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ชื่อวิทยานิพนธ์ การออกแบบโครงข่ ายประสาทเทียมส าหรับกระบวนการผลิต           
ยางเครพขาว 

ผู้เขียน   นางสาวชลิศา  พัวเนี่ยว 
สาขาวิชา  วิศวกรรมเคมี 
ปีการศึกษา  2556 
 

บทคัดย่อ 
 

 ยางเครพขาวเป็นยางธรรมชาติสีจางที่ผลิตจากน  ายางสดพันธุ์ RRIM600 ท าให้ได้ยาง
คุณภาพสูงซึ่งมีสมบัติพิเศษ คือ มีสีอ่อน  เหมาะส าหรับอุตสาหกรรมผลิตผลิตภัณฑ์ยางสีต่างๆ เช่น 
ผลิตยางขอบรองเท้า พลาสเตอร์ยา อุปกรณ์กีฬา และอุปกรณ์การแพทย์ เป็นต้น   ส่งผลให้ราคา
ยางเครพขาวสูงกว่ายางแผ่นรมควันชั น 1 อย่างไรก็ตาม พบว่า การผลิตยางเครพขาวยังไม่เป็นที่นิยม
ในประเทศไทยเนื่องจากสารฟอกสีมีราคาสูง  เพื่อแก้ปัญหาดังกล่าว  งานวิจัยนี จึงศึกษาการผลิต
ยางเครพขาวด้วยวิธีการจับตัวบางส่วนเพื่อแทนที่ขั นตอนการฟอกสียาง โดยมีวัตถุประสงค์เพื่อ
สร้างแบบจ าลองโครงข่ายประสาทเทียม (ANN) ส าหรับกระบวนการผลิตยางเครพขาวด้วยวิธีการ
จับตัวบางส่วน  และเพื่อหาสภาวะด าเนินการที่ดีที่สุดบนพื นฐานของแบบจ าลอง ANN ที่ได้โดย
การวิเคราะห์พื นผิวตอบสนอง 
 
 การศึกษาในครั งนี แบ่งเป็น 3 ส่วน คือ การทดลอง  การออกแบบโครงข่ายประสาทเทียม
ส าหรับกระบวนการผลิตยางเครพขาว และการหาสภาวะด าเนินการที่ดีที่สุดบนพื นฐานของ
แบบจ าลอง ANN ที่ได้  ในส่วนของการทดลองได้ศึกษาการผลิตยางเครพขาวด้วยการจับตัวบาง
ส่วนโดยใช้กรดอะซิติกเข้มข้น 1% โดยน  าหนักเพื่อจับตัวเนื อยางบางส่วน  ในส่วนนี ได้ศึกษาผล
ของปริมาณกรดอะซิติกและเวลาที่ใช้ในการจับตัวบางส่วนต่อสมบัติของยางเครพขาว คือ ค่าสี 
(Lovibond color), ค่าความหนืดมูนี่ (MV), ค่าความอ่อนตัวเร่ิมต้น (P0) และดัชนีความอ่อนตัว (PRI)  
ผลการทดลองพบว่าที่ปริมาณกรดอะซิติก 0.15% โดยปริมาตรต่อน  าหนักเนื อยางแห้ง และเวลาที่ใช้
ในการจับตัว 2 ชั่วโมงท าให้ได้สมบัติของยางเครพขาวผ่านเกณฑ์มาตรฐาน นั่นคือ ค่าสีน้อย   3, 
ค่าความหนืดมูนี่ > 60, ค่าความอ่อนตัวเร่ิมต้น > 35 และดัชนีความอ่อนตัว > 60 
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 ในส่วนที่สอง ได้ออกแบบโครงข่ายประสาทเทียมโดยศึกษาจ านวนชั นซ่อน 1-2 ชั นและ
ผลของจ านวนโหนดในแต่ละชั นซ่อน (1-10 โหนด) โครงข่ายประสาทเทียมเป็นแบบป้อนไป
ข้างหน้า โดยมีข้อมูลอินพุต 4 ข้อมูลคือ (1) ปริมาณกรดอะซิติก (2) เวลาที่ใช้ในการจับตัว (3) 
เปอร์เซนต์เนื อยางแห้ง (%DRC) และ (4) เปอร์เซนต์ปริมาณของแข็งในน  ายาง (%TSC) ข้อมูล
เอาต์พุตรวม 4 ข้อมูล คือ (1) ค่าสี (2) ค่าความหนืดมูนี่ (3) ค่าความอ่อนตัวเร่ิมต้น และ (4) ค่าดัชนี
ความอ่อนตัว ส าหรับชั นของเอาต์พุตใช้ฟังก์ชันกระตุ้น (PURELIN) และเทรนด้วยอัลกอริทึม 
Levenberg-Marquardt ข้อมูลที่ใช้ในการออกแบบโครงข่ายประสาทเทียมประกอบด้วย 30 ชุด
ข้อมูล โดยแบ่งออกเป็น 80% ของชุดข้อมูลส าหรับการเรียนรู้ และ 20% ของชุดข้อมูลส าหรับการ
ทดสอบ  ในส่วนนี ได้ศึกษาผลของจ านวนชั นซ่อน, ฟังก์ชันกระตุ้น และการเลือกตัวแปรอินพุต ต่อ
ประสิทธิภาพการท านายของโครงข่ายประสาทเทียม  
 

กรณีออกแบบโครงข่ายประสาทเทียมที่มี 1 ชั นซ่อน ได้ศึกษาผลของฟังก์ชันกระตุ้น 7 
ฟังก์ชัน ซึ่งได้แก่ TANSIG, LOGSIG, HARDLIM, HARDLIMS, SATLINS, POSLIN และ 
RADBAS เพื่อใช้ท านายสมบัติของยางเครพขาว  จากผลการจ าลองพบว่า โครงข่ายประสาทเทียมที่
เหมาะสมที่สุดมีจ านวนโหนดเท่ากับ 6 และใช้ฟังก์ชัน TANSIG ซึ่งให้ค่า MSE และ IAE ของการ
ท านายรวมต่ าที่สุด MSE/IAE = 0.029/3.109 ส าหรับผลของการออกแบบโครงข่ายประสาทเทียมที่
มี 2 ชั นซ่อน (TANSIG) พบว่าโครงข่ายประสาทเทียมที่เหมาะสมที่สุดประกอบด้วยจ านวน 1 และ 
3 โหนดในชั นซ่อนที่ 1  และ 2 ตามล าดับ  ซึ่งให้ MSE และ IAE ของการท านายรวมต่ าที่สุด 
(MSE/IAE = 0.037/3.394) 

 
ในงานวิจัยนี ได้ใช้วิธีการตัดตัวแปรอินพุตเพื่อเพิ่มประสิทธิภาพการท านายของโครงข่าย

ประสาทเทียมโดยใช้วิธี Partial modeling ด้วยวิธีนี ตัวแปรอินพุตที่ส่งผลต่อการท านายน้อยที่สุด
สามารถระบุได้ด้วยการพิจารณาค่าความคลาดเคลื่อนของเอาท์พุตแต่ละตัว จากผลการศึกษาพบว่า
ในกรณีนี  %TSC มีผลต่อการท านายค่าเอาท์พุตน้อยที่สุดโดยเฉพาะต่อค่าสีและค่า PRI เทียบกับตัว
แปรอินพุตอ่ืนๆ  ดังนั นจึงอาจไม่พิจารณาตัวแปร %TSC ทั งนี เนื่องจากค่า %TSC มีความสัมพันธ์
กับค่า %DRC ดังนั นในส่วนนี ได้ออกแบบโครงข่ายประสาทเทียมที่ประกอบด้วยจ านวน 1 และ 3 
โหนดในชั นซ่อนที่ 1  และ 2 ตามล าดับ (TANSIG) ใหม่โดยพิจารณาเพียง 3 อินพุต คือ ปริมาณ
กรดอะซิติก  เวลาที่ใช้ในการจับตัวและ %DRC จากผลการจ าลองพบว่าประสิทธิภาพการท านาย
เพิ่มขึ นซึ่งให้ค่า MSE/IAE ของการท านายรวมเท่ากับ 0.037/3.260 

 



vii 
 

ในส่วนสุดท้าย ได้ศึกษาหาสภาวะด าเนินการที่ดีที่สุดบนพื นฐานของแบบจ าลองโครงข่าย
ประสาทเทียมที่สร้างขึ นจาก 3 อินพุตโดยการวิเคราะห์กราฟพื นผิวตอบสนอง จากผลการจ าลอง
พบว่า  สภาวะด าเนินการที่ดีที่สุดที่ให้ค่าสี ( 3) และค่า MV (> 58 ML(1+4) 100oC) ยอมรับได้คือ
สภาวะด าเนินการที่ปริมาณกรดอะซิติก 0.2-0.22% โดยปริมาตรต่อน  าหนักเนื อยางแห้ง และเวลาที่
ใช้ในการจับตัว 1.2-1.5 ชั่วโมง อย่างไรก็ตามค่า MV ของยางแผ่นมีแนวโน้มเพิ่มขึ นเมื่อเก็บไว้เป็น
เวลานาน อีกทั งในกรณีนี พบว่าค่า P0 และ PRI มีค่าสูงกว่าเกณฑ์มาตรฐานในทุกกรณี  
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ABSTRACT 

Pale crepe is a high quality rubber sheet since it has white/pale color (Lovibond color  
3). It is produced from a particular type of rubber latex, RRIM 600, and used as raw material for 
manufacturing required-color products such as rubber soles, plaster, sport equipment, and medical 
devices etc. Even the pale crepe rubber has higher value added than RSS No.1, however it has 
been found that this process has not been widely used in Thailand because of high cost of the 
bleaching agent. To solve these problems, this work focuses on the pale crepe rubber processing 
with a fractional coagulation instead of the color bleaching. The objective of this study is to 
develop an artificial neural network (ANN) for pale crepe rubber produced by fractional 
coagulation, and to determine the optimal process conditions based the obtained ANN through 
response surface analysis.  

 
The activities of this study are divided into three parts: the experimental results, ANN 

design for pale crepe rubber process, and the optimum operating conditions determination based 
the obtained ANN model. In the first part, the experiment has been carried out to produce pale 
crepe rubber via fractional coagulation method, 1% by wt. of acetic acid has been used to 
coagulate the latex fractionally. Effects of acetic acid amount and coagulation time have been 
investigated on the rubber properties; Lovibond color, Mooney viscosity (MV), initial plasticity 
(P0) and Plasticity Retention Index (PRI). The proper operating condition should be at 0.15% 
vol./wt. of acetic acid, and coagulation time of 2 hrs to give the property requirement: rubber 
color  3, MV > 60, P0 > 35 and PRI > 60.  
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In the second part, a network model has been designed by varying 1-2 hidden layers by 
varying their number of nodes (1 to 10). ANN model has feed-forward scheme with four input 
variables such as (1) acetic acid amount, (2) fractional coagulation time, (3) %dry rubber content 
(%DRC) of diluted latex, and (4) the corresponding %total solid content (%TSC). Four rubber 
properties, such as (1) rubber color, (2) MV, (3) P0, and (4) PRI have been predicted via using 
linear transfer functions (PURELIN). The ANN has been trained using the Levenberg-Marquardt 
algorithm with 30 experimental data sets, 80% for training and 20% for testing. Effects of hidden 
layer, transfer function, and input variable selection have been investigated on the network 
prediction performance.  

 
For one hidden layer ANN model structure, seven transfer functions such as TANSIG, 

LOGSIG, HARDLIM, HARDLIMS, SATLINS, POSLIN and RADBAS have been investigated 
in the hidden layer to retrieve the properties of pale crepe rubber. It has been found in the 
simulation results that the network model with 6 nodes, and the RADBAS transfer function gives 
the minimum overall MSE and IAE of the output prediction, MSE/IAE = 0.029/3.109. Moreover, 
the effect of the hidden layer has also investigated. The network model with two hidden layers 
(TANSIG) has been designed in the optimal manner providing the ANN model with 1 and 3 
nodes in hidden layer 1 and 2 respectively gives minimum overall MSE and IAE (MSE/IAE = 
0.037/3.394).  

 
A variable selection approach such a partial modeling has been further applied in this 

research for the model improvement. The insignificant input variable has been chosen by 
considering their corresponding output variances. It has been found that %TSC has smallest 
effects on all process outputs in this case, especially Lovibond color and PRI compared to the 
other inputs. Therefore, %TSC could be ignored since it varies according to %DRC, it has then 
been chosen as the insignificant variable and further eliminated. New network model with 1 and 3 
nodes in hidden layer 1 and 2 respectively (TANSIG) has been trained with three inputs, the 
acetic acid amount, the coagulation time and %DRC. The network structure with three input 
variables gives the overall MSE/IAE is 0.037/3.260. It can be seen that the ANN prediction can 
be improve by removing the less affect input variable.  
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Finally, the optimal operating conditions have been chosen based the network model with 
three input variables by considering the response surface plots. It has been found in the simulation 
results that the conditions providing acceptable color ( 3) and MV (> 58 ML(1+4) 100oC) at the 
same time are under the acetic acid amount of 0.2-0.22% vol./wt. dry rubber and coagulation time 
is 1.2-1.5 hr. It is noted that the MV of rubber sheet could be increased over time during storage. 
In this case, the predicted values of P0 and PRI are higher than the product requirement in all 
cases. The optimal condition from the ANN model is related with the optimal condition from 
experimental data.  
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 Introduction 
 

Rubber is an important industrial crop of Thailand. Three biggest rubber producers over 
the world are Thailand, Indonesia and Malaysia respectively. Top three Thailand’s export markets 
are China, Japan and Malaysia. The most exported natural rubber are Block Rubber, Ribbed 
Smoked Sheet (RSS) and Concentrated Latex (Altering Risk to Opportunity (AFET), 2011). The 
important quality according to Standard of Thai Rubber (STR) is its color, more white and clear, 
higher value added. Pale crepe is a high quality rubber sheet since it has white/pale color 
(Lovibond color  3). It is produced from a particular type of rubber latex, RRIM 600, and used 
as raw material for manufacturing required-color products such as rubber soles, plaster, sport 
equipment, and medical devices etc.       

Nowadays, pale cre e product has not the exact standard in Thailand; it has only the 
standard set by the manufacturer corresponding to the customer demand. Pale crepe rubber 
processing is normally achieved by the steps shown in Figure 1.1 (Singthuean, R., et al, 2011). 
The good quality fresh latex of RRIM600 is firstly preserved by adding 0.03-0.06% wt./vol. 
rubber latex of 2% sodium sulfite (Na2SO3). Afterward the preserved latex is diluted to obtain 
25% dry rubber content (DRC) by adding pure water, and further exhibited an enzymatic reaction 
by adding 0.05-0.08% wt./wt. dry rubber of 5% sodium metabisulfite (Na2S2O5). The latex is next 
bleached by using 0.1-0.2% wt./wt. dry rubber of a bleaching agent in order to achieve the 
product color-requirement, and then oagulated by adding 0.3-0.35% wt./wt. dry rubber of 2% 
formic acid. The coagulated rubber is rolled by using two-roll mill machine and lastly dried under 
the temperature of 35-40OC for 3-4 days. 
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Figure 1.1 Pale crepe rubber processing 
 
Even the pale crepe rubber has higher value added than RSS No.1; however, it has been 

found that this process has not been widely used in Thailand because of high cost of the bleaching 
agent. Cureobleach that is imported from Sri Lanka has cost of 1,500-2,000 bath per liter with 
minimum 50 liters per time. In addition sulfer-containing bleaching agent is effluvial and bad for 
producer’s health. To solve these problems, this work focuses on the pale crepe rubber processing 
with a fractional coagulation instead of the color bleaching. In this study, a pale crepe rubber 
production is achieved by the following steps: 

(1) Latex preservation 
(2) % dry rubber content (DRC) dilution (varying 25-29% DRC and 27-32% total solid 

content, TSC) 

Latex preservation 

%DRC dilution (25%) 

Enzymatic reaction exhibition 

Latex coagulation 

Drying (35-40oC) 

Fresh rubber latex 

Pale crepe rubber sheet 

Na2SO3 

Fresh water 

Na2S2O5 

Formic Acid 

Filter with 60 mesh 

Bleaching 

Rolling Fresh water 

Filter with 100 mesh 
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(3) Enzymatic reaction exhibition 
(4) Fractional coagulation (varying acetic acid of 0-0.45% v/w dry rubber and 

coagulation time of 1-3 hr.) 
(5) Latex coagulation 
(6) Drying at 35-40oC for 3 days       

   
In this work, the operating conditions in a fractional coagulation step has been designed 

in the optimal manner in order to achieve the required properties of the pale crepe rubber sheet 
corresponding to STR standard, this work focuses on determining the optimal operating 
conditions based artificial neural network (ANN) model achieving rubber sheet property 
requirement such as minimum color, Mooney viscosity (MV) > 60, initial plasticity (P0) > 35 and 
plasticity retention index   (PRI) > 60.  
 

