

Chemical Constituents from the Roots of *Cratoxylum formosum* and *Artocarpus integer* and the Stem of *Thespesia populnea*

Sompong Boonsri

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Organic Chemistry Prince of Songkla University 2010 Copyright of Prince of Songkla University

Thesis Title	Chemical	Constituents	from	the	Roots	of	Cratoxylum
	formosum	and Artocarpu	s integ	er an	d the St	tem	of Thespesia
	populnea						
Author	Mr. Sompo	ong Boonsri					
Major Program	Organic Cl	hemistry					

Major Advisor:

Examining Committee:

	Chairperson
(Assoc. Prof. Dr. Chatchanok Karalai)	(Assoc. Prof. Dr. Kan Chantrapromma)
Co-Advisor:	(Assoc. Prof. Dr. Chatchanok Karalai)
(Assoc. Prof. Chanita Ponglimanont)	(Assoc. Prof. Chanita Ponglimanont)
	(Assoc. Prof. Dr. Supinya Tewtrakul)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Doctor of Philosophy degree in Organic Chemistry

> (Assoc. Prof. Dr. Krerkchai Tongnoo) Dean of Graduate School

ชื่อวิทยานิพนธ์ องก์ประกอบทางเคมีจากรากติ้วขาวและจำปาคะและลำต้นโพทะเล ผู้เขียน นายสมพงศ์ บุญศรี สาขาวิชา เกมีอินทรีย์ ปีการศึกษา 2552

บทคัดย่อ

ตอน 1 องค์ประกอบทางเคมีจากรากติ้วขาว (Cratoxylum formosum)

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบเฮกเซนจากรากของติ้วขาว สามารถแยกสารประกอบประเภทแซนโทนชนิดใหม่ 3 สาร คือ formoxanthone A (CF1), formoxanthone B (CF2) และ formoxanthone C (CF3) และเป็นสารที่มีการรายงานแล้ว 6 สาร ซึ่ง เป็นแซนโทน 3 สาร คือ gerontoxanthone I (CF4), macluraxanthone (CF5) และ xanthone V₁ (CF6) แอนทราควิโนน 3 สาร คือ madagascin (CF7), 3-geranyloxy-6-methyl-1,8dihydroxyanthraquinone (CF8) และ vismiaquinone (CF9)

ตอน 2 องค์ประกอบทางเคมีจากลำต้นโพทะเล (Thespesia populnea)

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบไดคลอโรมีเทนจากลำด้นของ โพทะเล ซึ่งแบ่งเป็นสองส่วน คือ ส่วนกระพี้และแก่น สามารถแยกสารประกอบประเภทคาดิเนน เซสควิเทอร์พืนได้ 19 สาร จากส่วนกระพี้สามารถแยกสารประกอบชนิดใหม่ 2 สาร คือ populene A (**TP10**) และ populene B (**TP11**) และเป็นสารประกอบที่มีการรายงานแล้ว 3 สาร คือ mansonone E (**TP9**), (+)-gossypol (**TP18**) และ (+)-6, 6'-dimethoxygossypol (**TP19**) จากส่วนแก่นสามารถ แยกสารประกอบประเภทเซสควิเทอร์พีนได้ 17 สาร ซึ่งเป็นสารประกอบชนิดใหม่ 6 สาร คือ populene C (**TP12**), populene D (**TP13**), populene E (**TP14**), populene F (**TP15**), populene G (**TP16**) และ populene H (**TP17**) และเป็นสารประกอบที่มีการรายงานแล้ว 11 สาร คือ 7hydroxycadalene (**TP1**), mansonone C (**TP2**), mansonone G (**TP3**), mansonone D (**TP4**), thespesone (**TP5**), mansonone S (**TP6**), 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethylnaphtho[1,8-b,c]pyran-4,8-dione (**TP7**), mansonone H (**TP8**), mansonone E (**TP9**), (+)-gossypol (**TP18**) และ (+)-6, 6'-dimethoxygossypol (**TP19**)

ตอน 3 องค์ประกอบทางเคมีจากรากจำปาดะ (Artocarpus integer)

การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบไดคลอโรมีเทนจากรากของ จำปาดะ สามารถแยกสารประกอบประเภทฟลาโวนอยด์ได้ 4 สาร ซึ่งเป็นสารประกอบที่มีการ รายงานแล้ว คือ artoindonesianin A (AII), Artoindonesianin Q (AI2), artoindonesianin S (AI3) และ corylifolin (AI4) โครงสร้างของสารประกอบเหล่านี้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโก ปี

สารประกอบที่แยกได้นำไปทดสอบการออกฤทธิ์ยับยั้งการเจริญของเชื้อแบคทีเรีย และทดสอบความเป็นพิษต่อเซลล์มะเร็ง ซึ่งสารประกอบ mansonone E (**TP9**) มีความเป็นพิษต่อ เซลล์มะเร็งเด้านม (MCF-7) ด้วยค่า IC₅₀ 0.05 μg/mL และ (+)-gossypol (**TP18**) มีความเป็นพิษต่อ เซลล์มะเร็งปากมดลูก (HeLa) และ มะเร็งช่องปากและหลอดอาหาร (KB) ด้วยค่า IC₅₀ 0.08 และ 0.04 μg/mL ตามลำดับ

CF1: formoxanthone A

CF2: formoxanthone B

CF3: formoxanthone C

CF4: gerontoxanthone I

R

TP1: 7-hydroxycadalene

TP2: R = H; mansonone C **TP3**: R = OH; mansonone G

TP4: mansonone D

TP5: thespesone

TP6: mansonone S

TP7: 7-hydroxy-2,3,5,6-tetrahydro-3,6,9trimethyl-naphtho[1,8-b,c]pyran-4,8-dione

TP8: R = OH; mansonone H **TP9**: R = H; mansonone E

TP10: $R = \beta OH$; populene A **TP10**: $R = \alpha OH$; populene B

TP12: populene C

TP13: populene D

TP14: $R_1 = O$, $R_2 = CH_3$; populene E **TP16**: I **TP15**: $R_1 = \alpha OH$, $R_2 = \alpha CH_3$; populene F **TP17**: I

TP16: R = α OH; populene G **TP17**: R = β OH; populene H

TP18: R = H; (+)-gossypol **TP19**: R = CH₃; (+)-6,6'-dimethoxygossypol

AI1: artoindonesianin A

AI2: artoindonesianin Q

AI3: artoindonesianin S

 \swarrow HC

AI4: corylifolin

Thesis Title	Chemical	Constituents	from	the	Roots	of	Cratoxylum
	formosum	and Artocarpu	s integ	er an	d the St	tem	of Thespesia
	populnea						
Author	Mr. Sompo	ong Boonsri					
Major Progam	Organic Cl	nemistry					

ABTRACT

Part I Chemical Constituents from the Roots of Cratoxylum formosum

Investigation of the chemical constituents of the hexane extract from the roots of *C. formosum* led to the isolation of three new xanthones: formoxanthone A (CF1), formoxanthone B (CF2) and formoxanthone C (CF3), together with six known compounds: three xanthones: gerontoxanthone I (CF4), macluraxanthone (CF5) and xanthone V_1 (CF6); three anthraquinones: madagascin (CF7), 3geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (CF8) and vismiaquinone (CF9).

Part II Chemical Constituents from the Stem of Thespesia populnea

Investigation of the chemical constituents of the dichloromethane extract from the stem of *T. populnea* which was divided to two parts, heartwood and wood, resulted in nineteen cadinan sesquiterpenes. Two new compounds, populene A (**TP10**) and B (**TP11**) along with mansonone E (**TP9**), (+)-gossypol (**TP18**) and (+)-6,6'-dimethoxygossypol (**TP19**) were purified from the wood. Six new compounds, populene C (**TP12**), populene D (**TP13**), populene E (**TP14**), populene F (**TP15**), populene G (**TP16**) and populene H (**TP17**) were obtained from the heartwood, together with eleven known compounds, 7-hydroxycadalene (**TP1**), mansonone C (**TP2**), mansonone G (**TP3**), mansonone D (**TP4**), thespesone (**TP5**), mansonone S (**TP6**), 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione (**TP7**), mansonone H (**TP8**), mansonone E (**TP9**), (+)-gossypol (**TP18**) une (+)-6, 6'-dimethoxygossypol (**TP19**).

Part III Chemical Constituents from the Roots of Artocarpus integer

The dichloromethane extract of the roots of *Artocarpus integer* yielded four known compounds, artoindonesianin A (AI1), artoindonesianin Q (AI2), artoindonesianin S (AI3) and corylifolin (AI4). Their structure were elucidated by spectroscopic method.

The isolated compounds were evaluated for their antibacterial and cytotoxic activities. Two pure compounds, mansonone E (**TP9**) exhibited potent cytotoxicity against breast cancer cell line (MCF-7) with IC₅₀ value 0.05 μ g/mL and (+)-gossypol (**TP18**) exhibited potent cytotoxicity against cervical cancer (HeLa) and oral cavity cancer (KB) cell lines with IC₅₀ values 0.08 and 0.04 μ g/mL, respectively.

CF1: formoxanthone A

CF2: formoxanthone B

CF3: formoxanthone C

CF4: gerontoxanthone I

TP1: 7-hydroxycadalene

R

TP2: R = H; mansonone C **TP3**: R = OH; mansonone G

TP4:mansonone D

TP5: thespesone

TP6: mansonone S

TP7: 7-hydroxy-2,3,5,6-tetrahydro-3,6,9trimethyl-naphtho[1,8-b,c]pyran-4,8-dione

HC

R

TP8: R = OH; mansonone H

TP9: R = H; mansonone E

TP10: R = β OH; populene A TP10: R = α OH; populene B

TP12: populene C

TP13: populene D

TP14: $R_1 = O$, $R_2 = CH_3$; populene E **TP15**: $R_1 = \alpha OH$, $R_2 = \alpha CH_3$; populene F

TP16: R = α OH; populene G **TP17**: R = β OH; populene H

TP18: R = H; (+)-gossypol

TP19: R = Me; (+)-6,6'-dimethoxygossypol

AI1: artoindonesianin A

AI3: artoindonesianin S

AI2: artoindonesianin Q

 \swarrow HC

AI4: corylifolin

CONTENTS

	Page
CONTENTS	XV
LISTS OF TABLES	xix
LISTS OF ILLUSTRATIONS	xxiii
LISTS OF SCHEMES	xxviii
LISTS OF ABBREVIATIONS AND SYMBOLS	xxix
PART I Chemical Constituents from the Roots of C. formosum	
CHAPTER 1.1 INTRODUCTION	
1.1.1 Introduction	1
1.1.2 Review of literatures	3
1.1.3 The objectives	23
CHAPTER 1.2 EXPERIMENTAL	
1.2.1 Instruments and Chemicals	24
1.2.2 Plant material	24
1.2.3 Extraction and chemical investigation of the crude	
hexane extract from the roots of C. formosum	25
1.2.4 Bioassay	
1.2.4.1 Antibacterial assay	27
1.2.4.2 Cytotoxic assay	28
CHAPTER 1. 3 RESULTS AND DISCUSSION	
1.3.1 Structural elucidation of the isolated compounds from the roots	
of C. formosum	29
1.3.1.1 Compound CF1	30
1.3.1.2 Compound CF2	34
1.3.1.3 Compound CF3	38
1.3.1.4 Compound CF4	41
1.3.1.5 Compound CF5	44
1.3.1.6 Compound CF6	47
1.3.1.7 Compound CF7	52
	xiii

CONTENTS (Continued)

		Page
	1.3.1.8 Compound CF8	55
	1.3.1.9 Compound CF9	58
1.3.2	Biological activities of isolated compounds from the roots	
	of C. formosum	63
PART II Cher	mical Constituents from the Stem of T. populnea	
CHAPTER 2	2.1 INTRODUCTION	
2.1.1	Introduction	65
2.1.2 1	Review of literatures	67
2.1.3	The objectives	77
CHAPTER 2	2.2 EXPERIMENTAL	
2.2.1	Instruments and Chemicals	78
2.2.2 1	Plant material	79
2.2.3 1	Extraction and chemical investigation of the crude dichlomethane	
(extract from the stem of T. populnea	79
2.2.4]	Bioassay	
,	2.2.4.1 Antibacterial assay	85
,	2.2.4.2 Cytotoxic assay	85
CHAPTER 2	2. 3 RESULTS AND DISCUSSION	
2.3.1 \$	Structural elucidation of compounds from the stem of T. populnea	
	2.3.1.1 Compound TP1	87
	2.3.1.2 Compound TP2	89
	2.3.1.3 Compound TP3	92
	2.3.1.4 Compound TP4	95
	2.3.1.5 Compound TP5	99
	2.3.1.6 Compound TP6	102
	2.3.1.7 Compound TP7	105
	2.3.1.8 Compound TP8	108
	2.3.1.9 Compound TP9	111
		xiv

CONTENTS (Continued)

	Page
2.3.1.10 Compound TP10	116
2.3.1.11 Compound TP11	118
2.3.1.12 Compound TP12	120
2.3.1.13 Compound TP13	122
2.3.1.14 Compound TP14	124
2.3.1.15 Compound TP15	126
2.3.1.15 Compound TP16	128
2.3.1.17 Compound TP17	130
2.3.1.18 Compound TP18	132
2.3.1.19 Compound TP19	135
2.3.2 Biological activities of isolated compounds from the	
stem of T. populnea	137
PART III Chemical Constituents from the Roots of A.integer	
CHAPTER 3.1 INTRODUCTION	
3.1.1 Introduction	139
3.1.2 Review of literatures	141
3.1.3 The objectives	162
CHAPTER 3.2 EXPERIMENTAL	
3.2.1 Instruments and Chemicals	163
3.2.2 Plant material	163
3.2.3 Extraction and chemical investigation of the crude	
dichloromethane extract from the roots of A.integer	164
3.2.4 Bioassay	
3.2.4.1 Antibacterial assay	165
3.2.4.2 Antifungal assay	166

CONTENTS (Continued)

		Page
CHAPTER 3	3. 3 RESULTS AND DISCUSSION	
3.3.1	Structural elucidation of compounds from the	
	roots of A. integer	
	3.3.1.1 Compound AI1	168
	3.3.1.2 Compound AI2	174
	3.3.1.3 Compound AI3	177
	3.3.1.4 Compound AI4	181
3.3.2	Biological activities of isolated compounds from the	
	roots of A. integer	184
REFERENC	CES	185
APPENDIX		194
VITAE		259

LISTS OF TABLES

Table	S		Page
1	Compounds from plants of Cratoxylum genus		3
2	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF1		32
3	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF2		35
4	Comparison of ¹ H and ¹³ C NMR spectral data of CF1 and CF2		36
5	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF3		39
6	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF4		42
7	Comparison of ¹ H and ¹³ C NMR spectral data of CF4		
	and gerontoxanthone I		43
8	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF5		45
9	Comparison of ¹ H and ¹³ C NMR spectral data of CF5		
	and macluraxanthone		46
10	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF6		48
11	Comparison of ¹ H and ¹³ C NMR spectral data of CF6		
	and Xanthone V1		49
12	Comparison of ¹ H NMR spectral data of CF4-CF6		50
13	Comparison of ¹³ C NMR spectral data of CF4-CF6		51
14	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF7		53
15	Comparison of ¹ H and ¹³ C NMR spectral data of CF7		
	and madagascin		54
16	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF8		56
17	Comparison of ¹ H NMR spectral data of CF8 and 3-		
	geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (R)		57
18	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of CF9		59
19	Comparison of ¹ H and ¹³ C NMR spectral data of CF9		
	and vismiaquinone	60	
20	Comparison of ¹ H NMR spectral data of CF7-CF9		61
21	Comparison of ¹³ C NMR spectral data of CF7-CF9		62

LISTS OF TABLES (Continued)

Tabl	les	Page
22	Cytotoxic and antibacterial activities of compounds	
	isolated from C. formosum	64
23	Compounds from plants of Thespesia genus	67
24	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP1	88
25	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP2	90
26	Comparison of ¹ H and ¹³ C NMR spectral data of TP2 and	
	mansonone C	90
27	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP3	93
28	Comparison of ¹ H and ¹³ C NMR spectral data of TP3 and	
	mansonone G	93
29	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP4	96
30	Comparison of ¹³ C NMR spectral data of TP4 and	
	mansonone D	96
31	Comparison of ¹ H NMR spectral data of TP1-TP4	97
32	Comparison of ¹³ C NMR spectral data of TP1-TP4	98
33	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP5	100
34	Comparison of ¹³ C NMR spectral data of TP5 and	
	thespesone	100
35	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP6	103
36	Comparison of ¹ H and ¹³ C NMR spectral data of TP6	
	and mansonone S	103
37	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP7	106
38	Comparison of ¹ H and ¹³ C NMR spectral data of TP7	
	and 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-	
	naphtho[1,8-b,c]pyran-4,8-dione (R)	106
39	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP8	109
40	Comparison of ¹ H and ¹³ C NMR spectral data of TP8	
	and mansonone H	109
		xviii

LISTS OF TABLES (Continued)

Tables		Page
41	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP9	112
42	Comparison of ¹ H and ¹³ C NMR spectral data of TP9	
	and mansonone E	112
43	Comparison of ¹ H NMR spectral data of TP5-TP9	114
44	Comparison of ¹³ C NMR spectral data of TP5-TP9	115
45	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP10	117
46	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP11	119
47	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP12	121
48	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP13	123
49	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP14	125
50	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP15	127
51	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP16	129
52	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP17	131
53	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP18	133
54	Comparison of ¹ H and ¹³ C NMR spectral data of TP18 and	
	Gossypol	134
55	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of TP19	136
56	Cytotoxic and antibacterial activities of compounds	
	isolated from T. populnea	138
57	Compounds from plants of Artocarpus genus	141
58	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of AI1	170
59	Comparison of ¹ H and ¹³ C NMR spectral data of AI1	
	and artoindonesianin A	171
60	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of AI2	175
61	Comparison of ¹ H and ¹³ C NMR spectral data of AI2 and	
	artoindonesianin Q	176
62	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of AI3	178

LISTS OF TABLES (Continued)

Tabl	Tables	
63	Comparison of ¹ H and ¹³ C NMR spectral data of AI3 and	
	artoindonesianin S	179
64	¹ H, ¹³ C NMR, DEPT and HMBC spectral data of AI4	182
65	Comparison of ¹ H and ¹³ C NMR spectral data of AI4 and corylifolin	183
66	Antibacterial activities of compounds isolated from A. integer	184

LIST OF ILLUSTRATIONS

Figur	es	Page
1	Parts of Cratoxylum formosum	2
2	Parts of Thespesia populnea	65
3	Populene D with selected NOESY correlations	123
4	Parts of Artocarpus integer	140
5	UV (MeOH) spectrum of compound CF1	195
6	IR (neat) spectrum of compound CF1	195
7	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF1	196
8	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF1	196
9	IR (KBr) spectrum of compound CF2	197
10	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF2	198
11	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF2	198
12	UV (MeOH) spectrum of compound CF3	199
13	IR (KBr) spectrum of compound CF3	199
14	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF3	200
15	13 C NMR (75 MHz) (CDCl ₃) spectrum of compound CF3	200
16	UV (MeOH) spectrum of compound CF4	201
17	IR (KBr) spectrum of compound CF4	201
18	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF4	202
19	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF4	202
20	UV (MeOH) spectrum of compound CF5	203
21	IR (KBr) spectrum of compound CF5	203
22	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF5	204
23	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF5	204
24	UV (MeOH) spectrum of compound CF6	205
25	IR (KBr) spectrum of compound CF6	205
26	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF6	206
27	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF6	206
28	UV (MeOH) spectrum of compound CF7	207

Figu	res	Page
29	IR (KBr) spectrum of compound CF7	207
30	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF7	208
31	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF7	208
32	UV (MeOH) spectrum of compound CF8	209
33	IR (KBr) spectrum of compound CF8	209
34	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF8	210
35	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF8	210
36	UV (MeOH) spectrum of compound CF9	211
37	IR (KBr) spectrum of compound CF9	211
38	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CF9	212
39	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CF9	212
40	UV (MeOH) spectrum of compound TP1	213
41	IR (KBr) spectrum of compound TP1	213
42	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP1	214
43	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP1	214
44	UV (MeOH) spectrum of compound TP2	215
45	IR (neat) spectrum of compound TP2	215
46	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP2	216
47	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP2	216
48	UV (MeOH) spectrum of compound TP3	217
49	IR (neat) spectrum of compound TP3	217
50	¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound TP3	218
51	¹³ C NMR (75 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound TP3	218
52	UV (MeOH) spectrum of compound TP4	219
53	IR (neat) spectrum of compound TP4	219
54	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP4	220
55	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP4	220
56	UV (MeOH) spectrum of compound TP5	221
		xxii

Figur	es	Page
57	IR (neat) spectrum of compound TP5	221
58	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP5	222
59	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP5	222
60	UV (MeOH) spectrum of compound TP6	223
61	IR (neat) spectrum of compound TP6	223
62	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP6	224
63	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP6	224
64	UV (MeOH) spectrum of compound TP7	225
65	IR (neat) spectrum of compound TP7	225
66	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP7	226
67	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP7	226
68	UV (MeOH) spectrum of compound TP8	227
69	IR (neat) spectrum of compound TP8	227
70	¹ H NMR (300 MHz) (CDCl ₃ +DMSO- d_6) spectrum of compound TP8	228
71	¹³ C NMR (75 MHz) (CDCl ₃ +DMSO- d_6) spectrum of compound TP8	228
72	UV (MeOH) spectrum of compound TP9	229
73	IR (neat) spectrum of compound TP9	229
74	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP9	230
75	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP9	230
76	UV (MeOH) spectrum of compound TP10	231
77	IR (neat) spectrum of compound TP10	231
78	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP10	232
79	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP10	232
80	UV (MeOH) spectrum of compound TP11	233
81	IR (neat) spectrum of compound TP11	233
82	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP11	234
83	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP11	234
84	UV (MeOH) spectrum of compound TP12	235
		xxiii

Figu	res	Page
85	IR (neat) spectrum of compound TP12	235
86	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP12	236
87	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP12	236
88	UV (MeOH) spectrum of compound TP13	237
89	IR (neat) spectrum of compound TP13	237
90	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP13	238
91	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP13	238
92	UV (MeOH) spectrum of compound TP14	239
93	IR (neat) spectrum of compound TP14	239
94	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP14	240
95	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP14	240
96	UV (MeOH) spectrum of compound TP15	241
97	IR (neat) spectrum of compound TP15	241
98	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP15	242
99	13 C NMR (75 MHz) (CDCl ₃) spectrum of compound TP15	242
100	UV (MeOH) spectrum of compound TP16	243
101	IR (neat) spectrum of compound TP16	243
102	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP16	244
103	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP16	244
104	UV (MeOH) spectrum of compound TP17	245
105	IR (neat) spectrum of compound TP17	245
106	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP17	246
107	13 C NMR (75 MHz) (CDCl ₃) spectrum of compound TP17	246
108	UV (MeOH) spectrum of compound TP18	247
109	IR (neat) spectrum of compound TP18	247
110	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP18	248
111	13 C NMR (75 MHz) (CDCl ₃) spectrum of compound TP18	248
112	UV (MeOH) spectrum of compound TP19	249
		xxiv

Figur	res	Page
113	IR (neat) spectrum of compound TP19	249
114	¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound TP19	250
115	¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound TP19	250
116	UV (MeOH) spectrum of compound AI1	251
117	IR (KBr) spectrum of compound AI1	251
118	¹ H NMR (400 MHz) (CDCl ₃) spectrum of compound AI1	252
119	¹³ C NMR (100 MHz) (CDCl ₃) spectrum of compound AI1	252
120	UV (MeOH) spectrum of compound AI2	253
121	IR (KBr) spectrum of compound AI2	253
122	¹ H NMR (400 MHz) (CDCl ₃) spectrum of compound AI2	254
123	¹³ C NMR (100 MHz) (CDCl ₃) spectrum of compound AI2	254
124	UV (MeOH) spectrum of compound AI3	255
125	IR (KBr) spectrum of compound AI3	255
126	¹ H NMR (400 MHz) (CDCl ₃) spectrum of compound AI3	256
127	¹³ C NMR (100 MHz) (CDCl ₃) spectrum of compound AI3	256
128	UV (MeOH) spectrum of compound AI4	257
129	IR (KBr) spectrum of compound AI4	257
130	¹ H NMR (400 MHz) (CDCl ₃) spectrum of compound AI4	258
131	¹³ C NMR (100 MHz) (CDCl ₃) spectrum of compound AI4	258

LIST OF SCHEMES

Schem	les	Page
1	Extraction and isolation of compounds CF1-CF9	
	from the roots of C. formosum	25
2	Extraction and isolation of compounds TP1-TP8 and TP12-TP19	
	from the heartwood of T. populnea	79
3	Extraction and isolation of compounds TP9-TP11 and TP18-TP19	
	from the wood of <i>T. populnea</i>	81
4	Extraction and isolation of compounds AI1-AI4	
	from the roots of A.integer	164

ABBREVIATIONS AND SYMBOLS

S	=	singlet
d	=	doublet
t	=	triplet
т	=	multiplet
sept	=	septet
hept	=	heptet
dd	=	doublet of doublet
dt	=	doublet of triplet
dquint	=	doublet of quintet
tq	=	triplet of quatet
mt	=	multiplet of triplet
br s	=	broad singlet
br d	=	broad doublet
br q	=	broad quatet
br dd	=	broad doublet of doublet
br dq	=	broad doublet of quatet
g	=	gram
kg	=	kilogram
mg	=	miligram
μg	=	microgram
mL	=	milliliter
mult.	=	multiplicity
%	=	percent
m.p.	=	melting point
cm^{-1}	=	reciprocal centimeter (wave number)
δ	=	chemical shift relative to TMS
J	=	coupling constant
[α] _D	=	specific rotation

ABBREVIATIONS AND SYMBOLS (Continued)

λ_{max}	=	maximum wavelength
ν	=	absorption frequencies
ε	=	molar extinction coefficient
m/z	=	a value of mass divided by charge
°C	=	degree celcius
MHz	=	Megahertz
ppm	=	part per million
c	=	concentration
MS	=	Mass Spectroscopy
EIMS	=	Electron Impact Mass Spectrometry
UV	=	Ultraviolet-Visible
IR	=	Infrared
NMR	=	Nuclear Magnetic Resonance
2D NMR	=	Two Dimentional Nuclear Magnetic Resonance
COSY	=	Correlated Spectroscopy
DEPT	=	Distortionless Enhancement by Polarization Transfer
HMBC	=	Heteronuclear Multiple Bond Correlation
HMQC	=	Heteronuclear Multiple Quantum Coherence
NOESY	=	Nuclear Overhauser Effect Spectroscopy
CC	=	Column Chromatography
QCC	=	Quick Column Chromatography
PLC	=	Preparative Thin Layer Chromatography
CH_2Cl_2	=	dichloromethane
CHCl ₃	=	chloroform
EtOAc	=	ethyl acetate
МеОН	=	methanol
TMS	=	tetramethylsilane
Acetone- <i>d</i> ₆	=	deuteroacetone
DMSO- d_6	=	deuterodimethyl sulphoxide

ABBREVIATIONS AND SYMBOLS (Continued)

CDCl ₃	=	deuterochloroform	
CD ₃ OD	=	deuteromethanol	
IC ₅₀	=	50% Inhibition Concentration	

CHAPTER 1.1 INTRODUCTION

1.1.1 Introduction

Cratoxylum is a plant belonging to a small genus of the family Guttiferae, which can be found in several Southeast Asian countries, The genus *Cratoxylum* has about 6 species, which are all found in Thailand (Smitinand, 2001): *Cratoxylum aborescens, Cratoxylum cochinchinense, Cratoxylum maingayi, Cratoxylum sumatranum* ssp. *neriifolium, Cratoxylum formosum* ssp. *formosum* (Jack) Dyer and *Cratoxylum formosum* (Jack) Dyer ssp. *pruniflorum* (Kurz) Gogel. The last two species, which are supspecies of C. *formosum* can be differentiated through the young twigs, leaves, pedicels and sepals. Those of *C. formosum* ssp. *pruniflorum* are densely villous, whereas *C. formosum* ssp. *formosum* are glabrous (Veesommai, *et al.*, 2004).

