

Chemical Constituents from the Roots of Cratoxylum formosum and Artocarpus integer and the Stem of Thespesia populnea

Sompong Boonsri

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry Prince of Songkla University

2010
Copyright of Prince of Songkla University

Thesis Title	Chemical Constituents from the Roots of Cratoxylum formosum and Artocarpus integer and the Stem of Thespesia populnea
Author	Mr. Sompong Boonsri Major Program
Organic Chemistry	

Major Advisor:

\qquad
(Assoc. Prof. Dr. Chatchanok Karalai)

Co-Advisor:
(Assoc. Prof. Chanita Ponglimanont)

Examining Committee:

...................................Chairperson
(Assoc. Prof. Dr. Kan Chantrapromma)
\qquad
(Assoc. Prof. Dr. Chatchanok Karalai)
(Assoc. Prof. Chanita Ponglimanont)
(Assoc. Prof. Dr. Supinya Tewtrakul)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Doctor of Philosophy degree in Organic Chemistry

ชื่อวิทยานิพนธ์	องค์ประกอบทางเคมีจากรากติ้วขาวและจำปาดะและลำต้นโพทะเล
ผู้เขียน	นายสมพงศ์ บุญศรี
สาขาวิชา	เคมีอินทรีย์
ปีการศึกษา	2552

บทคัดย่อ

ตอน 1 องค์ประกอบทางเคมีจากรากติ้วขาว (Cratoxylum formosum)
การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบเฮกเซนจากรากของติ้วขาว สามารถแยกสารประกอบประเภทแซนโทนชนิดใหม่ 3 สาร คือ formoxanthone A (CF1), formoxanthone $\mathrm{B}(\mathbf{C F} 2)$ และ formoxanthone $\mathrm{C}(\mathbf{C F 3})$ และเป็นสารที่มีการรายงานแล้ว 6 สาร ซึ่ง เป็นแซนโทน 3 สาร คือ gerontoxanthone I (CF4), macluraxanthone (CF5) และ xanthone V_{1} (CF6) แอนทราควิโนน 3 สาร คือ madagascin (CF7), 3-geranyloxy-6-methyl-1,8dihydroxyanthraquinone (CF8) และ vismiaquinone (CF9)

ตอน 2 องค์ประกอบทางเคมีจากลำต้นโพทะเล (Thespesia populnea)
การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบไดคลอโรมีเทนจากลำต้นของ โพทะเล ซึ่งแบ่งเป็นสองส่วน คือ ส่วนกระพี้และแก่น สามารถแยกสารประกอบประเภทคาดิเนน เซสควิเทอร์พีนได้ 19 สาร จากส่วนกระพี้สามารถแยกสารประกอบชนิดใหม่ 2 สาร คือ populene $\mathrm{A}(\mathbf{T P 1 0})$ และ populene B (TP11) และเป็นสารประกอบที่มีการรายงานแล้ว 3 สาร คือ mansonone E (TP9), (+)-gossypol (TP18) และ (+)-6, 6^{\prime}-dimethoxygossypol (TP19) จากส่วนแก่นสามารถ แยกสารประกอบประเภทเซสควิเทอร์พีนได้ 17 สาร ซึ่งเป็นสารประกอบชนิดใหม่ 6 สาร คือ populene C (TP12), populene D (TP13), populene E (TP14), populene F (TP15), populene G (TP16) และ populene H (TP17) และเป็นสารประกอบที่มีการรายงานแล้ว 11 สาร คือ 7 hydroxycadalene (TP1), mansonone C (TP2), mansonone G (TP3), mansonone D (TP4), thespesone (TP5), mansonone S (TP6), 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethylnaphtho [1,8-b,c]pyran-4,8-dione (TP7), mansonone H (TP8), mansonone E (TP9), (+)-gossypol (TP18) และ (+)-6, 6^{\prime}-dimethoxygossypol (TP19)

ตอน 3 องค์ประกอบทางเคมีจกกรากจำปาดะ (Artocarpus integer)
การึึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบไดคลอ โรมีเทนจากรากของ จำปาดะ สามารถแยกสารประกอบประเภทฟลาโัวนอยด์ได้ 4 สาร ซึ่งเป็นสารประกอบที่มีการ รายงานแล้ว คือ artoindonesianin A (AI1), Artoindonesianin Q (AI2), artoindonesianin $\mathrm{S}(\mathrm{Al3})$ และ corylifolin (AI4) โครงสร้างของสารประกอบเหล่านี้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโก ปี

สารประกอบที่แยกได้นำไปทดสอบการออกฤทธิ์บับยั้งการเจริญของเชื้อแบคทีเรีย และทดสอบความเป็นพิษต่อเซลล์มะเร็ง ซึ่งสารประกอบ mansonone E (TP9) มีความเป็นพิษต่อ เซลล์มะเร็งเต้านม (MCF-7) ด้วยค่า $\mathrm{IC}_{50} 0.05 \mu \mathrm{~g} / \mathrm{mL}$ และ (+)-gossypol (TP18) มีความเป็นพิษต่อ เซลล์มะเร็งปากมดดูก (HeLa) และ มะเร็งช่องปากและหลอดอาหาร (KB) ด้วยค่า $\mathrm{IC}_{50} 0.08$ และ $0.04 \mu \mathrm{~g} / \mathrm{mL}$ ตามลำดับ

CF1: formoxanthone A

CF3: formoxanthone C

CF2: formoxanthone B

CF4: gerontoxanthone I

CF5: $\mathrm{R}=3_{2}$; macluraxanthone
CF6: $\mathrm{R}=y_{2}$; xanthone V_{1}

CF7: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$ 经, madagascin
CF8: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$; 3-geranyloxy-6-methyl-1,8dihydroxyanthraquinone
CF9: $\mathrm{R}_{1}=$

TP1: 7-hydroxycadalene

TP4: mansonone D

TP2: $\mathrm{R}=\mathrm{H}$; mansonone C
TP3: $\mathrm{R}=\mathrm{OH}$; mansonone G

TP5: thespesone

TP6: mansonone S

TP7: 7-hydroxy-2,3,5,6-tetrahydro-3,6,9trimethyl-naphtho[1,8-b,c]-pyran-4,8-dione

TP8: $\mathrm{R}=\mathrm{OH}$; mansonone H TP9: R = H; mansonone E

TP12: populene C

TP14: $\mathrm{R}_{1}=\mathrm{O}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; populene E
TP15: $\mathrm{R}_{1}=\alpha \mathrm{OH}, \mathrm{R}_{2}=\alpha \mathrm{CH}_{3}$; populene F

TP10: $\mathrm{R}=\beta \mathrm{OH} ;$ populene A
TP10: $\mathrm{R}=\alpha \mathrm{OH}$; populene B

TP13: populene D

TP16: $\mathrm{R}=\alpha \mathrm{OH}$; populene G
TP17: $\mathrm{R}=\beta \mathrm{OH}$; populene H

TP18: R = H; (+)-gossypol
TP19: $\mathrm{R}=\mathrm{CH}_{3} ;(+)-6,6^{\prime}$-dimethoxygossypol

AI1: artoindonesianin A

AI3: artoindonesianin S

AI2: artoindonesianin Q

AI4: corylifolin

Thesis Title	Chemical Constituents from the Roots of Cratoxylum formosum and Artocarpus integer and the Stem of Thespesia populnea
Author	Mr. Sompong Boonsri Major Progam
Organic Chemistry	

Abstract

ABTRACT

Part I Chemical Constituents from the Roots of Cratoxylum formosum
Investigation of the chemical constituents of the hexane extract from the roots of C. formosum led to the isolation of three new xanthones: formoxanthone A (CF1), formoxanthone B (CF2) and formoxanthone C (CF3), together with six known compounds: three xanthones: gerontoxanthone I (CF4), macluraxanthone (CF5) and xanthone V_{1} (CF6); three anthraquinones: madagascin (CF7), 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (CF8) and vismiaquinone (CF9).

Part II Chemical Constituents from the Stem of Thespesia populnea

Investigation of the chemical constituents of the dichloromethane extract from the stem of T. populnea which was divided to two parts, heartwood and wood, resulted in nineteen cadinan sesquiterpenes. Two new compounds, populene A (TP10) and B (TP11) along with mansonone E (TP9), (+)-gossypol (TP18) and (+)-6,6'-dimethoxygossypol (TP19) were purified from the wood. Six new compounds, populene C (TP12), populene D (TP13), populene E (TP14), populene F (TP15), populene G (TP16) and populene H (TP17) were obtained from the heartwood, together with eleven known compounds, 7-hydroxycadalene (TP1), mansonone C (TP2), mansonone G (TP3), mansonone D (TP4), thespesone (TP5), mansonone S (TP6), 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione (TP7), mansonone H (TP8), mansonone E (TP9), (+)-gossypol (TP18) และ (+)-6, 6'dimethoxygossypol (TP19).

Part III Chemical Constituents from the Roots of Artocarpus integer

The dichloromethane extract of the roots of Artocarpus integer yielded four known compounds, artoindonesianin A (AI1), artoindonesianin Q (AI2), artoindonesianin S (AI3) and corylifolin (AI4). Their structure were elucidated by spectroscopic method.

The isolated compounds were evaluated for their antibacterial and cytotoxic activities. Two pure compounds, mansonone E (TP9) exhibited potent cytotoxicity against breast cancer cell line (MCF-7) with IC_{50} value $0.05 \mu \mathrm{~g} / \mathrm{mL}$ and $(+)$-gossypol (TP18) exhibited potent cytotoxicity against cervical cancer (HeLa) and oral cavity cancer (KB) cell lines with IC_{50} values 0.08 and $0.04 \mu \mathrm{~g} / \mathrm{mL}$, respectively.

CF1: formoxanthone A

CF3: formoxanthone C

CF2: formoxanthone B

CF4: gerontoxanthone I

CF7: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$; madagascin
CF8: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$; 3-geranyloxy-6-methyl-1,8-
dihydroxyanthraquinone
CF9: $\mathrm{R}_{1}=$

TP1: 7-hydroxycadalene

TP4:mansonone D

TP2: $\mathrm{R}=\mathrm{H}$; mansonone C
TP3: $\mathrm{R}=\mathrm{OH}$; mansonone G

TP5: thespesone

TP6: mansonone S

TP7: 7-hydroxy-2,3,5,6-tetrahydro-3,6,9trimethyl-naphtho $1,8-\mathrm{b}, \mathrm{c}]$ -pyran-4,8-dione

TP8: $\mathrm{R}=\mathrm{OH}$; mansonone H
TP9: R = H; mansonone E

TP12: populene C

TP14: $\mathrm{R}_{1}=\mathrm{O}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; populene E
TP15: $\mathrm{R}_{1}=\alpha \mathrm{OH}, \mathrm{R}_{2}=\alpha \mathrm{CH}_{3}$; populene F

TP10: $\mathrm{R}=\beta \mathrm{OH}$; populene A
TP10: $\mathrm{R}=\alpha \mathrm{OH}$; populene B

TP13: populene D

TP16: $\mathrm{R}=\alpha \mathrm{OH}$; populene G
TP17: $\mathrm{R}=\beta \mathrm{OH}$; populene H

TP18: R = H; (+)-gossypol
TP19: $\mathrm{R}=\mathrm{Me}$; (+)-6,6'-dimethoxygossypol

AI1: artoindonesianin A

AI3: artoindonesianin S

AI2: artoindonesianin Q

AI4: corylifolin

CONTENTS

Page
CONTENTS XV
LISTS OF TABLES xix
LISTS OF ILLUSTRATIONS xxiii
LISTS OF SCHEMES xxviii
LISTS OF ABBREVIATIONS AND SYMBOLS xxix
PART I Chemical Constituents from the Roots of C. formosum
CHAPTER 1.1 INTRODUCTION
1.1.1 Introduction 1
1.1.2 Review of literatures 3
1.1.3 The objectives 23
CHAPTER 1.2 EXPERIMENTAL
1.2.1 Instruments and Chemicals 24
1.2.2 Plant material 24
1.2.3 Extraction and chemical investigation of the crude hexane extract from the roots of C. formosum 25
1.2.4 Bioassay
1.2.4.1 Antibacterial assay 27
1.2.4.2 Cytotoxic assay 28
CHAPTER 1. 3 RESULTS AND DISCUSSION
1.3.1 Structural elucidation of the isolated compounds from the roots of C. formosum 29
1.3.1.1 Compound CF1 30
1.3.1.2 Compound CF2 34
1.3.1.3 Compound CF3 38
1.3.1.4 Compound CF4 41
1.3.1.5 Compound CF5 44
1.3.1.6 Compound CF6 47
1.3.1.7 Compound CF7 52

CONTENTS (Continued)

Page
1.3.1.8 Compound CF8 55
1.3.1.9 Compound CF9 58
1.3.2 Biological activities of isolated compounds from the roots of C. formosum 63
PART II Chemical Constituents from the Stem of T. populnea
CHAPTER 2.1 INTRODUCTION
2.1.1 Introduction 65
2.1.2 Review of literatures 67
2.1.3 The objectives 77
CHAPTER 2.2 EXPERIMENTAL
2.2.1 Instruments and Chemicals 78
2.2.2 Plant material 79
2.2.3 Extraction and chemical investigation of the crude dichlomethane extract from the stem of T. populnea 79
2.2.4 Bioassay
2.2.4.1 Antibacterial assay 85
2.2.4.2 Cytotoxic assay 85
CHAPTER 2. 3 RESULTS AND DISCUSSION
2.3.1 Structural elucidation of compounds from the stem of T. populnea
2.3.1.1 Compound TP1 87
2.3.1.2 Compound TP2 89
2.3.1.3 Compound TP3 92
2.3.1.4 Compound TP4 95
2.3.1.5 Compound TP5 99
2.3.1.6 Compound TP6 102
2.3.1.7 Compound TP7 105
2.3.1.8 Compound TP8 108
2.3.1.9 Compound TP9 111

CONTENTS (Continued)

Page
2.3.1.10 Compound TP10 116
2.3.1.11 Compound TP11 118
2.3.1.12 Compound TP12 120
2.3.1.13 Compound TP13 122
2.3.1.14 Compound TP14 124
2.3.1.15 Compound TP15 126
2.3.1.15 Compound TP16 128
2.3.1.17 Compound TP17 130
2.3.1.18 Compound TP18 132
2.3.1.19 Compound TP19 135
2.3.2 Biological activities of isolated compounds from the stem of T. populnea 137
PART III Chemical Constituents from the Roots of A.integer
CHAPTER 3.1 INTRODUCTION
3.1.1 Introduction 139
3.1.2 Review of literatures 141
3.1.3 The objectives 162
CHAPTER 3.2 EXPERIMENTAL
3.2.1 Instruments and Chemicals 163
3.2.2 Plant material 163
3.2.3 Extraction and chemical investigation of the crude dichloromethane extract from the roots of A.integer 164
3.2.4 Bioassay
3.2.4.1 Antibacterial assay 165
3.2.4.2 Antifungal assay 166

CONTENTS (Continued)

Page
CHAPTER 3. 3 RESULTS AND DISCUSSION
3.3.1 Structural elucidation of compounds from the roots of A. integer
3.3.1.1 Compound AI1 168
3.3.1.2 Compound AI2 174
3.3.1.3 Compound AI3 177
3.3.1.4 Compound AI4 181
3.3.2 Biological activities of isolated compounds from the roots of A. integer 184
REFERENCES 185
APPENDIX 194
VITAE 259

LISTS OF TABLES

Tables Page
1 Compounds from plants of Cratoxylum genus 3
$2 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF1 32
$3 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF2 35
4 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF1 and CF2 36
$5 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF3 39
$6 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF4 42
7 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF4 and gerontoxanthone I 43
$8 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF5 45
9 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF5 and macluraxanthone 46
$10 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF6 48
11 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF6 and Xanthone V1 49
12 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of CF4-CF6 50
13 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of CF4-CF6 51
$14 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF7 53
15 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF7 and madagascin 54
$16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF8 56
17 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of CF8 and 3- geranyloxy-6-methyl-1,8-dihydroxyanthraquinone ($\mathbf{(R)}$ 57
$18{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF9 59
19 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF9 and vismiaquinone 60
20 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of CF7-CF9 61
21 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of CF7-CF9 62

LISTS OF TABLES (Continued)

Tables Page
22 Cytotoxic and antibacterial activities of compounds isolated from C. formosum 64
23 Compounds from plants of Thespesia genus 67
$24{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP1 88
$25{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP2 90
26 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP2 and mansonone C 90
$27 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP3 93
28 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP3 and mansonone G 93
$29 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP4 96
30 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP4 and mansonone D 96
31 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of TP1-TP4 97
32 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP1-TP4 98
$33{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP5 100
34 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP5 and thespesone 100
35 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP6 103
36 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP6 and mansonone S 103
37
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP7 106
38 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP7 and 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl- naphtho [1,8-b,c]pyran-4,8-dione (R) 106
$39{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP8 109
40 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP8 and mansonone H 109

LISTS OF TABLES (Continued)

Tables Page
$41 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP9 112
42 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP9 and mansonone E 112
43 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of TP5-TP9 114
44 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP5-TP9 115
$45 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP10 117
$46 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP11 119
$47 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP12 121
$48 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP13 123
$49 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP14 125
$50 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP15 127
$51 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP16 129
$52 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP17 131
$53 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP18 133
54 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP18 and Gossypol 134
$55 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP19 136
56 Cytotoxic and antibacterial activities of compounds isolated from T. populnea 138
57 Compounds from plants of Artocarpus genus 141
$58 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI1 170
59 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI1 and artoindonesianin A 171
$60 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI2 175
61 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI2 and artoindonesianin Q 176
62 ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI3 178

LISTS OF TABLES (Continued)

Tables Page
63 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI3 and artoindonesianin S 179
$64 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI4 182
65 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI4 and corylifolin 183
66 Antibacterial activities of compounds isolated from A. integer 184

LIST OF ILLUSTRATIONS

Figures Page
1 Parts of Cratoxylum formosum 2
2 Parts of Thespesia populnea 65
3 Populene D with selected NOESY correlations 123
4 Parts of Artocarpus integer 140
5 UV (MeOH) spectrum of compound CF1 195
6 IR (neat) spectrum of compound CF1 195
$7 \quad{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF1 196
$8 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C F} 1$ 196
$9 \quad \mathrm{IR}(\mathrm{KBr})$ spectrum of compound CF2 197
$10 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF2 198
$11 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C F} 2$ 198
12 UV (MeOH) spectrum of compound CF3 199
13 IR (KBr) spectrum of compound CF3 199
$14{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF3 200
$15 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF3 200
16 UV (MeOH) spectrum of compound CF4 201
17 IR (KBr) spectrum of compound CF4 201
$18{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF4 202
$19 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF4 202
20 UV (MeOH) spectrum of compound CF5 203
21 IR (KBr) spectrum of compound CF5 203
$22{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF5 204
$23 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF5 204
24 UV (MeOH) spectrum of compound CF6 205
25 IR (KBr) spectrum of compound CF6 205
$26{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF6 206
$27 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF6 206
28 UV (MeOH) spectrum of compound CF7 207

LIST OF ILLUSTRATIONS (Continued)

Figures Page
$29 \quad \mathrm{IR}(\mathrm{KBr})$ spectrum of compound CF7 207
$30 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF7 208
$31 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF7 208
32 UV (MeOH) spectrum of compound CF8 209
33 IR (KBr) spectrum of compound CF8 209
$34{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF8 210
$35 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF8 210
36 UV (MeOH) spectrum of compound CF9 211
37 IR (KBr) spectrum of compound CF9 211
$38{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF9 212
$39 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C F} 9$ 212
$40 \quad \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP1 213
41 IR (KBr) spectrum of compound TP1 213
$42 \quad{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP1 214
$43 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP1 214
$44 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP2 215
45 IR (neat) spectrum of compound TP2 215
$46{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP2 216
$47 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{~ T P 2}$ 216
48 UV (MeOH) spectrum of compound TP3 217
49 IR (neat) spectrum of compound TP3 217
$50 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound TP3 218
51
${ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound $\mathbf{T P 3}$ 218
52 UV (MeOH) spectrum of compound TP4 219
53 IR (neat) spectrum of compound TP4 219
$54{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP4 220
$55 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 4}$ 220
56 UV (MeOH) spectrum of compound TP5 221

LIST OF ILLUSTRATIONS (Continued)

Figures Page57 IR (neat) spectrum of compound TP5221
$58 \quad{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP5 222
$59 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP5 222
60 UV (MeOH) spectrum of compound TP6 223
61 IR (neat) spectrum of compound TP6 223
$62{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP6 224
$63 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP6 224
$64 \quad \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP7 225
65 IR (neat) spectrum of compound TP7 225
$66 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP7 226
$67 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP7 226
68 UV (MeOH) spectrum of compound TP8 227
69 IR (neat) spectrum of compound TP8 227
$70 \quad{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right)$ spectrum of compound TP8 228
$71 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right)$ spectrum of compound TP8 228
72 UV (MeOH) spectrum of compound TP9 229
73 IR (neat) spectrum of compound TP9 229
$74 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP9 230
$75 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 9}$ 230
$76 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP10 231
77 IR (neat) spectrum of compound TP10 231
$78 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP10 232
$79 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP10 232
$80 \quad \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP11 233
81 IR (neat) spectrum of compound TP11 233
$82 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP11 234
$83 \quad{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP11 234
84 UV (MeOH) spectrum of compound TP12 235

LIST OF ILLUSTRATIONS (Continued)

Figures Page85 IR (neat) spectrum of compound TP12235
$86 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 1 2}$ 236
$87 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 1 2}$ 236
88 UV (MeOH) spectrum of compound TP13 237
89 IR (neat) spectrum of compound TP13 237
$90 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 1 3}$ 238
$91 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP13 238
92 UV (MeOH) spectrum of compound TP14 239
93 IR (neat) spectrum of compound TP14 239
$94 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP14 240
$95 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP14 240
$96 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP15 241
97 IR (neat) spectrum of compound TP15 241
$98 \quad{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP15 242
$99 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP15 242
$100 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP16 243
101 IR (neat) spectrum of compound TP16 243
$102{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP16 244
$103{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP16 244
104 UV (MeOH) spectrum of compound TP17 245
105 IR (neat) spectrum of compound TP17 245
$106{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 1 7}$ 246
$107{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP17 246
$108 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP18 247
109 IR (neat) spectrum of compound TP18 247
$110{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP18 248
$111{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP18 248
$112 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound TP19 249

LIST OF ILLUSTRATIONS (Continued)

Figures Page
113 IR (neat) spectrum of compound TP19 249
$114{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP19 250
$115 \quad{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP19 250
$116 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AI1 251
117 IR (KBr) spectrum of compound AI1 251
$118{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI1 252
$119{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI1 252
$120 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AI2 253
121 IR (KBr) spectrum of compound AI2 253
$122{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI2 254
$123{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI2 254
$124 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AI3 255
125 IR (KBr) spectrum of compound AI3 255
$126{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI3 256
$127 \quad{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI3 256
$128 \mathrm{UV}(\mathrm{MeOH})$ spectrum of compound AI4 257
129 IR (KBr) spectrum of compound AI4 257
$130{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI4 258
131 ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI4 258

LIST OF SCHEMES

Schemes Page1 Extraction and isolation of compounds CF1-CF9from the roots of C. formosum25
2 Extraction and isolation of compounds TP1-TP8 and TP12-TP19 from the heartwood of T. populnea 79
3 Extraction and isolation of compounds TP9-TP11 and TP18-TP19 from the wood of T. populnea 81
4 Extraction and isolation of compounds AI1-AI4 from the roots of A.integer 164

ABBREVIATIONS AND SYMBOLS

s	$=$	singlet
d	=	doublet
t	=	triplet
m	=	multiplet
sept	$=$	septet
hept	$=$	heptet
$d d$	$=$	doublet of doublet
$d t$	=	doublet of triplet
dquint	=	doublet of quintet
$t q$	$=$	triplet of quatet
$m t$	=	multiplet of triplet
br s	=	broad singlet
brd	$=$	broad doublet
br q	=	broad quatet
br dd	=	broad doublet of doublet
br dq	=	broad doublet of quatet
g	=	gram
kg	=	kilogram
mg	=	miligram
$\mu \mathrm{g}$	=	microgram
mL	=	milliliter
mult.	=	multiplicity
\%	=	percent
m.p.	=	melting point
cm^{-1}	$=$	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
$[\alpha]_{\mathrm{D}}$	=	specific rotation

ABBREVIATIONS AND SYMBOLS (Continued)

$\lambda_{\text {max }}$	=	maximum wavelength
v	=	absorption frequencies
ε	=	molar extinction coefficient
m / z	=	a value of mass divided by charge
${ }^{\circ} \mathrm{C}$	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
c	=	concentration
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectrometry
UV	=	Ultraviolet-Visible
IR	=	Infrared
NMR	=	Nuclear Magnetic Resonance
2D NMR	=	Two Dimentional Nuclear Magnetic Resonance
COSY	=	Correlated Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOESY	=	Nuclear Overhauser Effect Spectroscopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	=	dichloromethane
CHCl_{3}	=	chloroform
EtOAc	=	ethyl acetate
MeOH	$=$	methanol
TMS	$=$	tetramethylsilane
Acetone- d_{6}	$=$	deuteroacetone
DMSO- d_{6}	$=$	deuterodimethyl sulphoxide

ABBREVIATIONS AND SYMBOLS (Continued)

CDCl_{3}	$=$	deuterochloroform
$\mathrm{CD}_{3} \mathrm{OD}$	$=$	deuteromethanol
IC_{50}	$=$	50% Inhibition Concentration

CHAPTER 1.1

INTRODUCTION

1.1.1 Introduction

Cratoxylum is a plant belonging to a small genus of the family Guttiferae, which can be found in several Southeast Asian countries, The genus Cratoxylum has about 6 species, which are all found in Thailand (Smitinand, 2001): Cratoxylum aborescens, Cratoxylum cochinchinense, Cratoxylum maingayi, Cratoxylum sumatranum ssp. neriifolium, Cratoxylum formosum ssp. formosum (Jack) Dyer and Cratoxylum formosum (Jack) Dyer ssp. pruniflorum (Kurz) Gogel. The last two species, which are supspecies of C. formosum can be differentiated through the young twigs, leaves, pedicels and sepals. Those of C. formosum ssp. pruniflorum are densely villous, whereas C. formosum ssp. formosum are glabrous (Veesommai, et al., 2004).
C. formosum ssp. formosum is a shrub or tree deciduous, 3-6 m tall. Bark exfoliating in flakes. Twigs somewhat compressed. Petiole 5-7 mm, glabrous; leaf blade abaxially greenish, adaxially green, elliptic to oblong, $4-10 \times 2-4 \mathrm{~mm}$. Cymes 5-8 flowers, in axils of fallen leaves. Pedicels $3-5 \mathrm{~mm}$. Flowers ca. 1.3 cm in diam. Sepals elliptic or oblong-lanceolate, 5-6 $\times 2-3 \mathrm{~mm}$, apex obtuse. Petals obovateoblong, 1.1-1.5 cm, ciliolate and brown-grandular on upper half of margin, narrowly clawed at base; petal-scale indistinct, ca 2 mm , base cuneate, apex truncate and denticulate. Ovary narrowly conic, ca. 4 mm , glabrous; styles ca. ca. 3.5 mm . Capsule dark brown, oblong, $0.6-1.5 \mathrm{~cm}$, up to $1 / 2$ enclosed by persistent calyx. Seeds $6-8$ per locule, 3-7 mm.

Figure 1 Parts of Cratoxylum formosum ssp. formosum

1.1.2 Review of Literatures

Chemical constituents isolated from Cratoxylum genus were summarized by Nawong Boonnnak in 2006 (Boonnak, 2006). Information from SciFinder Scholar database reported the additional constituents from Cratoxylum genus and they could be classified into groups, such as anthraquinones, benzenoids, benzophenones, flavonoids, triterpenes and xanthones. These compounds are presented in Table 1.

Table 1 Compounds from plants of Cratoxylum genus
$\mathbf{a}=$ Anthraquinones
d = Flavonoids

$$
\begin{array}{ll}
\mathbf{b}=\text { Benzenoids } & \mathbf{c}=\text { Benzophenones } \\
\mathbf{e}=\text { Triterpenes } & \mathbf{f}=\text { Xanthones }
\end{array}
$$

Scientific name	Investigated Part	Compound	Bibliography
C. aborescene	Leaves+Twigs	3,4-Dihydroxybenzoic acid, 1b Betulinic acid, 5e Euxanthone, 39f 3β-Hydroxylup-20(29)-en- 30-oic acid, 4e Lup-20(29)-ene-3 β,30- diol, 3e Methoxyemodin, 8a Friedelin, 2e Friedelinol, 1e Astilbin, 2d Isoastilbin, 3d 1,3,8-Trihydroxy-2,4- dimethoxyxanthone, 43f	Reutrakul et al., 2006

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
C. aborescene	Leaves+Twigs	1,7-Dihydroxy-2,8- dimetoxyxanthone, 57f 1,3,7-Trihydroxy-6- methoxy-4,5- diisoprenylxanthone, $\mathbf{4 0 f}$ 3,5,7-Trihydroxy-2- methoxy-1,8-bis(3-mehtyl- 2-buten-1-yl)-9H-xanthen- 9-one, 34f	Reutrakul et al., 2006
C. cochinchinense	Fruits	Cochinxanthone A, $\mathbf{1 f}$ Cochinxanthone B, $\mathbf{2 f}$ Cochinxanthone $\mathrm{C}, \mathbf{3 f}$ 1,3,7-Trihydroxyxanthone, $5 f$ Vismiaquinone C, 7a Fuscaxanthone E, $\mathbf{6 f}$ Cochinchinone G, 15f	Laphookhieo et al., 2008 Laphookhieo et al., 2008 Laphookhieo et al., 2009 Laphookhieo et al., 2008 Mahabusarakam et al., 2008

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
C. cochinchinense	Fruits	7-Geranyloxy-1,3dihydroxyxanthone, $\mathbf{4 f}$ 1,8-Dihydroxy-3-methoxy-6-methyl-2-(3-methyl-2butenyl)anthraquinone, 7a	Laphookhieo et al., 2008 Laphookhieo et al., 2009 Mahabusarakam et al., 2008 Mahabusarakam et al., 2008
	Resin+Fruits	Cochinchinone A, $\mathbf{8 f}$ Cochinchinone C, 10f Cochinchinone I, 16f Cochinchinone J, 17f Cochinchinone K, 18f Cochinchinone L, 19f Dulcisxanthone F, 42f 1,3,7-Trihydroxy-2,4- diisoprenylxanthone, $\mathbf{7 f}$ 7-Geranyloxy-1,3- dihydroxyxanthone, $\mathbf{4 f}$ Celebixanthone methyl ether, 41f α-Mangostin, 27f β-Mangostin, $28 f$ Macluraxanthone, 54f	$\begin{array}{lll} \hline \text { Boonnak } & \text { et al., } \\ 2009 & & \end{array}$

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
C.	Resin+Fruits	Pruniflorone G, 51f	Boonnak et al., 2009
cochinchinense	Roots	5-O- Methylcelebixanthone, $20 f$	Laphookhieo et al., 2006
		Celebixanthone, 21f Cochinchinone B, $9 f$	Laphookhieo et al., 2006 Mahabusarakam et al., 2006
		Cochinchinone D, 11f 4-Deprenylbratatin, $\mathbf{1 2 f}$ Macluraxanthone, 54f Garcinone B, $\mathbf{3 8 f}$ Garcinone D, 37f Celebixanthone, 21f	
		1,3,7-Trihydroxy-2,4- di(3-metylbut-2- enyl)xanthone, $\mathbf{5 8 f}$	Laphookhieo et al., 2006 Mahabusarakam et al., 2006
		Cochinchinone A, $\mathbf{8 f}$ α-Mangostin, 27f β-Mangostin, $28 f$ Cochinchinone C, $\mathbf{1 0 f}$ Cochinchinone E, 13f	Mahabusarakam et al., 2008
		Cochinchinone F, 14f	

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
C. cochinchinense	Roots	Isocudraniaxanthone B, 25f 1,2,8-Trihydroxyxanthone, $\mathbf{6 2 f}$ Cudratricusxanthone E, 63f Norathyriol, 64f	Mahabusarakam et al., 2008
	Stem	Dulcisxanthone B, 29f Tectochrysin, 1d α-Mangostin, 27f β-Mangostin, $28 f$ 2-Geranyloxy-1,3,7-trihydroxy-4- (3-methylbut-2-enyl)xanthone, 31f 3-O- β-D-Glucopyranosyl-2',4,6'- trihydroxybenzophenone, 1b 3-O- β-D-Glucopyranosyl-2',5,6'- trihydroxybenzophenone, $\mathbf{2 b}$ (+)-6-Hydroxy-3,7-dimethoxy-8- (3-methylbut-2-enyl)-6', 6^{\prime} - dimethyl-5'-hydroxy-4',5'- dyhydropyrano($2^{\prime}, 3^{\prime}: 1,2$)xanthone), $30 f$ (+)-6-Hydroxy-3,7-dimethoxy-8- (2-oxo-3-methylbut-3-enyl)-6', 6^{\prime} - dimethyl-5'-hydroxy-4',5'- dyhydropyrano($2^{\prime}, 3^{\prime}: 1,2$)xanthone), 31f	Phuwapraisirisan et al., 2006 Yu et al., 2009 Jin et al., 2009