1.2 Research objectives 
 
The overall objectives of this research are: 

1)     To develop an artificial neural network (ANN) for pale crepe rubber produced by 
fractional coagulation. 

2) To determine the optimal process conditions based the obtained ANN through 
response  

surface analysis. 
 
1.3 Scopes of research work 

 
To achieve the above objective, the following research scopes have been identified: 

1) To understand the artificial neural network with feed-forward network for multilayer 
network and supervised training. 

2) To design the artificial neural network through MATLAB program. 
3) To determine the optimal conditions through response surface analysis. 
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4) To study the pale crape rubber production from RRIM 600 by fractional coagulation 
and fractional coagulation with color pigment bleaching. 

5) To analyze the rubber physical quality such as Lovibond color, Mooney viscosity 
(ISO 289/ASTM D1646) and plasticity (ASTM D3194). 

6) To design the optimal conditions based the following decision variables for 
optimization design such as minimum Lovibond color, Mooney viscosity > 60, initial plasticity 
(P0) > 35 and plasticity retention index   (PRI) > 60. 
 
1.4 Expected benefits 

 
1) To obtain an artificial neural network for pale crape rubber production by fractional 

coagulation. 
2) To acquire an optimal process conditions based the obtained artificial neural network 

through response surface analysis. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Artificial Neural Network (ANN) for rubber industries  
 

Mooney viscosity is one of the important properties of rubber. It can guarantee the 
quality of product required by the rubber properties. Padmavathi, G. et al., (2005) studied a 
reliable model predicting product quality using ANN to developed model to predict Mooney and 
solution viscosity of PBR from process variables. The input-output data collected from plant 
history is confined into two types of neural networks which are a multi layered feeds forward 
neural network with a sigmoid transfer function and generalized regression neural network 
(GRNN). The ANN structures are presented as followed: 

 There are 11 inputs of ANN input variables. 
 There is one output of ANN output variable. 
 The transfer function of multi-layered feeding forward neural network is the tan-

sigmoid (TANSIG) transfer function in the hidden layer and the linear 
(PURELIN) transfer function in output layer and using Levenberg-Marquardt as 
training function. 

 The transfer function of GRNN is radius basis (RADBAS) in hidden layer and 
linear transfer (PURNLIN) function in output layer. 

GRNN is significantly able to predict Mooney and solution viscosity better than feed 
forward neural network and the prediction from the reactor outlet was deviated by MSE is 0.0252 
 

Demirhan,E., et al, (2006) studied the properties of SBR-1712 type synthetic rubber 
compounding by using feed forward neural network trained with the back propagation algorithm 
called associative neural network (ASNN). This type improves prediction ability of feed forward 
neural network by means of explicit correction of the bias. The aim of this study is to prepare 
SBR-1712 rubber compound with different furnace carbon black to measure their properties.        
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A set of data containing 30 examples were chosen for neural network study, 25 of them were used 
to develop a model and 5 randomly selected examples were used for testing the model validation. 
Steps for data analysis are as following: 

1. Analyze of all descriptors, ANNs analysis of the training set with 14 descriptors 
are resulted in a model with very good statistical qualities. The five compounds 
in the external test set were accurately predicted. 

2. Use pruning methods for the analysis of observed weight. Some descriptors were 
determined as non-significant ones and were eliminated by the pruning 
algorithms, only five descriptors were selected.  

Application of pruning method to analyze data set slightly improves the prediction ability 
of ANNs for the training set. Basically, itis not improved for the purpose of the test set. It can be 
said that the model is robust and predictive.  
 
 Thodesen, C., et al, (2009) explored the utilization of the statistical regression and neural 
network approaches in predicting the viscosity values of crumb rubber modified (CRM) binder at 
various temperature. The regression and a series of neural network model have been developed to 
predict the viscosity values of various CRM binders. The importance and sensitivity analysis of 
input variables were performed in neural network to evaluate the influences of each independent 
variable on the viscosity of CRM binders. The regression model was developed into two parts, 
first the effects of the addition of crumb rubber to the virgin binders, second, the effects of 
temperature on binder. 
Neural network model was used to develop the predictive models of the viscosity values of 
asphalt mixture considering the interaction of complicated variables. Six parameters from asphalt 
binder, crumb rubber and test conditions (asphalt binder source, binder grade, rubber source, test 
temperature, rubber gradation, and rubber content) were expressed as independent variables to 
yield the viscosity values. There were 276 viscosity value data. 187 of them were selected as the 
training data and 89 were used as the testing data set.  
 The regression basing models on two variables of the asphalt binders could effectively 
predict the viscosity values of binder at various testing temperature and mixing type. The neural 
network approach can effectively create a feasible predictive model.  
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Nascimento, C.A.O. et al., (2000) study the optimization method using neural network 
which has been applied in the process of nylon-6,6 polymerization in a twin-screw extruder 
reactor. The process variables are presented as followed: 

- There are 7 inputs of ANN input variables e.g. temperature, pressure of the 
vacuum system, flow rate, pressure in the extruder head, amine end-group 
concentration, carboxyl end-group concentration and screw rotation speed 

- There are 3 inputs of ANN output variables e.g. degree of filling, the amine end-
groups and the carboxyl end groups. 

- There are 44 training data sets from the pilot plant that have been randomly split 
into two groups for the learning set (80%) and testing (20%) of the neural 
network. 

The best ANN model is fed forward network with one hidden layer each of which is 
constituted by four neurons and the activation function used is the sigmoidal function. 
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2.2 ANN with variable sensitivity analysis 
 
 Despagne, F., et al., (1998) proposed two new methods based on the estimation of the 
contribution of each input variable to the variance of the predicted response. The first method is 
variance propagation. The second method is partial modeling and comparing the new methods 
with previous comparative e.g. Hinton diagram and saliency estimation. The synthetic data set 
consists of three data sets. Each set comprises of 60 data sets which were used as a training set 
and 40 data sets which was used for testing. Industrial data sets have been evaluated on three real 
data sets: 
 Set 1: minor mineral compound in polymer (30 data sets for learning and 10 data set for 
testing) 
 Set 2: hydroxyl number in polyether polyols (40 data sets for learning and 10 data set for 
testing) 
 Set 3: octane number in gasoline (80 data sets for learning and 52 data set for testing) 
 The feed forward ANN model is obtained one input layer with 3 nodes, one hidden layer 
with 2 nodes and the activation function is the hyperbolic tangent. 
 

Anderson, F.O. et al., (2000) studied two methods variable influence and contribution in 
neural network models are examined. First is variable sensitivity analysis method: sequential 
zeroing of weight (SZW) the second is systematic variation of variables (SVV). The synthetic 
data sets 100 data sets have been used with 60 data sets as a training set and 40 data sets as a 
testing set. The real data sets evaluated on three real data sets: 
 Set 1: a study of octane number by NIR (45 data sets for learning and 15 data sets for 
testing) 
 Set 2: response in a reactor with feed rate (data set 32 experiments) 
 Set 3: methanol-tetrahydrofuran-water system (data set 35 experiments) 
 The multilayer feed forward ANN model is obtained with one hidden layer each of which 
is constituted by 10 neurons and the activation function used is the hyperbolic tangent. 
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 Gestal, M., et al., (2004) studied two different genetic algorithms (GAs) intended to 
select a small number of wave number which are to be used to develop classification models, 
“pruned search” and “fixed search” and compare results of different assays. Two different ways 
of variable selection will be applied to get a small set of variables which cope with the most 
important features of the original data set. They will be used to classify apple beverages according 
to the percentage of apple juice they have. One is procruster rotation and the second based on the 
concept idea of GA. The laboratory standards were split into two groups with different amount of 
juice. The first set held 2-20% juice. It contained total of 173 standard samples, of which 134 
were dedicated to train the model and 39 were used for validation. The second set contained 25-
100% juice. It had 130 standard samples of which 86 were used for training and 44 for validation. 
 Generally, when the GA works with only ‘n’ variables (fixed search), it may happen that 
good solutions are broken down into new individuals which cannot survive and the GA algorithm 
behaves as if only mutation is performed. With the pruned approach, the GA seems to focus on 
discarding irrelevant information when an individual possesses those ‘n’ variables that give an 
optimal solution, the resulting individuals will clearly be worse, the total amount of variables can 
be reduced. Procruster selected variable could be related to specific characteristics of the three 
sugars. None of GA searches gave pair of variables with clear chemical meaning.  
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2.3 Optimization based ANN (surface analysis) 
  
 Maridass, B. et al., (2004) presented the result of the study on devulcanization and 
recycling of post factory gum natural rubber based on waste rubber powder using a counter 
rotating twin screw extruder with L/D = 8 to establish a functional relationship between the 
factors (extruder screw speed and extruder barrel temperature) and various properties like tensile 
strength, elongation at break (%), modulus, hardness, tear strength, swelling ratio and to establish 
the optimum processing screw speed and barrel temperature. For the RSM design, 10 
combinations were chosen from an experimental design based on central composite rotatable 
design (CCRD). The data obtained from the six responses were tensile strength, elongation at 
break (%), maximum torque, shorehardness, tear strength and swelling index (%). The data were 
fitted into mathematical model by regression analysis. The model equation was used to draw two 
dimensional contour plots and three dimensional response surface. According to the contour plot 
and response surface, the maximum torque is obtained at lower screw speeds and decreases with 
increasing screw speed since the barrel temperature has no significant effect on the torque value. 
Moreover, the increase in the extruder barrel temperature shows an increase in the tensile 
strength. In addition, the level of extension depends on the degree of crosslinking of rubber 
matrix. A small degree of crosslinking gives higher elongation. Furthermore, as the degree of 
crosslinking increases, hardness also progressively increases. Additionally, the optimal tear 
strength is at the middle of the experimental region. Besides, swelling increases with in the barrel 
temperature as well as the screw speed. 

The ANOVA analysis of all responses gave the coefficient of determination (R2) to be 
higher than 0.89 suggesting that the model is a good fit. 

 
 Yingyong, R. et al., (2012) studied a simulation of beta-carotene recovery from palm oil 
esterification product using a high vacuum distillation technology. The simulation studies have 
been divided into two parts; first, process modeling using Response Surface Methodology (RSM). 
It consists of a box behnken design which has been employed to study the split fraction response 
of ethylesters of palm oil, diglyceride and carotene. Moreover, the independent variables are the 
temperature, feed flow rate and pressure. To confirm the point, the result shows that the most 
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important parameter is temperature, feed flow rate and pressure. The second part, ANN contain a 
set of data simulated by Aspen plus which have been used to feed ANN with three inputs of 
temperature, feed flow rate and pressure and one output of a split fraction of carotene in the 
residue product. The data contains 25 runs (15 runs same as used for RSM design and additional 
10 runs) which it is randomly split into learning set 80% and testing set 20%. The model have two 
hidden layers with three nodes each, their transfer function are tan-sigmoid. ANN training results 
then give comparable agreement with MSE=1.610-6 and SSE=2.3210-6. 

This work aimed at comparing the performance of RSM and ANN for the determination 
of the optimal operating conditions of the high vacuum distillation for carotene recovery. The 
optimal range of the operating conditions based ANN is larger than RSM. 
 

Sinha, K. et al., (2013) studied microwave-assisted extraction of yellow-red natural dye 
from seeds of Bixa Orellana (Annatto) with surface methodology (RSM) and ANN were used to 
develop predictive model for simulation and optimization of the dye extraction process. The 
studies have been divided into two parts: 

The 1st RSM design: a standard RSM design was used to identify the relationship 
between the responses function (total amount of dye extracted) and the process variables (solvent 
pH, extraction time and amount of Annatto seeds used in extraction). A total of 20 experiments 
were performed in duplicate accordingto the CCD matrix and the average values were used in 
data analysis. The adequacy of the developed model and statistical significance of the 
regressioncoefficients were tested using the analysis of variance (ANOVA). The interaction 
among the different independent variables and their corresponding effect on the response was 
studied by analyzing theresponse surface contour plots. 

The 2ndANN design: The input of the ANN model was identical to the factor considered 
in RSM approach, namely, pH, extraction time and amount of Annatto seeds. The amount of dye 
extracted was considered as response (output) for ANN modeling. The ANN model use tan-
sigmoid transfer function (TANSIG) at hidden layer and a linear transfer function (PURNLIN) at 
output layer. This work used the root mean square error (RMSE), coefficient of determination 
(R2) and absolute average deviation (AAD) to compare the performance of the RSM and ANN 
model. In this study, the ANN model has higher predictive capability than RSM model. 
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CHAPTER 3 

 

THEORY 

 

3.1  Artificial Neural Network (ANN) 
 
3.1.1  Introduction to Artificial Neural Network 
 
 Artificial neural network (ANN) is a computational model based on the structure and 
functions of biological neuron networks. Information that flows through the network affects the 
structure of the ANN because a neural network changes or learns, in a sense based on that input 
and output. ANNs are considered nonlinear statistical data modeling tools where the complex 
relationships between inputs and outputs are modeled or patters are found. ANN is also knows as 
a neural network. 
 
 
  
  
 
 
 

(a) Biological neuron            (b) Neuron connection 
 

Figure 3.1.1 Schematic of biological neuron 
  

From Figure 3.1.1, in human brain, a typical neuron collects signals from others through 
a host of fine structures called dendrites. The neuron sends out spikes of electrical activity 
through a long, thin stand known as an axon, which splits into thousands of branches. At the end 
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of each branch, a structure called a synapse converts the activity from the axon into electrical 
effects that inhibit or excite activity from the axon into electrical effects that inhibit or excite 
activity in the connected neurons. When a neuron receives excitatory input that is sufficiently 
large compared with its inhibitory input, it sends a spike of electrical activity down its axon. 
Learning occurs by changing the effectiveness of the synapses so that the influence of one neuron 
on another changes (Fraser, N., 1998). 

