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ABSTRACT

Let X be a real Banach space and let C be a nonempty closed convex

subset of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping such

that F (T1) ∩ F (T2) 6= ∅ in C. We are interested in sequences in the following

process. For x1 ∈ C and n ≥ 1, define the sequences {xn} and {yn} by

yn = βnT2xn + (1− βn − an)xn + anvn,

xn+1 = αnT1yn + (1− αn − bn)yn + bnun, (1)

where {an}, {bn}, {αn} and {βn} are sequences of real numbers in [0, 1] and {un}

and {vn} are sequences in C. We prove some convergence theorems of the sequence

{xn} to a common fixed point of T1 and T2 under appropriate conditions.
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CHAPTER 1

Introduction

Let X be a real Banach space, C a closed subset of X, and T :

C → X such that T has a nonempty set of fixed points F (T ) ⊂ C. T is called

quasi-nonexpansive if

‖Tx− p‖ ≤ ‖x− p‖

for all x in C and p in F (T ). It is introduced by Tricomi for real functions and

further studied by Diaz and Metcalf.

In 1972, Petryshyn and Williamson had presented two new theorems

which provided necessary and sufficient conditions for the convergence of the suc-

cessive approximation method Theorem and of the convex combination iteration

method Theorem for quasi-nonexpansive mappings defined on suitable subset of

the Banach space and with nonempty set of fixed points as follows.

Theorem 1.1. Let X be a real Banach space, C a closed subset of X, and T a

quasi-nonexpansive mapping of C into C with nonempty set F (T ) of fixed points.

Suppose there exists a point x0 in C such that the sequence {xn} of iterates lies in

C, where xn (= T n(x0)) is given by

(S1) xn = T (xn−1), n = 1, 2, 3, 4, ...

Then {xn} converges to a fixed point of T in C if and only if the following condi-

tion (M) holds:

(M) lim
n→∞

d(xn, F (T )) = 0.

Theorem 1.2. Let X be a Banach space, C a closed convex subset of X, and T

a quasi-nonexpansive map of C into C. Suppose there exists a point x0 in C such

1
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that, for some λ in (0, 1), the sequence {xn} = {T n
λ (x0)} given by (S2) lies in C

,where

(S2) xn = Tλ(xn−1), x0 ∈ C, Tλ = λT + (1− λ)I, λ ∈ (0, 1).

Then {xn} converges to a fixed point of T in C if and only if

(Ć) lim
n→∞

d(T n
λ (x0), F (T )) = 0.

They also indicated briefly how these theorems were used to deduce

a number of known, as well as some new, convergence results for various special

classes of mappings of nonexpansive, P-compact, and 1-set-contractive type which

recently have been extensively studied by a number of authors.

In this thesis, we create new iterative process with errors for quasi-

nonexpansive mappings in Banach space and prove some convergence theorems as

follows.

Theorem 1.3. Let X be a real Banach space and let C be a nonempty closed

convex subset of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping

such that F (T1)∩F (T2) 6= ∅. Let {an}, {bn}, {αn} and {βn} be sequences in [0, 1]

and {un} and {vn} be sequences in C, where define the sequences {xn} and {yn}

by

yn = βnT2xn + (1− βn − an)xn + anvn

xn+1 = αnT1yn + (1− αn − bn)yn + bnun. (1.1)

Assume that

(i) {an + βn} and {bn + αn} are sequences in [0, 1] and

∞∑
n=1

an < ∞ and
∞∑

n=1

bn < ∞;

(ii) {un} and {vn} are bounded.

Then the iterative sequence {xn} defined in (1.1) converges strongly to a common

fixed point of T1 and T2 if and only if

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.
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Theorem 1.4. Let X, C, Ti(i = 1, 2) and the iterative sequence {xn} be as in

Theorem 1.3. Suppose that conditions (i) and (ii) in Theorem 1.3 hold. Assume

further that the mapping Ti(i = 1, 2) is asymptotically regular in xn, and there

exists an increasing function f : R+ → R+ with f(r) > 0 for all r > 0 and for

i = 1, 2, we have

‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2))) for all n ≥ 1.

Then the sequence {xn} converges strongly to a common fixed point of T1 and T2.



CHAPTER 2

Preliminaries

In this chapter, we first collect fundamental knowledge in mathe-

matical analysis (p 4-7) and basic knowledge about metric spaces and normed

spaces (p 11-13). Then we study in detail on the classical Banach fixed point

theorem, and finally, some fixed point theorems on quasi-nonexpansive mappings.

2.1 Fundamental knowledge without proof

In this section, we give some well-known definitions and theorems

without proof. Definition 2.1 - 2.9, Axiom 2.1, Theorem 2.2 - 2.4, 2.6 - 2.9, 2.11

- 2.13 and Corollary 2.5, 2.10 are from [7], Definition 2.10 - 2.19, 2.21 Theorem

2.17 - 2.18 are from [5], Definition 2.22 is form [6] and Definition 2.23 is from [4].

Definition 2.1. (Upper Bound and Lower Bound). Let S be a nonempty

subset of R.

(a) If a real number M satisfies s ≤ M for all s ∈ S, then M is called an upper

bound of S and the set S is said to be bounded above.

(b) If a real number m satisfies m ≤ s for all s ∈ S, then m is called a lower

bound of S and the set S is said to be bounded below.

Definition 2.2. (Supremum and Infimum). Let S be a nonempty subset of

R.

(a) If S is bounded above and S has a least upper bound, then we will call it

the supremum of S and denote it by supS.

(b) If S is bounded below and S has a greatest lower bound, then we will call

it the infimum of S and denote it by infS.

4
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Axiom 2.1. (Completeness Axiom). Every nonempty subset S of R that is

bounded above has a least upper bound. In other word, sup S exists and is a real

number.

Definition 2.3. (Convergent Sequence). A sequence {sn} of real numbers is

said to converge to the real number s provided that

for each ε > 0 there exists a number N such that

n > N implies |sn − s| < ε.

If {sn} converges to s, then we will write lim
n→∞

sn = s, lim sn = s, or sn → s.

The number s is called the limit of the sequence {sn}. A sequence that does not

converge to some real number is said to diverge.

Definition 2.4. (Bounded Sequence). A sequence {sn} of real numbers is said

to be bounded if there exists a constant M such that |sn| ≤ M for all n.

Theorem 2.2. Convergent sequences are bounded.

Definition 2.5. (Monotone Sequence). A sequence {sn} of real numbers is

called a nondecreasing sequence if sn ≤ sn+1 for all n and {sn} is called a nonin-

creasing sequence if sn ≥ sn+1 for all n. Note that if {sn} is nondecreasing then

sn ≤ sm whenever n < m. A sequence that is nondecreasing or nonincreasing will

be called a monotone sequence or a monotonic sequence.

Theorem 2.3. (Monotone Convergence Theorem). All bounded monotone

sequences converge.

Theorem 2.4.

(1) If {sn} is an unbounded nondecreasing sequence, then lim
n→∞

sn = +∞.

(2) If {sn} is an unbounded nonincreasing sequence, then lim
n→∞

sn = −∞.