C. formosum ssp. *formosum* is a shrub or tree deciduous, 3-6 m tall. Bark exfoliating in flakes. Twigs somewhat compressed. Petiole 5-7 mm, glabrous; leaf blade abaxially greenish, adaxially green, elliptic to oblong, $4-10 \times 2-4$ mm. Cymes 5-8 flowers, in axils of fallen leaves. Pedicels 3-5 mm. Flowers ca. 1.3 cm in diam. Sepals elliptic or oblong-lanceolate, $5-6 \times 2-3$ mm, apex obtuse. Petals obovateoblong, 1.1-1.5 cm, ciliolate and brown-grandular on upper half of margin, narrowly clawed at base; petal-scale indistinct, ca 2 mm, base cuneate, apex truncate and denticulate. Ovary narrowly conic, ca. 4 mm, glabrous; styles ca. ca. 3.5 mm. Capsule dark brown, oblong, 0.6-1.5 cm, up to $\frac{1}{2}$ enclosed by persistent calyx. Seeds 6-8 per locule, 3-7 mm.

Figure 1 Parts of Cratoxylum formosum ssp. formosum

1.1.2 Review of Literatures

Chemical constituents isolated from *Cratoxylum* genus were summarized by Nawong Boonnnak in 2006 (Boonnak, 2006). Information from SciFinder Scholar database reported the additional constituents from *Cratoxylum* genus and they could be classified into groups, such as anthraquinones, benzenoids, benzophenones, flavonoids, triterpenes and xanthones. These compounds are presented in **Table 1**.

Table 1 Compounds from plants of Cratoxylum genus

a = Anthraquinones	b = Benzenoids	c = Benzophenones
d = Flavonoids	e = Triterpenes	$\mathbf{f} = Xanthones$

Scientific	Investigated	Compound	Bibliography
name	Part		
С.	Leaves+Twigs	3,4-Dihydroxybenzoic	Reutrakul et al., 2006
aborescene		acid, 1b	
		Betulinic acid, 5e	
		Euxanthone, 39f	
		3β -Hydroxylup-20(29)-en-	
		30-oic acid, 4e	
		Lup-20(29)-ene-3 <i>β</i> ,30-	
		diol, 3e	
		Methoxyemodin, 8a	
		Friedelin, 2e	
		Friedelinol, 1e	
		Astilbin, 2d	
		Isoastilbin, 3d	
		1,3,8-Trihydroxy-2,4-	
		dimethoxyxanthone, 43f	

Scientific	Investigated	Compound	Bibliography
name	Part		
C. aborescene	Leaves+Twigs	1,7-Dihydroxy-2,8-	Reutrakul et al.,
		dimetoxyxanthone, 57f	2006
		1,3,7-Trihydroxy-6-	
		methoxy-4,5-	
		diisoprenylxanthone, 40f	
		3,5,7-Trihydroxy-2-	
		methoxy-1,8-bis(3-mehtyl-	
		2-buten-1-yl)-9H-xanthen-	
		9-one, 34f	
С.	Fruits	Cochinxanthone A, 1f	Laphookhieo
cochinchinense			et al., 2008
		Cochinxanthone B, 2f	
		Cochinxanthone C, 3f	
		1,3,7-Trihydroxyxanthone,	
		5f	
		Vismiaquinone C, 7a	
		Fuscaxanthone E, 6f	Laphookhieo
			et al., 2008
			Laphookhieo
			et al., 2009
		Cochinchinone G, 15f	Laphookhieo
			<i>et al.</i> , 2008
			Mahabusarakam
			<i>et al.</i> , 2008

Scientific	Investigated	Compound	Bibliography
name	Part		
С.	Fruits	7-Geranyloxy-1,3-	Laphookhieo
cochinchinense		dihydroxyxanthone, 4f	<i>et al.</i> , 2008
			Laphookhieo
			et al., 2009
			Mahabusarakam
			<i>et al.</i> , 2008
		1,8-Dihydroxy-3-	Mahabusarakam
		methoxy-6-methyl-2-(3-	<i>et al.</i> , 2008
		methyl-2-	
		butenyl)anthraquinone, 7a	
	Resin+Fruits	Cochinchinone A, 8f	Boonnak et al.,
			2009
		Cochinchinone C, 10f	
		Cochinchinone I, 16f	
		Cochinchinone J, 17f	
		Cochinchinone K, 18f	
		Cochinchinone L, 19f	
		Dulcisxanthone F, 42f	
		1,3,7-Trihydroxy-2,4-	
		diisoprenylxanthone, 7f	
		7-Geranyloxy-1,3-	
		dihydroxyxanthone, 4f	
		Celebixanthone methyl	
		ether, 41f	
		<i>α</i> -Mangostin, 27f	
		β-Mangostin, 28f	
		Macluraxanthone, 54f	

Scientific	Investigated	Compound	Bibliography
name	Part		
С.	Resin+Fruits	Pruniflorone G, 51f	Boonnak et al., 2009
cochinchinense			
	Roots	5-0-	Laphookhieo et al.,
		Methylcelebixanthone,	2006
		20f	
		Celebixanthone, 21f	Laphookhieo et al.,
			2006
		Cochinchinone B, 9f	Mahabusarakam
			et al., 2006
		Cochinchinone D, 11f	
		4-Deprenylbratatin, 12f	
		Macluraxanthone, 54f	
		Garcinone B, 38f	
		Garcinone D, 37f	
		Celebixanthone, 21f	
		1,3,7-Trihydroxy-2,4-	Laphookhieo et al.,
		di(3-metylbut-2-	2006
		enyl)xanthone, 58f	Mahabusarakam
			et al., 2006
		Cochinchinone A, 8f	
		<i>a</i> -Mangostin, 27f	
		β-Mangostin, 28f	
		Cochinchinone C, 10f	
		Cochinchinone E, 13f	Mahabusarakam
			et al., 2008
		Cochinchinone F, 14f	

Scientific	Investigated	Compound	Bibliography
name	Part		
С.	Roots	Isocudraniaxanthone B, 25f	Mahabusarakam
cochinchinense			et al., 2008
		1,2,8-Trihydroxyxanthone, 62f	
		Cudratricusxanthone E, 63f	
		Norathyriol, 64f	
	Stem	Dulcisxanthone B, 29f	Phuwapraisirisan
			<i>et al.</i> , 2006
		Tectochrysin, 1d	
		α -Mangostin, 27f	
		β-Mangostin, 28f	
		2-Geranyloxy-1,3,7-trihydroxy-4-	
		(3-methylbut-2-enyl)xanthone, 31f	
		3-O-β-D-Glucopyranosyl-2',4,6'-	Yu et al., 2009
		trihydroxybenzophenone, 1b	
		3-O-β-D-Glucopyranosyl-2',5,6'-	
		trihydroxybenzophenone, 2b	
		(+)-6-Hydroxy-3,7-dimethoxy-8-	Jin et al., 2009
		(3-methylbut-2-enyl)-6',6'-	
		dimethyl-5'-hydroxy-4',5'-	
		dyhydropyrano(2',3':1,2)xanthone),	
	30f		
		(+)-6-Hydroxy-3,7-dimethoxy-8-	
		(2-oxo-3-methylbut-3-enyl)-6',6'-	
		dimethyl-5'-hydroxy-4',5'-	
		dyhydropyrano(2',3':1,2)xanthone),	
		31f	

Table 1 (Continued)

Scientific	Investigated	Compound	Bibliography
name	Part		
C. formosum	Roots	Formoxanthone A, 59f	Boonsri et al., 2006
		Formoxanthone B, 60f	
		Formoxanthone C, 61f	
		Macluraxanthone, 54f	
		Xanthone V_1 , 55f	
		Gerontoxanthone I, 26f	
		3-Geranyloxy-6-methyl-	
		1,8-	
		dihydroxyanthraquinone,	
		1a	
		Vismiaquinone, 6a	
		Madagascin, 3a	
C. formosum	Bark	Bianthrone J, 10a	Boonnak et al., 2007
subsp.			
pruniflorum			
		Bianthrone A ₁ , 11a	
		Vismiaquinone, 6a	
		11-Hydroxy-5-methoxy-	Boonnak et al., 2006,
		2,2,9-trimethyl-2 <i>H</i> -	Boonnak et al., 2007
		anthra[1,2- <i>b</i>]-pyran-7,12-	
		dione, 9a	
		3-Geranyloxy-6-methyl-	
		1,8-	
		dihydroxyanthraquinone,	
		1a	
		Pruniflorone J, 2a	Boonnak et al., 2006
		Madagascin, 3a	

Table 1 (Continued)

Scientific	Investigated	Compound	Bibliography
name	Part		
C. formosum	Bark	Physcion, 4a	Boonnak et al.,
subsp.			2006
pruniflorum			
		Emodin, 5a	
		Formoxanthone B, 60f	
		Macluraxanthone, 54f	
		Xanthone V_1 , 55f	
		Gerontoxanthone I, 26f	
		6-Deoxyjacareubin, 56f	
	Roots	Pruniflorone A, 44f	Boonnak et al.,
			2006
		Pruniflorone B, 45f	
		Pruniflorone C, 46f	
		Pruniflorone D, 47f	
		Pruniflorone E, 48f	
		Pruniflorone F, 49f	
		Pruniflorone G, 51f	
		Pruniflorone H, 52f	
		Pruniflorone I, 53f	
		Dulcisxanthone F,42f	
		α-Mangostin, 27f	
		β-Mangostin, 28f	
		3-Isomangostin, 23f	
		Formoxanthone A, 59f	

Table 1 (Continued)

Scientific	Investigated	Compound	Bibliography
name	Part		
C. formosum	Roots	3,4-Dihydro-5,9-dihydroxy-	Boonnak et al.,
subsp.		8-methoxy-7-(3-methoxy-3-	2006
pruniflorum		methylbutyl)-2,2-dimethyl-	
		2H,6H-pyrano[3,2-b]-	
		xanthen-6-one, 23f	
		3,4-Dihydro-5,9-dihydroxy -	
		7-(3-hydroxy-3-methyl-	
		butyl)-8-methoxy-2,2-	
		dimethyl-2H,6H-pyrano[3,2-	
		b]xanthen-6-one, 24f	
		Isocudraniaxanthone B, 25f	
		10-O-Methylmaclura-	
		xanthone, 50f	
C. maingayi	Stem bark	Gerontoxanthone I, 26f	Laphookhieo
			et al., 2009
		Macluraxanthone, 54f	
		Formoxanthone C, 61f	
C.sumartranum	Root bark	Sumartranaxanthone A, 36f	Buana <i>et al.</i> , 2009

Structure

a: Anthraquinones

8a: Methoxyemodin

9a:11-Hydroxy-5-methoxy-2,2,9-trimethyl-2*H*-anthra-[1,2*b*]pyran-7,12-dione

11a: Bianthrone A₁

b: Benzenoids

1b: 3,4-Dihydroxybenzoic acid

c: Benzophenone

1c: $R_1 = OH$, $R_2 = H$; 3-O- β -D-Glucopyranosyl-2', 5, 6'-trihydroxybenzophenone **2c**: $R_1 = H$, $R_2 = OH$; 3-O- β -D-Glucopyranosyl-2',4, 6'-trihydroxybenzophenone

d: Flavonoids

2d: Astilbin

3d: Isoastilbin

e: Triterpenes

1e: Friedelinol

2e: Friedelin

3e: Lup-20(29)-ene-3β, 30-diol

4e: 3β-Hydroxylup-20(29)en-30-

oic acid

5e: Betulenic acid

f: Xanthones

7f: R = 3; 1,3,7-Trihydroxy-2,4-diisoprenylxanthone **8f**: R = 3; Cochinchinone A

9f: Cochinchinone B

10f: $R_1 = H$, $R_2 = OH$, $R_3 = OCH_3$; Cochinchinone C 11f: $R_1 = R_2 = OH$, $R_3 = OCH_3$; Cochinchinone D 12f: $R_1 = R_2 = OH$, $R_3 = H$; 4-Deprenylbratatin

13f: Cochinchinone E

14f: Cochochinone F

15f: Cochochinone G

16f: Cochinchinone I

17f: Cochinchinone J

18f: Cochinchinone K

19f: Cochinchinone L

20f: $R = CH_3$; 5-*O*-Methylcelebixanthone

21f: R = H; Celebixanthone

22f: R = جرب ; 3-Isomangostin

23f:
$$R = 24f$$
: $R = 24f$; R

27f: R=H; *α*-Mangostin

28f: R=CH₃; β-Mangostin

29f: Dulcisxanthone B

30f: (+)-6-Hydroxy-3,7-dimethoxy-8-(3-methylbut-2-enyl)-6, 6'dimethyl-5'-hydroxy-4',5'-dihydropyrano(2',3':1,2)xanthone

31f: 2-Geranyl-1,3,7-trihydroxy-4-(3-methylbut-2-enyl)xanthone

32f: (+)-6-Hydroxy-3,7-dimethoxy-8-(2-oxo-3-methylbut-2-enyl)-

6, 6'-dimethyl-5'-hydroxy-4',5'-dihydropyrano(2',3':1,2)xanthone

33f: 4-(3',7'-Dimethylocta-2',6'-dienyl)-1,3,5-trihydroxy-9H-xanthen-9-one

34f: 3,5,7-Trihydroxy-2-methoxy-1,8-bis(3-methyl-2-buten-1-yl)-9*H*-xanthen-9-one

HO OH

35f: 3,4-Dihydrojacareubin

37f: Garcinone D

38f: Garcinone B

39f: Euxanthone

40f:1,3,7-Trihydroxy-6-methoxy-4,5-diisoprenylxanthone

41f: Celebixanthone methyl ether

42f: Dulxisxanthone F

43f: 1,3,8-Trihydroxy-2,4-dimethoxyxanthone

49f: Pruniflorone F

50f: $R_1 = CH_3$, $R_2 = CH_3$; 10-O-Methylmacluraxanthone **51f**: $R_1 = \mathcal{R}_1$, $R_2 = H$; Pruniflorone G **52f**: $R_1 = \mathcal{R}_1$, $R_2 = CH_3$; Pruniflorone H

53f: Pruniflorone I

56f: R_1 = H, R_2 =H; 6-Deoxyjacareubin

57f: 1,7-Dihydroxy-2,8-dimethoxyxanthone

58f: 1,3,7-Trihydroxy-2,4-di(3-metylbut-2-enyl)xanthone

59f: Formoxanthone A

61f: Formoxanthone C

63f: Cudratricusxanthone

60f: Formoxanthone B

62f: 1,2,8-Trihydroxyxanthone

64f: Norathyriol

1.1.3 The objectives

The goals of this work were to investigate the chemical constituents from the roots of *C. formosum* ssp. *formosum* and to evaluate the antibacterial and cytotoxic activities of the isolated compounds.

CHAPTER 1.2 EXPERIMENTAL

1.2.1 Instruments and Chemicals

Melting point was recorded in °C on an Electrothermal 9100 melting point apparatus. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S100 spectrophotometer (Analytikjena) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution. The infrared spectra were recoded using FTS 165 FT-IR Perkin Elmer spectrophotometer. Nuclear Magnetic resonance spectra were recorded using Bruker Avance 300 MHz Bruker FTNMR Ultra ShieldTM. Spectra were recorded in deuterochloroform, deuteroacetone and deuteromethanol and were recorded as δ value in ppm downfield from TMS (Internal standard δ 0.00). Optical rotation was measured in MeOH solution at the sodium D line (590 nm) on an AUTOPOL^R II automatic polarimeter. The EI-MS and HREIMS mass spectra were obtained from a Micromass LCT mass spectrometer. Solvent for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 F₂₅₄ (Merck) and silica gel 100, respectively. Precoated plates of silica gel 60 GF₂₅₄ were used for analytical purposes.

1.2.2 Plant Material

The roots of *C. formosum* were collected from Nong Khai Province, Thailand, in March 2004. The plant was identified by Prof. Puangpen Sirirugsa and a voucher specimen (no. PSU 0012676) has been deposited at the Herbarium of Department of Biology, Prince of Songkla University (PSU).

1.2.3 Extraction and chemical investigation of the crude hexane extract from the roots of *C. formosum*

Air-dried roots (5.2 kg) were chopped and extracted with hexane (each 3×15 L) at room temperature for three days. Evaporation of the solvent under reduced pressure furnished a crude hexane extract (47.6 g).

Scheme 1 Extraction and isolation of compounds CF1-CF9 from the root of C. *formosum*

The crude hexane extract was subjected to quick column chromatography on silica gel with solvent mixtures of increasing polarity [hexane to EtOAc-hexane (9:1)] to yield sixteen fractions (1-16). Fraction 12 was chromatographed on silica gel column being eluted with solvents of increasing polarity using hexane and EtOAc, to yield sixteen subfractions (12A-12P). Crystallization of subfraction 12H from an acetone-hexane mixture (1:4) gave **CF5** (43.1 mg) as yellow needles. Subfraction 12K, upon standing overnight gave yellow needles of **CF6** (36.4 mg). Subfraction 12L was further purified by prep. TLC on silica gel, eluting with acetone in CH_2Cl_2 (1:99), to yield **CF3** (5.7 mg) and **CF4** (10.6 mg). Fraction 4 was chromatographed on a silica gel column, eluting with solvent mixtures of increasing polarity, (3-10% EtOAc-hexane) to afford twelve subfractions (4A-4L). Subfractions 4A, 4E and 4H were further purified by crystallization from MeOH-CH₂Cl₂ (1:4) to give **CF7** (9.6 mg), **CF8** (17.1 mg) and **CF9** (6.2 mg). Fraction 10 was subjected to repeated column chromatography over silica gel to afford **CF1** (31.7 mg) and **CF2** (4.6 mg).

Compound CF1: Yellow solid ; mp 111-113 °C; UV (MeOH) λ_{max} (log ε): 245 (4.39), 260(sh) (4.29), 319 (4.08), 367 (3.50) nm; IR (neat) v_{max} : 3373, 2974, 1650 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 2**; MS *m/z* (rel. int.): 448[M]⁺ (7), 363 (40), 341 (46), 323 (87), 281 (86), 269 (100); HREIMS *m/z* 448.2224 [M]⁺ (calcd. for C₂₈H₃₂O₅, 448.2250)

Compound CF2: Yellow solid; mp143-146 °C; UV (MeOH) λ_{max} (log ε): 253 (4.15), 269 (4.11), 332 (3.71), 377 (3.18) nm; IR (KBr) ν_{max} : 3426, 1646 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 3**; MS *m/z* (rel. int.): 446[M]⁺ (55), 431 (37), 377 (72), 323 (100), 309 (21), 295 (18); HREIMS *m/z* 446.2061 [M]⁺ (calcd. for C₂₈H₃₀O₅, 446.2093)

Compound CF3: Yellow solid; mp 152-154 °C; $[\alpha]_D^{29} = -44^\circ$ (CHCl₃, c 0.05); UV (MeOH) λ_{max} (log ε): 258 (4.51), 276 (4.44), 392 (3.85) nm; IR (KBr) v_{max} : 3440, 1646, 1624, 1598 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 5**; MS *m/z* (rel. int.): 396 [M]⁺ (40), 381(43), 353 (30), 341 (100), 325 (26), 311 (15), 285 (14); HREIMS *m/z* 396.1559 [M]⁺ (calcd. for C₂₃H₂₄O₆, 396.1573)

Compound CF4: Yellow solid; mp 137-139 °C; UV (MeOH) λ_{max} (log ϵ): 204 (4.26), 253 (4.42), 328 (4.09), 387 (3.92) nm; IR (KBr) ν_{max} : 3380, 1613, 1584 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 6**.

Compound CF5: Yellow needles; mp 183-184 °C; UV (MeOH) λ_{max} nm (log ϵ): 241 (4.28), 283 (4.62), 338 (4.25) nm; IR (KBr) v_{max} : 3447, 1650, 1583 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 8**.

Compound CF6: Yellow needles; mp 218-219 °C; UV (MeOH) λ_{max} (log ε): 282 (4.80), 337 (4.44) nm; IR (KBr) ν_{max} : 3358, 1646, 1624, 1609 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 10**.

Compound CF7: Reddish orange solid; mp 135-138 °C; UV (MeOH) λ_{max} (log ϵ): 226 (4.06), 254 (3.79), 266 (3.78), 288 (3.76), 437 (3.54) nm; IR (KBr) ν_{max} : 3409, 1628, 1609 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 14**.

Compound CF8: Reddish orange solid; mp 179-18 °C; UV (MeOH) λ_{max} (log ϵ): 221 (4.30), 253 (4.04), 266 (4.04), 287 (4.02), 438 (3.82) nm; IR (KBr) ν_{max} : 1628, 1609 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 16**.

Compound CF9: Reddish orange solid; mp 186-188 °C; UV (MeOH) λ_{max} (log ε): 221 (4.48), 263 (4.32), 292 (4.43), 307 (433)*sh*, 442 (4.11) nm; IR (KBr) ν_{max} : 1624 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 18**.

1.2.4 BIOASSAY

1.2.4.1 Antibacterial assay

The compounds isolated from *C. formosum* were tested against the microorganisms *Bacillus subtilis* (obtained from Department of Industrial Biotechnology, PSU), *Staphylococcus aureus* (TISTR517) (obtained from Microbial

Resources Center (MIRCEN), Bangkok, Thailand), *Pseudomonas aeruginosa, Enterococcus faecalis, Shigella sonei* and *Salmonella typhi*. The last four microorganisms were obtained from Department of Pharmacognosy and Botany, PSU. The antibacterial assay employed was the same as described in Boonsri *et al.* (Boonsri *et al.*, 2006). Vancomycin, which was used as a standard, showed antibacterial activity of 0.078 μ g/mL.

1.2.4.2 Cytotoxic assay

The procedure for the cytotoxic assay was performed by the sulphorhodamine B (SRB) assay as described by Skehan *et al.* (Skehan *et al.*, 1990). In this study, four cancer cell lines obtained from the National Cancer Institute, Bangkok, Thailand, were used: MCF-7 (breast adenocarcinoma), KB (human oral cancer), HeLa (human cervical cancer) and HT-29 (colon cancer). Camptothecin, which was used as a standard, showed cytotoxic activity in the range of 0.2-2.0 μ g/mL.

CHAPTER 1.3 RESULTS AND DISCUSSION

1.3.1 Structural elucidation of the isolated compounds from the root of C. formosum

The crude hexane extract from the roots of *C. formosum* was subjected to a succession of chromatographic procedures, including silica gel column chromatography and preparative TLC to afford three new compounds, **CF1-CF3** together with six known compounds **CF4-CF9**. All structures were elucidated using 1D and 2D NMR spectroscopic data and comparison with those reported in the literatures.

1.3.1.1 Compound CF1

CF1 was obtained as a yellow solid. The HREIMS spectrum showed a molecular ion peak at m/z 448.2224, corresponding to C₂₈H₃₂O₅. The IR spectrum (Figure 6) of 1 exhibited strong absorption bands due to hydroxyl (3373 cm^{-1}) and a conjugated carbonyl groups (1650 cm⁻¹). The UV absorption bands (245, 260sh, 319 and 367 nm) (Figure 5) were typical of a xanthone chromophore (Seo et al., 2002; Ito et al., 2003). The ¹³C NMR and DEPT spectral data (Table 2, Figure 8) disclosed the presence of one carbonyl carbon (δ 181.1), twelve sp^2 quaternary carbons (five of which were oxygen-bearing) (\$103.3, 105.7, 109.0, 120.9, 132.1, 133.1, 140.1, 144.3, 144.5, 152.5, 158.6, 161.0), six sp^2 methines (δ 116.9, 119.8, 121.1, 122.4, 123.7, 123.8), four sp^3 methylenes (δ 21.6, 22.0, 26.3, 39.7), and five methyl carbons (δ 16.3, 17.7, 17.9, 25.6, 25.7). The ¹H NMR spectrum of **1** (**Table 2**, **Figure 7**) contained resonances for one chelated [δ 13.18 (1H, s, 1-OH)] and two free hydroxyl groups [δ 6.59 (1H, s, 3-OH) and δ 5.84, (1H, s, 5-OH)]. A 1,2,3-trisubstituted benzene ring was revealed by resonances at δ 7.75 (1H, dd, J = 7.8, 1.5 Hz, H-8), 7.28 (1H, dd, J = 7.8, 1.5 Hz, H-6) and 7.21 (1H, t, J = 7.8 Hz, H-7). The lowest-field aromatic-proton (δ 7.75) was assigned to H-8 due to the anisotropic effect of the carbonyl group and this was supported by the HMBC correlations of H-8 to a carbonyl carbon at δ 181.1 (C-9), δ 119.8 (C-6) and δ 144.3 (C-4b), as well as those of H-7 to δ 144.5 (C-5) and δ 120.9 (C-8a) and of H-6 to δ 116.9 (C-8). Furthermore, the ¹H NMR spectra displayed a geranyl moiety at δ 1.60 (3H, s, H-10'), 1.69 (3H, s, H-8'), 1.85 (3H, s, H-9'), 2.11 (4H, m, H-4', H-5'), 3.49 (2H, d, J = 7.2 Hz, H-1'), 5.06

(1H, m, H-6') and 5.30 (1H, m, H-2'), and a prenyl moiety at $\delta 1.74$ (3H, d, J = 1.2 Hz, J = 1.2 Hz)H-4"), 1.86 (3H, s, H-5"), 3.53 (2H, d, J = 6.9 Hz, H-1") and 5.25 (1H, m, H-2"). In the HMBC spectrum, the chelated hydroxyl proton (δ 13.18) showed correlations with C-1 (δ 158.6), C-2 (δ 109.0) and C-9a (δ 103.3), the benzylic allylic methylene protons (δ 3.49, H-1') of the geranyl group showed cross peak with C-1 (δ 158.6), C-2 (δ 109.0) and C-3 (δ 161.0) and the allylic methylene protons of the prenyl group at δ 3.53 (H-1'') showed the correlations with C-3 (δ 161.0) and C-4a (δ 152.5), indicating that the geranyl and the prenyl moieties were located at C-2 and C-4, respectively. Therefore, compound 1 was identified as 1,3,5-trihydroxy-2-(3,7-dimethylocta-2,6dienyl)-4-(3-methylbut-2-enyl)xanthone, a new compound and named as formoxanthone A (Boonsri et al., 2006) which is the isomer of 2-geranyl-1,3,7trihydroxy-4-(3,3-dimethylallyl)xanthone previously isolated from C. cochinchinense (Bennett et al., 1993).

Selected HMBC correlations of CF1

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	DEPT	HMBC
1		158.6	С	
2		109.0	С	
3		161.0	С	
4		105.7	С	
4a		152.5	С	
4b		144.3	С	
5		144.5	С	
6	7.28 (<i>dd</i> , 7.8, 1.5)	119.8	СН	5, 8
7	7.21 (<i>t</i> , 7.8)	123.8	СН	5, 8a
8	7.75 (<i>dd</i> , 7.8, 1.5)	116.9	СН	4b, 6, 9
8a		120.9	С	
9		181.1	С	
9a		103.3	С	
1'	3.49 (<i>d</i> , 7.2)	21.6	CH_2	1, 2, 3, 2', 3'
2'	5.30 (<i>m</i>)	121.1	СН	2, 1', 4', 9'
3'		140.1	С	
4'	2.11 (<i>m</i>)	39.7	CH_2	9'
5'	2.11 (<i>m</i>)	26.3	CH_2	3', 7'
6'	5.06 (<i>m</i>)	123.7	СН	5', 8'
7'		132.1	С	
8′	1.69 (s)	25.7	CH_3	6', 7'
9′	1.85 (s)	16.3	CH_3	2', 4'
10'	1.60 (s)	17.7	CH ₃	6', 7'
1″	3.53 (<i>d</i> , 6.9)	22.0	CH_2	3, 4, 4a, 2", 3"
2''	5.25 (<i>m</i>)	122.4	СН	4,4"
3"		133.1	С	
4''	1.74 (<i>d</i> , 1.2)	25.6	CH ₃	2", 3", 5"

Table 2¹H, ¹³C NMR, DEPT and HMBC spectral data of CF1

Table 2 (Continued)

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ_{C}	DEPT	НМВС
5"	1.86 (s)	17.9	CH ₃	2", 3", 4"
1-OH	13.18 (s)			1, 2, 9a
3-OH	6.59 (s)			2, 3, 4
5-OH	5.84 (<i>s</i>)			4b, 6

1.3.1.2 Compound CF2

CF2, a yellow solid, gave a HREIMS molecular ion peak at m/z 446.2061 corresponding to a molecular formula C₂₈H₃₀O₅. The IR (**Figure 9**) and UV spectra of **2** exhibited the same pattern as those of **1**. The ¹H NMR spectrum of **CF2** (**Table 3**, **Figure 9**) was similar to that of **CF1** except for the replacement of the prenyl group in **CF1** with the characteristic signals of a chromene ring, two vinylic protons at δ 6.79 and 5.64 (each, d, J = 9.9 Hz, H-4", H-5", respectively) and a methyl signal at δ 1.49 (6H, *s*, Me-7", Me-8") (**Table 3**). The dimethylchromene group was connected to ring A at C-3 and C-4 as evidenced by HMBC correlations of the vinylic proton at δ 6.79 (H-4") with C-3 (δ 158.7), C-4 (δ 100.6) and C-4a (δ 149.2). Thus, compound **2** was characterized as 1,5-dihydroxy-2-(3,7-dimethylocta-2,6-dienyl)-6",6"-dimethyl-pyrano(2",3":3,4)xanthone, a new compound and named as formoxanthone B (Boonsri *et al.*, 2006).