 

3.1.2  Mathematical model of Artificial Neural Network 
  
 
 
 
 
 
 
 
 
 

Figure 3.1.2 ANN mathematical modeling 
 
 A detailed mathematical model of a neuron is shown in Figure 3.1.2. Model may include 
an externally applied threshold that has the effect of lowering the net input of the activation 
function. On the other hand, the net input of the activation function may be increased by 
employing a bias term rather than a threshold. The scalar input   ,   , …,    is transmitted 
through a connection that multiplies its strength by the scalar weight    ,    , …,     and sum 
with bias by the summing junction. The transfer function net input    is the argument of the 
transfer function with takes the argument    and produces the output   . In mathematical term, 
can describe a neuron k by writing the following equations: 
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     ∑ (        )
 
    (3.1.1) 

and     (  ) (3.1.2)
  

where     ,   , …,     are inputs 
     ,    , …,     are the synaptic weights of neuron k 
       is the linear combiner output 
      is the bias term 
    is the activation function 
and      is the output signal of the neuron 
 
3.1.3  Artificial Neural Network structure 
 

Neural network architecture defines its structure including number of hidden layer, 
number of hidden nodes and number of output nodes. The hidden layers provide the network with 
its ability to generalize. For the hidden nodes there is no magic formula for selecting the optimum 
number of hidden nodes. A rough approximation can be obtained by the geometric pyramid rule. 
The basic structures of neural network are as following: 
  
3.1.3.1 Type of neural network 

 
 There are wide variety of neural network and their architectures. Types of neural 
networks range from simple Boolean networks (perceptions) to complex self-organizing network 
(Kohonen networks). There are also many other types of neural networks like Hopefield network, 
Pulse networks, Radial Basis Function Networks, Boltzmann machine. The most important class 
of neural networks for real world problem solving includes 

 Multilayer Perceptron (MLP) 
The most popular form of neural network architecture, a multilayer perceptron has any 

number of input, one or more hidden layers with any number of nodes, use liner combination 
function in the input layers, uses generally sigmoid activation function in the hidden layers, has 
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any number of outputs with any activation function and has connections between the input layer 
and the first hidden layer, between the hidden layers and between the last hidden layer and the 
output layer. 

 
 Radial Basis Function Networks (RBF) 

Radial basis function networks are also feed-forward but have only one hidden layer. A 
RBF network has any number of inputs, typically has only hidden layer with any number of units, 
uses radial combination functions in the hidden layer, has any number of outputs with any 
activation function, has connections between the input layer and the hidden layer, and between 
the hidden layer and the output layer.  

 
3.1.3.2 Network architecture 

 
There are several types of architecture of ANN. However, the two most widely used 

ANN are discussed below: 
 
 
 
 
 

(a)  
 
(a) Feed-forward network    (b) Recurrent network 

 
Figure 3.1.3 ANN structure  

 Feed-forward Networks 
Feed-forward ANNs allow signals to travel one way only; from input to output. There is no 

feedback (loop) i.e. the output of any layer does not affect that same layer. They are extensively 
used in pattern recognition. 
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 Feedback/Recurrent Networks 
Feedback networks can have signals traveling in both directions by introducing loops in the 

networks. Feedback networks are dynamic; their ‘state’ is changing continuously until they reach 
an equilibrium point. They remain at the equilibrium point until the input changes and a new 
equilibrium needs to be found. 
 
3.1.3.3 Weight adjusting 

 
The most significant property of a neural network is that it can learn from environment, 

and it can improve its performance through learning. Learning is a process by which the free 
parameters of a neural network i.e. synaptic weights and thresholds are adapted through a 
continuous process of simulation by the environment in which the network is embedded.  
 

 Supervised learning 
This case, every input pattern that is used to train the network is associated with an output 

pattern, which is the target or the desired pattern. A teacher is assumed to be present during the 
learning process, when a comparison is made between the network’s computed output and the 
correct expected output to determine the error. The error can then be used to change network 
parameters, which result in an improvement in performance. 
 

 Unsupervised learning 
With unsupervised learning, there is no feedback from the environment to indicate if the 

outputs of the network are correct. The network must discover features, regulations, correlations, 
or categories in the input data automatically. For most varieties of unsupervised learning the 
targets are the same as inputs. In other words, unsupervised learning usually performs the same 
task as an auto-associative network, compressing information from the input. 
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3.1.3.4 Activation function 
 

Activation functions are mathematical formula that determines the output of a processing 
node. Each unit takes its net input and applies an activation function to it. The purpose of the 
transfer function is to prevent output from reaching very large value which can paralyze neural 
network and thereby inhibit training. The most commonly used activation functions are in table 
3.1. 
 
3.1.3.5 Model building 

 
Multilayer feed-forward neural network or multilayer perceptron (MLP) is very popular and 

is used more than other neural network type for a wild variety of tasks. Multilayer feed-forward 
neural network by back propagation is based on supervised learning. The characteristics of MLP 
are as following: 

 
(i) Has any number of input 
(ii) Has one or more hidden layers with any number of nodes. The internal layer are 

called ‘hidden’ because they only receive internal input (input from other processing 
unit) and produce internal output (output to other processing units). 

(iii) Uses linear combination function in the hidden layer and output layers. 
(iv) Use generally sigmoid activation function in the hidden layer. 
(v) Has any number of outputs with any activation function 
(vi) Have connections between the input layer and the first hidden layer, between the 

hidden layer, and between the last hidden layer and the output layer.   
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Figure 3.1.4 Function of Artificial Neural Network 
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Table 3.1.1 Transfer function 
 

function equation graph 

 Symmetrical hard limit 
     if      

     if      
 

Hard limit 
    if      

    if      

 

 

 

 Linear 

 

     

 

 

 

 

 Positive linear 
    if      

    if      

 

 

 

Log-sigmoid    
 

     
 

 

 

 

Hyperbolic tangent 
sigmoid 

   
      

      
 

 

 

 

 
 
 



20 
 

 
 

3.2  Variable Selection 
 
 Variable selection is a highly informative explanatory variable that is dissimilar to other 
input variables. Consequently, the optimal input variable set will contain the fewest input 
variables required to describe the behavior of the output variable, with a minimum degree of 
redundancy and with no uninformative variables. Identification of an optimal set of input 
variables will lead to a more accurate, efficient, cost-effective and more easily interpretable ANN 
model. 
 
3.2.1  Hinton Diagram  
  
 The Hinton diagram provides a compact visual display of the weight and biases related to 
a particular unit in a network. The diagram for a unit shows the signs and magnitudes of all of the 
incoming and outgoing weights as well as the sign and magnitude of the unit’s bias. Each weight 
is represented by a box drawn on the diagram. The area of the box represents the weight’s 
magnitude while the color of the box indicates the sign of the weight. Typically, white boxes 
indicate positive weights and black boxes indicate negative weight. The diagram is organized so 
that each unit in the network has an assigned position in the diagram. Typically, output units 
occupy position of a box in a diagram indicates the unit at the other end of the weight. A bias for 
a given unit is drawn in that unit’s diagram in the position where weights to and from the unit are 
shown in that unit’s diagram in the position where weights to and from the unit are shown in the 
other diagrams. 
   Hinton diagrams help in understanding an ANN by providing a concise visual 
representation of the network’s weights and biases. Each diagram makes it easy to see the signs 
and magnitudes of the weights that contribute to a unit’s activation and the relative influence of 
the unit’s activation on the units at the next level in the network (Craven, M.W., et al., 1991). 



21 
 

 
 

 
 

Figure 3.2.1 Hinton diagram 
 
 
3.2.2  Partial modeling  
 
 Partial modeling is proposed for estimating experimentally the sensitivity of each input 
variable. A model response     (     ) as a function of two orthogonal input variables. The 
exact form of the relationship is unknown, therefore using ANN to model this relationship, with a 
set of ns training samples. To illustrate the procedure, considering the simple ANN displayed in 
Fig 3.2.2. At the end of the training, a set of weights that determine the ANN model. In order to 
estimate the relative contribution of each input variable to the variance of the predicted response, 
first project the ns samples from the training set no the final ANN model, setting all input 
variables but the first to zero. In the present example, only variable    is set to zero. Obtaining a 
vector  ̂(  ), the response predicted by the ANN model using only input variable   (fig 3.2.2b). 
Repeat the procedure, now setting    to zero, to obtain the vector  ̂(  ) (fig 3.2.2c). Using the 
respective variances of  ̂(  ) and  ̂(  ) to estimate the sensitivity of input variable    and 
   respectively (Despagne, F., et al., 1998). 
 
 



22 
 

 
 

 
 

Figure 3.2.2 Illustration of the principle of partial modeling: 
(a) Full model, (b) partial modeling of variable 1, (c) partial modeling of variable 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) 

(b) 

(c) 
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3.3 Natural rubber 
 
 

3.3.1 Natural rubber composition 
 

Fresh Hevea brasilliensis Latex has high stability because the rubber particles surrounded 
by protein and phospholipid lipid has characteristics of a spherical particle size 0.1-2 microns 
(m). The arrangement of protein and phospholipids on the surface of rubber particles has 2 
forms as shown in figure 3.3.1. In 1979, Gomez, J.B., et al., has been presented the first 
arrangement (Figure 3.3.1a) the rubber particle has been surrounded by phospholipid layer in 
inner layer and protein layer in outer layer, it has double layer. In 2011, Nawamawat, S., et al., 
has been presented the second arrangement (Figure 3.3.1b) the rubber particle has been 
surrounded by thin film of  protein and phospholipid and confirm the arrangement by various 
technique such as Atomic Force Microscopy and Confocal Laser Scanning Microscopy. 

 

 

 

 

 

(a) Gomaz, J.B., et al., 1979  (b    ) Nawamawat, S., et al., 2011 
 

Figure 3.3.1 Structural arrangement of proteins and phospholipids 
 on the surface of the rubber particles. 

 Protein and phospholipid particle surrounded affect the stability of rubber particle, rubber 
particle has positive charge from amino group and negative charge from carboxylic group on 
protein and phospholipid particle, respectively. If pH > 5.0 rubber particle has more negative 
charge cause high stability and colloids, if pH is in the range 3.0-5.0 rubber particle has lose the 
stability and has rubber coagulation (Nawamawat, K., et al., 2011). 
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 Rubber latex has important component 30-36% is rubber phase, 5-6% is non-rubber 
component and the rest is water. Despite the non-rubber components, but it is most important 
because it determines the properties of natural rubber. non-rubber could be divided into 4 groups 
such as protein and amino acid, lipids, carbohydrate and metal ions. Protein defines properties 
stiffening, tear strength, heat build-up and dynamic crack growth. Lipids define vulcanization and 
crystallization. Carbohydrates sugar group indicated the quality of the latex by measurement of 
the volatile fatty acids, VFA, which is caused by the hydrolysis of bacteria and metal ions 
affecting the stability of the latex (Jitlada, S. et al., 2011). 
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CHAPTER 4 

 

MATERIAL AND METHODOLOGY 

 

4.1 Material 

 

4.1.1 Raw material 

 

1.  Fresh rubber latex, RRIM 600 

 

4.1.2 Chemical 

 

1. Sodium sulfite, Na2SO3 

2. Sodium metabisulfite, Na2S2O5 

3. Acetic acid 

4. Formic acid 

 

4.2 Equipment 

 

4.2.1 Analysis tools 

 

1. Lovibond color measurement  

The color of the raw rubber is compared and matched as closely as possible with that 
of standard color slides. The raw rubber is tested in the form of a moulded disc of standard 
thickness. Color matching is carried out under diffuse daylight illumination against a matt white 
background, preferable by use of a comparator which holds the test pellets and comparison slide 
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in convenient juxtaposition. The standard colored glasses used are calibrated in color index units 
according to the intensity of their color. The numerically higher index values have deeper color. 
The basis of calibration is the ‘Lovibond color scale’ in amber units. 

 
2. Mooney viscometer 

The test consists of determining the torque necessary to rotate a disc in a cylindrical 
chamber filled with rubber under specified conditions. A number proportional to this torque is 
taken as an index of the viscosity of the rubber. The Mooney viscometer (a shearing-disk 
viscometer) is used. 

 
3. Rapid plasticity 

A disc-shaped test pellet shall be rapidly compressed between small parallel platens to 
a fixed thickness of 1 mm and held thus for 15 s to reach approximate temperature equilibrium 
with the platens. It shall then be subjected to a constant compressive force of 100.1 kgf for 15 s; 
its thickness at the end of this period in 0.01 mm units shall be taken as the measure of plasticity.  

 

4.3 Laboratory Equipment 

 

1. Beakers 

2. Sieve size 60 and 100 mesh 

3. Weighing machine 

4. Microwave 

5. Desiccator 

6. Oven 

7. Rubber rolling machine 
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4.4 Methodology 

 

4.4.1 Activity 1: Effect of acetic acid amount and coagulation 

 

In this section, pale crepe production has been divided into 2 processes: 

Pretreatment and %DRC dilution processes 
1. Adding 0.05% wt./vol. of rubber latex of 2% wt./vol. Sodium Sulfite, Na2SO3 into 

the rubber latex for preservation. 
2. Stirring latex for 5 min under speed of 100 rpm. 
3. Filtering the latex with 60 meshes to remove all contaminates.  
4. Diluting %DRC to 25%, and further stirring for 5 min under speed of 100 rpm. 
5. Adding 0.05% wt./wt. of dry rubber content of 5% wt./vol. of Sodium metabisulfite, 

Na2S2O5 into 1,000 ml. of the sample latex for reduction of an enzymatic reaction, and stirring for 
5 min. under 100 rpm. 
Fractional coagulation and drying process 

6. Fractionally coagulating by varying 1% wt./vol. of acetic acid of 0, 0.15, 0.30 and 
0.45% vol./wt. dry rubber, and setting the fractional coagulation time of 1, 2 and 3 
hr. 

7. Filtering with 100 meshes, and then adding 0.35% wt./wt. of dry rubber content of 
2% of Formic acid, and then stirring for 5 min. 

8. Setting the coagulation time of 30 min, and rolling with a crepr machine.  
9. Drying the rubber sheets under the temperature of 35-40oC for 3-4 days. 

 
The dried rubber sheets have been further analyzed their properties such as Lovibond color, 

Mooney viscosity (MV), Initial plasticity (P0) and Plasticity Retention Index (PRI).  The average 

property values from 3 repeated data have been presented with standard deviation of 3 samples. 
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4.4.2 Activity 2: ANN design 

 

In this section, ANN design has been divided in to 2 parts: 

Part 1: ANN model with 1 hidden layer has been trained by varying a number of nodes 

from 1 to 10 nodes. The optimum model structure has been chosen by considering the overall 

Mean Square Error (MSE) and Integral Absolute Error (IAE) of the output predictions. Effect of 

activation functions has also been investigated. 

Part 2: ANN model with 2 hidden layers has been trained by varying a number of hidden 

layer, 1 and 2 hidden layers; and its number of nodes from 1 to 10 nodes. The network model 

structure has been chosen in the optimum way by minimizing the overall MSE and IAE of the 

output prediction. Comparison of the predicted outputs and the experimental data has also been 

illustrated by considering the effects of acetic acid amount and coagulation time.  

