coli* (Acharyya *et al.*, 2009). Essential oils isolated from *A. marmelos* have shown promising antifungal activities against *Physalospora tucumanensis*, *Ceratocystis paradoxa*, *Sclrrotium rolfsii*, *Curvularia lunata*, *Helminthosporium sacchari*, *Fusarium moniliforme* and *Cephalosporium sacchari* (Runa *et al.*, 1997).

Trees

Stem

Flowers

Leaves

Fruits

Figure 1Different parts of Aegle marmelos

1.2 Review of Literatures

The chemical constituents isolated from the five genus and six species of family Rutaceae were summarized in **Table 1**. Information obtained from SciFinder Scholar copyright in 2009 will be presented and classified into groups: Acridone alkaloids, Alkaloids, Anthraquinones, Aromatics, Coumarins, Flavonoids, Glucoside Limonoids, Sesquiterpenoids and Triterpenoids.

1.2.1 The Biological Activity of A. marmelos

The coumarin compounds isolated from *A. marmelos* have been investigated for biological activity. For example, (+)-4-(2'-hydroxy-3'-metylbut-3'-enyloxy)-8H[1,3]-dioxol[4,5-*h*]chromen-8-one isolated from seeds of *A. marmelos* exhibited efficient antifungal activity against *A.fumigatus*, *Candida albicaneoformansns*, *T.* mentagrophytes and *Cryptococus neoformans* with the minimum inhibitory concentration (MICs) of 6.25 µg/disc, 31.25 µg/ml and 31.25 µg/ml in DDA, BMA and PSGIA, respectively (Mishra *et al.*, 2010), 7-(6'R-hydroxy-3', 7'-dimetyl-2'E, 7'octadienylloxy) coumarin and auraptene inhibited MAO activity in a concentrationdependent manner with IC₅₀ values of 0.7 and 1.7 µM respectively and showed a slight and potentl selective inhibitory effect against MAO-B (IC₅₀ 0.5 and 0.6 µM, respectively) compared to MAO-A (IC₅₀ 1.3 and 34.6 µM, respectively) (Jeong *et al.*, 2006).

Some of alkaloids from *A. marmelos* have been investigated for biological activity. Anhydroaegeline isolated from leaves of *A. marmelos* revealed the most potent inhibitory effect against α -glucosidase with IC₅₀ value of 35.8 μ M (Phuwapraisirisan *et al.*, 2008) and shahidine showed activity against a few Grampositive bacteria (Faizi *et al.*, 2009).

 Table 1 Compounds from plants of Family Rutaceae.

a . Acridone alkaloids	f . Flavonoids
b . Alkaloids	g. Glucoside
c. Anthraquinones	h . Limonoids
d. Aromatics	i. Sesquiterpenoids
e. Coumarins	j. Triterpenoids

Scientific name	Part	Compounds	Bibliography
Aegle marmelos	Bark	(+) Lyoniresinol 3α- <i>O</i> -β-D-	Ohashi et al., 1994
		glucopyranoside, g1	
		(-) Lyoniresinol 3α- <i>O</i> -β-D-	
		glucopyranoside, g2	
		(-)-2α- <i>O</i> -(β-D-	
		glucopyranosyl)lyoniresinol, g3	
		(-)-4-epi-lyoniresinol-3α- <i>O</i> -β-D-	
		glucopyranoside, g4	
		Chloromarmin, e1	Ohashi et al., 1995
		Aeglin, e2	
	Heart wood	Xanthoxol, e3	Srivastava et al.,
		Marmin, e4	1996
		1-Hydroxy-7,8-dimethoxy-2-	
		methylanthraquinone, c1	
		6-Hydroxy-1-dimethoxy-3-	
		methylanthraquinone, c2	
		β-Sitosterol, j1	Jain <i>et al.</i> , 1991

tific name	Part	Compounds	Bibliography
marmelos	Bark	Xanthotoxol-8-O-β-D-	Srivastava et al.,
		glucopyranoside, e5	1996
		2-(2-hydroxy-4-	
		methoxyphenyl)vinyl acetate, d1	
		Lupeol, j2	
	Leaves	Aegelinoside A, g5	Phuwapraisirisan et
		Aegelinoside B, g6	al., 2008
		Aegeline, b1	
		Anhydromarmeline, b2	
		Tembamide, b3	
		Dehydromarmeline, b4	
		Anhydroaegeline, b5	
		Marmenol, e6	Ali et al., 2004
		Praealtin D, e7	
		Valencic acid, d2	
		4-Methoxybenzoic acid, d3	
		Betulinic acid, j3	
		N-(p-trans- coumaroyl)tyramine,	
		b6	
		Montanine, b7	
		Rutaretin, e8	
		Rutin, f4	Sharma et al., 1980
		β-Sitosterol, j1	
		Xanthoxol, e3	
		β -sitosterol-3- <i>O</i> -β-D-glucoside,	
		j5	
		Scoparone, e10	
		Scopoletol, e11	
		Umbelliferone, e14	
		Marmesin, e13	

.

fic name	Part	Compounds	Bibliography
armelos		Skimmianin, b10	
	Dry leaves	Marmelin, b8	Govindachari et al.,
		Dehydromarmeline, b4	1983
		O-Demethylaegeline, b9	
	Root	Anhydroaegeline, b5	Shoeb et al., 1973
		Xanthotoxin, e9	
		Scoparone, e10	
		Scopoletol, e11	
		Tembamide, b3	
		Umbelliferone glucoside, e12	
		Marmesin, e13	
		Marmin, e4	
		Skimmianin, b10	
	Root bark	Skimmianin, b10	Basu et al., 1974
		Umbelliferone, e14	
		Xanthotoxin, e9	
		Fagarine, b11	
		Marmesin, e13	
		Marmin, e4	
		Decursinol, e15	
	Ripe fruits	Alloimperatorin methyl ether, e16	Sharma <i>et al.</i> , 1981
		O-Isopentenylhalfordinol, b12	
		O-Methylhalfordinol, b13	
	Unripe fruits	Aegeline, b1	Sharma <i>et al</i> ., 1981
		Imperatorin, e17	
		Alloimperatorin, e18	
	Matured bark	Xanthoxol, e3	Chatterjee et al.,
		Marmelin, b8	1949
		Marmesin, e13	
		Umbelliferone, e14	

Aegle marmelos	Matured bark	Fagarine, b11	Chatteriee <i>et al.</i> .
		Anhydromarmesin e19	1949
		Nodakenetin e20	
		Umbelliferone-6-carboxylic acid	
		e21	
		Anhydromarmesin e19	
		Marmesic acid d4	
		7 Hydrowydinothyl 2.4 dinothy	
		7-Hydroxydimethyl-3,4-dimethy-	
		2-oxo-2H-1-benzopyran-6-	
		carboxylic acid, e22	
Atalantia	Bark	Atalatine, a1	Fraser et al., 1973
ceylantica	Root bark	Xanthotoxin, e9	
		Racemosin, e23	
		Ceylantin, e24	Murray et al., 1985
	Seed	Cycloatalantin, h1	
		Cycloatalantinone, h2	
		Cycloatalantin-16-oic acid, h3	
		Isocycloatalantin, h4	
		Cycloepiatalantin, h5	Bacher et al., 1999
		Dehydrocycloatalantin, h6	
		Ataloxime, b14	
		Xanthotoxine, e9	
		Imperatorin, e17	
		Bergapten, e25	
		Heraclenin, e26	
		Oxypeucedanin, e27	
1	1		1

Scientific name	Part	Compounds	Bibliography
Atalantia	Heart wood	Xanthotoxin, e9	Banerj et al., 1988b
racemosa		Isoevodionol, e28	
		Umbelliferone, e14	
		Luvangetin, e29	
		Xanthyletin, e30	
		Rutaretin, e8	
		Rutarin, e31	
		Racemosin, e23	
		Racemoflavone, f1	
		Atalantaflavone, f2	
Acalancia mia Leii	Deet	Valaassia h15	Demonia et al. 1002
Atalantia wightii	Root	Kokusaginin, D15	Banerj <i>et al.</i> , 1982
		Xantnyletin, e30	
		Cinnamic acid lactone, e32	
		Isoimpinellin, e33	
		Ostol, e34	
		Marmesin, e13	
		Xanthotoxin, e9	
		Obacylactone, h7	
		Atalantin, h8	
		Phebalosin, e35	
		N-methylatalaphyllin, a2	
		<i>N</i> -methylatalaphyllinine, a3	
		Auraptene, e36	
		Umbelliferone, e14	
		Micromelumin, e37	
		Murrangatin, e38	

Scientific name	Part	Compounds	Bibliography
Atalantia wightii	Stem bark	Skimmianin, b10	Banerj et al., 1988a
		Heplopine, b16	
		<i>p</i> -Coumaric acid ethyl ester, d5	
		Imperatorin, e17	
		Scopoletol, e11	
		Marmin, e4	
		Limettin, e39	
		Crenyllatin, e40	
		Phebalosin, e35	
Citrus limonia	Stem	Imperatorin, e17	Abdel-Fattah et al.,
		Xanthotoxin, e9	2003
		Bergapten, e25	
		Isoimpinellin, e33	
		Limettin, e39	
		Scopoletol, e11	
		Umbelliferone, e14	
		Xanthoxol, e3	
		Aesculetin, e41	
		Stigmasterol, j4	
		β -sitosterol-3- O - β -glucoside, j5	

Scientific name	Part	Compounds	Bibliography
Citrus nobilis	Seeds	Citrobilin, h9	Bui et al., 2004
		Limonin, h10	
		Nomilin, h11	
		Deacetyl nomilin, h12	
		Obacunon, h13	
		Limonexic acid, h14	
		β-sitosterol-3- <i>O</i> -β-D-glucoside, j5	
	Root bark	2,2-dimethylpyranoflavanol, f3	Wu et al., 1987
		Elemol, i1	
		Suberosin, e42	
		Suberenol, e43	
		Crenyllatin, e40	
		Xanthyletin, e30	
		Xanthoxyletin, e44	
		Nordentatin, e45	
		Citropone A, a4	
		5-Hydroxynoracronycine, a5	
		Citrusinine I, a6	
		Citracridone I, a7	

a. Acridone alkaloids

Atalantine, a1

N-Methylatalaphyllin, a2

N-methylatalaphyllinine, a3

Citropone A, a4

5-Hydroxynoracronycine, a5

Citrusinnine I, a6

Citracridone I, a7

b. Alkaloids

Montanin, **b7**

Marmelin, b8

O-Demethylaegeline, b9

Skimmianin, **b10**

O-Isopentenylhalfordinol, b12

O-Methylhalfordinol, **b13**

Ataloxime, **b14**

Kokusaginin, b15

Heplopine, b16

c. Anthraquinone

1-Hydroxy-7,8-dimethoxy-2methylanthraquinone, **c1**

6-Hydroxy-1-methoxy-3methylanthraquinone, **c2**

d. Aromatics

MeO

2-(2-hydroxy-4-methoxyphenyl)vinyl acetate, **d1**

CO₂H

Valencic acid, d2

Marmesic acid, d4

p-Coumaric acid ethyl ester, **d5**

Marmin, e4

но

Xanthoxol-8-*O*-β-D-glucopyranoside, **e5**

Praealtin D, e7

Rutaretin, e8

Xanthotoxin, e9

Scoparone, e10

Scopoletol, e11

OF OF OF

Umbelliferone glucoside, **e12** Marmesin, **e13**

Umbelliferone, e14

Decursinol, e15

Alloimperatorin methyl ether, e16

Imperatorin, e17

Alloimperatorin, e18

Anhydromarmesin, e19

Nodakenetin, e20

OMe

оме

Umbelliferone-6-carboxylic acid, e21

7-Hydroxy-3,4-dimethyl-2-oxo-2*H*-1benzopyran-6-carboxylic acid, **e22**

Ceylantin, e24

Bergapten, e25

Heraclenin, e26

Oxypeucedanin, e27

Isoevodionol, e28

он

<u>O</u>Me

Xanthyletin, e30

OMe

c

Rutarin, e31

OMe OMe

Cinnamic acid lactone, e32

Isoimpinellin, e33

Ostol, e34

Phebalosin, e35

Auraptene, e36

Micromelumin, e37

Murrangatin, e38

.OMe

ÖМе

Crenyllatin, e40

Aesculetin, e41

Suberosin, e42

Suberenol, e43

Nordentatin, e45

Xanthoxyletin, e44

Marmesinin, e46

f. Flavonoids

R = OMe : Racemoflavone, f1R = H : Atalantaflavone, f2

Rutin, f4

g. Glucosides

(+) Lyoniresinol 3α-*O* -β-Dglucopyranoside, **g1**

ŌН

(-) Lyoniresinol 3α-*O*-β-Dglucopyranoside, **g2**

(-)-2 α -O-(β -D-glucopyranosyl)lyoniresinol, **g3**

(-)-4-*epi*-lyoniresinol- 3α -O- β -D-glucopyranoside, **g4**

Aegelinoside A, g5

Aegelinoside B, g6

h. Limonoids

Cycloatalantin, h1

Cycloatalantinone, h2

Cycloatalantin-16-oic acid, h3

CH3

0

ò

Isocycloatalantin, h4

Cycloepiatalantin, h5

Dehydrocycloatalantin, h6

H

СН

R

0

CH₃

ÇH3

Õ Õ Atalantin, h8

Citrobilin, h9

Limonin, 10

R = OAc : Nomilin, h11R = OH : Deacetyl nomilin, h12R = H : Obacunon, h13

Limonexic acid, h14

I. Sesquiterpenoids

Elemol, i1

J. Triterpenoids

 β -Sitosterol, **j1**

Lupeol, j2

Betulinic acid, **j3**

Stigmasterol, j4

 β -Sitosterol-3-O- β -D-glucoside, **j5**

CHAPTER 2 EXPERIMENTAL

2.1 Instruments and Chemicals

Melting point was recorded in °C on a digital Electrothermal 9100 Melting Point Apparatus. Ultraviolet spectra were measured with a UV-160A spectrophotometer (SHIMADZU) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution. The optical rotation $[\alpha]_D$ was measured in chloroform, acetone and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer 783 FTS165 FT-IR spectrophotometer. ¹H and ¹³C – Nuclear magnetic resonance spectra were recorded on a FT-NMR Bruker Ultra ShieldTM 300 and 500 MHz spectrometer at Department of Chemistry, Faculty of Science, Prince of Songkla University and a Unity Inova Varian 500 MHz at Scientific Equipment Center, Prince of Songkla University. Spectra were recorded in deuterochloroform as δ value in ppm down field from TMS (internal standard δ 0.00) and coupling constant (J) are expressed in hertz. EI and HREI mass spectra were measured on MAT 95 XL Mass spectrometer. Quick column chromatography (QCC) and column chromatography was performed by using silica gel 60H (Merck) and silica gel 100 (70-230 Mesh ASTM, Merck) respectively. For thin-layer chromatography (TLC), aluminum sheets of silica gel 60 F₂₅₄ (20×20 cm, layer thickness 0.2 mm, Merck) were used for analytical purposes and the compounds were visualized under ultraviolet light. Solvents for extraction and chromatography were distilled at their boiling ranges prior to use except chloroform was analytical grade reagent.