Corollary 2.5. If {sn} is a monotone sequence, then the sequence either con-

verges, diverges to +∞, or diverges to −∞. Thus lim
n→∞

sn is always meaningful

for monotone sequences.
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Definition 2.6. (lim sup and lim inf). Let {sn} be a sequence in R. We define

lim sup
n→∞

sn = lim
N→∞

sup{sn : n > N}

and

lim inf
n→∞

sn = lim
N→∞

inf{sn : n > N}

Theorem 2.6. Let {sn} be a sequence in R.

(1) If lim
n→∞

sn is defined [ as a real number, +∞, −∞ ], then

lim inf
n→∞

sn = lim
n→∞

sn = lim sup
n→∞

sn.

(2) If lim inf
n→∞

sn = lim sup
n→∞

sn, then lim
n→∞

sn is defined and

lim
n→∞

sn = lim inf
n→∞

sn = lim sup
n→∞

sn.

Definition 2.7. (Cauchy Sequence). A sequence {sn} of real numbers is called

a Cauchy sequence if

for each ε > 0 there exists a number N such that

m, n > N implies |sn − sm| < ε.

Theorem 2.7. (Cauchy Completeness Theorem). A sequence in R is con-

vergent if and only if it is a Cauchy sequence.

Theorem 2.8. (Sandwich Theorem). Let {an}, {bn}, {cn} be sequences and

an ≤ bn ≤ cn for all n. If lim
n→∞

an = lim
n→∞

cn = L (defined) then lim
n→∞

bn = L.

Definition 2.8. (Subsequence). Suppose that {sn} is a sequence. A subse-

quence of this sequence is a sequence of the form {tk} where for each k there is a

positive integer nk such that

n1 < n2 < · · · < nk < nk+1 < · · ·

and

tk = snk
.
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Thus {tk} is just a selection of some [ possibly all ] of the sn’s, taken in order.

Theorem 2.9. If the sequence {sn} converges, then every subsequence converges

to the same limit.

Corollary 2.10. Let {sn} be any sequence. There exists a monotonic subsequence

whose limit is lim sup
n→∞

sn and there exists a monotonic subsequence whose limit is

lim inf
n→∞

sn.

Definition 2.9. (The Cauchy Criterion for Series). We say that a series
∞∑

n=1

an satisfies the Cauchy criterion if its sequence {sn} of partial sum is a Cauchy

sequence:

for each ε > 0 there exists a number N such that

m, n > N implies |sn − sm| < ε. (2.1)

Nothing is lost in this definition if we impose the restriction n > m. Moreover,

it is only a natural matter to work with m − 1 where m ≤ n instead of m where

m < n. Therefore (2.1) is equivalent to

for each ε > 0 there exists a number N such that

n ≥ m > N implies |sn − sm−1| < ε. (2.2)

Since sn − sm−1 =
n∑

k=m

ak, condition (2.2) can be written

for each ε > 0 there exists a number N such that

n ≥ m > N implies

∣∣∣∣∣
n∑

k=m

ak

∣∣∣∣∣ < ε. (2.3)

Theorem 2.11. A series converges if and only if it satisfies the Cauchy critertion.

Theorem 2.12.
∞∑

n=1

1

np
< ∞ converges if and only if p > 1.

Theorem 2.13. (Mean Value Theorem). Let f be a continuous function on

[a, b] that is differentiable on (a, b). Then there exists [at least one] x in (a, b) such

that

f ′(x) = f(b)−f(a)
b−a

.
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2.2 Basic knowledge with proof

In this section, we give some basic knowledge which known, but the

proof cannot be found. Some are very old results while the other have proof but

we want to give more detail here so that those who are interested in this area may

study and understand more easily.

The following are useful lemmas we will use to obtain Theorem 3.1.

Lemma 2.14. Let {an} be a sequence of real numbers. Then lim
m→∞

sup
n≥m

an+m =

lim
m→∞

sup
n≥m

an.

Proof. Let L1 = lim
m→∞

sup
n≥m

an+m and L2 = lim
m→∞

sup
n≥m

an. We will prove that L1 =

L2. Since {an+m : n ≥ m} ⊂ {an : n ≥ m}, we see that

sup{an+m : n ≥ m} ≤ sup{an : n ≥ m}.

That is lim
m→∞

sup{an+m : n ≥ m} ≤ lim
m→∞

sup{an : n ≥ m}, i.e., L1 ≤ L2. Next, we

will show that L1 ≥ L2. Suppose not, i.e., L1 < L2.

Since lim
m→∞

sup
n≥m

an+m = L1, ∃N ∈ N such that m > N implies

| sup{an+m : n ≥ m} − L1| < L2 − L1.

Thus

an+m < L2 ,∀n ≥ m > N,

which implies that

ar < L2 ,∀r ≥ m > N

sup{ar : r ≥ m} < L2 ,∀m > N.

Taking m → ∞, we get lim sup
r→∞

ar < L2, i.e., L2 < L2, a contradiction. Hence

L1 ≥ L2, as desired.

Lemma 2.15. Let {an}, {bn} and {δn} be sequences of nonnegative real numbers

satisfying the inequality



9

an+1 ≤ (1 + δn)an + bn for all n.

If
∞∑

n=1

δn < ∞ and
∞∑

n=1

bn < ∞, then

(1) lim
n→∞

an < ∞ exists.

(2) lim
n→∞

an = 0 if {an} has a subsequence converging to zero.

Proof. Let {an}, {bn} and {δn} be sequences of nonnegative real numbers satisfy-

ing

an+1 ≤ (1 + δn)an + bn for all n.

where {bn} and {δn} converges. We will show that lim sup
n→∞

an = lim inf
n→∞

an which

implies lim
n→∞

an exists. Since we know that lim sup
n→∞

an ≥ lim inf
n→∞

an, we need only

prove that lim sup
n→∞

an ≤ lim inf
n→∞

an. Since an+1 ≤ (1 + δn)an + bn, we have

an+m ≤ (1 + δn+m−1)an+m−1 + bn+m−1

≤ (eδn+m−1)an+m−1 + bn+m−1

≤ eδn+m−1{(1 + δn+m−2)an+m−2 + bn+m−2}+ bn+m−1

≤ eδn+m−1{(eδn+m−2)an+m−2 + bn+m−2}+ bn+m−1

= (eδn+m−1+δn+m−2)an+m−2 + eδn+m−1bn+m−2 + bn+m−1

...

≤ ane

0BB@
n+m−1∑

k=n

δk

1CCA
+

(
n+m−1∑

k=n

bk

)
e

0BB@
n+m−1∑

k=n

δk

1CCA
,∀n, m ∈ N. (2.4)

Let ε > 0. Since
n+m−1∑

k=1

δk and
n+m−1∑

k=1

bk converge, ∃N ∈ N such that

n+m−1∑
k=n

δk < ε and
n+m−1∑

k=n

bk < ε for all n > N. (2.5)

From (2.4) and (2.5), for all n,m ≥ N , we have

an+m ≤ ane
ε + εeε
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Thus sup
n≥m

an+m ≤ eε inf
n≥m

an + εeε, ∀m ≥ N .