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
C. formosum	Roots	Formoxanthone A, 59f Formoxanthone B, $\mathbf{6 0 f}$ Formoxanthone C, 61f Macluraxanthone, 54f Xanthone V_{1}, 55f Gerontoxanthone I, 26f 3-Geranyloxy-6-methyl- 1,8- dihydroxyanthraquinone, 1a Vismiaquinone, 6a Madagascin, 3a	Boonsri et al., 2006
C. formosum subsp. pruniflorum	Bark	Bianthrone J, 10a Bianthrone A_{1}, 11a Vismiaquinone, 6a 11-Hydroxy-5-methoxy- 2,2,9-trimethyl- 2 H - anthra[1,2-b]-pyran-7,12- dione, 9a 3-Geranyloxy-6-methyl- 1,8- dihydroxyanthraquinone, 1a Pruniflorone J, 2a Madagascin, 3a	Boonnak et al., 2007 Boonnak et al., 2006, Boonnak et al., 2007 Boonnak et al., 2006

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
C. formosum subsp. pruniflorum	Bark	Physcion, 4a Emodin, 5a Formoxanthone B, 60f Macluraxanthone, 54f Xanthone V_{1}, 55f Gerontoxanthone I, 26f 6-Deoxyjacareubin, 56f	Boonnak et al., 2006
	Roots	Pruniflorone A, 44f Pruniflorone B, $\mathbf{4 5 f}$ Pruniflorone C, $\mathbf{4 6 f}$ Pruniflorone D, 47f Pruniflorone E, $\mathbf{4 8 f}$ Pruniflorone F, 49f Pruniflorone G, 51f Pruniflorone H, 52f Pruniflorone I, 53f Dulcisxanthone F,42f α-Mangostin, 27f β-Mangostin, $28 f$ 3-Isomangostin, 23f Formoxanthone A, 59f	Boonnak et al., 2006

Table 1 (Continued)

Scientific name	Investigated Part	Compound	Bibliography	
C. formosum subsp. pruniflorum	Roots	3,4-Dihydro-5,9-dihydroxy- 8-methoxy-7-(3-methoxy-3- methylbutyl)-2,2-dimethyl- 2H,6H-pyrano[3,2-b]- xanthen-6-one, 23f 3,4-Dihydro-5,9-dihydroxy - 7-(3-hydroxy-3-methyl- butyl)-8-methoxy-2,2- dimethyl-2H,6H-pyrano[3,2- b]xanthen-6-one, 24f	Boonnak al., 	
		Isocudraniaxanthone B, 25f 10-O-Methylmaclura- xanthone, 50f		
C. maingayi	Stem bark	Gerontoxanthone I, 26f		

Structure

a: Anthraquinones

1a: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$; 3-Geranyloxy-6-methyl-1,8dihydroxyanthraquinone
2a: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$
3a: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$; Madagascin
4a: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; Physcion
5a: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H} \quad ;$ Emodin
6a: $\mathrm{R}_{1}=$, $\mathrm{R}_{2}=\mathrm{CH}_{3}$; Vismiaquinone
7a: $\mathrm{R}_{1}=$?, $\mathrm{R}_{2}=\mathrm{CH}_{3}$; Vismiaquinone C

8a: Methoxyemodin

9a:11-Hydroxy-5-methoxy-
2,2,9-trimethyl- 2 H -anthra-[1,2-
b]pyran-7,12-dione

10a: Bianthrones J

11a: Bianthrone A_{1}

b: Benzenoids

1b: 3,4-Dihydroxybenzoic acid

c: Benzophenone

1c: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$; 3-O- β-D-Glucopyranosyl-2', 5, 6^{\prime}-trihydroxybenzophenone 2c: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} ; 3$-O- β-D-Glucopyranosyl-2',4, 6^{\prime}-trihydroxybenzophenone

d: Flavonoids

1d: Tectochrysin

2d: Astilbin

3d: Isoastilbin

e: Triterpenes

1e: Friedelinol

2e: Friedelin

3e: Lup-20(29)-ene-3 β, 30-diol

4e: 3β-Hydroxylup-20(29)en-30-
oic acid

5e: Betulenic acid

f: Xanthones

1f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=$
2f: $\mathrm{R}_{1}=$ 为, $\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{H}$; Cochinxanthone B
3f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=$
4f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=$? 7-geranyloxy-1,3-dihydroxyxanthone
5f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H} ;$ 1,3,7-Trihydroxyxanthone
6f: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=$,

7f: $\mathrm{R}=$ 子
$8 \mathrm{f}: \mathrm{R}=$

9f: Cochinchinone B

10f: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{OCH}_{3}$; Cochinchinone C
11f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{OCH}_{3}$; Cochinchinone D
12f: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}, \mathrm{R}_{3}=\mathrm{H}$; 4-Deprenylbratatin

13f: Cochinchinone E

14f: Cochochinone F

15f: Cochochinone G

16f: Cochinchinone I

17f: Cochinchinone J

18f: Cochinchinone K

19f: Cochinchinone L

20f: $\mathrm{R}=\mathrm{CH}_{3}$; 5-O-Methylcelebixanthone
21f: $\mathrm{R}=\mathrm{H}$; Celebixanthone

22f: $\mathrm{R}=$ 纷 ; 3-Isomangostin
23f: $\mathrm{R}=$ 约 OCH_{3}; 3, 3-Dihydro-5,9-dihydroxy-8-methoxy-7$2 \mathrm{H}, 6 \mathrm{H}$-pyrano-[3,2-b]xanthen-6-one
24f: $R=3$

; 3,4-Dihydro-5,9-dihydroxy-7-(3-hydroxy-3-methylbutyl)-8-methoxy-2,2-dimethyl$2 \mathrm{H}, 6 \mathrm{H}$-pyrano-[3,2-b] xanthen-6-one

25f: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; Isocudraniaxanthone B
26f: $\mathrm{R}_{1}={ }_{3} \chi, \mathrm{R}_{2}=\mathrm{H}$; Gerontoxanthone I

27f: $\mathrm{R}=\mathrm{H} ; \alpha$-Mangostin
28f: $\mathrm{R}=\mathrm{CH}_{3} ; \beta$-Mangostin

29f: Dulcisxanthone B

30f: (+)-6-Hydroxy-3,7-dimethoxy-8-(3-methylbut-2-enyl)-6, 6'-dimethyl-5'-hydroxy-4',5'-dihydropyrano ($\left.2^{\prime}, 3^{\prime}: 1,2\right)$ xanthone

31f: 2-Geranyl-1,3,7-trihydroxy-4-(3-methylbut-2-enyl)xanthone

32f: (+)-6-Hydroxy-3,7-dimethoxy-8-(2-oxo-3-methylbut-2-enyl)-
6, 6^{\prime}-dimethyl-5'-hydroxy-4',5'-dihydropyrano($2^{\prime}, 3^{\prime}: 1,2$)xanthone

33f: 4-(3',7'-Dimethylocta-2',6'-dienyl)-1,3,5-trihydroxy-9H-xanthen9 -one

34f: 3,5,7-Trihydroxy-2-methoxy-1,8-bis(3-methyl-2-buten-1-yl)-9H-xanthen-9-one

35f: 3,4-Dihydrojacareubin

37f: Garcinone D

36f: Sumartranaxanthone A

38f: Garcinone B

40f: 1,3,7-Trihydroxy-6-methoxy-4,5-diisoprenylxanthone

41f: Celebixanthone methyl ether

42f: Dulxisxanthone F

43f: 1,3,8-Trihydroxy-2,4-dimethoxyxanthone

44f: $\mathrm{R}=$ そֻ
45f: $\mathrm{R}=$ 经 OCH_{3}; Pruniflorone B

 48f: $\mathrm{R}_{1}=\underbrace{}_{2} \angle^{\mathrm{OH}}, \mathrm{R}_{2}=\xi_{3}$; Pruniflorone E

49f: Pruniflorone F

50f: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; 10-O-Methylmacluraxanthone
51f: $\mathrm{R}_{1}=$
52f: $\mathrm{R}_{1}=$

53f: Pruniflorone I

54f: $\mathrm{R}_{1}={ }_{3}$, $\quad \mathrm{R}_{2}=\mathrm{H}$; Macluraxanthone
55f: $R_{1}=$, $R_{3}=H$; Xanthone V_{1}
56f: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{H} ; 6$-Deoxyjacareubin

57f: 1,7-Dihydroxy-2,8-dimethoxyxanthone

58f: 1,3,7-Trihydroxy-2,4-di(3-metylbut-2-enyl)xanthone

59f: Formoxanthone A

61f: Formoxanthone C

63f: Cudratricusxanthone

60f: Formoxanthone B

62f: 1,2,8-Trihydroxyxanthone

64f: Norathyriol

1.1.3 The objectives

The goals of this work were to investigate the chemical constituents from the roots of C. formosum ssp. formosum and to evaluate the antibacterial and cytotoxic activities of the isolated compounds.

CHAPTER 1.2

EXPERIMENTAL

1.2.1 Instruments and Chemicals

Melting point was recorded in ${ }^{\circ} \mathrm{C}$ on an Electrothermal 9100 melting point apparatus. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S100 spectrophotometer (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. The infrared spectra were recoded using FTS 165 FT-IR Perkin Elmer spectrophotometer. Nuclear Magnetic resonance spectra were recorded using Bruker Avance 300 MHz Bruker FTNMR Ultra Shield ${ }^{\text {TM }}$. Spectra were recorded in deuterochloroform, deuteroacetone and deuteromethanol and were recorded as δ value in ppm downfield from TMS (Internal standard $\delta 0.00$). Optical rotation was measured in MeOH solution at the sodium D line (590 nm) on an AUTOPOL ${ }^{\mathrm{R}}$ II automatic polarimeter. The EI-MS and HREIMS mass spectra were obtained from a Micromass LCT mass spectrometer. Solvent for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel $60 \mathrm{~F}_{254}$ (Merck) and silica gel 100 , respectively. Precoated plates of silica gel 60 GF_{254} were used for analytical purposes.

1.2.2 Plant Material

The roots of C. formosum were collected from Nong Khai Province, Thailand, in March 2004. The plant was identified by Prof. Puangpen Sirirugsa and a voucher specimen (no. PSU 0012676) has been deposited at the Herbarium of Department of Biology, Prince of Songkla University (PSU).

1.2.3 Extraction and chemical investigation of the crude hexane extract from the roots of C. formosum

Air-dried roots (5.2 kg) were chopped and extracted with hexane (each $3 \times 15 \mathrm{~L})$ at room temperature for three days. Evaporation of the solvent under reduced pressure furnished a crude hexane extract $(47.6 \mathrm{~g})$.

Scheme 1 Extraction and isolation of compounds CF1-CF9 from the root of C. formosum

The crude hexane extract was subjected to quick column chromatography on silica gel with solvent mixtures of increasing polarity [hexane to EtOAc-hexane (9:1)] to yield sixteen fractions (1-16). Fraction 12 was chromatographed on silica gel column being eluted with solvents of increasing polarity using hexane and EtOAc, to yield sixteen subfractions (12A-12P). Crystallization of subfraction 12H from an acetone-hexane mixture (1:4) gave CF5 (43.1 mg) as yellow needles. Subfraction 12 K , upon standing overnight gave yellow needles of CF6 (36.4 mg). Subfraction 12L was further purified by prep. TLC on silica gel, eluting with acetone in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:99), to yield $\mathbf{C F} 3$ (5.7 mg) and CF4 (10.6
mg). Fraction 4 was chromatographed on a silica gel column, eluting with solvent mixtures of increasing polarity, ($3-10 \%$ EtOAc-hexane) to afford twelve subfractions (4A-4L). Subfractions 4A, 4E and 4H were further purified by crystallization from $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (1:4) to give CF7 (9.6 mg), CF8 (17.1 mg) and CF9 (6.2 mg). Fraction 10 was subjected to repeated column chromatography over silica gel to afford CF1 (31.7 mg) and CF2 (4.6 mg).

Compound CF1: Yellow solid ; mp 111-113 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon)$: 245 (4.39), 260 (sh) (4.29), 319 (4.08), 367 (3.50) nm; IR (neat) $v_{\text {max }}: 3373,2974$, $1650 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 2; MS m / z (rel. int.): $448[\mathrm{M}]^{+}$(7), 363 (40), 341 (46), 323 (87), 281 (86), 269 (100); HREIMS $m / z 448.2224[M]^{+}$(calcd. for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5}, 448.2250$)

Compound CF2: Yellow solid; mp143-146 ${ }^{\circ} \mathrm{C} ; \mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon): 253$ (4.15), 269 (4.11), 332 (3.71), 377 (3.18) nm; IR (KBr) $v_{\text {max }}: 3426,1646 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$), see Table 3; MS m / z (rel. int.): $446[\mathrm{M}]^{+}$(55), 431 (37), 377 (72), 323 (100), 309 (21), 295 (18); HREIMS m/z $446.2061[\mathrm{M}]^{+}$(calcd. for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}, 446.2093$)

Compound CF3: Yellow solid; mp 152-154 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{29}=-44^{\circ}\left(\mathrm{CHCl}_{3}, \mathrm{c} 0.05\right)$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon): 258(4.51), 276(4.44), 392(3.85) \mathrm{nm}$; IR (KBr) $v_{\text {max }}: 3440$, 1646, 1624, $1598 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 5; MS m / z (rel. int.): $396[\mathrm{M}]^{+}$(40), 381(43), 353 (30), 341 (100), 325 (26), 311 (15), 285 (14); HREIMS $m / z 396.1559$ [M] ${ }^{+}$(calcd. for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}, 396.1573$)

Compound CF4: Yellow solid; mp 137-139 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon)$: 204 (4.26), 253 (4.42), 328 (4.09), 387 (3.92) nm; IR (KBr) $v_{\text {max }}$: 3380, 1613, 1584 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 6.

Compound CF5: Yellow needles; mp 183-184 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }} \mathrm{nm}(\log$ ع): 241 (4.28), 283 (4.62), 338 (4.25) nm; IR (KBr) $v_{\max }: 3447,1650,1583 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 8.

Compound CF6: Yellow needles; mp 218-219 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon)$: 282 (4.80), 337 (4.44) nm; IR (KBr) $v_{\text {max }}$: 3358, 1646, 1624, $1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 10.

Compound CF7: Reddish orange solid; mp $135-138{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon): 226$ (4.06), 254 (3.79), 266 (3.78), 288 (3.76), 437 (3.54) nm; IR (KBr) $v_{\max }$: $3409,1628,1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 14.

Compound CF8: Reddish orange solid; mp 179-18 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log$ ع): 221 (4.30), 253 (4.04), 266 (4.04), 287 (4.02), 438 (3.82) nm; IR (KBr) $v_{\max }$: 1628, $1609 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 16.

Compound CF9: Reddish orange solid; mp 186-188 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon): 221$ (4.48), 263 (4.32), 292 (4.43), 307 (433)sh, 442 (4.11) nm; IR (KBr) $v_{\max }$: $1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 18.

1.2.4 BIOASSAY

1.2.4.1 Antibacterial assay

The compounds isolated from C. formosum were tested against the microorganisms Bacillus subtilis (obtained from Department of Industrial Biotechnology, PSU), Staphylococcus aureus (TISTR517) (obtained from Microbial

Resources Center (MIRCEN), Bangkok, Thailand), Pseudomonas aeruginosa, Enterococcus faecalis, Shigella sonei and Salmonella typhi. The last four microorganisms were obtained from Department of Pharmacognosy and Botany, PSU. The antibacterial assay employed was the same as described in Boonsri et al. (Boonsri et al., 2006). Vancomycin, which was used as a standard, showed antibacterial activity of $0.078 \mu \mathrm{~g} / \mathrm{mL}$.

1.2.4.2 Cytotoxic assay

The procedure for the cytotoxic assay was performed by the sulphorhodamine B (SRB) assay as described by Skehan et al. (Skehan et al., 1990). In this study, four cancer cell lines obtained from the National Cancer Institute, Bangkok, Thailand, were used: MCF-7 (breast adenocarcinoma), KB (human oral cancer), HeLa (human cervical cancer) and HT-29 (colon cancer). Camptothecin, which was used as a standard, showed cytotoxic activity in the range of 0.2-2.0 $\mu \mathrm{g} / \mathrm{mL}$.

CHAPTER 1.3 RESULTS AND DISCUSSION

1.3.1 Structural elucidation of the isolated compounds from the root of C. formosum

The crude hexane extract from the roots of C. formosum was subjected to a succession of chromatographic procedures, including silica gel column chromatography and preparative TLC to afford three new compounds, CF1-CF3 together with six known compounds CF4-CF9. All structures were elucidated using 1D and 2D NMR spectroscopic data and comparison with those reported in the literatures.

1.3.1.1 Compound CF1

CF1 was obtained as a yellow solid. The HREIMS spectrum showed a molecular ion peak at $m / z 448.2224$, corresponding to $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{5}$. The IR spectrum (Figure 6) of 1 exhibited strong absorption bands due to hydroxyl $\left(3373 \mathrm{~cm}^{-1}\right)$ and a conjugated carbonyl groups ($1650 \mathrm{~cm}^{-1}$). The UV absorption bands (245, 260sh, 319 and 367 nm) (Figure 5) were typical of a xanthone chromophore (Seo et al., 2002; Ito et al., 2003). The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data (Table 2, Figure 8) disclosed the presence of one carbonyl carbon ($\delta 181.1$), twelve $s p^{2}$ quaternary carbons (five of which were oxygen-bearing) ($\delta 103.3,105.7,109.0,120.9,132.1,133.1,140.1,144.3$, $144.5,152.5,158.6,161.0$), six $s p^{2}$ methines ($\delta 116.9,119.8,121.1,122.4,123.7$, 123.8), four $s p^{3}$ methylenes ($\delta 21.6,22.0,26.3,39.7$), and five methyl carbons (δ 16.3, 17.7, 17.9, 25.6, 25.7). The ${ }^{1} \mathrm{H}$ NMR spectrum of 1 (Table 2, Figure 7) contained resonances for one chelated $[\delta 13.18(1 \mathrm{H}, s, 1-\mathrm{OH})]$ and two free hydroxyl groups [$\delta 6.59(1 \mathrm{H}, s, 3-\mathrm{OH})$ and $\delta 5.84,(1 \mathrm{H}, s, 5-\mathrm{OH})$]. A $1,2,3$-trisubstituted benzene ring was revealed by resonances at $\delta 7.75(1 \mathrm{H}, d d, J=7.8,1.5 \mathrm{~Hz}, \mathrm{H}-8), 7.28$ $(1 \mathrm{H}, d d, J=7.8,1.5 \mathrm{~Hz}, \mathrm{H}-6)$ and $7.21(1 \mathrm{H}, t, J=7.8 \mathrm{~Hz}, \mathrm{H}-7)$. The lowest-field aromatic-proton ($\delta 7.75$) was assigned to $\mathrm{H}-8$ due to the anisotropic effect of the carbonyl group and this was supported by the HMBC correlations of $\mathrm{H}-8$ to a carbonyl carbon at $\delta 181.1$ (C-9), $\delta 119.8$ (C-6) and $\delta 144.3$ (C-4b), as well as those of H-7 to $\delta 144.5$ (C-5) and $\delta 120.9$ (C-8a) and of H-6 to $\delta 116.9$ (C-8). Furthermore, the ${ }^{1} \mathrm{H}$ NMR spectra displayed a geranyl moiety at $\delta 1.60\left(3 \mathrm{H}, s, \mathrm{H}-10^{\prime}\right), 1.69(3 \mathrm{H}, s$, H-8'), 1.85 (3H, $s, \mathrm{H}^{\prime} 9^{\prime}$), 2.11 (4H, $m, \mathrm{H}^{\prime} 4^{\prime}, \mathrm{H}-5^{\prime}$), 3.49 ($2 \mathrm{H}, d, J=7.2 \mathrm{~Hz}, \mathrm{H}^{\prime} 1^{\prime}$), 5.06
$\left(1 \mathrm{H}, m, \mathrm{H}-6^{\prime}\right)$ and $5.30\left(1 \mathrm{H}, m, \mathrm{H}-2^{\prime}\right)$, and a prenyl moiety at $\delta 1.74(3 \mathrm{H}, d, J=1.2 \mathrm{~Hz}$, $\left.\mathrm{H}-4^{\prime \prime}\right), 1.86\left(3 \mathrm{H}, s, \mathrm{H}-5^{\prime \prime}\right), 3.53\left(2 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$ and $5.25\left(1 \mathrm{H}, m, \mathrm{H}-2^{\prime \prime}\right)$. In the HMBC spectrum, the chelated hydroxyl proton ($\delta 13.18$) showed correlations with $\mathrm{C}-1(\delta 158.6), \mathrm{C}-2(\delta 109.0)$ and $\mathrm{C}-9 \mathrm{a}(\delta 103.3)$, the benzylic allylic methylene protons ($\delta 3.49, \mathrm{H}-1^{\prime}$) of the geranyl group showed cross peak with $\mathrm{C}-1(\delta 158.6), \mathrm{C}-2$ ($\delta 109.0$) and C-3 ($\delta 161.0$) and the allylic methylene protons of the prenyl group at δ 3.53 ($\mathrm{H}-1^{\prime \prime}$) showed the correlations with $\mathrm{C}-3$ ($\delta 161.0$) and $\mathrm{C}-4 \mathrm{a}$ ($\delta 152.5$), indicating that the geranyl and the prenyl moieties were located at C-2 and C-4, respectively. Therefore, compound $\mathbf{1}$ was identified as 1,3,5-trihydroxy-2-(3,7-dimethylocta-2,6-dienyl)-4-(3-methylbut-2-enyl)xanthone, a new compound and named as formoxanthone A (Boonsri et al., 2006) which is the isomer of 2-geranyl-1,3,7-trihydroxy-4-(3,3-dimethylallyl)xanthone previously isolated from C. cochinchinense (Bennett et al., 1993).

Selected HMBC correlations of CF1

Table $2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF1

Position	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	DEPT	HMBC
1		158.6	C	
2		109.0	C	
3		161.0	C	
4		105.7	C	
4 a		152.5	C	
4b		144.3	C	
5		144.5	C	
6	7.28 (dd, 7.8, 1.5)	119.8	CH	5,8
7	7.21 (t, 7.8)	123.8	CH	5, 8a
8	7.75 (dd, 7.8, 1.5)	116.9	CH	4b, 6, 9
8 a		120.9	C	
9		181.1	C	
9 a		103.3	C	
1^{\prime}	3.49 (d, 7.2)	21.6	CH_{2}	1, 2, 3, 2', 3^{\prime}
2^{\prime}	5.30 (m)	121.1	CH	2, 1', 4', 9'
3 '		140.1	C	
4^{\prime}	2.11 (m)	39.7	CH_{2}	9^{\prime}
5^{\prime}	2.11 (m)	26.3	CH_{2}	3', 7^{\prime}
$6{ }^{\prime}$	5.06 (m)	123.7	CH	5', 8'
$7{ }^{\prime}$		132.1	C	
8^{\prime}	1.69 (s)	25.7	CH_{3}	$6^{\prime}, 7{ }^{\prime}$
9^{\prime}	1.85 (s)	16.3	CH_{3}	$2^{\prime}, 4^{\prime}$
10^{\prime}	1.60 (s)	17.7	CH_{3}	$6^{\prime}, 7{ }^{\prime}$
1 "	3.53 (d, 6.9)	22.0	CH_{2}	3, 4, 4a, $2^{\prime \prime}, 3^{\prime \prime}$
$2^{\prime \prime}$	5.25 (m)	122.4	CH	4, 4"
3 "		133.1	C	
$4 \prime$	1.74 (d, 1.2)	25.6	CH_{3}	$2^{\prime \prime}, 3^{\prime \prime}, 5^{\prime \prime}$

Table 2 (Continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
$5{ }^{\prime \prime}$	$1.86(s)$	17.9	CH_{3}	$2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}$
$1-\mathrm{OH}$	$13.18(s)$			$1,2,9 \mathrm{a}$
$3-\mathrm{OH}$	$6.59(s)$			$2,3,4$
$5-\mathrm{OH}$	$5.84(s)$			$4 \mathrm{~b}, 6$

1.3.1.2 Compound CF2

CF2, a yellow solid, gave a HREIMS molecular ion peak at $\mathrm{m} / \mathrm{z} 446.2061$ corresponding to a molecular formula $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{O}_{5}$. The IR (Figure 9) and UV spectra of 2 exhibited the same pattern as those of $\mathbf{1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum of CF2 (Table 3, Figure 9) was similar to that of CF1 except for the replacement of the prenyl group in CF1 with the characteristic signals of a chromene ring, two vinylic protons at $\delta 6.79$ and 5.64 (each, $d, J=9.9 \mathrm{~Hz}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, respectively) and a methyl signal at $\delta 1.49$ ($6 \mathrm{H}, s$, Me-7", Me-8") (Table 3). The dimethylchromene group was connected to ring A at C-3 and C-4 as evidenced by HMBC correlations of the vinylic proton at $\delta 6.79$ ($\mathrm{H}-4^{\prime \prime}$) with $\mathrm{C}-3(\delta 158.7), \mathrm{C}-4(\delta 100.6)$ and $\mathrm{C}-4 \mathrm{a}(\delta 149.2)$. Thus, compound $\mathbf{2}$ was characterized as 1,5-dihydroxy-2-(3,7-dimethylocta-2,6-dienyl)-6",6"-dimethylpyrano($\left.2^{\prime \prime}, 3^{\prime \prime}: 3,4\right)$ xanthone, a new compound and named as formoxanthone B (Boonsri et al., 2006).

Selected HMBC correlations of CF2

Table $3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF2

Position	$\delta_{\mathrm{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathrm{Hz}}$)	$\delta_{\text {C }}$	DEPT	HMBC
1		160.6	C	
2		112.3	C	
3		158.7	C	
4		100.6	C	
4 a		149.2	C	
4 b		144.1	C	
5		144.3	C	
6	7.30 (dd, 7.8, 1.5)	120.1	CH	4b, 8
7	7.23 (t, 7.8)	123.9	CH	5, 8a
8	7.78 (dd, 7.8, 1.5)	117.2	CH	4b, 6, 9
8 a		121.2	C	
9		180.8	C	
9 a		103.2	C	
1^{\prime}	3.37 (d, 7.5)	21.1	CH_{2}	1, 2, 3, 2', 3^{\prime}
2^{\prime}	5.25 (m)	121.7	CH	$1^{\prime}, 4^{\prime}, 9^{\prime}$
3 '		135.2	C	
4^{\prime}	2.00 (m)	39.8	CH_{2}	2', 3'
$5 '$	2.05 (m)	26.7	CH_{2}	$4^{\prime}, 6^{\prime}, 7{ }^{\prime}$
6^{\prime}	5.08 (m)	124.4	CH	$8{ }^{\prime}, 10{ }^{\prime}$
$7{ }^{\prime}$		131.3	C	
8^{\prime}	1.64 (br s)	25.7	CH_{3}	6', 7'
9^{\prime}	1.82 (s)	16.3	CH_{3}	2', 3', 4'
10^{\prime}	1.57 (br s)	17.7	CH_{3}	$6^{\prime}, 7{ }^{\prime}, 8{ }^{\prime}$
$1^{\prime \prime}$				
$2^{\prime \prime}$				
$3 "$				
$4 \prime$	6.79 (d, 9.9)	115.0	CH	3, 4, 4a, $6^{\prime \prime}$
5"	5.64 (d, 9.9)	127.4	CH	4, $6^{\prime \prime}$

Table 3 (Continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
$6^{\prime \prime}$		78.1	C	
$7^{\prime \prime}$	$1.49(s)$	28.2	CH_{3}	$5^{\prime \prime}, 6^{\prime \prime}, 8^{\prime \prime}$
$8^{\prime \prime}$	$1.49(s)$	28.2	CH_{3}	$5^{\prime \prime}, 6^{\prime \prime}, 7^{\prime \prime}$
$1-\mathrm{OH}$	$13.20(s)$			$1,2,3,9 \mathrm{a}$
$5-\mathrm{OH}$	$5.71(s)$			

Table 4 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF1 and CF2

Position	CF1		CF2	
	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}},\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$ (C-Type $)$
1		158.6 (C)		160.6 (C)
2		109.0 (C)		112.3 (C)
3		161.0 (C)		158.7 (C)
4		105.7 (C)		100.6 (C)
4a		152.5 (C)		149.2 (C)
4 b		144.3 (C)		144.1 (C)
5		144.5 (C)		144.3 (C)
6	7.28 (dd, 7.8, 1.5)	119.8 (CH)	7.30 (dd, 7.8, 1.5)	120.1 (CH)
7	$7.21(t, 7.8)$	123.8 (CH)	7.23 ($t, 7.8$)	123.9 (CH)
8	7.75 (dd, 7.8, 1.5)	116.9 (CH)	7.78 (dd, 7.8, 1.5)	117.2 (CH)
8a		120.9 (C)		121.2 (C)
1^{\prime}	3.49 (d, 7.2)	$21.6\left(\mathrm{CH}_{2}\right)$	3.37 (d, 7.5)	$21.1\left(\mathrm{CH}_{2}\right)$
2^{\prime}	5.30 (m)	121.1 (CH)	5.25 (m)	121.7 (CH)
3'		140.1 (C)		135.2 (C)
4^{\prime}	2.11 (m)	$39.7\left(\mathrm{CH}_{2}\right)$	2.00 (m)	$39.8\left(\mathrm{CH}_{2}\right)$
5'	2.11 (m)	26.3 ($\left.\mathrm{CH}_{2}\right)$	2.05 (m)	$26.7\left(\mathrm{CH}_{2}\right)$
6^{\prime}	5.06 (m)	123.7 (CH)	5.08 (m)	124.4 (CH)

Table 4 (Continued)

Position	CF1		CF2	
	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t} ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$ (C-Type)	$\delta_{\mathrm{H}},\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$ (C-Type)
7'		132.1 (C)		131.3 (C)
8^{\prime}	1.69 (s)	$25.7\left(\mathrm{CH}_{3}\right)$	1.64 (br s)	$25.7\left(\mathrm{CH}_{3}\right)$
9^{\prime}	1.85 (s)	16.3 ($\left.\mathrm{CH}_{3}\right)$	1.82 (s)	$16.3\left(\mathrm{CH}_{3}\right)$
10^{\prime}	1.60 (s)	$17.7\left(\mathrm{CH}_{3}\right)$	1.57 (br s)	$17.7\left(\mathrm{CH}_{3}\right)$
1 "	3.53 (d, 6.9)	$22.0\left(\mathrm{CH}_{2}\right)$		
$2^{\prime \prime}$	5.25 (m)	122.4 (CH)		
3 "		133.1 (C)		
$4 "$	1.74 (d, 1.2)	25.6 ($\left.\mathrm{CH}_{3}\right)$	6.79 (d, 9.9)	115.0 (CH)
5"	1.86 (s)	$17.9\left(\mathrm{CH}_{3}\right)$	5.64 (d, 9.9)	127.4 (CH)
$6{ }^{\prime \prime}$				78.1 (C)
$7{ }^{\prime \prime}$			1.49 (s)	$28.2\left(\mathrm{CH}_{3}\right)$
8"			1.49 (s)	$28.2\left(\mathrm{CH}_{3}\right)$
$1-\mathrm{OH}$	13.18 (s)		13.20 (s)	
$3-\mathrm{OH}$	6.59 (s)			
$5-\mathrm{OH}$	5.84 (s)		5.71 (s)	

1.3.1.3 Compound CF3

CF3 was obtained as a yellow solid and the HREIMS spectrum showed a molecular ion peak at $m / z 396.1559$ consistent with the molecular formula $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{6}$. The UV (Figure 12) and IR (Figure 13) spectrua suggested that $\mathbf{3}$ was also a xanthone derivative (Seo et al., 2002; Ito et al., 2003). The ${ }^{1} \mathrm{H}$ NMR spectral data of $\mathbf{3}$ (Table 5, Figure 14) consisted of one chelated hydroxyl signal at $\delta 13.40$ and two ortho-coupled aromatic signals at $\delta 6.92$ and 7.74 (1 H each, $d, J=7.7 \mathrm{~Hz}, \mathrm{H}-7, \mathrm{H}-8$, respectively). The presence of a prenyl group was evident from the two vinylic methyl signals at $\delta 1.69\left(3 \mathrm{H}, s, \mathrm{Me}-4^{\prime}\right)$ and $1.79\left(3 \mathrm{H}, s, \mathrm{Me}-5^{\prime}\right)$, one methylene doublet at δ $3.31\left(2 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$ and a vinylic proton signal at $\delta 5.29\left(1 \mathrm{H}, m, \mathrm{H}-2^{\prime}\right)$. Furthermore, signals of an α, α, β-trimethylfuran ring which comprised of protons resonating at $\delta 1.32\left(3 \mathrm{H}, s, \mathrm{Me}-6^{\prime \prime}\right), 1.43\left(3 \mathrm{H}, d, J=6.3 \mathrm{~Hz}, \mathrm{Me}-8{ }^{\prime \prime}\right), 1.58(3 \mathrm{H}, s$, Me$\left.7^{\prime \prime}\right)$ and $4.54\left(1 \mathrm{H}, q, J=6.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right)$ were displayed. In the HMBC spectrum, the methylene signal at $\delta 3.31\left(\mathrm{H}-1^{\prime}\right)$ showed cross peaks with oxygenated aromatic carbons at $\delta 161.3(\mathrm{C}-1)$ and $\delta 164.3(\mathrm{C}-3)$, indicating that a prenyl group was connected to the $\mathrm{C}-2$ position. In addition, the oxygenated methine proton signal at δ 4.54 ($\mathrm{H}-5^{\prime \prime}$) showed a correlation with $\mathrm{C}-3$ ($\delta 164.3$) and the methyl groups at $\delta 1.32$ and 1.58 were correlated with $\mathrm{C}-4(\delta 112.1)$. These observations suggested that the furan ring was fused at C-3 and C-4. The relative stereostructure of the trimethylfuran ring was postulated from NOESY cross peaks of the oxygenated methine proton (δ 4.54, H-5") with the methyl groups at $\delta 1.43$ (Me-8") and 1.58 (Me-7") and the methyl doublet at $\delta 1.43$ (Me- $8^{\prime \prime}$) with the methyl group at $\delta 1.32$ (Me- $6^{\prime \prime}$). Therefore, compound $\mathbf{3}$ was identified as 4 ",5"-dihydro-1,5,6-trihydroxy-2-(3-methylbut-2-enyl)-
$4^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}$-trimethylfurano($\left.2^{\prime \prime}, 3^{\prime \prime}: 3,4\right)$ xanthone, a new compound and named as formoxanthone C (Boonsri et al., 2006).