Selected HMBC correlations of CF2

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ_{C}	DEPT	НМВС
1		160.6	С	
2		112.3	С	
3		158.7	С	
4		100.6	С	
4a		149.2	С	
4b		144.1	С	
5		144.3	С	
6	7.30 (<i>dd</i> , 7.8, 1.5)	120.1	СН	4b, 8
7	7.23 (<i>t</i> , 7.8)	123.9	СН	5, 8a
8	7.78 (<i>dd</i> , 7.8, 1.5)	117.2	СН	4b, 6, 9
8a		121.2	С	
9		180.8	С	
9a		103.2	С	
1'	3.37 (<i>d</i> , 7.5)	21.1	CH_2	1, 2, 3, 2', 3'
2'	5.25 (<i>m</i>)	121.7	СН	1', 4', 9'
3'		135.2	С	
4′	2.00 (<i>m</i>)	39.8	CH_2	2', 3'
5'	2.05 (<i>m</i>)	26.7	CH_2	4', 6', 7'
6′	5.08 (<i>m</i>)	124.4	СН	8', 10'
7′		131.3	С	
8′	1.64 (<i>br s</i>)	25.7	CH ₃	6', 7'
9′	1.82 (s)	16.3	CH_3	2', 3', 4'
10′	1.57 (<i>br s</i>)	17.7	CH_3	6', 7', 8'
1″				
2''				
3"				
4″	6.79 (<i>d</i> , 9.9)	115.0	СН	3, 4, 4a, 6″
5″	5.64 (<i>d</i> , 9.9)	127.4	СН	4, 6''

Table 3 ¹H, ¹³C NMR, DEPT and HMBC spectral data of CF2

Table 3 (Continued)

Position	$\delta_{\rm H}$ (<i>mult.</i> , $J_{\rm Hz}$)	δ _C	DEPT	HMBC
6"		78.1	С	
7″	1.49 (s)	28.2	CH ₃	5", 6", 8"
8″	1.49 (s)	28.2	CH ₃	5", 6", 7"
1-OH	13.20 (<i>s</i>)			1, 2, 3, 9a
5-OH	5.71 (<i>s</i>)			

Table 4 Comparison of ¹H and ¹³C NMR spectral data of CF1 and CF2

Position	CF1		CF2	
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm C}({\rm C-Type})$	$\delta_{\rm H}$, (<i>mult.</i> , $J_{\rm Hz}$)	δ _C (C-Type)
1		158.6 (C)		160.6 (C)
2		109.0 (C)		112.3 (C)
3		161.0 (C)		158.7 (C)
4		105.7 (C)		100.6 (C)
4a		152.5 (C)		149.2 (C)
4b		144.3 (C)		144.1 (C)
5		144.5 (C)		144.3 (C)
6	7.28 (<i>dd</i> , 7.8, 1.5)	119.8 (CH)	7.30 (<i>dd</i> , 7.8, 1.5)	120.1 (CH)
7	7.21 (<i>t</i> , 7.8)	123.8 (CH)	7.23 (<i>t</i> , 7.8)	123.9 (CH)
8	7.75 (<i>dd</i> , 7.8, 1.5)	116.9 (CH)	7.78 (<i>dd</i> , 7.8, 1.5)	117.2 (CH)
8a		120.9 (C)		121.2 (C)
1′	3.49 (<i>d</i> , 7.2)	21.6 (CH ₂)	3.37 (<i>d</i> , 7.5)	21.1 (CH ₂)
2'	5.30 (<i>m</i>)	121.1 (CH)	5.25 (<i>m</i>)	121.7 (CH)
3'		140.1 (C)		135.2 (C)
4'	2.11 (<i>m</i>)	39.7 (CH ₂)	2.00 (<i>m</i>)	39.8 (CH ₂)
5'	2.11 (<i>m</i>)	26.3 (CH ₂)	2.05 (<i>m</i>)	26.7 (CH ₂)
6'	5.06 (<i>m</i>)	123.7 (CH)	5.08 (<i>m</i>)	124.4 (CH)

Table 4 (Continued)

Position	CF1		CF2	2
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C (C-Type)	$\delta_{\rm H}$, (mult., $J_{\rm Hz}$)	δ _C (C-Type)
7′		132.1 (C)		131.3 (C)
8′	1.69 (<i>s</i>)	25.7 (CH ₃)	1.64 (<i>br s</i>)	25.7 (CH ₃)
9′	1.85 (s)	16.3 (CH ₃)	1.82 (s)	16.3 (CH ₃)
10′	1.60 (<i>s</i>)	17.7 (CH ₃)	1.57 (br s)	17.7 (CH ₃)
1″	3.53 (<i>d</i> , 6.9)	22.0 (CH ₂)		
2″	5.25 (<i>m</i>)	122.4 (CH)		
3″		133.1 (C)		
4"	1.74 (<i>d</i> , 1.2)	25.6 (CH ₃)	6.79 (<i>d</i> , 9.9)	115.0 (CH)
5″	1.86 (<i>s</i>)	17.9 (CH ₃)	5.64 (<i>d</i> , 9.9)	127.4 (CH)
6″				78.1 (C)
7"			1.49 (s)	28.2 (CH ₃)
8″			1.49 (s)	28.2 (CH ₃)
1-OH	13.18 (s)		13.20 (s)	
3-OH	6.59 (s)			
5-OH	5.84 (s)		5.71 (s)	

1.3.1.3 Compound CF3

CF3 was obtained as a yellow solid and the HREIMS spectrum showed a molecular ion peak at m/z 396.1559 consistent with the molecular formula C₂₃H₂₄O₆. The UV (Figure 12) and IR (Figure 13) spectrua suggested that 3 was also a xanthone derivative (Seo et al., 2002; Ito et al., 2003). The ¹H NMR spectral data of **3** (Table 5, Figure 14) consisted of one chelated hydroxyl signal at δ 13.40 and two ortho-coupled aromatic signals at δ 6.92 and 7.74 (1H each, d, J = 7.7 Hz, H-7, H-8, respectively). The presence of a prenyl group was evident from the two vinylic methyl signals at δ 1.69 (3H, s, Me-4') and 1.79 (3H, s, Me-5'), one methylene doublet at δ 3.31 (2H, d, J = 6.9 Hz, H-1') and a vinylic proton signal at δ 5.29 (1H, m, H-2'). Furthermore, signals of an α, α, β -trimethylfuran ring which comprised of protons resonating at δ 1.32 (3H, s, Me-6"), 1.43 (3H, d, J = 6.3 Hz, Me-8"), 1.58 (3H, s, Me-7") and 4.54 (1H, q, J = 6.3 Hz, H-5") were displayed. In the HMBC spectrum, the methylene signal at δ 3.31 (H-1') showed cross peaks with oxygenated aromatic carbons at δ 161.3 (C-1) and δ 164.3 (C-3), indicating that a prenyl group was connected to the C-2 position. In addition, the oxygenated methine proton signal at δ 4.54 (H-5'') showed a correlation with C-3 (δ 164.3) and the methyl groups at δ 1.32 and 1.58 were correlated with C-4 (δ 112.1). These observations suggested that the furan ring was fused at C-3 and C-4. The relative stereostructure of the trimethylfuran ring was postulated from NOESY cross peaks of the oxygenated methine proton (δ 4.54, H-5") with the methyl groups at δ 1.43 (Me-8") and 1.58 (Me-7") and the methyl doublet at δ 1.43 (Me-8") with the methyl group at δ 1.32 (Me-6"). Therefore, compound **3** was identified as 4",5"-dihydro-1,5,6-trihydroxy-2-(3-methylbut-2-enyl)-

4",4",5"-trimethylfurano(2",3":3,4)xanthone, a new compound and named as formoxanthone C (Boonsri *et al.*, 2006).

Selected HMBC correlations of CF3

Table 5 1 H,	¹³ C NMR.	DEPT :	and HMBC	spectral	data of	CF3
	C 1010 ,			spectru	uutu 01	

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	DEPT	HMBC
1		161.3	С	
2		107.3	С	
3		164.3	С	
4		112.1	С	
4a		150.6	С	
4b		145.1	С	
5		130.6	С	
6		149.2	С	
7	6.92 (<i>d</i> , 7.7)	112.2	СН	5, 6, 8a
8	7.74 (<i>d</i> , 7.7)	118.3	СН	6, 9
8a		114.6	С	
9		180.1	С	
9a		103.0	С	
1'	3.31 (<i>d</i> , 6.9)	21.8	CH_2	1, 2, 3, 2', 3'
2'	5.29 (<i>m</i>)	121.6	СН	1', 4', 5'
3'		132.2	С	
4'	1.69 (s)	25.8	CH ₃	2', 3', 5'

Table 5 (Continued)

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	DEPT	НМВС
5'	1.79 (s)	17.8	CH ₃	2', 3', 4'
4''		44.1	С	
5″	4.54 (q, 6.3)	90.3	СН	3, 4", 6", 7"
6″	1.32 (s)	21.7	CH ₃	4, 4", 5", 7"
7″	1.58 (s)	26.3	CH ₃	4, 4", 5", 6"
8″	1.43 (<i>d</i> , 6.3)	14.4	CH ₃	4", 5"
1-OH	13.40 (s)			

1.3.1.4 Compound CF4

CF4 appeared as a yellow solid. The UV (**Figure 16**) and IR (**Figure 17**) spectra closely resembled to those of **CF3**. The ¹H and ¹³C NMR spectra (**Table 6**, **Figures 18** and **19**) exhibited signals similar to those of **CF3** except for the appearance of three olefinic protons [δ 6.88 (1H, dd, J = 17.7, 10.5 Hz, H-2''), 5.30 (1H, dd, J = 17.7, 0.9 Hz, H-3'') and 5.15 (1H, dd, J = 10.5, 0.9 Hz, H-3'')] of terminal olefin instead of an oxymethine proton [δ 4.54 (1H, q, J = 6.3 Hz, H-5'')] and one methyl group [δ 1.43 (3H, d, J = 6.3 Hz, Me-8'')] of a furan ring in **CF3**. From the spectroscopic data and comparison with those of gerontoxanthone I (Chang *et al.*, 1989), therefore, **CF4** was determined as gerontoxanthone I.

Selected HMBC correlations of CF4

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ	DEPT	HMBC
1		159.0	C	
2		110.1	C	
3		161.4	C	
4		111.2	C	
4a		153.3	C	
4b		144.8	C	
5		131.0	C	
6		149.0	C	
7	6.94 (<i>d</i> , 8.7)	111.6	СН	5, 6, 8a
8	7.70 (<i>d</i> , 8.7)	117.2	СН	4b, 6, 9
8a		113.8	C	
9		180.3	C	
9a		103.0	C	
1′	3.47 (<i>d</i> , 6.9)	21.6	CH ₂	1, 3, 2', 3'
2'	5.24 (<i>m</i>)	121.2	СН	
3'		136.1	C	
4′	1.79, <i>d</i> , 0.9)	25.9	CH ₃	2', 3', 5'
5'	1.86 (<i>br s</i>)	18.0	CH ₃	2', 3', 4'
1″		41.6	C	
2″	6.68 (<i>dd</i> , 17.7, 10.5)	154.9	C	4", 5"
3″	5.30 (<i>dd</i> , 17.7, 0.9)	106.1	CH ₂	1", 2"
	5.15 (<i>dd</i> , 10.5, 0.9)			
4''	1.69 (s)	28.0	CH ₃	1", 2", 4
5″	1.69 (<i>s</i>)	28.0	CH ₃	
1-OH	13.60 (s)			1, 2, 9a
3-OH	6.76 (<i>s</i>)			3, 4

Table 6¹H, ¹³C NMR, DEPT and HMBC spectral data of CF4

	CF4		gerontoxantho	gerontoxanthone I ^a		
position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C		
1		159.0		160.4		
2		110.1		112.5		
3		161.4		161.9		
4		111.2		111.9		
4a		153.3		155.4		
4b		144.8		147.5		
5		131.0		134.2		
6		149.0		152.1		
7	6.94 (<i>d</i> , 8.7)	111.6	7.01 (<i>d</i> , 8.8)	113.9		
8	7.70 (<i>d</i> , 8.7)	117.2	7.63 (<i>d</i> , 8.8)	117.7		
8a		113.8		115.2		
9		180.3		182.3		
9a		103.0		104.1		
1′	3.47 (<i>d</i> , 6.9)	21.6	3.37 (<i>d</i> , 7.0)	22.8		
2'	5.24 (<i>m</i>)	121.2	5.22 (<i>m</i>)	123.8		
3'		136.1		132.5		
4′	1.79, <i>d</i> , 0.9)	25.9	1.66 (s)	26.3		
5'	1.86 (<i>br s</i>)	18.0	1.66 (s)	18.4		
1″		41.6		42.7		
2″	6.68 (<i>dd</i> , 17.7, 10.5)	154.9	6.60 (<i>dd</i> , 17.7, 10.4)	151.8		
3″	5.30 (<i>dd</i> , 17.7, 0.9)	106.1	5.47 (<i>d</i> , 17.7)	112.8		
	5.15 (<i>dd</i> , 10.5, 0.9)		5.35 (<i>d</i> , 10.4)			
4″	1.69 (s)	28.0	1.81 (s)	29.2		
5″	1.69 (s)	28.0	1.81 (s)	29.2		
1-OH	13.60 (s)		13.86 (<i>s</i>)			
3-OH	6.76 (s)					

Table 7 Comparison of ¹H and ¹³C NMR spectral data of CF4 and gerontoxanthone I

^{*a*} Recorded in Me₂CO- d_6

1.3.1.5 Compound CF5

CF5 was obtained as yellow needles. The UV (**Figure 20**) and IR (**Figure 21**) spectra of **CF5** exhibited the same pattern as those of **CF4**. The ¹H and ¹³C NMR spectra (**Table 8**, **Figures 22** and **23**) showed signals similar to those of **CF4** except for the replacement of the prenyl group [δ 3.47 (2H, d, J = 6.9 Hz, H-1'), 5.24 (1H, m, H-2'), 1.79 (3H, d, 0.9 Hz, H-4') and 1.86 (3H, brs, H-5')] in **CF4** with the characteristic signals of a chromene ring [δ 1.52 (6H, s, H-4' and H-5'), 5.61 (1H, d, J = 9.9 Hz, H-2') and 6.76 (1H, d, J = 9.9 Hz, H-1')] in **CF5**. Thus, **CF5** was characterized as macluraxanthone (Iinuma *et al.*, 1994).

Selected HMBC correlations of CF5

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	DEPT	HMBC
1		156.8	С	
2		105.6	С	
3		158.9	С	
4		113.1	С	
4a		154.1	С	
4b		144.5	С	
5		131.1	С	
6		149.0	С	
7	6.94 (<i>d</i> , 9.0)	112.8	СН	5, 6, 8a
8	7.68 (<i>d</i> , 9.0)	117.5	СН	6, 9, 4b
8a		113.7	С	
9		180.8	С	
9a		103.0	С	
1'	6.76 (<i>d</i> , 9.9)	116.1	СН	1, 2, 3, 3'
2'	5.61 (<i>d</i> , 9.9)	127.2	СН	2, 3', 4', 5'
3'		78.3	С	
4'	1.52 (s)	27.9	CH ₃	2', 3'
5'	1.52 (s)	27.9	CH ₃	2', 3'
1″		41.4	С	
2''	6.76 (<i>dd</i> , 17.7, 10.5)	156.8	СН	1", 3", 4", 5"
3″	5.22 (<i>dd</i> , 17.7, 1.5)	103.3	CH ₂	1", 2"
	5.05 (<i>dd</i> , 10.5, 1.5)			
4''	1.65 (s)	28.2	CH ₃	4, 1", 2"
5″	1.65 (s)	28.2	CH ₃	4, 1", 2"
1-OH	13.53 (s)			1, 2, 9a

Table 8¹H, ¹³C NMR, DEPT and HMBC spectral data of CF5

	CF5		macluraxanthone ^a	
position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	$\delta_{\rm H}$ (<i>mult.</i> , $J_{\rm Hz}$)	δ _C
1		156.8		157.3
2		105.6		105.7
3		158.9		159.6
4		113.1		114.2
4a		154.1		155.9
4b		144.5		146.7
5		131.1		131.1
6		149.0		149.0
7	6.94 (<i>d</i> , 9.0)	112.8	7.00 (<i>d</i> , 9.0)	112.8
8	7.68 (<i>d</i> , 9.0)	117.5	7.60 (<i>d</i> , 9.0)	117.5
8a		113.7		114.4
9		180.8		180.8
9a		103.0		103.6
1′	6.76 (<i>d</i> , 9.9)	116.1	6.69 (<i>d</i> , 10.0)	116.4
2'	5.61 (<i>d</i> , 9.9)	127.2	5.70 (<i>d</i> , 10.0)	128.2
3'		78.3		79.0
4′	1.52 (s)	27.9	1.49 (s)	28.0
5'	1.52 (<i>s</i>)	27.9	1.49 (s)	28.0
1″		41.4		41.8
2''	6.76 (<i>dd</i> , 17.7, 10.5)	156.8	6.52 (<i>dd</i> , 17.0, 11.0)	152.9
3″	5.22 (<i>dd</i> , 17.7, 1.5)	103.3	5.05 (<i>dd</i> , 17.0, 1.0)	107.2
	5.05 (<i>dd</i> , 10.5, 1.5)		4.89 (<i>dd</i> , 11.0, 1.0)	
4″	1.65 (<i>s</i>)	28.2	1.74 (s)	29.9
5″	1.65 (<i>s</i>)	28.2	1.74 (s)	29.9
1-OH	13.53 (s)		13.91 (<i>s</i>)	

Table 9 Comparison of ¹H and ¹³C NMR spectral data of CF5 and macluraxanthone

^{*a*} Recorded in Me₂CO- d_6

1.3.1.6 Compound CF6

CF6 was obtained as yellow needles. The UV (**Figure 24**) and IR (**Figure 25**) spectra closely resembled to those of **CF5**. The ¹H and ¹³C NMR spectra (**Table 10**, **Figures 26** and **27**) were similar to those of **CF5** except for the appearance of signals of γ , γ -dimethylallyl side chain [δ 1.75 (3H, *brs*, H-5"), 1.87 (3H, *br s*, H-4"), 3.49 (2H, *d*, *J* = 7.2 Hz, H-1") and 5.24 (1H, *mt*, *J* = 7.2 Hz, H-2")] in **CF6** instead of α , α -dimethylallyl group [δ 1.65 (6H, *s*, H-4" and H-5"), 5.05 (1H, *dd*, *J* = 10.5, 1.5 Hz H-3"), 5.22 (1H, *dd*, *J* = 17.7, 1.5 Hz, H-3") and 6.76 (1H, *dd*, *J* = 17.7, 10.5 Hz, H-2")] in **CF5**. Therefore, **CF6** was determined as xanthone V₁ (Botta *et al.*, 1986).

Selected HMBC correlations of CF6

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	DEPT	HMBC
1		155.3	С	
2		104.2	С	
3		158.0	С	
4		107.8	С	
4a		154.3	С	
4b		146.5	С	
5		132.3	С	
6		151.2	С	
7	6.95 (<i>d</i> , 8.7)	112.4	СН	5, 6, 8a
8	7.70 (<i>d</i> , 8.7)	116.7	СН	4b' 4b, 9
8a		113.8	С	
9		181.2	С	
9a		102.6	С	
1′	6.74 (<i>d</i> , 9.9)	115.6	СН	1, 2, 3, 3'
2'	5.60 (<i>d</i> , 9.9)	127.3	СН	2, 3', 4', 5'
3'		77.9	С	
4′	1.48 (s)	28.0	CH ₃	2', 3', 5'
5'	1.48 (s)	28.0	CH ₃	2', 3', 4'
1″	3.49 (<i>d</i> , 7.2)	21.3	CH_2	3, 4, 4a, 2", 3"
2″	5.24 (<i>mt</i> , 7.2)	123.3	СН	
3″		132.3	С	
4''	$1.87(br \ s)$	25.5	CH ₃	4", 5"
5″	1.75 (<i>br s</i>)	17.6	CH ₃	
1-OH	13.20 (s)			

Table 10¹H, ¹³C NMR, DEPT and HMBC spectral data of CF6

	CF6		Xanthone	e V ₁
position	δ_{H} (mult., J_{Hz})	δ _C	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C
1		155.3		158.2
2		104.2		104.6
3		158.0		154.5
4		107.8		108.0
4a		154.3		156.3
4b		146.5		146.8
5		132.3		133.0
6		151.2		151.9
7	6.95 (<i>d</i> , 8.7)	112.4	6.95 (<i>d</i> , 8.5)	114.3
8	7.70 (<i>d</i> , 8.7)	116.7	7.60 (<i>d</i> , 8.5)	117.2
8a		113.8		113.0
9		181.2		181.1
9a		102.6		102.9
1'	6.74 (<i>d</i> , 9.9)	115.6	6.66 (<i>d</i> , 10)	115.3
2'	5.60 (<i>d</i> , 9.9)	127.3	5.66 (<i>d</i> , 10)	127.1
3'		77.9		79.2
4′	1.48 (s)	28.0	1.47 (s)	29.1
5'	1.48 (s)	28.0	1.47 (s)	29.1
1″	3.49 (<i>d</i> , 7.2)	21.3	3.52 (<i>d</i> , 7)	21.6
2″	5.24 (<i>mt</i> , 7.2)	123.3	5.30 (<i>t</i> , 7)	123.3
3″		132.3		131.0
4″	1.87 (<i>br</i> s)	25.5	1.85 (<i>br</i> s)	25.7
5″	1.75 (brs)	17.6	1.65 (<i>br s</i>)	17.9
1-OH	13.20 (s)		13.45 (s)	

Table 11 Comparison of ¹H and ¹³C NMR spectral data of CF6 and Xanthone V_1

Position	CF4	CF5	CF6
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ_{H} (<i>mult.</i> , J_{Hz})	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)
7	6.94 (<i>d</i> , 8.7)	6.94 (<i>d</i> , 9.0)	6.95 (<i>d</i> , 8.7)
8	7.70 (<i>d</i> , 8.7)	7.68 (<i>d</i> , 9.0)	7.70 (<i>d</i> , 8.7)
1'	3.47 (<i>d</i> , 6.9)	6.76 (<i>d</i> , 9.9)	6.74 (<i>d</i> , 9.9)
2'	5.24 (<i>m</i>)	5.61 (<i>d</i> , 9.9)	5.60 (<i>d</i> , 9.9)
4'	1.79, <i>d</i> , 0.9)	1.52 (s)	1.48 (s)
5'	1.86 (<i>br s</i>)	1.52 (s)	1.48 (s)
1″			3.49 (<i>d</i> , 7.2)
2″	6.68 (<i>dd</i> , 17.7, 10.5)	6.76 (<i>dd</i> , 17.7, 10.5)	5.24 (<i>mt</i> , 7.2)
3"	5.30 (<i>dd</i> , 17.7, 0.9)	5.22 (<i>dd</i> , 17.7, 1.5)	
	5.15 (<i>dd</i> , 10.5, 0.9)	5.05 (<i>dd</i> , 10.5, 1.5)	
4''	1.69 (<i>s</i>)	1.65 (s)	1.87 (<i>br s</i>)
5″	1.69 (<i>s</i>)	1.65 (s)	1.75 (<i>br s</i>)
1-OH	13.60 (<i>s</i>)	13.53 (s)	13.20 (s)

Table 12 Comparison of ¹H NMR spectral data of CF4-CF6

Position	CF4	CF5	CF6
1	159.0	156.8	155.3
2	110.1	105.6	104.2
3	161.4	158.9	158.0
4	111.2	113.1	107.8
4a	153.3	154.1	154.3
4b	144.8	144.5	146.5
5	131.0	131.1	132.3
6	149.0	149.0	151.2
7	111.6	112.8	112.4
8	117.2	117.5	116.7
8a	113.8	113.7	113.8
9	180.3	180.8	181.2
9a	103.0	103.0	102.6
1'	21.6	116.1	115.6
2'	121.2	127.2	127.3
3'	136.1	78.3	77.9
4'	25.9	27.9	28.0
5'	18.0	27.9	28.0
1″	41.6	41.4	21.3
2"	154.9	156.8	123.3
3"	106.1	103.3	132.3
4″	28.0	28.2	25.5
5″	28.0	28.2	17.6

Table 13 Comparison of ¹³C NMR spectral data of CF4-CF6

1.3.1.7 Compound CF7

CF7, a reddish orange solid, the IR spectrum (Figure 29) exhibited absorption bands at 3409 cm⁻¹ (hydroxyl), 1628 (conjugated carbonyl) and 1609 (aromatic ring) and the UV spectrum (Figure 28) exhibited λ_{max} 226, 254, 266, 288 and 437 nm suggesting the presence of a quinone structure possibly a hydroxyanthraquinone. The ¹³C NMR spectrum (Table 14, Figure 31) showed 20 signals, attributable to three methyls, one methylene, five methines and eleven quaternary carbons, as determined by DEPT experiments. The ¹H NMR (**Table 14**, **Figure 30**) revealed the presence of two sharp *singlet* signals of chelated hydroxyl groups at δ 12.28 (1-OH) and 12.11 (8-OH), The signals of two sets of meta-coupled aromatic protons were observed. The first set appeared as doublet signals at δ 6.66 and 7.35 which was assigned to be H-2 and H-4 by the correlation of H-2 to C-1, C-4 and C-9a and H-4 to C-2, C-3, C-9a and C-10 in HMBC experiment whereas, the second set showed the signals at δ 7.60 and 7.06. These were proposed for the signals of H-5 and H-7, respectively and was supported by the correlation of H-5 to C-6, C-7, C-8a, C-9 and C-10 and H-7 to C-5, C-8 and C-8a. A *singlet* methyl signal at δ 2.44 was assigned to be 6-Me according to the correlation to C-5, C-6 and C-7 from the HMBC experiment. Furthermore, The spectrum further showed the signals of a prenyl moiety at $\delta 4.64$ (1H, d, J = 6.9 Hz), 5.48 (1H, d, J = 6.9 Hz), 1.82 (3H, brs) and 1.79 (3H, brs). Since the chemical shift of methylene protons of the prenyl side chain appeared at low field, the prenyl group was attached to oxygen which was assigned at C-3 according to HMBC correlation of the oxymethylene proton H-1' (4.64) to C-3 (165.9). Thus, CF7 was characterized as madagascin (Nagem and Oliveira 1997).