We see that

lim
m→∞

sup
n≥m

an+m ≤ eε lim
m→∞

inf
n≥m

an + εeε

= eε lim inf
n→∞

an + εeε.

By Lemma 2.14, we see that

lim sup
n→∞

an = lim
m→∞

sup
n≥m

an+m ≤ eε lim inf
n→∞

an + εeε.

Taking ε → 0, we get

lim sup
n→∞

an ≤ lim inf
n→∞

an.

Hence lim sup
n→∞

an = lim inf
n→∞

an. Therefore lim
n→∞

an exists.

If {an} has a subsequence {ank
} converging to zero, then we have

lim
n→∞

an = lim inf
n→∞

ank
= 0,

by Theorem 2.9.

Lemma 2.16. Let {xn} be a sequence in a normed space X. Assume that for any

ε > 0 there exists an N such that

‖xn+N − xN‖ < ε for all n.

Then {xn} is a Cauchy sequence in X.

Proof. Let ε > 0. By assumption, there exists N such that

‖xn+N − xN‖ <
ε

2
for all n.

For m, n > N , we have

‖xn − xN‖ < ε
2

and ‖xm − xN‖ < ε
2
.

Thus

‖xn − xm‖ ≤ ‖xn − xN‖+ ‖xm − xN‖

<
ε

2
+

ε

2

= ε.

Hence {xn} is a Cauchy sequence.
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2.3 Basic knowledge about metric spaces and normed spaces

Definition 2.10. (Metric space, Metric). Let X be a nonempty set. A function

d defined on X ×X is called a metric on X if it satisfies the following properties:

(1) ∀x, y ∈ X, d(x, y) ≥ 0 .

(2) ∀x, y ∈ X, d(x, y) = 0 ⇔ x = y.

(3) ∀x, y ∈ X, d(x, y) = d(y, x). (Symmetry)

(4) ∀x, y ∈ X, d(x, y) ≤ d(x, z) + d(z, y). (Triangle inequality)

In this case, (X, d) is called a metric space.

Definition 2.11. (Distance). The distance d(x, A) from a point x to a nonempty

subset A of a metric space (X, d) is defined to be

d(x, A) = inf
a∈A

d(x, a).

This infimum certainly exists in R and is nonnegative. If x is already in A, then,

of course, d(x, A) = 0.

Definition 2.12. (Ball and Sphere). Given a point x0 ∈ X and a real number

r > 0, we define three types of sets:

(1) B(x0; r) = {x ∈ X|d(x, x0) < r}. (Open ball)

(2) B̃(x0; r) = {x ∈ X|d(x, x0) ≤ r}. (Closed ball)

(3) S(x0; r) = {x ∈ X|d(x, x0) = r}. (Sphere)

In all three cases, x0 is called the center and r is called the radius.

Definition 2.13. (Open Set, Closed Set). A subset M of a metric space X is

said to be open if it contains a ball about each of its points. A subset K of X is

said to be closed if its complement (in X) is open, that is, Kc = X −K is open.

Definition 2.14. (Convergence of a Sequence, Limit). A sequence {xn} in

a metric space X = (X, d) is said to converge or to be convergent if there is an

x ∈ X such that

lim
n→∞

d(xn, x) = 0.



12

x is called the limit of {xn} and we write

lim
n→∞

xn = x

or, simply, xn → x.

We say that {xn} converge to x or has the limit x. If {xn} is not convergent, it is

said to be divergent.

Definition 2.15. (Cauchy sequence, completeness). A sequence {xn} in a

metric space X = (X, d) is said to be Cauchy ( or fundamental ) if for every ε > 0

there is an N such that

d(xm, xn) < ε for every m, n > N .

The space X is said to be complete if every Cauchy sequence in X converges.

( That is, has a limit which is an element of X).

Theorem 2.17. (Closed set). Let M be a nonempty subset of a matric space

(X, d). Then M is closed if and only if the situation xn ∈ M , xn → x implies that

x ∈ M .

Definition 2.16. (Normed Space, Banach Space). Let X be a vector space.

A norm ‖ · ‖ defined on X is called a norm on X if it satisfies the following

properties:

(1) ‖x‖ ≥ 0.

(2) ‖x‖ = 0 if and only if x = 0.

(3) ‖αx‖ = |α|‖x‖. (Absolute homogeneity)

(4) ‖x + y‖ ≤ ‖x‖+ ‖y‖. (Triangle inequality)

In this case, (X, ‖ · ‖) is called a normed space. Note that a complete normed

space is called a Banach space.

Definition 2.17. (Convex set). A subset C of a vector space X is said to be

convex if x, y ∈ C implies

M = {z ∈ X|z = αx + (1− α)y, 0 ≤ α ≤ 1} ⊂ C.
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Definition 2.18. (Fixed Point). Let X be a set and T : X → X be a self-

mapping. A fixed point of T is an x ∈ X such that

Tx = x.

Example 2.1. Let X = R. Define f : R → R by

f(x) = x2 − 3x + 4.

To show that f has a fixed point, we solve f(x) = x and get that x = 2. Thus 2

is the only fixed point of f .

Example 2.2. Let X = R. Define g : R → R by

g(x) = x2 − 2.

To show that g has a fixed point, we solve g(x) = x and get that x = −1, 2. Thus

−1 and 2 are fixed point of g.

Example 2.3. Let X = R. Define f : R → R by

f(x) = x + 1.

We see that f(x) 6= x. Therefore f has no fixed point.

Theorem 2.18. (Subspace of a Banach space). A subspace Y of a Banach

space X is complete if and only if the set Y is closed in X.

Convergence of sequences and related concepts in normed spaces

follow readily from the corresponding Definition 2.15 for metric spaces and the

fact that now d(x, y) = ‖x− y‖

A sequence {xn} in a normed space X is Cauchy if for every ε > 0

there is an N such that

‖xm − xn‖ < ε for all m, n > N .

Definition 2.19. (Strong Convergence). A sequence {xn} in a normed space

X is said to be strongly convergent ( or convergent in the norm ) if there is an

x ∈ X such that
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lim
n→∞

‖xn − x‖ = 0

This is written

lim
n→∞

xn = x

or simply

xn → x

x is called the strong limit of {xn}, and we say that {xn} converges strongly to x.

2.4 Banach fixed point theorem

Definition 2.20. (Picard Iteration). Let X = (X, d) be a metric space and

T : X → X. Picard iteration of T is a recursive sequence x0, x1, x2, ... from a

relation of the form

xn+1 = Txn n = 0, 1, 2, ...

with arbitrary x0 ∈ X.

We see that

x1 = Tx0

x2 = Tx1 = T (Tx0) = T 2x0

...

xn = T nx0.

This shows that xn = Txn−1 = T nx0, n = 1, 2, 3, . . .

Definition 2.21. (Contraction Mapping). Let X = (X, d) be a metric space.

A mapping T : X → X is called a contraction mapping on X if there is a positive

real number 0 < α < 1 such that for all x, y ∈ X

d(Tx, Ty) ≤ αd(x, y).
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Geometrically this means that any point x and y have images that are closer

together than those points x and y; more precisely, the ratio d(Tx, Ty)/d(x, y)

dose not exceed a constant α which is strictly less than 1.