Selected HMBC correlations of CF3

Table $5{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF3

Position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		161.3	C	
2		107.3	C	
3		164.3	C	
4		112.1	C	
4 a		150.6	C	
4 b		145.1	C	
5		130.6	C	
6		149.2	C	
7	$6.92(d, 7.7)$	112.2	CH	$5,6,8 \mathrm{a}$
8	$7.74(d, 7.7)$	118.3	CH	6,9
8 a		180.1	C	
9		103.0	C	
9 a		21.8	CH	$1,2,3,2^{\prime}, 3^{\prime}$
1^{\prime}	$3.31(d, 6.9)$	121.6	CH	$1^{\prime}, 4^{\prime}, 5^{\prime}$
2^{\prime}	$5.29(m)$	132.2	C	
3^{\prime}		25.8	CH	$2^{\prime}, 3^{\prime}, 5^{\prime}$
4^{\prime}	$1.69(s)$			

Table 5 (Continued)

Position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	$\mathbf{D E P T}$	HMBC
5^{\prime}	$1.79(s)$	17.8	CH_{3}	$2^{\prime}, 3^{\prime}, 4^{\prime}$
$4^{\prime \prime}$		44.1	C	
$5^{\prime \prime}$	$4.54(q, 6.3)$	90.3	CH	$3,4^{\prime \prime}, 6^{\prime \prime}, 7^{\prime \prime}$
$6^{\prime \prime}$	$1.32(s)$	21.7	CH_{3}	$4,4^{\prime \prime}, 5^{\prime \prime}, 7^{\prime \prime}$
$7^{\prime \prime}$	$1.58(s)$	26.3	CH_{3}	$4,4^{\prime \prime}, 5^{\prime \prime}, 6^{\prime \prime}$
$8^{\prime \prime}$	$1.43(d, 6.3)$	14.4	CH_{3}	$4^{\prime \prime}, 5^{\prime \prime}$
$1-\mathrm{OH}$	$13.40(s)$			

1.3.1.4 Compound CF4

CF4 appeared as a yellow solid. The UV (Figure 16) and IR (Figure 17) spectra closely resembled to those of CF3. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 6, Figures 18 and 19) exhibited signals similar to those of CF3 except for the appearance of three olefinic protons $\left[\delta 6.88\left(1 \mathrm{H}, d d, J=17.7,10.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right), 5.30\right.$ $\left(1 \mathrm{H}, d d, J=17.7,0.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right)$ and $\left.5.15\left(1 \mathrm{H}, d d, J=10.5,0.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right)\right]$ of terminal olefin instead of an oxymethine proton $\left[\delta 4.54\left(1 \mathrm{H}, q, J=6.3 \mathrm{~Hz}, \mathrm{H}-5^{\prime \prime}\right)\right]$ and one methyl group $\left[\delta 1.43\left(3 \mathrm{H}, d, J=6.3 \mathrm{~Hz}, \mathrm{Me}-8^{\prime \prime}\right)\right.$] of a furan ring in CF3. From the spectroscopic data and comparison with those of gerontoxanthone I (Chang et al., 1989), therefore, CF4 was determined as gerontoxanthone I.

Selected HMBC correlations of CF4

Table $6{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF4

Position	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	DEPT	HMBC
1		159.0	C	
2		110.1	C	
3		161.4	C	
4		111.2	C	
4 a		153.3	C	
4b		144.8	C	
5		131.0	C	
6		149.0	C	
7	6.94 (d, 8.7)	111.6	CH	5, 6, 8a
8	7.70 (d, 8.7)	117.2	CH	4b, 6, 9
8 a		113.8	C	
9		180.3	C	
9 a		103.0	C	
1 '	3.47 (d, 6.9)	21.6	CH_{2}	$1,3,2^{\prime}, 3^{\prime}$
2^{\prime}	5.24 (m)	121.2	CH	
3 '		136.1	C	
4^{\prime}	1.79, $d, 0.9)$	25.9	CH_{3}	$2^{\prime}, 3^{\prime}, 5^{\prime}$
5'	1.86 (br s)	18.0	CH_{3}	$2^{\prime}, 3^{\prime}, 4^{\prime}$
$1^{\prime \prime}$		41.6	C	
$2^{\prime \prime}$	6.68 (dd, 17.7, 10.5)	154.9	C	$4^{\prime \prime}$, 5"
$3 \prime$	5.30 (dd, 17.7, 0.9)	106.1	CH_{2}	$1^{\prime \prime}, 2^{\prime \prime}$
	5.15 (dd, 10.5, 0.9)			
$4 "$	1.69 (s)	28.0	CH_{3}	$1^{\prime \prime}, 2^{\prime \prime}, 4$
5"	1.69 (s)	28.0	CH_{3}	
$1-\mathrm{OH}$	13.60 (s)			1, 2, 9a
$3-\mathrm{OH}$	6.76 (s)			3, 4

Table 7 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF4 and gerontoxanthone I

position	CF4		gerontoxanthone I^{a}	
	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
1		159.0		160.4
2		110.1		112.5
3		161.4		161.9
4		111.2		111.9
4 a		153.3		155.4
4b		144.8		147.5
5		131.0		134.2
6		149.0		152.1
7	6.94 (d, 8.7)	111.6	7.01 (d, 8.8)	113.9
8	7.70 (d, 8.7)	117.2	7.63 (d, 8.8)	117.7
8 a		113.8		115.2
9		180.3		182.3
9 a		103.0		104.1
1^{\prime}	3.47 (d, 6.9)	21.6	3.37 (d, 7.0)	22.8
2^{\prime}	5.24 (m)	121.2	5.22 (m)	123.8
3^{\prime}		136.1		132.5
4^{\prime}	$1.79, d, 0.9)$	25.9	1.66 (s)	26.3
5^{\prime}	1.86 (br s)	18.0	1.66 (s)	18.4
1 "		41.6		42.7
$2^{\prime \prime}$	6.68 (dd, 17.7, 10.5)	154.9	6.60 (dd, 17.7, 10.4)	151.8
3"	5.30 (dd, 17.7, 0.9)	106.1	5.47 (d, 17.7)	112.8
	5.15 (dd, 10.5, 0.9)		5.35 (d, 10.4)	
$4 \prime$	1.69 (s)	28.0	1.81 (s)	29.2
5"	1.69 (s)	28.0	1.81 (s)	29.2
1-OH	13.60 (s)		13.86 (s)	
$3-\mathrm{OH}$	6.76 (s)			

[^0]
1.3.1.5 Compound CF5

CF5 was obtained as yellow needles. The UV (Figure 20) and IR (Figure 21) spectra of CF5 exhibited the same pattern as those of CF4. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 8, Figures 22 and 23) showed signals similar to those of CF4 except for the replacement of the prenyl group [$\delta 3.47\left(2 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{H}-1{ }^{1}\right), 5.24(1 \mathrm{H}, m$, $\mathrm{H}-2)^{\prime}$, $\left.1.79(3 \mathrm{H}, d, 0.9 \mathrm{~Hz}, \mathrm{H}-4)^{\prime}\right)$ and 1.86 (3 H, brs, $\mathrm{H}-5{ }^{\prime}$)] in CF4 with the characteristic signals of a chromene ring [$\delta 1.52\left(6 \mathrm{H}, s, \mathrm{H}-4^{\prime}\right.$ and $\left.\mathrm{H}-5^{\prime}\right), 5.61(1 \mathrm{H}, d, J$ $\left.=9.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$ and $\left.6.76\left(1 \mathrm{H}, d, J=9.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)\right]$ in CF5. Thus, CF5 was characterized as macluraxanthone (Iinuma et al., 1994).

Selected HMBC correlations of CF5

Table $8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF5

Position	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	DEPT	HMBC
1		156.8	C	
2		105.6	C	
3		158.9	C	
4		113.1	C	
4a		154.1	C	
4 b		144.5	C	
5		131.1	C	
6		149.0	C	
7	6.94 (d, 9.0)	112.8	CH	5, 6, 8a
8	7.68 (d, 9.0)	117.5	CH	6, 9, 4b
8 a		113.7	C	
9		180.8	C	
9 a		103.0	C	
1^{\prime}	6.76 (d, 9.9)	116.1	CH	1, 2, 3, 3^{\prime}
2^{\prime}	5.61 (d, 9.9)	127.2	CH	2, 3', 4', 5'
3 '		78.3	C	
4^{\prime}	1.52 (s)	27.9	CH_{3}	$2^{\prime}, 3^{\prime}$
5^{\prime}	1.52 (s)	27.9	CH_{3}	2', 3^{\prime}
1 "		41.4	C	
$2^{\prime \prime}$	6.76 (dd, 17.7, 10.5)	156.8	CH	$1^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}$
$3 \prime$	5.22 (dd, 17.7, 1.5)	103.3	CH_{2}	$1^{\prime \prime}, 2^{\prime \prime}$
	5.05 (dd, 10.5, 1.5)			
$4{ }^{\prime \prime}$	1.65 (s)	28.2	CH_{3}	4, 1', $2^{\prime \prime}$
5"	1.65 (s)	28.2	CH_{3}	$4,1^{\prime \prime}, 2^{\prime \prime}$
1-OH	13.53 (s)			1, 2, 9a

Table 9 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF5 and macluraxanthone

position	CF5		macluraxanthone ${ }^{a}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
1		156.8		157.3
2		105.6		105.7
3		158.9		159.6
4		113.1		114.2
4a		154.1		155.9
4 b		144.5		146.7
5		131.1		131.1
6		149.0		149.0
7	6.94 (d, 9.0)	112.8	7.00 (d, 9.0)	112.8
8	7.68 (d, 9.0)	117.5	7.60 (d, 9.0)	117.5
8 a		113.7		114.4
9		180.8		180.8
9 a		103.0		103.6
1^{\prime}	6.76 (d, 9.9)	116.1	6.69 (d, 10.0)	116.4
2^{\prime}	5.61 (d, 9.9)	127.2	5.70 (d, 10.0)	128.2
3 '		78.3		79.0
4^{\prime}	1.52 (s)	27.9	1.49 (s)	28.0
5'	1.52 (s)	27.9	1.49 (s)	28.0
1 "		41.4		41.8
$2^{\prime \prime}$	6.76 (dd, 17.7, 10.5)	156.8	6.52 (dd, 17.0, 11.0)	152.9
3 "	5.22 (dd, 17.7, 1.5)	103.3	5.05 (dd, 17.0, 1.0)	107.2
	5.05 (dd, 10.5, 1.5)		4.89 (dd, 11.0, 1.0)	
$4 \prime$	1.65 (s)	28.2	1.74 (s)	29.9
$5{ }^{\prime \prime}$	1.65 (s)	28.2	1.74 (s)	29.9
1-OH	13.53 (s)		13.91 (s)	

1.3.1.6 Compound CF6

CF6 was obtained as yellow needles. The UV (Figure 24) and IR (Figure 25) spectra closely resembled to those of CF5. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 10, Figures 26 and 27) were similar to those of CF5 except for the appearance of signals of γ, γ-dimethylallyl side chain [$\delta 1.75$ (3 H, brs, $\mathrm{H}-5^{\prime \prime}$), 1.87 (3 H, br $s, \mathrm{H}-4^{\prime \prime}$), 3.49 $\left(2 \mathrm{H}, d, J=7.2 \mathrm{~Hz}, \mathrm{H}-1^{\prime \prime}\right)$ and $\left.5.24\left(1 \mathrm{H}, m t, J=7.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right)\right]$ in CF6 instead of $\alpha, \alpha-$ dimethylallyl group [$\delta 1.65\left(6 \mathrm{H}, s, \mathrm{H}-4^{\prime \prime}\right.$ and H-5'), $5.05(1 \mathrm{H}, d d, J=10.5,1.5 \mathrm{~Hz} \mathrm{H}-$ $\left.3^{\prime \prime}\right), 5.22\left(1 \mathrm{H}, d d, J=17.7,1.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime \prime}\right)$ and $\left.6.76\left(1 \mathrm{H}, d d, J=17.7,10.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}\right)\right]$ in CF5. Therefore, CF6 was determined as xanthone V_{1} (Botta et al., 1986).

Selected HMBC correlations of CF6

Table $10{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF6

Position	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	DEPT	HMBC
1		155.3	C	
2		104.2	C	
3		158.0	C	
4		107.8	C	
4a		154.3	C	
4b		146.5	C	
5		132.3	C	
6		151.2	C	
7	$6.95(d, 8.7)$	112.4	CH	5, 6, 8a
8	7.70 (d, 8.7)	116.7	CH	4b' 4b, 9
8 a		113.8	C	
9		181.2	C	
9 a		102.6	C	
1^{\prime}	6.74 (d, 9.9)	115.6	CH	1, 2, 3, 3^{\prime}
2^{\prime}	5.60 (d, 9.9)	127.3	CH	2, $3^{\prime}, 4^{\prime}, 5^{\prime}$
3^{\prime}		77.9	C	
4^{\prime}	1.48 (s)	28.0	CH_{3}	2', 3', 5'
5'	1.48 (s)	28.0	CH_{3}	$2^{\prime}, 3^{\prime}, 4^{\prime}$
1 "	3.49 (d, 7.2)	21.3	CH_{2}	3, 4, 4a, 2', $3^{\prime \prime}$
$2^{\prime \prime}$	5.24 (mt, 7.2)	123.3	CH	
3"		132.3	C	
4 "	$1.87(b r s)$	25.5	CH_{3}	$4^{\prime \prime}$, ${ }^{\prime \prime}$
5"	1.75 (br s)	17.6	CH_{3}	
1-OH	13.20 (s)			

Table 11 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF6 and Xanthone V_{1}

position	CF6		Xanthone V_{1}	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {c }}$
1		155.3		158.2
2		104.2		104.6
3		158.0		154.5
4		107.8		108.0
4a		154.3		156.3
4b		146.5		146.8
5		132.3		133.0
6		151.2		151.9
7	6.95 (d, 8.7)	112.4	6.95 (d, 8.5)	114.3
8	7.70 (d, 8.7)	116.7	7.60 (d, 8.5)	117.2
8 a		113.8		113.0
9		181.2		181.1
9 a		102.6		102.9
1 ,	6.74 (d, 9.9)	115.6	6.66 ($d, 10$)	115.3
2^{\prime}	5.60 (d, 9.9)	127.3	5.66 (d, 10)	127.1
3^{\prime}		77.9		79.2
4^{\prime}	1.48 (s)	28.0	1.47 (s)	29.1
5'	1.48 (s)	28.0	1.47 (s)	29.1
$1^{\prime \prime}$	3.49 (d, 7.2)	21.3	$3.52(d, 7)$	21.6
$2^{\prime \prime}$	5.24 (mt, 7.2)	123.3	$5.30(t, 7)$	123.3
3"		132.3		131.0
$4 \prime$	1.87 (br s)	25.5	1.85 (br s)	25.7
5"	1.75 (brs)	17.6	1.65 (br s)	17.9
1-OH	13.20 (s)		13.45 (s)	

Table 12 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of CF4-CF6

Position	CF4	CF5	CF6
	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$
7	$6.94(d, 8.7)$	$6.94(d, 9.0)$	$6.95(d, 8.7)$
8	$7.70(d, 8.7)$	$7.68(d, 9.0)$	$7.70(d, 8.7)$
1^{\prime}	$3.47(d, 6.9)$	$6.76(d, 9.9)$	$6.74(d, 9.9)$
2^{\prime}	$5.24(m)$	$5.61(d, 9.9)$	$5.60(d, 9.9)$
4^{\prime}	$1.79, d, 0.9)$	$1.52(s)$	$1.48(s)$
5^{\prime}	$1.86(b r s)$	$1.52(s)$	$1.48(s)$
$1^{\prime \prime}$			$3.49(d, 7.2)$
$2^{\prime \prime}$	$6.68(d d, 17.7,10.5)$	$6.76(d d, 17.7,10.5)$	$5.24(\mathrm{mt}, 7.2)$
$3^{\prime \prime}$	$5.30(d d, 17.7,0.9)$	$5.22(d d, 17.7,1.5)$	
	$5.15(d d, 10.5,0.9)$	$5.05(d d, 10.5,1.5)$	
$4^{\prime \prime}$	$1.69(s)$	$1.65(s)$	$1.87(b r s)$
$5^{\prime \prime}$	$1.69(s)$	$1.65(s)$	$1.75(\mathrm{br} s)$
$1-\mathrm{OH}$	$13.60(s)$	$13.53(s)$	$13.20(s)$

Table 13 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of CF4-CF6

Position	CF4	CF5	CF6
1	159.0	156.8	155.3
2	110.1	105.6	104.2
3	161.4	158.9	158.0
4	111.2	113.1	107.8
4 a	153.3	154.1	154.3
4 b	144.8	144.5	146.5
5	131.0	131.1	132.3
6	149.0	149.0	151.2
7	111.6	112.8	112.4
8	117.2	117.5	116.7
8 a	113.8	113.7	113.8
9	180.3	180.8	181.2
9 a	103.0	103.0	102.6
1^{\prime}	21.6	116.1	115.6
2^{\prime}	121.2	127.2	127.3
3^{\prime}	136.1	78.3	77.9
4^{\prime}	25.9	27.9	28.0
5^{\prime}	18.0	27.9	28.0
$1^{\prime \prime}$	41.6	41.4	21.3
$2^{\prime \prime}$	154.9	156.8	123.3
$3^{\prime \prime}$	106.1	103.3	132.3
$4^{\prime \prime}$	28.0	28.2	25.5
$5^{\prime \prime}$	28.0	27.2	

1.3.1.7 Compound CF7

CF7, a reddish orange solid, the IR spectrum (Figure 29) exhibited absorption bands at $3409 \mathrm{~cm}^{-1}$ (hydroxyl), 1628 (conjugated carbonyl) and 1609 (aromatic ring) and the UV spectrum (Figure 28) exhibited $\lambda_{\max }$ 226, 254, 266, 288 and 437 nm suggesting the presence of a quinone structure possibly a hydroxyanthraquinone. The ${ }^{13}$ C NMR spectrum (Table 14, Figure 31) showed 20 signals, attributable to three methyls, one methylene, five methines and eleven quaternary carbons, as determined by DEPT experiments. The ${ }^{1} \mathrm{H}$ NMR (Table 14, Figure 30) revealed the presence of two sharp singlet signals of chelated hydroxyl groups at $\delta 12.28(1-\mathrm{OH})$ and 12.11 (8$\mathrm{OH})$, The signals of two sets of meta-coupled aromatic protons were observed. The first set appeared as doublet signals at $\delta 6.66$ and 7.35 which was assigned to be $\mathrm{H}-2$ and $\mathrm{H}-4$ by the correlation of $\mathrm{H}-2$ to $\mathrm{C}-1, \mathrm{C}-4$ and $\mathrm{C}-9 \mathrm{a}$ and $\mathrm{H}-4$ to $\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-9 \mathrm{a}$ and $\mathrm{C}-10$ in HMBC experiment whereas, the second set showed the signals at $\delta 7.60$ and 7.06. These were proposed for the signals of $\mathrm{H}-5$ and $\mathrm{H}-7$, respectively and was supported by the correlation of $\mathrm{H}-5$ to C-6, C-7, C-8a, C-9 and C-10 and $\mathrm{H}-7$ to C-5, $\mathrm{C}-8$ and $\mathrm{C}-8 \mathrm{a}$. A singlet methyl signal at $\delta 2.44$ was assigned to be $6-\mathrm{Me}$ according to the correlation to C-5, C-6 and C-7 from the HMBC experiment. Furthermore, The spectrum further showed the signals of a prenyl moiety at $\delta 4.64(1 \mathrm{H}, d, J=6.9 \mathrm{~Hz})$, $5.48(1 \mathrm{H}, d, J=6.9 \mathrm{~Hz}), 1.82(3 \mathrm{H}, b r s)$ and $1.79(3 \mathrm{H}, b r s)$. Since the chemical shift of methylene protons of the prenyl side chain appeared at low field, the prenyl group was attached to oxygen which was assigned at C-3 according to HMBC correlation of the oxymethylene proton $\mathrm{H}-1^{\prime}$ (4.64) to C-3 (165.9). Thus, CF7 was characterized as madagascin (Nagem and Oliveira 1997).

Selected HMBC correlations of CF7

Table $14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF7

Position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		165.1	C	
2	$6.66(d, 2.7)$	107.5	CH	$1,4,9 \mathrm{a}$
3		165.9	C	
4	$7.35(d, 2.7)$	108.7	CH	$2,3,9 \mathrm{a}, 10$
4 a		135.2	C	
5	$7.60(b r d, 1.2)$	121.2	CH	$6,7,8 \mathrm{a}, 9,10,6-\mathrm{Me}$
6		148.3	C	
7	$7.06(d d, 1.5,0.9)$	124.4	CH	$5,8,8 \mathrm{a}, 6-\mathrm{Me}$
8		162.5	C	
8 a		113.7	C	
8 b		133.2	C	
9		190.9	C	
9 a		110.1	C	
10		182.0	C	
1^{\prime}	$4.64(d, 6.9)$	65.8	CH_{2}	$3,2^{\prime}, 3^{\prime}$
2^{\prime}	$5.48(d, 6.9)$	118.2	CH^{\prime}	$1^{\prime}, 4^{\prime}, 5^{\prime}$
3^{\prime}		139.7	C	
4^{\prime}	$1.82(b r s)$	25.8	CH_{3}	$2^{\prime}, 3^{\prime}, 5^{\prime}$
5^{\prime}	$1.79(b r s)$	18.3	CH_{3}	$2^{\prime}, 3^{\prime}, 4^{\prime}$
$6-\mathrm{Me}$	$2.44(s)$	22.1	CH_{3}	$5,6,7$
$1-\mathrm{OH}$	$12.28(s)$		$1,9 \mathrm{a}$	
$8-\mathrm{OH}$	$12.11(s)$		7,8	

Table 15 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF7 and madagascin

position	CF7		madagascin ${ }^{\text {a }}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$
1		165.1		162.3
2	6.66 (d, 2.7)	107.5	6.91 (d, 1.8)	108.6
3		165.9		165.7
4	7.35 (d, 2.7)	108.7	7.50 (d, 1.8)	107.4
4a		135.2		135.0
5	7.60 (brd, 1.2)	121.2	7.23 (d, 2.0)	121.1
6		148.3		139.7
7	7.06 (dd, 1.5, 0.9)	124.4	6.56 (d, 2.0)	124.3
8		162.5		164.9
8 a		113.7		110.0
8 b		133.2		133.1
9		190.9		190.5
9 a		110.1		108.0
10		182.0		182.0
1^{\prime}	4.64 (d, 6.9)	65.8	4.54 (d, 6.4)	65.6
2^{\prime}	5.48 (d, 6.9)	118.2	5.40 (d, 6.7)	118.1
3^{\prime}		139.7		143.5
4^{\prime}	1.82 (br s)	25.8	1.71 (s)	25.8
5'	1.79 (br s)	18.3	1.75 (s)	18.3
6-Me	2.44 (s)	22.1	2.44 (s)	22.1

${ }^{a}$ recorded in CDCl_{3}

1.3.1.8 Compound CF8

CF8 was isolated as reddish orange solid. The IR (Figure 33) and UV (Figure 32) spectra exhibited the same patterns as those of CF7. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 16, Figures 34 and 35) were similar to those of CF7 except for the replacement of the prenyl group in CF7 with the characteristic signals of a geranyl group in CF8. These signals were assigned as follow; two singlet signals at $\delta 1.61$ and 1.68 and one doublet signal at $\delta 1.78$ were of three vinylic methyl groups, a doublet signal ($J=6.6 \mathrm{~Hz}$) at $\delta 4.66$ was assigned for oxymethylene protons $\mathrm{H}_{2}-1^{\prime}$, two multiplet signals at $\delta 2.12$ and 2.15 were the signals of two groups of methylene protons $\mathrm{H}_{2}-4^{\prime}$ and $\mathrm{H}_{2}-5^{\prime}$, respectively, a multiplet signals ($J=6.6 \mathrm{~Hz}$) at $\delta 5.09$ and multiplet of triplet at $\delta 5.47$ were the signals of two olefinic methine protons H-6' and $\mathrm{H}-2^{\prime}$, respectively. These assignments indicated that CF8 was 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (Botta, et al., 1983).

Selected HMBC correlations of CF8

Table $16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF8

Position	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	DEPT	HMBC
1		165.1	C	
2	6.65 (d, 2.4)	107.5	CH	1, 4, 9a
3		165.9	C	
4	7.33 (d, 2.4)	108.8	CH	2, 9, 9a, 10
4a		135.1	C	
5	7.58 (br dd , 1.5, 0.6)	121.2	CH	6-Me, 7, 8a, 9, 10
6		148.3	C	
7	7.05 (dd, 1.5, 0.6)	124.4	CH	5, 8, 8a, 6-Me
8		162.4	C	
8 a		113.7	C	
8 b		133.2	C	
9		190.6	C	
9 a		110.1	C	
10		181.9	C	
1^{\prime}	4.66 (d, 6.6)	65.8	CH_{2}	3, $2^{\prime}, 3^{\prime}$
2^{\prime}	5.47 (mt, 6.6)	118.0	CH	$1^{\prime}, 4^{\prime}, 9^{\prime}$
3^{\prime}		142.8	C	
4^{\prime}	2.12 (m)	39.5	CH_{2}	$2^{\prime}, 3^{\prime}, 5^{\prime}$
$5 '$	2.15 (m)	26.2	CH_{2}	$4^{\prime}, 6^{\prime}, 7{ }^{\prime}$
6^{\prime}	5.09 (m)	123.6	CH	5^{\prime}
$7{ }^{\prime}$		132.0	C	
8^{\prime}	1.61 (s)	17.7	CH_{3}	6', 7', 10'
$9{ }^{\prime}$	1.78 (d, 0.9)	16.8	CH_{3}	$2^{\prime}, 3^{\prime}, 4^{\prime}$
10^{\prime}	1.68 (s)	25.6	CH_{3}	$6^{\prime}, 7^{\prime}, 8^{\prime}$
6-Me	2.43 (s)	22.1	CH_{3}	5, 6, 7
1-OH	12.25 (s)			1, 2, 9a
$8-\mathrm{OH}$	12.10 (s)			7, 8, 8a

Table 17 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of CF8 and 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (\mathbf{R})

Position	CF8	\mathbf{R}^{a}
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathrm{Hz}}$)	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})
2	6.65 (d, 2.4)	6.60 (d, 2.5)
4	7.33 (d, 2.4)	7.27 (d, 2.5)
5	7.58 (br dd, 1.5, 0.6)	7.50 (br d, 1.8)
7	7.05 (dd, 1.5, 0.6)	7.00 (br d, 1.8)
1^{\prime}	4.66 (d, 6.6)	4.60 (d, 7.0)
2^{\prime}	5.47 (mt, 6.6)	5.43 (t, 7.0)
4^{\prime}	2.12 (m)	2.10 (m)
5^{\prime}	2.15 (m)	2.10 (m)
6^{\prime}	5.09 (m)	5.05 (br s)
8^{\prime}	1.61 (s)	1.60 (s)
9^{\prime}	1.78 (d, 0.9)	1.77 (s)
10^{\prime}	1.68 (s)	1.67 (s)
6-Me	2.43 (s)	2.40 (s)
$1-\mathrm{OH}$	12.25 (s)	12.23 (s)
$8-\mathrm{OH}$	12.10 (s)	12.08 (s)

[^1]
1.3.1.9 Compound CF9

CF9 was isolated as reddish orange solid. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 18, Figures 38 and 39) of CF9 were comparable to those of CF7, except for the presence of trans-3-methylbut-1-enyl group at $\delta 6.64\left(1 \mathrm{H}, d d, 16.2,0.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, $6.91\left(1 \mathrm{H}, d d, 16.2,7.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.52\left(1 \mathrm{H}\right.$, dsept, $\left.0.9,6.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 1.14,(6 \mathrm{H}, d, 6.9$ $\mathrm{Hz}, \mathrm{H}-4^{\prime}$ and $\mathrm{H}-5^{\prime}$) in CF9 instead of the meta-coupled aromatic protons at $\delta 6.66$ $(1 \mathrm{H}, d, 2.7 \mathrm{~Hz}, \mathrm{H}-2)$ and at $\delta 7.35(1 \mathrm{H}, d, 2.7 \mathrm{~Hz}, \mathrm{H}-4)$ and signals of a prenyl side chain in CF7. The location of trans-3-methylbut-1-enyl group was assigned to C-2 by the HMBC correlations from the chelated hydroxyl group at $\delta 12.93(1-\mathrm{OH})$ to the carbons at $\delta 110.5(\mathrm{C}-9 \mathrm{a}), 120.0(\mathrm{C}-2)$ and $162.08(\mathrm{C}-1)$ and the olefinic proton of trans-3-methylbut-1-enyl group at $\delta 6.64\left(\mathrm{H}-1^{\prime}\right)$ to the carbons at $\delta 162.1$ (C-1) and 163.0 (C-3). The ${ }^{1} \mathrm{H}$ NMR spectrum also showed a singlet signal of the methoxyl group at $\delta 4.04(3 \mathrm{H}, s, 3-\mathrm{OMe})$. The attachment of a methoxyl group was assigned to $\mathrm{C}-3$ by the HMBC correlations of 3 -OMe at $\delta 4.04$ to the carbon at $\delta 163.0(\mathrm{C}-3)$. Therefore, CF9 was determined as vismiaquinone (Goncalves and Mors, 1981).

Selected HMBC correlations of CF9

Table $18{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of CF9

Position	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	DEPT	HMBC
1		162.1	C	
2		120.0	C	
3		163.0	C	
4	7.38 (s)	103.4	CH	$2,3,4 \mathrm{a}, 9,9 \mathrm{a}, 10$
4a		132.1	C	
5	7.59 (d, 1.5)	121.1	CH	6-Me, 7, 8a, 9, 10
6		148.4	C	
7	7.05 (br d, 0.6)	124.4	CH	5, 8a
8		162.5	C	
8 a		113.7	C	
8 b		133.2	C	
9		181.8	C	
9 a		110.5	C	
10		191.4	C	
1^{\prime}	6.64 (dd, 16.2, 0.9)	115.8	CH	1, 3, 2', 3^{\prime}
2^{\prime}	6.91 (dd, 16.2, 7.2)	146.8	CH	2, 3^{\prime}
3'	2.52 (dsept, 0.9, 6.9)	33.4	CH	$1{ }^{\prime}$
4^{\prime}	1.14 (d, 6.9)	22.5	CH_{3}	$2^{\prime}, 3^{\prime}$
5'	1.14 (d, 6.9)	22.5	CH_{3}	$2^{\prime}, 3^{\prime}$
6-Me	2.44 (s)	22.1	CH_{3}	5,6,7
$1-\mathrm{OH}$	12.93 (s)			1,3, 9a
$8-\mathrm{OH}$	12.08 (s)			6, 7, 8, 8a
$3-\mathrm{OMe}$	4.04 (s)	56.3	CH_{3}	3

Table 19 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of CF9 and vismiaquinone

position	CF9		vismiaquinone ${ }^{a}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {c }}$	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t}, \mathrm{J}_{\mathrm{Hz}}\right)$	$\delta_{\text {c }}$
1		162.1		161.8
2		120.0		119.8
3		163.0		162.7
4	7.38 (s)	103.4	7.34 (s)	103.1
4a		132.1		131.8
5	7.59 (d, 1.5)	121.1	7.56 (d, 1.5)	120.8
6		148.4		148.1
7	7.05 (br d, 0.6)	124.4	7.03 (s)	124.2
8		162.5		162.2
8 a		113.7		113.5
8 b		133.2		132.9
9		181.8		181.4
9 a		110.5		110.3
10		191.4		191.0
1^{\prime}	6.64 (dd, 16.2, 0.9)	115.8	6.60 (d, 16.0)	115.7
2^{\prime}	6.91 (dd, 16.2, 7.2)	146.8	6.95 (dd, 16.0, 6.5)	146.5
3^{\prime}	2.52 (dsept, 0.9, 6.9)	33.4	2.48 (m)	33.4
4^{\prime}	1.14 (d, 6.9)	22.5	1.14 (d, 6.5)	22.5
5^{\prime}	1.14 (d, 6.9)	22.5	1.14 (d, 6.5)	22.5
6-Me	2.44 (s)	22.1	2.42 (s)	22.1
$1-\mathrm{OH}$	12.93 (s)		12.84 (s)	
$8-\mathrm{OH}$	12.08 (s)		12.02 (s)	
$3-\mathrm{OMe}$	4.04 (s)	56.3	4.02 (s)	56.2

[^2]Table 20 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of CF7-CF9

Position	CF7	CF8	CF9
	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})
2	6.66 (d, 2.7)	6.65 (d, 2.4)	
4	7.35 (d, 2.7)	7.33 (d, 2.4)	7.38 (s)
5	7.60 (br d, 1.2)	7.58 (brdd, 1.5, 0.6)	7.59 (d, 1.5)
7	7.06 (dd, 1.5, 0.9)	7.05 (dd, 1.5, 0.6)	7.05 (brd, 0.6)
1^{\prime}	4.64 (d, 6.9)	4.66 (d, 6.6)	6.64 (dd, 16.2, 0.9)
2^{\prime}	5.48 (d, 6.9)	5.47 ($\mathrm{mt}, 6.6$)	6.91 (dd, 16.2, 7.2)
3 '			2.52 (dsept, 0.9, 6.9)
4^{\prime}	1.82 (br s)	2.12 (m)	1.14 (d, 6.9)
5'	1.79 (br s)	2.15 (m)	1.14 (d, 6.9)
6^{\prime}		5.09 (m)	
8^{\prime}		1.61 (s)	
9^{\prime}		1.78 (d, 0.9)	
10^{\prime}		1.68 (s)	
6-Me	2.44 (s)	2.43 (s)	2.44 (s)
$1-\mathrm{OH}$	12.28 (s)	12.25 (s)	12.93 (s)
$8-\mathrm{OH}$	12.11 (s)	12.10 (s)	12.08 (s)
3 -OMe			4.04 (s)

Table 21 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of CF7-CF9

Position	CF7	CF8	CF9
1	165.1	165.1	162.1
2	107.5	107.5	120.0
3	165.9	165.9	163.0
4	108.7	108.8	103.4
4a	135.2	135.1	132.1
5	121.2	121.2	121.1
6	148.3	148.3	148.4
7	124.4	124.4	124.4
8	162.5	162.4	162.5
8 a	113.7	113.7	113.7
8 b	133.2	133.2	133.2
9	190.9	190.6	181.8
9a	110.1	110.1	110.5
10	182.0	181.9	191.4
1^{\prime}	65.8	65.8	115.8
2^{\prime}	118.2	118.0	146.8
3 '	139.7	142.8	33.4
4^{\prime}	25.8	39.5	22.5
5^{\prime}	18.3	26.2	22.5
$6{ }^{\prime}$	22.1	123.6	22.1
$7{ }^{\prime}$		132.0	
8^{\prime}		17.7	
9^{\prime}		16.8	
10^{\prime}		25.6	
6-Me		22.1	
$3-\mathrm{OMe}$			56.3

1.3.2 Biological activities of the isolated compounds from the roots of C. formosum

The isolated compounds were evaluated for their antibacterial activities against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gramnegative (Streptococcus faecalis, Salmonella typhi, Shigella sonei and Pseudomonas aeruginosa) bacteria. Cytotoxicity against MCF-7 (breast adenocarcinoma), HeLa (Human cervical cancer), HT-29 (colon cancer) and KB (human oral cancer) cell lines were also evaluated.