Selected HMBC correlations of CF7

Table 14 lu	13C NIMP	DEDT and UMDC ana stual data at	CET
Table 14 ⁻ H,	^{TC} NMR,	, DEPT and HMBC spectral data of	CF7

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{ m C}$	DEPT	HMBC
1		165.1	С	
2	6.66 (<i>d</i> , 2.7)	107.5	СН	1, 4, 9a
3		165.9	С	
4	7.35 (<i>d</i> , 2.7)	108.7	СН	2, 3, 9a, 10
4a		135.2	С	
5	7.60 (<i>br d</i> , 1.2)	121.2	СН	6, 7, 8a, 9, 10, 6-Me
6		148.3	С	
7	7.06 (<i>dd</i> , 1.5, 0.9)	124.4	СН	5, 8, 8a, 6-Me
8		162.5	С	
8a		113.7	С	
8b		133.2	С	
9		190.9	С	
9a		110.1	С	
10		182.0	С	
1′	4.64 (<i>d</i> , 6.9)	65.8	CH_2	3, 2', 3'
2'	5.48 (<i>d</i> , 6.9)	118.2	СН	1', 4', 5'
3'		139.7	С	
4′	1.82 (<i>br s</i>)	25.8	CH ₃	2', 3', 5'
5'	1.79 (<i>br s</i>)	18.3	CH ₃	2', 3', 4'
6-Me	2.44 (s)	22.1	CH ₃	5, 6, 7
1-OH	12.28 (s)			1, 9a
8-OH	12.11 (s)			7, 8

	CF7		madagaso	cin ^{<i>a</i>}
position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ_{C}	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C
1		165.1		162.3
2	6.66 (<i>d</i> , 2.7)	107.5	6.91 (<i>d</i> , 1.8)	108.6
3		165.9		165.7
4	7.35 (<i>d</i> , 2.7)	108.7	7.50 (<i>d</i> , 1.8)	107.4
4a		135.2		135.0
5	7.60 (<i>brd</i> , 1.2)	121.2	7.23 (<i>d</i> , 2.0)	121.1
6		148.3		139.7
7	7.06 (<i>dd</i> , 1.5, 0.9)	124.4	6.56 (<i>d</i> , 2.0)	124.3
8		162.5		164.9
8a		113.7		110.0
8b		133.2		133.1
9		190.9		190.5
9a		110.1		108.0
10		182.0		182.0
1'	4.64 (<i>d</i> , 6.9)	65.8	4.54 (<i>d</i> , 6.4)	65.6
2'	5.48 (<i>d</i> , 6.9)	118.2	5.40 (<i>d</i> , 6.7)	118.1
3'		139.7		143.5
4'	1.82 (<i>br s</i>)	25.8	1.71 (s)	25.8
5'	1.79 (<i>br</i> s)	18.3	1.75 (s)	18.3
6-Me	2.44 (s)	22.1	2.44 (s)	22.1

Table 15 Comparison of ¹H and ¹³C NMR spectral data of CF7 and madagascin

^{*a*} recorded in CDCl₃

1.3.1.8 Compound CF8

CF8 was isolated as reddish orange solid. The IR (**Figure 33**) and UV (**Figure 32**) spectra exhibited the same patterns as those of **CF7**. The ¹H and ¹³C NMR spectra (**Table 16**, **Figures 34** and **35**) were similar to those of **CF7** except for the replacement of the prenyl group in **CF7** with the characteristic signals of a geranyl group in **CF8**. These signals were assigned as follow; two *singlet* signals at δ 1.61 and 1.68 and one *doublet* signal at δ 1.78 were of three vinylic methyl groups, a *doublet* signal (J = 6.6 Hz) at δ 4.66 was assigned for oxymethylene protons H₂-1', two *multiplet* signals at δ 2.12 and 2.15 were the signals of two groups of methylene protons H₂-4' and H₂-5', respectively, a *multiplet* signals (J = 6.6 Hz) at δ 5.47 were the signals of two olefinic methine protons H-6' and H-2', respectively. These assignments indicated that **CF8** was 3-geranyloxy-6-methyl-1,8-dihydroxyanthraquinone (Botta, *et al.*, 1983).

Selected HMBC correlations of CF8

Position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	DEPT	НМВС
1		165.1	С	
2	6.65 (<i>d</i> , 2.4)	107.5	СН	1, 4, 9a
3		165.9	С	
4	7.33 (<i>d</i> , 2.4)	108.8	СН	2, 9, 9a, 10
4a		135.1	С	
5	7.58 (<i>br dd</i> , 1.5, 0.6)	121.2	СН	6-Me, 7, 8a, 9, 10
6		148.3	С	
7	7.05 (<i>dd</i> , 1.5, 0.6)	124.4	СН	5, 8, 8a, 6-Me
8		162.4	С	
8a		113.7	С	
8b		133.2	С	
9		190.6	С	
9a		110.1	С	
10		181.9	С	
1′	4.66 (<i>d</i> , 6.6)	65.8	CH ₂	3, 2', 3'
2'	5.47 (<i>mt</i> , 6.6)	118.0	СН	1', 4', 9'
3'		142.8	С	
4'	2.12 (<i>m</i>)	39.5	CH ₂	2', 3', 5'
5'	2.15 (<i>m</i>)	26.2	CH ₂	4', 6', 7'
6'	5.09 (<i>m</i>)	123.6	СН	5'
7′		132.0	С	
8′	1.61 (s)	17.7	CH ₃	6', 7', 10'
9′	1.78 (<i>d</i> , 0.9)	16.8	CH ₃	2', 3', 4'
10′	1.68 (s)	25.6	CH ₃	6', 7', 8'
6-Me	2.43 (s)	22.1	CH ₃	5, 6, 7
1-OH	12.25 (s)			1, 2, 9a
8-OH	12.10 (s)			7, 8, 8a

Table 16¹H, ¹³C NMR, DEPT and HMBC spectral data of CF8

Position	CF8	\mathbf{R}^{a}
	$\delta_{\rm H}$ (<i>mult.</i> , $J_{\rm Hz}$)	$\delta_{\rm H}$ (<i>mult.</i> , $J_{\rm Hz}$)
2	6.65 (<i>d</i> , 2.4)	6.60 (<i>d</i> , 2.5)
4	7.33 (<i>d</i> , 2.4)	7.27 (<i>d</i> , 2.5)
5	7.58 (<i>br dd</i> , 1.5, 0.6)	7.50 (<i>br d</i> , 1.8)
7	7.05 (<i>dd</i> , 1.5, 0.6)	7.00 (<i>br d</i> , 1.8)
1'	4.66 (<i>d</i> , 6.6)	4.60 (<i>d</i> , 7.0)
2'	5.47 (<i>mt</i> , 6.6)	5.43 (<i>t</i> , 7.0)
4'	2.12 (<i>m</i>)	2.10 (<i>m</i>)
5'	2.15 (<i>m</i>)	2.10 (<i>m</i>)
6'	5.09 (<i>m</i>)	5.05 (<i>br</i> s)
8′	1.61 (s)	1.60 (<i>s</i>)
9'	1.78 (<i>d</i> , 0.9)	1.77 (<i>s</i>)
10'	1.68 (s)	1.67 (<i>s</i>)
6-Me	2.43 (s)	2.40 (s)
1-OH	12.25 (s)	12.23 (s)
8-OH	12.10 (s)	12.08 (s)

 Table 17
 Comparison of ¹H NMR spectral data of CF8 and 3-geranyloxy-6-methyl

 1,8-dihydroxyanthraquinone (R)

^{*a*} recorded in CDCl₃

1.3.1.9 Compound CF9

CF9 was isolated as reddish orange solid. The ¹H and ¹³C NMR spectral data (**Table 18**, **Figures 38** and **39**) of **CF9** were comparable to those of **CF7**, except for the presence of *trans*-3-methylbut-1-enyl group at δ 6.64 (1H, *dd*, 16.2, 0.9 Hz, H-1'), 6.91 (1H, *dd*, 16.2, 7.2 Hz, H-2'), 2.52 (1H, *dsept*, 0.9, 6.9 Hz, H-3'), 1.14, (6H, *d*, 6.9 Hz, H-4' and H-5') in **CF9** instead of the meta-coupled aromatic protons at δ 6.66 (1H, *d*, 2.7 Hz, H-2) and at δ 7.35 (1H, *d*, 2.7 Hz, H-4) and signals of a prenyl side chain in **CF7**. The location of *trans*-3-methylbut-1-enyl group was assigned to C-2 by the HMBC correlations from the chelated hydroxyl group at δ 12.93 (1-OH) to the carbons at δ 110.5 (C-9a), 120.0 (C-2) and 162.08 (C-1) and the olefinic proton of *trans*-3-methylbut-1-enyl group at δ 6.64 (H-1') to the carbons at δ 162.1 (C-1) and 163.0 (C-3). The ¹H NMR spectrum also showed a *singlet* signal of the methoxyl group at δ 4.04 (3H, *s*, 3-OMe). The attachment of a methoxyl group was assigned to C-3 by the HMBC correlations of 3-OMe at δ 4.04 to the carbon at δ 163.0 (C-3). Therefore, **CF9** was determined as vismiaquinone (Goncalves and Mors, 1981).

Selected HMBC correlations of CF9

Position	$\delta_{\rm H}$ (<i>mult.</i> , $J_{\rm Hz}$)	δ _C	DEPT	НМВС
1		162.1	С	
2		120.0	С	
3		163.0	С	
4	7.38 (s)	103.4	СН	2, 3, 4a, 9, 9a, 10
4a		132.1	С	
5	7.59 (<i>d</i> , 1.5)	121.1	СН	6-Me, 7, 8a, 9, 10
6		148.4	С	
7	7.05 (<i>br d</i> , 0.6)	124.4	СН	5, 8a
8		162.5	С	
8a		113.7	С	
8b		133.2	С	
9		181.8	С	
9a		110.5	С	
10		191.4	С	
1'	6.64 (<i>dd</i> , 16.2, 0.9)	115.8	СН	1, 3, 2', 3'
2'	6.91 (<i>dd</i> , 16.2, 7.2)	146.8	СН	2, 3'
3'	2.52 (dsept, 0.9, 6.9)	33.4	СН	1'
4'	1.14 (<i>d</i> , 6.9)	22.5	CH ₃	2', 3'
5'	1.14 (<i>d</i> , 6.9)	22.5	CH ₃	2', 3'
6-Me	2.44 (s)	22.1	CH ₃	5, 6, 7
1-OH	12.93 (s)			1, 3, 9a
8-OH	12.08 (s)			6, 7, 8, 8a
3-OMe	4.04 (<i>s</i>)	56.3	CH ₃	3

Table 18¹H, ¹³C NMR, DEPT and HMBC spectral data of CF9

	CF9		vismiaquinone ^a		
position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	
1		162.1		161.8	
2		120.0		119.8	
3		163.0		162.7	
4	7.38 (s)	103.4	7.34 (s)	103.1	
4a		132.1		131.8	
5	7.59 (<i>d</i> , 1.5)	121.1	7.56 (<i>d</i> , 1.5)	120.8	
6		148.4		148.1	
7	7.05 (br d, 0.6)	124.4	7.03 (s)	124.2	
8		162.5		162.2	
8a		113.7		113.5	
8b		133.2		132.9	
9		181.8		181.4	
9a		110.5		110.3	
10		191.4		191.0	
1′	6.64 (<i>dd</i> , 16.2, 0.9)	115.8	6.60 (<i>d</i> , 16.0)	115.7	
2'	6.91 (<i>dd</i> , 16.2, 7.2)	146.8	6.95 (<i>dd</i> , 16.0, 6.5)	146.5	
3'	2.52 (<i>dsept</i> , 0.9, 6.9)	33.4	2.48 (<i>m</i>)	33.4	
4′	1.14 (<i>d</i> , 6.9)	22.5	1.14 (<i>d</i> , 6.5)	22.5	
5'	1.14 (<i>d</i> , 6.9)	22.5	1.14 (<i>d</i> , 6.5)	22.5	
6-Me	2.44 (s)	22.1	2.42 (s)	22.1	
1-OH	12.93 (s)		12.84 (s)		
8-OH	12.08 (s)		12.02 (s)		
3-OMe	4.04 (<i>s</i>)	56.3	4.02 (s)	56.2	

Table 19 Comparison of ¹H and ¹³C NMR spectral data of CF9 and vismiaquinone

^{*a*} recorded in CDCl₃

Position	CF7	CF8	CF9
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm H}$ (<i>mult.</i> , $J_{\rm Hz}$)
2	6.66 (<i>d</i> , 2.7)	6.65 (<i>d</i> , 2.4)	
4	7.35 (<i>d</i> , 2.7)	7.33 (<i>d</i> , 2.4)	7.38 (s)
5	7.60 (<i>br d</i> , 1.2)	7.58 (brdd, 1.5, 0.6)	7.59 (<i>d</i> , 1.5)
7	7.06 (<i>dd</i> , 1.5, 0.9)	7.05 (<i>dd</i> , 1.5, 0.6)	7.05 (<i>brd</i> , 0.6)
1'	4.64 (<i>d</i> , 6.9)	4.66 (<i>d</i> , 6.6)	6.64 (<i>dd</i> , 16.2, 0.9)
2'	5.48 (d, 6.9)	5.47 (<i>mt</i> , 6.6)	6.91 (<i>dd</i> , 16.2, 7.2)
3'			2.52 (<i>dsept</i> , 0.9, 6.9)
4'	1.82 (<i>br</i> s)	2.12 (<i>m</i>)	1.14 (<i>d</i> , 6.9)
5'	1.79 (<i>br</i> s)	2.15 (<i>m</i>)	1.14 (<i>d</i> , 6.9)
6'		5.09 (<i>m</i>)	
8′		1.61 (s)	
9'		1.78 (<i>d</i> , 0.9)	
10'		1.68 (s)	
6-Me	2.44 (s)	2.43 (s)	2.44 (s)
1-OH	12.28 (s)	12.25 (s)	12.93 (s)
8-OH	12.11 (s)	12.10 (<i>s</i>)	12.08 (s)
3-OMe			4.04 (s)

Table 20 Comparison of ¹H NMR spectral data of CF7-CF9

Position	CF7	CF8	CF9
1	165.1	165.1	162.1
2	107.5	107.5	120.0
3	165.9	165.9	163.0
4	108.7	108.8	103.4
4a	135.2	135.1	132.1
5	121.2	121.2	121.1
6	148.3	148.3	148.4
7	124.4	124.4	124.4
8	162.5	162.4	162.5
8a	113.7	113.7	113.7
8b	133.2	133.2	133.2
9	190.9	190.6	181.8
9a	110.1	110.1	110.5
10	182.0	181.9	191.4
1′	65.8	65.8	115.8
2'	118.2	118.0	146.8
3'	139.7	142.8	33.4
4'	25.8	39.5	22.5
5'	18.3	26.2	22.5
6'	22.1	123.6	22.1
7′		132.0	
8′		17.7	
9′		16.8	
10′		25.6	
6-Me		22.1	
3-OMe			56.3

Table 21 Comparison of ¹³C NMR spectral data of CF7-CF9

1.3.2 Biological activities of the isolated compounds from the roots of *C*. *formosum*

The isolated compounds were evaluated for their antibacterial activities against both Gram-positive (*Bacillus subtilis* and *Staphylococcus aureus*) and Gram-negative (*Streptococcus faecalis, Salmonella typhi, Shigella sonei* and *Pseudomonas aeruginosa*) bacteria. Cytotoxicity against MCF-7 (breast adenocarcinoma), HeLa (Human cervical cancer), HT-29 (colon cancer) and KB (human oral cancer) cell lines were also evaluated.

Compounds tested for antibacterial and cytotoxic activities were xanthones CF1, CF3-CF6 and anthraquinones CF7-CF9, whereas compound CF2 was not tested due to unsufficient amount of material. The results of antibacterial activity of the tested compounds were given in Table 22. Compound CF6 exhibited potent antibacterial activity against *B. subtilis*, *S. aureus*, *S. faecalis* and *S. typhi*. Compound CF4 showed strong inhibition against *S. aureus* and *S. typhi*. The anthraquinones were found to be inactive. For cytotoxicity results as shown in Table 22, compound CF3 was the most cytotoxic against all four cancer cell lines. Compound CF4 and CF6 were inactive against the HT-29 and MCF-7 cell lines, respectively, while compounds CF1, CF5, CF7, CF8 and CF9 were inactive.

Cytotoxicity against human			Antibacterial activity,						
Compounds	cancer cell lines, IC ₅₀ (µg/mL)		MIC (µg/mL)						
	MCF-	HeLa	HT-	KB	Р.	В.	S.	Е.	<i>S</i> .
	7		29		aeruginosa	subtilis	aureus	faecalis	typhi
CF1	-	-	-	-	-	18.7	37.5	-	-
CF3	4.9	3.7	5.3	3.3	-	4.6	2.3	18.7	4.6
CF4	12.0	5.0	>25.0	4.7	-	2.3	1.1	4.6	1.1
CF5	-	-	-	-	-	4.6	4.6	2.3	9.3
CF6	>25.0	4.7	6.0	2.7	9.3	1.1	1.1	1.1	1.1
CF7	-	-	-	-	-	-	-	-	-
CF8	-	-	-	-	-	-	-	-	-
CF9	-	-	-	-	-	-	-	-	-

Table 22 Cytotoxic and antibacterial activities of compounds isolated from *C*.

 formosum

- = inactive (> 10 μ g/mL)

CHAPTER 2.1 INTRODUCTION

2.1.1 Introduction

Thespesia populnea (L.) Soland. Ex Coor is a mangrove plant belonging to Malvaceae family. *T. populnea* is widely distributed in Hawaii, California, Florida, Africa, the Caribbean islands and in Asia (Milbrodt *et al.*, 1997). In Thailand, the family Malvaceae comprises 15 genera. In *Thespesia* genus 3 species are found including T. lampas (Cav.) Dalzell & Gibson, *T. populnea* (L.) Soland. Ex Coor and *T. populneoilides* (Roxb.) Kostel (Smitinand, 2001).

T. populnea has a short, straight or crooked trunk and a dense crown with crowded lower horizontal branches. Flowers are a typical hibiscus shape in appearance: bellshaped, 4–7 cm in length, with five overlapping, broad, rounded petals. Color is pale yellow with a maroon spot at the base of each petal and with starshaped hairs on outer surface. Flower stalks are 1.3–5 cm. The alternate leaves are glossy green above and paler green below. Leaf blades are heart-shaped, 10–20 cm long, and 6–13 cm broad. Leaf stalks are long, 5–10 cm. Fruits are brittle, dry, woody or papery seed capsules, rounded and flattened, containing five cells and several seeds. The brown or gray capsules, about 2.5–5 cm in diameter. The brown, hairy seeds are about 1 cm long and 0.6 cm broad.

Figure 2 Parts of Thespesia populnea

2.1.2 Review of Literatures

Chemical constituents isolated from *Thespesia* genus were summarized in **Table 23**. The literature survey was from SciFinder Scholar database and the chemical constituents could be classified into groups, such as alkanes, flavonoids, sesquiterpenes, steroids and triterpenes.

Table 23 Compounds from plants of Thespesia genus

$\mathbf{a} = Alkanes$	$\mathbf{b} = Flavonoids$	c = Sesquiterpenes
$\mathbf{d} = $ Steroids	e = Triterpenes	

Scientific	Investigated	Compound	Bibliography
name	Part		
T. populnea	Bark	(+)-Gossypol, 16c	Waller <i>et al.</i> , 1983
	Flowers	7-Hydroxyisoflavone,1b	Shirwaikar et al., 1996
		Tamarixetin-7-Ο-β-	
		glucoside, 8b	
		Kaempferol-7-Ο-β-	
		rutinoside, 15b	
		β -Sitosterol, 1d	Seshadri et al., 1975
		β-Sitosterol-3-β-D-	
		glucoside, 3d	
		Lupeol, 1e	
		Nanacosane, 11a	
		Lupenone, 2e	
		Kaempferol, 4b	Datta et al., 1973
		Quercetin, 3b	
		Kaempferol-3-O-β-	
		glucoside, 11b	
		Quercetin-3- Ο-β-	
		glucoside, 12b	

Table 23 (Continued)

Scientific	Investigated	Compound	Bibliography
name	Part		
T. populnea	Flowers	Kaempferol-5- O- β -glucoside,	Datta et al., 1973
		7b	
		Kaempferol-7- O- β -glucoside,	
		10b	
		Quercetin-3- O- β -rutinoside,	
		14b	
		(+)-Gossypol, 13c	
	Fruits	Thespesin, 14c	Srivastava <i>et al.</i> ,
			1963
	Heartwood	Mansonone C, 2c	Puckhaber et al.,
			2004
			Milbrodt <i>et al.</i> ,
			1997
			Neelakantan <i>et al.</i> ,
			1983
		Mansonone D, 3c	
		Mansonone E, 4c	
		Mansonone F, 5c	Puckhaber et al.,
			2004
		Mansonone G, 6c	
		Mansonone H, 7c	
		Mansonone M, 8c	
		7-Hydroxycadalene, 1c	

Table 23 (Continued)

Scientific	Investigated	Compound	Bibliography
name	Part		
T. populnea	Heartwood	Thespesone, 9c	Puckhaber et al.,
			2004
			Milbrodt <i>et al.</i> ,
			1997
			Neelakantan <i>et al.</i> ,
			1983
		Thespesenone, 10c	Puckhaber et al.,
			2004
			Milbrodt <i>et al.</i> ,
			1997
		Dehydrooxoperezinone-6-	Puckhaber et al.,
		methyl ether, 11c	2004
		7-Hydroxy-2,3,5,6-tetrahydro-	Milbrodt <i>et al</i> .,
		3,6,9-trimethylnaphtho[1,8-	1997
		b,c]pyran-4,8-dione, 12c	
		Quercetin, 3b	Kasim <i>et al.</i> , 1975
		Calcycopterin, 2b	
	Leaves	Lupeol, 1e	Goyal et al., 1989
			Goyal <i>et al.</i> , 1987
			Goyal <i>et al.</i> , 1985
		Lupenone, 2e	Goyal <i>et al.</i> , 1987
			Goyal <i>et al.</i> , 1985
		β -Sitosterol, 1d	Goyal et al., 1989
			Goyal et al., 1987
			Goyal et al., 1985
		β -Sitosterol-3-acetate, 2d	Goyal <i>et al.</i> , 1989

Table 23 (Continued)

Scientific	Investigated	Compound	Bibliography
name	Part		
T. populnea	Leaves	Lupeol -3-acetate, 3e	Goyal <i>et al.</i> , 1989
		Nanadecane, 1a	Goyal <i>et al.</i> , 1987
		Eicosane, 2a	
		Heneicosane, 3a	
		Docosane, 4a	
		Tricosane, 5a	
		Tetracsane, 6a	
		Pentacosane, 7a	
		Xexacosane, 8a	
		Heptacosane, 9a	
		Octacosane, 10a	
		Nanacosane, 11a	
		Triacontane, 12a	
		Dotriacontane, 13a	
		Hentriacontane, 14a	

Structure

a: Alkanes

b: Flavonoids

1b: 7-Hydroxyisoflavone

3b: R₁ = R₂ = OH; Quercetin
4b: R₁ = H, R₂ = OH; Kaempferol
5b: R₁ = OH, R₂ = H; Herbacetin
6b: R₁ = OH, R₂ = OMe; Tamarixetin

7b: Kaempferol-5-Ο-β-glucoside

8b: R₁ = OH, R₂ = OMe; Tamarixetin-7-O-β-glucoside
9b: R₁ = R₂ = OH; Quercetin-7-O-β-glucoside
10b: R₁ = H, R₂ = OH; Kaempferol-7-O-β-glucoside

11b: R = H; Kaempferol-3-O- β -glucoside

12b: R = OH; Quercetin-3-O- β -glucoside

15b: Kaempferol -7-Ο-β-rutinoside

C: Sesquiterpenes

1c: 7-Hydroxycadalene

2c: Mansonone C

3c: Mansonone D

5c: Mansonone F

7c: Mansonone H

9c: Thespesone

4c: Mansonone E

6c: Mansonone G

8c: Mansonone M

10c: Thespesenone

11c: Dehydrooxoperezinone-6- methyl ether

13c: (+)-Gossypol

D: Steroids

3d: β -Sitosterol-3- β -D-glucoside

E: Triterpenes

1e: Lupeol

2e: Lupenone

3e: Lupeol-3-acetate

2.1.3 The objectives

The goals of this work were to investigate the chemical constituents from the roots of *T. populnea* and to evaluate the antibacterial and cytotoxic activities of the isolated compounds.

CHAPTER 2.2 EXPERIMENTAL

2.2.1 Instruments and Chemicals

Melting point was recorded in °C on an Electrothermal 9100 melting point apparatus. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S100 spectrophotometer (Analytikjena) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution. The infrared spectra were recoded using FTS 165 FT-IR Perkin Elmer spectrophotometer. Nuclear Magnetic resonance spectra were recorded using Bruker Avance 300 MHz Bruker FTNMR Ultra ShieldTM. Spectra were recorded in deuterochloroform, deuteroacetone and deuteromethanol and were recorded as δ value in ppm downfield from TMS (Internal standard δ 0.00). Optical rotation was measured in MeOH solution at the sodium D line (590 nm) on an AUTOPOL^R II automatic polarimeter. The EI-MS and HREIMS mass spectra were obtained from a Micromass LCT mass spectrometer. Solvent for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 F₂₅₄ (Merck) and silica gel 100, respectively. Precoated plates of silica gel 60 GF₂₅₄ were used for analytical purposes.

2.2.2 Plant Material

The fresh stem of *T. populnea* was collected from Suratthani Province, Thailand, in 2005. The plant was identified by Prof. Puangpen Sirirugsa and a voucher specimen (no. SB 01-001) has been deposited at the Herbarium of Department of Biology, Prince of Songkla University (PSU).

2.2.3 Extraction and chemical investigation from the stem of *T.populnea*

The stem of *T. populnea* was divided to two parts: heartwood and wood.

2.2.3.1 Extraction and investigation of the crude dichloromethane extract from the heartwood of *T. populnea*

The air-dried heartwood of *T. populnea* (2.10 kg) was extracted with CH_2Cl_2 over a period of 5 days at room temperature. Evaporation of the solvent under reduced pressure furnished a dark residue (37.5 g).

Scheme 2 Extraction and isolation of compounds TP1-TP8 and ΓP12-TP19 from the heartwood of *T. populnea*

The crude dichloromethane extract was subjected to QCC on silica gel, eluting with CH₂Cl₂ and separated into 8 fractions (A-H). Fraction A was purified by QCC using a gradient of hexane-acetone to afford nine subfractions (A₁-A₉). Subfraction A₂ and A₃ were combined and purified by QCC using a gradient of acetone-hexane as a mobile phase to give TP1 (10.2 mg), TP2 (2.5 mg) and TP5 (8.3 mg). Subfraction A₅ and A₆ were combined and then purified by QCC with a gradient system of acetone-hexane to afford TP14 (2.0 mg) and TP3 (2.0 mg). Subfraction A7 and A₈ were separately purified by QCC using a gradient of CH₂Cl₂-hexane as a mobile phase to yield TP19 (4.0 mg) from A7 and TP6 (4.5 mg), TP9 (18.1 mg) and **TP18** (3.3 mg) from A₈. Fraction F was separated by QCC with a gradient system of increasing polarity (CH₂Cl₂-hexane) to afford nine subfractions (F₁- F₉). Subfraction F_4 was further purified by QCC using a gradient of CH₂Cl₂- hexane to give TP12 (10.0 mg) and **TP13** (14.9 mg). Subfraction F_6 was subjected to QCC using 20% acetone in hexane to afford four subfractions (F_{6A} - F_{6D}). Subfraction F_{6B} was further separated by QCC with a solvent system of 2% acetone-CHCl₃ to afford TP15 (12.6 mg). Subfraction F_{6C}, upon standing overnight at room temperature gave yellow solid of TP17 (4.2 mg) and the mother liquor gave TP16 (4.1 mg). Fraction G was purified by QCC with a gradient of acetone- CH_2Cl_2 to give five subfractions (G_A - G_E). Subfraction G_A was subjected to precoated TLC using 50% CH₂Cl₂-hexane as a mobile phase (4 runs) to give TP7 (5.1 mg). Subfraction G_C gave TP4 (93.0 mg). Fraction H, upon standing overnight at room temperature gave red-brown crystal of **TP8** (30.5 mg).

2.2.3.2 Extraction and investigation of the crude dichloromethane extract from the wood of *T. populnea*

The air-dried wood of *T. populnea* (1.40 kg) was extracted with CH_2Cl_2 over a period of 5 days at room temperature. Evaporation of the solvent under reduced pressure furnished a dark-green residue (10.2 g) of the CH_2Cl_2 extract.