 

4.4.3 Activity 3: Input variable analysis (Partial modeling) 

 

The ANN model obtained from the previous section has been further identified the 

insignificant input variable by using the partial modeling approach. The insignificant input 

variable has been identified by considering its corresponding sensitivity index (variance). A new 

network without the insignificant input variable has been trained and tested; the comparison of the 

predicted variables and experimental data has been shown.  
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4.4.4 Activity 4: Optimum conditions determination 

 

The optimum condition has been determined based on the network model, containing only 

the significant inputs and 2 hidden layers, by considering the surface plots of all responses. In this 

work, the optimal operating conditions have been chosen by considering the rubber sheet 

properties: minimum rubber color, Mooney viscosity (MV) > 60, initial plasticity (P0) > 35 and 

Plasticity Retention Index (PRI) > 60. 
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CHAPTER 5 

 
PALE CRAPE RUBBER PROCESSING 

 
5.1  Process Description 
 
 Pale crepe is a high quality rubber sheet since it has white/pale color (Lovibond color < 
4). It is produced from a particular type of rubber latex, RRIM 600. Pale crepe rubber production 
process has been divided into 2 processes as seen in Figure 5.1.1:   
 
Pretreatment and %DRC dilution processes 

1. Adding 0.05% wt./vol. of rubber latex of 2% wt./vol. Sodium Sulfite, Na2SO3 into 
the rubber latex for preservation. 

2. Stirring latex for 5 min under speed of 100 rpm. 
3. Filtering the latex with 60 meshes to remove all contaminates.  
4. Diluting %DRC to 25%, and further stirring for 5 min under speed of 100 rpm. 
5. Adding 0.05% wt./wt. of dry rubber content of 5% wt./vol. of Sodium metabisulfite, 

Na2S2O5 into 1,000 ml. of the sample latex for reduction of an enzymatic reaction, and stirring for 
5 min. under 100 rpm. 
Bleaching and drying process 

6. Filtering with 100 meshes, then adding a bleaching agent and stirring for 5 min. 
7. Adding 0.35% wt./wt. of dry rubber content of 2% of Formic acid, and then stirring 

for 5 min. 
8. Setting the coagulation time of 30 min, and rolling with a crepr machine.  
9. Drying the rubber sheets under the temperature of 35-40oC for 3-4 days. 
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Figure 5.1.1 Pale crepe rubber process flow chart 

 
In this work, pale crepe rubber production is achieved by the following steps:  

1. Latex preservation 
2. % dry rubber content (DRC) dilution by varying randomly with 25-29%DRC 

and 27-32% total solid content, TSC 
3. Enzymatic reaction exhibition 
4. Fractional coagulation by varying 1% wt./vol. of acetic acid of 0, 0.15, 0.30 and 

0.45% vol./wt. dry rubber, and the fractional coagulation time of 1, 2 and 3 hr. 
5. Latex coagulation of 30 mins. 
6. Drying the rubber sheets under the temperature of 35-40oC for 3-4 days. 

 

Latex preservation 

%DRC dilution (25%) 

Enzymatic reaction exhibition 

Latex coagulation 

Drying (35-40oC) 

Fresh rubber latex 

Pale crepe rubber sheet 

Na2SO3 

Fresh water 

Na2S2O5 

Bleaching agent  

Formic Acid 

filtering with 100 meshes 

filtering with 60 meshes 

Bleaching 
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Artificial neural network (ANN) has been firstly designed to estimate the dried rubber 
properties by using the full input data consisting of initial %DRC, %TSC (step 2), the amount of 
1% wt./vol. acetic acid and the fractional coagulation time (step 4). Effects of a number of layers 
and nodes as well as the corresponding activation functions have been investigated. The optimum 
network model has been further improved by eliminating insignificant variables through a 
variable selection approach. In order to achieve the required properties of the pale crepe rubber 
sheets, this work focuses lastly on determining the optimal operating conditions based the partial 
ANN model by considering the rubber sheet properties: minimum rubber color, Mooney viscosity 
(MV) > 60, initial plasticity (P0) > 35 and Plasticity Retention Index (PRI) > 60. 
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5.2 Experimental results 
 

In this section, the experiment has been carried out to produce pale crepe rubber via a 
fractional coagulation method, 1% by wt of acetic acid has been used to coagulate the latex 
(RRIM 600) fractionally. Effects of acetic acid amount and coagulation time have been 
investigated on the rubber properties; Lovibond color, MV, P0 and PRI. In this study, the acetic 
acid amount and the coagulation time have been varied 0.15%, 0.30% and 0.45% vol./wt. of dry 
rubber, and 1, 2 and 3 hr. 
  
Table 5.2.1  Effect of acetic acid on rubber color 
 

Acid amount 
(% vol./wt.) 

Coagulation time (hr.) 
1 2 3 

0.00 3.70.3 3.70.3 3.70.3 
0.15 3.30.3 3.00.0 3.30.3 
0.30 3.70.3 3.80.3 4.30.3 
0.45 3.80.3 3.80.3 4.50.5 
 
 

Table 5.2.1 and Figure 5.2.1 shows the effect of acetic acid on rubber color in Lovibond 
unit. Each error bar has been plotted by using standard deviation of 3 samples. It could be seen 
from the experimental results that the rubber color is significantly decreased at 0.15% vol./wt., 2 
hrs and increased at 0.30% and 0.45% vol./wt., 3 hrs. This might be because lutoid particles 
containing carotenoids in the rubber latex has been destroyed under low pH condition resulting in 
a dark rubber sheet. Then the proper operating condition should be at 0.15% vol./wt. of acetic 
acid, and coagulation time of 2 hrs. 
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Figure 5.2.1 Effect of acetic acid on rubber color 

 
Table 5.2.2 and Figure 5.2.2 show the effect of acetic acid on Mooney viscosity (MV). 

Each error bar has been plotted by using standard deviation of 3 samples. It could be seen from 
the experimental results that MV is significantly decreased at 0.45% vol./wt., 1-2 hrs (MV < 60). 
This might be because the rubber sheet has lower %DRC resulting in lower MV under lower pH 
condition. Then the proper operating condition could be at 0.15% or 0.3% vol./wt. of acetic acid, 
and coagulation time of 1-3 hrs. 

 
Table 5.2.2 Effect of acetic acid on Mooney viscosity, ML 1+4 (100C) 

 

Acid amount 
(% vol./wt.) 

Coagulation time (hr.) 
1 2 3 

0.00 61.02.3 61.02.3 61.02.3 
0.15 59.02.5 59.51.8 61.83.8 
0.30 62.70.6 66.26.9 68.24.4 
0.45 57.30.6 56.30.6 60.10.9 
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Figure 5.2.2 Effect of acetic acid on Mooney viscosity 

 
Table 5.2.3 Effect of acetic acid on P0 

 

Acid amount 
(% vol./wt.) 

Coagulation time (hr.) 
1 2 3 

0.00 55.51.0 55.51.0 55.51.0 
0.15 51.71.0 50.80.3 55.52.2 
0.30 50.71.3 56.51.3 59.02.3 
0.45 48.20.3 50.31.0 50.01.0 

 
Table 5.2.3 and Figure 5.2.3 show the effect of acetic acid on initial plasticity (P0). Each 

error bar has been plotted by using standard deviation of 3 samples. It could be seen from the 
experimental results that P0 is significantly decreased at 0.15% vol./wt., 1-2 hrs, 0.30% vol./wt., 1 
hrs 0.45% vol./wt., 1-3 hrs, but increased at 0.30% vol./wt., 3 hrs. This might be because the 
rubber sheet has lower %DRC resulting in lower P0 under lower pH condition. Then the proper 
operating condition could be at 0.15 – 0.45% vol./wt. of acetic acid, and coagulation time of 1-3 
hrs since they give P0 over the property requirement (P0>35). 
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Figure 5.2.3 Effect of acetic acid on P0 

 
Table 5.2.4 Effect of acetic acid on PRI 

 

Acid amount 
(% vol./wt.) 

Coagulation time (hr.) 
1 2 3 

0.00 92.81.8 92.81.8 92.81.8 
0.15 93.22.5 93.82.0 92.82.1 
0.30 92.10.8 82.86.7 89.91.8 
0.45 91.31.6 88.41.6 92.71.2 
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Figure 5.2.4 Effect of acetic acid on PRI 

 
Table 5.2.4 and Figure 5.2.4 show the effect of acetic acid on plasticity retention index 

(PRI). Each error bar has been plotted by using standard deviation of 3 samples. It could be seen 
from the experimental results that PRI is significantly decreased at 0.30% vol./wt., 2 hrs 0.45% 
vol./wt., 2 hrs. This might be because the rubber sheet has lower %DRC resulting in lower ability 
of oxidation inhibition (P30) under lower pH condition. Then the proper operating condition could 
be at 0.15 – 0.45% vol./wt. of acetic acid, and coagulation time of 1-3 hrs since they give PRI 
over the property requirement (PRI>60). 
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5.3 Artificial Neural Network design for Pale Crepe Rubber Process 
 

5.3.1 Fully-input model structure 
 
According to the process, the network model has been designed for 1-2 hidden layers by 

varying their number of nodes (1 to 10). In this research, Artificial Neural Network (ANN) model 
has feed-forward scheme with four input variables such as (1) acetic acid amount, (2) fractional 
coagulation time, (3) %dry rubber content (%DRC) of diluted latex,  and (4) the corresponding 
%total solid content (%TSC). Four rubber properties, such as (1) rubber color, (2) Mooney 
viscosity (MV), (3) initial plasticity (P0), and (4) Plasticity Retention Index (PRI) have been 
predicted via using linear transfer functions (PURELIN). The ANN has been trained using the 
Levenberg-Marquardt algorithm with 30 experimental data sets, data matrix [430]; 80% for 
training (training matrix, [424]) and 20% for testing (testing matrix, [46]). 

 

              
 

 
∑ ∑ (       

 )
  

   
 
          (5.3.1) 

              ∑ ∑ |       
 | 

   
 
          (5.3.2) 

       
 

 
∑ (       

 )
  

          (5.3.3) 

       ∑ |       
 | 

           (5.3.4) 

 
where      is  the     experimental outputs,      

   
  is  the     predicted outputs,      

  and   is  a total number of outputs, and a number of testing data respectively 
  is      
 
 
 
 



39 
 

 
 

In this research, the performance of the ANN model has been identified by using the 
values of mean square error (MSE) and integral absolute error (IAE). General overall MSE and 
IAE equations for multiple-inputs multiple-outputs (MIMO) system are shown in Equations 
(5.3.1) and (5.3.2) respectively. In addition individual MSE and IAE equations for each output are 
shown in Equations (5.3.3) and (5.3.4) respectively. 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

Figure 5.3.1 Analytical Artificial Neural Network (ANN) flow chart 
 
 
 
 
 
 
 
 

Initialized ANN model 

 

Experimental data 

 

ANN 
1-2 hidden layer, 1:10 nodes in each layer 

Layer node plot  

(5 models give overall MSE < 10) 

 

MSE/IAE Determination of each output 

 

Best model (minimum MSE/IAE) 
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5.3.1.1 ANN design with 1 hidden layer 
 
5.3.1.1.1 Effect of layer node 

 
In this section, ANN model has been trained with 1 hidden layer, the number of nodes is 

varying from 1 to 10 nodes. It has been found from the Figure 5.3.2 that the minimum overall 
MSE is in the range of hidden node 1-6 in this case. However it should be noted that in cases of 
high hidden nodes (higher than 6 nodes), the training approach has been terminated due to 
reaching the maximum training iterations (20 iterations in this case). Six ANN structures are then 
chosen arbitrarily as [1], [2], [3], [4], [5] and [6]. Table 5.3.1 shows MSE and IAE values of four 
models prediction. It has been found in the simulation results that the optimal network structure 
could have 1 node in hidden layer give minimum overall MSE and IAE of the output prediction. 

 

 
 

Figure 5.3.2 Overall MSE response according to ANN design with 1 hidden layer 
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Table 5.3.1 Performances of ANN model with 1 hidden layer, MSE and IAE 
 
 

Structure 
1 node 2 nodes 3 nodes 4 nodes 5 nodes 6 nodes 

MSE IAE MSE IAE MSE IAE MSE IAE MSE IAE MSE IAE 

Color 0.021 0.584 0.038 1.070 0.230 2.057 0.323 3.179 0.925 5.431 0.030 0.942 
MV 0.060 1.285 0.050 1.261 0.078 1.447 0.324 2.646 0.308 2.697 0.058 1.335 
P0 0.007 0.402 0.018 0.560 0.132 1.318 0.326 2.552 0.276 2.703 0.016 0.582 

PRI 0.137 1.591 0.143 1.784 0.137 1.916 0.100 1.720 0.287 2.741 0.102 1.546 
Overall 0.056 3.862 0.062 4.715 0.144 6.737 0.268 10.097 0.449 13.572 0.052 4.406 
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5.3.1.1.2 Effect of transfer function 
 

In this section, the ANN model has been trained and tested using Levenberg-Marquardt 
algorithm (TRAINLM) with the different transfer function such as TANSIG, LOGSIG, 
HARDLIM, HARDLIMS, SATLINS, POSLIN and RADBAS to retrieve the properties of pale 
crepe rubber. The ANN model has 1 hidden layer; the number of nodes has been varied from 1 to 
10 nodes. General overall MSE for multiple-inputs multiple-outputs (MIMO) system are shown 
in Table 5.3.2. 

 
Table 5.3.2 Effect of nodes on prediction performance (overall MSE) with different transfer                       

functions 
 

nodes 
Transfer functions 

TANSIG LOGSIG HARDLIM HARDLIMS SATLINS POSLIN RADBAS 

1 0.056 0.056 0.064 0.064 0.057 0.063 0.061 
2 0.054 0.054 0.064 0.064 0.052 0.051 0.037 
3 0.043 0.145 0.064 0.064 0.041 0.041 0.769 
4 0.052 0.052 0.064 0.064 0.066 0.064 0.103 
5 0.057 0.051 0.064 0.064 0.040 0.052 0.060 
6 0.023 0.066 0.064 0.064 0.043 0.050 0.060 
7 1.138 0.168 0.064 0.064 0.036 0.051 59.692 
8 6.807 0.099 0.064 0.064 0.033 0.042 0.064 
9 0.123 0.128 0.064 0.064 0.061 0.047 0.293 

10 0.776 0.134 0.064 0.064 0.052 0.036 0.032 
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Figure 5.3.3 MSE of each transfer function for MIMO system 

 
It has be seen from the simulation results that ANN with the transfer function of 

TANSIG (6 nodes) gives the smallest MSE (0.023). However, SATLINS, POSLIN and RADBAS 
(8, 10, 10 nodes respectively) give insignificantly different values of MSE, 0.033, 0.036 and 
0.032 respectively. Then, the prediction error of five network structures (one hidden layer) with 
TANSIG, LOGSIG (5 nodes), SATLINS, POSLIN and RADBAS has been next evaluated 
separately for each output as shown in Table 5.3.3 and Figure 5.3.4 – 5.3.7. Figure 5.3.4 – 5.3.7 
show effect of five different transfer functions on prediction color, MV, P0 and PRI respectively. 
It could be seen from the simulation results that RADBAS transfer function gives the minimum 
MSE (0.023) and IAE (0.583) values for the color prediction. 

 
Figure 5.3.5 shows the MSE of MV prediction. It could be seen from the simulation 

results that POSLIN transfer function gives the minimum MSE (0.036) and IAE (1.029) values 
for MV prediction. In this case, LOGSIG gives highest prediction error with MSE/IAE = 
0.067/1.354. Figure 5.3.6 shows the MSE value of P0 output. It could be seen from the simulation 
result that POSLIN transfer function gives the minimum MSE (0.008) and IAE (0.423) values for 
P0 prediction. However, TANSIG, LOGSIG, RADBAS and SATLINS also provide acceptable 
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prediction errors with MSE/IAE = 0.021/0.543, 0.018/0.532, 0.014/0.586 and 0.016/0.625 
respectively.  