2.2 Plant material

The green fruits of *A. marmelos* (L.) Corrêa ex Roxb. were collected from Songkhla province in the Southern part of Thailand, in October, 2008. Identification was made by Mr. Ponlawat Pattarakulpisutti, Department of Biology, Facutly of Science, Prince of Songkla University. The specimen (Paosiyah 01) has been deposited in the Herbarium of Department of Biology, Facutly of Science, Prince of Songkla University, Thailand.

2.3 Extraction and Isolation

Chopped-dried green fruits of *A. marmelos* (3.2 kg) were immersed in acetone at room temperature for 5 days. After evaporation, a dark green gum of acetone extract (55.0 g) was obtained. The process of extraction was shown in **Scheme 1**.

Scheme 1 Isolation of crude extract from the green fruits of A. marmelos

2.4 Isolation and Chemical Investigation

Acetone extract (55.0 g) was subjected to quick column chromatography using silica gel as stationary phase and eluted with hexane-dichloromethane, dichloromethane-methanol and methanol as eluents. On the basis of their TLC characteristics, the fractions which contained the same major components were combined to give fractions P1-P15. Twenty-one pure compounds were obtained as shown in **Scheme 2**.

* No further investigation

Scheme 2 Isolation of compounds PW1-PW21 from acetone extract

Fraction	Weight (g)	Physical characteristic
P1	1.0283	white solid
P2	0.5929	white solid
P3	4.9487	yellow solid
P4	2.3342	brown viscous liquid
P5	1.5392	brown viscous liquid
P6	4.9652	brown viscous liquid
P7	6.1923	brown viscous liquid
P8	17.3981	brown viscous liquid
P9	1.0000	brown viscous liquid
P10	2.7849	black viscous liquid
P11	2.1317	black viscous liquid
P12	2.6605	black viscous liquid
P13	2.3373	black viscous liquid

Table 2 Physical characteristics and weights of the fractions from the acetone extract

Table 2continued

Fraction	Weight (g)	Physical characteristic
P14	0.1626	black viscous liquid
P15	1.8644	black viscous liquid
Total	51.9403	-

Fraction P6 (4.9652 g) was further purified by column chromatography over silica gel and eluted with dichloromethane to give 7 fractions (6A-6G).

Subfraction 6B (1.0717 g), containing one major component, was recrystallized from dichloromethane-hexane (1.0:1.0) to give a white solid of **PW1**: imperatorin (0.8289 g).

Subfraction 6F (0.2795 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.2:9.8) to afford 10 fractions (6F1-6F10). Subfraction 6F9 was a white solid of **PW2**: valencic acid (0.0477 g).

Subfraction 6F3 (0.0300 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.1:9.9) to afford 5 fractions (6F3A-6F3E).

Subfraction 6F3B (0.0111 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.2:9.8) to give a white powder of **PW3**: 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7H-furo[3,2-g]benzopyran-2-one (0.0093 g).

Subfraction 6F5 (0.0166 g) was separated by column chromatography with Sephadex LH-20, and eluted with methanol to afford 3 fractions (6F5A-6F5C). Subfraction 6F5C gave a white solid of **PW4**: xanthotoxol (0.0115 g).

Subfraction 6F6 (0.0199 g) was separated by column chromatography with Sephadex LH-20, eluted with methanol to afford 6 fractions (6F6A-6F6F).

Subfraction 6F6D (0.0087 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.2:9.8) to give a white solid of **PW5**: isogosferol (0.0036 g).

Fraction P8 (17.3981 g) was further purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 9 fractions (8A-8I). Subfraction 8B was a white solid of **PW6**: xanthotoxin (0.0073 g).

Subfraction 8F (0.3778 mg) was purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 13 fractions (8F1-8F13). Subfraction 8F7 was a yellow solid of **PW7**: scoparone (0.048 g).

Subfraction 8H (0.2551 g) was purified by column chromatography over silica gel and eluted with a methanol-dichloromethane (0.2:9.8) to give 9 fractions (8H1-8H9).

Subfraction 8H5 (0.0505 g) was further purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.1:9.9) to give 9 fractions (8H5A-8H5I). Subfraction 8H5C was a yellow solid of **PW10**: 6-formylumbilliferone (0.0051 g).

Subfraction 8H5F (0.0197 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.2:9.8) to give a white solid of **PW8**: decursinol (0.0018 g) and white powder of **PW9**: demethylsuberosin (0.0027 g).

Fraction P9 (1.0000 g) was further purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 7 fractions (9A-9G).

Subfraction 9E (0.2688 g) was purified by column chromatography over silica gel and eluted with a methanol-dichloromethane (0.3:9.7) to give 10 fractions (9E1-9E10).

Subfraction 9E7 (0.0057 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.4:9.6) to give white powder of **PW11**: marmesiline (0.0020 g).

Subfraction 9F (0.3980 g) was purified by column chromatography over silica gel and eluted with a gradient of dichloromethane-methanol of increasing polarity to give 8 fractions (9F1-9F8). Subfraction 9F4 was white powder of **PW12**: marmesin (0.0071 g).

Subfraction 9F5 (0.0444 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.5:9.5) to give 5 fractions (9F5A-9F5E).

Subfraction 9F5C (0.0183 g) was separated by column chromatography with Sephadex LH-20 and eluted with methanol-dichloromethane (1.0:1.0) to afford 3 fractions (9F5C1-9F5C3).

Subfraction 9F5C3 (0.0140 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.3:9.7) to give white powder of **PW13**: marmeline (0.0028 g), a white powder of **PW14**: isoangenomalin (0.0022 g) and white powder of **PW15**: 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (0.0019 g).

Fraction P11 (2.1317 g) was further purified by column chromatography over silica gel and eluted with methanol-dichloromethane (1.0:9.0) to give 10 fractions (11A-11J).

Subfraction 11C (0.0597 g) was purified by column chromatography over silica gel and eluted with ethyl acetate-hexane (4.0:6.0) to give 11 fractions (11C1-11C11).

Subfraction 11C10 (0.0130 g) was further purified on preparative TLC and eluted with acetone-dichloromethane (1.0:9.0) to give white powder of **PW16**: isofraxidin (0.0032 g) and a yellow solid of **PW17**: marmelonine A (0.0039 g).

Subfraction 11E (0.1213 g) was purified by column chromatography over silica gel and eluted with methanol-dichloromethane (0.3:9.7) to give 8 fractions (11E1-11E8).

Subfraction 11E4 (0.0073 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.3:9.7) to give white powder of **PW18**: 8-hydroxysmyrindiol (0.0035 g).

Subfraction 11E7 (0.0051 g) was further purified on preparative TLC and eluted with methanol-dichloromethane (0.5:9.5) to give white powder of **PW19**: marmelonine B (0.0025 g).

Subfraction 11F (0.0851 g) was purified by column chromatography over silica gel and eluted with acetone-dichloromethane (1.5:8.5) to give 8 fractions (11F1-11F8). Subfraction 11F5 was white powder of **PW21**: xanthoarnol (0.0028 g).

Subfraction 11F4 (0.0046 g) was further purified on preparative TLC and eluted with ethyl acetate-hexane (6.0:4.0) to give white powder of **PW20**: isophellodenol C (0.0023 g).

Compound PW1: Imperatorin, white solid, m.p. $101-102 \,^{\circ}$ C; UV λ_{max} (MeOH) (log ε): 215 (4.69), 245 (4.55) and 298 (4.25) nm; IR (Neat) v (cm⁻¹): 1713 (C=O stretching), 1623, 1587 and 1446 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 3.

Compound PW2: Valencic acid, white solid, m.p. 189-190°C; UV λ_{max} (MeOH) (log ε): 202 (4.51) and 249 (4.43) nm; IR (Neat) v (cm⁻¹): 3390 (O-H stretching), 1672 (C=O stretching) and 1250 (C-O stretching). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 4.

Compound PW3: 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7*H*-furo[3,2-g]benzopyran-2-one, white powder, m.p. 145-146 °C; UV λ_{max} (MeOH) (log ε): 220 (4.66), 249 (4.56) and 300 (4.32) nm; IR (Neat) v (cm⁻¹): 1728, 1680 (C=O stretching), 1623, 1587 and 1446 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 5.

Compound PW4: Xanthotoxol, white solid, m.p. 246-247 °C; UV λ_{max} (MeOH) (log ε): 219 (4.25), 250 (4.41), 261 (4.53), 268 (4.59) and 307 (4.74) nm; IR (Neat) v (cm⁻¹): 3307 (O-H stretching), 1705 (C=O stretching), 1594, 1447 and 1414 (aromatics). For ¹H NMR (CDCl₃+CD₃OD (1 drop), 300 MHz) and ¹³C NMR (CDCl₃+CD₃OD (1 drop), 75 MHz) spectral data, see Table 6.

Compound PW5: Isogosferol, white solid, m.p. 166-167 °C; UV λ_{max} (MeOH) (log ε): 218 (4.31), 249 (4.53) and 299 (4.69) nm; IR (Neat) v (cm⁻¹): 3413 (O-H stretching), 1721 (C=O stretching), 1620, 1588 and 1442 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 7.

Compound PW6: Xanthotoxin, white solid, m.p. 147-148 °C; UV λ_{max} (MeOH) (log ε): 217 (4.33), 253 (4.41) and 299 (4.50) nm; IR (Neat) v (cm⁻¹): 1716 (C=O stretching), 1617, 1580 and 1456 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 8.

Compound PW7: Scoparone, yellow solid, m.p. 148-149 °C; UV λ_{max} (MeOH) (log ε): 203 (4.23), 285 (4.57) and 338 (4.54) nm; IR (Neat) v (cm⁻¹): 1719 (C=O stretching), 1618, 1514 and 1456 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 9.

Compound PW8: (+) Decursinol, white solid, m.p. 170-171 °C, $[\alpha]_D^{25} =$ +8.7° (c = 0.53, CHCl₃); UV λ_{max} (MeOH) (log ε): 205 (4.66) and 331 (4.29) nm; IR (Neat) v (cm⁻¹): 3410 (O-H stretching), 1717 (C=O stretching), 1625, 1563 and 1488 (aromatics). For ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) spectral data, see Table 10.

Compound PW9: Demethylsuberosin, white powder, m.p. 132-133 °C; UV λ_{max} (MeOH) (log ε): 205 (4.40), 224 (4.35), 238 (4.39) and 330 (4.25) nm; IR (Neat) ν (cm⁻¹): 3420 (O-H stretching), 1717 (C=O stretching), 1625, 1571 and 1489 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 11.

Compound PW10: 6-Formylumbilliferone, yellow solid, m.p. 148-150 °C; UV λ_{max} (MeOH) (log ε): 202 (4.69), 257 (4.58), 336 (4.33) and 392 (3.97) nm; IR (Neat) v (cm⁻¹): 3484 (O-H stretching), 1741 and 1665 (C=O stretching), 1627, 1559, 1459 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 12.

Compound PW11: Marmesiline, white powder, m.p. 163-164 °C, $[\alpha]_D^{25} =$ +2.3 °(c = 0.5, CHCl₃); UV λ_{max} (MeOH) (log ε): 217 (3.59), 223 (3.58) and 272 (3.43) nm; IR (Neat) v (cm⁻¹): 3417 (O-H stretching), 1661 (C=O stretching), 1621, 1539, 1456 (aromatics). For ¹H NMR (CDCl₃, 500 MHz) and ¹³C NMR (CDCl₃, 125 MHz) spectral data, see Table 13.

Compound PW12: (+) Marmesin, white powder, m.p. 170-171 °C, $[\alpha]_D^{26} =$ +20.6° (*c* = 0.9, CHCl₃); UV λ_{max} (MeOH) (log ε): 203 (4.44) and 330 (4.25) nm; IR (Neat) v (cm⁻¹): 3441 (O-H stretching), 1704 (C=O stretching), 1627, 1563, 1503 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 14.

Compound PW13: Marmeline, white powder, m.p. 128-129 °C; UV λ_{max} (MeOH) (log ε): 202 (4.34), 224 (4.42) and 274 (4.44) nm; IR (Neat) v (cm⁻¹): 3259 (O-H stretching), 1660 (C=O stretching), 1619, 1569, 1443 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 15.

Compound PW14: Isoangenomalin, white powder, m.p. 120-121 °C, $[\alpha]_D^{26}$ = +9.7° (*c* = 1.0, CHCl₃); UV λ_{max} (MeOH) (log ε): 203 (4.51), 287 (4.48) and 329 (3.43) nm; IR (Neat) v (cm⁻¹): 1711 (C=O stretching), 1620, 1567, 1401 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 16.

Compound PW15: 6-(4'-Acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin, white powder, m.p. 133-134 °C; UV λ_{max} (MeOH) (log ε): 205 (4.18), 297 (3.58) and 330 (3.70) nm; IR (Neat) v (cm⁻¹): 3392 (O-H stretching), 1720 (C=O stretching), 1618, 1570, 1421 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 17.

Compound PW16: Isofraxidin, white powder, m.p. 151-152°C; UV λ_{max} (MeOH) (log ε): 207 (4.55), 343 (4.27) and 383 (4.19) nm; IR (Neat) v (cm⁻¹): 3356 (O-H stretching), 1712 (C=O stretching), 1606, 1576, 1498 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 18.

Compound PW17: Marmelonine A, yellow solid, m.p. 195-196 °C, $[\alpha]_D^{26} = -3.8^{\circ} (c = 1.0, \text{MeOH})$; UV λ_{max} (MeOH) (log ε): 205 (4.41), 257 (3.57) and 325 (3.95) nm; IR (Neat) v (cm⁻¹): 3415 (O-H stretching), 1721 (C=O stretching), 1625, 1575, 1491 (aromatics). For ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz) spectral data, see Table 19.

Compound PW18: 8-Hydroxysmyrindiol, white powder, m.p. 179-180°C, $[\alpha]_D^{26} = +20.1^{\circ} (c = 1.0, \text{MeOH}); \text{UV } \lambda_{\text{max}} \text{ (MeOH) (log } \varepsilon\text{): } 210 (4.39), 268 (3.72) \text{ and} 326 (3.99) nm; IR (Neat) v (cm⁻¹): 3393 (O-H stretching), 1707 (C=O stretching), 1623, 1588, 1418 (aromatics). For ¹H NMR (CDCl₃+CD₃OD (1 drop), 300 MHz) and ¹³C NMR (CDCl₃+CD₃OD (1 drop), 75 MHz) spectral data, see Table 20.$

Compound PW19: Marmelonine B, white powder, m.p. 279-280°C; UV λ_{max} (MeOH) (log ε): 205 (4.42), 256 (3.49) and 331 (3.93) nm; IR (Neat) v (cm⁻¹): 3432 (O-H stretching), 1726 (C=O stretching), 1621, 1557, 1488 (aromatics). For ¹H NMR (CDCl₃+CD₃OD (1 drop), 300 MHz) and ¹³C NMR (CDCl₃+CD₃OD (1 drop), 75 MHz) spectral data, see Table 21.

Compound PW20: Isophellodenol C, white powder, m.p. 140-141 °C, $[\alpha]_D^{26}$ = +39.7 ° (*c* = 1.0, MeOH); UV λ_{max} (MeOH) (log ε): 204 (4.44) and 331 (4.32) nm; IR (Neat) v (cm⁻¹): 3335 (O-H stretching), 1717 (C=O stretching), 1617, 1570, 1457 (aromatics). For ¹H NMR (CDCl₃+CD₃OD (1 drop), 300 MHz) and ¹³C NMR (CDCl₃+CD₃OD (1 drop), 75 MHz) spectral data, see Table 22.