Scheme 3 Extraction and isolation of compounds TP9-TP11 and TP18-TP19 from the wood of *T. populnea*

The CH₂Cl₂ extract was subjected to QCC on silica gel, and eluted with a gradient of hexane - acetone to give six fractions (A-F). Fraction C was then purified by QCC using a gradient of hexane-acetone to afford **TP18** (22.6 mg). Fraction D, upon standing overnight at room temperature gave **TP19** (20.3 mg). Fraction E was separated by QCC with a gradient system of increasing polarity (acetone-hexane) to afford five subfractions (E₁- E₅). Subfraction E₂ was subjected to precoated plates using 50% CH₂Cl₂-hexane as a mobile phase (4 runs) to give **TP9** (1.6 mg). Subfraction E₃ was subjected to precoated plates using 3% MeOH-CH₂Cl₂ as a mobile phase (4 runs) to give **TP10** (2.3 mg) and **TP11** (2.1 mg).

Compound TP1: Brown solid; mp 107-109 °C; UV (MeOH) λ_{max} (log ε) 225 (4.81), 235 (4.83), 276 sh (3.87), 286 (3.97), 299 (3.94), 320 (3.60), 334 (3.66) nm; IR (KBr) ν_{max} 3328, 2952, 2863, 1623, 1440, 1237 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 24**.

Compound TP2: Orange solid; mp 123-125 °C; UV (MeOH) λ_{max} (log ε) 213 (4.38), 257 (4.44), 365 sh (3.45), 432 (3.60) nm; IR (KBr) ν_{max} : 1670, 1665, 1381, 1241 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 25**.

Compound TP3: Orange solid; mp 196-198 °C; UV (MeOH) λ_{max} (log ε) 217 (4.36), 240 (4.15), 273 (4.23), 410 (3.90) nm; IR (neat) v_{max} : 3328, 1717, 1646, 1254, 1131 cm⁻¹; ¹H NMR (CDCl₃+CD₃OD, 300 MHz) and ¹³C NMR (CDCl₃+CD₃OD, 75 MHz), see **Table 27**.

Compound TP4: Yellow solid; $[\alpha]^{25}{}_{D}$ -39.0 (*c* 8.25, CHCl₃); mp 159-161 °C; UV (MeOH) λ_{max} (log ε) 219 (4.23), 242 (4.06), 277 (4.06), 404 (3.81) nm; IR (KBr) ν_{max} : 1675, 1550 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 29**.

Compound TP5: Yellow solid; $[\alpha]^{25}_{D}$ -252.8 (*c* 0.09, CHCl₃); mp 135-137 °C; UV (MeOH) λ_{max} (log ε) 213 (4.27), 274 (4.23), 301 (4.15), 358 (3.71) nm; IR (neat) v_{max} : 3328, 1642, 1597, 1560, 1344, 1243, 1109 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 33**.

Compound TP6: Yellow solid; $[\alpha]^{25}_{D}$ -42.7 (*c* 0.08, CHCl₃); UV (MeOH) λ_{max} (log ε) 214 (4.31), 242 sh (4.05), 273 (4.01), 336 (3.60), 409 (3.62) nm; IR (neat) v_{max} 3373, 2955, 2925, 2873, 1709, 1664, 1649, 1254 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 35**.

Compound TP7: Reddish brown solid; $[\alpha]^{25}_{D}$ +326.2 (*c* 0.15, CHCl₃); mp 259-261 °C; UV (MeOH) λ_{max} (log ε) 217 (4.70), 265 sh (4.59), 274 (4.64), 298 (4.40), 364 (4.22), 385 (4.22) nm; IR (KBr) ν_{max} 3188, 2974, 2923, 1668, 1561, 1266, 1229, 1188 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 37**.

Compound TP8: Reddish brown solid; $[\alpha]^{25}_{D}$ +736.6 (*c* 0.35, CHCl₃); mp 264-266 °C (decomposed); UV (MeOH) λ_{max} (log ε) 218 (4.26), 265 sh (4.23), 274 (4.29), 300 (4.04), 392 (3.92) nm; IR (KBr) ν_{max} 3187, 2985, 1668, 1627, 1560, 1265, 1228, 948 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 39**.

Compound TP9: Reddish brown solid; $[\alpha]_{D}^{25}$ +58.1(*c* 1.27, CHCl₃); mp 104-106 °C; UV (MeOH) λ_{max} (log ε) 218 (4.13), 263(4.14), 432 (3.27) nm; IR (neat) ν_{max} 2962, 2925, 1683, 1634, 1616, 1176, 754 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 41**.

Compound TP10: Yellow gum; $[\alpha]^{25}_{D}$ +57.9 (*c* 0.54, CHCl₃); UV (MeOH) λ_{max} (log ε) 216 (4.22), 251 (3.98), 259 (3.91), 279 (3.44), 289 (3.40) nm; IR (Neat) ν_{max} 3365, 2959, 2870, 1617, 1591, 758 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 45**; EIMS *m/z* , 246 [M]⁺ (8), 211 (18), 185 (33), 169 (25), 72 (100), 69 (47); HREIMS *m/z* 246.1262 (calcd for C₁₅H₁₈O₃, 246.1256).

Compound TP11: Yellow gum; $[\alpha]^{25}_{D}$ -63.6 (*c* 0.37, CHCl₃); UV (MeOH) λ_{max} (log ε) 213 (4.15), 251 (3.85), 259 (3.80), 278 (3.32), 290 (3.29) nm; IR (Neat) ν_{max} 3387, 2959, 2871, 1716, 1524, 754 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 46**; EIMS *m/z* ,246 [M]⁺ (50), 199 (31), 185 (100), 157 (23), 129 (46); HREIMS *m/z* 246.1255 (calcd for C₁₅H₁₈O₃, 246.1256).

Compound TP12: Orange solid; mp 168-170 °C; $[\alpha]^{25}_{D}$ -46.0 (*c* 0.27, CHCl₃); UV (MeOH) λ_{max} (log ε) 213 (4.18), 242 (3.79), 259 (3.98), 380 (3.03) nm; IR (Neat) ν_{max} 2974, 2930, 2871, 1757, 1698, 1657 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 47**; EIMS *m/z* , 286.1556 [M+2]⁺ (17), 271 (53), 241 (72), 85 (66), 83 (100); HREIMS *m/z* 286.1556 [M+2]⁺ (calcd for C₁₈H₂₄O₃, 284.1412).

Compound TP13: Brown gum; $[\alpha]^{25}_{D}$ -21.9 (*c* 0.75, CHCl₃); UV (MeOH) λ_{max} (log ε) 219 (4.10), 264 (3.92), 277sh (3.81), 366 (2.86) nm; IR (Neat) v_{max} 3417,

2967, 2930, 2863, 1653, 754 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 48**; EIMS m/z, 288 [M]⁺ (15), 274 (21), 241 (20), 273 (100); HREIMS m/z 288.1736 (calcd for C₁₈H₂₄O₃, 288.1725).

Compound TP14: Yellow-brown gum; $[\alpha]^{25}_{D}$ +30.1 (*c* 0.58, CHCl₃); UV (MeOH) λ_{max} (log ε) 228 (4.11), 273 (3.86) nm; IR (Neat) ν_{max} 3410, 2970, 2925, 2873, 1776, 1675, 1616 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 49**; EIMS *m*/*z* , 262 [M]⁺ (31), 220 (34), 191 (43), 219 (100); HREIMS *m*/*z* 262.1210 (calcd for C₁₅H₁₈O₄, 262.1205).

Compound TP15: Yellow gum; $[\alpha]^{25}_{D}$ +7.5 (*c* 0.23, CHCl₃); UV (MeOH) λ_{max} (log ε) 219 (4.23), 232 (4.14), 281 (3.00) nm; IR (Neat) ν_{max} 3417, 2967, 2930, 2871, 1668, 1576 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 50**; EIMS *m*/*z* , 264 [M]⁺ (27), 221 (100), 203 (22), 193 (26), 179 (44), 177 (25), 151 (20); HREIMS *m*/*z* 264.1353 (calcd for C₁₅H₂₀O₄, 264.1362).

Compound TP16: Yellow gum; $[\alpha]^{25}_{D}$ +62.7 (*c* 0.07, CHCl₃); UV (MeOH) λ_{max} (log ε) 214 (4.09), 235 (3.98), 286 (3.95), 339 (3.66) nm; IR (Neat) v_{max} 3424, 2959, 2930, 2871, 1661, 1591, 1429 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 51**; EIMS *m/z*, 278 [M]⁺ (98), 249 (27), 239 (100), 208 (36), 192 (35); HREIMS *m/z* 278.1196 (calcd for C₁₅H₁₈O₅, 278.1154).

Compound TP17: Yellow gum; $[\alpha]^{25}_{D}$ +43.7 (*c* 0.04, CHCl₃); UV (MeOH) λ_{max} (log ε) 214 (4.06), 237 (3.95), 286 (3.96), 339 (3.60) nm; IR (Neat) ν_{max} 3417, 2967, 2930, 2871, 1661, 1587 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 52**; EIMS *m/z*, 278 [M]⁺ (54), 234 (56), 208 (25), 192 (24), 72 (100); HREIMS *m/z* 278.1159 (calcd for C₁₅H₁₈O₅, 278.1154).

Compound TP18: Yellow solid; $[\alpha]^{25}_{D}$ +417.7 (*c* 0.49, CHCl₃); mp 171-173 °C; UV (MeOH) λ_{max} (log ε) 237 (4.26), 276 sh (3.90), 290 (3.84), 379 (3.61) nm; IR

(neat) v_{max} 3410, 2959, 2930, 1626, 1314, 754 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 53**.

Compound TP19: Yellow solid; $[\alpha]^{25}_{D}$ +246.9 (*c* 0.14, CHCl₃); mp 165-167 °C; UV (MeOH) λ_{max} (log ε) 229 (4.77), 252 sh (4.65), 286 (4.44), 360 (4.00) nm; IR (neat) ν_{max} 3373, 2962, 2932, 1608, 1444, 1332, 754 cm⁻¹; ¹H NMR (CDCl₃, 300 MHz) and ¹³C NMR (CDCl₃, 75 MHz), see **Table 55**.

2.2.4 BIOASSAY

2.2.4.1 Antibacterial assay

The compounds isolated from *T. populnea* were tested against the microorganisms *Bacillus subtilis* (obtained from Department of Industrial Biotechnology, PSU), *Staphylococcus aureus* (TISTR517) (obtained from Microbial Resources Center (MIRCEN), Bangkok, Thailand), *Pseudomonas aeruginosa, Enterococcus faecalis, Shigella sonei* and *Salmonella typhi*. The last four microorganisms were obtained from Department of Pharmacognosy and Botany, PSU. The antibacterial assay employed was the same as described in Boonsri *et al.*, (Boonsri *et al.*, 2006). Vancomycin, which was used as a standard, showed antibacterial activity of 0.078 μ g/mL.

2.2.4.2 Cytotoxic assay

The procedure for the cytotoxic assay was performed by the sulphorhodamine B (SRB) assay as described by Skehan *et al.*, (Skehan *et al.*, 1990). In this study, four cancer cell lines obtained from the National Cancer Institute, Bangkok, Thailand, were used: MCF-7 (breast adenocarcinoma), KB (human oral cancer), HeLa (human cervical cancer) and HT-29 (colon cancer). Camptothecin, which was used as a standard, showed cytotoxic activity in the range of 0.2-2.0 μ g/mL.

CHAPTER 2.3 RESULTS AND DISCUSSION

2.3.1 Structural elucidation of the isolated compounds from the wood and the heartwood of *T. populnea*

The CH₂Cl₂ extracts of the wood and the heartwood of *T. populnea* were subjected to chromatography to give compounds **TP1-TP19**. Two new compounds, **TP10** and **TP11**, along with three known compounds, **TP9**, **TP18** and **TP19**, were purified from the wood. Six new compounds, **TP12-TP17**, were obtained from the dark heartwood, together with eleven known compounds, **TP1-TP9,TP18-TP19**. Their structures were elucidated on the basis of spectroscopic data.

2.3.2.1 Compound TP1

TP1 was obtained as brown solid. The UV spectrum (Figure 40) exhibited the absorption bands at 225, 235, 276, 286, 299, 320 and 344 nm. The IR spectrum (Figure 41) indicated the presence of hydroxyl functionality (3328 cm⁻¹). The ¹³C NMR and DEPT data showed 15 carbons, ten aromatic carbons, four methyls and one benzylic methine, suggesting a cadalene sesquiterpene (Silva et al., 2006). The ¹H NMR spectrum of **TP1** (**Table 24**, **Figure 42**) displayed two *ortho*-coupled of aromatic protons at δ 7.13 (1H, d, 7.5 Hz, H-3) and 7.19 (1H, d, 7.5 Hz, H-2). Two singlet signals of aromatic protons at δ 7.89 (s, H-5) and 7.25 (s, H-8), suggesting that they were para to each other. This was confirmed by HMBC correlations of the lowfield proton (H-5) with C-13 (δ 16.8) and C-4 (δ 142.2) and the upfield proton (H-8) with C-1 (δ 130.1), C-4a (126.9) and C-6 (125.1). In addition, the presence of two methyl groups [$\delta 2.47$ (3H, s) and 2.56 (3H, s)] and one isopropyl moiety [$\delta 1.37$ (6H, d, 6.6 Hz) and 3.67 (1H, sept, 6.6 Hz)] was evident by ¹H and ¹³C NMR signals (Table 24, Figure 42 and 43). The methyl group at $\delta 2.47$ was placed at C-6 because of its HMBC correlations to C-5 (δ 125.6), C-6 (δ 125.1) and C-7 (δ 152.1) and the methyl at $\delta 2.56$ was placed at C-1 due to its HMBC correlations to C-2 ($\delta 126.2$) and C-8a (δ 133.1). Finally, the isopropyl group was attached at C-4, judging from HMBC correlations of its methine proton at δ 3.67 (sept, 6.6 Hz) with C-3 (119.1), C-4 (142.2) and C-4a (126.9). Thus, TP1 was identified as 7-hydroxycadalene (lindgren et al., 1968).

Selected HMBC correlations of TP1

Table 24 1 H,	13 C NMR,	, DEPT	and HMBC	spectral	data of TP1
--------------------	----------------	--------	----------	----------	-------------

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	НМВС
1		130.1	С	
2	7.19 (<i>d</i> , 7.5)	126.2	СН	3, 4, 8a, 9
3	7.13 (<i>d</i> , 7.5)	119.1	СН	1, 4a, 9, 10
4		142.2	С	
4a		126.9	С	
5	7.89 (s)	125.6	СН	13, 4, 8a
6		125.1	С	
7		152.1	С	
8	7.25 (s)	106.9	СН	1, 4a, 6, 13
8a		133.1	С	
9	2.56 (s)	19.5	CH ₃	3, 8a
10	3.67 (<i>sept</i> , 6.6)	28.4	СН	3, 4, 4a
11	1.37 (<i>d</i> , 6.6)	23.7	CH ₃	4, 10, 12
12	1.37 (<i>d</i> , 6.6)	23.7	CH ₃	4, 10, 11
13	2.47 (s)	16.8	CH ₃	5, 6, 7

2.3.2.2 Compound TP2

TP2 was isolated as an orange solid. The IR spectrum (**Figure 45**) exhibited the characteristic absorption of carbonyl groups at 1665 and 1670 cm⁻¹. The UV spectrum (**Figure 44**) showed absorption maxima at 213, 257, 259 and 380 nm. The ¹H and ¹³C NMR spectral data (**Table 25**, **Figures 46** and **47**) were comparable to those of **TP1**, except for the replacement of an aromatic proton H-8 at δ 7.25 and a hydroxyl group at C-7 in **TP1** with the carbonyl carbon at δ 182.0 and 182.8, suggesting an *o*-naphthoquinone cadinane skeleton. This was supported by its color, IR spectrum and UV absorption bands (Zhang *et al.*, 2007). The two carbonyl groups were placed at C-7 (δ 182.0) and C-8 (δ 182.8) by ³J correlations of the methyl group at δ 2.08 (Me-13) to C7 and ⁴J correlation of the methyl group at δ 2.63 (Me-9) to C-8 in HMBC experiment. Accordingly, **TP2** was identified as mansonone C (Kraus *et al.*, 2006).

Selected HMBC correlations of TP2

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1		143.0	С	
2	7.19 (<i>d</i> , 8.1)	134.1	СН	3, 8a, 9
3	7.43 (<i>d</i> , 8.1)	131.9	СН	1, 2, 4a
4		145.3	С	
4a		132.5	С	
5	7.66 (<i>br d</i> , 1.5)	138.0	СН	4, 8a, 6, 13
6		135.0	С	
7		182.0	С	
8		182.8	С	
8a		129.3	С	
9	2.63 (s)	22.8	CH ₃	1, 2, 8, 8a
10	3.39 (sept, 6.9)	28.3	СН	3, 4, 11, 12
11	1.30 (<i>d</i> , 6.9)	23.7	CH ₃	4, 10, 12
12	1.30 (<i>d</i> , 6.9)	23.7	CH ₃	4, 10, 11
13	2.08 (<i>d</i> , 1.5)	16.0	CH ₃	5, 6, 7

Table 25 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP2

 Table 26 Comparison of ¹H and ¹³C NMR spectral data of TP2 and mansonone C

	TP2		mansonone C ^a		
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	
1		143.0		143.2	
2	7.19 (<i>d</i> , 8.1)	134.1	7.20 (<i>d</i> , 8.0)	134.3	
3	7.43 (<i>d</i> , 8.1)	131.9	7.44 (<i>d</i> , 8.0)	132.2	
4		145.3		145.5	
4a		132.5		132.6	
5	7.66 (<i>br d</i> , 1.5)	138.0	7.66 (s)	138.2	
6		135.0		135.2	

	TP2		mansonone	\mathbf{C}^{a}
position	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$
7		182.0		182.2
8		182.8		182.5
8a		129.3		129.5
9	2.63 (s)	22.8	2.64 (s)	23.1
10	3.39 (sept, 6.9)	28.3	3.43-3.36 (<i>m</i>)	28.5
11	1.30 (<i>d</i> , 6.9)	23.7	1.30 (<i>d</i> , 6.8)	24.0
12	1.30 (<i>d</i> , 6.9)	23.7	1.30 (<i>d</i> , 6.8)	24.0
13	2.08 (<i>d</i> , 1.5)	16.0	2.09 (s)	16.3

2.3.2.3 Compound TP3

TP3 was isolated as an orange solid. The IR spectrum (**Figure 49**) showed the absorption bands at 1646, 1717 and 3328 cm⁻¹ corresponding to two carbonyl and hydroxyl groups, respectively. The UV spectrum (**Figure 48**) showed the absorption maxima at 217, 240, 273 and 410 nm. The ¹H and ¹³C NMR spectra of **TP3** (**Table 27**, **Figures 50** and **51**) were closely resembled to those of **TP2**. In the ¹H NMR spectrum (**Table 27**), an *ortho*-coupled proton at δ 7.43 (1H, *d*, *J* = 8.1 Hz; δ_c 131.9) as found in **TP2** was missing in **TP3** but the signal due to *sp*² oxyquaternary carbon at δ 162.2 was instead observed, whose down field signal suggested a connection to a hydroxyl group. The HMBC correlations of an aromatic proton at δ 6.56 (s, H-2) with C-8a (δ 122.7), C-4 (δ 133.2), C-3 (δ 162.2) and Me-9 (δ 23.3), supported the location of the hydroxyl group at C-3. Therefore, **TP3** was identified as mansonone G (Letcher *et al.*, 1992 and Puckhaber *et al.*, 2004).

Selected HMBC correlations of TP3

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	HMBC
1		146.6	С	
2	6.56 (<i>s</i>)	119.9	СН	2, 3, 8a, 9
3		162.2	С	
4		133.2	С	
4a		134.5	С	
5	7.72 (<i>s</i>)	139.1	СН	8a, 13
6		135.3	С	
7		182.8	С	
8		180.0	С	
8a		122.7	С	
9	2.58 (s)	23.3	CH ₃	2, 8a, 8
10	3.58 (sept, 7.2)	26.8	СН	
11	1.43 (<i>d</i> , 7.2)	21.2	CH ₃	4, 10, 12
12	1.43 (<i>d</i> , 7.2)	21.2	CH ₃	4, 10, 11
13	2.07 (s)	15.9	CH ₃	5, 6, 7

Table 27¹H, ¹³C NMR, DEPT and HMBC spectral data of TP3

Table 28 Comparison of ¹H and ¹³C NMR spectral data of TP3 and mansonone G

	TP3		mansonone G	
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	$\delta_{\rm H} (mult., J_{\rm Hz})^a$	δ_{C}^{b}
1		146.6		145.9
2	6.56 (<i>s</i>)	119.9	6.49 (s)	120.5
3		162.2		162.6
4		133.2		133.2
4a		134.5		135.8
5	7.72 (s)	139.1	7.69 (br s)	138.7
6		135.3		136.8

Table 28 (Continued)

	TP3		mansonone	G
position	δ_{H} (mult., J_{Hz})	δ _C	$\delta_{\mathrm{H}} (mult., J_{\mathrm{Hz}})^{a}$	$\boldsymbol{\delta}_{\mathrm{C}}^{b}$
7		182.8		182.9
8		180.0		180.9
8a		122.7		123.5
9	2.58 (s)	23.3	2.47 (s)	23.2
10	3.58 (sept, 7.2)	26.8	3.48 (sept, 7.0)	27.5
11	1.43 (<i>d</i> , 7.2)	21.2	1.38 (<i>d</i> , 7.0)	21.3
12	1.43 (<i>d</i> , 7.2)	21.2	1.38 (<i>d</i> , 7.0)	21.3
13	2.07 (s)	15.9	1.8 (s)	15.7

^{*a*} recorded in CDCl₃-CD₃OD (1:1) ^{*b*} recorded in acetone-*d*₆

2.3.2.4 Compound TP4

TP4 was isolated as an orange solid. The UV (**Figure 52**) and IR spectra (**Figure 53**) showed absorption bands similar to those of **TP3**. The ¹H and ¹³C NMR spectral data (**Table 29**, **Figures 54** and **55**) of **TP4** were closely related to those of **TP3** except that methyl signal at δ 1.43 (*s*, Me-11) in **TP3** was replaced by oxymethylene protons resonating at δ 4.27 (*dd*, *J* = 8.7, 2.7 Hz) and 4.64 (*t*, *J* = 8.7 Hz) in **TP4**. ³*J* HMBC correlations between oxymethylenes protons (H₂-11) and C-3 (δ 165.3) of aromatic unit established the fusion by ether linkage at C-3. Accordingly, **TP4** was characterized as mansonone D (Puckhaber *et al.*, 2004).

Selected HMBC correlations of TP4

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	HMBC
1		149.4	С	
2	6.44 (<i>s</i>)	113.3	СН	3, 4, 8a, 9
3		165.3	С	
4		131.1	С	
4a		132.9	С	
5	7.11 (s)	137.4	СН	4, 4a, 6, 7, 8a, 13
6		136.6	С	
7		182.5	С	
8		178.7	С	
8a		122.4	С	
9	2.49 (s)	23.6	CH ₃	1, 2, 8a
10	3.54 (<i>dq</i> , 2.7, 7.2)	34.5	СН	3
11	4.27 (<i>dd</i> , 8.7, 2.7)	80.0	CH ₂	3, 4, 10, 12

21.9

15.7

Table 29¹H, ¹³C NMR, DEPT and HMBC spectral data of TP4

12

13

4.64 (*t*, 8.7)

1.43 (*d*, 7.2)

1.94 (s)

Table 30 Comparison of ¹³C NMR spectral data of TP4 and mansonone D

Position	TP4	mansonone D ^a
	$\delta_{ m C}$	$\delta_{ m C}$
1	149.4	149.6
2	113.3	113.4
3	165.3	165.0
4	131.1	130.8
4a	132.9	132.9
5	137.4	137.4

4, 10, 11

5, 6, 7

 CH_3

 CH_3

Table 30 (Continued)

Position	TP4	mansonone D ^a
	$\delta_{ m C}$	$\delta_{ m C}$
6	136.6	136.7
7	182.5	182.6
8	178.7	178.8
8a	122.4	122.5
9	23.6	23.8
10	34.5	34.6
11	80.0	79.9
12	21.9	22.0
13	15.7	15.8

Position	TP1	TP2	TP3	TP4
	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ_{H} (mult., J_{Hz})	δ_{H} (mult., J_{Hz})	δ_{H} (mult., J_{Hz})
2	7.19 (<i>d</i> , 7.5)	7.19 (<i>d</i> , 8.1)	6.56 (s)	6.44 (<i>s</i>)
3	7.13 (<i>d</i> , 7.5)	7.43 (<i>d</i> , 8.1)		
5	7.89 (s)	7.66 (<i>br d</i> , 1.5)	7.72 (s)	7.11 (s)
8	7.27 (s)			
9	2.56 (s)	2.63 (s)	2.58 (s)	2.49 (s)
10	3.67 (<i>sept</i>)	3.39 (sept, 6.9)	3.58 (sept, 7.2)	3.54 (<i>dq</i> , 2.7, 7.2)
11	1.37 (<i>d</i> , 6.6)	1.30 (<i>d</i> , 6.9)	1.43 (<i>d</i> , 7.2)	4.27 (<i>dd</i> , 8.7, 2.7)
				4.64 (<i>t</i> , 8.7)
12	1.37 (<i>d</i> , 6.6)	1.30 (<i>d</i> , 6.9)	1.43 (<i>d</i> , 7.2)	1.43 (<i>d</i> , 7.2)
13	2.47 (s)	2.08 (<i>d</i> , 1.5)	2.07 (s)	1.94 (s)

Position	TP1	TP2	TP3	TP4
	δ _C (C-Type)	δ _C (C-Type)	δ _C (C-Type)	δ _C (C-Type)
1	130.1 (C)	143.0 (C)	134.5 (C)	149.4 (C)
2	126.2 (CH)	134.1 (CH)	119.9 (CH)	113.3 (CH)
3	119.1 (CH)	132.0 (CH)	162.2 (C)	165.3 (C)
4	142.2 (C)	132.5 (C)	133.2 (C)	131.1 (C)
4a	126.9 (C)	145.3 (C)	146.6 (C)	132.9 (C)
5	125.6 (CH)	138.0 (CH)	139.1 (CH)	137.4 (CH)
6	125.1 (C)	135.0 (C)	135.3 (C)	136.6 (C)
7	152.1 (C)	182.0 (C)	182.8 (C)	182.5 (C)
8	106.9 (CH)	182.8(C)	180.0 (C)	178.7 (C)
8a	133.1 (C)	129.3 (C)	122.7 (C)	122.4 (C)
9	19.5 (CH ₃)	22.8 (CH ₃)	23.3 (CH ₃)	23.6 (CH ₃)
10	28.4 (CH)	28.3 (CH)	26.8 (CH)	34.5 (CH)
11	23.7 (CH ₃)	23.7 (CH ₃)	21.2 (CH ₃)	80.0 (CH ₂)
12	23.7 (CH ₃)	23.7 (CH ₃)	21.2 (CH ₃)	21.9 (CH ₃)
13	16.8 (CH ₃)	16.0 (CH ₃)	15.9 (CH ₃)	15.7 (CH ₃)

 Table 32 Comparison of ¹³C NMR spectral data of TP1-TP4

2.3.2.5 Compound TP5

TP5 was isolated as a yellow solid. IR spectrum (**Figure 57**) exhibited the characteristic absorption of carbonyl groups at 1642 and 1597 cm⁻¹ and hydroxyl group at 3328 cm⁻¹. The UV spectrum (**Figure 56**) showed absorption maxima at 213, 274, 301 and 358 nm. The ¹H and ¹³C NMR spectral data (**Table 33**, **Figure 58** and **59**) of **TP5** were similar to those of **TP4** except for the absence of a proton at δ 7.11 (*s*, H-5) in the quinone ring of **TP4**, and the presence of the hydroxyl group at δ 7.75 whose showed HMBC correlations with carbonyl carbon at δ 180.6 (C-8), δ 117.7 (C-6) and δ 153.8 (C-7), indicating that hydroxyl group was placed at C-7. In addition, the correlation of methyl protons at δ 2.40 (Me-13) with the carbonyl carbon at δ 186.3 indicated the location of the second carbonyl carbon at C-5. These data established **TP5** to be *p*-naphthoquinone which was assigned to thespesone (Puckhaber *et al.*, 2004).