 
Table 5.3.3 Effect of transfer functions on output prediction performances  
 

Output 
TANSIG LOGSIG SATLINS POSLIN RADBAS 

MSE IAE MSE IAE MSE IAE MSE IAE MSE IAE 

Color 0.032 0.900 0.048 1.107 0.030 0.899 0.027 0.895 0.023 0.583 
MV 0.058 1.382 0.067 1.354 0.047 1.211 0.036 1.029 0.040 0.990 
P0 0.021 0.543 0.018 0.532 0.016 0.625 0.008 0.423 0.014 0.586 

PRI 0.018 0.590 0.054 1.147 0.051 1.050 0.059 1.117 0.041 0.951 
Overall 0.033 3.415 0.046 4.141 0.036 3.786 0.032 3.464 0.029 3.109 
 
 

 
Figure 5.3.4 Effect of transfer function on color prediction  

 1 = TANSIG, 2 = LOGSIG, 3 = SATLINS, 4 = POSLIN, 5 = RADBAS  
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Figure 5.3.5 Effect of transfer function on MV prediction 

 1 = TANSIG, 2 = LOGSIG, 3 = SATLINS, 4 = POSLIN, 5 = RADBAS 
  

 

 
Figure 5.3.6 Effect of transfer function on P0 prediction 

 1 = TANSIG, 2 = LOGSIG, 3 = SATLINS, 4 = POSLIN, 5 = RADBAS 
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Figure 5.3.7 Effect of transfer function on PRI prediction 

 1 = TANSIG, 2 = LOGSIG, 3 = SATLINS, 4 = POSLIN, 5 = RADBAS 
 

Figure 5.3.7 shows the MSE of PRI output. It could be seen from the simulation result 
that TANSIG transfer function give the minimum MSE (0.018) and IAE (0.590) values for PRI 
prediction. In this case, POSLIN gives highest prediction error with MSE/IAE = 0.059/18.141. It 
could be concluded in this section that ANN models with RADBAS transfer function give good 
overall prediction performance, MSE/IAE = 0.029/3.109 as shown in Table 5.3.3. In this case, 
different activation functions show insignificant effects on the output prediction because the 
operating range is too small. However, it should be noted that the activation functions should be 
chosen according to the process output responses. 

 
 
 
 
 
 
 
 
 

0.000

0.005

0.010

0.015

0.020

0.025

0 1 2 3 4 5 6

M
SE

 

Transfer function 



47 
 

 
 

5.3.1.2 ANN design with 2 hidden layers 
 
In this section, ANN model has been designed in the optimal way by plotting MSE 

surface and its contour plot with node number of layer 1 and 2 as shown in Figure 5.3.8 and 
Figure 5.3.9, respectively. The ANN has been trained using Levenberg-Marquardt algorithm with 
TANSIG transfer function (mostly used) and the rubber properties have been predicted via using 
linear transfer functions (PURELIN). The overall mean square error (MSE) is calculated by 
Equation 5.3.1. It has been found in the simulation results that for MSE < 10, the network 
structure could have [1-4, 2-4] nodes for layer [1, 2] respectively, and [6-10, 1-10] nodes for layer 
[1, 2] respectively.  

 

 
 

Figure 5.3.8 Overall MSE response according to (fully) ANN node tuning  
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Figure 5.3.9 Overall MSE contour plot according to (fully) ANN node tuning 

 
In order to minimizing the prediction error of each property, the optimal network 

structure has been chosen by considering MSE and integral absolute error (IAE) of the predicted 
output individually, Equation (5.3.3) and Equation (5.3.4) respectively. Figure 5.3.10, 5.3.12, 
5.3.14 and 5.3.16 show IAE surface plots for rubber property predictions such as color, MV, P0 
and PRI respectively. In addition Figure 5.3.11, 5.3.13, 5.3.15 and 5.3. 17 show IAE contour plots 
for rubber property predictions such as color, MV, P0 and PRI respectively. It could be seen that 
the ANN structure, [nodes for layer 1, nodes for layer 2] that gives good performance of rubber 
color, MV, P0 and PRI could be [1-4, 1-3], [5-7, 1-2], and [8-10, 6-10]. 
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Figure 5.3.10 IAE surface plot for color prediction according to (fully) ANN node tuning 
 

 
Figure 5.3.11 IAE contour plot for color prediction according to (fully) ANN node tuning 
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Figure 5.3.12 IAE surface plot for MV prediction according to (fully) ANN node tuning 

 
 

 
Figure 5.3.13 IAE contour plot for MV prediction according to (fully) ANN node tuning 
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Figure 5.3.14 IAE surface plot for P0 prediction according to (fully) ANN node tuning 

 
 

 
Figure 5.3.15 IAE contour plot for P0 prediction according to (fully) ANN node tuning 
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Figure 5.3.16 IAE surface plot for PRI prediction according to (fully) ANN node tuning 

 
 
 

 
Figure 5.3.17 IAE contour plot for PRI prediction according to (fully) ANN node tuning 

 
From Figures 5.3.8-5.3.17, five ANN structures are then chosen arbitrarily as with nodes 

of [8,10], [1,3], [3,2], [6,1] and [10,7] for layer [1,2]. Table 5.3.4 shows MSE and IAE values of 
five models prediction. Figures 5.3.18 – 5.3.21 show the comparison of the predicted outputs and 
the experimental testing data for the ANN model structures, [1,3], [3,2], [6,1] and [10,7] 
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respectively. It has been found in this work that ANN model structure with 1 and 3 nodes in layer 
1 and 2 respectively gives minimum overall MSE/IAE (0.037/3.394) of the output prediction. The 
ANN with structure of [1,3] gives smallest IAE values of color and MV prediction (0.452 and 
1.124 respectively), but structure of [10,7] gives smallest IAE values of P0 and PRI (0.451 and 
1.081). 

 
Table 5.3.4 Performances of (fully) ANN model, MSE and IAE 
 

Structure 
8,10 1,3 3,2 6,1 10,7 

MSE IAE MSE IAE MSE IAE MSE IAE MSE IAE 

color 0.159 1.642 0.008 0.452 0.040 0.984 0.036 0.952 0.077 1.462 

MV 0.124 1.683 0.046 1.124 0.085 1.383 0.157 2.092 0.010 1.637 

P0 0.037 0.754 0.015 0.559 0.039 0.857 0.079 1.119 0.013 0.451 

PRI 0.044 1.077 0.079 1.259 0.108 1.630 0.114 1.598 0.042 1.081 

Overall 0.091 5.156 0.037 3.394 0.068 4.854 0.096 5.761 0.058 4.632 

 
 

 
 

Figure 5.3.18 Comparison of the predicted and experimental outputs for ANN structure [1,3] 

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Ex
p

e
ri

m
e

n
t 

d
at

a
 

Predicted Output (ANN) 

color MV P0 PRI



54 
 

 
 

 

 
 

Figure 5.3.19 Comparison of the predicted and experimental outputs for ANN structure [3,2] 
 

 
 

Figure 5.3.20 Comparison of the predicted and experimental outputs for ANN structure [6,1] 
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Figure 5.3.21 Comparison of the predicted and experimental outputs for ANN structure [10,7] 
 
 
 This part shows the comparison of the experiment and predicted data by considering the 
effect of acetic acid amount and coagulation time. The rubber properties such as Lovibond color, 
MV, P0 and PRI have been predicted by using ANN model with structure of [1,3] nodes for layer 
1 and 2 respectively. The transfer functions TANSIG and PURELIN have been used in the hidden 
layers and the output layer respectively. The acetic acid amount and the coagulation time have 
been varied 0.15%, 0.30% and 0.45% vol./wt. of dry rubber, and 1, 2 and 3 hr.  

Figure 5.3.22 shows the comparison of the predicted and experimental Lovibond color. It 
could be seen from the results that the predicted rubber color are smaller than the actual data 
about 0.1 – 1 Lovibond unit in all conditions. However, the network model gives acceptable trend 
of the rubber color as seen in the Figure 5.3.22. 
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Figure 5.3.22 Comparison of the predicted and experimental rubber color, ANN with [1,3]                                                               
 
 

 
 

Figure 5.3.23 Comparison of the predicted and experimental MV, ANN with [1,3] 
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 Figure 5.3.23 shows the comparison of the predicted and experimental MV. It could have 
seen that the predicted outputs provided by ANN model with 2 hidden layers [1,3] are smaller 
than the experimental results about 2-10 ML 1+4 (100C) in all conditions. Figure 5.3.24 shows 
the comparison of the predicted and experimental initial plasticity (P0). It could have seen that the 
predicted outputs provided by ANN model with structure of [1,3] relate with the experimental 
results. However, the predicted data are smaller than the experimental data about 1 – 5 values of 
P0. Figure 5.3.25 shows the comparison of the predicted and experimental plasticity retention 
index (PRI). It could have seen that the predicted outputs provided by ANN model relate with the 
experimental result. However the predicted PRI are slightly different with the experimental ones 
only about 1 – 2%. 
 

 
 Figure 5.3.24 Comparison of the predicted and experimental P0, ANN with [1,3] 
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Figure 5.3.25 Comparison of the predicted and experimental PRI, ANN with [1,3] 
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5.3.2 Input variable analysis (Partial modeling) 
 
Since the performance of ANN model strongly depends on the training data sets, 

significant input variables should then be carefully chosen to give good performance of the 
model. Insignificant input variables might give poor prediction results, a variable selection 
approach such a partial modeling (Despagne, F., et al., 1998) has been further applied in this 
section for the model improvement. In this case, the sensitivity (  ) of the predicted responses, 
  ̂(  )

  has been determined as shown in Equation (5.3.5).   

        ̂(  )
  (5.3.5) 

 
According to the partial modeling approach presented by Despagne,F., et al., 1998 all ANN 
inputs but the first (  = acetic acid amount) are firstly set to zero (          ). The procedure 
is next repeated by setting         to zero, to obtain   ̂(  )

  and so on. 
 
 

 
Figure 5.3.26 Sensitivity of the predicted output corresponding to input variables 

1 = acetic acid amount, 2 = coagulation time, 3 = %DRC, 4 = %TSC 
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In this section, the fully ANN model obtained from the section 5.3.1 with four input 
variables, and the structure of [1,3] has been further identified the insignificant input variable by 
using the partial modeling approach. The sensitivity bar plot in this case has been shown in Figure 
5.3.26. It can be seen that the acetic acid amount has largest effects on predicted outputs, MV 
(9.063), P0 (4.700), PRI (1.107) and Lovibond color (0.089) respectively. The other three input 
variables such as the coagulation time, %DRC and %TSC have significantly smaller than the acid 
amount. Moreover, %TSC has smallest effects on all process outputs, especially Lovibond color 
and PRI compared to the other inputs. This might be because %TSC is normally higher than 
%DRC around 3% - 5% in which non-rubber consisting of color pigments is the difference of 
%TSC and %DRC. Therefore, %TSC could be ignored since it varies according to %DRC, it has 
then been chosen as the insignificant variable and further eliminated. 
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5.3.3 Partial-inputs model structure 
 
In this section, new network model has been trained with three inputs, the acetic acid 

amount, the coagulation time and %DRC. The network structure has been chosen with two hidden 
layers, 1 node for layer 1 and 3 nodes for layer 2 with hyperbolic tangent sigmoid transfer 
function (TANSIG). The linear transfer functions (PURELIN) are used in the output layer. Figure 
5.3.27 shows the comparison of the predicted and experimental outputs in case of three – inputs 
ANN model. The overall MSE/IAE are shown in Table 5.3.5. 

 
 

 
Figure 5.3.27 Comparison of the predicted and experimental outputs for ANN with 3 inputs 
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Table 5.3.5 Performances of (3-inputs) ANN model with structure of [1,3] 
 

Structure 
1,3 

MSE IAE 

color 0.003 0.264 
MV 0.053 1.218 
P0 0.006 0.405 

PRI 0.083 1.372 
Overall 0.037 3.260 

 
Figure 5.3.27 shows the validation of ANN (partial) model. The predicted of each output 

variable has been grouped. The accuracy between the experimental and predicted output are 
accepted. It has been found that overall MSE/IAE is 0.037/3.260 for ANN with 3 input variables. 
The ANN prediction can be improved by removing the less affect input variable, in which the 
predicted color and P0 are significantly improved in this case. 
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5.4 Optimum conditions determination 
 

By applying the input variable selection, the output prediction of the ANN model has 
been improved as seen in previous part. The optimum conditions have been further evaluated by 
considering the surface plots of the responses as shown in Figure 5.3.28 – Figure 5.3.31. It can be 
seen that P0 and PRI values are higher than the properties requirement (P0 > 35 and PRI > 60) in 
all cases if the process operates at %DRC = 27.17. It could be seen that MV is higher than the 
standard, MV> 60 ML(1+4) 100oC if the process operates under the acetic acid amount of 0.25-
0.28% vol./wt. dry rubber and coagulation time in range of 0.1-0.6 hr. Moreover, MV values are 
higher than 58 ML(1+4) 100oC in the acetic acid amount of 0.2-0.27% vol./wt. dry rubber and 
coagulation time in range of 0.1-1.5 hr. 

 

 
Figure 5.3.28 Response surface of predicted Lovibond color 
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Figure 5.3.29 Response surface of predicted MV 

 

 
Figure 5.3.30 Response surface of predicted P0 
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Figure 5.3.31 Response surface of predicted PRI 

  
The Lovibond color has slightly higher than the product specification ( 3) in (1) the 

acetic acid amount of 0.01-0.2% vol./wt. dry rubber and coagulation time in range of 0.1-1.8 hr, 
(2) the acetic acid amount of 0.01-0.22% vol./wt. dry rubber and coagulation time in range of 1.2-
3 hr and (3) the acetic acid amount of 0.01-0.27% vol./wt. dry rubber and coagulation time in 
range of 1.8-3 hr. By considering the predicted responses, it has been found that the conditions 
providing acceptable color ( 3) and MV (> 58 ML(1+4) 100oC) at the same time are under the 
acetic acid amount of 0.2-0.22% vol./wt. dry rubber and coagulation time is 1.2-1.5 hr. MV of 
rubber sheet could be increased over time during storage. The optimal condition from the ANN 
model is related with the optimal condition from experimental data.  

 
 
 
 

0

0.6

1.2

1.8

2.4

3

0 0.09 0.18 0.27 0.36 0.45

C
o

ag
u

la
ti

o
n

 t
im

e
, h

r 

%acetic acid 

75-80 80-85 85-90 90-95



66 
 

 
 

CHAPTER 6 
 

CONCLUSIONS AND RECOMENDATIONS 
 

6.1  Experimental results 
 

The experiment has been carried out to produce pale crepe rubber via fractional 
coagulation method, 1% by wt. of acetic acid has been used to coagulate the latex (RRIM 600) 
fractionally. Effects of acetic acid amount and coagulation time have been investigated on the 
rubber properties; Lovibond color, MV, P0 and PRI. The acetic acid amount and the coagulation 
time have been varied 0.15%, 0.30% and 0.45% vol./wt. of dry rubber, and 1, 2 and 3 hrs. From 
the experimental results, it could be seen that the rubber color is significantly decreased at 0.15% 
vol./wt., 2 hrs and increased at 0.30% and 0.45% vol./wt., 3 hrs. MV is significantly decreased at 
0.45% vol./wt., 1-2 hrs (MV < 60). P0 is significantly decreased at 0.15% vol./wt., 1-2 hrs, 0.30% 
vol./wt., 1 hrs 0.45% vol./wt., 1-3 hrs, but increased at 0.30% vol./wt., 3 hrs. PRI is significantly 
decreased at 0.30% vol./wt., 2 hrs 0.45% vol./wt., 2 hrs. Then the proper operating condition 
should be at 0.15% vol./wt. of acetic acid, and coagulation time of 2 hrs to give the property 
requirement: minimum rubber color, MV > 60, P0 > 35 and PRI > 60. 
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6.2  Artificial Neural Network design for Pale Crepe Rubber Process 
 
6.2.1 Fully-input model structure 
 

The ANN model has been designed for 1-2 hidden layers by varying their number of 
nodes (1 to 10). Artificial Neural Network (ANN) model has feed-forward scheme with four input 
variables such as (1) acetic acid amount, (2) fractional coagulation time, (3) %dry rubber content 
(%DRC) of diluted latex,  and (4) the corresponding %total solid content (%TSC). Four rubber 
properties, such as (1) rubber color, (2) Mooney viscosity (MV), (3) initial plasticity (P0), and (4) 
Plasticity Retention Index (PRI) have been predicted via using linear transfer functions 
(PURELIN). The ANN has been trained using the Levenberg-Marquardt algorithm with 30 
experimental data sets, data matrix [430]; 80% for training (training matrix, [424]) and 20% 
for testing (testing matrix, [46]). The performance of the ANN model has been identified by 
using the values of mean square error (MSE) and integral absolute error (IAE).  