Compounds tested for antibacterial and cytotoxic activities were xanthones CF1, CF3-CF6 and anthraquinones CF7-CF9, whereas compound CF2 was not tested due to unsufficient amount of material. The results of antibacterial activity of the tested compounds were given in Table 22. Compound CF6 exhibited potent antibacterial activity against B. subtilis, S. aureus, S. faecalis and S. typhi. Compound CF4 showed strong inhibition against S. aureus and S. typhi. The anthraquinones were found to be inactive. For cytotoxicity results as shown in Table 22, compound CF3 was the most cytotoxic against all four cancer cell lines. Compound CF4 and CF6 were inactive against the HT-29 and MCF-7 cell lines,respectively, while compounds CF1, CF5, CF7, CF8 and CF9 were inactive.

Table 22 Cytotoxic and antibacterial activities of compounds isolated from C.
formosum

Compounds	Cytotoxicity against human cancer cell lines, $\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$				Antibacterial activity, MIC ($\mu \mathrm{g} / \mathrm{mL}$)				
	MCF7	HeLa	$\begin{gathered} \text { HT- } \\ 29 \end{gathered}$	KB	P. aeruginosa	B. subtilis	S aureus	E. faecalis	$\begin{gathered} S . \\ \text { typhi } \end{gathered}$
CF1	-	-	-	-	-	18.7	37.5	-	-
CF3	4.9	3.7	5.3	3.3	-	4.6	2.3	18.7	4.6
CF4	12.0	5.0	>25.0	4.7	-	2.3	1.1	4.6	1.1
CF5	-	-	-	-	-	4.6	4.6	2.3	9.3
CF6	>25.0	4.7	6.0	2.7	9.3	1.1	1.1	1.1	1.1
CF7	-	-	-	-	-	-	-	-	-
CF8	-	-	-	-	-	-	-	-	-
CF9	-	-	-	-	-	-	-	-	-

- = inactive ($>10 \mu \mathrm{~g} / \mathrm{mL}$)

CHAPTER 2.1

INTRODUCTION

2.1.1 Introduction

Thespesia populnea (L.) Soland. Ex Coor is a mangrove plant belonging to Malvaceae family. T. populnea is widely distributed in Hawaii, California, Florida, Africa, the Caribbean islands and in Asia (Milbrodt et al., 1997). In Thailand, the family Malvaceae comprises 15 genera. In Thespesia genus 3 species are found including T. lampas (Cav.) Dalzell \& Gibson, T. populnea (L.) Soland. Ex Coor and T. populneoilides (Roxb.) Kostel (Smitinand, 2001).
T. populnea has a short, straight or crooked trunk and a dense crown with crowded lower horizontal branches. Flowers are a typical hibiscus shape in appearance: bellshaped, $4-7 \mathrm{~cm}$ in length, with five overlapping, broad, rounded petals. Color is pale yellow with a maroon spot at the base of each petal and with starshaped hairs on outer surface. Flower stalks are $1.3-5 \mathrm{~cm}$. The alternate leaves are glossy green above and paler green below. Leaf blades are heart-shaped, $10-20 \mathrm{~cm}$ long, and 6-13 cm broad. Leaf stalks are long, $5-10 \mathrm{~cm}$. Fruits are brittle, dry, woody or papery seed capsules, rounded and flattened, containing five cells and several seeds. The brown or gray capsules, about $2.5-5 \mathrm{~cm}$ in diameter. The brown, hairy seeds are about 1 cm long and 0.6 cm broad.

Figure 2 Parts of Thespesia populnea

2.1.2 Review of Literatures

Chemical constituents isolated from Thespesia genus were summarized in Table 23. The literature survey was from SciFinder Scholar database and the chemical constituents could be classified into groups, such as alkanes, flavonoids, sesquiterpenes, steroids and triterpenes.

Table 23 Compounds from plants of Thespesia genus
$\mathbf{a}=$ Alkanes
b = Flavonoids
$\mathbf{c}=$ Sesquiterpenes
$\mathbf{d}=$ Steroids
$\mathbf{e}=$ Triterpenes

Scientific name	Investigated Part	Compound	Bibliography
T. populnea	Bark	(+)-Gossypol, 16c	Waller et al., 1983
	Flowers	7-Hydroxyisoflavone, 1b Tamarixetin-7-O- β - glucoside, 8b Kaempferol-7-O- β - rutinoside, 15b β-Sitosterol, 1d β-Sitosterol-3- β-D- glucoside, 3d Lupeol, 1e Nanacosane, 11a Lupenone, 2e Kaempferol, 4b Quercetin, 3b Kaempferol-3-O- β - glucoside, 11b Quercetin-3- O- β - glucoside, 12b	Shirwaikar et al., 1996 Seshadri et al., 1975 Datta et al., 1973

Table 23 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
T. populnea	Flowers	Kaempferol-5- O- β-glucoside, 7b Kaempferol-7- O- β-glucoside, 10b Quercetin-3- O- β-rutinoside, 14b (+)-Gossypol, 13c	Datta et al., 1973
	Fruits	Thespesin, 14c	Srivastava et al., 1963
	Heartwood	Mansonone C, 2c	Puckhaber et al., 2004 Milbrodt et al., 1997 Neelakantan et al., 1983
		Mansonone D, 3c Mansonone E, 4c Mansonone F, 5c	Puckhaber et al., 2004
		Mansonone G, 6c Mansonone H, 7c Mansonone M, 8c 7-Hydroxycadalene, 1c	

Table 23 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
T. populnea	Heartwood	Thespesone, 9c Thespesenone, 10c Dehydrooxoperezinone-6methyl ether, 11c 7-Hydroxy-2,3,5,6-tetrahydro- 3,6,9-trimethylnaphtho [1,8- b,c]pyran-4,8-dione, 12c Quercetin, 3b Calcycopterin, 2b	Puckhaber et al., 2004 Milbrodt et al., 1997 Neelakantan et al., 1983 Puckhaber et al., 2004 Milbrodt et al., 1997 Puckhaber et al., 2004 Milbrodt et al., 1997 Kasim et al., 1975
	Leaves	Lupeol, 1e Lupenone, 2e β-Sitosterol, 1d β-Sitosterol-3-acetate, 2d	Goyal et al., 1989 Goyal et al., 1987 Goyal et al., 1985 Goyal et al., 1987 Goyal et al., 1985 Goyal et al., 1989 Goyal et al., 1987 Goyal et al., 1985 Goyal et al., 1989

Table 23 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
T. populnea	Leaves	Lupeol -3-acetate, 3e Nanadecane, 1a Eicosane, 2a Heneicosane, 3a Docosane, 4a Tricosane, 5a Tetracsane, 6a Pentacosane, 7a Xexacosane, 8a	Goyal et al., 1989 Goyal et al., 1987
		Heptacosane, 9a	
		Octacosane, 10a	
		Nanacosane, 11a	
Triacontane, 12a			
Dotriacontane, 13a			
		Hentriacontane, 14a	

Structure

a: Alkanes

1a: $\mathrm{n}=17$; Nanadecane
2a: $\mathrm{n}=18$; Eicosane
3a: $\mathrm{n}=19$; Heneicosane
4a: $\mathrm{n}=20$; Docosane
5a: $\mathrm{n}=21$; Tricosane
12a: $\mathrm{n}=28$; Triacontane
6a: $\mathrm{n}=22$; Tetracosane
7a: $\mathrm{n}=23$; Pentacosane
8a: $\mathrm{n}=24$; Xexacosane
9a: $\mathrm{n}=25$; Heptacosane
10a: $n=26$; Octacosane
11a: $\mathrm{n}=27$; Nanacosane

13a: $\mathrm{n}=30$; Dotriacontane
14a: $\mathrm{n}=31$; Hentriacontane

b: Flavonoids

1b: 7-Hydroxyisoflavone

2b: Calcycopterin

3b: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$; Quercetin
4b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH} ;$ Kaempferol
5b: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$; Herbacetin
6b: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OMe}$; Tamarixetin

7b: Kaempferol-5-O- β-glucoside

8b: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OMe}$; Tamarixetin-7-O- β-glucoside
9b: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$; Quercetin-7-O- β-glucoside
10b: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$; Kaempferol-7-O- β-glucoside

11b: $\mathrm{R}=\mathrm{H}$; Kaempferol-3-O- β-glucoside
12b: $\mathrm{R}=\mathrm{OH}$; Quercetin-3-O- β-glucoside

13b: $\mathrm{R}=\mathrm{H}$; Kaempferol-3-O- β-rutinoside
14b: $\mathrm{R}=\mathrm{OH}$; Quercetin-3-O- β-rutinoside

15b: Kaempferol -7-O- β-rutinoside

C: Sesquiterpenes

1c: 7-Hydroxycadalene

2c: Mansonone C

3c: Mansonone D

5c: Mansonone F

7c: Mansonone H

9c: Thespesone

4c: Mansonone E

6c: Mansonone G

8c: Mansonone M

10c: Thespesenone

11c: Dehydrooxoperezinone-6- methyl ether

12c: 7-Hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione

13c: (+)-Gossypol

D: Steroids

1d: β-Sitosterol

2d: β-Sitosterol-3-acetate

3d: β-Sitosterol-3- β-D-glucoside

E: Triterpenes

1e: Lupeol

2e: Lupenone

3e: Lupeol-3-acetate

2.1.3 The objectives

The goals of this work were to investigate the chemical constituents from the roots of T. populnea and to evaluate the antibacterial and cytotoxic activities of the isolated compounds.

CHAPTER 2.2

EXPERIMENTAL

2.2.1 Instruments and Chemicals

Melting point was recorded in ${ }^{\circ} \mathrm{C}$ on an Electrothermal 9100 melting point apparatus. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S100 spectrophotometer (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. The infrared spectra were recoded using FTS 165 FT-IR Perkin Elmer spectrophotometer. Nuclear Magnetic resonance spectra were recorded using Bruker Avance 300 MHz Bruker FTNMR Ultra Shield ${ }^{\text {TM }}$. Spectra were recorded in deuterochloroform, deuteroacetone and deuteromethanol and were recorded as δ value in ppm downfield from TMS (Internal standard $\delta 0.00$). Optical rotation was measured in MeOH solution at the sodium D line (590 nm) on an AUTOPOL ${ }^{\mathrm{R}}$ II automatic polarimeter. The EI-MS and HREIMS mass spectra were obtained from a Micromass LCT mass spectrometer. Solvent for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel $60 \mathrm{~F}_{254}$ (Merck) and silica gel 100, respectively. Precoated plates of silica gel 60 GF_{254} were used for analytical purposes.

2.2.2 Plant Material

The fresh stem of T. populnea was collected from Suratthani Province, Thailand, in 2005. The plant was identified by Prof. Puangpen Sirirugsa and a voucher specimen (no. SB 01-001) has been deposited at the Herbarium of Department of Biology, Prince of Songkla University (PSU).

2.2.3 Extraction and chemical investigation from the stem of T.populnea

The stem of T. populnea was divided to two parts: heartwood and wood.

2.2.3.1 Extraction and investigation of the crude dichloromethane extract from the heartwood of T. populnea

The air-dried heartwood of T. populnea $(2.10 \mathrm{~kg})$ was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over a period of 5 days at room temperature. Evaporation of the solvent under reduced pressure furnished a dark residue (37.5 g).

Scheme 2 Extraction and isolation of compounds TP1-TP8 anu [P12-TP19 from the heartwood of T. populnea

The crude dichloromethane extract was subjected to QCC on silica gel, eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and separated into 8 fractions (A-H). Fraction A was purified by QCC using a gradient of hexane-acetone to afford nine subfractions ($\mathrm{A}_{1}-\mathrm{A}_{9}$). Subfraction A_{2} and A_{3} were combined and purified by QCC using a gradient of acetone-hexane as a mobile phase to give TP1 (10.2 mg), TP2 (2.5 mg) and TP5 (8.3 $\mathrm{mg})$. Subfraction A_{5} and A_{6} were combined and then purified by QCC with a gradient system of acetone-hexane to afford TP14 (2.0 mg) and TP3 (2.0 mg). Subfraction A_{7} and A_{8} were separately purified by QCC using a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as a mobile phase to yield TP19 (4.0 mg) from A_{7} and TP6 (4.5 mg), TP9 (18.1 mg) and TP18 (3.3 mg) from A_{8}. Fraction F was separated by QCC with a gradient system of increasing polarity $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane) to afford nine subfractions ($\mathrm{F}_{1}-\mathrm{F}_{9}$). Subfraction F_{4} was further purified by QCC using a gradient of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ - hexane to give $\mathbf{T P 1 2}$ $(10.0 \mathrm{mg})$ and TP13 (14.9 mg). Subfraction F_{6} was subjected to QCC using 20\% acetone in hexane to afford four subfractions ($\mathrm{F}_{6 \mathrm{~A}}-\mathrm{F}_{6 \mathrm{D}}$). Subfraction $\mathrm{F}_{6 B}$ was further separated by QCC with a solvent system of 2\% acetone-CHCl ${ }_{3}$ to afford TP15 (12.6 mg). Subfraction $\mathrm{F}_{6 \mathrm{C}}$, upon standing overnight at room temperature gave yellow solid of TP17 (4.2 mg) and the mother liquor gave TP16 (4.1 mg). Fraction G was purified by QCC with a gradient of acetone- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give five subfractions $\left(\mathrm{G}_{\mathrm{A}}-\mathrm{G}_{\mathrm{E}}\right)$. Subfraction G_{A} was subjected to precoated TLC using $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as a mobile phase (4 runs) to give TP7 (5.1 mg). Subfraction G_{C} gave $\mathbf{T P} 4(93.0 \mathrm{mg})$. Fraction H , upon standing overnight at room temperature gave red-brown crystal of TP8 (30.5 mg).

2.2.3.2 Extraction and investigation of the crude dichloromethane extract from the wood of \boldsymbol{T}. populnea

The air-dried wood of T. populnea (1.40 kg) was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ over a period of 5 days at room temperature. Evaporation of the solvent under reduced pressure furnished a dark-green residue (10.2 g) of the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract.

Scheme 3 Extraction and isolation of compounds TP9-TP11 and TP18-TP19 from the wood of T. populnea

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract was subjected to QCC on silica gel, and eluted with a gradient of hexane - acetone to give six fractions (A-F). Fraction C was then purified by QCC using a gradient of hexane-acetone to afford TP18 (22.6 mg). Fraction D, upon standing overnight at room temperature gave TP19 (20.3 mg). Fraction E was separated by QCC with a gradient system of increasing polarity (acetone-hexane) to afford five subfractions $\left(\mathrm{E}_{1}-\mathrm{E}_{5}\right)$. Subfraction E_{2} was subjected to precoated plates using $50 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as a mobile phase (4 runs) to give TP9 (1.6 mg). Subfraction E_{3} was subjected to precoated plates using $3 \% \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a mobile phase (4 runs) to give TP10 (2.3 mg) and TP11 (2.1 mg).

Compound TP1: Brown solid; mp 107-109 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 225$ (4.81), 235 (4.83), 276 sh (3.87), 286 (3.97), 299 (3.94), 320 (3.60), 334 (3.66) nm; IR $(\mathrm{KBr}) \nu_{\max } 3328,2952,2863,1623,1440,1237 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 24.

Compound TP2: Orange solid; mp 123-125 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 213$ (4.38), 257 (4.44), $365 \mathrm{sh}(3.45), 432$ (3.60) nm; IR (KBr) $v_{\max }: 1670,1665,1381$, $1241 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 25.

Compound TP3: Orange solid; mp 196-198 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 217$ (4.36), 240 (4.15), 273 (4.23), 410 (3.90) nm; IR (neat) $v_{\text {max }}: 3328,1717,1646,1254$, $1131 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}, 75\right.$ MHz), see Table 27.

Compound TP4: Yellow solid; $[\alpha]^{25}{ }_{\mathrm{D}}-39.0\left(c 8.25, \mathrm{CHCl}_{3}\right) ; \mathrm{mp} 159-161{ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 219$ (4.23), 242 (4.06), 277 (4.06), 404 (3.81) nm; IR (KBr) $v_{\max }$: $1675,1550 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 29.

Compound TP5: Yellow solid; $[\alpha]^{25}$ D $-252.8\left(c 0.09, \mathrm{CHCl}_{3}\right)$; mp 135-137 ${ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 213$ (4.27), 274 (4.23), 301 (4.15), 358 (3.71) nm; IR (neat) $v_{\text {max }}$: $3328,1642,1597,1560,1344,1243,1109 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 33.

Compound TP6: Yellow solid; $[\alpha]^{25}{ }_{\mathrm{D}}-42.7\left(c 0.08, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log$ ع) 214 (4.31), $242 \mathrm{sh}(4.05), 273$ (4.01), 336 (3.60), 409 (3.62) nm; IR (neat) $v_{\max }$ 3373, 2955, 2925, 2873, 1709, 1664, 1649, $1254 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 35.

Compound TP7: Reddish brown solid; $[\alpha]^{25}{ }_{\mathrm{D}}+326.2\left(c \quad 0.15, \mathrm{CHCl}_{3}\right)$; mp 259-261 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 217$ (4.70), 265 sh (4.59), 274 (4.64), 298 (4.40), 364 (4.22), 385 (4.22) nm; IR (KBr) $\nu_{\max } 3188,2974,2923,1668,1561,1266,1229,1188$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 37.

Compound TP8: Reddish brown solid; $[\alpha]^{25}{ }_{\mathrm{D}}+736.6\left(c 0.35, \mathrm{CHCl}_{3}\right.$); mp 264-266 ${ }^{\circ} \mathrm{C}$ (decomposed); UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 218$ (4.26), 265 sh (4.23), 274 (4.29), 300 (4.04), 392 (3.92) nm; IR (KBr) $\nu_{\max } 3187,2985,1668,1627,1560,1265,1228,948$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 39.

Compound TP9: Reddish brown solid; $[\alpha]^{25}{ }_{\mathrm{D}}+58.1\left(c\right.$ 1.27, $\left.\mathrm{CHCl}_{3}\right)$; mp 104-106 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 218$ (4.13), 263(4.14), 432 (3.27) nm; IR (neat) $\nu_{\max }$ 2962, 2925, 1683, 1634, 1616, 1176, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 41.

Compound TP10: Yellow gum; $[\alpha]^{25}{ }_{\mathrm{D}}+57.9\left(c 0.54, \mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon) 216$ (4.22), 251 (3.98), 259 (3.91), 279 (3.44), 289 (3.40) nm; IR (Neat) $v_{\max }$ 3365, 2959, 2870, 1617, 1591, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$), see Table 45; EIMS $m / z, 246[\mathrm{M}]^{+}$(8), 211 (18), 185 (33), 169 (25), 72 (100), 69 (47); HREIMS $m / z 246.1262$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$).

Compound TP11: Yellow gum; $[\alpha]^{25}$-63.6 (c 0.37, CHCl_{3}); UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon) 213$ (4.15), 251 (3.85), 259 (3.80), 278 (3.32), 290 (3.29) nm; IR (Neat) $v_{\max }$ 3387, 2959, 2871, 1716, 1524, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right.$), see Table 46; EIMS $m / z, 246[\mathrm{M}]^{+}(50), 199$ (31), 185 (100), 157 (23), 129 (46); HREIMS $m / z 246.1255$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}, 246.1256$).

Compound TP12: Orange solid; mp 168-170 ${ }^{\circ} \mathrm{C} ;[\alpha]^{25} \mathrm{D}-46.0\left(c 0.27, \mathrm{CHCl}_{3}\right)$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 213$ (4.18), 242 (3.79), 259 (3.98), 380 (3.03) nm; IR (Neat) $\nu_{\max }$ 2974, 2930, 2871, 1757, 1698, $1657 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 47; EIMS $m / z, 286.1556[\mathrm{M}+2]^{+}$(17), 271 (53), 241 (72), 85 (66), 83 (100); HREIMS $m / z 286.1556[\mathrm{M}+2]^{+}$(calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$, 284.1412).

Compound TP13: Brown gum; $[\alpha]^{25}{ }_{\mathrm{D}}-21.9$ (c 0.75, CHCl_{3}); UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon) 219$ (4.10), 264 (3.92), 277sh (3.81), 366 (2.86) nm; IR (Neat) $v_{\max } 3417$,

2967, 2930, 2863, 1653, $754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 48; EIMS $m / z, 288[\mathrm{M}]^{+}$(15), 274 (21), 241 (20), 273 (100); HREIMS $m / z 288.1736$ (calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}, 288.1725$).

Compound TP14: Yellow-brown gum; $[\alpha]^{25}{ }_{\mathrm{D}}+30.1\left(c \quad 0.58, \mathrm{CHCl}_{3}\right)$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 228$ (4.11), 273 (3.86) nm; IR (Neat) $v_{\text {max }} 3410,2970,2925,2873,1776$, 1675, $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 49; EIMS $m / z, 262\left[\mathrm{M}^{+}\right.$(31), 220 (34), 191 (43), 219 (100); HREIMS m / z 262.1210 (calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}, 262.1205$).

Compound TP15: Yellow gum; $[\alpha]^{25}{ }_{\mathrm{D}}+7.5\left(c 0.23, \mathrm{CHCl}_{3}\right)$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\max }(\log$ ع) 219 (4.23), 232 (4.14), 281 (3.00) nm ; IR (Neat) $\nu_{\max } 3417,2967,2930,2871$, 1668, $1576 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 50; EIMS m/z, 264 [M] (27), 221 (100), 203 (22), 193 (26), 179 (44), 177 (25), 151 (20); HREIMS $m / z 264.1353$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}, 264.1362$).

Compound TP16: Yellow gum; $[\alpha]^{25}{ }_{\mathrm{D}}+62.7$ (c 0.07, CHCl_{3}); UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon) 214$ (4.09), 235 (3.98), 286 (3.95), 339 (3.66) nm; IR (Neat) $v_{\max } 3424,2959$, 2930, 2871, 1661, 1591, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), see Table 51; EIMS $m / z, 278[\mathrm{M}]^{+}$(98), 249 (27), 239 (100), 208 (36), 192 (35); HREIMS $m / z 278.1196$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}, 278.1154$).

Compound TP17: Yellow gum; $[\alpha]^{25}{ }_{\mathrm{D}}+43.7$ (c 0.04, CHCl_{3}); UV (MeOH) $\lambda_{\text {max }}$ $(\log \varepsilon) 214$ (4.06), 237 (3.95), 286 (3.96), 339 (3.60) nm; IR (Neat) $v_{\max } 3417,2967$, 2930, 2871, 1661, $1587 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ MHz), see Table 52; EIMS $m / z, 278[\mathrm{M}]^{+}$(54), 234 (56), 208 (25), 192 (24), 72 (100); HREIMS $m / z 278.1159$ (calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}, 278.1154$).

Compound TP18: Yellow solid; $[\alpha]^{25}{ }_{\mathrm{D}}+417.7$ (c 0.49, CHCl_{3}); mp 171-173 ${ }^{\circ} \mathrm{C}$; UV $(\mathrm{MeOH}) \lambda_{\max }(\log \varepsilon) 237$ (4.26), $276 \mathrm{sh}(3.90), 290$ (3.84), 379 (3.61) nm; IR
(neat) $v_{\max } 3410,2959,2930,1626,1314,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 53.

Compound TP19: Yellow solid; $[\alpha]^{25}{ }_{\mathrm{D}}+246.9\left(c 0.14, \mathrm{CHCl}_{3}\right)$; mp $165-167{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 229$ (4.77), 252 sh (4.65), 286 (4.44), 360 (4.00) nm; IR (neat) $V_{\max } 3373,2962,2932,1608,1444,1332,754 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$, see Table 55.

2.2.4 BIOASSAY

2.2.4.1 Antibacterial assay

The compounds isolated from T. populnea were tested against the microorganisms Bacillus subtilis (obtained from Department of Industrial Biotechnology, PSU), Staphylococcus aureus (TISTR517) (obtained from Microbial Resources Center (MIRCEN), Bangkok, Thailand), Pseudomonas aeruginosa, Enterococcus faecalis, Shigella sonei and Salmonella typhi. The last four microorganisms were obtained from Department of Pharmacognosy and Botany, PSU. The antibacterial assay employed was the same as described in Boonsri et al., (Boonsri et al., 2006). Vancomycin, which was used as a standard, showed antibacterial activity of $0.078 \mu \mathrm{~g} / \mathrm{mL}$.

2.2.4.2 Cytotoxic assay

The procedure for the cytotoxic assay was performed by the sulphorhodamine B (SRB) assay as described by Skehan et al., (Skehan et al., 1990). In this study, four cancer cell lines obtained from the National Cancer Institute, Bangkok, Thailand, were used: MCF-7 (breast adenocarcinoma), KB (human oral cancer), HeLa (human cervical cancer) and HT-29 (colon cancer). Camptothecin, which was used as a standard, showed cytotoxic activity in the range of 0.2-2.0 $\mu \mathrm{g} / \mathrm{mL}$.

CHAPTER 2.3 RESULTS AND DISCUSSION

2.3.1 Structural elucidation of the isolated compounds from the wood and the heartwood of T. populnea

The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extracts of the wood and the heartwood of T. populnea were subjected to chromatography to give compounds TP1-TP19. Two new compounds, TP10 and TP11, along with three known compounds, TP9, TP18 and TP19, were purified from the wood. Six new compounds, TP12-TP17, were obtained from the dark heartwood, together with eleven known compounds, TP1-TP9,TP18TP19. Their structures were elucidated on the basis of spectroscopic data.

2.3.2.1 Compound TP1

TP1 was obtained as brown solid. The UV spectrum (Figure 40) exhibited the absorption bands at $225,235,276,286,299,320$ and 344 nm . The IR spectrum (Figure 41) indicated the presence of hydroxyl functionality ($3328 \mathrm{~cm}^{-1}$). The ${ }^{13} \mathrm{C}$ NMR and DEPT data showed 15 carbons, ten aromatic carbons, four methyls and one benzylic methine, suggesting a cadalene sesquiterpene (Silva et al., 2006). The ${ }^{1} \mathrm{H}$ NMR spectrum of TP1 (Table 24, Figure 42) displayed two ortho-coupled of aromatic protons at $\delta 7.13(1 \mathrm{H}, d, 7.5 \mathrm{~Hz}, \mathrm{H}-3)$ and $7.19(1 \mathrm{H}, d, 7.5 \mathrm{~Hz}, \mathrm{H}-2)$. Two singlet signals of aromatic protons at $\delta 7.89(s, H-5)$ and $7.25(s, H-8)$, suggesting that they were para to each other. This was confirmed by HMBC correlations of the lowfield proton (H-5) with $\mathrm{C}-13(\delta 16.8)$ and $\mathrm{C}-4(\delta 142.2)$ and the upfield proton $(\mathrm{H}-8)$ with $\mathrm{C}-1(\delta 130.1), \mathrm{C}-4 \mathrm{a}(126.9)$ and $\mathrm{C}-6$ (125.1). In addition, the presence of two methyl groups $[\delta 2.47(3 \mathrm{H}, s)$ and $2.56(3 \mathrm{H}, s)]$ and one isopropyl moiety $[\delta 1.37(6 \mathrm{H}$, $d, 6.6 \mathrm{~Hz})$ and $3.67(1 \mathrm{H}$, sept, 6.6 Hz$)$] was evident by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR signals (Table 24, Figure 42 and 43). The methyl group at $\delta 2.47$ was placed at C-6 because of its HMBC correlations to $\mathrm{C}-5(\delta 125.6), \mathrm{C}-6(\delta 125.1)$ and $\mathrm{C}-7(\delta 152.1)$ and the methyl at $\delta 2.56$ was placed at $\mathrm{C}-1$ due to its HMBC correlations to $\mathrm{C}-2$ ($\delta 126.2$) and $\mathrm{C}-8 \mathrm{a}$ ($\delta 133.1$). Finally, the isopropyl group was attached at $\mathrm{C}-4$, judging from HMBC correlations of its methine proton at $\delta 3.67$ (sept, 6.6 Hz) with C-3 (119.1), C-4 (142.2) and C-4a (126.9). Thus, TP1 was identified as 7-hydroxycadalene (lindgren et al., 1968).

Selected HMBC correlations of TP1

Table $24{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP1

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		130.1	C	
2	$7.19(d, 7.5)$	126.2	CH	$3,4,8 \mathrm{a}, 9$
3	$7.13(d, 7.5)$	119.1	CH	$1,4 \mathrm{a}, 9,10$
4		142.2	C	
4 a		126.9	C	
5	$7.89(s)$	125.6	CH	$13,4,8 \mathrm{a}$
6		125.1	C	
7		152.1	C	
8	$7.25(s)$	106.9	CH	$1,4 \mathrm{a}, 6,13$
8 a		133.1	C	
9	$2.56(s)$	19.5	CH_{3}	$3,8 \mathrm{a}$
10	$3.67($ sept, 6.6)	28.4	CH_{2}	$3,4,4 \mathrm{a}$
11	$1.37(d, 6.6)$	23.7	CH_{3}	$4,10,12$
12	$1.37(d, 6.6)$	23.7	CH_{3}	$4,10,11$
13	$2.47(s)$	16.8	CH_{3}	$5,6,7$

2.3.2.2 Compound TP2

TP2 was isolated as an orange solid. The IR spectrum (Figure 45) exhibited the characteristic absorption of carbonyl groups at 1665 and $1670 \mathrm{~cm}^{-1}$. The UV spectrum (Figure 44) showed absorption maxima at 213, 257, 259 and 380 nm . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 25, Figures 46 and 47) were comparable to those of TP1, except for the replacement of an aromatic proton $\mathrm{H}-8$ at $\delta 7.25$ and a hydroxyl group at C-7 in TP1 with the carbonyl carbon at $\delta 182.0$ and 182.8, suggesting an o-naphthoquinone cadinane skeleton. This was supported by its color, IR spectrum and UV absorption bands (Zhang et al., 2007). The two carbonyl groups were placed at C-7 ($\delta 182.0$) and C-8 ($\delta 182.8$) by ${ }^{3} J$ correlations of the methyl group at $\delta 2.08$ (Me-13) to C 7 and ${ }^{4} J$ correlation of the methyl group at $\delta 2.63$ (Me-9) to C- 8 in HMBC experiment. Accordingly, TP2 was identified as mansonone C (Kraus et al., 2006).