Compound PW21: Xanthoarnol, white powder, m.p. 178-179 °C, $[\alpha]_D^{26} = +33.1^\circ$ (c = 0.4, acetone); UV λ_{max} (MeOH) (log ε): 204 (4.67), 224 (4.62), 248, (4.56) and 331 (4.47) nm; IR (Neat) v (cm⁻¹): 3392 (O-H stretching), 1715 (C=O stretching), 1627, 1572, 1488 (aromatics). For ¹H NMR (CDCl₃+CD₃OD (1 drop), 300 MHz) and ¹³C NMR (CDCl₃+CD₃OD (1 drop), 75 MHz) spectral data, see Table 23.

CHAPTER 3 RESULTS AND DISCUSSION

3.1 Structure elucidation of compounds from the green fruits of A. marmelos

The crude acetone extract from the green fruits of *A. marmelos* was subjected to quick column chromatography and repeated column chromatography over silica gel to furnish twenty-one compounds: imperatorin (PW1), valencic acid (PW2), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7*H*-furo[3,2-g]benzopyran-2-one (PW3), xanthotoxol (PW4), isogosferol (PW5), xanthotoxin (PW6), scoparone (PW7), decursinol (PW8), demethylsuberosin (PW9), 6-formylumbilliferone (PW10), marmesiline (PW11), marmesin (PW12), marmeline (PW13), isoangenomalin (PW14), 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (PW15), isofraxidin (PW16), marmelonin A (PW17), 8-hydroxysmyrindiol (PW18), marmelonin B (PW19), isophellodenol C (PW20) and xanthoarnol (PW21).

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ¹H, ¹³C NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. Mass spectra were determined for the new compounds: **PW11**, **PW15**, and **PW17-PW19**. The physical data of the known compounds were also compared with the reported values.

Compound PW1

PW1 was isolated as a white solid, m.p. $101-102 \,^{\circ}$ (lit.102 $^{\circ}$). The UV spectrum exhibited the presence of a linear-type furanocoumarin at 215, 245, 263 and 298 nm. The IR spectrum indicated the presence of a lactone carbonyl at 1718 cm⁻¹, aromatic ring at 1691, 1587 and 1446 cm⁻¹ and furan ring at 887 cm⁻¹.

The ¹H NMR spectral data (**Table 3**) of **PW1** exhibited the signal of two pairs of downfield doublets, one at $\delta_{\rm H}$ 7.74 and 6.31 (1H each, d, J = 9.6 Hz) attributable to H-4 and H-3 of the coumarin nucleus while the second pair of signals at $\delta_{\rm H}$ 7.65 and 6.78 (1H each, d, J = 2.2 Hz, H-2' and H-3') confirmed the presence of the benzofuran moiety. The singlet aromatic proton signal at $\delta_{\rm H}$ 7.32 was assigned to H-5. The upfield region exhibited an oxyprenyl side chain which contained two methyl groups at $\delta_{\rm H}$ 1.67 (3H, s) and 1.68 (3H, s) of H-4" and H-5", one methine proton at $\delta_{\rm H}$ 5.56 (1H, t, J= 7.2 Hz, H-2") and methylene protons at $\delta_{\rm H}$ 4.95 (2H, d, J = 7.2 Hz, H-1").

The ¹³C NMR (**Table 3**) and DEPT spectral data displayed signal corresponded sixteen carbon atoms, among which were 11 sp² carbon atoms of furanocoumarin nucleus and the five-carbon side chain which included two methyl carbons at $\delta_{\rm C}$ 17.9, 25.6, one quaternary carbon at $\delta_{\rm C}$ 139.4, one methine carbon at $\delta_{\rm C}$ 119.6 and one oxymethylene carbon at $\delta_{\rm C}$ 69.9. The assignment of the coumarin was confirmed by HMBC correlation of H-4 ($\delta_{\rm H}$ 7.74) with $\delta_{\rm C}$ 160.4 (C-2), 113.1 (C-5) and 143.5 (C-8a), of H-3 ($\delta_{\rm H}$ 6.31) with $\delta_{\rm C}$ 160.4 (C-2) and 116.2 (C-4a), whereas that of a benzofuran ring was confirmed by HMBC correlations of H-2' ($\delta_{\rm H}$ 7.65) with $\delta_{\rm C}$ 125.7 (C-6) and 148.3 (C-7), of H-3' ($\delta_{\rm H}$ 6.78) with $\delta_{\rm C}$ 146.4 (C-2') and 148.3 (C-7)

7), of H-5 ($\delta_{\rm H}$ 7.32) with $\delta_{\rm C}$ 106.6 (C-3'), 148.3 (C-7) 144.3 (C-4) and 143.5 (C-8a). The oxyprenyl group was attached at C-8 due to the correlation between a proton signal at $\delta_{\rm H}$ 4.95 (H-1") with $\delta_{\rm C}$ 131.3 (C-8) as well as with $\delta_{\rm C}$ 119.6 (C-2") and 139.4 (C-3"). Based on these data, the structure of **PW1** was assigned as imperatorin (Razdan *et al.*, 1987).

Figure 2 Selected HMBC correlations of PW1

Position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	-	-
2	-	160.4 (C)	-
3	6.31 (d, <i>J</i> = 9.6 Hz)	114.3 (CH)	C-2, C-4a
4	7.74 (d, <i>J</i> = 9.6 Hz)	144.3 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.2 (C)	-
5	7.32 (s)	113.1 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3'
6	-	125.7 (C)	-
7	-	148.3 (C)	-
8	-	131.3 (C)	-
8a	-	143.5 (C)	-
1′	-	-	-
2′	7.65 (d, $J = 2.2$ Hz)	146.4 (CH)	C-6, C-7, C-3′
3'	6.78 (d, <i>J</i> = 2.2 Hz)	106.6 (CH)	C-6, C-7, C-2′
1‴	4.95 (d, $J = 7.2$ Hz)	69.9(CH ₂)	C-8, C-2″, C-3″

 Table 3
 ¹H, ¹³C NMR and HMBC spectral data of PW1 (CDCl₃)

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
2‴	5.56 (d, J = 7.2 Hz)	119.6 (CH)	C-4″, C-5″
3‴	-	139.4 (C)	-
4‴	1.67 (s)	17.9 (CH ₃)	C-2", C-3", C-4", C-5"
5‴	1.68 (s)	25.6 (CH ₃)	C-2", C-3", C-4", C-5"

Compound PW2

PW2 was isolated as a white solid, m.p. 189-190 °C. The UV spectrum exhibited the absorption bands at 202 and 249 nm. The IR spectrum showed absorption bands for hydroxyl at 3390 cm⁻¹, carbonyl group at 1672 cm⁻¹, and ether at 1250 cm⁻¹.

The ¹H NMR spectral data (**Table 4**) of **PW2** showed the signals of AA'BB' aromatic system at $\delta_{\rm H}$ 6.94 (2H, d, J = 8.9 Hz) and $\delta_{\rm H}$ 8.04 (2H, d, J = 8.9 Hz) of H-4, H-6 and H-3, H-7 respectively, which was a characteristic of a *para*-disubstituted benzene. The substituent at C-5 was identified as an oxyprenyl group according to these signals: two singlets at $\delta_{\rm H}$ 1.75 and 1.80 (3H each, s, H-4' and H-5', respectively) for two methyl protons, one doublet at $\delta_{\rm H}$ 4.57 (2H, d, J = 6.7 Hz, H₂-1') for methylene protons and one triplet at $\delta_{\rm H}$ 5.48 (1H, t, J = 6.7 Hz, H-2') for a methine proton.

The ¹³C NMR spectral data (**Table 4**) exhibited 10 carbon signals, of which four [$\delta_{\rm C}$ 114.3 (C-4), 121.6 (C-2), 132.2 (C-3) and 163.3 (C-5)] were attributed to aromatic ring, whereas five [$\delta_{\rm C}$ 18.2 (C-5'), 25.8 (C-4'), 65.0 (C-1'), 118.9 (C-2') and 138.8 (C-3')] were characteristic of the carbons an oxyprenyl side chain. A signal of carboxyl carbon was shown at $\delta_{\rm C}$ 171.6 (C-1). The locations of an oxyprenyl side chain at C-5 was confirmed by HMBC correlations of H₂-1' ($\delta_{\rm H}$ 4.57) with $\delta_{\rm C}$ 163.3 (C-5), 118.9 (C-7) and 138.8 (C-8), whereas that of a carboxyl group at C-2 was confirmed by HMBC correlations of H-3 ($\delta_{\rm H}$ 8.04) with $\delta_{\rm C}$ 171.6 (C-1), 121.6 (C-2), 114.3 (C-4) and 163.3 (C-5). Accordingly, the structure of **PW2** was assigned as valencic acid (Ito *et al.*, 1988).

Figure 3 Selected HMBC correlations of PW2

Position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	121.6 (C)	-
2,6	8.04 (d, <i>J</i> = 8.9 Hz)	132.2 (CH)	C-1, C-2, C-4, C-5
3,5	6.94 (d, <i>J</i> = 8.9 Hz)	114.3 (CH)	C-1, C-2, C-3, C-5
4	-	163.3 (C)	-
7	-	171.6 (C)	-
1'	4.57 (d, J = 6.7 Hz)	65.0 (CH ₂)	C-5, C-7, C-8
2'	5.48 (t, $J = 6.7$ Hz)	118.9 (CH)	C-6, C-9, C-10
3'	-	138.8 (C)	-
4'	1.80 (s)*	25.8 (CH ₃)	C-7, C-8, C-10
5'	1.75 (s)*	18.2 (CH ₃)	C-6, C-7, C-8, C-9

Table 4¹H, ¹³C NMR and HMBC spectral data of PW2 (CDCl₃)

* May be interchangeable

PW3 was isolated as white powder, m.p. 145-146 °C. The UV spectrum exhibited the presence of a linear-type furanocoumarin at 220, 249 and 300 nm. The IR spectrum indicated the presence of a lactone carbonyl at 1728 cm⁻¹, a keto carbonyl at 1680 cm⁻¹, aromatic ring at 1623, 1587 and 1446 cm⁻¹ and furan ring at 871 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 5**) of **PW3** showed the signals of a furanocoumarin which were similar to those of compound **PW1** (**Table 3**). The difference was shown as the absence of signals for a dimethylallyl side chain as in **PW1** but the presence of a 3-methyl-2-oxo-3-butenyl side chain in **PW3**. The ¹H NMR signals of the latter side chain were shown as a singlet methylene protons at $\delta_{\rm H}$ 5.52: $\delta_{\rm C}$ 73.5, olefinic methylene protons at $\delta_{\rm H}$ 5.83 and 5.98: $\delta_{\rm C}$ 125.3 and a methyl singlet at $\delta_{\rm H}$ 1.85: $\delta_{\rm C}$ 17.5 including a carbonyl carbon at $\delta_{\rm C}$ 195.3. The oxybutenyl side chain was placed at C-8 from HMBC correlations (**Table 5**) of the methylene protons at $\delta_{\rm H}$ 5.52 (H₂-1") with the signals at $\delta_{\rm C}$ 131.1 (C-8), $\delta_{\rm C}$ 195.3 (C-2") and $\delta_{\rm C}$ 142.1 (C-3"). Therefore, compound **PW3** was assigned as 8-[(3"-methyl-2"-oxo-3"-buten-1"-yl)oxy]-7*H*-furo[3,2-g]benzopyran-2-one (De Mol *et al.*, 1984).

Figure 4 Selected HMBC correlations of PW3

Table 5	¹ H, ¹³ C NMR and HMBC spectral data of PW3 (CDCl ₃)
Iunice	

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	160.1 (C)	-
3	6.29 (d, J = 9.6 Hz)	114.7 (CH)	C-2, C-4a
4	7.69 (d, $J = 9.6$ Hz)	144.3 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.5 (C)	-
5	7.28 (s)	113.2 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3'
6	-	126.0 (C)	-
7	-	147.1 (C)	-
8	-	131.1 (C)	-
8a	-	142.5 (C)	
1′	-	-	-
2'	7.58 (d, $J = 2.2$ Hz)	146.7 (CH)	C-6, C-7, C-3′
3′	6.73 (d, $J = 2.2$ Hz)	106.7 (CH)	C-5, C-6, C-2′
1″	5.52 (s)	73.5 (CH ₂)	C-8, C-2″, C-3″
2‴	-	195.3 (C)	-
3‴	-	142.1 (C)	-
4″	1.85 (s)	17.5 (CH ₃)	C-2″, C-3″, C-5″
5″	5.83 (d, $J = 1.4$ Hz)	125.3 (CH ₂)	C-2″, C-3″, C-4″
	5.98 (s)		

PW4 was isolated as a white solid, m.p. 246-247 $^{\circ}$ C (lit. 248 $^{\circ}$ C). The UV spectrum indicated the presence of a linear-type furanocoumarin at maximum absorptions 219, 250, 261, 268 and 307 nm. The IR spectrum showed absorptions of hydroxyl at 3307 cm⁻¹, lactone carbonyl at 1705 cm⁻¹, aromatic ring at 1594, 1447 and 1414 cm⁻¹ and furan ring at 864 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 6**) of **PW4** were comparable to those of **PW3**, except for the absence of signals for an oxyoxobutenyl side chain (OCH₂COC(CH₃)=CH₂). Since the ¹H NMR spectrum of **PW4** displayed only five proton resonance signals, it was possible to conclude that there was a hydroxyl group positioned at C-8 (δ_{c} 130.5). The complete HMBC correlations were summarized in **Table 6**. Therefore, compound **PW4** was assigned as xanthotoxol (Razdan *et al.*, 1987).

Figure 5 Selected HMBC correlations of PW4

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	-	-
2	-	161.9 (C)	-
3	6.28 (d, <i>J</i> = 9.5 Hz)	113.4 (CH)	C-2, C-4a
4	7.78 (d, <i>J</i> = 9.5 Hz)	145.7 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.0 (C)	-
5	7.16 (s)	109.8 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3′
6	-	125.9 (C)	-
7	-	145.6 (C)	-
8	-	130.5 (C)	-
8a	-	139.3 (C)	-
1′	-	-	-
2'	7.64 (d, $J = 2.1$ Hz)	146.8 (CH)	C-6, C-7, C-3′
3'	6.73 (d, <i>J</i> = 2.1 Hz)	106.6 (CH)	C-5, C-6, C-7, C-2′

 Table 6
 ¹H, ¹³C NMR and HMBC spectral data of PW4 (CDCl₃+CD₃OD (1 drop))

PW5 was isolated as a white solid, m.p 166-167 °C. The UV spectrum exhibited the presence of a linear-type furanocoumarin at 218, 249 and 299 nm. The IR spectrum indicated the presence of a hydroxyl group at 3413 cm⁻¹, lactone carbonyl at 1721 cm⁻¹, aromatic ring at 1620, 1588 and 1442 cm⁻¹ and furan ring at 871 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 7**) of **PW5** were similar to those of **PW3** except in the side chain. A 3-methyl-2-oxo-3-butenyl side chain of **PW3** was replaced by a 3-methyl-2-hydroxy-3-butenyl side chain in **PW5**. The signals of the latter side chain were shown as an oxymethine proton at $\delta_{\rm H}$ 4.47 (dd, J = 8.3, 2.8 Hz, H-2"), oxymethylene protons at $\delta_{\rm H}$ 4.53 (dd, J = 9.9, 2.8 Hz, H-1") and $\delta_{\rm H}$ 4.25 (dd, J = 9.9, 8.3 Hz, H-1"), a methyl singlet at $\delta_{\rm H}$ 1.76 (Me-4") and terminal olefinic methylene protons H₂-5" at $\delta_{\rm H}$ 4.93 (d, J = 0.6 Hz) and 5.10 (s). The side chain was placed at C-8 of furanocoumarin moiety due to HMBC correlation of H₂-1" ($\delta_{\rm H}$ 4.53) with C-8 ($\delta_{\rm C}$ 131.6). Based on these data, the structure of **PW5** was assigned as isogosferol (Adebajo *et al.*, 2000).