 
6.2.1.1 Effect of layer node 

  
 ANN model has been trained with 1 hidden layer, the number of nodes is varying from 1 
to 10 nodes. It has been found in the simulation results that the optimal network structure could 
have 1 node in hidden layer give minimum overall MSE and IAE of the output prediction with 
MSE = 0.056 and IAE = 3.862. 
 
 6.2.1.2 Effect of transfer function 
 
 The ANN model has been trained and tested using Levenberg-Marquardt algorithm 
(TRAINLM) with the different transfer function such as TANSIG, LOGSIG, HARDLIM, 
HARDLIMS, SATLINS, POSLIN and RADBAS to retrieve the properties of pale crepe rubber. 
The ANN model has 1 hidden layer; the number of nodes has been varied from 1 to 10 nodes. The 
ANN models with RADBAS transfer function give good overall prediction performance, 
MSE/IAE = 0.029/3.109.  
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6.2.2  ANN design with 2 hidden layer 
 
 ANN model has been designed in the optimal way by plotting MSE surface and its 
contour plot with node number of layer 1 and 2. The ANN has been trained using Levenberg-
Marquardt algorithm with TANSIG transfer function and the rubber properties have been 
predicted via using linear transfer functions (PURELIN). It has been found in this work that ANN 
model structure with 1 and 3 nodes in layer 1 and 2 respectively gives minimum overall 
MSE/IAE (0.037/3.394) of the output prediction. 

  
6.2.3  Input variable analysis (Partial modeling) 
 

The fully ANN model structure of [1,3] has been further identified the insignificant input 
variable by using the partial modeling approach. It can be seen that the acetic acid amount has 
largest effects on predicted outputs, MV (9.063), P0 (4.700), PRI (1.107) and Lovibond color 
(0.089) respectively. The other three input variables such as the coagulation time, %DRC and 
%TSC have significantly smaller than the acid amount. Moreover, %TSC has smallest effects on 
all process outputs, especially Lovibond color and PRI compared to the other inputs because 
%TSC is normally higher than %DRC around 3% - 5% in which non-rubber consisting of color 
pigments is the difference of %TSC and %DRC. Therefore, %TSC could be ignored since it 
varies according to %DRC, it has then been chosen as the insignificant variable and further 
eliminated. 
 
6.2.4  Partial-inputs model structure 
 

New network model has been trained with three inputs, the acetic acid amount, the 
coagulation time and %DRC. The network structure has been chosen with two hidden layers, 1 
node for layer 1 and 3 nodes for layer 2 with hyperbolic tangent sigmoid transfer function 
(TANSIG). The linear transfer functions (PURELIN) are used in the output layer. It has been 
found that overall MSE/IAE is 0.037/3.260 for ANN with 3 input variables. The ANN prediction 
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can be improved by removing the less affect input variable, in which the predicted PRI are 
significantly improved in this case. 
 
6.3  Optimum condition determination 
 
 By applying the input variable selection, the output prediction of the ANN model has 
been improved as seen in previous part. The optimum conditions have been further evaluated by 
considering the surface plots of the responses. It has been found that the conditions providing 
acceptable color ( 3) and MV (> 58 ML(1+4) 100oC) at the same time are under the acetic acid 
amount of 0.2-0.22% vol./wt. dry rubber and coagulation time is 1.2-1.5 hr. MV of rubber sheet 
could be increased over time during storage. The optimal condition from the ANN model is 
related with the optimal condition from experimental data.  
 

6.4  Recommendation 

 

 It is quite difficult to provide pale crepe rubber color <3 via fractional coagulation then it 

should be fractional coagulation coupled with color bleaching.   
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APPENDIX A 
 

NEURAL NETWORK  
 
NETWORK FUNCTION 
 
 A feed-forward backpropagation network (NEWFF) 
  
Syntax 
      net = newff(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) 
  
Description 
    NEWFF(P,T,S,TF,BTF,BLF,PF,IPF,OPF,DDF) takes, 
        P  - RxQ1 matrix of Q1 representative R-element input vectors. 
        T  - SNxQ2 matrix of Q2 representative SN-element target vectors. 
        Si  - Sizes of N-1 hidden layers, S1 to S(N-1), default = []. (Output layer size SN is 
determined from T.) 
        TFi - Transfer function of ith layer. Default is 'tansig' for hidden layers, and 'purelin' for 
output layer. 
        BTF - Backpropagation network training function, default = 'trainlm'. 
        BLF - Backpropagation weight/bias learning function, default = 'learngdm'. 
        PF  - Performance function, default = 'mse'. 
  IPF – Row cell array of input processing functions. Default is {'fixunknowns', 
'remconstantrows', 'mapminmax'}. 
  OPF -  Row cell array of output processing functions. Default is {'remconstantrows', 
'mapminmax'}. 
        DDF - Data division function, default = 'dividerand'; and returns an N layer feed-forward 
backprop network. 
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     The transfer functions TF{i} can be any differentiable transfer function such as TANSIG, 
LOGSIG, or PURELIN. 
      The training function BTF can be any of the backpropagation training functions such as 
TRAINLM, TRAINBFG, TRAINRP, TRAINGD, etc. 
  
      *WARNING*: TRAINLM is the default training function because it is very fast, but it 
requires a lot of memory to run.  If you get an "out-of-memory" error when training try doing one 
of these: 
        (1) Slow TRAINLM training, but reduce memory requirements, by setting 
NET.trainParam.mem_reduc to 2 or more. (See HELP TRAINLM.) 
       (2) Use TRAINBFG, which is slower but more memory efficient than TRAINLM. 
       (3) Use TRAINRP which is slower but more memory efficient than TRAINBFG. 
  
      The learning function BLF can be either of the backpropagation learning functions such as 
LEARNGD, or LEARNGDM. 
       The performance function can be any of the differentiable performance functions such as 
MSE or MSEREG. 
  
Examples 
  load simplefit_dataset 
      net = newff(simplefitInputs,simplefitTargets,20); 
      net = train(net,simplefitInputs,simplefitTargets); 
      simplefitOutputs = sim(net,simplefitInputs); 
  
Algorithm 
      Feed-forward networks consist of Nl layers using the DOTPROD weight function, NETSUM 
net input function, and the specified transfer functions. The first layer has weights coming from 
the input.  Each subsequent layer has a weight coming from the previous layer.  All layers have 
biases.  The last layer is the network output. Each layer's weights and biases are initialized with 
INITNW. 
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  Adaption is done with TRAINS which updates weights with the specified learning function. 
Training is done with the specified training function. Performance is measured according to the 
specified performance function. 
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TRAINING FUNCTION 
 
 Levenberg-Marquardt backpropagation (TRAINLM) 
  
Syntax 
 [net,tr] = trainlm(net,tr,trainV,valV,testV) 
      info = trainlm('info') 
  
Description 
 TRAINLM is a network training function that updates weight and bias states according to 
Levenberg-Marquardt optimization. TRAINLM is often the fastest backpropagation algorithm in 
the toolbox, and is highly recommended as a first choice supervised algorithm, although it does 
require more memory than other algorithms. 
  
 TRAINLM (NET,TR,TRAINV,VALV,TESTV) takes these inputs, 
       NET - Neural network. 
     TR  - Initial training record created by TRAIN. 
        TRAINV - Training data created by TRAIN. 
        VALV - Validation data created by TRAIN. 
        TESTV - Test data created by TRAIN and returns, 
        NET - Trained network. 
        TR  - Training record of various values over each epoch. 
  
     Each argument TRAINV, VALV and TESTV is a structure of these fields: 
        X  - NxTS cell array of inputs for N inputs and TS timesteps. 
             X{i,ts} is an RixQ matrix for ith input and ts timestep. 
        Xi - NxNid cell array of input delay states for N inputs and Nid delays. 
             Xi{i,j} is an RixQ matrix for ith input and jth state. 
        Pd - NxSxNid cell array of delayed input states. 
        T  - NoxTS cell array of targets for No outputs and TS timesteps. 
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             T{i,ts} is an SixQ matrix for the ith output and ts timestep. 
        Tl - NlxTS cell array of targets for Nl layers and TS timesteps. 
             Tl{i,ts} is an SixQ matrix for the ith layer and ts timestep. 
        Ai - NlxTS cell array of layer delays states for Nl layers, TS timesteps. 
             Ai{i,j} is an SixQ matrix of delayed outputs for layer i, delay j. 
  
 Training occurs according to training parameters, with default values: 
        net.trainParam.show         25  Epochs between displays 
        net.trainParam.showCommandLine 0 generate command line output 
        net.trainParam.showWindow    1 show training GUI 
        net.trainParam.epochs       100  Maximum number of epochs to train 
        net.trainParam.goal           0  Performance goal 
        net.trainParam.max_fail      5  Maximum validation failures 
        net.trainParam.mem_reduc     1  Factor to use for memory/speed trade off. 
        net.trainParam.min_grad   1e-10  Minimum performance gradient 
        net.trainParam.mu         0.001  Initial Mu 
        net.trainParam.mu_dec      0.1  Mu decrease factor 
        net.trainParam.mu_inc       10  Mu increase factor 
        net.trainParam.mu_max     1e10  Maximum Mu 
        net.trainParam.time         inf  Maximum time to train in seconds 
   
     TRAINLM is the default training function for several network creation functions including 
NEWFF, NEWCF, NEWTD, NEWDTDNN and NEWNARX. TRAINLM('info') returns useful 
information about this function. 
  
Algorithm 
  TRAINLM supports training with validation and test vectors if the network's NET.divideFcn 
property is set to a data division function. Validation vectors are used to stop training early if the 
network performance on the validation vectors fails to improve or remains the same for 
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MAX_FAIL epochs in a row.  Test vectors are used as a further check that the network is 
generalizing well, but do not have any effect on training. 
  TRAINLM can train any network as long as its weight, net input, and transfer functions have 
derivative functions. Backpropagation is used to calculate the Jacobian jX of performance PERF 
with respect to the weight and bias variables X.  Each variable is adjusted according to 
Levenberg-Marquardt,  
 
       jj = jX * jX 
       je = jX * E 
       dX = -(jj+I*mu) \ je 
      where E is all errors and I is the identity matrix. 
 
  The adaptive value MU is increased by MU_INC until the change above results in a reduced 
performance value.  The change is then made to the network and mu is decreased by MU_DEC. 
  The parameter MEM_REDUC indicates how to use memory and speed to calculate the 
Jacobian jX.  If MEM_REDUC is 1, then TRAINLM runs the fastest, but can require a lot of 
memory. Increasing MEM_REDUC to 2, cuts some of the memory required by a factor of two, 
but slows TRAINLM somewhat.  Higher states continue to decrease the amount of memory 
needed and increase training times. 
  
     Training stops when any of these conditions occurs: 
      1) The maximum number of EPOCHS (repetitions) is reached. 
      2) The maximum amount of TIME has been exceeded. 
      3) Performance has been minimized to the GOAL. 
     4) The performance gradient falls below MINGRAD. 
     5) MU exceeds MU_MAX. 
      6) Validation performance has increased more than MAX_FAIL times since the last time it 
decreased (when using validation). 
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LEARNING FUNCTION 
 
 Gradient descent w/momentum weight/bias learning function (LEARNGDM) 
    
Syntax 
 [dW,LS] = learngdm(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) 
      [db,LS] = learngdm(b,ones(1,Q),Z,N,A,T,E,gW,gA,D,LP,LS) 
      info = learngdm(code) 
 
Description 

 LEARNGDM is the gradient descent with momentum weight/bias learning function.  
LEARNGDM(W,P,Z,N,A,T,E,gW,gA,D,LP,LS) takes several inputs, 

        W  - SxR weight matrix (or Sx1 bias vector). 
        P  - RxQ input vectors (or ones(1,Q)). 
        Z  - SxQ weighted input vectors. 
        N  - SxQ net input vectors. 
        A  - SxQ output vectors. 
        T  - SxQ layer target vectors. 
        E  - SxQ layer error vectors. 
        gW - SxR gradient with respect to performance. 
        gA - SxQ output gradient with respect to performance. 
        D  - SxS neuron distances. 
        LP - Learning parameters, none, LP = []. 
        LS - Learning state, initially should be = []  nd returns, 
        dW - SxR weight (or bias) change matrix. 
        LS - New learning state. 
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  Learning occurs according to LEARNGDM's learning parameters, shown here with their 
default values. 
        LP.lr - 0.01 - Learning rate 
        LP.mc - 0.9  - Momentum constant 
   LEARNGDM(CODE) returns useful information for each CODE string: 
        'pnames'    - Returns names of learning parameters. 
        'pdefaults' - Returns default learning parameters. 
        'needg'     - Returns 1 if this function uses gW or gA. 
 
Examples 
  Here we define a random gradient G for a weight going to a layer with 3 neurons, from an 
input with 2 elements. We also define a learning rate of 0.5 and momentum constant of 0.8; 
  
  gW = rand(3,2); 
        lp.lr = 0.5; 
        lp.mc = 0.8; 
 
 Since LEARNGDM only needs these values to calculate a weight change (see Algorithm 
below), we will use them to do so. We will use the default initial learning state. 
 
          ls = []; 
        [dW,ls] = learngdm([],[],[],[],[],[],[],gW,[],[],lp,ls) 
  
 LEARNGDM returns the weight change and a new learning state. 
  
Network Use 
 You can create a standard network that uses LEARNGD with NEWFF, NEWCF, or 
NEWELM. 
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 To prepare the weights and the bias of layer i of a custom network to adapt with 
LEARNGDM: 
       1) Set NET.adaptFcn to 'trains'. NET.adaptParam will automatically become TRAINS's 
default parameters. 
       2) Set each NET.inputWeights{i,j}.learnFcn to 'learngdm'. 
          Set each NET.layerWeights{i,j}.learnFcn to 'learngdm'. 
          Set NET.biases{i}.learnFcn to 'learngdm'. 
 Each weight and bias learning parameter property will automatically be set to LEARNGDM's 
default parameters. 
  
 To allow the network to adapt: 
       1) Set NET.adaptParam properties to desired values. 
       2) Call ADAPT with the network. 
 