Selected HMBC correlations of TP2

Table $25{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP2

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		143.0	C	
2	$7.19(d, 8.1)$	134.1	CH	$3,8 \mathrm{a}, 9$
3	$7.43(d, 8.1)$	131.9	CH	$1,2,4 \mathrm{a}$
4		145.3	C	
4 a		132.5	C	
5	$7.66(b r d, 1.5)$	138.0	CH	$4,8 \mathrm{a}, 6,13$
6		135.0	C	
7		182.0	C	
8		182.8	C	
8 a		129.3	C	
9	$2.63(s)$	22.8	CH_{3}	$1,2,8,8 \mathrm{a}$
10	$3.39($ sept, 6.9)	28.3	CH_{2}	$3,4,11,12$
11	$1.30(d, 6.9)$	23.7	CH_{3}	$4,10,12$
12	$1.30(d, 6.9)$	23.7	CH_{3}	$4,10,11$
13	$2.08(d, 1.5)$	16.0	CH_{3}	$5,6,7$

Table 26 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP2 and mansonone C

position	TP2		mansonone \mathbf{C}^{a}	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t}, \mathrm{J}_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
1		143.0		143.2
2	7.19 (d, 8.1)	134.1	7.20 (d, 8.0)	134.3
3	7.43 (d, 8.1)	131.9	7.44 (d, 8.0)	132.2
4		145.3		145.5
4 a		132.5		132.6
5	7.66 (br d, 1.5)	138.0	7.66 (s)	138.2
6		135.0		135.2

Table 26 (Continued) mansonone C

position	TP2		mansonone $\mathbf{C}^{\text {a }}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
7		182.0		182.2
8		182.8		182.5
8 a		129.3		129.5
9	2.63 (s)	22.8	2.64 (s)	23.1
10	3.39 (sept, 6.9)	28.3	3.43-3.36 (m)	28.5
11	1.30 (d, 6.9)	23.7	1.30 (d, 6.8)	24.0
12	1.30 (d, 6.9)	23.7	1.30 (d, 6.8)	24.0
13	2.08 (d, 1.5)	16.0	2.09 (s)	16.3

${ }^{a}$ recorded in CDCl_{3}

2.3.2.3 Compound TP3

TP3 was isolated as an orange solid. The IR spectrum (Figure 49) showed the absorption bands at 1646,1717 and $3328 \mathrm{~cm}^{-1}$ corresponding to two carbonyl and hydroxyl groups, respectively. The UV spectrum (Figure 48) showed the absorption maxima at 217, 240, 273 and 410 nm . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of TP3 (Table 27, Figures 50 and 51) were closely resembled to those of TP2. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 27), an ortho-coupled proton at $\delta 7.43\left(1 \mathrm{H}, d, J=8.1 \mathrm{~Hz} ; \delta_{\mathrm{c}}\right.$ 131.9) as found in TP2 was missing in TP3 but the signal due to $s p^{2}$ oxyquaternary carbon at $\delta 162.2$ was instead observed, whose down field signal suggested a connection to a hydroxyl group. The HMBC correlations of an aromatic proton at δ 6.56 ($\mathrm{s}, \mathrm{H}-2$) with $\mathrm{C}-8 \mathrm{a}(\delta 122.7), \mathrm{C}-4(\delta 133.2), \mathrm{C}-3(\delta 162.2)$ and Me-9 ($\delta 23.3$), supported the location of the hydroxyl group at C-3. Therefore, TP3 was identified as mansonone G (Letcher et al., 1992 and Puckhaber et al., 2004).

Selected HMBC correlations of TP3

Table $27{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP3

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		146.6	C	
2	$6.56(s)$	119.9	CH	$2,3,8 \mathrm{a}, 9$
3		162.2	C	
4		133.2	C	
4 a		134.5	C	
5	$7.72(s)$	139.1	CH	$8 \mathrm{a}, 13$
6		135.3	C	
7		182.8	C	
8		180.0	C	
8 a		122.7	C	
9	$2.58(s)$	23.3	CH_{3}	$2,8 \mathrm{a}, 8$
10	$3.58($ sept, 7.2)	26.8	CH^{2}	
11	$1.43(d, 7.2)$	21.2	CH_{3}	$4,10,12$
12	$1.43(d, 7.2)$	21.2	CH_{3}	$4,10,11$
13	$2.07(s)$	15.9	CH_{3}	$5,6,7$

Table 28 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP3 and mansonone G

position	TP3		mansonone G	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	δ_{C}	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathbf{H z}}\right)^{a}$	$\delta_{\mathrm{C}}{ }^{b}$
1		146.6		145.9
2	$6.56(s)$	119.9	$6.49(s)$	120.5
3		162.2		162.6
4		133.2		133.2
4 a		134.5		135.8
5	$7.72(s)$	139.1	$7.69(b r s)$	138.7
6		135.3		136.8

Table 28 (Continued)

position	TP3		mansonone G	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\text { mult. }, \boldsymbol{J}_{\mathbf{H z}}\right)^{a}$	$\delta_{\text {C }}{ }^{\text {b }}$
7		182.8		182.9
8		180.0		180.9
8 a		122.7		123.5
9	2.58 (s)	23.3	2.47 (s)	23.2
10	3.58 (sept, 7.2)	26.8	3.48 (sept, 7.0)	27.5
11	1.43 (d, 7.2)	21.2	1.38 (d, 7.0)	21.3
12	1.43 (d, 7.2)	21.2	1.38 (d, 7.0)	21.3
13	2.07 (s)	15.9	1.8 (s)	15.7

2.3.2.4 Compound TP4

TP4 was isolated as an orange solid. The UV (Figure 52) and IR spectra (Figure 53) showed absorption bands similar to those of TP3. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 29, Figures 54 and 55) of TP4 were closely related to those of TP3 except that methyl signal at $\delta 1.43$ (s, Me-11) in TP3 was replaced by oxymethylene protons resonating at $\delta 4.27(d d, J=8.7,2.7 \mathrm{~Hz})$ and $4.64(t, J=8.7$ $\mathrm{Hz})$ in TP4. ${ }^{3} \mathrm{~J}$ HMBC correlations between oxymethylenes protons $\left(\mathrm{H}_{2}-11\right)$ and $\mathrm{C}-3$ ($\delta 165.3$) of aromatic unit established the fusion by ether linkage at C-3. Accordingly, TP4 was characterized as mansonone D (Puckhaber et al., 2004).

Table $29{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP4

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
1		149.4	C	
2	$6.44(s)$	113.3	CH	$3,4,8 \mathrm{a}, 9$
3		165.3	C	
4		131.1	C	
4 a		132.9	C	
5	$7.11(s)$	137.4	CH	$4,4 \mathrm{a}, 6,7,8 \mathrm{a}, 13$
6		136.6	C	
7		182.5	C	
8		178.7	C	
8 a		122.4	C	
9	$2.49(s)$	23.6	CH_{3}	$1,2,8 \mathrm{a}$
10	$3.54(d q, 2.7,7.2)$	34.5	CH_{2}	3
11	$4.27(d d, 8.7,2.7)$	80.0	CH_{2}	$3,4,10,12$
	$4.64(t, 8.7)$			
12	$1.43(d, 7.2)$	21.9	CH_{3}	$4,10,11$
13	$1.94(s)$	15.7	CH_{3}	$5,6,7$

Table 30 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP4 and mansonone D

Position	TP4	${\text { mansonone } \mathbf{D}^{a}}^{$$}$
	δ_{C}	δ_{C}
1	149.4	149.6
2	113.3	113.4
3	165.3	165.0
4	131.1	130.8
4 a	132.9	132.9
5	137.4	137.4

Table 30 (Continued)

Position	$\mathbf{T P 4}$	${\text { mansonone } \mathbf{D}^{a}}^{2}$
	$\boldsymbol{\delta}_{\mathbf{C}}$	$\boldsymbol{\delta}_{\mathbf{C}}$
6	136.6	136.7
7	182.5	182.6
8	178.7	178.8
8 a	122.4	122.5
9	23.6	23.8
10	34.5	34.6
11	80.0	79.9
12	21.9	22.0
13	15.7	15.8
a		

${ }^{a}$ recorded in CDCl_{3}

Table 31 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of TP1-TP4

Position	TP1	TP2	TP3	TP4
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\mathrm{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathrm{Hz}}\right)$	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\mathrm{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathrm{Hz}}$)
2	7.19 (d, 7.5)	7.19 (d, 8.1)	6.56 (s)	6.44 (s)
3	7.13 (d, 7.5)	7.43 (d, 8.1)		
5	7.89 (s)	7.66 (br d, 1.5)	7.72 (s)	7.11 (s)
8	7.27 (s)			
9	2.56 (s)	2.63 (s)	2.58 (s)	2.49 (s)
10	3.67 (sept)	3.39 (sept, 6.9)	3.58 (sept, 7.2)	3.54 (dq, 2.7, 7.2)
11	1.37 (d, 6.6)	1.30 (d, 6.9)	1.43 (d, 7.2)	4.27 (dd, 8.7, 2.7)
				$4.64(t, 8.7)$
12	1.37 (d, 6.6)	1.30 (d, 6.9)	1.43 (d, 7.2)	1.43 (d, 7.2)
13	2.47 (s)	2.08 (d, 1.5)	2.07 (s)	1.94 (s)

Table 32 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP1-TP4

Position	$\begin{gathered} \text { TP1 } \\ \delta_{\mathrm{C}}(\mathrm{C}-\text { Type }) \end{gathered}$	$\begin{gathered} \text { TP2 } \\ \delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type}) \end{gathered}$	$\begin{gathered} \text { TP3 } \\ \delta_{\mathrm{C}} \text { (C-Type) } \end{gathered}$	$\begin{gathered} \text { TP4 } \\ \delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type}) \end{gathered}$
1	130.1 (C)	143.0 (C)	134.5 (C)	149.4 (C)
2	126.2 (CH)	134.1 (CH)	119.9 (CH)	113.3 (CH)
3	119.1 (CH)	132.0 (CH)	162.2 (C)	165.3 (C)
4	142.2 (C)	132.5 (C)	133.2 (C)	131.1 (C)
4 a	126.9 (C)	145.3 (C)	146.6 (C)	132.9 (C)
5	125.6 (CH)	138.0 (CH)	139.1 (CH)	137.4 (CH)
6	125.1 (C)	135.0 (C)	135.3 (C)	136.6 (C)
7	152.1 (C)	182.0 (C)	182.8 (C)	182.5 (C)
8	106.9 (CH)	182.8(C)	180.0 (C)	178.7 (C)
8 a	133.1 (C)	129.3 (C)	122.7 (C)	122.4 (C)
9	$19.5\left(\mathrm{CH}_{3}\right)$	$22.8\left(\mathrm{CH}_{3}\right)$	23.3 ($\left.\mathrm{CH}_{3}\right)$	$23.6\left(\mathrm{CH}_{3}\right)$
10	28.4 (CH)	28.3 (CH)	26.8 (CH)	34.5 (CH)
11	$23.7\left(\mathrm{CH}_{3}\right)$	$23.7\left(\mathrm{CH}_{3}\right)$	$21.2\left(\mathrm{CH}_{3}\right)$	$80.0\left(\mathrm{CH}_{2}\right)$
12	$23.7\left(\mathrm{CH}_{3}\right)$	$23.7\left(\mathrm{CH}_{3}\right)$	$21.2\left(\mathrm{CH}_{3}\right)$	$21.9\left(\mathrm{CH}_{3}\right)$
13	16.8 ($\left.\mathrm{CH}_{3}\right)$	$16.0\left(\mathrm{CH}_{3}\right)$	$15.9\left(\mathrm{CH}_{3}\right)$	$15.7\left(\mathrm{CH}_{3}\right)$

2.3.2.5 Compound TP5

TP5 was isolated as a yellow solid. IR spectrum (Figure 57) exhibited the characteristic absorption of carbonyl groups at 1642 and $1597 \mathrm{~cm}^{-1}$ and hydroxyl group at $3328 \mathrm{~cm}^{-1}$. The UV spectrum (Figure 56) showed absorption maxima at 213, 274, 301 and 358 nm . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 33, Figure 58 and 59) of TP5 were similar to those of TP4 except for the absence of a proton at $\delta 7.11$ ($s, \mathrm{H}-5$) in the quinone ring of TP4, and the presence of the hydroxyl group at $\delta 7.75$ whose showed HMBC correlations with carbonyl carbon at $\delta 180.6$ (C-8), $\delta 117.7$ (C6) and $\delta 153.8$ (C-7), indicating that hydroxyl group was placed at C-7. In addition, the correlation of methyl protons at $\delta 2.40$ (Me-13) with the carbonyl carbon at δ 186.3 indicated the location of the second carbonyl carbon at C-5. These data established TP5 to be p-naphthoquinone which was assigned to thespesone (Puckhaber et al., 2004).

Selected HMBC correlations of TP5

Table $33{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP5

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		146.0	C	
2	$6.82(s)$	116.2	CH	$3,4,9$
3		165.7	C	
4		134.2	C	
4 a		131.2	C	
5		186.3	C	
6		117.7	C	
7		153.8	C	
8		180.6	C	
8 a		120.7	C	
9	$2.72(s)$	23.9	CH_{3}	$1,2,8 \mathrm{a}$
10	$4.14(d q u i n t, 2.4,6.9)$	37.1	CH^{2}	11
11	$4.41(d d, 4.4,2.4)$	80.5	CH_{2}	$3,4,10,12$
	$4.62(t, 8.4)$			
12	$1.29(d, 6.9)$	19.8	CH_{3}	$4,10,11$
13	$2.40(s)$	8.4	CH_{3}	$5,6,7$
$7-\mathrm{OH}$	$7.75(s)$		$6,7,8$	

Table 34 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP5 and thespesone

Position	TP5	thespesone $^{\boldsymbol{a}}$
	δ_{C}	δ_{C}
1	146.0	146.0
2	116.2	116.2
3	165.7	165.6
4	134.2	134.2
4 a	131.2	131.1

Table 34 (Continued)

Position	$\mathbf{T P 5}$	thespesone a
	δ_{C}	δ_{C}
5	186.3	186.3
6	117.7	117.7
7	153.8	153.8
8	180.6	180.5
9	23.9	23.9
10	37.1	37.1
11	80.5	80.4
12	19.8	19.7
13	8.4	8.4

${ }^{a}$ recorded in CDCl_{3}

2.3.2.6 Compound TP6

TP6 was obtained as a yellow solid. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 35, Figures $\mathbf{6 2}$ and 63) of TP6 were comparable to those of TP3. The differences were found as the presence of the methylene proton signals at $\delta 2.50(d d$, $14.7,1.8 \mathrm{~Hz})$ and $2.81(d d, 14.7,6.6 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 46.1$, an olefinic methine proton signal at $\delta 7.55(d, 1.5 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 132.5$ and a methane proton at $\delta 3.57$ (dquint, $1.8,6.6 \mathrm{~Hz}$); δ_{c} 28.1 in TP6 instead of two aromatic proton signals in TP3. Besides the ${ }^{1} \mathrm{H}$ NMR signal of Me-9 of TP6 was shown as a doublet at $\delta 1.18(d, 6.6 \mathrm{~Hz})$ instead of a singlet signal at $\delta 2.58$ as in TP3. In the HMBC experiment a methine proton at δ 3.57 showed correlations with $\delta 200.1$ (C-3), $\delta 144.7$ (C-8), $\delta 135.3$ (C-4a) and δ 123.0 (C-8a). A methine proton of an isopropyl group at $\delta 3.42$ also showed HMBC correlation with $\delta 200.1$ (C-3), thus supporting a carbonyl carbon of C-3. By comparison of the spectral data of TP6 with those of mansonone S (Tiew et al., 2003), therefore TP6 was identified as mansonane S.

Table $35{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP6

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1	$3.57($ dquint, 1.8, 6.6)	28.1	C	$3,4 \mathrm{a}, 8,8 \mathrm{a}$
2	$2.50(d d, 14.7,1.8)$	46.1	CH_{2}	$1,3,4,8 \mathrm{a}, 9$
	$2.81(d d, 14.7,6.6)$			
3		200.1	C	
4		150.2	C	
4 a		135.3	C	
5	$7.55(d, 1.5)$	132.5	CH	$4,4 \mathrm{a}, 8 \mathrm{a}, 13$
6		136.1	C	
7		180.8	C	
8		144.7	C	
8 a		123.0	C	
9	1.18 (d, 6.6)	20.5	CH_{3}	$2,8 \mathrm{a}$
10	$3.42(h e p t, 6.9)$	28.5	CH_{2}	$3,4 \mathrm{a}, 11,12$
11	$1.28(d, 6.9)$	21.0	CH_{3}	$4,10,12$
12	$1.38(d, 6.9)$	22.8	CH_{3}	$4,10,11$
13	$2.07(s)$	16.2	CH_{3}	$5,6,7$

Table 36 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP6 and mansonone S

position	TP6		mansonone S	
	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	δ_{C}	$\boldsymbol{\delta}_{\mathrm{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$
	$3.57($ dquint, 1.8, 6.6)	28.1	$3.55(\mathrm{~m})$	28.0
2	$2.50(d d, 14.7,1.8)$	46.1	$2.50(d, 15.0)$	46.0
	$2.81(d d, 14.7,6.6)$		$2.80(d d, 14.7,6.4)$	
3		200.1		200.0
4		150.2		150.2
4 a		135.3		135.3

Table 36 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP6 and mansonone S

position	TP6		mansonone S	
	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$	$\boldsymbol{\delta}_{\mathbf{H}}\left(\boldsymbol{m u l t},, \boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$
5	$7.55(d, 1.5)$	132.5	$7.55(s)$	132.4
6		136.1		136.1
7		180.8		180.8
8		144.7		144.6
8 a		123.0		123.0
9	$1.18(d, 6.6)$	20.5	$1.28(d, 7.0)$	20.5
10	$3.42($ hept, 6.9$)$	28.5	$3.45(m)$	28.5
11	$1.28(d, 6.9)$	21.0	$1.20(d, 7.3)$	21.0
12	$1.38(d, 6.9)$	22.8	$1.38(d, 7.0)$	22.7
13	$2.07(s)$	16.2	$2.13(s)$	16.2

2.3.2.7 Compound TP7

TP7 was isolated as reddish brown solid, which was recrystallized from MeOH- $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3: 7 \mathrm{v} / \mathrm{v})$. Comparison of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR data (Table 37, Figures 66 and 67) suggested that TP7 is closely related to TP6, except for the olefinic proton signal on the quinone ring at $\delta 7.55(d, 1.5)$ and one of methyl proton signal of the isopropyl group at $1.38(d, 6.9)$ were absent in TP7, being replaced instead by oxymethylene proton resonance at $\delta 4.09(1 \mathrm{H}, d d, J=10.8,3.3 \mathrm{~Hz})$ and $4.22(1 \mathrm{H}, d, J=10.8 \mathrm{~Hz}) .{ }^{3} J \mathrm{HMBC}$ correlations between oxymethylene protons $\left(\mathrm{H}_{2}-\right.$ 12) with $\mathrm{C}-5$ (δ 157.1) established the fusion by ether linkage at $\mathrm{C}-5$. X-ray structure of TP7 established its stereochemistry. Therefore, TP7 was identified as 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione (Milbrodt et al., 1997).

Selected HMBC correlations of TP7

X-ray structure of TP7

Table $37{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP7

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathrm{C}}$	DEPT	HMBC
1	$3.54(d q u i n t, 1.8,6.9)$	27.6	CH	$3,4 \mathrm{a}, 8,8 \mathrm{a}$
2	$2.71(d d, 16.2,6.6)$	44.6	CH_{2}	$1,3,4,8 \mathrm{a}, 9$
	$2.53(d d, 16.2,1.8)$			
3		197.1	C	
4		139.5	C	
4 a		131.0	C	
5		157.1	C	
6		115.1	C	
7		181.3	C	
8		143.5	C	
8 a		115.2	C	
9	$1.11(d, 6.9)$	20.7	CH_{3}	$1,2,8 \mathrm{a}$
10	$3.05(d q, 3.3,6.9)$	26.5	CH_{2}	$3,4 \mathrm{a}$
11	$1.09(d, 6.9)$	16.1	CH_{3}	$4,10,12$
12	$4.22(d, 10.8)$	71.9	CH_{2}	$4,10,5$
	$4.09(d d, 10.8,3.3)$			
13	$1.90(s)$	8.0	CH_{3}	$5,6,7$

Table 38 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP7 and 7-hydroxy-
2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione (R)

position	TP7		$\mathbf{R}^{\boldsymbol{a}}$	
	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	δ_{C}	$\boldsymbol{\delta}_{\mathrm{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathbf{H z}}\right)$	δ_{C}
1	$3.54($ dquint, 1.8, 6.9)	27.6	$3.61($ dquint, 1.5, 6.6, 7.1)	27.5
2	$2.71(d d, 16.2,6.6)$	44.6	$2.78(d d, 16.3,6.6)$	44.5
	$2.53(d d, 16.2,1.8)$		$2.60(d d, 16.3,1.5)$	
3		197.1		197.1

Table 38 (Continued)

position	TP7		$\mathbf{R}^{\boldsymbol{a}}$	
	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$	$\boldsymbol{\delta}_{\mathbf{H}}\left(\boldsymbol{m} \mathbf{l t} ., \boldsymbol{J}_{\mathbf{H z}}\right)$	δ_{C}
4		139.5		139.4
4 a		131.0		131.0
5		157.1		157.3
6		115.1		115.0
7		181.3		181.3
8		143.5		143.6
8 a		115.2		115.1
9	$1.11(d, 6.9)$	20.7	$1.19(d, 7.1)$	20.6
10	$3.05(d q, 3.3,6.9)$	26.5	$3.12(d q, 3.5,7.1)$	26.4
11	$1.09(d, 6.9)$	16.1	$1.16(d, 7.1)$	16.2
12	$4.22(d, 10.8)$	71.9	$4.28(d d, 10.5,1.0)$	71.9
	$4.09(d d, 10.8,3.3)$		$4.15(d d, 10.5,3.5)$	
13	$1.90(s)$	8.0	$1.94(s)$	8.0

${ }^{a}$ recorded in CDCl_{3}

2.3.2.8 Compound TP8

TP8 was isolated as a reddish brown solid. The UV (Figure 68) and IR spectra (Figure 69) showed absorption bands similar to those of TP3. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 39, Figures 70 and 71) were comparable to those of TP3 except that a proton H-5 (δ 7.72) on the quinone ring of TP3 disappeared and the methyl signal Me-12 ($\delta 1.43 d, 7.2 \mathrm{~Hz}$) was replaced by oxymethylene protons of TP8 resonating at $\delta 4.41(d, J=10.8 \mathrm{~Hz})$ and $4.29(d d, J=10.8,3.3 \mathrm{~Hz}) .{ }^{3} J \mathrm{HMBC}$ correlations between oxymethylene protons $\left(\mathrm{H}_{2}-12\right)$ with $\mathrm{C}-5(\delta 162.4)$ of the main skeleton established their fusion by ether linkage at C-5. Therefore, TP8 was identified as mansonone H (Kim et al., 1996).

Selected HMBC correlations of TP8

Table $39{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP8

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		128.3	C	
2	$6.74(s)$	119.5	CH	$3,4,8,9$
3		159.7	C	
4		125.4	C	
4 a		128.3	C	
5		162.4	C	
6		115.5	C	
7		181.0	C	
8		180.1	C	
8 a		145.6	C	
9	$2.59(s)$	23.0	CH_{3}	$1,2,8,8 \mathrm{a}$
10	$3.25(d q, 3.3,6.9)$	26.1	CH^{2}	$3,4,4 \mathrm{a}, 11$
11	$1.31(d, 6.9)$	17.2	CH_{3}	$4,10,12$
12	$4.41(d, 10.8)$	72.0	CH_{2}	$4,10,11,5$
	$4.29(d d, 10.8,3.3)$			
13	$1.90(s)$	7.9	CH_{3}	$5,6,7$

Table 40 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP8 and mansonone H

position	TP7		mansonone $\mathbf{H}^{\boldsymbol{a}}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$
1		128.3		148.3
2	6.74 (s)	119.5	6.33 (s)	121.8
3		159.7		156.0
4		125.4		118.9
4 a		128.3		129.4
5		162.4		165.6

Table 40 (Continued)

position	TP7		mansonone H ${ }^{\boldsymbol{a}}$	
	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$	$\boldsymbol{\delta}_{\mathrm{H}}\left(\boldsymbol{m u l t}, \boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$
6		115.5		114.8
7		181.0		180.2
8		180.1		183.2
8 a		145.6		129.2
9	$2.59(s)$	23.0	$2.48(s)$	23.8
10	$3.25(d q, 3.3,6.9)$	26.1	$3.21(m)$	27.5
11	$1.31(d, 6.9)$	17.2	$1.24(d, 7.3)$	17.4
12	$4.41(d, 10.8)$	72.0	$4.40(b r d, 10.3)$	73.8
	$4.29(d d, 10.8,3.3)$		$4.28(d d, 10.3,3.5)$	
13	$1.90(s)$	7.9	$1.85(s)$	7.9

${ }^{a}$ recorded in $\mathrm{CD}_{3} \mathrm{OD}$

2.3.2.9 Compound TP9

TP9 was isolated a reddish brown solid. The UV (Figure 72) and IR spectra (Figure 73) showed absorption bands similar to those of TP8. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP9 (Table 41, Figures 74 and 75) and TP8 (Table, Figure) showed structural similarity, except for the presence of an aromatic proton at $\delta 7.35$ $(d, J=8.1 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 132.6$ in TP9 instead of the hydroxyl group at C-3 ($\delta_{\mathrm{c}} 159.7$) in TP8. This proton was ortho-coupled with an aromatic proton $\mathrm{H}-2$ at $\delta 7.26(d, J=8.1$ Hz). Thus, TP9 was assigned as mansonone E (Kim et al., 1996).

Selected HMBC correlations of TP9

Table $41{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP9

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
1		127.4	C	
2	$7.26(d, 8.1)$	134.9	CH	1,9
3	$7.35(d, 8.1)$	132.6	CH	$4,4 \mathrm{a}, 10$
4		136.9	C	
4 a		126.9	C	
5		162.5	C	
6		116.3	C	
7		180.2	C	
8		182.2	C	
8 a		22.5	C	
9	$2.65(s)$	CH_{3}	$1,2,8 \mathrm{a}$	
10	$3.09(m)$	17.6	CH_{3}	$4,10,12$
11	$1.37(d, 7.2)$	71.5	CH_{2}	4,5
12	$4.41(d d, 10.8,3.9)$			
	$4.23(d d, 10.8,5.1)$	7.8	CH_{3}	$5,6,7$
13	$1.96(s)$			

Table 42 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP9 and mansonone E

position	TP9		mansonone E $^{\boldsymbol{a}}$	
	$\boldsymbol{\delta}_{\mathbf{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$	$\boldsymbol{\delta}_{\mathbf{H}}\left(\boldsymbol{m} \mathbf{m l t} ., \boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$
1		127.4		142.8
2	$7.26(d, 8.1)$	134.9	$7.25(d, 7.8)$	134.9
3	$7.35(d, 8.1)$	132.6	$7.35(d, 7.8)$	132.6
4		136.9		136.9
4 a		126.9		126.8
5		162.5		162.4

Table 42 (Continued)

position	TP9		mansonone E ${ }^{\boldsymbol{a}}$	
	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\delta_{\mathbf{C}}$	$\boldsymbol{\delta}_{\mathbf{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathbf{H z}}\right)$	δ_{C}
6		116.3		116.8
7		180.2		180.2
8		182.2		182.2
8 a		142.9		127.3
9	$2.65(s)$	22.5	$2.63(s)$	22.5
10	$3.09(m)$	31.1	$3.10(m)$	31.3
11	$1.37(d, 7.2)$	17.6	$1.37(d, 6.8)$	17.5
12	$4.41(d d, 10.8,3.9)$	71.5	$4.41(d d, 10.7,3.9)$	71.4
	$4.23(d d, 10.8,5.1)$		$4.23(d d, 10.7,5.1)$	
13	$1.96(s)$	7.8	$1.94(s)$	7.8

${ }^{a}$ recorded in CDCl_{3}

Table 43 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of TP5-TP9

Position	TP5	TP6	TP7	TP8	TP9
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\boldsymbol{\delta}_{\mathrm{H}}\left(\boldsymbol{m u l t} ., \boldsymbol{J}_{\mathrm{Hz}}\right)$	$\delta_{\mathrm{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathrm{Hz}}$)	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.\mathrm{J}_{\mathrm{Hz}}\right)$	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})
1	6.82 (s)	3.57 (dquint, 1.8, 6.6)	3.54 (dquint, 1.8, 6.9)	6.74 (s)	
2		2.50 (dd, 14.7, 1.8)	2.71 (dd, 16.2, 6.6)		7.26 (d, 8.1)
		2.81 (dd, 14.7, 6.6)	2.53 (dd, 16.2, 1.8)		7.35 (d, 8.1)
3		7.55 (d, 1.5)			
4					
4a					
5					
6					
7					
8					
8 a					
9	2.72 (s)	1.18 (d, 6.6)	1.11 (d, 6.9)	2.59 (s)	2.65 (s)
10	4.14 (dquint, 2.4, 6.9)	3.42 (hept, 6.9)	3.05 (dq, 3.3, 6.9)	3.25 (dq, 3.3, 6.9)	3.09 (m)
11	4.41 (dd, 4.4, 2.4)	1.28 (d, 6.9)	1.09 (d, 6.9)	1.31 (d, 6.9)	1.37 (d, 7.2)
	4.62 ($t, 8.4$)				
12	1.29 (d, 6.9)	1.38 (d, 6.9)	4.22 (d, 10.8)	4.41 (d, 10.8)	4.41 (dd, 10.8, 3.9)
			4.09 (dd, 10.8, 3.3)	4.29 (dd, 10.8, 3.3)	4.23 (dd, 10.8, 5.1)
13	2.40 (s)	2.07 (s)	1.90 (s)	1.90 (s)	1.96 (s)
$7-\mathrm{OH}$	7.75 (s)				

Table 44 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of TP5-TP9

Position	TP5	TP6	TP7	TP8	TP9
	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$	$\delta_{\mathbf{C}}$
1	146.0	28.1	27.6	128.3	127.4
2	116.2	46.1	44.6	119.5	134.9
3	165.7	200.1	197.1	159.7	132.6
4	134.2	150.2	139.5	125.4	136.9
4 a	131.2	135.3	131.0	128.3	126.9
5	186.3	132.5	157.1	162.4	162.5
6	117.7	136.1	115.1	115.5	116.3
7	153.8	180.8	181.3	181.0	180.2
8	180.6	144.7	143.5	180.1	182.2
8 a	120.7	123.0	115.2	145.6	142.9
9	23.9	20.5	20.7	23.0	22.5
10	37.1	28.5	26.5	26.1	31.1
11	80.5	21.0	16.1	17.2	17.6
12	19.8	22.8	71.9	72.0	71.5
13	8.4	16.2	8.0	7.9	7.8

2.3.2.10 Compound TP10

TP10 was obtained as a yellow gum with the molecular formula of $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$ on the basis of molecular [M] at $\mathrm{m} / \mathrm{z} 246.1262$ in the HREIMS (calc. 246.1256) . The IR spectrum (Figure 77) of TP10 showed the absorption band of hydroxyl at $3365 \mathrm{~cm}^{-1}$, while the UV spectrum (Figure 76) showed maximum absorptions at 216, 251, 259 (sh), 279 and 289, suggesting a benzofuran chromophore. The ${ }^{1} \mathrm{H}$ NMR spectral data of TP10 (Table 45, Figure 78) showed the characteristic of cadinane sesquiterpenoid skeleton with a benzofuran moiety. Two aromatic protons resonating at $\delta 7.02(1 \mathrm{H}, b r s)$ and $7.10(1 \mathrm{H}, b r s)$ were assigned to $\mathrm{H}-4$ and $\mathrm{H}-2$, respectively, whereas a furan proton appearing at $\delta 7.50(d, J=0.9 \mathrm{~Hz})$ was assigned to H-9. Moreover, one methine proton [$\delta 3.02(d d, J=7.8,3.9 \mathrm{~Hz})$], two oxymethines [$\delta 4.01(d d, \mathrm{~J}=7.8,7.8 \mathrm{~Hz})$ and $4.90(d d, J=7.8,0.9 \mathrm{~Hz})$], one methyl group $(\delta 2.48, \mathrm{~s})$ and one isopropyl moiety $[\delta 1.16(d, J=7.2 \mathrm{~Hz}) ; 1.18(d, J=7.2 \mathrm{~Hz})$ and 2.58 (dsept, $J=7.2,3.9 \mathrm{~Hz}$)] were also observed. The methyl group at $\delta 2.48$ was placed at C-3 because of HMBC correlations to C-2 ($\delta 109.3$) and C-4 ($\delta 121.6$) and the isopropyl group was placed at C-5 due to HMBC correlations of its methine proton $\mathrm{H}-11$ at $\delta 2.58$ with C-4a ($\delta 131.4$), C-5 ($\delta 49.8$) and C-6 ($\delta 75.7$). Finally, the two oxymethine protons at $\delta 4.01$ and 4.90 were assigned to H-6 and H-7, respectively, judging from the allylic coupling $(0.9 \mathrm{~Hz})$ of $\mathrm{H}-9$ with $\mathrm{H}-7$ which was in turn coupled to oxymethine proton H-6 (4.01) in the COSY experiment. The relative stereochemistry at C-5, C-6 and C-7 was assigned by NOESY experiment, in which only the isopropyl group showed cross peak with H-6, indicating that H-6 was on the same side as the isopropyl group but opposite to $\mathrm{H}-5$ and H-7. In addition, the pseudotrans-diaxial coupling (7.8 Hz) of H-6 with H-5 and H-7 also supported the NOESY experiment. Therefore, the relative stereostructure at H-5, H-6 and H-7
should be trans-trans configuration, TP10 was a new compound and designated as populene A (Boonsri et al., 2008).

Selected HMBC correlations of TP10

Table $45{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP10

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathrm{C}}$	DEPT	HMBC
1		153.5	C	
2	$7.10(b r s)$	109.3	CH	$1,4,10$
3		135.8	C	
4	$7.02(b r s)$	121.6	CH	$2,3,8 \mathrm{a}, 10$
4 a		131.4	C	
5	$3.02\left(d d, 7.8,3.9, \mathrm{H}_{\beta}\right)$	49.8	CH	6,7
6	$4.01\left(d d, 7.8,7.8, \mathrm{H}_{\alpha}\right)$	75.7	CH	$4 \mathrm{a}, 5,7,8,11$
7	$4.90\left(d d, 7.8,0.9, \mathrm{H}_{\beta}\right)$	70.5	CH	$5,6,8,8 \mathrm{a}, 9$
8		118.7	C	
8 a		123.7	C	
9	$7.50(d, 0.9)$	138.8	CH	$1,8,8 \mathrm{a}$
10	$2.48(s)$	22.4	CH_{3}	$2,3,4$
11	$2.58(m)$	27.8	CH_{2}	$4 \mathrm{a}, 5,6,12,13$
12	$1.16(d, 7.2)$	20.0	CH_{3}	$5,11,13$
13	$1.18(d, 7.2)$	20.8	CH_{2}	$5,11,12$

2.3.2.11 Compound TP11

TP11 was a yellow solid, and possessed the same formula as TP10 by HREIMS ($\mathrm{m} / \mathrm{z} 246.1255[\mathrm{M}]^{+}, \mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{3}$). The similarity of the mass, IR, UV, ${ }^{1} \mathrm{H}$ and ${ }^{13}$ C NMR spectra (Table 46) of TP10 and TP11 indicated that TP11 was a diastereomer of TP10. The difference was found in the small coupling constant of $\mathrm{H}-$ $6(\delta 4.38, d d, J=3.3,3.3 \mathrm{~Hz})$ in TP11 as compared to that in TP10 $(\delta 4.01, t, J=7.8$ Hz). Moreover, NOESY experiment exhibited cross peaks of H-5 and H-6 and between H-6 and H-7, suggesting their cis orientation. Accordingly, TP11 was a new compound and designated as populene B (Boonsri et al., 2008).