Example 2.4. Let X = R with the usual norm | · |. Define T : R → R by

Tx = x
2
, x ∈ R.

Consider

|Tx− Ty| =
∣∣∣x
2
− y

2

∣∣∣ =

∣∣∣∣12(x− y)

∣∣∣∣ =
1

2
|x− y| .

Therefore T is a contraction mapping on R.

Example 2.5. Let X = [a, 1], 0 < a < 1 with the usual norm | · |. Define

f : [a, 1] → [a, 1] by

f(x) = sin x, x ∈ [a, 1].

By mean-value theorem: for any differentiable function f , f ′(t) = f(x)−f(y)
(x−y)

for

some t between x and y. So that, we get

f(x)− f(y) = f ′(t)(x− y)

|f(x)− f(y)| = |f ′(t)||x− y|

| sin x− sin y| = | cos t||x− y|.

Since cos x is decreasing on [a, 1], | cos t| = cos t ≤ cos a < 1. Therefore | sin x −

sin y| < |x− y|. Hence f is a contraction mapping on [a, 1].

We now ready to prove the very first fixed point theorem. The

Banach fixed point theorem is important as a source of existence and uniqueness

theorems in different branches of analysis, as Erwin Kreyzig said in [5]. So the

generalization of Banach fixed point theorem is very important and is interesting.

Theorem 2.19. (Banach Fixed Point Theorem or Contraction Theo-

rem). Consider a metric space X = (X, d), where X 6= ∅. Suppose that X is

complete and let T : X → X be a contraction mapping on X. Then T has precisely

one fixed point.
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Proof. We will show that the sequence {xn} of Picard iteration of T is Cauchy, so

that it converges in the complete space X, and then we prove that its limit x is a

fixed point of T and T has no further fixed points.

Let x0 ∈ X and define the {xn} to be a sequence of Picard iteration that

is xn+1 = Txn for n = 0, 1, 2, ... Let ε > 0 and m, n ∈ N ∪ {0}. Consider

d(xm+1, xm) = d(Txm, Txm−1)

≤ αd(xm, xm−1)

= αd(Txm−1, Txm−2)

≤ α2d(xm−1, xm−2)

...

≤ αmd(x1, x0). (2.6)

Assume that n > m. By the triangle inequality, the formula for the sum of a

geometric progression and (2.6), we have

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + ... + d(xn−1, xn)

≤ αmd(x1, x0) + αm+1d(x1, x0) + ... + αn−1d(x1, x0)

= (αm + αm+1 + ... + αn−1)d(x1, x0)

≤ αm(1 + α + α2 + ...)d(x1, x0)

=
αm

1− α
d(x1, x0). (2.7)

Since 0 < α < 1, we have lim
n→∞

αm = 0. Since
ε(1− α)

d(x0, x1) + 1
> 0, there exists N∗

0

such that

αm <
ε(1− α)

d(x0, x1) + 1
for all m > N∗

0 .
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From this and the inequality (2.7), we get

d(xn, xm) ≤ αm 1

1− α
d(x0, x1)

<
ε(1− α)

d(x0, x1) + 1
· 1

1− α
d(x0, x1)

=
εd(x0, x1)

d(x0, x1) + 1
< ε for all m, n > N∗

0 .

Thus {xn} is a Cauchy sequence. Since X is complete, {xn} converges, say xn →

x ∈ X. That is, lim
n→∞

d(xn, x) = 0.

We next show that this limit x is a fixed point of the mapping T . By the

triangle inequality and definition of contraction mapping we have

d(x, Tx) ≤ d(x, xn) + d(xn, Tx)

= d(x, xn) + d(Txn−1, Tx)

≤ d(x, xn) + αd(xn−1, x).

Taking n →∞, we have

d(x, Tx) ≤ 0.

By property (M1) of the metric d we obtain that d(x, Tx) ≥ 0 and so d(x, Tx) = 0.

By property (M2) of the metric d we get Tx = x. This show that x is a fixed point

of T .

Next we show that x is the only fixed point of T. Let x and x∗ be fixed

points of T. Thus Tx = x and Tx∗ = x∗. Then

d(x, x∗) = d(Tx, Tx∗) ≤ αd(x, x∗)

and so

d(x, x∗)− αd(x, x∗) ≤ 0

(1− α)d(x, x∗) ≤ 0

Since 1− α > 0, we have d(x, x∗) = 0. By property (M2) of the metric d, we get

x = x∗ and the theorem is proved.
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2.5 Some fixed point theorems on quasi-nonexpansive map-

pings

Definition 2.22. (Quasi-Nonexpansive Mapping). Let X be a real Banach

space, C a closed subset of X, and T : C → X such that T has a nonempty set of

fixed points F (T ) ⊂ C. T is called quasi-nonexpansive if

‖Tx− p‖ ≤ ‖x− p‖

for all x in C and p in F (T ). If the range of T is C, i.e., T : C → C, we called T

a self-mapping.

Example 2.6. Let X = R with the usual norm | · |. Define T : [0, 1] → [0, 1] by

Tx = x
2
, x ∈ [0, 1].

To show that T has a fixed point, we solve Tx = x and get that x = 0. Thus 0 is

the only fixed point of T . Next, we want to show that T is a quasi-nonexpansive

mapping. Also, we get

|Tx− 0| = |x
2
− 0| = |x

2
| ≤ |x| = |x− 0|.

Hence T is a quasi-nonexpansive mapping on [0, 1].

Example 2.7. Let X = R with the usual norm | · |. Define T : [0, 2] → [0, 2] by

Tx = x2 − 3x + 4, x ∈ [0, 2].

To show that T has a fixed point, we solve Tx = x and get that x = 2. Thus 2 is

the only fixed point of T . Next, we want to show that T is a quasi-nonexpansive
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mapping. Also, we get

|Tx− 2| = |x2 − 3x + 4− 2|

= |x2 − 3x + 2|

= |x2 − 2x− x + 2|

= |x(x− 2)− (x− 2)|

= |(x− 1)(x− 2)|

= |x− 1||x− 2|

≤ |x− 2|.

Hence T is a quasi-nonexpansive mapping on [0, 2].

Definition 2.23. (Asymptotically regular). Let X be a real Banach space.

Let C be a nonempty subset of X. A mapping T : C → C is said to be

(1) asymptotically regular in x0, if

lim
n→∞

‖T n(x0)− T n+1(x0)‖ = 0.

(2) asymptotically regular in xn, if

lim inf
n→∞

‖xn − Txn‖ = 0.

The following are useful lemmas we will use to obtain the Theorem

2.23, 2.26 and 3.1 . Lemma 2.20 is from [5]. Lemma 2.21 and Lemma 2.22 are

exercises in some text. We give proof here for those who are interested in this

field.

Lemma 2.20. If C is a nonempty closed subset of a normed space X, x ∈ X and

d(x, C) = 0 then x ∈ C.