Algorithm 
  LEARNGDM calculates the weight change dW for a given neuron from the neuron's input P 
and error E, the weight (or bias) learning rate LR, and momentum constant MC, according to 
gradient descent with momentum: 
  
        dW = mc*dWprev + (1-mc)*lr*gW 
  
     The previous weight change dWprev is stored and read from the learning state LS. 
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TRANSFER FUNCTIONS 
 
1. Hyperbolic tangent sigmoid transfer function (TANSIG) 

 
Syntax 
      A = tansig(N,FP) 
     dA_dN = tansig('dn',N,A,FP) 
     INFO = tansig(CODE) 
 
Description 
       TANSIG is a neural transfer function. Transfer functions calculate a layer's output from its 
net input. 
      TANSIG(N,FP) takes N and optional function parameters, 
       N - SxQ matrix of net input (column) vectors. 
        FP - Struct of function parameters (ignored) and returns A, the SxQ matrix of N's 
elements squashed into [-1 1]. 
       TANSIG('dn',N,A,FP) returns derivative of A w-respect to N. 
     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
      TANSIG('name') returns the name of this function. 
     TANSIG('output',FP) returns the [min max] output range. 
     TANSIG('active',FP) returns the [min max] active input range. 
     TANSIG('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
    TANSIG('fpnames') returns the names of the function parameters. 
     TANSIG('fpdefaults') returns the default function parameters. 
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 Examples 
      Here the code to create a plot of the TANSIG transfer function. 
         n = -5:0.1:5; 
         a = tansig(n); 
        plot(n,a) 
      Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'tansig'; 
 
Algorithm 
        a = tansig(n) = 2/(1+exp(-2*n))-1 
 
      This is mathematically equivalent to TANH(N).  It differs in that it runs faster than the 
MATLAB implementation of TANH, but the results can have very small numerical differences.  
This function is a good trade off for neural networks, where speed is important and the exact 
shape of the transfer function is not. 
 
2. Logarithmic sigmoid transfer function (LOGSIG) 
  
Syntax 
   A = logsig(N,FP) 
     dA_dN = logsig('dn',N,A,FP) 
 INFO = logsig(CODE) 
  
Description 
   LOGSIG(N,FP) takes N and optional function parameters, 
   N - SxQ matrix of net input (column) vectors. 
   FP - Struct of function parameters (ignored) and returns A, the SxQ matrix of N's 
elements squashed into [0, 1]. 
  LOGSIG('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
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     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
      LOGSIG('name') returns the name of this function. 
     LOGSIG('output',FP) returns the [min max] output range. 
     LOGSIG('active',FP) returns the [min max] active input range. 
     LOGSIG('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     LOGSIG('fpnames') returns the names of the function parameters. 
     LOGSIG('fpdefaults') returns the default function parameters. 
  
Examples 
    Here is code for creating a plot of the LOGSIG transfer function. 
   n = -5:0.1:5; 
   a = logsig(n); 
   plot(n,a) 
  Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'logsig'; 
  
 Algorithm 
  logsig(n) = 1 / (1 + exp(-n)) 
 
3. Hard limit transfer function (HARDLIM) 
 
 Syntax 
   A = hardlim(N,FP) 
     dA_dN = hardlim('dn',N,A,FP) 
  INFO = hardlim(CODE) 
  Description 
   HARDLIM is a neural transfer function.  Transfer functions calculate a layer's output from its 
net input. 
  HARDLIM(N,FP) takes N and optional function parameters, 
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      N - SxQ matrix of net input (column) vectors. 
      FP - Struct of function parameters (ignored) and returns A, the SxQ boolean matrix with 
1's where N >= 0. 
  HARDLIM('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
   HARDLIM('name') returns the name of this function. 
     HARDLIM('output',FP) returns the [min max] output range. 
     HARDLIM('active',FP) returns the [min max] active input range. 
     HARDLIM('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     HARDLIM('fpnames') returns the names of the function parameters. 
     HARDLIM('fpdefaults') returns the default function parameters. 
   
 Examples 
 Here is how to create a plot of the HARDLIM transfer function. 
    n = -5:0.1:5; 
   a = hardlim(n); 
   plot(n,a) 
  Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'hardlim'; 
   
Algorithm 
       hardlim(n) = 1, if n >= 0 
                      = 0, otherwise 
4. Symmetric hard limit transfer function (HARDLIMS) 
   
Syntax 
   A = hardlims(N,FP) 
     dA_dN = hardlims('dn',N,A,FP) 
  INFO = hardlims(CODE) 



86 
 

  
Description 
 HARDLIMS is a neural transfer function.  Transfer functions calculate a layer's output from 
its net input. 
  HARDLIMS(N,FP) takes N and optional function parameters, 
   N - SxQ matrix of net input (column) vectors. 
       FP - Struct of function parameters (ignored) and returns A, the SxQ +1/-1 matrix with 
+1's where N >= 0. 
  HARDLIMS('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
    If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
     HARDLIMS('name') returns the name of this function. 
     HARDLIMS('output',FP) returns the [min max] output range. 
     HARDLIMS('active',FP) returns the [min max] active input range. 
     HARDLIMS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     HARDLIMS('fpnames') returns the names of the function parameters. 
     HARDLIMS('fpdefaults') returns the default function parameters. 
 
Examples 
  Here is how to create a plot of the HARDLIMS transfer function. 
   n = -5:0.1:5; 
       a = hardlims(n); 
      plot(n,a) 
  Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'hardlims'; 
  
Algorithm 
  hardlims(n) = 1, if n >= 0 
                     = -1, otherwise 
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5. Linear transfer function (PURELIN) 
 

Syntax 
 A = purelin(N,FP) 
     dA_dN = purelin('dn',N,A,FP) 
  INFO = purelin(CODE) 
  
 Description 
   PURELIN is a neural transfer function. Transfer functions calculate a layer's output from its 
net input. 
   PURELIN(N,FP) takes N and optional function parameters, 
  N - SxQ matrix of net input (column) vectors. 
       FP - Struct of function parameters (ignored) and returns A, an SxQ matrix equal to N. 
  PURELIN('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
 PURELIN('name') returns the name of this function. 
     PURELIN('output',FP) returns the [min max] output range. 
     PURELIN('active',FP) returns the [min max] active input range. 
     PURELIN('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     PURELIN('fpnames') returns the names of the function parameters. 
     PURELIN('fpdefaults') returns the default function parameters. 
   
Examples 
   Here is the code to create a plot of the PURELIN transfer function. 
   n = -5:0.1:5; 
       a = purelin(n); 
       plot(n,a) 
   Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'purelin'; 
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 Algorithm 
 a = purelin(n) = n 
 
6. Saturating linear transfer function (SATLIN) 
   
Syntax 
 A = satlin(N,FP) 
     dA_dN = satlin('dn',N,A,FP) 
  INFO = satlin(CODE) 
  
Description 
 SATLIN is a neural transfer function.  Transfer functions calculate a layer's output from its 
net input. 
 SATLIN(N,FP) takes N and optional function parameters, 
  N - SxQ matrix of net input (column) vectors. 
  FP - Struct of function parameters (ignored) and returns A, the SxQ matrix of N's 
elements clipped to [0, 1]. 
 SATLIN('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
      SATLIN('name') returns the name of this function. 
     SATLIN('output',FP) returns the [min max] output range. 
     SATLIN('active',FP) returns the [min max] active input range. 
     SATLIN('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     SATLIN('fpnames') returns the names of the function parameters. 
     SATLIN('fpdefaults') returns the default function parameters. 
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Examples 
 Here is the code to create a plot of the SATLIN transfer function. 
     n = -5:0.1:5; 
       a = satlin(n); 
       plot(n,a) 
  Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'satlin'; 
  
Algorithm 
 a = satlin(n) = 0, if n <= 0 
                      = n, if 0 <= n <= 1 
                      = 1, if 1 <= n 
 
7. Symmetric saturating linear transfer function (SATLINS) 
   
Syntax 
 A = satlins(N,FP) 
     dA_dN = satlins('dn',N,A,FP) 
 INFO = satlins(CODE) 
  
Description 
  SATLINS is a transfer function.  Transfer functions calculate a layer's output from its net 
input. 
  SATLINS(N,FP) takes N and optional function parameters, 
   N - SxQ Matrix of net input (column) vectors. 
       FP - Row cell array of function parameters (ignored) and returns values of N truncated 
into the interval [-1, 1]. 
 SATLINS('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
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  SATLINS('name') returns the name of this function. 
     SATLINS('output',FP) returns the [min max] output range. 
     SATLINS('active',FP) returns the [min max] active input range. 
     SATLINS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     SATLINS('fpnames') returns the names of the function parameters. 
     SATLINS('fpdefaults') returns the default function parameters. 
   
Examples 
 Here is the code to create a plot of the SATLINS transfer function. 
   n = -5:0.1:5; 
       a = satlins(n); 
       plot(n,a) 
 Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'satlins'; 
  
Algorithm 
       a = satlins(n) = -1, if n <= -1 
                           = n, if -1 <= n <= 1 
                           = 1, if 1 <= n 
 
8. Radial basis transfer function (RADBAS) 
   
Syntax 
 A = radbas(N,FP) 
     dA_dN = radbas('dn',N,A,FP) 
 INFO = radbas(CODE) 
  
Description 
  RADBAS is a neural transfer function.  Transfer functions calculate a layer's output from its 
net input. 
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  RADBAS(N,FP) takes N and optional function parameters, 
  N - SxQ matrix of net input (column) vectors. 
       FP - Struct of function parameters (ignored) and returns A, an SxQ matrix of the radial 
basis function applied to each element of N. 
     RADBAS('dn',N,A,FP) returns SxQ derivative of A w-respect to N. 
     If A or FP are not supplied or are set to [], FP reverts to the default parameters, and A is 
calculated from N. 
  RADBAS('name') returns the name of this function. 
     RADBAS('output',FP) returns the [min max] output range. 
     RADBAS('active',FP) returns the [min max] active input range. 
     RADBAS('fullderiv') returns 1 or 0, whether DA_DN is SxSxQ or SxQ. 
     RADBAS('fpnames') returns the names of the function parameters. 
     RADBAS('fpdefaults') returns the default function parameters. 
 
Examples 
  Here we create a plot of the RADBAS transfer function. 
   n = -5:0.1:5; 
       a = radbas(n); 
       plot(n,a) 
  Here we assign this transfer function to layer i of a network. 
        net.layers{i}.transferFcn = 'radbas'; 
  
Algorithm 
       a = radbas(n) = exp(-n^2) 
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APPENDIX B 
 

RUBBER PROPERTIES ANALYSIS 
 

1. Determination of color 
 
1.1 Explanatory Notes 

The color of the raw rubber is compared and matched as closely as possible with that of 
standard color slides. The raw rubber is tested in the form of a moulded disc of standard 
thickness. Color matching is carried out under diffuse daylight illumination against a matt white 
background, preferable by use of a comparator which holds the test pellets and comparison slide 
in convenient juxtaposition. The standard colored glasses used are calibrated in color index units 
according to the intensity of their color. The numerically higher index values have deeper color. 
The basis of calibration is the ‘Lovibond color scale’ in amber units. 

 
1.2 Apparatus 

(a) Hydraulic press: The press  should be capable of exerting a pressure of not less than 500 
p.s.i. on the cavity areas of the mould during the entire period of moulding. The platen 
temperatures shall be capable of being maintained at 150OC3OC 

(b) Mould: A stainless steel or aluminium mould 1.60.05 mm thick having holes 
approximately 14 mm diameter. Two mould covers of similar material and at least 1.6 mm in 
thickness are required. 

 
1.3 Procedure 

1.3.1 Test pellet preparation 
Take a test portion of 155 g from the homogenised sample and pass three times 

between the roll mills at room temperature with the nip adjusted so that the final sheet thickness is 
1.6 mm to 1.8 mm. After the initial pass, the rubber is rolled and passed endwise through the 
rolls. Fold the rubber from the second pass and pass it lengthwise through the rolls for the last 
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time. This final sheet, which should be uniform in texture and free from holes, shall immediately 
be doubled and the two halves pressed together lightly by hand. Cut two test pellets from the 
doubled sheet with the punch and measure their thickness until two test pellets are obtained with 
thickness between 3.2 mm and 3.6 mm. The two test pellets shall then be laminated together by 
lightly pressing with the fingers. Pre-heat the test pellets in the mould betwenn two sheets of 
polyester or cellulose film using mould covers for 1 min. then apply not less than 500 p.s.i. 
pressure on the cavity areas of the mould, for 40.5 min at 150OC3OC. The moulded test pellet 
shall be 1.60.2 mm thick and free of color contaminants.  

1.3.2 Color determination 
Determine the color of the test pellet by matching as closely as possible with the 

appropriate color standard. Color matching shall be carried out under diffuse daylight against a 
matt white background, preferably by using a comparator mounting which holds the test pellets 
and comparison color at a convenient distance apart. The cover is put on and the color matched 
for each sample in turn.  

 
2. Determination of Mooney viscosity 
 
2.1 Explanatory Notes 

The test consists of determining the torque necessary to rotate a disc in a cylindrical chamber 
filled with rubber under specified conditions. A number proportional to this torque is taken as an 
index of the viscosity of the rubber. The Mooney viscometer (a shearing-disk viscometer) is used. 

 
2.2 Calibration and Maintenance 

The following system of checking and calibrating Mooney viscometer should be adopted: 
1. Dead load calibration to check that zero reading for zero force and a reading of 100 for a 

pair of force of 100 N should be regularly carried out following RRIM method. 
2. Dead load calibration by incremental loading to check the whole range of the meter’s 

reading should be carried out at least once in about six months following RRIM method. 
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2.3 Procedure 
2.3.1 Determination of Mooney viscosity 

The temperature of test should be 100OC1OC. Check the die temperature for 
stability. Place the rotor in the die cavity to heat up to test temperature; 2 min are normally 
sufficient to heat the rotor from ambient temperature. Remove the hot rotor from the die cavity. 
Before this, divide about 25 g of the homogenised rubber into two equal portions. Place the 
preheated rotor stem through the centre of one portion. Put this whole combination in the lower 
die cavity and place the second portion on top of the rotor. Close the die immediately. Measure 
the time from the instant the die is closed, as indicated by the appropriate lamp on the control 
panel. Start the motor 1 min after closing the die cavity. Record the initial dial gauge reading 
immediately. Take as the viscosity of the rubber the dial reading at the end of the fourth minute 
the instant  when the motor is started. 
 
2.4 Expression of results 

A typical test on NR with the normal rotor speed with viscosity number 60 should be reported 
as follows: 

60 ML (1+4) 100OC 
 where  60 is the Mooney viscosity; 
  M stands for Mooney viscosity; 
  L indicates the use of a large rotor; 
  1  is the pre-heating time in min; 
  4 is the reading time in min; 
  100OC is the test temperature. 
 
3. Determination of Rapid plasticity and Plasticity Retention Index 
 
3.1 Explanatory Notes 

1. Rapid plasticity 
A disc-shaped test pellet shall be rapidly compressed between small parallel platens to a 

fixed thickness of 1 mm and held thus for 15 s to reach approximate temperature equilibrium with 



95 
 

the platens. It shall then be subjected to a constant compressive force of 100.1 kgf for 15 s; its 
thickness at the end of this period in 0.01 mm units shall be taken as the measure of plasticity.  

2. Plasticity Retention Index 
The plasticity retention index (PRI) is a measure of the resistance of raw NR to 

oxidation. A high value of the index denotes high resistance to oxidation 
The oxidation behavior of raw NR may have an important bearing on processing 

behavior and end product performance and the PRI test accordingly affords a convenient means 
of characterizing rubber in certain of these respects. The test involves measurements of the 
plasticity of NR testpieces before and after heating in air oven for 300.25 min at 140OC0.5OC 
using the parallel plate plastimeter with a platen 10 mm in diameter. The PRI is the percentage 
ratio of the plasticities after and before heating. The time and temperature of heating are such as 
to give adequate discrimination between rubbers and a reasonable speed of testing at a 
temperature similar to that attained in factory internal mixers. The value of the index is, howerver, 
virtually independent of the initial plasticity of the rubber. It is not independent of the test 
method. A different value will be obtained if, for example, the time or temperature of heating is 
altered or if a different type of plastimeter is used. 

 
3.2 Equipment and Materials 

(a) Parallel plate plastimeter: this is a standard equipment with a 10 mm platen and a process 
timer giving 15 s of pre-heating time. 