Selected HMBC correlations of TP11

Table $46{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP11

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		153.6	C	
2	$7.14(b r s)$	109.8	CH	$1,4,8 \mathrm{a}, 10$
3		135.7	C	
4	$6.91(b r s)$	124.5	CH	$2,3,8 \mathrm{a}, 10$
4 a		129.8	C	
5	$2.90\left(d d, 8.7,3.3, \mathrm{H}_{\beta}\right)$	53.5	CH	$4,4 \mathrm{a}, 6,7,8 \mathrm{a}, 11$,
				13
6	$4.38\left(d d, 3.3,3.3, \mathrm{H}_{\beta}\right)$	73.4	CH	$4 \mathrm{a}, 8$
7	$5.08\left(m, \mathrm{H}_{\beta}\right)$	65.6	CH	8,9
8		118.2	C	
8 a		123.4	C	
9	$7.57(d, 1.5)$	140.9	CH	1,8
10	$2.48(s)$	22.2	CH_{3}	$2,3,4$
11	$1.63(m)$	31.0	CH^{2}	
12	$1.12(d, 6.6)$	21.3	CH_{3}	$5,11,13$
13	$0.94(d, 6.6)^{a}$	21.6	CH_{2}	$5,11,12$

2.3.2.12 Compound TP12

TP12 was obtained as an orange solid whose molecular formula was determined as $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}_{3}$ by HREIMS (m/z $286.1556[\mathrm{M}+2]^{+}$). The EI mass spectrum was diagnostic, showing the relatively intense $[\mathrm{M}+2])^{+}$characteristic ion peak of ortho-naphthoquinones which was not displayed by para-naphthoquinones (Letcher et al., 1992). The IR spectrum (Figure 85) exhibited the characteristic absorption of carbonyl groups at 1757 and $1698 \mathrm{~cm}^{-1}$. The UV spectrum (Figure 84) showed absorption maxima at 213, 242, 259 and 380 nm . The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 47, Figures 86 and 87) of TP12 were comparable to those of mansonone D (TP4), which was isolated from the dark heartwood of this plant. The differences between these two compounds were found as the additional isopropyl group, which appeared as two methyl singlet signals at $\delta 1.57$ and 1.53 in the ${ }^{1} \mathrm{H}$ NMR spectrum of TP12, whose HMBC correlations to oxygenated quaternary carbon at $\delta 74.9$ (C-14) supported the connection of this group to oxygen. In addition, the correlation of oxymethylene protons at $\delta 3.97$ and $3.79\left(\mathrm{H}_{2}-13\right)$ with $\mathrm{C}-5(\delta 135.8)$ and $\mathrm{C}-14(\delta$ 74.9), of gem-dimethyl with C-6 ($\delta 150.1$) and of an aromatic proton $\mathrm{H}-7(\delta 6.95)$ with $\mathrm{C}-14(\delta 74.9)$, indicated that a pyran moiety was connected to an aromatic ring at $\mathrm{C}-5$ and C-6. The methine proton on C-11 was deduced to be equatorially oriented from the two small vicinal coupling constants $\left(J_{11,13 \beta}=1.2 \mathrm{~Hz}\right.$ and $\left.J_{11,13 \alpha}=2.4 \mathrm{~Hz}\right)$. The relative stereostructure of the trimethylpyran ring was postulated from NOESY cross-peaks of a methylene proton $\mathrm{H}-13 \beta(\delta 3.79)$ with a methyl group at $\delta 1.40$ (Me12) and of $\mathrm{H}-13 \alpha$ ($\delta 3.97$) with a methyl group at $\delta 1.53$ (Me-15). Therefore, TP12 was identified as a new compound and designated as populene C (Boonsri et al., 2008).

Selected HMBC correlations of TP12

Table $47{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP12

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathrm{C}}$	DEPT	HMBC
1		181.7	C	
2		181.6	C	
3		135.8	C	
4	$7.52(d, 1.2)$	137.3	CH	$2,4 \mathrm{a}, 5,10$
4 a		128.4	C	
5		135.8	C	
6		150.1	C	
7	$6.95(s)$	131.2	CH	$5,8 \mathrm{a}, 9,14$
8		142.6	C	
8 a		133.1	C	
9	$2.62(s)$	23.0	CH_{3}	$7,8,8 \mathrm{a}$
10	$2.09(d, 1.2)$	16.0	CH_{3}	$2,3,4$
11	$3.01\left(b r q, 6.9, \mathrm{H}_{\alpha}\right)$	29.9	CH^{2}	
12	$1.40(d, 6.9)$	21.2	CH_{3}	5,13
13	$3.97\left(d d, 11.7,2.4, \mathrm{H}_{\alpha}\right)$	64.9	CH_{2}	$5,11,12,14$
	$3.79\left(d d, 11.7,1.2, \mathrm{H}_{\beta}\right)$			
14		74.9	C	
15	$1.53(s)$	31.3	CH_{3}	$6,14,16$
16	$1.57(s)$	27.8	CH_{3}	$6,14,15$

2.3.2.13 Compound TP13

TP13 was a brown gum and its molecular formula was deduced as $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{O}_{3}$ from the HREIMS (m / z 288.1736, $[\mathrm{M}]^{+}$). The IR spectrum (Figure 89) exhibited OH absorption at $3417 \mathrm{~cm}^{-1}$. The structural assignment was initiated by comparison of the NMR spectra of TP13 with those of TP12. In the ${ }^{1} \mathrm{H}$ NMR spectrum (Table 48, Figure 90), an aromatic proton signal at $\delta 6.95$ and an aromatic methyl at $\delta 2.62$ as found in TP12 were missing in TP13 and the signals of $\mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$ - were instead observed at $\delta 1.04(3 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{H}-9), 3.19(1 \mathrm{H}, b r$ quint, $J=6.9 \mathrm{~Hz}, \mathrm{H}-8), 2.00(1 \mathrm{H}, d, J=15.3 \mathrm{~Hz}, \mathrm{H}-7)$ and $2.36(1 \mathrm{H}, d d, J=15.3,5.1$ $\mathrm{Hz}, \mathrm{H}-7$). This assignment was confirmed by COSY cross-peaks and HMBC correlations of $\mathrm{H}_{2}-7$ to $\mathrm{C}-5(\delta 128.7)$, $\mathrm{C}-6(\delta 132.2)$ and $\mathrm{C}-9(\delta 17.9)$ and of $\mathrm{H}_{3}-9$ to $\mathrm{C}-$ $7(\delta 31.0)$ and $\mathrm{C}-8 \mathrm{a}(\delta 125.2)$. In addition, the replacement of two carbonyl carbons of the quinone ring at $\delta 181.7$ (C-1) and 181.6 (C-2) ppm in TP12 with oxygenated aromatic carbons at $\delta 140.3$ and $\delta 140.9 \mathrm{ppm}$ in TP13 indicated that TP13 was a reduced form of TP12. The relative stereochemistry of $\mathrm{H}-8$ and $\mathrm{H}-11$ were elucidated by NOESY spectrum as shown in Figure 3, which indicated that Me-9 and Me-12 were on the same side of the molecule. Therefore, TP13 was identified as a new compound and designated as populene D (Boonsri et al., 2008).

Selected HMBC correlations of TP13

Figure 3 Populene D with selected NOESY correlations.

Table $48{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP13

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathrm{C}}$	DEPT	HMBC
1		140.3	C	
2		140.9	C	
3		121.0	C	
4	$6.65(s)$	117.0	CH	$4 \mathrm{a}, 5,10$
4 a		125.0	C	
5		128.7	C	
6		132.2	C	
7	$2.00\left(d, 15.3, \mathrm{H}_{\beta}\right)$	31.0	CH_{2}	$5,6,9$
	$2.36\left(d d, 15.3,5.1, \mathrm{H}_{\alpha}\right)$			
8	$3.19\left(b r q u i n t, 6.9, \mathrm{H}_{\alpha}\right)$	25.2	CH^{2}	
8 a		125.2	C	
9	$1.04(d, 6.9)$	17.9	CH_{3}	$7,8,8 \mathrm{a}$
10	$2.25(s)$	15.8	CH_{3}	$2,3,4$
11	$2.68\left(m, \mathrm{H}_{\alpha}\right)$	28.4	CH^{2}	
12	$1.14(d, 6.9)$	17.6	CH_{3}	$5,11,13$
13	$3.90\left(d d, 11.1,3.0, \mathrm{H}_{\alpha}\right)$	65.7	CH_{2}	$5,11,12,14$
	$3.66\left(d d, 11.1,2.4, \mathrm{H}_{\beta}\right)$			
14		75.0	C	
15	$1.26(s)$	23.6	CH_{3}	$6,14,16$
16	$1.41(s)$	27.6	CH_{3}	$6,14,15$

2.3.2.14 Compound TP14

TP14 was obtained as a yellow-brown gum. The molecular formula was established as $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{4}$ on the basis of HREIMS ($\mathrm{m} / \mathrm{z} 262.1210$, $[\mathrm{M}]^{+}$). The ${ }^{13} \mathrm{C}$ NMR (Table 49) showed the presence of 15 resonances, which corresponded by DEPT analysis to three methines (one $s p^{2}$), one methylene, four methyls and seven $s p^{2}$ quaternary carbons including two carbonyl carbons ($\delta_{\mathrm{C}} 167.4$ and 205.8). The ${ }^{1} \mathrm{H}$ NMR (Table 49, Figure 94) and COSY spectra allowed assignment of signals of a dihydrocoumarin moiety at $\delta 1.31(3 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, 4-\mathrm{Me}), 2.72(2 \mathrm{H}, d, J=3.6 \mathrm{~Hz}$, $\left.\mathrm{H}_{2}-3\right), 3.88(1 \mathrm{H}, t q, J=3.6,6.9 \mathrm{~Hz}, \mathrm{H}-4)$, and $7.40(1 \mathrm{H}, s, \mathrm{H}-6)$. This moiety was also supported by the ${ }^{3} \mathrm{~J}$ HMBC correlations between the methine proton $\mathrm{H}-4$ and aromatic carbons C-5 (δ 126.2), $\mathrm{C}-8 \mathrm{a}(\delta 139.2)$ and a lactone carbonyl (δ 167.4). Moreover, the signals of 2-methyl-1-oxopropyl unit [$\delta 3.47(1 \mathrm{H}$, sept, $J=6.9, \mathrm{H}-2$ '), $1.21(3 \mathrm{H}, d, J=$ $\left.6.9 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$ and $1.14,\left(3 \mathrm{H}, d, J=6.9, \mathrm{H}-4^{\prime}\right)$] were also observed in the ${ }^{1} \mathrm{H}$ NMR spectrum whose HMBC correlation between an aromatic proton H-6 ($\delta 7.40$) and C-1' (δ 205.8) supported its connection at C-5 of the dihydrocoumarin moiety. An aromatic methyl at $\delta 2.30$ was attributed to $7-\mathrm{Me}$ due to its HMBC correlation with $\mathrm{C}-6$ (δ 127.8), C-7 ($\delta 123.5$) and C-8 ($\delta 145.4$). Additionally, a downfield carbon chemical shift of C-8 at $\delta 145.4$ indicated its connection to a hydroxyl group. Thus, the structure of TP14 was elucidated to be a new compound and designated as populene E (Boonsri et al., 2008).

Selected HMBC correlations of TP14

Table $49{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP14

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	$\mathbf{H M B C}$
2		167.4	C	
3	$2.72(d, 3.6)$	36.3	CH_{2}	2
4	$3.88(t q, 3.6,6.9)$	27.5	CH	$2,5,8 \mathrm{a}$
4 a		127.9	C	
5		126.2	C	
6	$7.40(s)$	127.8	CH	$4,5,8,8 \mathrm{a}, 7-\mathrm{Me}$,
				1^{\prime}
7		123.5	C	
8		145.4	C	
8 a		2059.2	C	
1^{\prime}		37.2	CH	
2^{\prime}	$3.47(s e p t, 6.9)$	19.0	CH_{3}	$1^{\prime}, 3^{\prime}, 4^{\prime}$
3^{\prime}	$1.21(d, 6.9)$	19.4	CH_{3}	$2^{\prime}, 3^{\prime}$
4^{\prime}	$1.14(d, 6.9)$	20.2	CH_{3}	$3,4,4 \mathrm{a}$
$4-\mathrm{Me}$	$1.31(d, 6.9)$	15.5	CH_{3}	$6,7,8$
$7-\mathrm{Me}$	$2.30(s)$			

2.3.2.15 Compound TP15

TP15 was obtained as a yellow gum. The molecular formula was established as $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4}$ on the basis of HREIMS ($\mathrm{m} / \mathrm{z}, 264.1353$ [M] ${ }^{+}$). The UV (Figure 96) and IR (Figure 97) spectra were similar to those of TP14, but with one carbonyl absorption at $1668 \mathrm{~cm}^{-1}$. The NMR (Table 50, Figures 98 and 99) data were comparable to those of TP14, except for the replacement of a lactone carbonyl (δ $167.4)$ in TP14 with a hemiacetal proton signal of $\mathrm{H}-2$ at $\delta_{\mathrm{H}} 5.65(d d, J=9.0,3.0 \mathrm{~Hz}$; $\delta_{\mathrm{C}} 92.6$) in TP15. The large coupling constant (13.5 Hz) was the characteristic geminal coupling of the methylene protons; $\mathrm{H}-3 \beta(2.07, t d, J=3.0,13.5 \mathrm{~Hz})$ and $\mathrm{H}-$ $3 \alpha(1.87, d d d, J=13.5,9.0,5.1 \mathrm{~Hz}$), while the vicinal coupling constant of 9.0 and 5.1 Hz were the pseudotrans-diaxial coupling of $\mathrm{H}-3 \alpha$ with $\mathrm{H}-2$ and $\mathrm{H}-4$, respectively. This was also in agreement with the multiplicity of $\mathrm{H}-3 \beta$ observed as a triplet of doublet with a large $\left(J_{\mathrm{gem}}=13.5 \mathrm{~Hz}\right)$ and a small $\left(J_{\text {ax-eq }}=3.0 \mathrm{~Hz}\right)$ coupling constants, justifying its syn relationship to H-2 and H-4. TP15 was thus identified as a new compound and designated as populene F (Boonsri et al., 2008).

Selected HMBC correlations of TP15

Table $50{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP15

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
2	$5.65\left(d d, 9.0,3.0, \mathrm{H}_{\beta}\right)$	92.6	CH	$3,4,8 \mathrm{a}$
3	$1.87(d d d, 13.5,9.0,5.1$,	36.6	CH_{2}	$2,4,4 \mathrm{a}, 4-\mathrm{Me}$
	$\left.\mathrm{H}_{\alpha}\right)$			
4	$2.07\left(t d, 3.0,13.5, \mathrm{H}_{\beta}\right)$			
4 a	$3.84\left(m, \mathrm{H}_{\beta}\right)$	26.2	CH	
5		126.3	C	
6	$7.18(s)$	127.1	C	
7		125.0	CH	$4 \mathrm{a}, 8,8 \mathrm{a}, 7-\mathrm{Me}, 1^{\prime}$
8		121.0	C	
8 a		146.2	C	
1^{\prime}		140.0	C	
2^{\prime}	$3.45($ sept, 6.9 $)$	207.1	C	
3^{\prime}	$1.17(d, 6.9)$	37.4	CH^{\prime}	$1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$
4^{\prime}	$1.15(d, 6.9)$	19.1	CH_{3}	$1^{\prime}, 2^{\prime}, 4^{\prime}$
$4-\mathrm{Me}$	$1.25(d, 6.9)$	19.6	CH_{3}	$1^{\prime}, 2^{\prime}, 3^{\prime}$
$7-\mathrm{Me}$	$2.23(s)$	22.3	CH_{3}	$3,4,4 \mathrm{a}$

2.3.2.16 Compound TP16

TP16 was obtained as a yellow gum. The molecular formula of TP16 was established as $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$ as determined by HREIMS ($\mathrm{m} / \mathrm{z} 278.1196$, $[\mathrm{M}]^{+}$). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra (Table 51, Figures 102 and 103) were similar to those of TP15 except that in TP16 an aromatic proton H-6 at $\delta 7.18$ in TP15 disappeared and a methyl signal Me-4' was replaced by oxymethylene protons resonating at $\delta 4.43$ $\left(1 \mathrm{H}, d d, J=11.1,5.1 \mathrm{~Hz}, \mathrm{H}^{\prime} 4^{\prime}\right)$ and $4.03\left(1 \mathrm{H}, d d, J=11.1,11.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right)$ in TP16. The ${ }^{3} J$ HMBC correlation between oxymethylene protons $\left(\mathrm{H}_{2}-4\right)$ with C-6 (δ 157.7) of an aromatic moiety established their fusion by an ether linkage at C-6. The stereochemistry of $\mathrm{H}-2^{\prime}$ was deduced to be equatorially oriented from the small coupling constant ($J_{2^{\prime}, 4^{\prime} \text { ax }}=5.1 \mathrm{~Hz}$). Thus, TP16 was concluded to be a new compound and designated as populene G (Boonsri et al., 2008).

Selected HMBC correlations of TP16

Table $51{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP16

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\delta_{\mathbf{C}}$	DEPT	HMBC
2	$5.56\left(d d, 9.9,2.7, \mathrm{H}_{\beta}\right)$	92.2	CH	$3,8 \mathrm{a}$
3	$1.84\left(d d d, 13.5,9.9,5.4, \mathrm{H}_{\alpha}\right)$	36.8	CH_{2}	$2,4,4 \mathrm{a}, 4-\mathrm{Me}$
4	$2.04\left(t d, 2.7,13.5, \mathrm{H}_{\beta}\right)$			
4	$4.09\left(m, \mathrm{H}_{\beta}\right)$	27.2	CH	$2,4 \mathrm{a}, 8 \mathrm{a}, 4-\mathrm{Me}$
4 a		125.1	C	
5		109.4	C	
6		157.7	C	
7		110.4	C	
8		149.3	C	
8 a		134.6	C	
1^{\prime}		195.3	C	
2^{\prime}	$2.75(m)$	11.2	CH^{\prime}	$1^{\prime}, 3^{\prime}, 4^{\prime}$
3^{\prime}	$1.16(d, 6.9)$	CH_{3}	$1^{\prime}, 2^{\prime}, 4^{\prime}$	
4^{\prime}	$4.03(d d, 11.1,11.1)$	71.6	CH_{2}	$1^{\prime}, 2^{\prime}, 3^{\prime}, 6$
$4-\mathrm{Me}$	$1.28(d, 6.9)$	22.4	CH_{3}	$3,4,4 \mathrm{a}$
$7-\mathrm{Me}$	$2.09(s)$	8.1	CH_{3}	$6,7,8$

2.3.2.17 Compound TP17

TP17, isolated as a yellow gum, had the molecular formula $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{O}_{5}$ as determined by HREIMS ($\mathrm{m} / \mathrm{z} 278.1159,[\mathrm{M}]^{+}$). The similar mass and NMR spectra of TP16 (Table 51, Figure 102 and 103) and TP17 (Table 52, Figures 106 and 107) indicated diastereomers. The main spectroscopic differences were the downfield shift of H-2 in TP17 at $\delta 5.81$ and the smaller coupling constants ($d d, J=7.5,4.5 \mathrm{~Hz}$) as compared to those of TP16 at $\delta 5.56(d d, J=9.9,2.7 \mathrm{~Hz})$. The coupling constant J_{2-3} of 7.5 and 4.5 Hz indicated $J_{\mathrm{eq}-\mathrm{ax}}$ and $J_{\mathrm{eq}-\mathrm{eq}}$, therefore suggesting α-orientation of H-2. Accordingly, TP17 was elucidated to be a new compound and designated as populene H (Boonsri et al., 2008).

Selected HMBC correlations of TP17

Table $52{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP17

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
2	$5.81\left(d d, 7.5,4,5, \mathrm{H}_{\alpha}\right)$	95.9	CH	8 a
3	$2.00(m)$	36.1	CH_{2}	$2,4,4 \mathrm{a}, 4-\mathrm{Me}$
4	$4.10(m)$	27.1	CH	$4-\mathrm{Me}$
4 a		127.2	C	
5		111.4	C	
6		158.7	C	
7		110.6	C	
8		149.9	C	
8 a		134.9	C	
1^{\prime}		196.1	C	
2^{\prime}	$2.75(m)$	42.1	CH^{\prime}	$1^{\prime}, 3^{\prime}, 4^{\prime}$
3^{\prime}	$1.17(d, 6.5)$	11.8	CH_{3}	$1^{\prime}, 2^{\prime}, 4^{\prime}$
4^{\prime}	$4.05(d d, 11.5,11.5)$	72.6	CH_{2}	$1^{\prime}, 2^{\prime}, 3^{\prime}, 6$
	$4.45(d d, 11.5,5.5)$			
$4-\mathrm{Me}$	$1.32(d, 7.0)$	23.0	CH_{3}	$3,4 \mathrm{a}$
$7-\mathrm{Me}$	$2.11(s)$	9.0	CH_{3}	$6,7,8$

2.3.2.18 Compound TP18

TP18 was isolated as a yellow solid. The UV spectrum exhibited the absorption bands at 237, 276, 290 and 379 nm . The IR spectrum indicated the presence of hydroxyl functionality ($3410 \mathrm{~cm}^{-1}$). The ${ }^{1} \mathrm{H}$ NMR spectrum of TP18 (Table 54, Figures 110 and 111), the low field chemical shift of the aldehyde proton at $\delta 10.98(s, \mathrm{H}-9)$ indicated chelation to an ortho hydroxyl proton which appeared at $\delta 14.50(s, 7-\mathrm{OH})$. Two hydroxyl groups appearing at $\delta 6.19$ and 6.81 were located at $\mathrm{C}-6$ and $\mathrm{C}-1$, respectively. An aromatic proton resonating at $\delta 7.71(s)$ was assigned to H-4. Signals of a methyl group at $\delta 2.13(s)$ and an isopropyl moiety $[\delta 1.48(d, J=$ $7.2 \mathrm{~Hz}, 6 \mathrm{H})$ and $3.82(m)$] were also observed. The methyl group at $\delta 2.13$ was placed at C-3 because of HMBC correlations to C-2 (δ 116.7) and C-3 ($\delta 134.0$) and the isopropyl group was placed at $\mathrm{C}-5$ due to HMBC correlations of its methine proton $\mathrm{H}-10$ at $\delta 3.82$ with $\mathrm{C}-4 \mathrm{a}(\delta 129.5)$, $\mathrm{C}-5(\delta 134.4)$ and $\mathrm{C}-6(\delta 143.0)$. Since the ${ }^{13} \mathrm{C}$ NMR spectrum exhibited only 15 signals and its ${ }^{1} \mathrm{H}$ NMR spectrum also showed signals corresponding to a monomer. TP18 was inferred to be a symmetrical dimer. A quaternary sp^{2} carbon resonating at $\delta 116.7$ in the ${ }^{13} \mathrm{C}$ NMR was assigned to $\mathrm{C}-2$. Thus this compound was deduced to be a symmetrical dimer which connected at C-2-C-2'. Therefore, TP18 was identified as (+)-gossypol (Meyers et al., 1998).

Selected HMBC correlations of TP18

Table $53{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP18

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathrm{C}}$	DEPT	HMBC
1		150.7	C	
2		116.7	C	
3		134.0	C	
4	$7.71(s)$	117.8	CH	$1,3,5,8 \mathrm{a}$
4 a		129.5	C	
5		134.4	C	
6		143.0	C	
7		155.7	C	
8		111.6	C	
8 a		114.8	C	
9	$10.98(s)$	199.1	CH	$6,7,8$
10	$2.13(s)$	20.3	CH_{3}	2,3
11	$3.82(m)$	27.9	CH	$4 \mathrm{a}, 5,6,12,13$
12	$1.48(d, 7.2)$	20.2	CH_{3}	$5,11,13$
13	$1.48(d, 7.2)$	20.2	CH_{3}	$5,11,12$
$1-\mathrm{OH}$	$6.81(s)$			$1,2,8 \mathrm{a}$
$6-\mathrm{OH}$	$6.19(s)$		$5,6,7$	
$7-\mathrm{OH}$	$14.50(s)$		$6,7,8$	

Table 54 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of TP18 and gossypol

position	TP9		gossypol ${ }^{\text {a }}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
1		150.7		150.8
2		116.7		116.5
3		134.0		134.0
4	7.71 (s)	117.8	7.77 (s)	118.2
4a		129.5		129.8
5		134.4		134.4
6		143.0		143.4
7		155.7		156.0
8		111.6		111.9
8 a		114.8		114.9
9	10.98 (s)	199.1	11.11 (s)	199.5
10	2.13 (s)	20.3	2.14 (s)	20.5
11	3.82 (m)	27.9	3.88 (septet, 6.9)	28.1
12	1.48 (d, 7.2)	20.2	1.54 (d, 7.0)	20.5
13	1.48 (d, 7.2)	20.2	1.54 (d, 7.0)	20.5
$1-\mathrm{OH}$	6.81 (s)		6.39 (s)	
6-OH	6.19 (s)		5.85 (s)	
$7-\mathrm{OH}$	14.50 (s)		15.11 (s)	

${ }^{a}$ recorded in CDCl_{3}

2.3.2.19 Compound TP19

TP19 was obtained as a yellow solid. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data (Table 55, Figures 114 and 115) of TP19 were similar to those of TP18 except for the replacement of a hydroxyl proton at $\delta 6.19(s)$ in TP18 with the methoxyl group at $\delta 4.00$ whose HMBC correlation with the quaternary carbon at $\delta 147.7$ (C-6), indicated that the methoxyl group was attached to C-6. Thus, the structure of TP19 was concluded to be (+)-6, 6^{\prime}-dimethoxygossypol.

Selected HMBC correlations of TP19

Table $55{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of TP19

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		150.1	C	
2		117.3	C	
3		133.1	C	
4	$7.83(s)$	119.2	CH	$3,4 \mathrm{a}, 5,8 \mathrm{a}$
4 a		129.4	C	
5		144.5	C	
6		147.7	C	
7		161.1	C	
8		113.3	C	
8 a		116.9	C	
9	$11.15(s)$	199.2	CH	$6,7,8$
10	$2.16(s)$	20.3	CH_{3}	$2,3,4$
11	$4.00(m)$	21.9	CH^{2}	
12	$1.56(d, 6.9)$	21.7	CH_{3}	$5,11,13$
13	$1.55(d, 6.9)$		$5,11,12$	
$1-\mathrm{OH}$	$6.81(s)$		CH_{3}	6
$6-\mathrm{OMe}$	$4.00(s)$			$6,7,8$
$7-\mathrm{OH}$	$14.56(s)$			

2.3.2 Biological activities of the isolated compounds from the roots of \boldsymbol{T}. populnea

All of the isolated compounds except for TP2, TP3, TP10, TP11, TP14 and TP17 for which insufficient materials were available, were evaluated for cytotoxicity against four human cancer cell lines; breast cancer (MCF-7), cervical cancer (HeLa), colon cancer (HT-29) and oral cavity cancer (KB). They were also tested for antibacterial activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Enterococcus faecalis, Salmonella typhi, Shigella sonei and Pseudomonas aeruginosa). The results are summarized in Table 56. (+)-Gossypol (TP18) exhibited potent cytotoxic activity against HeLa and KB cell lines, with IC_{50} values 0.08 and $0.04 \mu \mathrm{~g} / \mathrm{mL}$, respectively. Mansonone E (TP9) showed good activity against all four cancer cell lines, especially MCF-7 ($\mathrm{IC}_{50} 0.05$ $\mu \mathrm{g} / \mathrm{mL}$). Populene D (TP13) and mansonone D (TP4) possessed strong inhibitory activity against HeLa and MCF-7, respectively, whereas populene C (TP12) exhibited moderate inhibitory activity against all four cell lines. Antibacterial activity against B.subtilis was found for 7-hydroxycadalene (TP1). (+)-6,6'-methoxygossypol (TP19) was weakly active against E. faecalis, B.subtilis and S. aureus, whereas (+)-gossypol (TP18) exhibited moderate activity against B.subtilis and S. aureus. None of the compounds were active against S. typhi, S. sonei or P. aeruginosa. Compounds TP5, TP8, TP15 and TP16 showed no cytotoxic or antibacterial activity.

Table 56 Cytotoxic and antibacterial activities of compounds isolated from T. populnea

Compounds	Cytotoxicity against human cancer cell lines, $\mathrm{IC}_{50}(\mu \mathrm{~g} / \mathrm{mL})$				Antibacterial activity, MIC $(\mu \mathrm{g} / \mathrm{mL})$		
	MCF-7	HeLa	HT-29	KB	B. subtilis	S. aureus	E. faecalis
	>5	>5	>5	>5	0.59	-	-
TP4	0.80	2.80	>5	4.90	2.34	-	-
TP6	>5	>5	>5	>5	$-{ }^{-}$	-	-
TP7	>5	>5	>5	>5	-	-	-
TP9	0.05	0.55	0.18	0.40	4.69	-	-
TP12	2.35	3.40	2.90	3.00	4.69	-	-
TP13	1.85	0.95	2.37	3.10	4.69	-	-
TP18	NT^{a}	0.08	>5	0.04	1.17	1.17	-
$\mathbf{T P 1 9}$	4.00	>5	3.00	>5	2.34	4.69	1.17

${ }^{a} \mathrm{NT}=$ not tested. ${ }^{b}=$ inactive $(>10 \mu \mathrm{~g} / \mathrm{mL})$

CHAPTER 3.1 INTRODUCTION

3.1.1 Introduction

Artocarpus integer (Thunb.) Merr. is a plant belonging to the family Moracae. This family is distributed in the tropical and subtropical regions of Asia, comprises some 1400 species devided among 60 genera (Hakim et al., 2005). In Thailand only 8 genera are found, from Artocarpus genus only 14 species are found (Smitinand 2001).
A. integer is a large tree with dense crown, reaching a hight of 15 m or more; the cylindrical stem is rounded at the ends; bark grey-brown to dark brown with warty excresences; blaze pale pink to yellow, exuding a copious milky latex when cut. Leaves obovate to elliptic, $5-25 \mathrm{c}$ long and $2.5-12 \mathrm{~cm}$ wide, with cuneate to round base; margin entire; pointed tip and 6-10 pairs of lateral veins curvingforward; leavstalk $1-3 \mathrm{~cm}$ long. Fruits cylindrical to almost globose; $20-35 \times 10-15 \mathrm{~cm}$; yellowish or brown to orange-green.

Figure 4 Parts of Artocarpus integer

3.1.2 Review of Literatures

Chemical constituents isolated from Artocarpus genus were summarized in Table 57. The literature survey was done from SciFinder Scholar database and the constituents could be classified into groups, such as benzofuran, chalcone, dihydrochalcones, flavonoids, neolignan, stilbenoids, steroids and triterpenoids.