Proof. Let C ⊆ X be closed, x ∈ X and d(x, C) = 0 i.e. inf
y∈C

d(x, y) = 0. We will

show that x ∈ C. For n ∈ N we have

inf
y∈C

d(x, y) < inf
y∈C

d(x, y) +
1

n
.
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By definition of infimum we obtain that for n ∈ N there exists yn ∈ C such that

0 = inf
y∈C

d(x, y) < d(x, yn) < inf
y∈C

d(x, y) +
1

n
.

From this and by Sandwich Theorem we get

lim
n→∞

d(x, yn) = 0.

That is yn → x. Since C is closed, yn ∈ C and yn → x, by Theorem 2.17 (Closed

set) we have x ∈ C.

Lemma 2.21. Let C be a nonempty closed subset of a Banach space X and

T : C → C be a quasi-nonexpansive mapping with the fixed point set F (T ) 6= ∅.

Then F (T ) is a closed subset of C.

Proof. We will show that F (T ) is closed. For this we let yn ∈ F (T ) and yn → y.

If we can show that y ∈ F (T ), then by Theorem 2.17 (Closed set) F (T ) is closed.

From yn → y, it means

lim
n→∞

‖yn − y‖ = 0.

We will show that y ∈ F (T ), i.e., Ty = y or ‖Ty − y‖ = 0.

Since T is quasi-nonexpansive, by the Triangle inequality, we have

0 ≤ ‖Ty − y‖ = ‖Ty − yn + yn − y‖

≤ ‖Ty − yn‖+ ‖yn − y‖

≤ ‖y − yn‖+ ‖yn − y‖

= 2‖yn − y‖.

By Sandwich Theorem we get

‖Ty − y‖ = 0.

By property of norm we get Ty = y. Thus y ∈ F (T ).

Hence F (T ) is closed.
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Note that, for quasi-nonexpansive mapping Ti : C → C (i=1,2) with

the common fixed point set F (T1) ∩ F (T2) 6= ∅, this shows that F (T1) 6= ∅ and

F (T2) 6= ∅. From above we get F (T1) and F (T2) are closed. Thus F (T1) ∩ F (T2)

is closed.

Lemma 2.22. Let X be a metric space and C a nonempty subset of X. If {xn}

is a sequence in X such that xn → x, then lim
n→∞

d(xn, C) = d(x, C).

Proof. Let xn → x. We want to show that d(xn, C) → d(x, C). We will show that

lim
n→∞

|d(xn, C) − d(x, C)| = 0. Since xn → x, lim
n→∞

d(xn, x) = 0. By the Triangle

inequality, we have for n ∈ N , that

d(xn, C) ≤ d(xn, x) + d(x, C)

d(xn, C)− d(x, C) ≤ d(xn, x) (2.8)

Similarly, we can show that

d(xn, C)− d(x, C) ≥ −d(xn, x). (2.9)

From (2.8) and (2.9) we have −d(xn, x) ≤ d(xn, C) − d(x, C) ≤ d(xn, x) for all

n, then |d(xn, C) − d(x, C)| ≤ d(xn, x), for all n. By Sandwich Theorem and

lim
n→∞

d(xn, x) = 0. We get that lim
n→∞

|d(xn, C)− d(x, C)|=0.

Note that, for a quasi-nonexpansive mapping Ti : C → C (i=1,2)

with the common fixed point set F (T1) ∩ F (T2) 6= ∅ and {xn} is a sequence in C

such that xn → x. From above we get lim
n→∞

d(xn, F (T1) ∩ F (T2)) = d(x, F (T1) ∩

F (T2)).

We found Theorem 2.23, Proposition 2.24, Lemma 2.25 and Theo-

rem 2.26 in [6]. There they gave only rough explanation about the proof. We gave

a more detailed proof for those who are interested in this field and need a further

study.
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Theorem 2.23. Let X be a real Banach space, C a closed subset of X, and T a

quasi-nonexpansive mapping of C into C with nonempty set F (T ) of fixed points.

Suppose there exists a point x0 in C such that the sequence {xn} of iterates lies in

C, where xn (= T n(x0)) is given by

(S1) xn = T (xn−1), n = 1, 2, 3, 4, ...

Then {xn} converges to a fixed point of T in C if and only if the following condi-

tion (M) holds:

(M) lim
n→∞

d(xn, F (T )) = 0.

Proof. Let {xn} converge to a fixed point of T in C. We will show that lim
n→∞

d(xn, F (T )) =

0. Let x be a fixed point of T in C such that {xn} converges to x, we have

lim
n→∞

d(xn, x) = 0. By definition of infimum and x ∈ F (T ) we obtain that

0 ≤ d(xn, F (T )) = inf
z∈F (T )

d(xn, z) ≤ d(xn, x).

By Sandwich Theorem we get

lim
n→∞

d(xn, F (T )) = 0.

Conversely, let lim
n→∞

d(xn, F (T )) = 0. We want to show that {xn} converges to a

fixed point of T in C. We will show that {xn} is a Cauchy sequence in C. Let

ε > 0. Since lim
n→∞

d(xn, F (T )) = 0, there exists N such that

n > N ⇒ d(xn, F (T )) <
ε

2

⇒ inf
y∈F (T )

d(xn, y) <
ε

2

⇒ inf
y∈F (T )

‖xn − y‖ <
ε

2

By definition of infimum, for n > N , there exists yn ∈ F (T ) such that

‖xn − yn‖ < ε
2
.
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Since T is quasi-nonexpansive and xn = Txn−1, for all n, we have

‖xm+k − ym‖ = ‖Txm+k−1 − ym‖

≤ ‖xm+k−1 − ym‖
...

≤ ‖xm − ym‖.

For n,m > N such that n = m + k > m > N we have

‖xn − xm‖ ≤ ‖xn − ym‖+ ‖ym − xm‖

≤ ‖xm − ym‖+ ‖ym − xm‖

= 2‖ym − xm‖

< 2 · ε

2
= ε.

Thus {xn} is a Cauchy sequence in C. Since X is complete and C ⊂ X is closed,

by Theorem 2.18 (Subspace of a Banach space) we have C is complete. So that

xn → x ∈ C.

Next, we will show that x is a fixed point. By Lemma 2.22 we have lim
n→∞

d(xn, F (T ))

= d(x, F (T )). So that

0 = lim
n→∞

d(xn, F (T )) = d(x, F (T )).

By Lemma 2.21 we have F (T ) ⊂ C is closed and by Lemma 2.20 since x ∈ C and

d(x, F (T )) = 0, x ∈ F (T ). Hence {xn} converges to a fixed point of T in C.

Proposition 2.24. Suppose X, C, T and x0 satisfy the conditions of Theorem

2.23 . Suppose further that

(1) T is asymptotically regular at x0.

(2) If {yn} is any sequence in C such that ‖(I − T )(yn)‖ → 0 as n →∞, then

lim inf
n→∞

d(yn, F (T )) = 0.