Figure 6 Selected HMBC correlations of PW5

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	160.3 (C)	-
3	6.31 (d, J = 9.6 Hz)	114.7 (CH)	C-2, C-4a
4	7.72 (d, $J = 9.6$ Hz)	144.4 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.5 (C)	-
5	7.33 (s)	113.7 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3'
6	-	126.0 (C)	-
7	-	148.0 (C)	-
8	-	131.6 (C)	_
8a	-	143.4 (C)	-
1′	-	-	-
2'	7.63 (d, $J = 2.2$ Hz)	146.8 (CH)	C-6, C-7, C-3′
3'	6.77 (d, $J = 2.2$ Hz)	106.8 (CH)	C-5, C-6, C-7, C-2′
1″	4.53 (dd, <i>J</i> = 9.9, 2.8 Hz)	77.3 (CH ₂)	C-8, C-2″, C-3″
	4.25 (dd, <i>J</i> = 9.9, 8.3 Hz)	-	C-8, C-2″, C-3″
2″	4.47 (dd, $J = 8.3, 2.8$ Hz)	73.8 (CH)	C-1″, C-3″
3‴	-	142.8 (C)	_
4‴	1.76 (s)	19.0 (CH ₃)	C-2″, C-3″, C-5″
5″	4.93 (d, $J = 0.6$ Hz)	112.8 (CH ₂)	C-2″, C-4″
	5.10 (s)		C-2″, C-3″, C-4″

Table 7¹H, ¹³C NMR and HMBC spectral data of PW5 (CDCl₃)

PW6 was isolated as a white solid, m.p. 147-148 $^{\circ}$ C (lit. 147 $^{\circ}$ C). The UV spectrum exhibited the absorption bands at 217, 253 and 299 nm. The IR spectrum showed absorption bands for lactone carbonyl at 1716 cm⁻¹, aromatic ring at 1617, 1580 and 1456 cm⁻¹ and furan ring at 750 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 8**) of **PW6** were closely related to compound **PW4**, except that **PW6** had an additional singlet signal of methoxyl protons at $\delta_{\rm H}$ 4.15 (3H, s) ($\delta_{\rm C}$ 60.9). The position of the methoxyl group at C-8 was determined through HMBC correlations of $\delta_{\rm H}$ 4.15 (8-OMe) with the signal at $\delta_{\rm C}$ 132.3 (C-8). Based on these data, the structure of **PW6** was assigned as xanthotoxin (Razdan *et al.*, 1987).

Figure 7 Selected HMBC correlations of PW6

OCl ₃)		
	UMPC	

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	-	-
2	-	160.2 (C)	-
3	6.22 (d, $J = 9.6$ Hz)	114.2 (CH)	C-2, C-8a
4	7.66 (d, $J = 9.6$ Hz)	144.3 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	116.1 (C)	-
5	7.21 (s)	112.8 (CH)	C-4, C-6, C-7, C-8, C-4a, C-8a, C-3'
6	-	125.9 (C)	-
7	-	147.2 (C)	-
8	-	132.3 (C)	-
8a	-	142.5 (C)	-
1′	-	-	-
2'	7.57 (d, $J = 2.2$ Hz)	146.4 (CH)	C-6, C-7, C-3′
3'	6.70 (d, J = 2.2 Hz)	106.5 (CH)	C-6, C-7, C-2′
8-OMe	4.15 (s)	60.9 (CH ₃)	C-8

 Table 8
 ¹H, ¹³C NMR and HMBC spectral data of PW6 (CDCl₃)

PW7 was isolated as a yellow solid, m.p. 148-149 $^{\circ}$ C (lit. 147 $^{\circ}$ C). The UV spectrum exhibited the absorption bands characteristic of coumarin at 203, 285 and 338 nm. The IR spectrum showed absorption bands for lactone carbonyl at 1719 cm⁻¹ and aromatic ring at 1618, 1514 and 1456 cm⁻¹.

The ¹H NMR spectral data (**Table 9**) of **PW7** showed the signals of a typical pair of doublets at $\delta_{\rm H}$ 6.25 and 7.61 (1H each, d, J = 9.6 Hz,) for H-3 and H-4, respectively, and two uncoupled aromatic protons at $\delta_{\rm H}$ 6.84 and 6.79 (1H each, s) of H-5 and H-8, characteristic of 1, 2, 4, 5-tetrasubstituted benzene. In addition, the ¹H NMR spectrum exhibited two methoxyl singlet signals at $\delta_{\rm H}$ 3.89 and 3.92 (3H each), indicating that these two methoxyl groups were attached to C-6 and C-7 in coumarin moiety.

The ¹³C NMR (**Table 9**) and DEPT spectral data exhibited 11 carbon resonances including two methoxyl groups at $\delta_{\rm C}$ 56.2 (2 × OCH₃), two olefinic methine carbons at $\delta_{\rm C}$ 113.4 (C-3) and 143.3 (C-4), two aromatic methine carbons at $\delta_{\rm C}$ 107.9 (C-5) and 99.8 (C-8), four quaternary aromatic carbons at $\delta_{\rm C}$ 111.3 (C-4a), 152.7 (C-6), 146.2 (C-7) and 149.8 (C-8a), and one carbonyl carbon at δ 161.3 (C-2). In HMBC correlations two methoxyl proton signals at $\delta_{\rm H}$ 3.92 and 3.89 showed correlations with the signals at $\delta_{\rm C}$ 152.7 (C-7) and 146.2 (C-6), respectively, as well as correlations from $\delta_{\rm H}$ 6.84 (H-5) and 6.79 (H-8) to $\delta_{\rm C}$ 152.7 (C-7) and 146.2 (C-6) which confirmed that these methoxyl groups were located at the C-7 and C-6, respectively. Based on these data, the structure of **PW7** was assigned as scoparone (Razdan *et al.*, 1987).

Figure 8 Selected HMBC correlations of PW7

Position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	161.3 (C)	-
3	6.25 (d, <i>J</i> = 9.5 Hz)	113.4 (CH)	C-2, C-4a
4	7.61(d, J = 9.5 Hz)	143.3 (CH)	C-2, C-5, C-8, C-8a
4a	-	111.3 (C)	-
5	6.84 (s)	107.9 (CH)	C-4, C-6, C-7, C-8a
6	-	146.2 (C)	-
7	-	152.7 (C)	-
8	6.79 (s)	99.8 (CH)	C-6, C-7, C-4a, C-8a
8a	-	149.8 (C)	-
6-OMe	3.89 (s)*	56.2 (CH ₃)	C-6

56.2 (CH₃)

 Table 9
 ¹H, ¹³C NMR and HMBC spectral data of PW7 (CDCl₃)

* May be interchangeable

3.92 (s)*

7-OMe

C-7

PW8 was isolated as a white solid, m.p. 170-171 °C, $[\alpha]_D^{25} = +8.7 \circ (c = 0.53, CHCl_3)$ (lit. $[\alpha]_D^{22} = +6.8 \circ (c = 0.65, CHCl_3)$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 205 and 331 nm. The IR spectrum showed absorption bands for hydroxyl group at 3410 cm⁻¹, lactone carbonyl at 1717 cm⁻¹ and aromatic ring at 1625, 1563 and 1488 cm⁻¹.

In the ¹H NMR spectra of **PW8**, characteristic signals were observed for a geminal dimethyl group at $\delta_{\rm H}$ 1.30 and 1.33 (3H each, s), a CH₂-CH-O system ($\delta_{\rm H}$ 2.77 and 3.04, each 1H, H-4' and $\delta_{\rm H}$ 3.81, 1H, H-3'), two aromatic *para* protons at $\delta_{\rm H}$ 6.72 and 7.11 (1H each, s), and H-3 and H-4 of the coumarin nucleus ($\delta_{\rm H}$ 6.16 and 7.51, each 1H, d, J = 9.5 Hz), showing that **PW8** contained the decursinol moiety, a dihydropyranocoumarin.

The ¹³C NMR (**Table 10**) and DEPT spectral data exhibited 14 carbons signal, attributable to five methine, one methylene, two methyl and six quaternary carbons. The key HMBC correlations between H-3' ($\delta_{\rm H}$ 3.81) and C-6 ($\delta_{\rm C}$ 116.4), H-4' ($\delta_{\rm H}$ 2.77 and 3.04) and C-5 ($\delta_{\rm C}$ 129.0), C-7 ($\delta_{\rm C}$ 156.5) and C-2' ($\delta_{\rm C}$ 78.2) suggested that the 2,2-dimethylpyran ring was fused to the coumarin nucleus with linear orientation at C-6 and C-7. Based on these data, the structure of **PW8** was assigned as (+) decursinol (Nemoto *et al.*, 2003).

Figure 9 Selected HMBC correlations of PW8

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	161.3 (C)	-
3	6.16 (d, <i>J</i> = 9.5 Hz)	113.4 (CH)	C-2, C-4a
4	7.51 (d, $J = 9.5$ Hz)	143.1 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	113.0 (C)	-
5	7.11 (s)	129.0 (CH)	C-4, C-7, C-8, C-4a, C-8a, C-1′
6	-	116.4 (C)	-
7	-	156.5 (C)	-
8	6.72 (s)	104.8 (CH)	C-6, C-7, C-4a, C-8a, C-1′
8a	-	154.2 (C)	-
4′	2.77 (dd, <i>J</i> = 16.7, 5.8 Hz)	30.7 (CH ₂)	C-5, C-6, C-7, C-2′, C-3′
	3.04 (dd, J = 16.7, 4.7 Hz)		
3'	3.81 (dd, J = 5.8, 4.7 Hz)	69.2 (CH)	C-6, C-1", C-2″
2'	-	78.2 (C)	-
1	-	-	-
1‴	1.30 (s)	25.0 (CH ₃)	C-2′, C-3′, C-2″
2‴	1.33 (s)	22.1 (CH ₃)	C-7, C-2′, C-3′, C-1″

Table 10¹H, ¹³C NMR and HMBC spectral data of PW8 (CDCl₃)

PW9 was isolated as a white powder, m.p.132-133 $^{\circ}$ (lit. 134-136 $^{\circ}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 205, 224, 238 and 330 nm. The IR spectrum showed absorption bands for hydroxyl group at 3420 cm⁻¹, lactone carbonyl at 1717 cm⁻¹ and aromatic ring at 1625, 1571 and 1489 cm⁻¹.

The ¹H NMR spectral data (**Table 11**) of **PW9** showed the signals of 6,7disubstituted coumarin unit at $\delta_{\rm H}$ 6.16 (1H, d, J = 9.4 Hz, H-3), 7.55 (1H, d, J = 9.4Hz, H-4), 7.12 (1H, s, H-5), 6.77 (1H, s, H-8). An isoprenyl group was shown as signals at $\delta_{\rm H}$ 3.31 (2H, d, J = 7.2 Hz, H-1'), 5.24 (1H, t, J = 7.2 Hz, H-2'), 1.73, 1.71 (3H each, s, H-5', H-6'), whose HMBC correlations of H₂-1' at $\delta_{\rm H}$ 3.31 with the carbons at $\delta_{\rm C}$ 135.7 (C-3'), 120.8 (C-2'), 158.3 (C-7), 124.8 (C-6) and 128.4 (C-5), indicated a connection of an isoprenyl group at C-6 and a hydroxyl group at C-7 Therefore, compound **PW9** was assigned as demethylsuberosin (Patre *et al.*, 2009).

Figure 10 Selected HMBC correlations of PW9

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС
1	-	-	-
2	-	162.8 (C)	-
3	6.16 (d, <i>J</i> = 9.4 Hz)	112.4 (CH)	C-2, C-4a
4	7.55 (d, J = 9.4 Hz)	143.7 (CH)	C-2, C-5, C-8a
4a	-	112.5 (C)	-
5	7.12 (s)	128.4 (CH)	C-4, C-7, C-8a, C-1'
6	-	124.8 (C)	-
7	-	158.3 (C)	-
8	6.77 (s)	103.4 (CH)	C-6, C-7, C-4a, C-8a
8a	-	154.3 (C)	-
1'	3.31 (d, J = 7.2 Hz)	28.9 (CH ₂)	C-5, C-6, C-7, C-2′, C-3′
2'	5.24 (t, J = 7.2 Hz)	120.8 (CH)	-
3′	-	135.7 (C)	-
5'	1.73 (s)	25.8 (CH ₃)	C-2', C-3', C-6'
6'	1.71 (s)	17.9 (CH ₃)	C-2′, C-3′, C-5′

Table 11¹H, ¹³C NMR and HMBC spectral data of PW9 (CDCl₃)

PW10 was isolated as a yellow solid, m.p. 148-150 °C. The UV spectrum exhibited the absorption bands characteristic of coumarin at 202, 257, 336 and 392 nm. The IR spectrum showed absorption bands for hydroxyl group at 3484 cm⁻¹, lactone carbonyl at 1741 cm⁻¹, aldehyde group at 1665 cm⁻¹ and aromatic ring at 1627, 1559 and 1459 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 12**) of **PW10** were similar to those of **PW9** except for the disappearance of the signals of an isoprenyl group at C-6 and appearance of a singlet of an aldehydic group at $\delta_{\rm H}$ 9.86 (1H, s, CHO-6). A chelated proton singlet signal of a phenolic hydroxyl at C-7 was displayed at $\delta_{\rm H}$ 11.34. The location of the aldehyde group at C-6 was assigned by HMBC correlations (**Figure 12**) of the aldehyde proton at $\delta_{\rm H}$ 9.86 to the carbons at $\delta_{\rm C}$ 134.5 (C-5), 118.3 (C-6), 164.5 (C-7) and 105.2 (C-8), and phenolic hydroxyl proton showed correlations with the carbons at $\delta_{\rm C}$ 118.3 (C-6), 164.5 (C-7), 105.2 (C-8) and 159.8 (C-8a). The complete HMBC data were summarized in **Table 12**. Therefore, compound **PW10** was identified as 6-formylumbilliferone (Ito *et al*, 1988).

Figure 11 Selected HMBC correlations of PW10

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	159.5 (C)	-
3	6.27 (d, J = 9.6 Hz)	114.6 (CH)	C-2, C-4a
4	7.61 (d, $J = 9.6$ Hz)	142.4 (CH)	C-5, C-4a, C-8a
4a	-	112.6 (C)	-
5	7.66 (s)	134.5 (CH)	C-4, C-7, C-8a, C-1′
6	-	118.3 (C)	-
7	-	164.5 (C)	-
8	6.82 (s)	105.2 (CH)	C-6, C-7, C-4a, C-8a
8a	-	159.8 (C)	-
6-CHO	9.86 (s)	194.5 (CH)	C-5, C-7, C-8
7-OH	11.34 (s)	-	C-6, C-7, C-8, C-8a, C-4a

Table 12¹H, ¹³C NMR and HMBC spectral data of PW10 (CDCl₃)

PW11 was isolated as a white powder, m.p. 163-164 °C. The UV spectrum exhibited the absorption bands characteristic of cinnamide moiety at 217, 223 and 272 nm. The IR spectrum showed absorption bands for hydroxyl group at 3417 cm⁻¹, conjugated carbonyl at 1661 cm⁻¹, aromatic ring at 1621, 1539 and 1456 cm⁻¹.