Table 57 Compounds from plants of Artocarpus genus

$\mathbf{a}=$ Benzofuran	$\mathbf{b}=$ Chalcone	$\mathbf{c}=$ Dihydrochalcones
$\mathbf{d}=$ Flavonoids	$\mathbf{e}=$ Neolignan	$\mathbf{f}=$ Stilbenoids
$\mathbf{g}=$ Steroids	$\mathbf{h}=$ Triterpenoids	

Scientific name	Investigated Part	Compound	Bibliography
A. altilis	Bud cover	AC-5-1, 1 c Cycloaltilisin 6, 8c Cycloaltilisin 7, 7d	Patil et al., 2002
	Leaves	1-(2,4-Dihydroxyphenyl)-3- [8-hydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-yl]-1propanone, 2 c 1-(2,4-Dihydroxyphenyl)-3-\{4-hydroxy-6,6,9-trimethyl-6a,7,8,10a-atetrahydro-6H-dibenzo[b,d]pyran-5-yl\}-1propanone, 9 c 2-Geranyl-2', 3,4,4',tetrahydroxydihydrochalcon e, $\mathbf{6 c}$	Wang et al., 2007

Table 57 (Continued)

Scientific name	Investigated Part	Compound	Bibliography
A.altilis	Leaves	1-(2,4-Dihydroxyphenyl)-3- [3,4-dihydro-3,8-dihydroxy- 2-methyl-2-(4-methyl-3- pentenyl)-2H-1-benzopyran- 5-yl]-1-propanone, 3c 1-(2,4-Dihydroxyphenyl)-3- [8-hydroxy-2-methyl-2- (3,4-epoxy-4-methyl-1- pentenyl)-2H-1-benzopyran- 5-yl]-1-propanone, 4c 1-(2,4-Dihydroxyphenyl)-3- [8-hydroxy-2-methyl-2-(4- hydrox-4-methyl-2- pentenyl)-2H-1-benzopyran- 5-yl]-1-propanone, 5c 2-[6-Hydroxy-3,7- dimetylocta-2(E),7-dienyl]- $2^{\prime}, 3,4,4^{\prime}$ - tetrahydroxydihydrochalcon e, 7c 2'-Geranyl-3',4',7- trihydroxyflavanone, 8d Cycloaltilisin 6, 8c	Wang et al., 2007
A. chama	Roots	Artochamin A, 52d Artochamin B, 50d Artochamin C, 25d Artochamin D, 26d	Wang et al., 2004

Table 57 (continued)

Scientific name	Investigated Part	Compound	Bibliography
A. chama	Roots	Artochamin E, 36d Artocarpin, 18d Cycloartocarpin A, 58d Cudraflavone A, 51d Artonin A, 48d Artonin U, 14d Cycloartobiloxanthone, 46d Artonin E, 20d $3^{\prime}, 4^{\prime}, 5,7-T e t e r a h y d r o x y-8-$ (methylbut-2-enyl)flavone, 15d	Wang et al., 2004
A. champeden	Bark	Cyclochampedol, 55d Cycloeucalenol, 1 g Glutinol, 1h Cycloartenone, 2g 24-Methyllenecycloartenone, 3g β-Sitosterol, 4g	Achmad et al., 1996
	Heartwood	Artoindonesianin Q, 29d Artoindonesianin R, 30d Artoindonesianin S, 37d Artoindonesianin T, 38d Artoindonesianin U, 35d Artoindonesianin V, 41d 5'-Hydroxycudraflavone A, 53d	Syah et al., 2002 Syah et al., 2004

Table 57 (continued)

Scientific name	Investigated Part	Compound	Bibliography
A. champeden	Heartwood	Cyclocommunin, 62d Artonin B, 59d Artoindonesianin A-2, 56d Artoindonesianin A-3, 40d Artonin B, 59d Heterophyllin, 31d Cudraflavone C, 19d Artoindonesianin Q, 29d Artoindonesianin R, 30d Artoindonesianin T, 38d	Syah et al., 2004 Syah et al., 2006
	Roots	Artoindonesianin A, 43d Artoindonesianin B, 11d Artonin A, 48d	Hakim et al., 1999
A.communis	Roots	Artocommunol CA, 16d Artocommunol CB, 60d Artocommunol CC, 61d Artocommunol CD, 24d Artocommunol CE, 17d Cyclomorusin, 54d	Chan et al., 2003
	Heartwood	$3^{\prime \prime}, 3^{\prime \prime}-$ Dimethylpyrano[$\left.3^{\prime}, 4^{\prime}\right] 2,4$, 2'-trihydroxychalcone, 1b Isobacachalcone, 2b Morachalcone A, 3b	Han et al., 2006

Table 57 (continued)

Scientific name	Investigate d Part	Compound	Bibliography
A.communis	Heartwood	Gemichalcone B, 4b Gemichalcone C, 5b Artocarpin, 18d Cudraflavone C, 19d Licoflavone C, 23d (-)-Cycloartocarpin, 57d (-)-Cudraflavone A, 51d (2S)-Euchrenone $\mathrm{a}_{7}, 9 \mathrm{~d}$	$\begin{gathered} \hline \text { Han et al., } \\ 2006 \end{gathered}$
A.dadah	Bark	3-(γ, γ-Dimethylallyl)resveratrol, $\mathbf{5 f}$ 5-(γ, γ-Dimethylallyl)oxyresveratrol, $\mathbf{6 f}$ 3-(2,3-Dihydroxy-3-methylbutyl)resveratrol, $\mathbf{4 f}$ 3-(γ, γ-Dimethylpropenyl)moracin M, 3a Oxyresveratrol, 1f (+)-Epicatechin, 4d Afzelechin-3-O- α-Lrhamnopyranoside, $\mathbf{6 d}$	Su et al., 2002 Su et al., 2002
	Twigs	Dadahol A, 1e Dadahol B, 2e Oxyresveratrol, 1f (+)-Epicatechin, 4d Afzelechin-3-O- α-L- rhamnopyranoside, $\mathbf{6 d}$	Su et al., 2002

Table 57 (continued)

Scientific name	Investigated Part	Compound	Bibliography
A.dadah	Twigs	Resveratrol, 3f Steppogenin, 2d Moracin M, 1a Isogemichalcone B, $\mathbf{6 b}$ Gemichalcone B, 5b Norartocarpetin, 12d Engelet, 3d	Su et al., 2002 Su et al., 2002
A.elasticus	Root bark	Artelastoheterol, 33d Artelasticinol, 28d Cycloartelastoxanthone, 45d Artelastoxanthone, 39d Cycloartelastoxanthediol, 47d Artonin F, 49d Cycloartobiloxanthone, 46d Cyclomorusin, 54d	Ko et al., 2005
A.fretessi	Bark+Roots	Artoindonesianin X, 6a Artoindonesianin Y, 5a Mulberrin, 13d Norartocarpetin, 12d (\pm)-Catechin, 1d (-)-Afzelechin-3-O- rhamnoside, 6d Mulberrochromene, 21d Artonin A, 48d	Soekamto et al., 2003 Soekamto et al., 2003

Table 57 (continued)

Scientific name	Investigated Part	Compound	Bibliography
A.fretessi	Bark+Roots	(-)-Afzelechin, 5d	Soekamto et al., 2003
A. gomezianus	Bark	Artoindonesianin N, 2f Artoindonesianin O, 2a Oxyresveratrol, $\mathbf{1 f}$	Hakim et al., 2002
A. lakoocha	Roots	Lakoochin A, 4a Lakoochin B, 7a	Puntumchai et al., 2004
A. lanceifolius	Bark	Artoindonesianin P, 42d Artobiloxanthone, 44d Cycloartobiloxanthone, 46d	Hakim et al., 2002
A. nobilis	Leaves	2',4'-Trihydroxy-3'geranylchalcone, $\mathbf{7 b}$ $2^{\prime}, 4^{\prime}, 4$-Trihydroxy- $3^{\prime}-[6-$ hydroxy-3,7-dimethyl-2(E),7-octadienyl]chalcone, $\mathbf{8 b}$ 2',4',4-Trihydroxy-3'-[2-hydroxy-7-methyl-3-methylene-6octaenyl]chalcone, 9b $2^{\prime}, 3,4,4^{\prime}$-Tetrahydroxy- $\mathbf{3}^{\prime}-$ geanyloxychalcone, 10b	Jayasinghe et al., 2004

Table 57 (continued)

Scientific name	Investigated Part	Compound	Bibliography		
nobilis				\quad Leaves	2',3,4,4'-Tetrahydroxy-3'-
:---					
[6-hydroxy-3,7-dimethyl-					

Structure

a: Benzofuran

1a: Moracin M
2a: Artoindonesianin O

3a: 3-(γ, γ-Dimethylpropenyl)moracin M

4a: Lakoochin A

5a: Artoindonesianin Y

6a: Artoindonesianin X

7a: Lakochin B

b: Chalcone

1b: $3^{\prime \prime}, 3^{\prime \prime}$-Dimethylpyrano[3',4']-
2, 4, 2'-trihydroxychalcone

2b: $\mathrm{R}=\mathrm{H}$: Isobacachalcone
3b: $\mathrm{R}=\mathrm{OH}$: Morachalcone A

4b: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$; Gemichalcone B
5b: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{OCH}_{3}$; Gemichalcone C

7b: 2',4',4-Trihydroxy-3'-
geranylchalcone

8b: 2',4',4-Trihydroxy-3'-[6-
hydroxy-3,7-dimethyl-2(E),7-
octadienyl]chalcone

9b: 2',4',4-Trihydroxy-3'-[2-hydroxy-7-methyl-3-methylene-6-octaenyl]chalcone

10b: $2^{\prime}, 3,4,4^{\prime}$-Tetrahydroxy-3'geanyloxychalcone

11b: $2^{\prime}, 3,4,4^{\prime}$-Tetrahydroxy- $\mathbf{3}^{\prime}-$ [6-hydroxy-3,7-dimethyl-2(E),7octadienyl]chalcone

c: Dihydrochalcone

1c: AC-5-1

2c: 1-(2,4-Dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-yl]-1propanone

3c: 1-(2,4-Dihydroxyphenyl)-3-[3,4-dihydro-3,8-dihydroxy-2-methyl-2-(4-methyl-3-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone

4c: 1-(2,4-Dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(3,4-epoxy-4-methyl-1-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone

5c:1-(2,4-Dihydroxyphenyl)-3-[8-hydroxy-2-methyl-2-(4-hydrox-4-methyl-2-pentenyl)-2H-1-benzopyran-5-yl]-1-propanone

6c: 2-Geranyl-2', 3,4,4', -tetrahydroxydihydrochalcone

7c: 2-[6-Hydroxy-3,7-dimetylocta-2(E),7-dienyl]-2',3,4,4'tetrahydroxydihydrochalcone

d: Flavonoids

1d: (\pm)-Catachin

3d: Engelet

8c: Cycloaltilisin 6

9c: 1-(2,4-Dihydroxyphenyl)-3-\{4-hydroxy-6,6,9-trimethyl-6a,7,8,10a-tetrahydro-6H-dibenzo $[b, d]$ pyran- $5-\mathrm{yl}\}-$ 1-propanone,

2d: Steppogenin

4d: (+)-Epicatechin

5d: (-)-Afzelechin

6d: Afzelechin-3-O- α-L-
rhamnopyranoside

8d: 2'-Geranyl-3', 4',7trihydroxyflavanone

9d: (2S)-Euchrenone a_{7}

11d: Artoindonesianin B

10d: Sepicanin A

12d: Norartocarpetin

13d: Mulberrin

16d: Artocommunol CA

18d: $\mathrm{R}=\mathrm{CH}_{3}$: Artocarpin
19d: $\mathrm{R}=\mathrm{H}$: Cudraflavone C

14d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; Artonin U
15d: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H} ; 3^{\prime}, 4^{\prime}, 5,7-$
Teterahydroxy-8-(methylbut-2enyl)flavones

17d: Artocommunol CE

20d: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{OH}$; Artonin E
21d: $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$; Mulberrochromene

22d: $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OH}$;
Artonin E 2'-methylether

23d: Licoflavone C

25d: Artochamin C

27d: Artonin V 2'-methylether

24d: Artocommunol CD

26d: Artochamin D

28d: Artelasticinol

29d: $\mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$: Artoindonesianin Q
30d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{CH}_{3}$: Artoindonesianin R

31d: Hetrophyllin

33d: Artelastoheterol

35d: Artoindonesianin U

32d: Dihydroisoartonin E 2'methylether

34d: Isoartonin E 2'-methylether

36d: Artochamin E

37d: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$: Artoindonesianin S
38d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$: Artoindonesianin T

39d: Artelastoxanthone

40d: Artoindonesianin A-3

42d: Artoindonesianin P

44d: Artibiloxanthone

45d: Cycloartelastoxanthone

46d: Cycloartobiloxanthone

47d: Cycloartelastoxanthendiol

48d: Artonin A

50d: Artonin B

52d: Artochamin A

54d: Cyclomorusin

49d: Artonin F

51d: (-)-Cudraflavone A

53d: 5'-Hydroxycudraflavone A

55d: $\mathrm{R}=\mathrm{H} ; \quad$ Cyclochampedol
56d: $\mathrm{R}=\mathrm{CH}_{3}$; Artoindonesianin

57d: $\mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$; (-)-Cycloartocarpin
58d: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$; Cycloartocarpin A
59d: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{CH}_{3}$; Artonin B

60d: Artocommunol CB

61d: Artocommunol CC

62d: Cyclocommunin

e: Neolignans

1e: $\mathrm{R}=\mathrm{OCH}_{3}$; Dadahol A
2e: R = H; Dadahol B
f: Stilbenoids

1f: Oxyresveratrol

2f: Artoindonesianin N

3f: Resveratrol

4f: 3-(2,3-Dihydroxy-3methylbutyl)resveratrol

5f: $\mathrm{R}=\mathrm{H} ; 3$ - $(\gamma, \gamma$-Dimethylallyl)resveratrol
6f: $\mathrm{R}=\mathrm{OH} ; 5-(\gamma, \gamma$-Dimethylallyl)oxyresveratrol

g: Steroids

1g: Cycloeucalenol

3g: 24-Methylenecycloartenone

2g: Cycloartenone

$\mathbf{4 g}$: β-Sitosterol

h: Triterpenoids

1h: Glutinol

3.1.3 The objectives

The goals of this work were to investigate the chemical constituents from the roots of Artocarpus integer and to evaluate the antibacterial and cytotoxic activities of the isolated compounds.

CHAPTER 3.2

EXPERIMENTAL

3.2.1 Instruments and Chemicals

Melting point was recorded in ${ }^{\circ} \mathrm{C}$ on an Electrothermal 9100 melting point apparatus. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S100 spectrophotometer (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in methanol solution. The infrared spectra were recoded using FTS 165 FT-IR Perkin Elmer spectrophotometer. Nuclear Magnetic resonance spectra were recorded using Bruker Avance 300 MHz Bruker FTNMR Ultra Shield ${ }^{\mathrm{TM}}$. Spectra were recorded in deuterochloroform, deuteroacetone and deuteromethanol and were recorded as δ value in ppm downfield from TMS (Internal standard $\delta 0.00$). Optical rotation was measured in MeOH solution at the sodium D line (590 nm) on an AUTOPOL ${ }^{\mathrm{R}}$ II automatic polarimeter. The EI-MS and HREIMS mass spectra were obtained from a Micromass LCT mass spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel $60 \mathrm{~F}_{254}$ (Merck) and silica gel 100 , respectively. Precoated plates of silica gel $60 \mathrm{GF}_{254}$ were used for analytical purposes.

3.2.2 Plant Material

The roots of A.integer were collected from Sa Toon Province, Thailand. The plant was identified by Prof. Puangpen Sirirugsa.

3.2.3 Extraction and investigation of the crude dichloromethane extract from the roots of \boldsymbol{A}. integer

Air-dried roots (3.6 kg) were chopped and extracted with dichloromethane at room temperature for three days. Evaporation of the solvent under reduced pressure furnished a crude dichloromethane extract (25.2 g).

Scheme 4 Extraction and isolation of compounds AI1-AI4 from the root of A.integer

The crude dichloromethane extract was subjected to quick column chromatography (QCC) on silica gel with solvent mixtures of increasing polarity [hexane to EtOAc] to yield seven fractions (A-G). Fraction C was purified by QCC using a gradient of EtOAc-hexane to afford five subfractions $\left(\mathrm{A}_{1}-\mathrm{A}_{5}\right)$. Fractions A_{3} was further purified by QCC using a gradient of EtOAc-hexane as a mobile phase to give AI4 (4.4 mg). Fraction D was separated by QCC with a gradient system of increasing EtOAc in hexane to afford seven subfractions $\left(D_{1}-D_{7}\right)$. Subfraction D_{3} was further purified by QCC using a gradient of EtOAc-hexane to give AI1 (7.0 mg). Fraction F was subjected to repeated column chromatography over silica gel to afford AI2 (30.6 mg) and AI3 (8.1 mg).

Compound AI1: yellow powder, mp 234-236 ${ }^{\circ} \mathrm{C}$; $\mathrm{UV}(\mathrm{MeOH}) \lambda_{\text {max }}(\log \varepsilon)$ 296 (2.93), 386 (2.78) nm; IR (KBr) $\nu_{\max } 3368,1676,1602,1515 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectra see Table 58.

Compound AI2: yellow powder; mp $190-192{ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon)$ 296 (3.88), 332 (3.79) nm; IR (KBr) $v_{\text {max }} 3234,1654,1611,1506,1354 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectra see Table $\mathbf{6 0}$.

Compound AI3: yellow solid; mp 238-239 ${ }^{\circ} \mathrm{C}$; UV (MeOH) $\lambda_{\text {max }}(\log \varepsilon) 290$ (3.75), 377 (4.15) nm; IR (KBr) $v_{\max } 3449,1648,1596,1492,1440,1367 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectra see Table 62.

Compound AI4: yellow-brown viscous oil; UV (MeOH) $\lambda_{\max }(\log \varepsilon) 290$ (3.59) nm; IR (KBr) $\nu_{\max } 3200,1603,1476,1148 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ spectra see Table 64.

3.2.4 BIOASSAY

3.2.4.1 Antibacteria assay

The isolated compounds from the roots of A . integer were tested against both Gram-positive and Gram-negative bacteria: Bacillus subtilis, Staphylococcus aureus TISTR517, , Enterococcus faecalis TISTR459, Methicillinresistant Staphylococcus aureus (MRSA) ATCC43300, Vancomycin-Resistant Enterococcus faecalis (VRE) ATCC 51299, Streptococcus faecalis, Pseudomonas aeruginosa, Shigella sonei and Salmonella typhi. The microorganisms were obtained from the culture collections, Department of Industrial Biotechnology and Department of Pharmacognosy and Botany, PSU, except for the TISTR and ATCC strains, which were obtained from Microbial Research Center (MIRCEN), Bangkok, Thailand. The
antibacterial assay employed was the same as described in Boonsri et al. (Boonsri et al., 2006). Vancomycin, which was used as a standard, showed antibacterial activity of $0.078 \mu \mathrm{~g} / \mathrm{mL}$.

3.2.4.2 Antifungal assay

Candida albicans was obtained from Department of Pharmacognosy and Botany, PSU. The antifungal amployed was the same as described in Boonsri et al. (Boonsri et al., 2006). Amphotericin B was used as a standard.

CHAPTER 3.3 RESULTS AND DISCUSSION

3.3.1 Structural determination of compounds isolated from the roots of A. integer

The crude hexane extract from the roots of A. integer was subjected to a succession of chromatographic procedures, including silica gel column chromatography and preparative TLC to afford four known compounds, AI1-AI4. All structures were elucidated using 1D and 2D NMR spectroscopic data and comparison with those reported in the literatures.

3.3.1.1 CompoundAI1

AI1 was isolated as a yellow powder. The IR spectrum (Figure 117) of AI1 exhibited strong absorption bands due to hydroxyl ($3368 \mathrm{~cm}^{-1}$) and a conjugated carbonyl groups ($1676 \mathrm{~cm}^{-1}$). The UV absorption bands (296 and 386 nm) (Figure 116) were typical of a flavone chromophore (Syah et al., 2004). The ${ }^{1} \mathrm{H}$ NMR spectrum of AI1 (Table 58, Figure 118) contained resonances for one chelated [δ $13.20(1 \mathrm{H}, s, 5-\mathrm{OH})]$ and a free hydroxyl groups $\left[\delta 6.61\left(1 \mathrm{H}, s, 3^{\prime}-\mathrm{OH}\right] . \mathrm{A}^{1} \mathrm{H}\right.$ NMR signal of a $1,2,4,5,6$-pentasubstituted benzene ring resonating at $\delta 6.26(1 \mathrm{H}, s)$.was assigned to $\mathrm{H}-3^{\prime}$ because of its HMBC correlations to $\mathrm{C}-1^{\prime}(\delta 103.4), \mathrm{C}-2^{\prime}(\delta 149.8)$, $\mathrm{C}-4^{\prime}(\delta 145.1)$, $\mathrm{C}-5^{\prime}(\delta 138.0)$. The signals of a geranyl moiety [$\delta 1.48$ ($3 \mathrm{H}, s, \mathrm{H}-27$), $1.55(3 \mathrm{H}, s, \mathrm{H}-28), 1.74(3 \mathrm{H}, s, \mathrm{H}-22), 1.95$ ($2 \mathrm{H}, m, \mathrm{H}-23$), 2.06 ($2 \mathrm{H}, m, \mathrm{H}-24$), 3.37 $(2 \mathrm{H}, m, \mathrm{H}-19), 4.99(1 \mathrm{H}, m, \mathrm{H}-25)$ and $5.00(1 \mathrm{H}, m, \mathrm{H}-20)]$ and a dimethylchromene ring $[\delta 6.67(1 \mathrm{H}, d, J=10.0 \mathrm{~Hz}, \mathrm{H}-14), 5.56(1 \mathrm{H}, d, J=10.0 \mathrm{~Hz}, \mathrm{H}-14), 1.40(6 \mathrm{H}, s$, $\mathrm{H}-17$ and $\mathrm{H}-18)]$ were also observed. The geranyl group was placed at $\mathrm{C}-8$ due to HMBC correlations of a benzylic allylic methylene protons ($\delta 3.37, \mathrm{H}-19$) of the geranyl group which showed cross peak with C-7 ($\delta 156.3$), C-8 ($\delta 106.9$) and C-8a (δ 153.3). The dimethylchromene group was connected to ring A at C-6 and C-7 as evidenced by HMBC correlations of the vinylic proton at $\delta 6.67(\mathrm{H}-14)$ with $\mathrm{C}-5$ (δ 154.6) and C-7 (δ 156.3). Furthermore, signals of an isoprenyl group which comprised of protons resonating at $\delta 1.28(3 \mathrm{H}, s, \mathrm{H}-12), 1.60(3 \mathrm{H}, s, \mathrm{H}-13), 3.37(1 \mathrm{H}$, $m, \mathrm{H}-10), 2.37(1 \mathrm{H}, t, J=15.2 \mathrm{~Hz}, \mathrm{H}-9)$ and $3.19(1 \mathrm{H}, d d, J=15.2,7.2 \mathrm{~Hz}, \mathrm{H}-9)$
were displayed. In the HMBC spectrum, the methylene signal at $\delta 2.37(1 \mathrm{H}, \mathrm{H}-9)$ and $3.19(1 \mathrm{H}, \mathrm{H}-9)$ showed cross peaks with carbonyl carbon at $\delta 180.8(\mathrm{C}-4)$, oxygenated aromatic carbons at $\delta 159.9(\mathrm{C}-2)$ and quaternary aromatic carbon $\delta 131.2\left(\mathrm{C}-6^{\prime}\right)$ and methyl signals at $\delta 1.28(3 \mathrm{H}, \mathrm{H}-12)$ and $1.60(3 \mathrm{H}, \mathrm{H}-13)$ with methine carbon at δ 46.3 (C-10), indicating that a prenyl group was connected to the $\mathrm{C}-3$ position and cyclized to form a cyclohexene ring at $\mathrm{C}-6^{\prime}$ of ring B. In addition, the $s p^{3}$ oxyquatery carbon at $\delta 94.9$ of a prenyl group was observed, whose downfield signal suggested that a connection to oxygen atom and the dihydrobenzofuran was formed. Thus, AI1 was identified as artoindonesianin A (Hakim et al., 1999).

Selected HMBC Corelation of AII

Table $58{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AII

position	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	DEPT	HMBC
2		159.9	C	
3		111.9	C	
4		180.8	C	
4 a		104.6	C	
5		154.6	C	
6		105.7	C	
7		156.3	C	
8		106.9	C	
8 a		153.3	C	
9	3.19 (dd, 15.2, 7.2)	20.0	CH_{2}	$2,3,4,10,11,6^{\prime}$
	$2.37(t, 15.2)$			
10	3.37 (m)	46.3	CH	
11		94.9	C	
12	1.28 (s)	22.7	CH_{3}	10, 11, 13
13	1.60 (s)	28.1	CH_{3}	10, 11, 12
14	6.67 (d, 10.0)	115.9	CH	5, 7, 16
15	5.56 (d, 10.0)	128.0	CH	6,16
16		77.9		
17	1.40 (s)	28.2	CH_{3}	15, 16, 18
18	1.40 (s)	28.2	CH_{3}	15, 16, 17
19	3.37 (m)	21.3	CH_{2}	7, 8, 8a, 20, 21
20	5.00 (m)	121.0	CH	19, 22, 23
21		138.0	C	
22	1.74 (s)	16.6	CH_{3}	20, 21, 23
23	1.95 (m)	39.5	CH_{2}	20, 21, 24
24	2.06 (m)	26.4	CH_{2}	23
25	4.99 (m)	124.2	CH	23
26		131.5	C	

Table 58 (Continued)

position	$\boldsymbol{\delta}_{\mathbf{H}}$ (mult., $\boldsymbol{J}_{\mathbf{H z}}$)	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
27	$1.48(s)$	17.7	CH_{3}	25,26
28	$1.55(s)$	25.6	CH_{3}	25,26
1^{\prime}		103.4	C	
2^{\prime}		149.8	C	
3^{\prime}	$6.26(s)$	104.6	CH	$1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}$
4^{\prime}		145.1	C	
5^{\prime}		138.0	C	
6^{\prime}		131.2	C	
$5-\mathrm{OH}$	$13.20(s)$			$4 \mathrm{a}, 5$,
$2^{\prime}-\mathrm{OH}$	$6.61(s)$		$2^{\prime}, 3^{\prime}$	

Table 59 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI1 and artoindonesianin
A

position	AI1		Artoindonesianin A a	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}
		159.9		160.7
3		111.9		110.9
4		180.8		180.2
4 a		104.6		103.8
5		154.6		153.5
6		105.7		104.5
7		156.3		155.6
8		106.9		107.0
8 a		153.3		152.9

Table 59 (Continued)

position	AI1		Artoindonesianin A^{a}	
	$\delta_{\mathrm{H}}\left(m u l t ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(m u l t ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
9	$\begin{aligned} & 3.19(d d, 15.2,7.2) \\ & 2.37(t, 15.2) \end{aligned}$	20.0	$\begin{aligned} & 3.10(d d, 15.2,7.1) \\ & 2.27(t, 15.2) \end{aligned}$	19.5
10	3.37 (m)	46.3	3.34 (dd, 15.2, 7.1)	46.2
11		94.9		92.4
12	1.28 (s)	22.7	1.23 (s)	22.6
13	1.60 (s)	28.1	1.58 (s)	27.9
14	6.67 (d, 10.0)	115.9	6.57 (d, 10.0)	115.1
15	5.56 (d, 10.0)	128.0	5.74 (d, 10.0)	128.5
16		77.9		77.5
17	1.40 (s)	28.2	1.39 (s)	27.8
18	1.40 (s)	28.2	1.38 (s)	27.7
19	3.37 (m)	21.3	3.55 (dd, 13.8, 8.0)	20.9
			3.35 (partly obscured)	
20	5.00 (m)	121.0	5.26 ($t, 7.0$)	122.3
21		138.0		134.1
22	1.74 (s)	16.6	1.79 (s)	16.1
23	1.95 (m)	39.5	1.97 (m)	39.3
24	2.06 (m)	26.4	1.88 (m)	26.1
25	4.99 (m)	124.2	4.98 (t, 7.3)	124.1
26		131.5		130.6
27	1.55 (s)	25.6	1.53 (s)	25.4
28	1.48 (s)	17.7	1.45 (s)	17.5
1^{\prime}		103.4		103.1
2^{\prime}		149.8		151.1
3^{\prime}	6.26 (s)	104.6	6.28 (s)	104.0
4^{\prime}		145.1		140.5
5'		138.0		136.2

Table 59 (Continued)

position	AI1		Artoindonesianin A a	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}
6^{\prime}		131.2		132.3
$5-\mathrm{OH}$	$13.2(s)$		$13.7(s)$	
$2^{\prime}-\mathrm{OH}$	$6.61(s)$		$9.83(s)$	

${ }^{a}$ recorded in DMSO- d_{6}

3.3.1.2 Compound AI2

AI2 was isolated as yellow powder. The UV (Figure 120) and IR (Figure 121) spectra were similar to those of AI1. The ${ }^{1} \mathrm{H}$ NMR (Table 60, Figure 122) of AI2 disclosed the presence of meta-coupled aromatic proton signals at $\delta 6.36$ and $6.35(d, J=2.4 \mathrm{~Hz})$ for the proton $\mathrm{H}-6$ and $\mathrm{H}-8$, respectively, two singlets at δ 6.57 and 6.89 were assigned for $\mathrm{H}-3^{\prime}$ and $\mathrm{H}-6^{\prime}$, respectively, of ring B of a flavones which was $1,2,4,5$-tetrasubstituted benzene ring. A down field signal at $\delta 13.20$ indicated a chelated hydroxyl group. A set of signals was assigned to an isoprenyl side chain $[\delta 1.67(s), 1.52(s), 3.15(d, 6.8 \mathrm{~Hz})$ and $5.19(m)]$. In addition, two singlets at $\delta 3.84$ and 3.94 were attributed to two methoxyl groups at C-7 and C-4, respectively due to the HMBC correlations of the former with the carbon at $\delta 165.5$ (C-7) and the latter with the carbon at $\delta 149.4$ (C-4').Two broad singlets resonating at $\delta 5.30$ and 5.32 were assigned for the additional hydroxyl groups in ring B . The HMBC correlations also showed connectivities between methylene protons at $\delta 3.15$ $\left(\mathrm{H}_{2}-9\right)$ and the carbons at $\delta 157.8(\mathrm{C}-2), 121.4(\mathrm{C}-3)$ and 182.1 (C-4), confirming the position of the isoprenyl group at C-3. Accordingly, AI2 was characterized as Artoindonesianin Q (Syah et al., 2002).

Selected HMBC correlations of AI2

Table $60{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI2

position	$\delta_{\mathrm{H}}\left(m u l t ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	DEPT	HMBC
2		157.8	C	
3		121.4	C	
4		182.1	C	
4 a		105.0	C	
5		162.1	C	
6	6.36 (d, 2.4)	98.1	CH	4a, 5, 7, 8
7		165.5	C	
8	6.35 (d, 2.4)	92.0	CH	$4 \mathrm{a}, 6,7,8 \mathrm{a}$
8 a		157.8	C	
9	3.15 (d, 6.8)	24.4	CH_{2}	2, 3, 4, 10, 11
10	5.19 (br m)	120.6	CH	12, 13
11		133.8	C	
12	1.67 (s)	25.7	CH_{2}	10, 11, 13
13	1.52 (s)	17.7	CH_{3}	10, 11, 12
1^{\prime}		111.3	C	
2^{\prime}		147.6	C	
3^{\prime}	6.57 (s)	100.4	CH	$1^{\prime}, 2^{\prime}, 4^{\prime}, 5^{\prime}$
4^{\prime}		149.4	C	
5^{\prime}		139.5	C	
6^{\prime}	6.89 (s)	114.8	C	$2^{\prime}, 4^{\prime}, 5^{\prime}$
$5-\mathrm{OH}$	12.80 (s)			4a, 5, 6
7-OMe	3.84 (s)	55.8	CH_{3}	7
2'-OH	5.32 (s)			3^{\prime}
4^{\prime}-OMe	3.94 (s)	56.1	CH_{3}	4^{\prime}
5^{\prime}-OH	5.30 (s)			$4^{\prime}, 5^{\prime}, 6^{\prime}$

Table 61 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI2 and
Artoindonesianin Q

position	AI2		Artoindonesianin Q^{a}	
	$\delta_{\mathrm{H}}\left(m u l t ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(m u l t ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
2		157.8		162.0
3		121.4		121.9
4		182.1		183.1
4a		105.0		105.8
5		162.1		162.9
6	6.36 (d, 2.4)	98.1	6.29 (d, 2.3)	98.3
7		165.5		166.4
8	6.35 (d, 2.4)	92.0	6.45 (d, 2.3)	92.4
8 a		157.8		159.1
9	3.15 (d, 6.8)	24.4	3.13 (br d, 7.1)	24.6
10	5.19 (br m)	120.6	5.13 (t sept, 7.1, 1.4)	122.4
11		133.8		132.2
12	1.67 (s)	25.7	1.57 (s)	25.8
13	1.52 (s)	17.7	1.45 (s)	17.6
$1{ }^{\prime}$		111.3		112.2
2^{\prime}		147.6		149.2
3^{\prime}	6.57 (s)	100.4	6.67 (s)	101.4
4^{\prime}		149.4		151.1
5^{\prime}		139.5		140.5
6^{\prime}	6.89 (s)	114.8	6.84 (s)	116.5
$5-\mathrm{OH}$	12.80 (s)		13.10 (s)	
7-OMe	3.84 (s)	55.8	3.88 (s)	56.3
2'-OH	5.32 (s)		8.29 (s)	
4'-OMe	3.94 (s)	56.1	3.87 (s)	56.2
5'-OH	5.30 (s)		7.41 (s)	

[^3]
3.3.1.3 Compound AI3

AI3 was isolated as a yellow solid. The UV (Figure 124) and IR (Figure 125) spectra were similar to those of AI2. The NMR (Table 62, Figures 16 and 127) data were comparable to those of AI2. The differences were shown in ring B and the isoprenyl side chain of AI2. In ring B of AI3, only a siglet aromatic proton was shown at $\delta 6.47$ ($\mathrm{H}-3^{\prime}$) corresponding to 1,2,4,5,6-pentasubstituted benzene instead of two singlet aromatic protons H-3' and H-6' of AI2. An isoprenyl group in AI2 was replaced by the set of signals at $\delta 1.82(\mathrm{~s}), 2.55(d d, J=16.0,6.8 \mathrm{~Hz}), 3.41$ ($d d, J=16.0,1.2 \mathrm{~Hz}$), $4.00(b r d, J=6.8 \mathrm{~Hz}), 4.30(b r d, J=1.2 \mathrm{~Hz}$) and $4.71(b r d, J$ $=1.2 \mathrm{~Hz}$), assignable to a $-\mathrm{CH}_{2}-\mathrm{CH}-\mathrm{C}\left(\mathrm{CH}_{3}\right)=\mathrm{CH}_{2}$ in AI3. ${ }^{3} J$ HMBC correlation between a methine proton at $\delta 4.00(\mathrm{H}-10)$ and $\mathrm{C}-1^{\prime}(105.1), \mathrm{C}-5^{\prime}$ (136.4) and $\mathrm{C}-6^{\prime}$ (126.0) of ring B established their fusion at $C-10$ and $C-6$ to form dihydrobenzoxanthone-type flavones. Therefore, AI3 was identified as Artoindonesianin S (Syah et al., 2002).