Then {xn} determined by the process (S1) in Theorem 2.23 converges to a fixed

point of T in C.
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Proof. To show that {xn} converges to a fixed point of T in C, we apply Theorem

2.23. So that we will show that lim
n→∞

d(xn, F (T )) = 0. Let p ∈ F (T ). Since T is

quasi-nonexpansive, we have

‖xn+1 − p‖ = ‖T n+1x0 − p‖

≤ ‖T nx0 − p‖

= ‖xn − p‖.

So that d(xn+1, F (T )) ≤ d(xn, F (T )). This implies that the sequence

{d(xn, F (T ))} is nonincreasing. Since T is asymptotically regular at x0, we have

0 = lim
n→∞

‖T nx0 − T n+1x0‖ = lim
n→∞

‖xn − Txn‖ = lim
n→∞

‖(I − T )xn‖.

Hence, by (2), we have that

lim inf
n→∞

d(xn, F (T )) = 0.

By Corollary 2.10, there exists a monotone subsequence whose limit is lim inf
n→∞

d(xn, F (T )).

Since lim inf
n→∞

d(xn, F (T )) = 0, by Theorem 2.3 we have lim
n→∞

d(xn, F (T )) = 0. Thus

from Theorem 2.23, it follows that {xn} converges to a fixed point of T in C.

Let X be a Banach space, C a closed convex subset of X, and T a

quasi-nonexpansive map of C into C. Suppose there exists a point x0 in C such

that, for some λ in (0, 1), the sequence {xn} given by (S2) lies in C.

(S2) xn = Tλ(xn−1), x0 ∈ C, Tλ = λT + (1− λ)I, λ ∈ (0, 1),

We see that

x1 = Tλ(x0)

x2 = Tλ(x1) = Tλ(Tλx0) = T 2
λ (x0)

...

xn = T n
λ (x0)

Thus we conclude that xn = Tλ(xn−1) = T n
λ (x0), n = 1, 2, 3, . . .
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Lemma 2.25. Let X be a Banach space, C a subset of X, and T a quasi-

nonexpansive map of C into C. Suppose there exists a point x0 in C such that,

for some λ in (0, 1), the sequence {xn} given by (S2) lies in C, where Tλ =

λT + (1 − λ)I(the identity mapping on C). Then Tλ is a quasi-nonexpansive

mapping.

Proof. Let x0 ∈ C and p ∈ F (T ). We want to show that ‖Tλ(x0)− p‖ ≤ ‖x0− p‖.

Since T is quasi-nonexpansive, by the Triangle inequality and absolute homogene-

ity, we have

‖Tλ(x0)− p‖ = ‖λTx0 + (1− λ)Ix0 − (1− λ)p− λp‖

= ‖λTx0 + (1− λ)x0 − (1− λ)p− λp‖

≤ (1− λ)‖x0 − p‖+ λ‖Tx0 − p‖

≤ (1− λ)‖x0 − p‖+ λ‖x0 − p‖

= ‖x0 − p‖.

So that ‖Tλ(x0) − p‖ ≤ ‖x0 − p‖ for all x0 ∈ C and p ∈ F (T ). Hence Tλ is a

quasi-nonexpansive mapping.

Theorem 2.26. Let X be a Banach space, C a closed convex subset of X, and T

a quasi-nonexpansive map of C into C. Suppose there exists a point x0 in C such

that, for some λ in (0, 1), the sequence {xn} = {T n
λ (x0)} given by (S2) lies in C.

Then {xn} converges to a fixed point of T in C if and only if

(Ć) lim
n→∞

d(T n
λ (x0), F (T )) = 0.

Proof. We first assume that {xn} converges to a fixed point of T in C. We will show

that lim
n→∞

d(T n
λ (x0), F (T )) = 0. Let x be a fixed point of T in C such that {xn}

converges to x and {xn} = {T n
λ (x0)}, we have lim

n→∞
d(xn, x) = lim

n→∞
d(T n

λ (x0), x) =

0. By definition of infimum and x ∈ F (T ) we obtain that

0 ≤ d(T n
λ (x0), F (T )) = inf

y∈F (T )
d(T n

λ (x0), y) ≤ d(T n
λ (x0), x).

By Sandwich Theorem we get
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lim
n→∞

d(T n
λ (x0), F (T )) = 0.

Conversely, let lim
n→∞

d(T n
λ (x0), F (T )) = 0. We want to show that {xn} converges

to a fixed point of T in C. We will show that {xn} is a Cauchy sequence in C.

Let ε > 0. Since {xn} = {T n
λ (x0)} and lim

n→∞
d(T n

λ (x0), F (T )) = 0, there exists N

such that

n > N ⇒ d(T n
λ (x0), F (T )) <

ε

2

⇒ inf
y∈F (T )

d(T n
λ (x0), y) <

ε

2

⇒ inf
y∈F (T )

‖T n
λ (x0)− y‖ <

ε

2

⇒ inf
y∈F (T )

‖xn − y‖ <
ε

2
.

By definition of infimum for n > N there exists yn ∈ F (T ) such that

‖xn − yn‖ < ε
2
.

Since T is quasi-nonexpansive and xn = Txn−1, for all n, we have

‖xm+k − ym‖ = ‖Txm+k−1 − ym‖

≤ ‖xm+k−1 − ym‖
...

≤ ‖xm − ym‖.

For n,m > N such that n = m + k > m > N we have

‖xn − xm‖ ≤ ‖xn − ym‖+ ‖ym − xm‖

≤ ‖xm − ym‖+ ‖ym − xm‖

= 2‖ym − xm‖

< 2 · ε

2
= ε.

Thus {xn} is a Cauchy sequence in C. Since X is complete and C ⊂ X is closed,

by Theorem 2.18 (Subspace of a Banach space) we have C is complete. So that

xn → x ∈ C.
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Next we will show that x is a fixed point. By Lemma 2.22 we have lim
n→∞

d(xn, F (T ))

= d(x, F (T )). So that

0 = lim
n→∞

d(xn, F (T )) = d(x, F (T )).

By Lemma 2.21 we have F (T ) ⊂ C is closed and by Lemma 2.20 since x ∈ C and

d(x, F (T )) = 0, x ∈ F (T ). Hence {xn} converges to a fixed point of T in C.



CHAPTER 3

Main Results

Let X be a real Banach space and let C be a nonempty closed convex

subset of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping such

that F (T1) ∩ F (T2) 6= ∅ in C. We are interested in sequences in the following

process. For x1 ∈ C and n ≥ 1, define the sequences {xn} and {yn} by

yn = βnT2xn + (1− βn − an)xn + anvn

xn+1 = αnT1yn + (1− αn − bn)yn + bnun, (3.1)

where {an}, {bn}, {αn} and {βn} are sequences in [0, 1] and {un} and {vn} are

sequences in C. Note that since C is a nonempty convex subset of X and the

sequences {xn} and {yn} are convex combinations of elements in C, we conclude

that {xn} and {yn} are sequences in C.

If T1 = T2 = T , (3.1) becomes

yn = βnTxn + (1− βn − an)xn + anvn

xn+1 = αnTyn + (1− αn − bn)yn + bnun, (3.2)

3.1 Main Theorems

We have the following theorems.