Selected HMBC correlations of TP5

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	HMBC
1		146.0	С	
2	6.82 (<i>s</i>)	116.2	СН	3, 4, 9
3		165.7	С	
4		134.2	С	
4a		131.2	С	
5		186.3	С	
6		117.7	С	
7		153.8	С	
8		180.6	С	
8a		120.7	С	
9	2.72 (s)	23.9	CH ₃	1, 2, 8a
10	4.14 (dquint, 2.4, 6.9)	37.1	СН	11
11	4.41 (<i>dd</i> , 4.4, 2.4)	80.5	CH_2	3, 4, 10, 12
	4.62 (<i>t</i> , 8.4)			
12	1.29 (<i>d</i> , 6.9)	19.8	CH_3	4, 10, 11
13	2.40 (s)	8.4	CH ₃	5, 6, 7
7- OH	7.75 (s)			6, 7, 8

Table 33 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP5

 Table 34 Comparison of ¹³C NMR spectral data of TP5 and thespesone

Position	TP5	thespesone ^a
	$\delta_{ m C}$	$\delta_{ m C}$
1	146.0	146.0
2	116.2	116.2
3	165.7	165.6
4	134.2	134.2
4a	131.2	131.1

Table 34 (Continued)

Position	TP5	thespesone ^a
	$\delta_{ m C}$	$\delta_{ m C}$
5	186.3	186.3
6	117.7	117.7
7	153.8	153.8
8	180.6	180.5
9	23.9	23.9
10	37.1	37.1
11	80.5	80.4
12	19.8	19.7
13	8.4	8.4

2.3.2.6 Compound TP6

TP6 was obtained as a yellow solid. The ¹H and ¹³C NMR spectral data (**Table 35**, **Figures 62** and **63**) of **TP6** were comparable to those of **TP3**. The differences were found as the presence of the methylene proton signals at $\delta 2.50$ (*dd*, 14.7, 1.8 Hz) and 2.81 (*dd*, 14.7, 6.6 Hz); δ_c 46.1, an olefinic methine proton signal at $\delta 7.55$ (*d*, 1.5 Hz); δ_c 132.5 and a methane proton at $\delta 3.57$ (*dquint*, 1.8, 6.6 Hz); δ_c 28.1 in **TP6** instead of two aromatic proton signals in **TP3**. Besides the ¹H NMR signal of Me-9 of **TP6** was shown as a *doublet* at δ 1.18 (*d*, 6.6 Hz) instead of a *singlet* signal at δ 2.58 as in **TP3**. In the HMBC experiment a methine proton at δ 3.57 showed correlations with δ 200.1 (C-3), δ 144.7 (C-8), δ 135.3 (C-4a) and δ 123.0 (C-8a). A methine proton of an isopropyl group at δ 3.42 also showed HMBC correlation with δ 200.1 (C-3), thus supporting a carbonyl carbon of C-3. By comparison of the spectral data of **TP6** with those of mansonone S (Tiew *et al.*, 2003), therefore **TP6** was identified as mansonane S.

Selected HMBC correlations of TP6

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1	3.57 (<i>dquint</i> , 1.8, 6.6)	28.1	С	3, 4a, 8, 8a
2	2.50 (<i>dd</i> , 14.7, 1.8)	46.1	CH_2	1, 3, 4, 8a, 9
	2.81 (<i>dd</i> , 14.7, 6.6)			
3		200.1	С	
4		150.2	С	
4a		135.3	С	
5	7.55 (<i>d</i> , 1.5)	132.5	СН	4, 4a, 8a, 13
6		136.1	С	
7		180.8	С	
8		144.7	С	
8a		123.0	С	
9	1.18 (<i>d</i> , 6.6)	20.5	CH ₃	2, 8a
10	3.42 (<i>hept</i> , 6.9)	28.5	СН	3, 4a, 11, 12
11	1.28 (<i>d</i> , 6.9)	21.0	CH ₃	4, 10, 12
12	1.38 (<i>d</i> , 6.9)	22.8	CH ₃	4, 10, 11
13	2.07 (s)	16.2	CH ₃	5, 6, 7

Table 35 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP6

Table 36 Comparison of ¹H and ¹³C NMR spectral data of TP6 and mansonone S

	TP6		mansonone S	
position	δ_{H} (mult., J_{Hz})	δ_{C}	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$
1	3.57 (dquint, 1.8, 6.6)	28.1	3.55 (<i>m</i>)	28.0
2	2.50 (<i>dd</i> , 14.7, 1.8)	46.1	2.50 (<i>d</i> , 15.0)	46.0
	2.81 (<i>dd</i> , 14.7, 6.6)		2.80 (<i>dd</i> , 14.7, 6.4)	
3		200.1		200.0
4		150.2		150.2
4a		135.3		135.3

	TP6		mansonon	e S
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{ m C}$
5	7.55 (<i>d</i> , 1.5)	132.5	7.55 (s)	132.4
6		136.1		136.1
7		180.8		180.8
8		144.7		144.6
8a		123.0		123.0
9	1.18 (<i>d</i> , 6.6)	20.5	1.28 (<i>d</i> , 7.0)	20.5
10	3.42 (<i>hept</i> , 6.9)	28.5	3.45 (<i>m</i>)	28.5
11	1.28 (<i>d</i> , 6.9)	21.0	1.20 (<i>d</i> , 7.3)	21.0
12	1.38 (<i>d</i> , 6.9)	22.8	1.38 (<i>d</i> , 7.0)	22.7
13	2.07 (s)	16.2	2.13 (s)	16.2

Table 36 Comparison of ¹H and ¹³C NMR spectral data of TP6 and mansonone S

2.3.2.7 Compound TP7

TP7 was isolated as reddish brown solid, which was recrystallized from MeOH- CH₂Cl₂ (3:7 ν/ν). Comparison of the ¹H and ¹³C NMR data (**Table 37**, **Figures 66** and **67**) suggested that **TP7** is closely related to **TP6**, except for the olefinic proton signal on the quinone ring at δ 7.55 (*d*, 1.5) and one of methyl proton signal of the isopropyl group at 1.38 (*d*, 6.9) were absent in **TP7**, being replaced instead by oxymethylene proton resonance at δ 4.09 (1H, *dd*, *J* = 10.8, 3.3 Hz) and 4.22 (1H, *d*, *J* = 10.8 Hz). ³*J* HMBC correlations between oxymethylene protons (H₂-12) with C-5 (δ 157.1) established the fusion by ether linkage at C-5. X-ray structure of **TP7** established its stereochemistry. Therefore, **TP7** was identified as 7-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione (Milbrodt *et al.*, 1997).

Selected HMBC correlations of TP7

X-ray structure of **TP7**

$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ	DEPT	HMBC
3.54 (dquint, 1.8, 6.9)	27.6	СН	3, 4a, 8, 8a
2.71 (<i>dd</i> , 16.2, 6.6)	44.6	CH ₂	1, 3, 4, 8a, 9
2.53 (<i>dd</i> , 16.2, 1.8)			
	197.1	C	
	139.5	C	
	131.0	C	
	157.1	C	
	115.1	C	
	181.3	С	

С

С

 CH_3

CH

 CH_3

 CH_2

CH₃

1, 2, 8a

4, 10, 12

4, 10, 5

5, 6, 7

3, 4a

Table 37 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP7

position

1

2

3

4

4a 5

6

7

8

8a 9

10

11

12

13

1.11 (*d*, 6.9)

1.09 (*d*, 6.9)

4.22 (*d*, 10.8)

1.90 (s)

3.05 (*dq*, 3.3, 6.9)

4.09 (*dd*, 10.8, 3.3)

Table 38 Comparison of ¹H and ¹³C NMR spectral data of **TP7** and **7**-hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethyl-naphtho[1,8-b,c]pyran-4,8-dione (**R**)

143.5

115.2

20.7

26.5

16.1

71.9

8.0

	TP7		R ^a	
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$
1	3.54 (<i>dquint</i> , 1.8, 6.9)	27.6	3.61 (<i>dquint</i> , 1.5, 6.6, 7.1)	27.5
2	2.71 (<i>dd</i> , 16.2, 6.6)	44.6	2.78 (<i>dd</i> , 16.3, 6.6)	44.5
	2.53 (dd, 16.2, 1.8)		2.60 (<i>dd</i> , 16.3, 1.5)	
3		197.1		197.1

Table 38 (Continued)

	TP7		\mathbf{R}^{a}	
position	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$
4		139.5		139.4
4a		131.0		131.0
5		157.1		157.3
6		115.1		115.0
7		181.3		181.3
8		143.5		143.6
8a		115.2		115.1
9	1.11 (<i>d</i> , 6.9)	20.7	1.19 (<i>d</i> , 7.1)	20.6
10	3.05 (<i>dq</i> , 3.3, 6.9)	26.5	3.12 (<i>dq</i> , 3.5, 7.1)	26.4
11	1.09 (<i>d</i> , 6.9)	16.1	1.16 (<i>d</i> , 7.1)	16.2
12	4.22 (<i>d</i> , 10.8)	71.9	4.28 (<i>dd</i> , 10.5, 1.0)	71.9
	4.09 (<i>dd</i> , 10.8, 3.3)		4.15 (<i>dd</i> , 10.5, 3.5)	
13	1.90 (s)	8.0	1.94 (<i>s</i>)	8.0

2.3.2.8 Compound TP8

TP8 was isolated as a reddish brown solid. The UV (**Figure 68**) and IR spectra (**Figure 69**) showed absorption bands similar to those of **TP3**. The ¹H and ¹³C NMR spectra (**Table 39**, **Figures 70** and **71**) were comparable to those of **TP3** except that a proton H-5 (δ 7.72) on the quinone ring of **TP3** disappeared and the methyl signal Me-12 (δ 1.43 *d*, 7.2 Hz) was replaced by oxymethylene protons of **TP8** resonating at δ 4.41 (*d*, *J* = 10.8 Hz) and 4.29 (*dd*, *J* = 10.8, 3.3 Hz). ³*J* HMBC correlations between oxymethylene protons (H₂-12) with C-5 (δ 162.4) of the main skeleton established their fusion by ether linkage at C-5. Therefore, **TP8** was identified as mansonone H (Kim *et al.*, 1996).

Selected HMBC correlations of TP8

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1		128.3	С	
2	6.74 (<i>s</i>)	119.5	СН	3, 4, 8, 9
3		159.7	С	
4		125.4	С	
4a		128.3	С	
5		162.4	С	
6		115.5	С	
7		181.0	С	
8		180.1	С	
8a		145.6	С	
9	2.59 (s)	23.0	CH ₃	1, 2, 8, 8a
10	3.25 (<i>dq</i> , 3.3, 6.9)	26.1	СН	3, 4, 4a, 11
11	1.31 (<i>d</i> , 6.9)	17.2	CH ₃	4, 10, 12
12	4.41 (<i>d</i> , 10.8)	72.0	CH_2	4, 10, 11, 5
	4.29 (<i>dd</i> , 10.8, 3.3)			
13	1.90 (s)	7.9	CH ₃	5, 6, 7

Table 39¹H, ¹³C NMR, DEPT and HMBC spectral data of TP8

Table 40 Comparison of ¹H and ¹³C NMR spectral data of **TP8** and mansonone H

	TP7		mansonone H ^a		
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	
1		128.3		148.3	
2	6.74 (<i>s</i>)	119.5	6.33 (s)	121.8	
3		159.7		156.0	
4		125.4		118.9	
4a		128.3		129.4	
5		162.4		165.6	

Table 40 (Continued)

	TP7		mansonone H ^a		
position	δ_{H} (mult., J_{Hz})	δ _C	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	
6		115.5		114.8	
7		181.0		180.2	
8		180.1		183.2	
8a		145.6		129.2	
9	2.59 (s)	23.0	2.48 (s)	23.8	
10	3.25 (<i>dq</i> , 3.3, 6.9)	26.1	3.21 (<i>m</i>)	27.5	
11	1.31 (<i>d</i> , 6.9)	17.2	1.24 (<i>d</i> , 7.3)	17.4	
12	4.41 (<i>d</i> , 10.8)	72.0	4.40 (<i>br d</i> , 10.3)	73.8	
	4.29 (<i>dd</i> , 10.8, 3.3)		4.28 (<i>dd</i> , 10.3, 3.5)		
13	1.90 (s)	7.9	1.85 (s)	7.9	

2.3.2.9 Compound TP9

TP9 was isolated a reddish brown solid. The UV (**Figure 72**) and IR spectra (**Figure 73**) showed absorption bands similar to those of **TP8**. The ¹H and ¹³C NMR spectral data of **TP9** (**Table 41**, **Figures 74** and **75**) and **TP8** (Table, Figure) showed structural similarity, except for the presence of an aromatic proton at δ 7.35 (*d*, *J* = 8.1 Hz); δ_c 132.6 in **TP9** instead of the hydroxyl group at C-3 (δ_c 159.7) in **TP8**. This proton was *ortho*-coupled with an aromatic proton H-2 at δ 7.26 (*d*, *J* = 8.1 Hz). Thus, **TP9** was assigned as mansonone E (Kim *et al.*, 1996).

Selected HMBC correlations of TP9

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1		127.4	С	
2	7.26 (<i>d</i> , 8.1)	134.9	СН	1, 9
3	7.35 (<i>d</i> , 8.1)	132.6	СН	4, 4a, 10
4		136.9	С	
4a		126.9	С	
5		162.5	С	
6		116.3	С	
7		180.2	С	
8		182.2	С	
8a		142.9	С	
9	2.65 (s)	22.5	CH ₃	1, 2, 8a
10	3.09 (<i>m</i>)	31.1	СН	3, 4, 4a
11	1.37 (<i>d</i> , 7.2)	17.6	CH ₃	4, 10, 12
12	4.41 (<i>dd</i> , 10.8, 3.9)	71.5	CH_2	4, 5
	4.23 (<i>dd</i> , 10.8, 5.1)			
13	1.96 (s)	7.8	CH ₃	5, 6, 7

Table 41¹H, ¹³C NMR, DEPT and HMBC spectral data of TP9

Table 42 Comparison of ¹H and ¹³C NMR spectral data of TP9 and mansonone E

	TP9		mansonone E ^{<i>a</i>}		
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ _C	
1		127.4		142.8	
2	7.26 (<i>d</i> , 8.1)	134.9	7.25 (<i>d</i> , 7.8)	134.9	
3	7.35 (<i>d</i> , 8.1)	132.6	7.35 (<i>d</i> , 7.8)	132.6	
4		136.9		136.9	
4a		126.9		126.8	
5		162.5		162.4	

Table 42 (Continued)

	TP9		mansonone E ^{<i>a</i>}		
position	δ_{H} (mult., J_{Hz})	$\delta_{\rm C}$	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	
6		116.3		116.8	
7		180.2		180.2	
8		182.2		182.2	
8a		142.9		127.3	
9	2.65 (s)	22.5	2.63 (s)	22.5	
10	3.09 (<i>m</i>)	31.1	3.10 (<i>m</i>)	31.3	
11	1.37 (<i>d</i> , 7.2)	17.6	1.37 (<i>d</i> , 6.8)	17.5	
12	4.41 (<i>dd</i> , 10.8, 3.9)	71.5	4.41 (<i>dd</i> , 10.7, 3.9)	71.4	
	4.23 (<i>dd</i> , 10.8, 5.1)		4.23 (<i>dd</i> , 10.7, 5.1)		
13	1.96 (s)	7.8	1.94 (s)	7.8	

Position	TP5	TP6	TP7	TP8	TP9
	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	δ_{H} (mult., J_{Hz})	δ_{H} (mult., J_{Hz})	δ_{H} (mult., J_{Hz})
1		3.57 (<i>dquint</i> , 1.8, 6.6)	3.54 (<i>dquint</i> , 1.8, 6.9)		
2	6.82 (<i>s</i>)	2.50 (<i>dd</i> , 14.7, 1.8)	2.71 (<i>dd</i> , 16.2, 6.6)	6.74 (<i>s</i>)	7.26 (<i>d</i> , 8.1)
		2.81 (<i>dd</i> , 14.7, 6.6)	2.53 (<i>dd</i> , 16.2, 1.8)		
3					7.35 (<i>d</i> , 8.1)
4					
4a					
5		7.55 (<i>d</i> , 1.5)			
6					
7					
8					
8a					
9	2.72 (s)	1.18 (<i>d</i> , 6.6)	1.11 (<i>d</i> , 6.9)	2.59 (s)	2.65 (s)
10	4.14 (dquint, 2.4, 6.9)	3.42 (<i>hept</i> , 6.9)	3.05 (<i>dq</i> , 3.3, 6.9)	3.25 (<i>dq</i> , 3.3, 6.9)	3.09 (<i>m</i>)
11	4.41 (<i>dd</i> , 4.4, 2.4)	1.28 (<i>d</i> , 6.9)	1.09 (<i>d</i> , 6.9)	1.31 (<i>d</i> , 6.9)	1.37 (<i>d</i> , 7.2)
	4.62 (<i>t</i> , 8.4)				
12	1.29 (<i>d</i> , 6.9)	1.38 (<i>d</i> , 6.9)	4.22 (<i>d</i> , 10.8)	4.41 (<i>d</i> , 10.8)	4.41 (<i>dd</i> , 10.8, 3.9)
			4.09 (<i>dd</i> , 10.8, 3.3)	4.29 (<i>dd</i> , 10.8, 3.3)	4.23 (<i>dd</i> , 10.8, 5.1)
13	2.40 (s)	2.07 (s)	1.90 (s)	1.90 (s)	1.96 (s)
7 - OH	7.75 (s)				

Table 43 Comparison of ¹ H NMR spectral data of TP5-TP9

Position	TP5	TP6	TP7	TP8	TP9
	$\delta_{ m C}$				
1	146.0	28.1	27.6	128.3	127.4
2	116.2	46.1	44.6	119.5	134.9
3	165.7	200.1	197.1	159.7	132.6
4	134.2	150.2	139.5	125.4	136.9
4a	131.2	135.3	131.0	128.3	126.9
5	186.3	132.5	157.1	162.4	162.5
6	117.7	136.1	115.1	115.5	116.3
7	153.8	180.8	181.3	181.0	180.2
8	180.6	144.7	143.5	180.1	182.2
8a	120.7	123.0	115.2	145.6	142.9
9	23.9	20.5	20.7	23.0	22.5
10	37.1	28.5	26.5	26.1	31.1
11	80.5	21.0	16.1	17.2	17.6
12	19.8	22.8	71.9	72.0	71.5
13	8.4	16.2	8.0	7.9	7.8

 Table 44 Comparison of ¹³C NMR spectral data of TP5-TP9

2.3.2.10 Compound TP10

TP10 was obtained as a yellow gum with the molecular formula of $C_{15}H_{18}O_3$ on the basis of molecular $[M]^+$ at m/z 246.1262 in the HREIMS (calc. 246.1256). The IR spectrum (Figure 77) of TP10 showed the absorption band of hydroxyl at 3365 cm⁻¹, while the UV spectrum (Figure 76) showed maximum absorptions at 216, 251, 259 (sh), 279 and 289, suggesting a benzofuran chromophore. The ¹H NMR spectral data of **TP10** (**Table 45**, **Figure 78**) showed the characteristic of cadinane sesquiterpenoid skeleton with a benzofuran moiety. Two aromatic protons resonating at δ 7.02 (1H, br s) and 7.10 (1H, br s) were assigned to H-4 and H-2, respectively, whereas a furan proton appearing at δ 7.50 (d, J = 0.9 Hz) was assigned to H-9. Moreover, one methine proton [δ 3.02 (dd, J = 7.8, 3.9 Hz)], two oxymethines [δ 4.01 (*dd*, J = 7.8, 7.8 Hz) and 4.90 (*dd*, J = 7.8, 0.9 Hz)], one methyl group (δ 2.48, s) and one isopropyl moiety [δ 1.16 (d, J = 7.2 Hz); 1.18 (d, J = 7.2 Hz) and 2.58 (*dsept*, J = 7.2, 3.9 Hz)] were also observed. The methyl group at δ 2.48 was placed at C-3 because of HMBC correlations to C-2 (δ 109.3) and C-4 (δ 121.6) and the isopropyl group was placed at C-5 due to HMBC correlations of its methine proton H-11 at δ 2.58 with C-4a (δ 131.4), C-5 (δ 49.8) and C-6 (δ 75.7). Finally, the two oxymethine protons at δ 4.01 and 4.90 were assigned to H-6 and H-7, respectively, judging from the allylic coupling (0.9 Hz) of H-9 with H-7 which was in turn coupled to oxymethine proton H-6 (4.01) in the COSY experiment. The relative stereochemistry at C-5, C-6 and C-7 was assigned by NOESY experiment, in which only the isopropyl group showed cross peak with H-6, indicating that H-6 was on the same side as the isopropyl group but opposite to H-5 and H-7. In addition, the pseudotrans-diaxial coupling (7.8 Hz) of H-6 with H-5 and H-7 also supported the NOESY experiment. Therefore, the relative stereostructure at H-5, H-6 and H-7

should be *trans-trans* configuration, **TP10** was a new compound and designated as populene A (Boonsri *et al.*, 2008).

Selected HMBC correlations of TP10

 Table 45 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP10

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	HMBC
1		153.5	С	
2	7.10 (<i>br s</i>)	109.3	СН	1, 4, 10
3		135.8	С	
4	7.02 (br s)	121.6	СН	2, 3, 8a, 10
4a		131.4	С	
5	$3.02 (dd, 7.8, 3.9, H_{\beta})$	49.8	СН	6, 7
6	4.01 (<i>dd</i> , 7.8, 7.8, H _α)	75.7	СН	4a, 5, 7, 8, 11
7	$4.90 (dd, 7.8, 0.9, H_{\beta})$	70.5	СН	5, 6, 8, 8a, 9
8		118.7	С	
8a		123.7	С	
9	7.50 (<i>d</i> , 0.9)	138.8	СН	1, 8, 8a
10	2.48 (s)	22.4	CH ₃	2, 3, 4
11	2.58 (<i>m</i>)	27.8	СН	4a, 5, 6, 12, 13
12	1.16 (<i>d</i> , 7.2)	20.0	CH ₃	5, 11, 13
13	1.18 (<i>d</i> , 7.2)	20.8	CH ₂	5, 11, 12

2.3.2.11 Compound TP11

TP11 was a yellow solid, and possessed the same formula as **TP10** by HREIMS (m/z 246.1255 [M]⁺, C₁₅H₁₈O₃). The similarity of the mass, IR, UV, ¹H and ¹³C NMR spectra (**Table 46**) of **TP10** and **TP11** indicated that **TP11** was a diastereomer of **TP10**. The difference was found in the small coupling constant of H-6 (δ 4.38, dd, J = 3.3, 3.3 Hz) in **TP11** as compared to that in **TP10** (δ 4.01, t, J = 7.8 Hz). Moreover, NOESY experiment exhibited cross peaks of H-5 and H-6 and between H-6 and H-7, suggesting their *cis* orientation. Accordingly, **TP11** was a new compound and designated as populene B (Boonsri *et al.*, 2008).

Selected HMBC correlations of TP11

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1		153.6	С	
2	7.14 (<i>br s</i>)	109.8	СН	1, 4, 8a, 10
3		135.7	С	
4	6.91 (<i>br s</i>)	124.5	СН	2, 3, 8a, 10
4a		129.8	С	
5	$2.90 (dd, 8.7, 3.3, H_{\beta})$	53.5	СН	4, 4a, 6, 7,8a, 11,
				13
6	4.38 (<i>dd</i> , 3.3, 3.3, H_{β})	73.4	СН	4a, 8
7	5.08 (m , H _{β})	65.6	СН	8,9
8		118.2	С	
8a		123.4	С	
9	7.57 (<i>d</i> ,1.5)	140.9	СН	1, 8
10	2.48 (s)	22.2	CH ₃	2, 3, 4
11	1.63 (<i>m</i>)	31.0	СН	
12	1.12 (<i>d</i> , 6.6)	21.3	CH ₃	5, 11, 13
13	$0.94 (d, 6.6)^a$	21.6	CH ₂	5, 11, 12

Table 46¹H, ¹³C NMR, DEPT and HMBC spectral data of TP11

2.3.2.12 Compound TP12

TP12 was obtained as an orange solid whose molecular formula was determined as $C_{18}H_{20}O_3$ by HREIMS (m/z 286.1556 [M+2]⁺). The EI mass spectrum was diagnostic, showing the relatively intense [M+2]⁺ characteristic ion peak of ortho-naphthoquinones which was not displayed by para-naphthoquinones (Letcher et al., 1992). The IR spectrum (Figure 85) exhibited the characteristic absorption of carbonyl groups at 1757 and 1698 cm⁻¹. The UV spectrum (Figure 84) showed absorption maxima at 213, 242, 259 and 380 nm. The ¹H and ¹³C NMR spectral data (Table 47, Figures 86 and 87) of TP12 were comparable to those of mansonone D (TP4), which was isolated from the dark heartwood of this plant. The differences between these two compounds were found as the additional isopropyl group, which appeared as two methyl singlet signals at δ 1.57 and 1.53 in the ¹H NMR spectrum of **TP12**, whose HMBC correlations to oxygenated quaternary carbon at δ 74.9 (C-14) supported the connection of this group to oxygen. In addition, the correlation of oxymethylene protons at δ 3.97 and 3.79 (H₂-13) with C-5 (δ 135.8) and C-14 (δ 74.9), of gem-dimethyl with C-6 (δ 150.1) and of an aromatic proton H-7 (δ 6.95) with C-14 (δ 74.9), indicated that a pyran moiety was connected to an aromatic ring at C-5 and C-6. The methine proton on C-11 was deduced to be equatorially oriented from the two small vicinal coupling constants ($J_{11,13\beta} = 1.2$ Hz and $J_{11,13\alpha} = 2.4$ Hz). The relative stereostructure of the trimethylpyran ring was postulated from NOESY cross-peaks of a methylene proton H-13 β (δ 3.79) with a methyl group at δ 1.40 (Me-12) and of H-13 α (δ 3.97) with a methyl group at δ 1.53 (Me-15). Therefore, **TP12** was identified as a new compound and designated as populene C (Boonsri et al., 2008).

Selected HMBC correlations of TP12

Table 47 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP12

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	HMBC
1		181.7	С	
2		181.6	С	
3		135.8	С	
4	7.52 (<i>d</i> , 1.2)	137.3	СН	2, 4a, 5, 10
4a		128.4	С	
5		135.8	С	
6		150.1	С	
7	6.95 (<i>s</i>)	131.2	СН	5, 8a, 9, 14
8		142.6	С	
8a		133.1	С	
9	2.62 (s)	23.0	CH_3	7, 8, 8a
10	2.09 (<i>d</i> , 1.2)	16.0	CH_3	2, 3, 4
11	3.01 (<i>br</i> q , 6.9, H _{α})	29.9	СН	
12	1.40 (<i>d</i> , 6.9)	21.2	CH ₃	5, 13
13	$3.97 (dd, 11.7, 2.4, H_{\alpha})$	64.9	CH_2	5, 11, 12, 14
	$3.79 (dd, 11.7, 1.2, H_{\beta})$			
14		74.9	С	
15	1.53 <i>(s)</i>	31.3	CH_3	6, 14, 16
16	1.57 (s)	27.8	CH ₃	6, 14, 15

2.3.2.13 Compound TP13

TP13 was a brown gum and its molecular formula was deduced as $C_{18}H_{24}O_3$ from the HREIMS (*m/z* 288.1736, [M]⁺). The IR spectrum (Figure 89) exhibited OH absorption at 3417 cm⁻¹. The structural assignment was initiated by comparison of the NMR spectra of **TP13** with those of **TP12**. In the ¹H NMR spectrum (Table 48, Figure 90), an aromatic proton signal at δ 6.95 and an aromatic methyl at δ 2.62 as found in TP12 were missing in TP13 and the signals of -CH(CH₃)CH₂- were instead observed at δ 1.04 (3H, d, J = 6.9 Hz, H-9), 3.19 (1H, br quint, J = 6.9 Hz, H-8), 2.00 (1H, d, J = 15.3 Hz, H-7) and 2.36 (1H, dd, J = 15.3, 5.1 Hz, H-7). This assignment was confirmed by COSY cross-peaks and HMBC correlations of H₂-7 to C-5 (δ 128.7), C-6 (δ 132.2) and C-9 (δ 17.9) and of H₃-9 to C-7 (δ 31.0) and C-8a (δ 125.2). In addition, the replacement of two carbonyl carbons of the quinone ring at δ 181.7 (C-1) and 181.6 (C-2) ppm in **TP12** with oxygenated aromatic carbons at δ 140.3 and δ 140.9 ppm in **TP13** indicated that **TP13** was a reduced form of TP12. The relative stereochemistry of H-8 and H-11 were elucidated by NOESY spectrum as shown in Figure 3, which indicated that Me-9 and Me-12 were on the same side of the molecule. Therefore, TP13 was identified as a new compound and designated as populene D (Boonsri et al., 2008).