Selected HMBC correlations of AI3

Table $62{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI3

position	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$	DEPT	HMBC
2		159.7	C	
3		111.8	C	
4		180.2	C	
4 a		105.0	C	
5		162.3	C	
6	6.39 (d, 2.4)	98.2	CH	4a, 5, 7, 8
7		165.1	C	
8	6.38 (d, 2.4)	92.2	CH	4a, 6, 7, 8a
8 a		155.7	C	
9	2.55 (dd, 16.0, 6.8)	21.7	CH_{2}	$2,3,4,10,11,6^{\prime}$
	3.41 (dd, 16.0, 1.2)			
10	4.00 (br d, 6.8)	36.5	CH	$3,9,11,12,1^{\prime}, 5^{\prime}, 6^{\prime}$
11		144.4	C	
12	4.30 ($b r d, 1.2)$	111.7	CH_{2}	10, 11, 13
	4.71 (br d, 1.2)			
13	1.82 (s)	21.7	CH_{3}	10, 11, 12
1^{\prime}		105.1	C	
2^{\prime}		150.0	C	
3^{\prime}	6.47 (s)	99.1	CH	$1^{\prime}, 2^{\prime}, 5^{\prime}$
4^{\prime}		150.8	C	
5^{\prime}		136.4	C	
6^{\prime}		126.0	C	
$5-\mathrm{OH}$	13.0 (s)			4a, 5, 6
7 -OMe	3.87 (s)	55.9	CH_{3}	7
2'-OH	7.66 (s)			$1^{\prime}, 2^{\prime}, 3^{\prime}$
4'-OMe	3.95 (s)	56.2	CH_{3}	4^{\prime}
5'-OH	5.38 (s)			$4^{\prime}, 5^{\prime}, 6^{\prime}$

Table 63 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI3 and
Artoindonesianin S

position	AI3		Artoindonesianin S^{a}	
	$\delta_{\mathrm{H}}\left(\right.$ mult., J_{Hz})	$\delta_{\text {C }}$	$\delta_{\mathrm{H}}\left(m u l t ., J_{\mathrm{Hz}}\right)$	$\delta_{\text {C }}$
2		159.7		161.4
3		111.8		112.1
4		180.2		181.0
4 a		105.0		105.5
5		162.3		162.8
6	6.39 (d, 2.4)	98.2	6.30 (d, 2.3)	98.6
7		165.1		166.0
8	$6.38(d, 2.4)$	92.2	6.69 (d, 2.3)	93.1
8 a		155.7		157.5
9	2.55 (dd, 16.0, 6.8)	21.7	2.45 (dd, 16.0, 6.6)	22.2
	3.41 (dd, 16.0, 1.2)		3.40 (dd, 16.0, 1.7)	
10	4.00 ($b r d, 6.8$)	36.5	4.17 (br d, 6.8)	37.6
11		144.4		145.3
12	4.30 (br d, 1.2)	111.7	4.27 (br s)	111.7
	4.71 (br d, 1.2)		4.64 (br s)	
13	1.82 (s)	21.7	1.77 (br m)	21.9
1^{\prime}		105.1		106.8
2^{\prime}		150.0		151.0
3^{\prime}	6.47 (s)	99.1	6.56 (s)	100.5
4^{\prime}		150.8		152.6
5^{\prime}		136.4		137.6
6^{\prime}		126.0		127.9
$5-\mathrm{OH}$	13.00 (s)		13.18 (s)	
7-OMe	3.87 (s)	55.9	3.90 (s)	56.3
2'-OH	7.66 (s)		7.47 (s)	

Table 63 (Continued)

position	AI3		${\text { Artoindonesianin }{ }^{a}}^{$$}$	
	$\delta_{\mathrm{H}}\left(\right.$ mult.,$\left.J_{\mathrm{Hz}}\right)$	δ_{C}	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}
$4^{\prime}-\mathrm{OMe}$	$3.95(s)$	56.2	$3.91(s)$	56.3
$5^{\prime}-\mathrm{OH}$	$5.38(s)$		$8.20(s)$	

[^4]
3.3.1.4 Compound AI4

AI4 was isolated as yellow-brown viscous oil. The ${ }^{1} \mathrm{H}$ NMR spectrum (Table 64, Figures 130 and 131) showed the presence of a singlet of two methyls at δ $1.20(6 \mathrm{H}, s)$. Two terminal olefinic protons resonated as doublet of doublet at $\delta 4.97$ $(1 \mathrm{H}, d d, J=10.4,1.2 \mathrm{~Hz})$ and $5.01(1 \mathrm{H}, d d, J=17.6,1.2 \mathrm{~Hz})$ and an olefinic proton as doublet of doublet at $\delta 5.90(1 \mathrm{H}, d d, J=17.6,10.4 \mathrm{~Hz})$ could be assigned to an ABC pattern $\left(-\mathrm{CH}=\mathrm{CH}_{2}\right)$. Two doublets of two olefinic methine protons resonating at $\delta 6.06$ and 6.26 (each $1 \mathrm{H}, d, J=16.4 \mathrm{~Hz}$) was assigned to a trans double bond. Two doublets in a AA' BB^{\prime} pattern resonating at $\delta 6.77(2 \mathrm{H}, d, J=8.4 \mathrm{~Hz})$ and $7.25(2 \mathrm{H}, d$, $J=8.4 \mathrm{~Hz}$), were assigned to a p-disubstituted benzene ring. The singlet at $\delta 4.82$ $(1 \mathrm{H}, b r s)$ could be assigned to a phenolic hydroxyl group which was placed at C-4 because of its HMBC correlations to $\mathrm{C}-3$ ($\delta 115.4$), $\mathrm{C}-4$ ($\delta 154.6$) and $\mathrm{C}-5$ ($\delta 115.4$). Accordingly, AI4 was characterized as corylifolin (Sun et al., 1998).

Selected HMBC correlations of AI4

Table $64{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT and HMBC spectral data of AI4

position	$\boldsymbol{\delta}_{\mathbf{H}}\left(\right.$ mult., $\left.\boldsymbol{J}_{\mathbf{H z}}\right)$	$\boldsymbol{\delta}_{\mathbf{C}}$	DEPT	HMBC
1		130.8	C	
2	$7.25(d, 8.4)$	127.4	CH	$4,6,7$
3	$6.77(d, 8.4)$	115.4	CH	$1,4,5$
4		154.6	C	
5	$6.77(d, 8.4)$	115.4	CH	$1,4,5$
6	$7.25(d, 8.4)$	127.4	CH	$4,6,7$
7	$6.26(d, 16.4)$	125.6	CH	$2,6,8,9$
8	$6.06(d, 16.4)$	136.9	CH	$1,7,9,12,13$
9		39.3	C	
10	$5.90(d, 17.6,10.4)$	147.1	CH	$8,9,12,13$
11	$4.97(d d, 10.8,1.2)$	110.8	CH_{2}	9,10
	$5.01(d d, 17.6,1.2)$			
12	$1.20(s)$	27.0	CH_{3}	$8,9,10$
13	$1.20(s)$	27.0	CH_{3}	$8,9,10$
$4-\mathrm{OH}$	$4.82(s)$		$3,4,5$	

Table 65 Comparison of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of AI4 and corylifolin

position	AI4		corylifolin a	
	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}	$\delta_{\mathrm{H}}\left(\right.$ mult., $\left.J_{\mathrm{Hz}}\right)$	δ_{C}
1		130.8		131.8
2	$7.25(d, 8.4)$	127.4	$7.23(d, 8.6)$	128.0
3	$6.77(d, 8.4)$	115.4	$6.76(d, 8.6)$	115.8
4		154.6		153.1
5	$6.77(d, 8.4)$	115.4	$6.76(d, 8.6)$	115.8
6	$7.25(d, 8.4)$	127.4	$7.23(d, 8.6)$	128.0
7	$6.26(d, 16.4)$	125.6	$6.27(d, 16.3)$	135.6
8	$6.06(d, 16.4)$	136.9	$6.08(d, 16.3)$	127.6
9		39.3		43.0
10	$5.90(d d, 17.6,10.4)$	147.1	$5.90(d d, 17.4,10.7)$	147.3
11	$4.97(d d, 10.8,1.2)$	110.8	$5.00(m)$	111.9
	$5.01(d d, 17.6,1.2)$			
12	$1.20(s)$	27.0	$1.17(s)$	25.0
13	$1.20(s)$	27.0	$1.09(s)$	23.9
$4-\mathrm{OH}$	$4.82(s)$	$9.65(b r s)$		

[^5]
3.3.2 Biological activities of the isolated compounds from the roots of A.integer

The isolated compounds were evaluated for their antibacterial activity against both Gram-positive: Bacillus subtilis, Staphylococcus aureus and Enterococcus faecalis TISTR 459, Methicillin-Resistant Staphylococcus aureus (MRSA) ATCC 43300, Vancomycin-Resistant Enterococcus faecalis (VRE) ATCC 51299 and Gram-negative bacteria: Salmonella typhi, Shigella sonei and Pseudomonas aeruginosa. All compounds were also subjected to antifungal assay against Candida albicans. The results are summarized in Table 66. Only compound AI2 exhibited strong activity against Methicillin-Resistant Staphylococcus aureus (MRSA).

Table 66 Antimicrobial activity of compounds isolated from the roots of A. integer

Compounds	Antibacterial activity, MIC ($\mu \mathrm{g} / \mathrm{mL}$)								Antifungal activity, MIC $(\mu \mathrm{g} / \mathrm{mL})$ C. albicans
	Gram-positive bacteria					Gram-negative bacteria			
	B. subtilis	S. aureus	$E \text {. }$ faecalis	MRSA	VRE	$\begin{gathered} S . \\ \text { typhi } \end{gathered}$	S sonei	P. aeruginosa	
AI1	>300	>300	>300	>300	>300	>300	>300	>300	>300
AI2	>300	75	>300	4.69	75	>300	>300	300	>300
AI3	37.5	300	300	75	150	>300	>300	>300	300
AI4	37.5	75	>300	37.5	75	>300	>300	>300	>300

REFERENCES

Achmad, S. A.; Hakim, E. H.; Julaiwaty, L. D.; Makmur, L.; Suyatno, N. A. 1996. A new prenylated flavone from Artocarpus champeden. J. Nat. Prod. 59, 878879.

Bauna, M. B. B.; Iqba, M.; Barus, T. F.; Al-Fatony, Z.; Sudrajat, H.; Khairi, S. 2009. Isolation and structural elucidation of new xanthone from root bark of Cratoxylum sumatranum. Botany Research International 2, 233-234.

Bennett, G. J., Harrison, L. J., Sia, G.-L., Sim, K.-Y., 1993. Triterpenoids, tocotrienols and xanthones from the bark of Cratoxylum cochinchinense. Phytochemistry 32, 1245-1251.

Boonnak, N. 2006. Chemical constituents from the barks of Cratoxylum formosum ssp. pruniflorum. Master of Science Thesis in Organic Chemistry, Prince of Songkla University, Songkhla, Thailand.

Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Fun, H.-K.; Kanjana-Opas, A.; Chantrapromma, K. 2009. Anti-Pseudomonas aeruginosa Xanthones from the resin and green fruits of Cratoxylum cochichinense. Tetrahedron 65, 3003-3013.

Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K.; Fun, H.-K. 2007. Quinonoids from the barks of Cratoxylum formosum ssp. pruniflorum. Can. J. Chem. 85, 341-345.

Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Fun, H.-K.; Kanjana-Opas, A.; Laphookhieo, S. 2006. Bioactive prenylated xanthones and anthraquinones from Cratoxylum formosum ssp. pruniflorum. Tetrahedron 62, 8850-8859.

Boonsri, S.; Karalai, C.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K. 2006. Antibacterial and cytotoxic xanthones from the roots of Cratoxylum formosum. Phytochemistry 67, 723-727.

Boonsri, S; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Kanjana-opas, A. 2008. Cytotoxic and antibacterial sesquiterpenes from Thespesia populnea. J. Nat. Prod. 71, 1173-1177.

Botta, B.; Delle Monache, F.; Delle Monache, G.; Marini Bettolo, G. B.; Oguakwa, J. U. 1983. 3-Geranyloxy-6-methyl-1,8-dihydroxyanthraquinone and vismiones C, D and E from Psorospermum febrifugum. Phytochemistry 22, 539-542.

Botta, B.; Delle Monache, G.; Delle Monache, F.; Marini Bettolo, G. B.; Menichini, F., 1986. Vismione H and prenylated xanthones from Vismia guineensis. Phytochemistry 25, 1217-1219.

Chan, S. C.; Ko, H.-H.; Lin, C.-N. 2003. New prenylflavonoids from Artocarpus communis. J. Nat. Prod. 66, 427-430.

Chang, C.-H.; Lin, C.-C.; Kawata, Y.; Hattori, M.; Namba, T. 1989. Prenylated xanthones from Cudrania cochinchinensis. Phytochemistry 28, 2823-2826.

Datta, S. C.; Murti, V. V. S.; Sharma, N. N.; Seshadri, T. R. 1973. Glycosidic components of Thespesia populnea flowers. Indian J. Chem 11, 506-507.

Datta, S. C.; Murti, V. V. S.; Seshadri, T. R. 1968. New components of the flowers of Thespesia populnea: (+)-Gossypol. Curr. Sci 37, 135.

Goncalves, M. L. S.; Mors, W. B. 1981. Vismiaquinone, a Δ^{1}-isopentenyl substituted anthraquinone from Vismia reichardtiana. Phytochemistry 20, 1947-1950.

Goyal, M. M.; Rani, K. K. 1989. Antibacterial activity of the natural products from the leaves of Thespesia populnea. Acta Ciencia Indica Chemistry 15, 117-124.

Goyal, M. M.; Rani, K. K. 1985. Thespesia populnea -a Rich source of β-sitosterol and lupeol. Acta Ciencia Indica, Chem. 11, 163-164.

Goyal, M. M.; Rani, K. K. 1987. Chemicals components from the leaves of Thespesia populnea. Bangladesh Journal of Scientific and Industrial Research 22, 8-11.

Han, A.-R.; Kang, Y.-J.; Windono, T.; Lee, S.K.; Seo, E.-K. 2006, Prenylated flavonoids from the heartwood of Artocarpus communis with inhibitory activity on lipopolysaccharide-induced nitric oxide production. J. Nat. Prod. 69, 719-721.

Hakim, E. H.; Fahriyati, A.; Kau, M. S.; Achmad, S. A.; Makmur, L.; Ghisalberti, E.L.; Nomura, T. 1999. Artoindonesianins A and B, Two new prenylated flavones from the root of Artocarpus champeden. J. Nat. Prod. 62, 613-615.

Hakim, E. H.; Yurnawilis, A.; Aimi, N.; Kitajima, M.; Takayama, H. 2002. Artonin P, a new prenylated flavone with cytotoxic activity from Artocarpus lanceifolius. Fitoterapia 73, 668-673.

Hakim, E. H.; Ulinnuha, U. Z.; Syah, Y. M.; Ghisalberti, E. L. 2002. Artoindonesianins N and O , new prenylated stilbene and prenylated arylbenzofuran derivatives from Artocarpus ggomezianus. Fitoterapia 73, 597-603.

Iinuma, M.; Tosa, H.; Tanaka, T.; Yonemori, S. 1994. Two xanthones from root bark of Calophyllum inophyllum. Phytochemistry 35, 527-532.

Ito, C.; Itoigawa, M.; Takakura, T.; Ruangrungsi, N.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. 2003. Chemical constituents of Garcinia fusca: Structure elucidation of eight new xanthones and their cancer chemopreventive activity. J. Nat. Prod. 66, 200-205.

Jayasinghe, L.; Balasooriya, B. A. I. S.; Padmini, W. C.; Hara, N.; Fujimoto, Y. 2004. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of Artocarppus nobilis. Phytochemistry 65, 12871290.

Jayasinghe, U. L. B.; Samarakoon, T. B.; Kumarihamy, B. M. M.; Hara, N.; Fujimoto, Y. 2008. Four new prenylated flavonoids and xanthones from the root bark of Artocarpus nobilis. Fitoterapia 79, 37-41.

Jin, S.; Wang, N.; Zhang, X.; Dai, Y.; Yao, X. 2009. A new xanthone from Cratoxylum cochichinenese. Zhongcaoyao 40, 341-344.

Jin, S.-L.; Wang, N.-L.; Zhang, X.; Dai, Y.; Yao, X.-S. 2009. Two new xanthones from the stem of Cratoxylum cochichinense. J. Asian Nat. Prod. Res. 11, 322325.

Kasim, S. M.; Neelakantan, S.; Raman, P. V. 1975. Chemical components of Indian medicinal plants (Thespesia populnea wood and calycopteris floribunda flowers). Curr. Sci. 44, 888-889.

Kim, J.-P.; Kim, W.-G.; Koshino, H.; Jung, J.; Yoo, I.-D. 1996. Sesquiterpene O naphthoquinones from the root bark of Ulmus Davidiana. Phytochemistry 43, 425-430.

Ko, H.-H.; Lu, Y.-H.; Yang, S.-Z.; Won, S.-J.; Lin, C.-N. 2005. Cytotoxic prenylflavonoids from Artocarpus elasticus. J. Nat. Prod. 68, 1692-1695.

Kraus, G. A.; Jeo, I. 2006. Use of Allylic strain to enforce stereochemistry. Direct synthesis of 7,8-dihydroxycalamenene and mansonone C. Org. Lett. 8, 53155316.

Laphookhieo, S.; Maneerat, W.; Buatip, T.; Syers, J.K. 2008. New xanthones from Cratoxylum cochichinense. Can. J. Chem. 86, 757-760.

Laphookhieo, S.; Maneerat, W.; Koysomboon, S. 2009. Antimalarial and cytotoxic phenolic compounds from Cratoxylum maingayi and Cratoxylum cochichinense. Molecules 14, 1389-1395.

Laphookhieo, S.; Syers, J. K.; Kiattansakul, R.; Chantrapromma, K. 2006. Cytotoxic and antimalarial prenylated xanthones from Cratoxylum cochichinense. Chem. Pharm. Bull. 54, 745-747.

Letcher, R. M.; Shirley, I. M. 1992. O-Naphthoquinones from the heartwood of Azanza garckeana. Phytochemistry 31, 4171-4172.

Lindgren, B. O.; Svahn, C. M. 1968. Extractives of elm wood. Phytochemistry 7, 1407-1408.

Mahabusarakam, W.; Nuangnaowarat, W.; Taylor, W. C. 2006. Xanthones derivatives from Cratoxylum cochichinense roots. Phytochemistry 67, 470-474.

Mahabusarakam, W.; Rattanaburi, S.; Phongpaichit, S.; Kanjana-Opas, A. 2008. Antibacterial and cytotoxic xanthones from Cratoxylum cochichinense. Phytochemistry Letters 1, 211-214.

Milbrodt, M.; Konig, W. A.; Hausen, B. M. 1997. 7-Hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethylnaptho[1,8-bc]pyran-4,8-dione from Thespesia populnea. Phytochemistry 45, 1523-1525.

Meyers, A. I.; Willemsen, J. J. 1998. An Oxazoline approach to (S)-Gossypol. Tetrahedron 54, 10493-10511.

Nagem, T.; De Oliveira, F. F. 1997. Xanthones and other constituents of Vismia parviflora. J. Braz. Chem. Soc. 8, 505-508.

Neelakantan, S.; Rajagopalan, V.; Raman, P. V. 1983. Thespesone and thespone, two new mansones of heartwood of Thespesia populnea Sol. Ex Corr. (Fam. Malvaceae). Indian J. Chem.22B, 95-96.

Neelakantam, K.; Rao, P. S.; Suryaprakasa, S. T. R. 1943. Chemical components of Indian tulip (Thespesia populnea) Flowers. Indian Academy of Sciene, Section A 17A, 26-31.

Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.; taylor, P. B.; Votta, B. J.; Johnson, R. K. 2002. A new dimeric dihydrochalcone and a new prenyated flavone from the bud cover of Artocarpus altilis: potent inhibitors of cathepsin K. J. Nat. Prod. 65, 624-627.

Phuwapraisirisan, P.; Udomchotphruet, S.; Surapinit, S.; Tip-Pyang, S. 2006. Antioxidant xanthones from Cratoxylum cochinchinense. Nat. Prod. Res. 20, 1332-1337.

Puntmchai, A.; Kittakoop, P.; Gajviroongit, S.; Vimuttipong, S.; Likhitwitayawuid, K.; Thaebtaranonth, Y. 2004. Lakoochins A and B, new antimycobacterial stilbene derivatives from Artocarpus lakoocha. J. Nat. Prod. 67, 485-486.

Puckhaber, L.S.; Stipanovic, R. D. 2004. Thespesenone and dehydrooxoperezenone-6-methyl ether, new sesquiterpene quinones from Thespesia populnea. J. Nat. Prod. 67, 1571-1573.

Radwan, M. M.; Rodriguez-Guzman, R.; Manly, S. P.; Jacob, M.; Ross, S. A. 2009. Sepicanin A-A, new geranyl flavone from Artocarpus sepicanus with activity against Methicilin-Resistant Staphylococcus aureus (MRSA). Phytochemistry 2, 141-143.

Reutrakul, V.; Chanakul, W.; Pohmkotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Prabpai, S.; Kongsaeree, P. 2006. Anti-HIV-1 constituents from leaves and twigs of Cratoxylum aborescens. Planta Med. 72, 1433-1435.

Seo, E.-K.; Kim, N.-C.; Wani, M.C.; Wall, M. E.; Navarro, H. A.; Burgess, J. P.; Kawanishi, K.; Kardono, L. B. S.; Riswan, S.; Rose, W. C.; Fairchild, C. R.; Farnsworth, N. R.; Kinghorn, A. D. 2002. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzoquinones from Cratoxylum sumatranum. J. Nat. Prod. 65, 299-305.

Seshadri, T. R.; Sharma, N. N. 1975. Neutral Components of Thespesia populnea Flowers. Curr.Sci. 44, 109-110.

Shirwaikar, A.; Srinivasan, K. K. 1996. New Flavonoids from the flowers of Thespesia populnea. J. Med. Aromat. Plants Sci.18, 266-269.

Silva, G. H.; Teles, H. L.; Zanardi, L. M.; Young, M. C. M.; Eberlin, M. N.; Hadad, R.; Pfenning, L. H.; Costo-Neto, C. M.; Castro-Gamboa, I.; Bolzani, V. S.; Araujo, A. R. 2006. Cadinane sesquiterpenenoids of Phomopis cassia, an endophytic fungus associated with Cassia spectabilis (Leguminosae). Phytochemistry 67, 1964-1969.

Skehan , P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Keney, S.; Boyd, M.R. 1990. New colorimetric cytotoxicity assay for anticancer-drugs careening. J. Natl. Cancer Inst. 82, 1107-1112.

Smitinand, T. Thai Plant Name. Prachachon Publisher: Bangkok, 2001.

Soekamto, N. H.; Achmad, S. A.; Ghisalberti, E. L.; Hakim, E. H.; Syah, Y. M. 2003. Artoindonesianins X and Y , Two isoprenylated 2-arylbenzofurans, from Artocarpus fretessi (Moraceae). Phytochemistry 64, 831-834.

Srivastava, S. N.; Bhakuni, D. S.; Sharma, V. N. 1963. Chemical investigation of Thespesia populnea. Indian J. Chem. 1, 451.

Su, B.-N.; Cuendet, M.; Hawthorne, M. E.; Kardono, L. B. S.; Riswas, S.; Fong, H. S. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D. 2002. Constituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. J. Nat. Prod. 65, 163-169.

Sun, J. N.; Woo, S. H.; Cassady, J. M.; Snapka, R. M. 1998. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J. Nat. Prod. 61, 362366.

Syah, Y. M.; Achmad, S. A.; Ghisalberti, E. L.; Hakim, E. H.; Mujahidin, D. 2004. Two new cytotoxic isoprenylated flavones, artoindonesianins U and V , from the heartwood of Artocarpus champeden. Fitoterapia 75, 134-140.

Syah, Y. M.; Achmad, S. A.; Ghisalberti, E. L.; Hakim, E. H.; Makmur, L.; Mujahidin, D. 2002. Artoindonesianins Q-T, four isoprenylated flavones from Artocarpus champeden Spreng. (Moraceae). Phytochemistry 61, 949-953.

Syah, Y. M.; Julaiwaty, L. D.; Achmad, S. A.; Hakim, E. H.; Ghisalberti, E. L. 2006. Cytotoxic prenylated flavones from Artocarpus champeden. J. Nat. Med. 60, 308-312.

Tiew, P.; Takayama, H.; Kitajima, M.; Aimi, N.; Kokpol, U.; Chavasiri, W. 2003. A novel neolignan, mansoxetane, and two new sesquiterpenes, mansonones R and S, from Mansonia gagei. Tet. Lett.44, 6759-6761.

Veesommai, U.; Kavduengtain, P. Wild trees in Thailand. HN Group Publisher: Bangkok, 2004; pp 249-252

Waller, D. P.; Bunyapraphatsara, N.; Martin, A.; Annamarie, V.; Christ, J.; Ahmed, M. S.; Soejarto, D. D.; Cordell, G. A.; Fong, H. S.; Russel, L. D.; Malone, J. P. 1983. Effects of (+)-gossypol on fertility in male hamsters. J. Androl. 4, 276-279.

Wang, Y.-H.; Hou, A. J.; Chen, L.; Chen, D.-F.; Sun, H.-D.; Zhao, Q.-S.; Bastow, K. F.; Nakanish, Y.; Wang, X. H.; Lee, K.-H. 2004. New isoprenylated flavones, artochamins A-E, and cytotoxic principles from Artocarpus chama. J. Nat. Prod. 67, 757-761.

Wang, Y.; Xu, K.; Lin, L.; Pan, Y.; Zheng, X. 2007. Geranyl flavonoids from the leaves of Artocarpus altilis. Phytochemistry 68, 1300-1306.

Yu, H. Y.; Jin, S. L.; Zhang, X.; Liu, Y.; Ou, Y. F.; Wang, N. L.; Yao, X. S. 2009. Two new benzophenone glucosides from Cratoxylum cochinchinensis. Chinese Chem. Lett. 20, 459-461.

Yu, H.-Y.; Wang, N.-L.; Zhang, X.; Jin, S.-L.; Yao, X.-S. 2009. Chemical constituents from Stem of Cratoxylum cochinchinensis Bl. Shenyang Yaoke Daxue Xuebao 26, 530-535.

Zhang, X.; Zhu, H.; Zhang, S.; Yu, Q.; Xuan, L. 2007. Sesquiterpenoids from Bombax malabaricum. J. Nat. Prod. 70, 1526-1528.

APPENDIX

Figure 5 UV (MeOH) spectrum of compound CF1

Figure 6 IR (neat) spectrum of compound CF1

Figure $7{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C F} 1$

Figure $8{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{C F} 1$

Figure 9 IR (KBr) spectrum of compound CF2

Figure $10{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF2

Figure $11{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF2

Figure 12 UV (MeOH) spectrum of compound CF3

Figure 13 IR (KBr) spectrum of compound CF3

Figure $14{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF3

Figure $15{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF3

Figure 16 UV (MeOH) spectrum of compound CF4

Figure 17 IR (KBr) spectrum of compound CF4

Figure $18{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF4

Figure $19{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF4

Figure 20 UV (MeOH) spectrum of compound CF5

Figure 21 IR (KBr) spectrum of compound CF5

Figure $22{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF5

Figure $23{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF5

Figure 24 UV (MeOH) spectrum of compound CF6

Figure 25 IR (KBr) spectrum of compound CF6

Figure $26{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF6

Figure $27{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF6

Figure 28 UV (MeOH) spectrum of compound CF7

Figure 29 IR (KBr) spectrum of compound CF7

Figure $30{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF7

Figure $31{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF7

Figure 32 UV (MeOH) spectrum of compound CF8

Figure 33 IR (KBr) spectrum of compound CF8

Figure $34{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF8

Figure $35{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF8

Figure 36 UV (MeOH) spectrum of compound CF9

Figure 37 IR (KBr) spectrum of compound CF9

Figure $38{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF9

Figure $39{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CF9

Figure 40 UV (MeOH) spectrum of compound TP1

Figure 41 IR (KBr) spectrum of compound TP1

Figure $42{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP1

Figure $43{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP1

Figure 44 UV (MeOH) spectrum of compound TP2

Figure 45 IR (neat) spectrum of compound TP2

Figure $46{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP2

Figure $47{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP2

Figure 48 UV (MeOH) spectrum of compound TP3

Figure 49 IR (neat) spectrum of compound TP3

Figure $50{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound TP3

Figure $51{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}+\mathrm{CD}_{3} \mathrm{OD}\right)$ spectrum of compound TP3

Figure 52 UV (MeOH) spectrum of compound TP4

Figure 53 IR (neat) spectrum of compound TP4

Figure $54{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP4

Figure $55{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP4

Figure 56 UV (MeOH) spectrum of compound TP5

Figure 57 IR (neat) spectrum of compound TP5

Figure $58{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP5

Figure $59{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP5

Figure 60 UV (MeOH) spectrum of compound TP6

Figure 61 IR (neat) spectrum of compound TP6

Figure $62{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP6

Figure $63{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP6

Figure 64 UV (MeOH) spectrum of compound TP7

Figure 65 IR (neat) spectrum of compound TP7

Figure $66{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP7

Figure $67{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP7

Figure 68 UV (MeOH) spectrum of compound TP8

Figure 69 IR (neat) spectrum of compound TP8

Figure $70{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6} d_{6}\right)$ spectrum of compound TP8

Figure $71{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-d_{6}\right)$ spectrum of compound TP8

Figure 72 (MeOH) spectrum of compound TP9

Figure 73 IR (neat) spectrum of compound TP9

Figure $74{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP9

Figure $75{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP9

Figure 76 UV (MeOH) spectrum of compound TP10

Figure 77 IR (neat) spectrum of compound TP10

Figure $78{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP10

Figure $79{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP10

Figure 80 UV (MeOH) spectrum of compound TP11

Figure 81 IR (neat) spectrum of compound TP11

Figure $82{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP11

Figure $83{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP11

Figure 84 UV (MeOH) spectrum of compound TP12

Figure 85 IR (neat) spectrum of compound TP12

Figure $86{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 1 2}$

Figure $87{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound $\mathbf{T P 1 2}$

Figure 88 UV (MeOH) spectrum of compound TP13

Figure 89 IR (neat) spectrum of compound TP13

Figure $90{ }^{1} \mathrm{H}$ NMR (300 MHz$)\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP13

Figure $91{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP13

Figure 92 UV (MeOH) spectrum of compound TP14

Figure 93 IR (neat) spectrum of compound TP14

Figure $94{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP14

Figure $95{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP14

Figure 96 UV (MeOH) spectrum of compound TP15

Figure 97 IR (neat) spectrum of compound TP15

Figure $98{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP15

Figure $99{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP15

Figure 100 UV (MeOH) spectrum of compound TP16

Figure 101 IR (neat) spectrum of compound TP16

Figure $102{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP16

Figure $103{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP16

Figure 104 UV (MeOH) spectrum of compound TP17

Figure 105 IR (neat) spectrum of compound TP17

Figure $106{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP17

Figure $107{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP17

Figure 108 UV (MeOH) spectrum of compound TP18

Figure 109 IR (neat) spectrum of compound TP18

Figure $110{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP18

Figure $111{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP18

Figure 112 UV (MeOH) spectrum of compound TP19

Figure 113 IR (neat) spectrum of compound TP19

Figure $114{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP19

Figure $115{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound TP19

Figure 116 UV (MeOH) spectrum of compound AI1

Figure $117 \mathrm{IR}(\mathrm{KBr})$ spectrum of compound AI1

Figure $118{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI1

Figure $119{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AII

Figure 120 UV (MeOH) spectrum of compound AI2

Figure 121 IR (KBr) spectrum of compound AI2

Figure $122{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI2

Figure $123{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI2

Figure 124 UV (MeOH) spectrum of compound AI3

Figure $125 \mathrm{IR}(\mathrm{KBr})$ spectrum of compound AI3

Figure $126{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI3

Figure $127{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI3

Figure 128 UV (MeOH) spectrum of compound AI4

Figure $129 \mathrm{IR}(\mathrm{KBr})$ spectrum of compound AI4

Figure $130{ }^{1} \mathrm{H}$ NMR (400 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI4

Figure $131{ }^{13} \mathrm{C}$ NMR (100 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound AI4

VITAE

NAME	Mr. Sompong Boonsri	
Student ID	4723011	
Educational Attainment		Year of Graduate
Degree		Name of Institution
B. Sc. (Chemistry)	Rajabhat Phuket University	1999
M. Sc. (Organic Chemistry)	Prince of Songkla University	2003

Scholarship Awards during Enrolment

Scholarship was awarded by the Royal Golden Jubilee Ph. D. Program of the Thailand Research Fund, the Higher Education Development Project: Center for innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), the Commission and Higher Education (CHE-RES-RG), the Directed Basic Research in Medicinal Chemistry (Thailand Research Fund) and the Graduate School, Prince of Songkla University.

List of Publication and proceedings

Publications

1. Boonsri, S; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Kanjana-opas, A. 2008. Cytotoxic and antibacterial sesquiterpenes from Thespesia populnea. J. Nat. Prod. 71, 1173-1177.
2. Boonsri, S.; Chantrapromma, S.; Fun, H.-K.; Karalai, C. 2007. 1,5,8-Trimethyl-1, 2-dihydronaphtho[2,1-b]furan-6,7-dione. Acta Crystallographica E63, o4901/1-o4901/10.

[^0]: ${ }^{a}$ Recorded in $\mathrm{Me}_{2} \mathrm{CO}-d_{6}$

[^1]: ${ }^{a}$ recorded in CDCl_{3}

[^2]: ${ }^{a}$ recorded in CDCl_{3}

[^3]: ${ }^{a}$ recorded in acetone- d_{6}

[^4]: ${ }^{a}$ recorded in ${ }^{a}$ recorded in acetone- d_{6}

[^5]: ${ }^{a}$ recorded in acetone- d_{6}