The ¹H NMR spectral data (**Table 13**) of **PW11** displayed characteristic sets of signals of the cinnamide group at $\delta_{\rm H}$ 6.37 (1H, d, J = 15.6 Hz, H-8'), 7.64 (1H, d, J =15.6 Hz, H-7'), 7.49 (2H, dd, J = 7.6, 1.9 Hz, H-2', H-6') and 7.34-7.36 (3H, m, H-3', H-4', H-5'). Furthermore, the ¹H NMR spectrum exhibited the doublet of doublet signals of the benzylic oxymethine proton at $\delta_{\rm H}$ 4.86 (J = 7.8, 2.9 Hz, H-2) which was coupled with non-equivalent methylene protons adjacent to the nitrogen of amide at $\delta_{\rm H}$ 3.43 (ddd, J = 13.8, 8.0, 4.8 Hz, H-1a) and 3.80 (ddd, J = 13.8, 7.0, 2.7 Hz, H-1b). The aromatic proton signals at $\delta_{\rm H}$ 7.30 (2H, d, J = 8.5 Hz, H-2", H-6") and 6.90 (2H, d, J =8.5 Hz, H-3", H-5") could be assigned as 1,4-disubstituted aromatic protons. Additionally, the ¹H NMR signals at $\delta_{\rm H}$ 4.04 (1H, ddd, J = 9.5, 3.2, 1.0 Hz, H-1"a), 4.46 (1H, d, J = 5.1 Hz, H-1"'b): $\delta_{\rm C}$ 71.2, 3.90 (1H, dt, J = 8.8, 1.0 Hz, H-2"'): $\delta_{\rm C}$ 73.6, 5.00 (1H, s, H-4"'a), 5.13 (1H, s, H-4"'b): $\delta_{\rm C}$ 112.8 and a singlet at δ 1.80 (3H): $\delta_{\rm C}$ 18.9 were assigned to an oxyisoprenyl unit. In the HMBC spectrum, the H-2"/H-6" aromatic protons showed long-range correlations with C-2 ($\delta_{\rm C}$ 73.4), C-1" ($\delta_{\rm C}$ 134.5) and C-4" (δ_c 158.2) and the remaining H-3"/H-5" aromatic protons correlated with C-1" (δ_{C} 134.5) and C-4" (δ_{C} 158.2). The side chain methylene protons H₂-1" correlated with C-2" ($\delta_{\rm C}$ 73.6) and C-4" ($\delta_{\rm C}$ 158.2), indicating the attachment of a hydroxyethylcinnamamide chain at C-1" and a hydroxyloxyprenyl group at C-4" of the The structure of PW11 was a new compound and named as benzene ring. marmesiline.

Figure 12 Selected HMBC correlations of PW11

	1 12
Table 13	¹ H, ¹³ C NMR and HMBC spectral data of PW11

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	3.43 (ddd, <i>J</i> = 13.8, 8.0, 4.8 Hz)	47.7 (CH ₂)	-
	3.80 (ddd, <i>J</i> = 13.8, 7.0, 2.7 Hz)		
2	$4.86 (\mathrm{dd}, J = 7.8, 2.9 \mathrm{Hz})$	73.4 (CH)	-
1′	-	134.5 (C)	
2′,6′	7.49 (dd, $J = 7.6, 1.9$ Hz)	127.9 (CH)	C-4′
3′,5′	7.34-7.36 (m)	128.9 (CH)	C-1′
4′	7.34-7.36 (m)	129.9 (CH)	C-2′, C-6′
7′	7.64 (d, J = 15.6 Hz)	141.8 (CH)	C-2', C-6', C-9'
8′	6.37 (d, <i>J</i> = 15.6 Hz)	119.9 (CH)	C-1′, C-9′
9′	-	167.1 (C)	-
1‴	-	134.5 (C)	-
2‴,6″	7.30 (d, $J = 8.5$ Hz)	127.1 (CH)	C-2, C-1", C-4", C-5"
3″,5″	6.90 (d, J = 8.5 Hz)	114.7 (CH)	C-1″, C-4″
4‴	-	158.2 (C)	-
1	4.04 (ddd, <i>J</i> = 9.4, 3.2, 1.0 Hz)	71.2 (CH ₂)	C-4″, C-2′′′
	4.46 (dd, <i>J</i> = 9.4, 8.3 Hz)		
2	3.90 (dd, J = 8.3, 3.2 Hz)	73.6 (CH)	-
3	-	143.3 (C)	-
4	5.00 (s)	112.8 (CH ₂)	C-2 ^{'''} , C-5 ^{'''}
	5.13 (s)		
5	1.80 (s)	18.9 (CH ₃)	C-2 ^{***} , C-3 ^{***} , C-4 ^{***}
N-H	6.00 (br t, J = 7.8 Hz)		-

PW12 was isolated as white powder, m.p. 170-171 °C, $[\alpha]_D^{26} = +20.6^\circ (c = 0.9, CHCl_3)$ [lit. $[\alpha]_D^{22} = +21.7^\circ$, $(c = 0.9, CHCl_3)$ (Nemoto *et al.*, 2003)]. The UV spectrum exhibited the absorption bands characteristic of coumarin at 203 and 330 nm. The IR spectrum showed absorption bands for hydroxyl group at 3441 cm⁻¹, lactone carbonyl at 1704 cm⁻¹ and aromatic ring at 1627, 1563 and 1503 cm⁻¹.

The ¹H NMR spectral data (Table 14) of PW12 showed the signals of 6,7disubstituted coumarin unit as signals at $\delta_{\rm H}$ 6.22 (1H, d, J = 9.5 Hz, H-3), 7.60 (1H, d, J = 9.5 Hz, H-4), 7.23 (1H, s, H-5) and 6.75 (1H, s, H-8). In addition three mutually coupled protons at $\delta_{\rm H}$ 4.75 (1H, dd, J = 9.1, 8.5 Hz, H-2'), 3.18 (1H, ddd, J = 15.9, 8.8, 1.2 Hz, H-3') and 3.26 (1H, ddd, J = 15.9, 8.3, 1.2 Hz, H-3') and two methyls at $\delta_{\rm H}$ 1.25 1.38 (3H, suggested **PW12** (3H, s), s) that contained a hydroxyisopropyldihydrofurano moiety whose location was placed between C-6 and C-7 of the coumarin unit. The location of the hydroxyisopropyldihydrofurano group was confirmed by HMBC correlations of H-3' ($\delta_{\rm H}$ 3.18 and 3.26) with the carbons at $\delta_{\rm C}$ 123.4 (C-5), 125.5 (C-6), 163.2 (C-7), 91.1 (C-2') and 71.1 (C-4'). A methine proton at $\delta_{\rm H}$ 4.75 (H-2') showed correlations with the carbon at $\delta_{\rm C}$ 163.2 (C-7), 26.1 (C-6') and 24.3 (C-5'), methyl protons at $\delta_{\rm H}$ 1.25 (H₃-5') with the carbons at δ 26.1 (C-6'), 71.7 (C-4') and 91.1 (C-2') and $\delta_{\rm H}$ 1.38 (H-6') with the carbons at δ 24.3 (C-5'), 71.7 (C-4') and 91.1 (C-2'). The complete HMBC data were summarized in Table 14. Therefore, compound PW12 was marmesin (Kim et al., 2006).

Figure 13 Selected HMBC correlations of PW12

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	161.4 (C)	-
3	6.22 (d, J = 9.5 Hz)	112.4 (CH)	C-2, C-4a
4	7.60 (d, $J = 9.5$ Hz)	143.8 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	112.8 (C)	-
5	7.23 (s)	123.4 (CH)	C-4, C-7, C-8a, C-3′
6	-	125.0 (C)	-
7	-	163.2 (C)	-
8	6.74 (s)	98.0 (CH)	C-4, C-6, C-7, C-4a, C-8a, C-3'
8a	-	155.7 (C)	-
1′	-	-	-
2'	4.75 (dd, <i>J</i> = 9.1, 8.5 Hz)	91.1 (CH)	C-7, C-5′, C-6′
3'	3.18 (ddd, <i>J</i> = 15.9, 8.8, 1.2 Hz)	29.5 (CH ₂)	C-5, C-6, C-7, C-2′, C-4′
	3.26 (ddd, <i>J</i> = 15.9, 8.3, 1.2 Hz)		
4′	-	71.1 (C)	-
5′	1.25 (s)	24.3 (CH ₃)	C-2′, C-4′, C-6′
6′	1.38 (s)	26.1 (CH ₃)	C-2′, C-4′, C-5′

Table 14¹H, ¹³C NMR and HMBC spectral data of PW12 (CDCl₃)

PW13 was isolated as a white powder, m.p. 128-129 °C. The UV spectrum exhibited the absorption bands characteristic of cinnamide structure at 202, 224 and 274 nm. The IR spectrum showed absorption bands for hydroxyl group at 3259 cm⁻¹, carbonyl at 1660 cm⁻¹ and aromatic ring at 1619, 1569 and 1443 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 15**) of **PW13** were closely comparable with those of **PW11** except for the disappearance of the terminal olefinic methylene protons at $\delta_{\rm H}$ 5.00 and 5.13: $\delta_{\rm C}$ 112.8 and a hydroxymethine proton at $\delta_{\rm H}$ 3.90: $\delta_{\rm C}$ 73.6 in **PW11** but the appearance of an additional olefinic methyl singlet at $\delta_{\rm H}$ 1.72: $\delta_{\rm C}$ 25.8 and an olefinic methine proton at $\delta_{\rm H}$ 5.42: $\delta_{\rm C}$ 119.6 in **PW13**. The HMBC spectrum showed correlations of H-4"' at $\delta_{\rm H}$ 1.72 with the carbons at $\delta_{\rm C}$ 18.2 (C-5"'), 138.2 (C-3"') and 119.6 (C-2"'). Based on these data, the structure of **PW13** was assigned as marmeline (Sharma *et al.*, 1981).

Figure 16 Selected HMBC correlations of PW13

Position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	3.80 (m)	47.6 (CH ₂)	C-8′, C-9′
	3.40 (m)		
2	$4.80 (\mathrm{dd}, J = 7.7, 3.3 \mathrm{Hz})$	73.5 (CH)	C-1", C-2", C-6"
1′	-	134.7 (C)	-
2′,6′	7.43 (m)	127.9 (CH)	C-1', C-3', C-4', C-5', C-8'
3′,5′	7.30 (m)	128.8 (CH)	C-1′
4′	7.30 (m)	129.9 (CH)	C-2′, C-6′
7′	7.59 (d, <i>J</i> = 15.6 Hz)	141.7 (CH)	C-1', C-2', C-6', C-8', C-9',
8′	6.33 (d, <i>J</i> = 15.6 Hz)	120.1 (CH)	C-1′, C-9′
9′	-	167.0 (C)	-
1‴	-	133.8 (C)	-
2″,6″	7.24 (d, J = 8.7 Hz)	127.1 (CH)	C-2, C-3", C-4", C-5"
3″,5″	6.84 (d, J = 8.7 Hz)	114.8 (CH)	C-1″, C-4″
4‴	-	158.7 (C)	-
1'''	4.45 (d, $J = 6.7$ Hz)	64.9 (CH ₂)	C-4″, C-2΄΄΄, C-3΄΄΄
2	5.42 (t, J = 6.7 Hz)	119.6 (C)	C-4 ^{'''} , C-5 ^{'''}
3	-	138.2 (C)	-
4	1.72 (s)	25.8 (CH ₃)	C-2 , C-5
5	1.67 (s)	18.2 (CH ₃)	C-2 ^{'''} , C-4 ^{'''}
N-H	5.98 (t, $J = 5.4$ Hz)	-	-

Table 17¹H, ¹³C NMR and HMBC spectral data of PW13 (CDCl₃)

PW14 was isolated as a white powder, m.p. 120-121 $^{\circ}$ C (lit. 116-117 $^{\circ}$ C). The UV spectrum exhibited the absorption bands characteristic of coumarin at 203, 287 and 329 nm. The IR spectrum showed absorption bands for lactone carbonyl at 1711 cm⁻¹ and aromatic ring at 1620, 1567 and 1401 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 16**) of **PW14** were similar to those of **PW12**, except for the presence of the two singlet signals of terminal olefinic methylene protons at $\delta_{\rm H}$ 4.84 and 4.93 (H₂-5') and only one methyl singlet at $\delta_{\rm H}$ 1.73 (H₃-6') corresponding to an isopropenyl group in **PW14**. The location of an isopropenyl group at C-2' was confirmed by HMBC correlations of H₂-5' ($\delta_{\rm H}$ 4.84 and 4.93) and H-6' ($\delta_{\rm H}$ 1.73) with the carbons at $\delta_{\rm C}$ 78.0 (C-2'). The complete HMBC data were summarized in **Table 16**. Therefore, compound **PW14** was isoangenomalin (Yamaguchi *et al.*, 2003).

Figure 15 Selected HMBC correlations of PW14

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	161.5 (C)	-
3	6.14 (d, J = 9.5 Hz)	112.9 (CH)	C-2, C-4a
4	7.50 (d, $J = 9.5$ Hz)	143.2 (CH)	C-2, C-5, C-8a
4a	-	112.2 (C)	-
5	7.04 (s)	130.2 (CH)	C-4, C-7, C-8a, C-3'
6	-	123.0 (C)	-
7	-	159.8 (C)	-
8	6.80 (s)	105.1 (CH)	C-6, C-7, C-4a, C-8a
8a	-	155.0 (C)	-
1′	-	-	-
2'	4.36 (dd, <i>J</i> = 7.9, 2.4 Hz)	78.0 (CH)	-
3'	2.82 (dd, <i>J</i> = 15.0, 2.4 Hz)	37.6 (CH ₂)	C-5, C-6, C-7, C-2′
	2.92 (dd, <i>J</i> = 15.0, 7.9 Hz)		
4′	-	145.8 (C)	-
5′	4.84 (s)	111.7 (CH ₂)	C-2′, C-3″
	4.93 (s)		
6′	1.73 (s)	18.2 (CH ₃)	C-2′, C-1″, C-2″

Table 16¹H, ¹³C NMR and HMBC spectral data of PW14 (CDCl₃)

PW15 was isolated as white powder, m.p. 133-134 °C. The UV spectrum exhibited the absorption bands characteristic of coumarin at 205, 297 and 330 nm. The IR spectrum showed absorption bands for hydroxyl group at 3392 cm⁻¹, lactone carbonyl at 1720 cm⁻¹ and aromatic ring at 1618, 1570 and 1421 cm⁻¹.