(b) Punch, for the preparation of test pellets of approximately constant volume quickly and 
without difficulty. The punch shall compress a portion of the material to approximately 3 mm in 
thickness and shall cut out a disc approximately 13 mm in diameter. 

(c) Thickness gauge: the gauge shall have a scale graduated in unit divisions of 0.01 mm. 
(d) Lightweight aluminium tray, suitably marked for pellet identification. 
(e) Oven, operating at 140OC0.5OC. the oven shall be such that: 

(i) The temperature fluctuation over a 30 min period is 0.5OC. 
(ii) The temperature variation within the ageing region is 0.5OC. 
(iii) It is an oven suitably designed for the testing of PRI. 

(f) Approved cigarette paper, of about 0.03 mm thickness as authorized by RRIM. 
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3.3 Procedure 
3.3.1 Preparation of test pellet 

Pass a test portion of 205 g twice through the rolls of a cool mill with nip setting 
adjusted such that the final sheet thickness is 1.6 mm to 1.8 mm. The sheeted rubber piece is 
doubled after the first and final passes. If the sheet so obtained after two passes does not meet the 
thickness requirements, reject it and take a fresh test portion of the homogenised piece and repeat 
the operation by readjusting the nip setting. The final sheet which should be free from holes is 
immediately doubled and the two halves pressed lightly together by hand. Cut six test pellets from 
the doubled sheet with the punch. The test pellets should be a disc of rubber of thickness between 
3.2 mm to 3.6 mm and approximately 13 mm in diameter. The test pellets are divided into two 
sets of three, one set each for plasticity determination before and after oven ageing. 

The gauge steam pressure shall indicate 0.5-1 psi with free-flowing steam at the 
discharge end. Compress a disc-shaped test pellet, sandwiched between two pieces of cigarette 
paper each of approximate dimensions 4035 mm, between the two parallel platens to a fixed 
thickness of 1.000.01 mm and hold it in the compressed state for 151s to reach approximate 
equilibrium. Then apply a constant compressive force of 100.1 kgf for 150.2s. The thickness 
at the end of this period is taken as the measure of rapid plasticity. 

3.3.2 Determination of PRI 
Ensure that the oven is not overloaded, e.g. with an excessive number of dishes or a 

thick plate which has a large thermal capacity; this could cause a prolonged temperature drop and 
might upset temperature uniformity. 

Care should be taken that the test pellets are arranged within the temperature 
calibrated region of the oven. Before heating begins, check the oven temperature to ensure that it 
has been stable for at least 5 min. Quickly insert the tray with the dishes and test pellets, close the 
oven door, and start timing. It is necessary to ensure that the correct temperature is quickly 
regained and retained. After 300.25 min, remove the tray with the dishes and test pellets from 
the oven and allow to cool to room temperature. 
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Abstract 

 

This work focuses on determining the optimal operating conditions based on 

Artificial Neural Network model incorporated with input variable selection for pale crepe 

rubber processing in order to achieve its required properties. A fully feed-forward network 

model, with four input variables such as %acetic acid amount, fractional coagulation time, 

%DRC dilution and its corresponding %TSC, has been firstly developed in the optimal 

manner for a prediction of the rubber properties; rubber color, Mooney viscosity (MV), initial 

plasticity (P0) and Plasticity Retention Index (PRI). Since the performance of the network 

model strongly depends on the training data sets, a variable selection approach such a partial 

modeling has been further applied for the model improvement. In this case, %TSC has been 

chosen as the insignificant variable by considering its sensitivity, and further eliminated. The 

final network model with three inputs has been used to determine the optimal operating 

conditions via response surface analysis. 

 

Keywords: Neural network, Variable selection, Optimization, Modeling, Response surface 

analysis 

 

1. Introduction 

 

Artificial Neural Network (ANN) is an information processing system which 

composes of a number of artificial processing units (or neurons) connected each other by 

simple weights. It is the most successful technology which has been widely used in various 

applications such as chemical and biochemical processes. For example, Nasciento and 

Guardani [1] have designed feed-forward network model for a twin-screw extruder reactor 

with 7 inputs and 3 outputs. The training data set (44 data sets) from the pilot plant have been 

randomly split into two groups for the learning set (80%) and testing set (20%). The best 

neural model has one hidden layer which is constituted by 4 neurons, and the activation 

function used is the sigmoidal function. Another example is the application for predicting ink 

removal efficiency presented by Labidi, et.al. [2]. The network model, including of 3 inputs 

and 2 outputs, have been trained by 150 data sets with 135 learning set (90%) and 15 testing 

set (10%). The best network has two hidden layers each of which is constituted by 100 

mailto:c.puaneaw@gmail.com
mailto:pornsiri.k@psu.ac.th
mailto:wachira@buu.ac.th
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neurons, and the activation function for both layers that gives the best result is the sigmoidal 

function [2]. 

However, the network is a data-driven statistical model; an input variable selection is 

then the crucial issue for development of a suitable model in order to give a reasonable 

output prediction. The difficulty of selecting input variables arises due to a large number of 

available input variables; data redundancy; and less influential variables [3]. Despagne and 

Massart have proposed two methods based on the variance estimation such as variance 

propagation and partial modeling. The methods have been compared with the previous 

comparative selection method such a magnitude approach (modified Hinton diagram) [4]. 

They have suggested that the partial modeling approach is particularly easy to implement with 

reasonable results. As seen in literatures, there are many research works focused on the input 

selection area [5]. 

This work aims to determine the optimal operating conditions based on the ANN 

model with input variable selection for pale crepe rubber processing. A fully feed-forward 

network model, with four input variables such as acetic acid amount, fractional coagulation 

time, %DRC dilution and the corresponding %TSC, has been firstly developed for a 

prediction of pale crepe rubber properties i.e. rubber color, Mooney viscosity (MV), initial 

plasticity (P0) and Plasticity Retention Index (PRI). Since the performance of ANN model 

strongly depends on the training data sets, a variable selection approach such the partial 

modeling has been further applied for the model improvement. The developed model has 

been used to determine the optimal operating conditions via response surface analysis [6]. 

The prediction results through MATLAB program have been discussed. 

 

 

2. Theory 

 

2.1 Pale crepe rubber processing  

  

Rubber is an important industrial crop of Thailand. Three biggest rubber producers 

over the world are Thailand, Indonesia and Malaysia respectively Top three Thailand’s export 

markets are China, Japan and Malaysia. Natural rubber that has been mostly exported Block 

Rubber, Ribbed Smoked Sheet (RSS) and Concentrated latex. The most important quality 

according to Standard of Thai Rubber (STR) is its color, more white and clear, higher value 

added. Pale crepe is a high quality rubber sheet since it has white/pale color (Lovibond color 

< 3). It is produced from a particular type of rubber latex, RRIM 600, and used as raw 

material for manufacturing rubber soles, plaster, sport equipment, and medical devices.  

Here, pale crepe rubber production is achieved by the following steps: (1) 

preservation by adding Na2SO3, (2) % dry rubber content (DRC) dilution (varying 25 – 

29%DRC and 27 – 32% total solid content, TSC), (3) enzymatic reaction exhibition by 

adding Na2S2O5, (4) fractional coagulation by varying acetic acid of 0 – 0.45% v/w dry rubber  

and coagulation time of 1– 3 hr, (5) latex coagulation, (6) drying at 35-40
0
C for 3 days. In this 

work, the operating conditions in a fractional coagulation step has been designed in the 

optimal manner in order to achieve the required properties of the pale crepe rubber sheet 

corresponding to STR standard consisting of the Lovibond color < 3, Mooney viscosity (MV) 

> 60 ML (1+4) 100C, initial plasticity (P0) > 35 and Plasticity Retention Index (PRI) > 60 

[8].  
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2.2 Artificial Neural Network (ANN) 

ANN is purely data-driven model, it has been proven to be a universal approximator 

to identifying complex input-output relationships. The network model includes an externally 

applied threshold that has the effect of lowering the net input of the activation function. On 

the other hand, the net input of the activation function may be increased by employing a bias 

term rather than a threshold. In mathematical terms, a neuron, k can be described by writing 

the following pair of equations: 

                                                       ∑ (     )
 
       (1) 

                                                        (  )  (2) 

 

where  x1, x2,…,xp  are the p
th
 inputs;  

 wk1, wk2, …, wkp  are the synaptic weights of neuron k;  

 vk  is the linear combiner output;  

 bk  is the bias term; 

 f(.)  is the activation function; 

 yk  is the output signal of the neuron. 

2.3 Variable selection: Partial modeling 

  

This method used for estimating experimentally the sensitivity of each input variable 

[4]. For example, ANN is used to find the relationship of a function of two input variables, 

   (     ) because the exact form of the relationship is unknown. To estimate the relative 

contribution of each input variable to the variance of the predicted response, the network 

model with all available input variables has to be preliminary designed. Afterward, setting all 

input variables but the first to zero (    )  giving the predicted response as  ̂(  ). Then the 

procedure is repeated by setting    to zero, to obtain the vector,  ̂(  ). The respective 

variances,    of  ̂(  ) and  ̂(  ) are further used to estimate the sensitivity,    of input 

variable    and    as shown in Eq.(3). 

                                                                      ̂(  )
  (3) 

 

The variance of each input variable will be further plotted in order to identify the insignificant 

variable. 

 

3. Simulation results 

 

3.1 Structure design of ANN (fully) model  

 

In this section, the designed ANN model has feed-forward scheme with four (fully) 

input variables such as acetic acid amount, fractional coagulation time, %DRC dilution and 

the corresponding %TSC. Four rubber properties (rubber color, MV, P0 and PRI) have been 

predicted via using linear transfer functions (purelin) in output layer. The model has been 

designed by varying a number of hidden layer (1 to 2) and its number of nodes (1 to 10) with 

hyperbolic tangent sigmoid transfer functions (tansig). The ANN has been trained using the 

Levenberg-Marquardt algorithm with 30 experimental data sets (80% training and 20% 

testing). The network has been trained using the Levenberg-Marquardt algorithm. It has been 

found in the simulation results that the minimum overall mean square error (MSE) calculated 

using Eq.(4) is in the range of 0.00 – 0.02. The optimal network structure could have 2 – 10 

nodes in each hidden layers. However, it does not guarantee that the model could give the 

minimum prediction of all four rubber properties.  
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           (4) 

 

 

(5) 

 

where,    is % acetic acid amount,    is MV,    is P0,     is PRI, and    is experimental 

output,   ́ is predicted output and n is a total number of the experimental data sets. 

In order to minimizing the prediction error of each property, the optimal network 

structure has been chosen by considering integral absolute error (IAE) of the predicted output 

individually, Eq.(5). It has been found from the IAE contour plots that the optimal network 

structure has 1 and 2 nodes in layer 1 and 2 respectively to guarantee the optimal prediction 

performance. Fig. 1 shows the comparison of the predicted and experimental testing data for 

all outputs, and IAE values are shown in Table 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Comparison of predicted and experimental testing data for (four inputs)  

 

Table 1: IAE values of ANN based full and reduced input variables 

 

Output IAE values (4 inputs) IAE values (3 inputs) 

Rubber color 0.888 1.251 

Mooney viscosity 22.124 10.811 

P0 9.527 5.432 

PRI 22.029 16.131 

 

 

3.2 Insignificant variable identification  

 

Since the performance of ANN model strongly depends on the training data sets, a 

variable selection approach such a partial modeling has been further applied for the model 

improvement. In this case, the sensitivity of the predicted responses,   ̂(  )
  has been 

determined as Eq. (3) by firstly setting all ANN inputs but the first (   = acetic acid amount) 

to zero (          ). The procedure is repeated by setting          to zero, to obtain 

  ̂(  )
  and so on. The sensitivity bar plot is shown in Fig. 2. It can be seen that the acetic acid 

amount, the coagulation time and %DRC have large effect on MV. Moreover, %DRC as well 
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as %TSC have small effects on Lovibond color and PRI compared to the others. This might 

be because non-rubber consisting of color pigments (non-rubber = %TSC - %DRC) is a minor 

component ( 3% – 5%) of the rubber latex. Therefore, %TSC has been chosen as the 

insignificant variable, and further eliminated.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Sensitivities of the predicted output corresponding to each inputs,  ̂(  ): 
1 = acetic acid amount, 2 = coagulation time, 3 = %DRC and 4 = %TSC 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Comparison of predicted and experimental testing data for (three inputs)  

 

New network model has been trained with three inputs, the acetic acid amount, the 

coagulation time and %DRC. The network structure has been chosen in the optimal manner 

by varying a number of the hidden layer (1 to 2) and its number of nodes (1 to 10) with 

hyperbolic tangent sigmoid transfer functions (tansig). The linear transfer functions (purelin) 

are used in the output layer. It has been found from the IAE contour plots that the optimal 

network structure has 3 and 7 nodes in layer 1 and 2 respectively.  
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3.3 Optimum condition determination 

 

By applying the input variable selection, the output prediction of the ANN model is 

improved as seen by IAE values in Table 1. Even the IAE value of the predicted color is 

slightly higher than one obtained by ANN with full input variables. The optimum conditions 

have been further evaluated by considering the surface plots of the responses as shown in Fig.  

4. 

 
  

 (a) Lovibond color (b) Mooney viscosity, MV  

 
 (c) Initial plasticity, P0 (d) Plasticity retention index, PRI  

 

Figure 4: Predicted response surfaces based on ANN with three inputs  

by considering % acetic acid and coagulation time (%DRC = 27.17) 

 

 

It can be seen in Fig. 4(a), 4(c) and 4(d) that the Lovibond color, P0 and PRI values 

are higher than STR standard if the process operates at %DRC = 27.17, acetic acid amount of 

0.17 – 0.22% v/w dry rubber and coagulation time in range of 1.8 – 2.4 hr, but MV is slightly 

lower than the standard, 40 – 60 ML(1+4) 100C, Fig. 4(b). By considering the predicted 

responses, it has been found that there are not the conditions providing the color and MV over 

the standard at the same time. However, MV of the rubber sheet could be increased over time 

during storage. Therefore the optimal conditions have been chosen as shown in Table 2 by 

considering the rubber quality of the Lovibond color < 3, MV > 50 ML(1+4) 100C, P0 > 35 

and PRI > 60. 
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Table 2: Optimal operating conditions 

 

Acetic acid amount, % v/w dry rubber Coagulation time, hr %DRC 

0.18 1.8 27 – 28  

0.2 2 24 – 26  

0.3 0.5 25 – 26  

 

 

4. Conclusion 

 

Rubber is an important industrial crop of Thailand. The most important quality 

according to Standard of Thai Rubber (STR) is its color, more white and clear, higher value 

added. Pale crepe is a high quality rubber sheet since it has white/pale color (Lovibond color 

< 3). In this work, a determination of the optimal operating conditions has been focused in 

order to achieve its required properties. The designed ANN model has feed-forward scheme 

with four (fully) input variables such as acetic acid amount, fractional coagulation time, 

%DRC dilution and the corresponding %TSC. Four rubber properties (rubber color, MV, P0 

and PRI) have been predicted. The model has been designed in the optimal manner obtaining 

2 hidden layers with 1, 2 nodes respectively. Since the performance of ANN model strongly 

depends on the training data sets, a variable selection approach such a partial modeling has 

been further applied for the model improvement. The variance/sensitivity of each input 

variable has been considered to identifying an insignificant variable, which in this case %TSC 

has been chosen, and further eliminated. The final neural model with three inputs has 2 

hidden layers with 3, 7 nodes respectively, and it has been used to determine the optimal 

operating conditions via response surface analysis. 
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