Selected HMBC correlations of TP13

Figure 3 Populene D with selected NOESY correlations.

Table 48 ¹ H	, ¹³ C NMR,	DEPT and HMBC spe	ectral data of TP13
-------------------------	------------------------	-------------------	---------------------

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	HMBC
1		140.3	С	
2		140.9	С	
3		121.0	С	
4	6.65 (<i>s</i>)	117.0	СН	4a, 5, 10
4a		125.0	С	
5		128.7	С	
6		132.2	С	
7	2.00 (d , 15.3, H_{β})	31.0	CH_2	5, 6, 9
	2.36 (<i>dd</i> , 15.3, 5.1, H_{α})			
8	3.19 (<i>br quint</i> , 6.9, H_{α})	25.2	СН	
8a		125.2	С	
9	1.04 (<i>d</i> , 6.9)	17.9	CH ₃	7, 8, 8a
10	2.25 (s)	15.8	CH ₃	2, 3, 4
11	2.68 (m , H _{α})	28.4	СН	
12	1.14 (<i>d</i> , 6.9)	17.6	CH ₃	5, 11, 13
13	$3.90 (dd, 11.1, 3.0, H_{\alpha})$	65.7	CH_2	5, 11, 12, 14
	$3.66 (dd, 11.1, 2.4, H_{\beta})$			
14		75.0	С	
15	1.26 (<i>s</i>)	23.6	CH ₃	6, 14, 16
16	1.41 (s)	27.6	CH ₃	6, 14, 15

2.3.2.14 Compound TP14

TP14 was obtained as a yellow-brown gum. The molecular formula was established as $C_{15}H_{18}O_4$ on the basis of HREIMS (m/z 262.1210, $[M]^+$). The ¹³C NMR (Table 49) showed the presence of 15 resonances, which corresponded by DEPT analysis to three methines (one sp^2), one methylene, four methyls and seven sp^2 quaternary carbons including two carbonyl carbons ($\delta_{\rm C}$ 167.4 and 205.8). The ¹H NMR (Table 49, Figure 94) and COSY spectra allowed assignment of signals of a dihydrocoumarin moiety at δ 1.31 (3H, d, J = 6.9 Hz, 4-Me), 2.72 (2H, d, J = 3.6 Hz, H₂-3), 3.88 (1H, tq, J = 3.6, 6.9 Hz, H-4), and 7.40 (1H, s, H-6). This moiety was also supported by the ${}^{3}J$ HMBC correlations between the methine proton H-4 and aromatic carbons C-5 (δ 126.2), C-8a (δ 139.2) and a lactone carbonyl (δ 167.4). Moreover, the signals of 2-methyl-1-oxopropyl unit [δ 3.47 (1H, sept, J = 6.9, H-2'), 1.21 (3H, d, J = 6.9 Hz, H-3') and 1.14, (3H, d, J = 6.9, H-4')] were also observed in the ¹H NMR spectrum whose HMBC correlation between an aromatic proton H-6 (δ 7.40) and C-1' (δ 205.8) supported its connection at C-5 of the dihydrocoumarin moiety. An aromatic methyl at δ 2.30 was attributed to 7-Me due to its HMBC correlation with C-6 (δ 127.8), C-7 (δ 123.5) and C-8 (δ 145.4). Additionally, a downfield carbon chemical shift of C-8 at δ 145.4 indicated its connection to a hydroxyl group. Thus, the structure of TP14 was elucidated to be a new compound and designated as populene E (Boonsri et al., 2008).

Selected HMBC correlations of TP14

Table 49 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP14

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	НМВС
2		167.4	С	
3	2.72 (<i>d</i> , 3.6)	36.3	CH_2	2
4	3.88 (<i>tq</i> , 3.6, 6.9)	27.5	СН	2, 5, 8a
4a		127.9	С	
5		126.2	С	
6	7.40 (s)	127.8	СН	4, 5, 8, 8a, 7-Me,
				1'
7		123.5	С	
8		145.4	С	
8a		139.2	С	
1'		205.8	С	
2'	3.47 (<i>sept</i> , 6.9)	37.2	СН	1', 3', 4'
3'	1.21 (<i>d</i> , 6.9)	19.0	CH ₃	1', 3', 4'
4′	1.14 (<i>d</i> , 6.9)	19.4	CH ₃	2', 3'
4-Me	1.31 (<i>d</i> , 6.9)	20.2	CH ₃	3, 4, 4a
7-Me	2.30 (s)	15.5	CH ₃	6, 7, 8

TP15 was obtained as a yellow gum. The molecular formula was established as $C_{15}H_{20}O_4$ on the basis of HREIMS (m/z, 264.1353 [M]⁺). The UV (**Figure 96**) and IR (**Figure 97**) spectra were similar to those of **TP14**, but with one carbonyl absorption at 1668 cm⁻¹. The NMR (**Table 50**, **Figures 98** and **99**) data were comparable to those of **TP14**, except for the replacement of a lactone carbonyl (δ 167.4) in **TP14** with a hemiacetal proton signal of H-2 at δ_H 5.65 (dd, J = 9.0, 3.0 Hz; δ_C 92.6) in **TP15**. The large coupling constant (13.5 Hz) was the characteristic geminal coupling of the methylene protons; H-3 β (2.07, td, J = 3.0, 13.5 Hz) and H-3 α (1.87,ddd, J = 13.5, 9.0, 5.1 Hz), while the vicinal coupling constant of 9.0 and 5.1 Hz were the pseudotrans-diaxial coupling of H-3 α with H-2 and H-4, respectively. This was also in agreement with the multiplicity of H-3 β observed as a triplet of doublet with a large ($J_{gem} = 13.5$ Hz) and a small ($J_{ax-eq} = 3.0$ Hz) coupling constants, justifying its *syn* relationship to H-2 and H-4. **TP15** was thus identified as a new compound and designated as populene F (Boonsri *et al.*, 2008).

Selected HMBC correlations of TP15

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
2	$5.65 (dd, 9.0, 3.0, H_{\beta})$	92.6	СН	3, 4, 8a
3	1.87 (<i>ddd</i> , 13.5, 9.0, 5.1,	36.6	CH_2	2, 4, 4a, 4-Me
	H_{α})			
	$2.07 (td, 3.0, 13.5, H_{\beta})$			
4	3.84 (m , H_{β})	26.2	СН	
4a		126.3	С	
5		127.1	С	
6	7.18 (s)	125.0	СН	4a, 8, 8a, 7-Me, 1'
7		121.0	С	
8		146.2	С	
8a		140.0	С	
1′		207.1	С	
2′	3.45 (<i>sept</i> , 6.9)	37.4	СН	1', 2', 3', 4'
3'	1.17 (<i>d</i> , 6.9)	19.1	CH ₃	1', 2', 4'
4′	1.15 (<i>d</i> , 6.9)	19.6	CH ₃	1', 2', 3'
4-Me	1.25 (<i>d</i> , 6.9)	22.3	CH ₃	3, 4, 4a
7-Me	2.23 (s)	15.3	CH ₃	6, 7, 8

 Table 50 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP15

2.3.2.16 Compound TP16

TP16 was obtained as a yellow gum. The molecular formula of **TP16** was established as $C_{15}H_{18}O_5$ as determined by HREIMS (m/z 278.1196, [M]⁺). The ¹H and ¹³C NMR spectra (**Table 51**, **Figures 102** and **103**) were similar to those of **TP15** except that in **TP16** an aromatic proton H-6 at δ 7.18 in **TP15** disappeared and a methyl signal Me-4' was replaced by oxymethylene protons resonating at δ 4.43 (1H, dd, J = 11.1, 5.1 Hz, H-4') and 4.03 (1H, dd, J = 11.1, 11.1 Hz, H-4') in **TP16**. The ³J HMBC correlation between oxymethylene protons (H₂-4') with C-6 (δ 157.7) of an aromatic moiety established their fusion by an ether linkage at C-6. The stereochemistry of H-2' was deduced to be equatorially oriented from the small coupling constant ($J_{2',4'ax} = 5.1$ Hz). Thus, **TP16** was concluded to be a new compound and designated as populene G (Boonsri *et al.*, 2008).

Selected HMBC correlations of TP16

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	HMBC
2	$5.56 (dd, 9.9, 2.7, H_{\beta})$	92.2	СН	3, 8a
3	$1.84 (ddd, 13.5, 9.9, 5.4, H_{\alpha})$	36.8	CH_2	2, 4, 4a, 4-Me
	$2.04 (td, 2.7, 13.5, H_{\beta})$			
4	4.09 (m , H _{β})	27.2	СН	2, 4a, 8a, 4-Me
4a		125.1	С	
5		109.4	С	
6		157.7	С	
7		110.4	С	
8		149.3	С	
8a		134.6	С	
1'		195.3	С	
2'	2.75 (<i>m</i>)	41.2	СН	1', 3', 4'
3'	1.16 (<i>d</i> , 6.9)	11.0	CH ₃	1', 2', 4'
4′	4.03 (<i>dd</i> , 11.1, 11.1)	71.6	CH_2	1', 2', 3', 6
	4.43 (<i>dd</i> , 11.1, 5.1)			
4-Me	1.28 (<i>d</i> , 6.9)	22.4	CH ₃	3, 4, 4a
7-Me	2.09 (s)	8.1	CH ₃	6, 7, 8

Table 51 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP16

2.3.2.17 Compound TP17

TP17, isolated as a yellow gum, had the molecular formula $C_{15}H_{18}O_5$ as determined by HREIMS (*m/z* 278.1159, [M]⁺). The similar mass and NMR spectra of **TP16** (**Table 51**, **Figure 102** and **103**) and **TP17** (**Table 52**, **Figures 106** and **107**) indicated diastereomers. The main spectroscopic differences were the downfield shift of H-2 in **TP17** at δ 5.81 and the smaller coupling constants (*dd*, *J* = 7.5, 4.5 Hz) as compared to those of **TP16** at δ 5.56 (*dd*, *J* = 9.9, 2.7 Hz). The coupling constant *J*₂₋₃ of 7.5 and 4.5 Hz indicated *J*_{eq-ax} and *J*_{eq-eq}, therefore suggesting α -orientation of H-2. Accordingly, **TP17** was elucidated to be a new compound and designated as populene H (Boonsri *et al.*, 2008).

Selected HMBC correlations of TP17

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
2	$5.81 (dd, 7.5, 4, 5, H_{\alpha})$	95.9	СН	8a
3	2.00 (<i>m</i>)	36.1	CH_2	2, 4, 4a, 4-Me
4	4.10 (<i>m</i>)	27.1	СН	4-Me
4a		127.2	С	
5		111.4	С	
6		158.7	С	
7		110.6	С	
8		149.9	С	
8a		134.9	С	
1′		196.1	С	
2'	2.75 (<i>m</i>)	42.1	СН	1', 3', 4'
3'	1.17 (<i>d</i> , 6.5)	11.8	CH ₃	1', 2', 4'
4′	4.05 (<i>dd</i> , 11.5, 11.5)	72.6	CH_2	1', 2', 3', 6
	4.45 (<i>dd</i> , 11.5, 5.5)			
4-Me	1.32 (<i>d</i> , 7.0)	23.0	CH ₃	3, 4a
7-Me	2.11 (s)	9.0	CH ₃	6, 7, 8

 Table 52 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP17

2.3.2.18 Compound TP18

TP18 was isolated as a yellow solid. The UV spectrum exhibited the absorption bands at 237, 276, 290 and 379 nm. The IR spectrum indicated the presence of hydroxyl functionality (3410 cm⁻¹). The ¹H NMR spectrum of **TP18** (Table 54, Figures 110 and 111), the low field chemical shift of the aldehyde proton at δ 10.98 (s, H-9) indicated chelation to an *ortho* hydroxyl proton which appeared at δ 14.50 (s, 7-OH). Two hydroxyl groups appearing at δ 6.19 and 6.81 were located at C-6 and C-1, respectively. An aromatic proton resonating at δ 7.71 (s) was assigned to H-4. Signals of a methyl group at $\delta 2.13$ (s) and an isopropyl moiety [$\delta 1.48$ (d, J = 7.2 Hz, 6H) and 3.82 (m)] were also observed. The methyl group at δ 2.13 was placed at C-3 because of HMBC correlations to C-2 (δ 116.7) and C-3 (δ 134.0) and the isopropyl group was placed at C-5 due to HMBC correlations of its methine proton H-10 at δ 3.82 with C-4a (δ 129.5), C-5 (δ 134.4) and C-6 (δ 143.0). Since the ¹³C NMR spectrum exhibited only 15 signals and its ¹H NMR spectrum also showed signals corresponding to a monomer. TP18 was inferred to be a symmetrical dimer. A quaternary sp² carbon resonating at δ 116.7 in the ¹³C NMR was assigned to C-2. Thus this compound was deduced to be a symmetrical dimer which connected at C-2-C-2'. Therefore, **TP18** was identified as (+)-gossypol (Meyers *et al.*, 1998).

Selected HMBC correlations of TP18

 Table 53 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP18

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	НМВС
1		150.7	С	
2		116.7	С	
3		134.0	С	
4	7.71 (s)	117.8	СН	1, 3, 5, 8a
4a		129.5	С	
5		134.4	С	
6		143.0	С	
7		155.7	С	
8		111.6	С	
8a		114.8	С	
9	10.98 (s)	199.1	СН	6, 7, 8
10	2.13 (s)	20.3	CH ₃	2, 3
11	3.82 (<i>m</i>)	27.9	СН	4a, 5, 6, 12, 13
12	1.48 (<i>d</i> , 7.2)	20.2	CH ₃	5, 11, 13
13	1.48 (<i>d</i> , 7.2)	20.2	CH ₃	5, 11, 12
1 - OH	6.81 (<i>s</i>)			1, 2, 8a
6-OH	6.19 (<i>s</i>)			5, 6, 7
7 - OH	14.50 (s)			6, 7, 8

	TP9		gossypol ^a	
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C
1		150.7		150.8
2		116.7		116.5
3		134.0		134.0
4	7.71 (<i>s</i>)	117.8	7.77 (s)	118.2
4a		129.5		129.8
5		134.4		134.4
6		143.0		143.4
7		155.7		156.0
8		111.6		111.9
8a		114.8		114.9
9	10.98 (s)	199.1	11.11 (s)	199.5
10	2.13 <i>(s)</i>	20.3	2.14 (s)	20.5
11	3.82 <i>(m)</i>	27.9	3.88 (septet, 6.9)	28.1
12	1.48 (<i>d</i> , 7.2)	20.2	1.54 (<i>d</i> , 7.0)	20.5
13	1.48 (<i>d</i> , 7.2)	20.2	1.54 (<i>d</i> , 7.0)	20.5
1-OH	6.81 (<i>s</i>)		6.39 (s)	
6-OH	6.19 (<i>s</i>)		5.85 (s)	
7-OH	14.50 (s)		15.11 (s)	

Table 54 Comparison of ¹H and ¹³C NMR spectral data of TP18 and gossypol

^{*a*} recorded in CDCl₃

2.3.2.19 Compound TP19

TP19 was obtained as a yellow solid. The ¹H and ¹³C NMR spectral data (**Table 55**, **Figures 114** and **115**) of **TP19** were similar to those of **TP18** except for the replacement of a hydroxyl proton at δ 6.19 (*s*) in **TP18** with the methoxyl group at δ 4.00 whose HMBC correlation with the quaternary carbon at δ 147.7 (C-6), indicated that the methoxyl group was attached to C-6. Thus, the structure of **TP19** was concluded to be (+)-6, 6'-dimethoxygossypol.

Selected HMBC correlations of TP19

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1		150.1	С	
2		117.3	С	
3		133.1	С	
4	7.83 (s)	119.2	СН	3, 4a, 5, 8a
4a		129.4	С	
5		144.5	С	
6		147.7	С	
7		161.1	С	
8		113.3	С	
8a		116.9	С	
9	11.15 <i>(s)</i>	199.2	СН	6, 7, 8
10	2.16 (<i>s</i>)	20.3	CH ₃	2, 3, 4
11	4.00 (<i>m</i>)	27.9	СН	
12	1.56 (<i>d</i> , 6.9)	21.7	CH ₃	5, 11, 13
13	1.55 (<i>d</i> , 6.9)	21.7	CH ₃	5, 11, 12
1-OH	6.81 (<i>s</i>)			1, 4a, 8a, 9
6-OMe	4.00 (s)		CH ₃	6
7 - OH	14.56 (<i>s</i>)			6, 7, 8

 Table 55 ¹H, ¹³C NMR, DEPT and HMBC spectral data of TP19

2.3.2 Biological activities of the isolated compounds from the roots of *T*. *populnea*

All of the isolated compounds except for TP2, TP3, TP10, TP11, TP14 and TP17 for which insufficient materials were available, were evaluated for cytotoxicity against four human cancer cell lines; breast cancer (MCF-7), cervical cancer (HeLa), colon cancer (HT-29) and oral cavity cancer (KB). They were also tested for antibacterial activity against both Gram-positive (Bacillus subtilis and Staphylococcus aureus) and Gram-negative (Enterococcus faecalis, Salmonella typhi, Shigella sonei and Pseudomonas aeruginosa). The results are summarized in Table 56. (+)-Gossypol (TP18) exhibited potent cytotoxic activity against HeLa and KB cell lines, with IC₅₀ values 0.08 and 0.04 μ g/mL, respectively. Mansonone E (**TP9**) showed good activity against all four cancer cell lines, especially MCF-7 (IC₅₀ 0.05 μ g/mL). Populene D (**TP13**) and mansonone D (**TP4**) possessed strong inhibitory activity against HeLa and MCF-7, respectively, whereas populene C (TP12) exhibited moderate inhibitory activity against all four cell lines. Antibacterial activity against *B.subtilis* was found for 7-hydroxycadalene (**TP1**). (+)-6,6'-methoxygossypol (**TP19**) was weakly active against *E. faecalis*, *B.subtilis* and *S. aureus*, whereas (+)-gossypol (TP18) exhibited moderate activity against *B.subtilis* and *S. aureus*. None of the compounds were active against S. typhi, S. sonei or P. aeruginosa. Compounds TP5, TP8, TP15 and TP16 showed no cytotoxic or antibacterial activity.

Table 56 Cytotoxic and antibacterial activities of compounds isolated from	n <i>T</i> .
populnea	

Compounds	Cytotoxicity against human			Anti	bacterial act	ivity,	
	cancer cell lines, IC ₅₀ (µg/mL)				MIC (µg/mL	.)	
	MCF-7	HeLa	HT-29	KB	B. subtilis	S. aureus	E. faecalis
TP1	>5	>5	>5	>5	0.59	-	-
TP4	0.80	2.80	>5	4.90	2.34	-	-
TP6	>5	>5	>5	>5	_b	-	-
TP7	>5	>5	>5	>5	-	-	-
TP9	0.05	0.55	0.18	0.40	4.69	-	-
TP12	2.35	3.40	2.90	3.00	4.69	-	-
TP13	1.85	0.95	2.37	3.10	4.69	-	-
TP18	NT ^a	0.08	>5	0.04	1.17	1.17	-
TP19	4.00	>5	3.00	>5	2.34	4.69	1.17

^{*a*}NT = not tested. ^{*b*} = inactive (> 10 μ g/mL)

CHAPTER 3.1 INTRODUCTION

3.1.1 Introduction

Artocarpus integer (Thunb.) Merr. is a plant belonging to the family Moracae. This family is distributed in the tropical and subtropical regions of Asia, comprises some 1400 species devided among 60 genera (Hakim *et al.*, 2005). In Thailand only 8 genera are found, from *Artocarpus* genus only 14 species are found (Smitinand 2001).

A. integer is a large tree with dense crown, reaching a hight of 15 m or more; the cylindrical stem is rounded at the ends; bark grey-brown to dark brown with warty excresences; blaze pale pink to yellow, exuding a copious milky latex when cut. Leaves obovate to elliptic, 5-25c long and 2.5-12 cm wide, with cuneate to round base; margin entire; pointed tip and 6-10 pairs of lateral veins curvingforward; leavstalk 1-3 cm long. Fruits cylindrical to almost globose; 20-35 x 10-15 cm; yellowish or brown to orange-green.

Figure 4 Parts of *Artocarpus integer*

3.1.2 Review of Literatures

Chemical constituents isolated from *Artocarpus* genus were summarized in **Table 57**. The literature survey was done from SciFinder Scholar database and the constituents could be classified into groups, such as benzofuran, chalcone, dihydrochalcones, flavonoids, neolignan, stilbenoids, steroids and triterpenoids.

Table 57 Compounds from plants of Artocarpus genus

a = Benzofuran	$\mathbf{b} = Chalcone$	c = Dihydrochalcones
$\mathbf{d} = Flavonoids$	e = Neolignan	$\mathbf{f} = $ Stilbenoids
$\mathbf{g} = $ Steroids	h = Triterpenoids	

Scientific	Investigated	Compound	Bibliography
name	Part		
A. altilis	Bud cover	AC-5-1, 1c	Patil <i>et al.</i> , 2002
		Cycloaltilisin 6, 8c	
		Cycloaltilisin 7, 7d	
	Leaves	1-(2,4-Dihydroxyphenyl)-3-	Wang et al., 2007
		[8-hydroxy-2-methyl-2-(4-	
		methyl-3-pentenyl)-2H-1-	
		benzopyran-5-yl]-1-	
		propanone, 2c	
		1-(2,4-Dihydroxyphenyl)-3-	
		{4-hydroxy-6,6,9-trimethyl-	
		6a,7,8,10a-atetrahydro-6H-	
		dibenzo[b,d]pyran-5-yl}-1-	
		propanone, 9c	
		2-Geranyl-2',3,4,4',-	
		tetrahydroxydihydrochalcon	
		e, 6c	

Scientific	Investigated	Compound	Bibliography
name	Part		
A.altilis	Leaves	1-(2,4-Dihydroxyphenyl)-3-	Wang et al., 2007
		[3,4-dihydro-3,8-dihydroxy-	
		2-methyl-2-(4-methyl-3-	
		pentenyl)-2H-1-benzopyran-	
		5-yl]-1-propanone, 3c	
		1-(2,4-Dihydroxyphenyl)-3-	
		[8-hydroxy-2-methyl-2-	
		(3,4-epoxy-4-methyl-1-	
		pentenyl)-2H-1-benzopyran-	
		5-yl]-1-propanone, 4c	
		1-(2,4-Dihydroxyphenyl)-3-	
		[8-hydroxy-2-methyl-2-(4-	
		hydrox-4-methyl-2-	
		pentenyl)-2H-1-benzopyran-	
		5-yl]-1-propanone, 5c	
		2-[6-Hydroxy-3,7-	
		dimetylocta-2(E),7-dienyl]-	
		2',3,4,4'-	
		tetrahydroxydihydrochalcon	
		e, 7c	
		2'-Geranyl-3',4',7-	
		trihydroxyflavanone, 8d	
		Cycloaltilisin 6, 8c	
A. chama	Roots	Artochamin A, 52d	Wang et al., 2004
		Artochamin B, 50d	
		Artochamin C, 25d	
		Artochamin D, 26d	

Scientific	Investigated	Compound	Bibliography
name	Part		
A. chama	Roots	Artochamin E, 36d	Wang et al., 2004
		Artocarpin, 18d	
		Cycloartocarpin A, 58d	
		Cudraflavone A, 51d	
		Artonin A, 48d	
		Artonin U, 14d	
		Cycloartobiloxanthone, 46d	
		Artonin E, 20d	
		3',4',5,7-Teterahydroxy-8-	
		(methylbut-2-enyl)flavone,	
		15d	
<i>A</i> .	Bark	Cyclochampedol, 55d	Achmad et al., 1996
champeden			
		Cycloeucalenol, 1g	
		Glutinol, 1h	
		Cycloartenone, 2g	
		24-Methyllenecycloartenone,	
		3g	
		β -Sitosterol, 4g	
	Heartwood	Artoindonesianin Q, 29d	Syah <i>et al.</i> , 2002
		Artoindonesianin R, 30d	
		Artoindonesianin S, 37d	
		Artoindonesianin T, 38d	
		Artoindonesianin U, 35d	Syah <i>et al.</i> , 2004
		Artoindonesianin V, 41d	
		5'-Hydroxycudraflavone A,	
		53d	

Scientific	Investigated	Compound	Bibliography
name	Part		
<i>A</i> .	Heartwood	Cyclocommunin, 62d	Syah <i>et al.</i> , 2004
champeden			
		Artonin B, 59d	
		Artoindonesianin A-2, 56d	Syah <i>et al.</i> , 2006
		Artoindonesianin A-3, 40d	
		Artonin B, 59d	
		Heterophyllin, 31d	
		Cudraflavone C, 19d	
		Artoindonesianin Q, 29d	
		Artoindonesianin R, 30d	
		Artoindonesianin T, 38d	
	Roots	Artoindonesianin A, 43d	Hakim et al., 1999
		Artoindonesianin B, 11d	
		Artonin A, 48d	
A.communis	Roots	Artocommunol CA, 16d	Chan <i>et al.</i> , 2003
		Artocommunol CB, 60d	
		Artocommunol CC, 61d	
		Artocommunol CD, 24d	
		Artocommunol CE, 17d	
		Cyclomorusin, 54d	
	Heartwood	3",3"-	Han et al., 2006
		Dimethylpyrano[3',4']2,4,	
		2'-trihydroxychalcone, 1b	
		Isobacachalcone, 2b	
		Morachalcone A, 3b	

Scientific	Investigate	Compound	Bibliography
name	d		
	Part		
A.communis	Heartwood	Gemichalcone B, 4b	Han <i>et al.</i> ,
			2006
		Gemichalcone C, 5b	
		Artocarpin, 18d	
		Cudraflavone C, 19d	
		Licoflavone C, 23d	
		(-)-Cycloartocarpin, 57d	
		(-)-Cudraflavone A, 51d	
		(2S)-Euchrenone a ₇ , 9d	
A.dadah	Bark	3- $(\gamma,\gamma$ -Dimethylallyl)resveratrol, 5f	Su et al., 2002
		5-(γ,γ-Dimethylallyl)oxyresvera-	
		trol, 6f	
		3-(2,3-Dihydroxy-3-methylbutyl)-	Su et al., 2002
		resveratrol, 4f	
		3-(γ , γ -Dimethylpropenyl)moracin	
		M, 3a	
		Oxyresveratrol, 1f	
		(+)-Epicatechin, 4d	
		Afzelechin-3-O-α-L-	
		rhamnopyranoside, 6d	
	Twigs	Dadahol A, 1e	Su et al., 2002
		Dadahol B, 2e	
		Oxyresveratrol, 1f	
		(+)-Epicatechin, 4d	
		Afzelechin-3-O-α-L-	
		rhamnopyranoside, 6d	

Scientific	Investigated	Compound	Bibliography
name	Part		
A.dadah	Twigs	Resveratrol, 3f	Su et al., 2002
		Steppogenin, 2d	
		Moracin M, 1a	Su et al., 2002
		Isogemichalcone B, 6b	
		Gemichalcone B, 5b	
		Norartocarpetin, 12d	
		Engelet, 3d	
A.elasticus	Root bark	Artelastoheterol, 33d	Ko et al., 2005
		Artelasticinol, 28d	
		Cycloartelastoxanthone,	
		45d	
		Artelastoxanthone, 39d	
		Cycloartelastoxanthediol,	
		47d	
		Artonin F, 49d	
		Cycloartobiloxanthone,	
		46d	
		Cyclomorusin, 54d	
A.fretessi	Bark+Roots	Artoindonesianin X, 6a	Soekamto et al., 2003
		Artoindonesianin Y, 5a	
		Mulberrin, 13d	
		Norartocarpetin, 12d	
		(±)-Catechin, 1d	
		(-)-Afzelechin-3-O-	Soekamto et al., 2003
		rhamnoside, 6d	
		Mulberrochromene, 21d	
		Artonin A, 48d	

Scientific	Investigated	Compound	Bibliography
name	Part		
A.fretessi	Bark+Roots	(-)-Afzelechin, 5d	Soekamto et al., 2003
А.	Bark	Artoindonesianin N, 2f	Hakim <i>et al.</i> , 2002
gomezianus			
		Artoindonesianin O, 2a	
		Oxyresveratrol, 1f	
А.	Roots	Lakoochin A, 4a	Puntumchai et al.,
lakoocha			2004
		Lakoochin B, 7a	
А.	Bark	Artoindonesianin P, 42d	Hakim <i>et al.</i> , 2002
lanceifolius			
		Artobiloxanthone, 44d	
		Cycloartobiloxanthone,	
		46d	
А.	Leaves	2',4'-Trihydroxy-3'-	Jayasinghe et al., 2004
nobilis		geranylchalcone, 7b	
		2',4',4-Trihydroxy-3'-[6-	
		hydroxy-3,7-dimethyl-	
		2(E),7-octadienyl]chal-	
		cone, 8b	
		2',4',4-Trihydroxy-3'-[2-	
		hydroxy-7-methyl-3-	
		methylene-6-	
		octaenyl]chalcone, 9b	
		2',3,4,4'-Tetrahydroxy-3'-	
		geanyloxychalcone, 10b	

Scientific	Investigated	Compound	Bibliography
name	Part		
А.	Leaves	2',3,4,4'-Tetrahydroxy-3'-	Jayasinghe et al., 2004
nobilis		[6-hydroxy-3,7-dimethyl-	
		2(E),7-octadienyl]chal-	
		cone, 11b	
	Root bark	Artobiloxanthone, 44d	Jayasinghe et al., 2008
		Artonin E, 20d	
		Cycloartobiloxanthone,	
		46d	
		Artonin E 2'-methylether,	
		22d	
		Isortonin E 2'-methylether,	
		34d	
		Dihydroisoartonin E 2'-	
		methylether, 32d	
		Artonin V 2'-methylether,	
		27d	
<i>A</i> .	Leaves	Sepicanin A, 10d	Radwan <i>et a</i> l., 2009
sepicanus			
		Afzelechin-3-O-α-L-	
		rhamnopyranoside, 6d	

Structure

a: Benzofuran

1a: Moracin M

2a: Artoindonesianin O

3a: $3-(\gamma,\gamma-Dimethylpropenyl)moracin M$

4a: Lakoochin A

5a: Artoindonesianin Y

6a: Artoindonesianin X

7a: Lakochin B

b: Chalcone

1b: 3",3"-Dimethylpyrano[3',4']-2, 4, 2'-trihydroxychalcone

2b: R = H: Isobacachalcone3b: R = OH: Morachalcone A

4b: R₁ = R₂ = H; Gemichalcone B
5b: R₁ = OH, R₂ = OCH₃; Gemichalcone C

6b: Isogemichalcone B

7b: 2',4',4-Trihydroxy-3'geranylchalcone

8b: 2',4',4-Trihydroxy-3'-[6hydroxy-3,7-dimethyl-2(*E*),7octadienyl]chalcone

HO

OH

OH.