The ¹H NMR spectral data (**Table 17**) of **PW15** showed the signals of 6,7disubstituted coumarins which were similar to those of compound **PW9**, except for the presence of characteristic signals of a 4-acetoxy-3-methyl-2-butenyl side chain at $\delta_{\rm H}$ 3.36 (2H, d, J = 7.1 Hz, H-1'), 5.58 (1H, t, J = 7.1 Hz, H-2'), 4.46 (2H, s, H-4'), 1.73 (3H, s, H-5') and 2.02 (3H, s, H-2") in **PW15** instead of the signal of an isoprenyl group as in **PW9**.

The ¹³C-NMR spectrum showed sixteen carbons; two methyl at δ_C 14.1 (H-5') and 20.9 (H-2"), two methylene at δ_C 27.9 (C-1') and 69.7 (C-4'), five methine at δ_C 112.9 (C-3), 143.7 (C-4), 128.5 (C-5), 103.2 (C-8) and 125.6 (C-2'), five quaternary at δ_C 112.0 (4a), 154.1 (C-8a), 124.5 (C-6), 157.6 (C-7) and 132.7 (C-3') and two carbonyl carbons at δ_C 161.6 (C-2) and 171.0 (C-1"). In the HMBC spectrum, the methylene protons at δ_H 3.36 (H-1') correlated with the carbons at δ_C 128.5 (C-5), 124.5 (C-6), 157.6 (C-7), 125.6 (C-2') and 132.7 (C-3'), indicating the location of a side chain positioned at C-6 and a hydroxyl group at C-7. Furthermore, the methylene protons at δ_H 4.46 (C-4') correlated with signals at δ_C 171.0 (C-1"), 132.7 (C-3') and 125.6 (C-2') and a methyl signal at δ_H 2.02 (H-2") correlated with the resonance at δ_C 171.0 (C-1"), resulting in the assignment of an acetoxyl group at C-4'. The methyl acetyl group was *trans* with respect to the methylene group of the prenyl substituent on the basis of a NOESY correlation between H₂-1' and H₃-5', and H-2' and H₂-4'. Based on these data, **PW 15** was a new compound and named as 6-(4'-acetoxy-3'methyl-2'-butenyl)-7-hydroxycoumarin.

Figure 16 Selected HMBC correlations of PW15

Table 17¹H, ¹³C NMR and HMBC spectral data of PW15 (CDCl₃)

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	НМВС	NOESY
1	-	-	-	
2	-	161.6 (C)	-	
3	6.17 (d, <i>J</i> = 9.5 Hz)	112.9 (CH)	C-2, C-4a	H-4
4	7.56 (d, J = 9.5 Hz)	143.7 (CH)	C-2, C-5, C-4a, C-8a	H-3
4a	-	112.0 (C)	-	
5	7.12 (s)	128.5 (CH)	C-4, C-7, C-8a, C-1′	
6	-	124.5 (C)	-	
7	-	157.6 (C)	-	
8	6.80 (s)	103.2 (CH)	C-6, C-7, C-4a, C-8a	
8a	-	154.1 (C)	-	
1′	3.36 (d, J = 7.1 Hz)	27.9 (CH ₂)	C-5, C-6, C-7, C-2′, C-3′	H-5′
2'	5.58 (t, $J = 7.1$ Hz)	125.6 (CH)	3'-Me	H-4′
3'	-	132.7 (C)	-	
4′	4.46 (s)	69.7 (CH ₂)	C-2′, C-3′, C-5′, 3′-Me	H-2′
5′	1.72 (s)	14.1 (CH ₃)	C-2′, C-3′, C-4′	H-1′
1‴	-	171.0 (C)	-	
2‴	2.02 (s)	20.9 (CH ₃)	C-5′	
7-OH	6.44 (br s)	-	-	

PW16 was isolated as white powder, m.p. $151-152 \,^{\circ}$ (lit. 149-150 $^{\circ}$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 207, 343 and 383 nm. The IR spectrum showed absorption bands for hydroxyl group at 3356 cm⁻¹, lactone carbonyl at 1712 cm⁻¹ and aromatic ring at 1606, 1576 and 1498 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 18**) of **PW16** were closely related to those of **PW10**. The differences were shown as a replacement of a singlet signal of an aromatic proton ($\delta_{\rm H}$ 6.81) at C-8 and aldehyde group ($\delta_{\rm H}$ 9.86) at C-6 in **PW10** by signals of two methoxyl groups ($\delta_{\rm H}$ 4.10 and 3.94) in **PW10**. The positions of the methoxyl group ($\delta_{\rm H}$ 4.10) at C-8 was confirmed by its HMBC correlation with the carbon at $\delta_{\rm C}$ 134.5 (C-8) and 6-OMe ($\delta_{\rm H}$ 3.94) with the carbon at $\delta_{\rm C}$ 144.6 (C-6). In addition an aromatic proton H-5 ($\delta_{\rm H}$ 6.66) showed correlation with the carbons at $\delta_{\rm C}$ 143.8 (C-4), 144.6 (C-6), 142.4 (C-7) and 143.1 (C-8a), confirming the presence of 6,7,8-trioxygenatedcoumarin. Based on these data, the structure of **PW16** was assigned as isofraxidin (Banthorpe *et al.*, 1989).

Figure 17 Selected HMBC correlations of PW16

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC
1	-	-	-
2	-	160.5 (C)	-
3	6.28 (d, <i>J</i> = 9.5 Hz)	113.6 (CH)	C-2, C-4a
4	7.59 (d, J = 9.5 Hz)	143.8 (CH)	C-2, C-5, C-8, C-4a, C-8a
4a	-	111.2 (C)	-
5	6.66 (s)	103.3 (CH)	C-4, C-6, C-7, C-8, C-8a
6	-	144.6 (C)	-
7	-	142.4 (C)	-
8	-	134.5 (C)	-
8a	-	143.1 (C)	-
6-OMe	3.94 (s)	56.5 (CH ₃)	C-6
8-OMe	4.10 (s)	61.6 (CH ₃)	C-8

Table 18¹H, ¹³C NMR and HMBC spectral data of PW16 (CDCl₃)

PW17 was isolated as a yellow solid, m.p. 195-196 °C. The UV spectrum exhibited the presence of the absorption bands characteristic of coumarin at 205, 257, 325 nm. The IR spectrum showed absorption bands for hydroxyl group at 3415 cm⁻¹, lactone carbonyl at 1721 cm⁻¹ and aromatic ring at 1625, 1575 and 1491 cm⁻¹.

The ¹H and ¹³C NMR were closely related with those of marmesin (**PW** 12). However, instead of two gem-dimethyl groups as in PW12, the appearance of only one methyl singlet ($\delta_{\rm H}$ 1.52) on C-4' was proposed for **PW17**. Furthermore, the ¹H NMR spectrum also showed the signal of oxymethine proton at $\delta_{\rm H}$ 5.70 (d, J = 5.8Hz, H-3') and the signal of non-equivalent oxymethylene protons at $\delta_{\rm H}$ 3.67 and 3.27 (1H each, d, J = 9.0 Hz, H-5') which linked to the carbon signal at $\delta_{\rm C}$ 73.8 in HMQC spectrum. The methyl protons at $\delta_{\rm H}$ 1.52 (Me-4') showed long-range correlations with C-2' ($\delta_{\rm C}$ 90.7), C-4' ($\delta_{\rm C}$ 77.7) and an oxymethylene carbon C-5' ($\delta_{\rm C}$ 73.8). In turn, the methylene protons at $\delta_{\rm H}$ 3.67 and 3.27 (H₂-5') correlated with C-3' (δ 80.8), C-2' ($\delta_{\rm C}$ 90.7) and a tertiary methyl carbon ($\delta_{\rm C}$ 23.6), as well as the small coupling between H-5' and the methyl protons in the COSY spectrum, suggesting the location of a methyl group at C-4'. The large vicinal coupling constant (5.8 Hz) of two doublets at δ 5.70 (H-3') and 4.78 (H-2') indicated their cis orientation. Moreover, the NOESY spectrum showed correlation between H-2' and H-3' and H-2' and Me-4'. These results confirmed the cis-relationship between H-2', H-3' and Me-4'. Thus, compound PW17 assigned 1-hydroxy-1-methyl-1,2,3a,10a-tetrahydro-3,8,10-trioxawas as pentaleno[1,2-b]naphthalen-7-one and named as marmelonine A.

 $\frac{1}{8} \xrightarrow{8} \frac{1}{1}$ Figure 18 Selected HMBC correlations of PW17

Table 19	¹ H, ¹³ C NMR and HMBC spectral data of PW17 (CDCl ₃)

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC	NOESY
1	-	-	-	
2	-	160.6 (C)	-	
3	6.30 (d, J = 9.6 Hz)	113.4 (CH)	C-2, C-4a	H-4
4	7.67 (d, $J = 9.6$ Hz)	143.4 (CH)	C-2, C-5, C-8, C-4a, C-8a	H-3
4a	-	114.1 (C)	-	
5	7.53 (s)	125.6 (CH)	C-4, C-7, C-8, C-8a, C-3′	
6	-	123.6 (C)	-	
7	-	163.1 (C)	-	
8	6.87 (s)	98.7 (CH)	C-6, C-7, C-4a, C-8a	
8a	-	157.1 (C)	-	
1′	-	-	-	
2'	4.78 (d, $J = 5.8$ Hz)	90.7 (CH)	C-6, C-7, C-3′, C-5′, Me- 4′	H-3', Me-4'
3'	5.70 (d, $J = 5.8$ Hz)	80.8 (CH)	C-5, C-6, C-7, C-4′, C-5′	H-2′
4′	-	77.7 (C)	-	
5′	3.27 (d, J = 9.0 Hz)	73.8 (CH ₂)	C-2', C-4', Me-4'	
	3.67 (d, J = 9.0 Hz)		C-2', C-3', C-4', Me-4'	
Me-4′	1.52 (s)	23.6 (CH ₃)	C-2′, C-4′, C-5′	H-2′
OH-4′	2.55 (s)	-	C-4', Me-4'	

PW18 was isolated as a white powder, m.p. 179-180 °C, $[\alpha]_D^{26} = +20.1^\circ$ (c = 1.0, MeOH). The UV spectrum exhibited the absorption bands characteristic of coumarin at 210, 268 and 326 nm. The IR spectrum showed absorption bands for hydroxyl group at 3393 cm⁻¹, lactone carbonyl at 1707 cm⁻¹ and aromatic ring at 1623, 1588 and 1418 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 19**) of **PW18** were similar to those of **PW12**, except for the appearance of a doublet signal at $\delta_{\rm H} 5.36$ (1H, d, J = 5.9Hz) assignable to an oxymethine proton, instead of two doublet of doublet signals of methylene protons at C-3' in **PW12**, indicating a hydroxyl substituent at C-3' in **PW18**. The oxymethine proton ($\delta_{\rm H} 5.36$, $\delta_{\rm C} 72.3$) was located at C-3' on the basis of HMBC correlations between $\delta_{\rm H} 5.36$ (H-3') and $\delta_{\rm C} 114.8$ (C-5), 128.4 (C-6), 150.5 (C-7) and 91.1 (C-2'). Furthermore, the disappearance of an aromatic proton at $\delta_{\rm H} 6.74$ (H-8) of **PW12** implied a hydroxyl group at C-8 of **PW18** which was confirmed by additional quaternary carbon signal at $\delta_{\rm C} 129.3$. NOESY spectrum showed cross peak between H-2' and H-3' supporting **PW18** to possess *cis* configuration. On the basis of the above analysis, the structure of **PW18** was a new compound and named as 8hydroxysmyrindiol.

Figure 19 Selected HMBC correlations of PW18

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC	NOESY
1	-		-	
2	-	161.7 (C)	-	
3	6.20 (d, J = 9.5 Hz)	111.9 (CH)	C-2, C-4a	H-4
4	7.68 (d, $J = 9.5$ Hz)	145.1 (CH)	C-2, C-5, C-8a	H-3, H-5
4a	-	114.1 (C)		
5	7.08 (s)	114.8 (CH)	C-4, C-7, C-8, C-4a, C-8a, C-3'	H-4
6	-	128.4 (C)	-	
7	-	150.5 (C)	-	
8	-	129.3 (C)	-	
8a	-	144.3 (C)	-	
1′	-	-	-	
2′	4.33 (d, $J = 5.9$ Hz)	91.0 (CH)	C-3′, C-4′	H-3′
3'	5.36 (d, J = 5.9 Hz)	72.3 (CH)	C-5, C-6, C-7, C-2′	H-2′
4′	-	72.4 (C)	-	
5'	1.54 (s)	27.5 (CH ₃)	C-2′, C-4′, C-6′	
6′	1.56 (s)	25.7 (CH ₃)	C-2′, C-4′, C-5′	

Table 20¹H, ¹³C NMR and HMBC spectral data of PW18 (CDCl₃+CD₃OD(1 drop))

PW19 was isolated as a white powder, m.p. 279-280 °C. The UV spectrum exhibited the absorption bands characteristic of coumarin at 205, 256, 331 nm. The IR spectrum showed absorption bands for hydroxyl group at 3432 cm⁻¹, lactone carbonyl at 1726 cm⁻¹ and aromatic ring at 1621, 1557 and 1488 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 20**) of **PW19** and **PW14** showed structural similarity, except for **PW19** a methyl singlet at $\delta_{\rm H}$ 1.75 as in **PW14** disappeared but two doublets of methylene protons at $\delta_{\rm H}$ 4.10 and 4.07 (1H each, J = 13.6 Hz) were evidenced, indicating that the methyl group in **PW14** was oxidized to a hydroxymethyl group in **PW19**. The hydroxymethyl was connected to C-4' due to the HMBC correlations with the carbons at $\delta_{\rm C}$ 73.1 (C-2'), 149.5 (C-4') and 111.3 (C-5'). The complete HMBC data were summarized in **Table 21**. Based on these data, **PW19** was assigned as 2-(3-hydroxyprop-1-en-2-yl)-2,3-dihydrofuro[3,2-g]chromen-7-one and named as marmelonine B.

Figure 20 Selected HMBC correlations of PW19

position	$\delta_{\rm H}$ (multiplicity)	δ_{C} (C- type)	HMBC	NOESY
1	-	-	-	
2	-	162.5 (C)	-	
3	6.08 (d, J = 9.4 Hz)	111.5 (CH)	C-2, C-4a	H-4
4	7.57 (d, $J = 9.4$ Hz)	144.3 (CH)	C-2, C-5, C-8a	H-3
4a	-	111.6 (C)	-	
5	7.13 (s)	130.2 (CH)	C-4, C-7, C-8a, C-3′	H-3′
6	-	123.6 (C)	-	
7	-	159.8 (C)	-	
8	6.67 (s)	103.1 (CH)	C-6, C-7, C-4a, C-8a	
8a	-	154.4 (C)	-	
1′	-	-	-	
2'	4.43 (dd, <i>J</i> = 7.9, 4.3 Hz)	73.1 (CH)	C-5′	
3'	2.81 (dd, $J = 14.3, 8.0$ Hz)	37.4 (CH)	C-5, C-6, C-7, C-2′, C-4′	H-5
	2.89 (dd, $J = 14.3, 4.3$ Hz)			
4′	-	149.5 (C)	-	
5′	4.98 (s)	111.3 (CH ₂)	C-2', C-4', C-6', C-4'	H-6′
	4.99 (s)			
6′	4.10 (d, J = 13.6 Hz)	62.8 (CH ₂)	C-2′, C-4′, C-5′	H-5′
	4.07 (d, J = 13.6 Hz)			

 Table 21
 ¹H, ¹³C NMR and HMBC spectral data of PW19 (CDCl₃+CD₃OD (1 drop))

PW20 was isolated as white powder, m.p. 140-141°C. The UV spectrum exhibited the absorption bands characteristic of coumarin at 204 and 331 nm. The IR spectrum showed absorption bands for hydroxyl group at 3335 cm⁻¹, lactone carbonyl at 1717 cm⁻¹ and aromatic ring at 1617, 1570 and 1457 cm⁻¹.