Theorem 3.1. Let X be a real Banach space and let C be a nonempty closed

convex subset of X. For i = 1, 2, let Ti : C → C be a quasi-nonexpansive mapping

such that F (T1)∩F (T2) 6= ∅. Let {an}, {bn}, {αn} and {βn} be sequences in [0, 1]

and {un} and {vn} be sequences in C. Assume that

(i) {an + βn} and {bn + αn} are sequences in [0, 1] and
∞∑

n=1

an < ∞ and
∞∑

n=1

bn < ∞;

28
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(ii) {un} and {vn} are bounded.

Then the iterative sequence {xn} defined in (3.1) converges strongly to a common

fixed point of T1 and T2 if and only if

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

Proof. We first prove the necessity.

Assume that {xn} converges strongly to a common fixed point of T1 and T2 i.e.

there exists p ∈ F (T1) ∩ F (T2) such that lim
n→∞

‖xn − p‖ = 0. That is lim inf
n→∞

‖xn −

p‖ = 0 by Theorem 2.6. By Definition 2.11,

d(xn, F (T1) ∩ F (T2)) = inf
p∗∈F (T1)∩F (T2)

‖xn − p∗‖ ≤ ‖xn − p‖.

Taking limit infimum as n → ∞, we have lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0, as

desired.

Now, we prove the sufficiency. Let p ∈ F (T1) ∩ F (T2). By the boundedness of

{un} and {vn}, we let

M = max

{
sup
n≥1

‖un − p‖, sup
n≥1

‖vn − p‖
}

.

Since Ti : C → C is a quasi-nonexpansive mapping for i = 1, 2, (3.1) and by the

triangle inequality, we have

‖yn − p‖ = ‖βnT2xn + (1− βn − an)xn + anvn − p‖

= ‖βnT2xn + (1− βn − an)xn + anvn − (1− βn − an)p− βnp− anp‖

≤ βn‖T2xn − p‖+ (1− βn − an)‖xn − p‖+ an‖vn − p‖

≤ βn‖xn − p‖+ (1− βn − an)‖xn − p‖+ anM

= (1− an)‖xn − p‖+ anM
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and

‖xn+1 − p‖ = ‖αnT1yn + (1− αn − bn)yn + bnun − p‖

= ‖αnT1yn + (1− αn − bn)yn + bnun − (1− αn − bn)p− αnp− bnp‖

≤ αn‖T1yn − p‖+ (1− αn − bn)‖yn − p‖+ bn‖un − p‖

≤ αn‖yn − p‖+ (1− αn − bn)‖yn − p‖+ bnM

= (1− bn)‖yn − p‖+ bnM

≤ (1− bn) {(1− an)‖xn − p‖+ anM}+ bnM

= (1− bn)(1− an)‖xn − p‖+ (1− bn)anM + bnM

= (1− an − bn + anbn)‖xn − p‖+ (an + bn − anbn)M

≤ ‖xn − p‖+ (an + bn)M

= ‖xn − p‖+ dn, (3.3)

where dn = (an+bn)M . Now by the assumptions that
∞∑

n=1

an < ∞ and
∞∑

n=1

bn < ∞,

we have that
∞∑

n=1

dn < ∞. Then Lemma 2.15 implies that lim
n→∞

‖xn − p‖ exists.

From (3.3) and by induction, for m, n ≥ 1 and p ∈ F (T1) ∩ F (T2), we have

‖xn+m − p‖ ≤ ‖xn − p‖+
n+m−1∑

i=n

di. (3.4)

From (3.3) and taking the infimum over p ∈ F (T1) ∩ F (T2), we obtain

d(xn+1, F (T1) ∩ F (T2)) ≤ d(xn, F (T1) ∩ F (T2)) + dn.

By Corollary 2.10, there exists a monotonic subsequence whose limit is

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)). By the assumption lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0

and Lemma 2.15 tells us that

lim
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. (3.5)

Next, we show that {xn} is a Cauchy sequence in X. Let ε > 0 From (3.5) and
∞∑

n=1

dn < ∞, there exists n0 ∈ N such that, for n ≥ n0, we have
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d(xn, F (T1) ∩ F (T2)) <
ε

4
,

∞∑
n=n0

dn <
ε

2
. (3.6)

By the first inequality in (3.6) and the definition of infimum, there exists p0 ∈

F (T1) ∩ F (T2) such that

‖xn0 − p0‖ <
ε

4
. (3.7)

Combining (3.4), (3.6) and (3.7), for any positive integer m, we have

‖xn0+m − xn0‖ ≤ ‖xn0+m − p‖+ ‖xn0 − p‖

≤ ‖xn0 − p‖+

n0+m−1∑
i=n0

di + ‖xn0 − p‖

= 2‖xn0 − p‖+

n0+m−1∑
i=n0

di

< 2(
ε

4
) +

ε

2

= ε.

Which implies that {xn} is a Cauchy sequence in X. But X is a Banach space, so

there must exist z ∈ X such that xn → z. Since C is closed and {xn} is a sequence

in C converging to z, we have that z ∈ C. Also, by Lemma 2.21, we have that

F (T1) and F (T2) are closed. Thus F (T1) ∩ F (T2) is closed. From the continuity

of d(x, F (T1) ∩ F (T2)) by Lemma 2.22 with xn → z as n →∞, we have

d(xn, F (T1) ∩ F (T2)) → d(z, F (T1) ∩ F (T2)).

From (3.5), we have d(xn, F (T1) ∩ F (T2)) → 0 So that

d(z, F (T1) ∩ F (T2)) = 0.

Since F (T1) ∩ F (T2) is closed, z ∈ F (T1) ∩ F (T2) by lemma 2.20. This completes

the proof.
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Corollary 3.2. Let X, C, Ti(i = 1, 2) and the iterative sequence {xn} be as in

Theorem 3.1. Suppose that conditions (i) and (ii) in Theorem 3.1 hold and

(1) the mapping Ti(i = 1, 2) is asymptotically regular in xn and

(2) lim inf
n→∞

‖xn − Tixn‖ = 0 implies that lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

Then the sequence {xn} converges strongly to a common fixed point of T1 and T2.

Proof. Since Ti(i = 1, 2) is asymptotically regular in xn, by Definition 2.23 we

have

lim inf
n→∞

‖xn − Tixn‖ = 0; i = 1, 2.

From (2), lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. By Theorem 3.1, we see that the

sequence {xn} converges strongly to a common fixed point of T1 and T2.

Theorem 3.3. Let X, C, Ti(i = 1, 2) and the iterative sequence {xn} be as in

Theorem 3.1. Suppose that conditions (i) and (ii) in Theorem 3.1 hold. Assume

further that the mapping Ti(i = 1, 2) is asymptotically regular in xn, and there

exists an increasing function f : R+ → R+ with f(r) > 0 for all r > 0 and for

i = 1, 2, we have

‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2))) for all n ≥ 1.

Then the sequence {xn} converges strongly to a common fixed point of T1 and T2.

Proof. From ‖xn − Tixn‖ ≥ f(d(xn, F (T1) ∩ F (T2))) for all n ≥ 1, we see that

‖xn − T1xn‖ ≥ f(d(xn, F (T1) ∩ F (T2)))

‖xn − T2xn‖ ≥ f(d(xn, F (T1) ∩ F (T2))).