The ¹H and ¹³C NMR spectral data (**Table 22**) of **PW20** were similar to those of **PW15**, except for the disappearance of an acetoxyl signal in **PW15**. In addition the signal of the methylene protons at C-4' had shifted more highfield than those in **PW15**. The ¹H and ¹³C NMR spectrum of **PW20** showed only twelve protons and fourteen carbons, so it was possible to conclud that there was a hydroxyl group at C-4' ($\delta_{\rm C}$ 68.2). The NOESY spectrum of **PW20** showed correlations between H-1' and H-5', and H-2' and H-4', supporting that **PW20** possessed the same configuration as **PW15**, implying *trans* configuration of the double bond. The complete HMBC data were summarized in **Table 22**. Therefore, compound **PW20** was isophellodenol C (Nakamori *et al.*, 2008).

Figure 21 Selected HMBC correlations of PW20

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC	NOESY
1	-	-	-	
2	-	162.4 (C)	-	
3	6.11 (d, <i>J</i> = 9.4 Hz)	111.6 (CH)	C-2, C-4a	H-4
4	7.58 (d, <i>J</i> = 9.4 Hz)	144.2 (CH)	C-2, C-3, C-5, C-4a, C-	H-3
			8a	
4a	-	111.6 (C)	-	
5	7.12 (s)	128.1 (CH)	C-4, C-7, C-8a, C-1′	
6	-	125.8 (C)	-	
7	-	159.1 (C)	-	
8	6.68 (s)	102.2 (CH)	C-6, C-7, C-4a, C-8a	
8a	-	154.1 (C)	-	
1′	3.32 (d, J = 7.3 Hz)	27.5 (CH ₂)	C-5, C-6, C-7, C-2′, C-3′	H-5′
2′	5.53 (t, $J = 7.3$ Hz)	122.8 (CH)	C-4', C-5′	H-4′
3′	-	136.4 (C)	-	
4′	3.96 (s)	68.2 (CH ₂)	C-2′, C-3′, C-5′-Me	H-2′
5'	1.69 (s)	13.5 (CH ₃)	C-2′, C-3′, C-4′	H-1′

Table 22¹H, ¹³C NMR and HMBC spectral data of PW20 (CDCl₃+CD₃OD (1 drop))
Compound PW21

PW21 was isolated as white powder, m.p. 178-179°C, $[\alpha]_D^{26} = +33.1°(c = 0.4, acetone)$ (lit. $[\alpha]_D^{26} = +37.0°(c = 0.4, acetone)$). The UV spectrum exhibited the absorption bands characteristic of coumarin at 204, 224, 248 and 331 nm. The IR spectrum showed absorption bands for hydroxyl group at 3392 cm⁻¹, lactone carbonyl at 1715 cm⁻¹ and aromatic ring 1627, 1572 and 1488 cm⁻¹.

The ¹H and ¹³C NMR spectral data of PW21 (Table 23) and PW18 showed structural similarity, except that in PW21 an additional aromatic proton at $\delta_{\rm H}$ 6.80 (s, H-8) replaced the hydroxyl group of PW18 at C-8, whose HMBC correlations with the carbons at $\delta_{\rm C}$ 126.7 (C-6), 163.0 (C-7), 113.4 (C-4) and 156.9 (C-8a) supported the assignment. A small vicinal coupling constant (3.9 Hz) of two doublets at $\delta_{\rm H}$ 4.42 (H-2') and 5.44 (H-3') as well as a lack of NOESY cross peak between H-2' and H-3', supported 2',3'-*trans*-configuration of PW21. The complete HMBC data were summarized in Table 23. Therefore, compound PW21 was xanthoarnol (Zou *et al.*, 2005).

Figure 22 Selected HMBC correlations of PW21

position	$\delta_{\rm H}$ (multiplicity)	$\delta_{\rm C}$ (C- type)	HMBC	NOESY
1	-	-	-	
2	-	160.9 (C)	-	
3	6.25 (d, <i>J</i> = 9.5 Hz)	112.9 (CH)	C-2, C-4a	H-4
4	7.64 (d, $J = 9.5$ Hz)	143.6 (CH)	C-2, C-5, C-8a	H-3, H-5
4a	-	113.4 (C)	-	
5	7.48 (s)	124.7 (CH)	C-4, C-7, C-8a, C-3′	H-4
6	-	126.7 (C)	-	
7	-	163.0 (C)	-	
8	6.80 (s)	98.7 (CH)	C-6, C-7, C-4a, C-8a	
8a	-	156.9 (C)	-	
1′	-	-	-	
2′	4.42 (d, J = 3.9 Hz)	98.4 (CH)	C-7, C-3', C-5', C-6'	
3'	5.44 (br d, <i>J</i> = 3.9 Hz)	72.3 (CH)	-	
4′	-	71.2 (C)	-	
5′	1.33 (s)	24.9 (CH ₃)	C-2′, C-4′, C-6′	
6′	1.37 (s)	25.7 (CH ₃)	C-2′, C-4′, C-5′	

 Table 23
 ¹H, ¹³C NMR and HMBC spectral data of PW21 (CDCl₃+CD₃OD (1 drop))

Conclusion

Investigation of the crude acetone extract of the green fruits of *Aegle marmelos* led to the isolation of twenty-one compounds of five furanocoumarins: imperatorin (**PW1**), 8-[(3"-methyl-2"-oxo-3"-buten-1-yl)oxy]-7*H*-furo[3,2g]benzopyran-2-one (**PW3**), xanthotoxol (**PW4**), isogosferol (**PW5**) and xanthotoxin (**PW6**), one acid: valencic acid (**PW2**), six coumarins: scoparone (**PW7**), demethylsuberosin (**PW9**), 6-formylumbilliferone (**PW10**), 6-(4'-acetoxy-3'-methyl-2'-butenyl)-7-hydroxycoumarin (**PW15**), isofraxidin (**PW16**) and isophellodenol C (**PW20**), one dihydropyranocoumarin: decursinol (**PW8**), two alkaloids: marmesiline (**PW11**), marmeline (**PW13**), six dihydrofuranocoumarins: marmesin (**PW12**), isoangenomalin (**PW14**), marmelonine A (**PW17**), 8-hydroxysmyrindiol (**PW18**), marmelonine B (**PW19**) and xanthoarnol (**PW21**).

REFERENCES

- Abdel-Fattah, M. E.; Taha, K. E.; Abdel Aziz, M. H.; Missalem, A. A.; El-Khrisy, E.
 A. M. 2003. "Chemical constituents of *Citrus limonia* and *Foeniculum vulgare*", *Indian J. Heterocycl. Chem.*, 13(1), 45-48.
- Acharyya, S.; Patra, A.; Bag, P. K. 2009. "Evaluation of the antimicrobial activity of some medicinal plants against enteric bacteria with particular reference to multi-drug resistant *Vibrio cholerae*", *Trop. J. Pharm. Res.*, 8, 231-237.
- Adebajo, A. C.; Reisch, J. **2000.** "Minor furanocoumarins of *Murraya koenigii*", *Fitoterapia*, 71, 334-337.
- Alam, M. M.; Siddiqui, M. B.; Husain, W. **1990**. "Treatment of diabetes through herbal drug in rural India", *Fitoterapia*, 61, 240-242.
- Ali, M. S.; Pervez, M. K. **2004**. "Marmenol: A 7-geranyloxycoumarin from the leaves of *Aegle marmelos* Corr.", *Nat. Prod. Res.*, 18(2), 141-146.
- Arumugam, S.; Kavimani, S.; Kadalmani, B.; Ahmed, A. B. A.; Akbarshac, M. A.; Rao, M. V. 2008. "Antidiabetic activity of leaf and callus extracts of *Aegle marmelos* in rabbit", *Sci. Asia*, 34, 317-321.
- Bacher, M.; Brader, G.; Hofer, O.; Greger, H. **1999**. "Oximes from seeds of *Atalantia ceylanica*", *Phytochemistry*, 50(6), 991-994.
- Banerji, J.; Das, A. K.; Ghoshal, N.; Das B. 1988a. "Studies on Rutaceae. Part VIII. Chemical investigation on the constituents of *Atalantia wightii* Tanaka, *Aegle marmelos* Correa ex Koen, *Ruta gravelens* Linn. And *Micromelum pubescens* Blume", Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 27B(6), 594-596.
- Banerji, J.; Ghoshal, N.; Sarkar, S.; Kumar, M. 1982. "Studies on Rutaceae. Part II. Chemical investigations of the constituents of Atalantia wightii, Limonia crenulata, Feronia limonia, Citrus limon and synthesis of luvangetin, xanthyletin, and marmin", Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 21B(5), 496-498.
- Banerji, A.; Luthria, D. L; Prabhu, B. R. 1988b. "Prenylated compounds from Atalantia racemosa: isolation and synthesis of two pyranoflavones", *Phytochemistry*, 27(11), 3637-3640.

- Banthorpe, D. V.; Brown, G. D. **1989**. "Two unexpected coumarin derivatives from tissue cultures of compositae species", *Phytochemistry*, 28(11), 3003-3007.
- Basu, D.; Sen, R. **1974**. "Alkaloids and coumarins from root bark of *Aegle marmelos*", *Phytochemistry*, 13(10), 2329-2330.
- Bui, K. A.; Duong, A. T.; Tran, V. S.; Seip, S. 2004. "Isolation and structure elucidation of a new limonoid from Vietnamese *Citrus nobilis* seeds", *Tap Chi Hoa Hoc*, 42(4), 520-523.
- Chatterjee, A.; Mitra, S. S. **1949**. "Constitution of the active principles isolated from the matured bark of *Aegle marmelos* Correa", *J. Am. Chem. Soc.*, 71, 606-609.
- Das, A. V.; Padayatti, P. S.; Paulose, C. S. 1996. "Effect of leaf extract of Aegle marmelos (L) Correa ex Roxb. On histological and ultra-structural changes in tissue of streptozotocin induced diabetic rats", Indian J. Exp. Biol., 34, 341-345.
- De Mol, N. J.; Reisch, J.; Van Henegouwen, G. M. J. B.; Gerardus, M. J. B. 1984. "On the involvement of singlet oxygen in the biosynthesis of oxygenation products of the furocoumarin imperatorin", *Zeitschrift fuer Naturforschung, Teil B: Anorganische Chemie, Organische Chemie*, 39B(10), 1433-1441.
- Faizi, S.; Farooqi, F.; Zikr-Ur-Rehman, S.; Naz, A.; Norr, F.; Ansari, F.; Ahmad, A.; Khan, S. A. 2009. "Shahidine, a novel and highly labile oxazoline from *Aegle marmelos*: the parent compound of aegeline and related amides", *Tetrahedron*, 65, 998-1004.
- Fraser, A. W.; Lewis, J. R. **1973**. "Two novel acridone alkaloids from *Atalantia* ceylanica", J. Chem. Soc., Chem. Commun., 17, 615-616.
- Govindachari, T. R.; Premila, M. S. **1983.** "Some alkaloids from *Aegle marmelos*", *Phytochemistry*, 22, 755-757.
- Ito, C.; Matsuoka, M.; Mizuno, T.; Sato, K.; Kimura, Y.; Jiichi, M.; Inoue, M.; Kajiura, I.; Omura, M.; Furukawa, H. 1988. "Constituents of domestic Citrus plants. Part VIII. New coumarins from some Citrus plans", *Chem. Pharm. Bull.*, 36(10), 3805-3810.

- Ito, C.; Mizono, C.; Matsuoka, M.; Kimura, Y.; Sato, K.; Kajiura, I.; Omura, M.; Ju-Ichi, M.; Furukawa, H. 1988. "A new flavonoid and other components from Citrus Plants", *Chem. Pharm. Bull.*, 36(9), 3292-3295.
- Jain, A. K.; Srivastava, S. K.; Srivastava, S. D. **1991**. "Some new constituents from heartwood of *Aegle marmelos* Corr.", *J. Indian Chem. Soc.*, 68(8), 452-454.
- Jeong, S. H.; Han, X. H.; Hong, S. S.; Hwang, J. S.; Hwang, J. H.; Lee, D.; Lee, M. K.; Ro, J. S.; Hwang, B. Y. 2006. "Monoamine oxidase inhibitory coumarins from the aerial parts of *Dictamnus albus*", *Arch. Pham. Res.*, 29(12), 1119-1124.
- Kalaivani, T.; Premkumar, N.; Ramya, S.; Siva, R.; Vijayakumar, V.; Meignanam, E.;
 Rajasekaran, C.; Jayakumararaj, R. 2009. "Investigations on hepatoprotective activity of leaf extracts of *Aegle marmelos* (L.) Corr. (Rutaceae)", *Ethnobot. Leafl*, 13, 47-50.
- Kim, J. S.; Kim, J. C.; Shim, S. H.; Lee, E. J.; Jin, W. Y.; Bae, K.; Son, K. H.; Kim, H.
 P.; Kang, S. S.; Chang, H. W. 2006. "Chemical constituents of the root of *Dystaenia takeshimana* and their anti-inflammatory activity", *Arch. Pharm. Res.*, 29(8), 617-623.
- Mishra, B. B.; Singh, D. D.; Kishore, N.; Tiwari, V. K.; Tripathi, V. 2010. "Antifungal constituents isolated from the seeds of *Aegle marmelos*", *Phytochemistry*, 71, 230-234.
- Murray, R. D. H; Hall, D. A. **1985**. "Structure revision of the coumarin, ceylantin", *Phytochemistry*, 24(10), 2465-2466.
- Nakamori, T.; Taniguchi, M.; Shibano, M.; Wang, N.-H.; Baba, K. **2008**. "Chemical studies on the root of *Heracleum candicans* WALL.", *J. Nat. Med.*, 62, 403-412.
- Nemoto, T.; Ohshima, T.; Shibasaki, M. **2003**. "Enantioselective total syntheses of (+)decursin and related natural compounds using catalytic asymmetric epoxidation of an enone", *Tetrahedron*, 59, 6889-6897.
- Ohashi, K.; Watanabe, H.; Ohi, K.; Arimoto, H.; Okumura, Y. **1995**. "Two new 7geranyloxycoumarins from the bark of *Aegle marmelos*, and Indonesian medicinal plant", *Chemistry Lett.*, (10), 881-882.

- Ohashi, K.; Watanabe, H.; Okumura, , H.; Okumura, Y.; Uji, T.; Kitagawa, I. 1994.
 "Indonesian medicinal plants. XII. Four isomeric lignan-glucosides from the bark of *Aegle marmelos* (Rutaceae)", *Chem. Pharm. Bull.*, 42(9), 1924-1926.
- Patre, R. E.; Shet, J. B.; Parameswaran, P. S.; Tilve, S. G. 2009. "Cascade Wittig reaction-double Claisen and Cope rearrangements: one-pot synthesis of diprenylated coumarins gravelliferone, balsamiferone, and 6,8diprenylumbelliferone", *Tetrahedron*, 50, 6488-6490.
- Phuwapraisirisan, P.; Puksasook, T.; Jong-aramruang, J.; Kokpol, U. 2008.
 "Phenylethyl cinnamides: A new series of α-glucosidase inhibitors from the leaves of *Aegle marmelos*", *Bioorg. Med. Chem. Lett.*, 18, 4956-4958.
- Razdan, T. K.; Qadri, B.; Harkar, S.; Waight, E. S. 1987. "Chromones and coumarins from Skimmia laureola", Phytochemistry, 26(7), 2063-2069.
- Runa, B. K.; Singh, U. P.; Taneja, V. 1997. "Antifungal activity and kinetics of inhibition by essential oil isolated from leaves of *Aegle marmelos* (L.) Corr.", J. Ethnopharmacol., 57, 29-34.
- Saha, S. K.; Chatterjee, A. **1957**. "Isolation of alloimperatorin and β-sitosterol from the fruits of *Aegle marmelos*", *J. Indian Chem. Soc.*, 34, 228-230.
- Sharma, B. R.; Rattan, R. K.; Sharma, P. 1981. "Marmeline, an alkaloid, and other components of unripe fruits of *Aegle marmelos*", *Phytochemistry*, 20(11), 2606-2607.
- Sharma, B. R.; Rattan, R. K.; Sharma, P. 1980. "Constituents of leaves and fruits of Aegle marmelos", Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem., 19B(2), 162.
- Sharma, B. R.; Sharma, P. **1981**. "Constituents of *Aegle marmelos*. II. Alkaloids and coumarin from fruits", *Planta Med.*, 43(1), 102-103.
- Shoeb, A.; Kapil, R. S.; Popli, S. P. 1973. "Coumarins and alkaloids of Aegle marmelos", Phytochemistry, 12(8), 2071-2072.
- Smittinan, T. 2001. "Thai Plant Names". Prachachon publisher: Bangkok.

- Srivastava, S. D.; Srivastava, S.; Srivastava, S. K. **1996**. "New anthraquinones from the heartwood of *Aegle marmelos*", *Fitoterapia*, 67(1), 83-84.
- Wu, T. S. 1987. "A 2,2-dimethylpyranoflavonol from *Citrus nobilis*", *Phytochemistry*, 26(11), 3094-3095.
- Yamaguchi, S.; Muro, S.; Kobayashi, M.; Miyazawa, M.; Hirai, Y. 2003. "Absolute structures of some naturally occurring isopropenyldihydrobenzofurans, remirol, remiridiol, angenomalin and isoangenomalin", J. Org. Chem., 68, 6274-6278.
- Zou, Y.; Lobera, M.; Snider, B. B. 2005. "Synthesis of 2,3-dihydro-3-hydroxy-2hydroxyalkylbenzofurans from epoxy aldehydes. One-step syntheses of brosimacutin G, vaginidiol, vaginol, smyrindiol, xanthoarnol, and avicenol A. Biomimetic Syntheses of angelicin and psoralen", J. Org. Chem., 70, 1761-1770.

APPENDIX

Figure 23 UV (MeOH) spectrum of compound PW1

Figure 24 IR (neat) spectrum of compound PW1

Figure 25 ¹H NMR (300 MHz) (CDCl₃) of compound PW1

Figure 26¹³C NMR (75 MHz) (CDCl₃) of compound PW1

Figure 27 Dept 135° (CDCl₃) of compound PW1

Figure 28 Dept 90° (CDCl₃) of compound PW1

Figure 29 2D HMQC (CDCl₃) of compound PW1

Figure 31 UV (MeOH) spectrum of compound PW2

Figure 32 IR (neat) spectrum of compound PW2

Figure 33 ¹H NMR (300 MHz) (CDCl₃) of compound PW2

Figure 34 ¹³C NMR (75 MHz) (CDCl₃) of compound **PW2**

Figure 35 Dept 135° (CDCl₃) of compound PW2

Figure 36 Dept 90° (CDCl₃) of compound PW2

Figure 37 2D HMQC (CDCl₃) of compound PW2

Figure 38 2D HMBC (CDCl₃) of compound PW2

Figure 39 UV (MeOH) spectrum of compound PW3

Figure 40 IR (neat) spectrum of compound PW3

Figure 41 ¹H NMR (300 MHz) (CDCl₃) of compound PW3

Figure 42¹³C NMR (75 MHz) (CDCl₃) of compound PW3

Figure 43 Dept 135° (CDCl₃) of compound PW3

Figure 44 Dept 90° (CDCl₃) of compound PW3

Figure 45 2D HMQC (CDCl₃) of compound PW3

Figure 46 2D HMBC (CDCl₃) of compound PW3

Figure 47 UV (MeOH) spectrum of compound PW4

Figure 48 IR (neat) spectrum of compound PW4

Figure 49 ¹H NMR (300 MHz) (CDCl₃+CD₃OD (1 drop)) of compound **PW4**

Figure 50¹³C NMR (75 MHz) (CDCl₃+CD₃OD (1 drop)) of compound PW4

Figure 51 Dept 135° (CDCl₃+CD₃OD (1 drop)) of compound PW4

Figure 52 Dept 90° (CDCl₃+CD₃OD (1 drop)) of compound PW4

Figure 53 2D HMQC (CDCl₃+CD₃OD (1 drop)) of compound PW4

Figure 54 2D HMBC (CDCl₃₊CD₃OD (1 drop)) of compound PW4

Figure 55 UV (MeOH) spectrum of compound PW5

Figure 56 IR (neat) spectrum of compound PW5

Figure 57 ¹H NMR (300 MHz) (CDCl₃) of compound **PW5**

Figure 58 ¹³C NMR (75 MHz) (CDCl₃) of compound PW5

Figure 59 Dept 135° (CDCl₃) of compound PW5

Figure 60 2D HMQC (CDCl₃) of compound PW5

Figure 61 2D HMBC (CDCl₃) of compound PW5

Figure 62 UV (MeOH) spectrum of compound PW6

Figure 63 IR (neat) spectrum of compound PW6

Figure 64 ¹H NMR (300 MHz) (CDCl₃) of compound **PW6**

Figure 65¹³C NMR (75 MHz) (CDCl₃) of compound PW6

Figure 66 Dept 135° (CDCl₃) of compound PW6

Figure 67 Dept 90° (CDCl₃) of compound PW6

Figure 68 2D HMQC (CDCl₃) of compound PW6

Figure 69 2D HMBC (CDCl₃) of compound PW6

Figure 70 UV (MeOH) spectrum of compound PW7

Figure 71 IR (neat) spectrum of compound PW7

Figure 72 ¹H NMR (300 MHz) (CDCl₃) of compound **PW7**

Figure 73 ¹³C NMR (75 MHz) (CDCl₃) of compound PW7

Figure 74 Dept 135° (CDCl₃) of compound PW7

Figure 75 Dept 90° (CDCl₃) of compound PW7

Figure 76 2D HMQC (CDCl₃) of compound PW7

Figure 77 2D HMBC (CDCl₃) of compound PW7

Figure 78 UV (MeOH) spectrum of compound PW8

Figure 79 IR (neat) spectrum of compound PW8

Figure 80¹H NMR (500 MHz) (CDCl₃) of compound PW8

Figure 81¹³C NMR (125 MHz) (CDCl₃) of compound PW8

Figure 82 Dept 135° (CDCl₃) of compound PW8

Figure 83 2D HMQC (CDCl₃) of compound PW8

Figure 84 2D HMBC (CDCl₃) of compound PW8

Figure 85 UV (MeOH) spectrum of compound PW9

Figure 86 IR (neat) spectrum of compound PW9

Figure 87¹H NMR (300 MHz) (CDCl₃) of compound PW9

Figure 88¹³C NMR (75 MHz) (CDCl₃) of compound PW9

Figure 89 Dept 135° (CDCl₃) of compound PW9

Figure 90 2D HMQC (CDCl₃) of compound PW9

Figure 91 2D HMBC (CDCl₃) of compound PW9

Figure 92 UV (MeOH) spectrum of compound PW10

Figure 93 IR (neat) spectrum of compound PW10

Figure 94 ¹H NMR (300 MHz) (CDCl₃) of compound PW10

Figure 95¹³C NMR (75 MHz) (CDCl₃) of compound PW10

Figure 96 Dept 135° (CDCl₃) of compound PW10

Figure 97 Dept 90° (CDCl₃) of compound PW10

Figure 98 2D HMQC (CDCl₃) of compound PW10

Figure 99 2D HMBC (CDCl₃) of compound PW10

Figure 100 UV (MeOH) spectrum of compound PW11

Figure 101 IR (neat) spectrum of compound PW11

Figure 102 ¹H NMR (500 MHz) (CDCl₃) of compound PW11

Figure 103 ¹³C NMR (1255 MHz) (CDCl₃) of compound PW11

Figure 104 2D HMQC (CDCl₃) of compound PW11

Figure 105 2D HMBC (CDCl₃) of compound PW11

Figure 106 UV (MeOH) spectrum of compound PW12

Figure 107 IR (neat) spectrum of compound PW12

Figure 108 ¹H NMR (300 MHz) (CDCl₃) of compound PW12

Figure 109 ¹³C NMR (75 MHz) (CDCl₃) of compound PW12

Figure 110 Dept 135° (CDCl₃) of compound PW12

Figure 111 Dept 90° (CDCl₃) of compound PW12

Figure 112 2D HMQC (CDCl₃) of compound PW12

Figure 113 2D HMBC (CDCl₃) of compound PW12

Figure 114 UV (MeOH) spectrum of compound PW13

Figure 115 IR (neat) spectrum of compound PW13

Figure 116 ¹H NMR (300 MHz) (CDCl₃) of compound PW13

Figure 117¹³C NMR (75 MHz) (CDCl₃) of compound PW13

Figure 118 Dept 135° (CDCl₃) of compound PW13

Figure 119 Dept 90° (CDCl₃) of compound PW13

Figure 120 2D HMQC (CDCl₃) of compound PW13

Figure 121 2D HMBC (CDCl₃) of compound PW13

Figure 122 UV (MeOH) spectrum of compound PW14

Figure 123 IR (neat) spectrum of compound PW14

Figure 124 ¹H NMR (300 MHz) (CDCl₃) of compound PW14

Figure 125 ¹³C NMR (75 MHz) (CDCl₃) of compound PW14

Figure 126 Dept 135° (CDCl₃) of compound PW14

Figure 127 Dept 90° (CDCl₃) of compound PW14

Figure 128 2D HMQC (CDCl₃) of compound PW14

Figure 130 UV (MeOH) spectrum of compound PW15

Figure 129 2D HMBC (CDCl₃) of compound PW14

Figure 131 IR (neat) spectrum of compound PW15

Figure 132 ¹H NMR (300 MHz) (CDCl₃) of compound PW15

Figure 133 ¹³C NMR (75 MHz) (CDCl₃) of compound **PW15**

Figure 134 Dept 135° (CDCl₃) of compound PW15

Figure 135 2D HMQC (CDCl₃) of compound PW15

Figure 136 2D HMBC (CDCl₃) of compound PW15

Figure 137 UV (MeOH) spectrum of compound PW16

Figure 138 IR (neat) spectrum of compound PW16

Figure 139 ¹H NMR (300 MHz) (CDCl₃) of compound PW16

Figure 140¹³C NMR (75 MHz) (CDCl₃) of compound PW16

Figure 141 Dept 135° (CDCl₃) of compound PW16

Figure 142 Dept 90° (CDCl₃) of compound PW16

Figure 143 2D HMQC (CDCl₃) of compound PW16

Figure 144 2D HMBC (CDCl₃) of compound PW16

Figure 145 UV (MeOH) spectrum of compound PW17

Figure 146 IR (neat) spectrum of compound PW17

Figure 147 ¹H NMR (300 MHz) (CDCl₃) of compound PW17

Figure 148¹³C NMR (75 MHz) (CDCl₃) of compound PW17

Figure 149 Dept 135° (CDCl₃) of compound PW17

Figure 150 Dept 90° (CDCl₃) of compound PW17

Figure 151 2D HMQC (CDCl₃) of compound PW17

Figure 152 2D HMBC (CDCl₃) of compound PW17

Figure 153 UV (MeOH) spectrum of compound PW18

Figure 154 IR (neat) spectrum of compound PW18

Figure 155 ¹H NMR (300 MHz) (CDCl₃₊CD₃OD (1drop)) of compound PW18

Figure 156¹³C NMR (75 MHz) (CDCl₃+CD₃OD (1drop)) of compound PW18

Figure 157 Dept 135° (CDCl₃+CD₃OD (1drop)) of compound PW18

Figure 158 Dept 90° (CDCl₃+CD₃OD (1drop)) of compound PW18

Figure 159 2D HMQC (CDCl₃+CD₃OD (1drop)) of compound PW18

Figure 160 2D HMBC (CDCl₃₊CD₃OD (1drop)) of compound PW18

Figure 161 UV (MeOH) spectrum of compound PW19

Figure 162 IR (neat) spectrum of compound PW19

Figure 163 ¹H NMR (300 MHz) (CDCl₃+CD₃OD (1drop))of compound PW19

Figure 164 ¹³C NMR (75 MHz) (CDCl₃₊CD₃OD (1drop)) of compound PW19

Figure 165 Dept 135° (CDCl₃+CD₃OD (1drop)) of compound PW19

Figure 166 2D HMQC (CDCl₃+CD₃OD (1drop)) of compound PW19

Figure 167 2D HMBC (CDCl₃+CD₃OD (1drop)) of compound PW19

Figure 168 UV (MeOH) spectrum of compound PW20

Figure 169 IR (neat) spectrum of compound PW20

Figure 170 ¹H NMR (300 MHz) (CDCl₃+CD₃OD (1drop)) of compound PW20

Figure 171 ¹³C NMR (75 MHz) (CDCl₃+CD₃OD (1drop)) of compound PW20

Figure 172 Dept 135° (CDCl₃+CD₃OD (1drop)) of compound PW20

Figure 173 2D HMQC (CDCl₃+CD₃OD (1drop)) of compound PW20

Figure 174 2D HMBC (CDCl₃+CD₃OD (1drop))of compound PW20

Figure 175 UV (MeOH) spectrum of compound PW21

Figure 176 IR (neat) spectrum of compound PW21

Figure 177 ¹H NMR (300 MHz) (CDCl₃+CD₃OD (1drop)) of compound PW21

Figure 178¹³C NMR (75 MHz) (CDCl₃+CD₃OD (1drop)) of compound PW21

Figure 179 Dept 135° (CDCl₃+CD₃OD (1drop)) of compound PW21

Figure180 2D HMQC (CDCl₃₊CD₃OD (1drop)) of compound PW21

Figure 181 2D HMBC (CDCl₃+CD₃OD (1drop)) of compound PW21

VITAE

Name	Miss Poasiyah Weaaryee	
Student ID	5010220186	
Educational Attainn	nent	
Degree	Name of Institution	Year of Graduation
Bachelor of Science	Prince of Songkla University	2005
(Education)		

Scholarship Awards during Enrolment

Center of Excellence for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Education

List of Publication and Proceeding

1. Paosiyah Weaaryee, Pongsak Puangphet and Suda Chakthong. "Furanocoumarins and Valencic acid from Unripe Fruits of *Aegle marmelos*". 4th BUU Grad Research Conference, Burapha University, Chon Buri, Thailand, 13 March 2009. (Poster presentation)