From these, we have

‖xn − T1xn‖+ ‖xn − T2xn‖ ≥ 2f(d(xn, F (T1) ∩ F (T2)))

1

2
(‖xn − T1xn‖+ ‖xn − T2xn‖) ≥ f(d(xn, F (T1) ∩ F (T2))).

By the assumption that Ti is asymptotically regular in xn for i = 1, 2,

0 ≥ lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2))).
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Since f : R+ → R+, we have that

lim inf
n→∞

f(d(xn, F (T1) ∩ F (T2))) = 0. (3.8)

We claim that lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0. Suppose not

lim inf
n→∞

(d(xn, F (T1) ∩ F (T2)) 6= 0.

So that

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = L > 0.

Since lim inf
n→∞

d(xn, F (T1)∩F (T2)) = L > 0, we see that ∃N1 ∈ N such that N > N1

implies ∣∣∣∣ inf
n≥N

d(xn, F (T1) ∩ F (T2))− L

∣∣∣∣ < L

2

L

2
< inf

n≥N
d(xn, F (T1) ∩ F (T2)) <

3L

2
∀N > N1.

L

2
< d(xn, F (T1) ∩ F (T2)) ,∀n ≥ N > N1

Since f is increasing, we have

f

(
L

2

)
≤ f(d(xn, F (T1) ∩ F (T2))) ,∀n ≥ N > N1.

We get

f

(
L

2

)
≤ inf{f(d(xn, F (T1) ∩ F (T2))); n ≥ N} ,∀N > N1.

≤ lim inf
n→∞

{f(d(xn, F (T1) ∩ F (T2))); n ≥ N}

Since f(r) > 0 if r > 0, we obtain

∴ 0 < f

(
L

2

)
≤ lim inf

n→∞
f(d(xn, F (T1) ∩ F (T2))),

contradiction with (3.8). Hence,

lim inf
n→∞

d(xn, F (T1) ∩ F (T2)) = 0.

We see that {xn} converges strongly to a common fixed point of T1 and T2, by

Theorem 3.1, as desired.
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If T1 = T2 = T , we have the following result.

Corollary 3.4. Let X be a real Banach space and let C be a nonempty closed con-

vex subset of X. Let T : C → C be a quasi-nonexpansive mapping with nonempty

fixed point set F (T ). Let {an}, {bn}, {αn} and {βn} be sequences in [0, 1] and

{un} and {vn} be sequences in C. Assume that

(i) {an + βn} and {bn + αn} are sequences in [0, 1] and

∞∑
n=1

an < ∞ and
∞∑

n=1

bn < ∞;

(ii) {un} and {vn} are bounded.

Then the iterative sequence {xn} defined in (3.2) converges strongly to a fixed point

of T if and only if

lim inf
n→∞

d(xn, F (T )) = 0.

Corollary 3.5. Let X, C, T and the iterative sequence {xn} be as in Corollary

3.4. Suppose that conditions (i) and (ii) in Corollary 3.4 hold. Assume further

that

(1) the mapping T is asymptotically regular in xn and

(2) lim inf
n→∞

‖xn − Txn‖ = 0 implies that lim inf
n→∞

d(xn, F (T )) = 0.

Then the sequence {xn} converges strongly to a fixed point of T .

Corollary 3.6. Let X, C, T and the iterative sequence {xn} be as in Corollary

3.4. Suppose that conditions (i) and (ii) in Corollary 3.4 hold. Assume further

that mapping T is asymptotically regular in xn, and there exists an increasing

function f : R+ → R+ with f(r) > 0 for all r > 0 and

‖xn − Txn‖ ≥ f(d(xn, F (T ))) for all n ≥ 1.

Then the sequence {xn} converges strongly to a fixed point of T .
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3.2 An Example

The following is an example that give an application of our main

results.

Let X = R and C = [0, 1]. Then X is a Banach space with C as a

closed convex subset. For i = 1, 2, define Ti : [0, 1] → [0, 1] by

T1x = 3x
10

and T2x = x
2
.

Then T1x = x ⇔ x = 0 and T2x = x ⇔ x = 0. Thus 0 is the only common fixed

point of T1 and T2. That is F (T1) ∩ F (T2) = {0}.

Consider, for all x ∈ [0, 1], we get

|T1x− 0| = |3x
10
− 0| = |3x

10
| ≤ |x| = |x− 0|

|T2x− 0| = |x
2
− 0| = |x

2
| ≤ |x| = |x− 0|.

Hence T1 and T2 are quasi-nonexpansive mapping on [0, 1]. Let an = 1
n2 , bn =

1
(n+1)2

, αn = 1− 1
(n+1)2

, βn = 1− 1
n2 . Consider the condition (i), {an+βn} = {1} and

{bn + αn} = {1} are sequences in [0, 1] and
∞∑

n=1

1

n2
< ∞ and

∞∑
n=1

1

(n + 1)2
< ∞ by

Theorem 2.12. Therefore the condition (i) holds. Next, we consider the condition

(ii). Since {un} = { 1
2n
} and {vn} = { 1

n
}, 1

2n
→ 0 and 1

n
→ 0. We have {un} and

{vn} are bounded by Theorem 2.2. Therefore the condition (ii) holds. Choose

x1 = 1. Then the iteration in (3.1) becomes

yn =

(
1− 1

n2

)
·
(x

2

)
+

(
1

n2

)
·
(

1

n

)
xn+1 =

(
1− 1

(n + 1)2

)
·
(

3x

10

)
+

(
1

(n + 1)2

)
·
(

1

2n

)
.

We show that with x1 = 1, {xn} and {yn} are convex combinations of elements in

[0, 1] by calculation using microsoft office excel. See Appendix A.
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APPENDIX A 

 

The table below shows the calculation for 

( )
2

1
1

1
n

n
α = −

+
,  

( )
2

1

1
n

b
n

=
+

, 
1
2nu

n
= , 

2

1
1n

n
β = − , 

2

1
na

n
= , 

1
nv

n
=  

 

Table 3.1 : Value of 
n

α , 
n

b , 
n

u , 
n
β , 

n
a  and 

n
v  

� �
n

α �
n

b �
n

u �
n
β �

n
a �

n
v �
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The table below shows the calculation for 

( )2 1n n n n n n n ny T x a x a vβ β= + − − +

 
( )1 1 1n n n n n n n nx T y b y b uα α+ = + − − +

 

2 2
x

T x =  and 1

3
10

x
T x =  

 

                  Table 3.2 : Value of  
n

y  and 1n
x +  
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n

y � 1n
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Figure 3.1 : Graph of { }nx in our iteration 
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The table below shows the calculation for 

( )1n n n n n n n ny Tx a x a vβ β= + − − +

 
( )1 1n n n n n n n nx Ty b y b uα α+ = + − − +

 

nnnn ubTxx +=+1  
               

 

2
x

Tx =

 

 

Table 3.3 : The comparison { }1+nx of our iteration and Picard iteration 

��
Our iteration� Picard iteration�

n
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