9b: 2',4',4-Trihydroxy-3'-[2hydroxy-7-methyl-3-methylene-6-octaenyl]chalcone

10b: 2',3,4,4'-Tetrahydroxy-3'geanyloxychalcone

он о

11b: 2',3,4,4'-Tetrahydroxy-3'-[6-hydroxy-3,7-dimethyl-2(*E*),7-octadienyl]chalcone

c : Dihydrochalcone

2c: 1-(2,4-Dihydroxyphenyl)-3-[8hydroxy-2-methyl-2-(4-methyl-3pentenyl)-2H-1-benzopyran-5-yl]-1propanone

3c: 1-(2,4-Dihydroxyphenyl)-3-[3,4dihydro-3,8-dihydroxy-2-methyl-2-(4methyl-3-pentenyl)-2H-1-benzopyran-5yl]-1-propanone

4c: 1-(2,4-Dihydroxyphenyl)-3-[8hydroxy-2-methyl-2-(3,4-epoxy-4methyl-1-pentenyl)-2H-1-benzopyran-5yl]-1-propanone

5c:1-(2,4-Dihydroxyphenyl)-3-[8hydroxy-2-methyl-2-(4-hydrox-4methyl-2-pentenyl)-2H-1-benzopyran-5yl]-1-propanone

6c: 2-Geranyl-2',3,4,4',-tetrahydroxydihydrochalcone

7c: 2-[6-Hydroxy-3,7-dimetylocta-2(E),7-dienyl]-2',3,4,4'tetrahydroxydihydrochalcone

8c: Cycloaltilisin 6

9c: 1-(2,4-Dihydroxyphenyl)-3-{4hydroxy-6,6,9-trimethyl-6a,7,8,10atetrahydro-6H-dibenzo[*b*,*d*]pyran-5-yl}-1-propanone,

d: Flavonoids

1d: (±)-Catachin

2d: Steppogenin

4d: (+)-Epicatechin

5d: (-)-Afzelechin

6d: Afzelechin-3-O-*α*-L-rhamnopyranoside

7d: Cycloaltilisin 7

8d: 2'-Geranyl-3',4',7trihydroxyflavanone

9d: (2S)-Euchrenone a₇

10d: Sepicanin A

11d: Artoindonesianin B

12d: Norartocarpetin

13d: Mulberrin

14d: R₁ = H, R₂ =CH₃; Artonin U **15d**: R₁ = OH, R₂ =H; 3',4',5,7-Teterahydroxy-8-(methylbut-2enyl)flavones

16d: Artocommunol CA

17d: Artocommunol CE

18d: R = CH₃: Artocarpin
19d: R = H: Cudraflavone C

20d: R₁ =R₂ = OH; Artonin E
21d: R₁ =OH, R₂ = H; Mulberro-chromene

22d: $R_1 = OCH_3$, $R_2 = OH$;

Artonin E 2'-methylether

23d: Licoflavone C

24d: Artocommunol CD

HO

ſ

он о

26d: Artochamin D

HO

.OCH₃

ОH

25d: Artochamin C

27d: Artonin V 2'-methylether

29d: $R_1 = R_3 = CH_3$, $R_2 = H$: Artoindonesianin Q **30d**: $R_1 = H$, $R_2 = R_3 = CH_3$: Artoindonesianin R

31d: Hetrophyllin

32d: Dihydroisoartonin E 2'methylether

33d: Artelastoheterol

35d: Artoindonesianin U

34d: Isoartonin E 2'-methylether

36d: Artochamin E

37d: $R_1 = R_2 = CH_3$: Artoindonesianin S **38d**: $R_1 = H$, $R_2 = CH_3$: Artoindonesianin T

39d: Artelastoxanthone

41d: Artoindonesianin V

43d: Artoindonesianin A

40d: Artoindonesianin A-3

42d: Artoindonesianin P

44d: Artibiloxanthone

45d: Cycloartelastoxanthone

46d: Cycloartobiloxanthone

47d: Cycloartelastoxanthendiol

48d: Artonin A

50d: Artonin B

52d: Artochamin A

54d: Cyclomorusin

49d: Artonin F

51d: (-)-Cudraflavone A

53d: 5'-Hydroxycudraflavone A

55d: R = H; Cyclochampedol **56d**: R =CH₃; Artoindonesianin

57d: R₁ =H, R₂ = CH₃; (-)-Cycloartocarpin **58d**: R₁ = CH₃, R₂ = H; Cycloartocarpin A **59d**: R₁ = R₂ = CH₃; Artonin B

60d: Artocommunol CB

61d: Artocommunol CC

62d: Cyclocommunin

e: Neolignans

2f: Artoindonesianin N

3f: Resveratrol

4f: 3-(2,3-Dihydroxy-3methylbutyl)resveratrol

5f: R = H; 3-(γ , γ -Dimethylallyl)resveratrol

6f: R= OH; 5-(γ , γ -Dimethylallyl)oxyresveratrol

g: Steroids

1g: Cycloeucalenol

3g: 24-Methylenecycloartenone

h: Triterpenoids

4g: β-Sitosterol

1h: Glutinol

3.1.3 The objectives

The goals of this work were to investigate the chemical constituents from the roots of *Artocarpus integer* and to evaluate the antibacterial and cytotoxic activities of the isolated compounds.

CHAPTER 3.2 EXPERIMENTAL

3.2.1 Instruments and Chemicals

Melting point was recorded in °C on an Electrothermal 9100 melting point apparatus. Ultraviolet (UV) absorption spectra were recorded using a SPECORD S100 spectrophotometer (Analytikjena) and principle bands (λ_{max}) were recorded as wavelengths (nm) and log ε in methanol solution. The infrared spectra were recoded using FTS 165 FT-IR Perkin Elmer spectrophotometer. Nuclear Magnetic resonance spectra were recorded using Bruker Avance 300 MHz Bruker ShieldTM. Spectra were recorded in deuterochloroform, FTNMR Ultra deuteroacetone and deuteromethanol and were recorded as δ value in ppm downfield from TMS (Internal standard δ 0.00). Optical rotation was measured in MeOH solution at the sodium D line (590 nm) on an AUTOPOL^R II automatic polarimeter. The EI-MS and HREIMS mass spectra were obtained from a Micromass LCT mass spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 F₂₅₄ (Merck) and silica gel 100, respectively. Precoated plates of silica gel 60 GF₂₅₄ were used for analytical purposes.

3.2.2 Plant Material

The roots of *A.integer* were collected from Sa Toon Province, Thailand. The plant was identified by Prof. Puangpen Sirirugsa.

3.2.3 Extraction and investigation of the crude dichloromethane extract from the roots of *A. integer*

Air-dried roots (3.6 kg) were chopped and extracted with dichloromethane at room temperature for three days. Evaporation of the solvent under reduced pressure furnished a crude dichloromethane extract (25.2 g).

Scheme 4 Extraction and isolation of compounds AI1-AI4 from the root of A.integer

The crude dichloromethane extract was subjected to quick column chromatography (QCC) on silica gel with solvent mixtures of increasing polarity [hexane to EtOAc] to yield seven fractions (A-G). Fraction C was purified by QCC using a gradient of EtOAc-hexane to afford five subfractions (A₁-A₅). Fractions A₃ was further purified by QCC using a gradient of EtOAc-hexane as a mobile phase to give **AI4** (4.4 mg). Fraction D was separated by QCC with a gradient system of increasing EtOAc in hexane to afford seven subfractions (D₁-D₇). Subfraction D₃ was further purified by QCC using a gradient of EtOAc-hexane to give **AI1** (7.0 mg). Fraction F was subjected to repeated column chromatography over silica gel to afford **AI2** (30.6 mg) and **AI3** (8.1 mg). Compound AI1: yellow powder; mp 234-236 °C; UV (MeOH) λ_{max} (log ε) 296 (2.93), 386 (2.78) nm; IR (KBr) ν_{max} 3368, 1676, 1602, 1515 cm⁻¹; ¹H and ¹³C NMR (CDCl₃) spectra see **Table 58**.

Compound AI2: yellow powder; mp 190-192 °C; UV (MeOH) λ_{max} (log ε) 296 (3.88), 332 (3.79) nm; IR (KBr) ν_{max} 3234, 1654, 1611, 1506, 1354 cm⁻¹; ¹H and ¹³C NMR (CDCl₃) spectra see **Table 60**.

Compound AI3: yellow solid; mp 238-239 °C; UV (MeOH) λ_{max} (log ε) 290 (3.75), 377 (4.15) nm; IR (KBr) ν_{max} 3449, 1648, 1596, 1492, 1440, 1367 cm⁻¹; ¹H and ¹³C NMR (CDCl₃) spectra see **Table 62**.

Compound AI4: yellow-brown viscous oil; UV (MeOH) λ_{max} (log ε) 290 (3.59) nm; IR (KBr) ν_{max} 3200, 1603, 1476, 1148 cm⁻¹; ¹H and ¹³C NMR (CDCl₃) spectra see **Table 64**.

3.2.4 BIOASSAY

3.2.4.1 Antibacteria assay

The isolated compounds from the roots of A. integer were tested against both Gram-positive and Gram-negative bacteria: *Bacillus subtilis*, *Staphylococcus aureus* TISTR517, *, Enterococcus faecalis* TISTR459, Methicillinresistant *Staphylococcus aureus* (MRSA) ATCC43300, Vancomycin-Resistant *Enterococcus faecalis* (VRE) ATCC 51299, *Streptococcus faecalis*, *Pseudomonas aeruginosa*, *Shigella sonei* and *Salmonella typhi*. The microorganisms were obtained from the culture collections, Department of Industrial Biotechnology and Department of Pharmacognosy and Botany, PSU, except for the TISTR and ATCC strains, which were obtained from Microbial Research Center (MIRCEN), Bangkok, Thailand. The antibacterial assay employed was the same as described in Boonsri *et al.* (Boonsri *et al.*, 2006). Vancomycin, which was used as a standard, showed antibacterial activity of 0.078 μ g/mL.

3.2.4.2 Antifungal assay

Candida albicans was obtained from Department of Pharmacognosy and Botany, PSU. The antifungal amployed was the same as described in Boonsri et al. (Boonsri *et al.*, 2006). Amphotericin B was used as a standard.

CHAPTER 3.3 RESULTS AND DISCUSSION

3.3.1 Structural determination of compounds isolated from the roots of *A*. *integer*

The crude hexane extract from the roots of *A. integer* was subjected to a succession of chromatographic procedures, including silica gel column chromatography and preparative TLC to afford four known compounds, **AI1-AI4**. All structures were elucidated using 1D and 2D NMR spectroscopic data and comparison with those reported in the literatures.

3.3.1.1 CompoundAI1

AI1 was isolated as a yellow powder. The IR spectrum (Figure 117) of AI1 exhibited strong absorption bands due to hydroxyl (3368 cm⁻¹) and a conjugated carbonyl groups (1676 cm⁻¹). The UV absorption bands (296 and 386 nm) (Figure 116) were typical of a flavone chromophore (Syah et al., 2004). The ¹H NMR spectrum of AI1 (Table 58, Figure 118) contained resonances for one chelated [δ 13.20 (1H, s, 5-OH)] and a free hydroxyl groups [δ 6.61 (1H, s, 3'-OH]. A ¹H NMR signal of a 1,2,4,5,6-pentasubstituted benzene ring resonating at δ 6.26 (1H, s).was assigned to H-3' because of its HMBC correlations to C-1' (δ 103.4), C-2' (δ 149.8), C-4' (δ 145.1), C-5' (δ 138.0). The signals of a geranyl moiety [δ 1.48 (3H, s, H-27), 1.55 (3H, s, H-28), 1.74 (3H, s, H-22), 1.95 (2H, m, H-23), 2.06 (2H, m, H-24), 3.37 (2H, m, H-19), 4.99 (1H, m, H-25) and 5.00 (1H, m, H-20)] and a dimethylchromene ring [δ 6.67 (1H, d, J = 10.0 Hz, H-14), 5.56 (1H, d, J = 10.0 Hz, H-14), 1.40 (6H, s, H-17 and H-18)] were also observed. The geranyl group was placed at C-8 due to HMBC correlations of a benzylic allylic methylene protons (δ 3.37, H-19) of the geranyl group which showed cross peak with C-7 (δ 156.3), C-8 (δ 106.9) and C-8a (δ 153.3). The dimethylchromene group was connected to ring A at C-6 and C-7 as evidenced by HMBC correlations of the vinylic proton at δ 6.67 (H-14) with C-5 (δ 154.6) and C-7 (δ 156.3). Furthermore, signals of an isoprenyl group which comprised of protons resonating at δ 1.28 (3H, s, H-12), 1.60 (3H, s, H-13), 3.37 (1H, m, H-10), 2.37 (1H, t, J = 15.2 Hz, H-9) and 3.19 (1H, dd, J = 15.2, 7.2 Hz, H-9)

were displayed. In the HMBC spectrum, the methylene signal at δ 2.37 (1H, H-9) and 3.19 (1H, H-9) showed cross peaks with carbonyl carbon at δ 180.8 (C-4), oxygenated aromatic carbons at δ 159.9 (C-2) and quaternary aromatic carbon δ 131.2 (C-6') and methyl signals at δ 1.28 (3H, H-12) and 1.60 (3H, H-13) with methine carbon at δ 46.3 (C-10), indicating that a prenyl group was connected to the C-3 position and cyclized to form a cyclohexene ring at C-6' of ring B. In addition, the *sp*³ oxyquatery carbon at δ 94.9 of a prenyl group was observed, whose downfield signal suggested that a connection to oxygen atom and the dihydrobenzofuran was formed. Thus, **AI1** was identified as artoindonesianin A (Hakim *et al.*, 1999).

Selected HMBC Corelation of AI1

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	δ _C	DEPT	НМВС
2		159.9	С	
3		111.9	С	
4		180.8	С	
4a		104.6	С	
5		154.6	С	
6		105.7	С	
7		156.3	С	
8		106.9	С	
8a		153.3	С	
9	3.19 (<i>dd</i> , 15.2, 7.2)	20.0	CH_2	2, 3, 4, 10, 11, 6'
	2.37 (<i>t</i> , 15.2)			
10	3.37 (<i>m</i>)	46.3	СН	
11		94.9	С	
12	1.28 (s)	22.7	CH ₃	10, 11, 13
13	1.60 (<i>s</i>)	28.1	CH ₃	10, 11, 12
14	6.67 (<i>d</i> , 10.0)	115.9	СН	5, 7, 16
15	5.56 (<i>d</i> , 10.0)	128.0	СН	6, 16
16		77.9		
17	1.40 (<i>s</i>)	28.2	CH_3	15, 16, 18
18	1.40 (s)	28.2	CH ₃	15, 16, 17
19	3.37 (<i>m</i>)	21.3	CH_2	7, 8, 8a, 20, 21
20	5.00 (<i>m</i>)	121.0	СН	19, 22, 23
21		138.0	С	
22	1.74 (<i>s</i>)	16.6	CH_3	20, 21, 23
23	1.95 (<i>m</i>)	39.5	CH ₂	20, 21, 24
24	2.06 (<i>m</i>)	26.4	CH ₂	23
25	4.99 (<i>m</i>)	124.2	СН	23
26		131.5	C	

Table 58 ¹H, ¹³C NMR, DEPT and HMBC spectral data of AI1

Table 58 (Continued)

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
27	1.48 (s)	17.7	CH ₃	25, 26
28	1.55 (<i>s</i>)	25.6	CH ₃	25, 26
1′		103.4	С	
2'		149.8	С	
3'	6.26 (<i>s</i>)	104.6	СН	1', 2',4', 5'
4′		145.1	С	
5'		138.0	С	
6′		131.2	С	
5-OH	13.20 (s)			4a, 5,
2′-ОН	6.61 (<i>s</i>)			2', 3'

Table 59 Comparison of ¹H and ¹³C NMR spectral data of AI1 and artoindonesianin A

	AI1		AI1 Artoindonesianin A		n A ^{<i>a</i>}
position	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{\rm C}$	
2		159.9		160.7	
3		111.9		110.9	
4		180.8		180.2	
4a		104.6		103.8	
5		154.6		153.5	
6		105.7		104.5	
7		156.3		155.6	
8		106.9		107.0	
8a		153.3		152.9	

Table 59 (Continued)

	AI1		Artoindonesianin A ^{<i>a</i>}	
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$
9	3.19 (<i>dd</i> , 15.2, 7.2)	20.0	3.10 (<i>dd</i> , 15.2, 7.1)	19.5
	2.37 (<i>t</i> , 15.2)		2.27 (<i>t</i> , 15.2)	
10	3.37 (<i>m</i>)	46.3	3.34 (<i>dd</i> , 15.2, 7.1)	46.2
11		94.9		92.4
12	1.28 (s)	22.7	1.23 (s)	22.6
13	1.60 (s)	28.1	1.58 (s)	27.9
14	6.67 (<i>d</i> , 10.0)	115.9	6.57 (<i>d</i> , 10.0)	115.1
15	5.56 (<i>d</i> , 10.0)	128.0	5.74 (<i>d</i> , 10.0)	128.5
16		77.9		77.5
17	1.40 (s)	28.2	1.39 (s)	27.8
18	1.40 (s)	28.2	1.38 (s)	27.7
19	3.37 (<i>m</i>)	21.3	3.55 (<i>dd</i> , 13.8, 8.0)	20.9
			3.35 (partly obscured)	
20	5.00 (<i>m</i>)	121.0	5.26 (<i>t</i> , 7.0)	122.3
21		138.0		134.1
22	1.74 (s)	16.6	1.79 (s)	16.1
23	1.95 (<i>m</i>)	39.5	1.97 (<i>m</i>)	39.3
24	2.06 (<i>m</i>)	26.4	1.88 (<i>m</i>)	26.1
25	4.99 (<i>m</i>)	124.2	4.98 (<i>t</i> , 7.3)	124.1
26		131.5		130.6
27	1.55 (s)	25.6	1.53 (s)	25.4
28	1.48 (s)	17.7	1.45 (s)	17.5
1′		103.4		103.1
2'		149.8		151.1
3'	6.26 (<i>s</i>)	104.6	6.28 (s)	104.0
4′		145.1		140.5
5'		138.0		136.2

Table 59 (Continued)

	AI1		Artoindonesianin A ^{<i>a</i>}	
position	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$
6'		131.2		132.3
5-OH	13.2 (s)		13.7 (s)	
2′-ОН	6.61 (<i>s</i>)		9.83 (s)	

^{*a*} recorded in DMSO- d_6

3.3.1.2 Compound AI2

AI2 was isolated as yellow powder. The UV (Figure 120) and IR (Figure 121) spectra were similar to those of AI1. The ¹H NMR (Table 60, Figure 122) of AI2 disclosed the presence of *meta*-coupled aromatic proton signals at $\delta 6.36$ and 6.35 (d, J = 2.4 Hz) for the proton H-6 and H-8, respectively, two singlets at δ 6.57 and 6.89 were assigned for H-3' and H-6', respectively, of ring B of a flavones which was 1,2,4,5-tetrasubstituted benzene ring. A down field signal at δ 13.20 indicated a chelated hydroxyl group. A set of signals was assigned to an isoprenyl side chain [δ 1.67 (s), 1.52 (s), 3.15 (d, 6.8 Hz) and 5.19 (m)]. In addition, two singlets at δ 3.84 and 3.94 were attributed to two methoxyl groups at C-7 and C-4, respectively due to the HMBC correlations of the former with the carbon at δ 165.5 (C-7) and the latter with the carbon at δ 149.4 (C-4'). Two broad singlets resonating at δ 5.30 and 5.32 were assigned for the additional hydroxyl groups in ring B. The HMBC correlations also showed connectivities between methylene protons at $\delta 3.15$ (H₂-9) and the carbons at δ 157.8 (C-2), 121.4 (C-3) and 182.1 (C-4), confirming the position of the isoprenyl group at C-3. Accordingly, AI2 was characterized as Artoindonesianin Q (Syah et al., 2002).

Selected HMBC correlations of AI2

position	$\delta_{\rm H}$ (mult., $J_{\rm Hz}$)	$\delta_{ m C}$	DEPT	HMBC
2		157.8	C	
3		121.4	C	
4		182.1	С	
4a		105.0	С	
5		162.1	C	
6	6.36 (<i>d</i> , 2.4)	98.1	СН	4a, 5, 7, 8
7		165.5	C	
8	6.35 (<i>d</i> , 2.4)	92.0	СН	4a, 6, 7, 8a
8a		157.8	C	
9	3.15 (<i>d</i> , 6.8)	24.4	CH ₂	2, 3, 4, 10, 11
10	5.19 (<i>br m</i>)	120.6	СН	12, 13
11		133.8	C	
12	1.67 (<i>s</i>)	25.7	CH ₂	10, 11, 13
13	1.52 <i>(s)</i>	17.7	CH ₃	10, 11, 12
1'		111.3	C	
2'		147.6	С	
3'	6.57 (<i>s</i>)	100.4	СН	1', 2',4', 5'
4′		149.4	С	
5'		139.5	C	
6'	6.89 (s)	114.8	С	2',4', 5'
5-OH	12.80 (s)			4a, 5, 6
7-OMe	3.84 (s)	55.8	CH ₃	7
2′-ОН	5.32 (s)			3'
4'-OMe	3.94 (s)	56.1	CH ₃	4'
5'-OH	5.30 (s)			4', 5', 6'

Table 60¹H, ¹³C NMR, DEPT and HMBC spectral data of AI2

	AI2		Artoindonesiani	n Q ^{<i>a</i>}
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	$\delta_{\rm H} (mult., J_{\rm Hz})$	$\delta_{ m C}$
2		157.8		162.0
3		121.4		121.9
4		182.1		183.1
4a		105.0		105.8
5		162.1		162.9
6	6.36 (<i>d</i> , 2.4)	98.1	6.29 (<i>d</i> , 2.3)	98.3
7		165.5		166.4
8	6.35 (<i>d</i> , 2.4)	92.0	6.45 (<i>d</i> , 2.3)	92.4
8a		157.8		159.1
9	3.15 (<i>d</i> , 6.8)	24.4	3.13 (<i>br d</i> , 7.1)	24.6
10	5.19 (<i>br m</i>)	120.6	5.13 (<i>t sept</i> , 7.1, 1.4)	122.4
11		133.8		132.2
12	1.67 (<i>s</i>)	25.7	1.57 (s)	25.8
13	1.52 (s)	17.7	1.45 (s)	17.6
1′		111.3		112.2
2'		147.6		149.2
3'	6.57 (<i>s</i>)	100.4	6.67 (s)	101.4
4′		149.4		151.1
5'		139.5		140.5
6'	6.89 (<i>s</i>)	114.8	6.84 (<i>s</i>)	116.5
5 - OH	12.80 (s)		13.10 (<i>s</i>)	
7-OMe	3.84 (s)	55.8	3.88 (s)	56.3
2′-OH	5.32 (s)		8.29 (s)	
4'-OMe	3.94 (s)	56.1	3.87 (<i>s</i>)	56.2
5'-OH	5.30 (s)		7.41 (s)	

Table 61 Comparison of 1 H and 13 C NMR spectral data of AI2 and Artoindonesianin Q

^{*a*} recorded in acetone- d_6

3.3.1.3 Compound AI3

AI3 was isolated as a yellow solid. The UV (Figure 124) and IR (Figure 125) spectra were similar to those of AI2. The NMR (Table 62, Figures 16 and 127) data were comparable to those of AI2. The differences were shown in ring B and the isoprenyl side chain of AI2. In ring B of AI3, only a siglet aromatic proton was shown at δ 6.47 (H-3') corresponding to 1,2,4,5,6-pentasubstituted benzene instead of two singlet aromatic protons H-3' and H-6' of AI2. An isoprenyl group in AI2 was replaced by the set of signals at $\delta 1.82$ (s), 2.55 (dd, J = 16.0, 6.8 Hz), 3.41 (dd, J = 16.0, 1.2 Hz), 4.00 (br d, J = 6.8 Hz), 4.30 (br d, J = 1.2 Hz) and 4.71 (br d, J = 1.2 Hz)= 1.2 Hz), assignable to a $-CH_2-CH-C(CH_3)=CH_2$ in AI3. ³J HMBC correlation between a methine proton at δ 4.00 (H-10) and C-1' (105.1), C-5' (136.4) and C-6' (126.0) of ring B established their fusion at C-10 and C-6' to form dihydrobenzoxanthone-type flavones. Therefore, AI3 was identified as Artoindonesianin S (Syah et al., 2002).

Selected HMBC correlations of AI3

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
2		159.7	С	
3		111.8	С	
4		180.2	С	
4a		105.0	С	
5		162.3	С	
6	6.39 (<i>d</i> , 2.4)	98.2	СН	4a, 5, 7, 8
7		165.1	С	
8	6.38 (<i>d</i> , 2.4)	92.2	СН	4a, 6, 7, 8a
8a		155.7	С	
9	2.55 (<i>dd</i> , 16.0, 6.8)	21.7	CH ₂	2, 3, 4, 10, 11, 6'
	3.41 (<i>dd</i> , 16.0, 1.2)			
10	4.00 (<i>br d</i> , 6.8)	36.5	СН	3, 9, 11, 12, 1', 5', 6'
11		144.4	С	
12	4.30 (<i>br d</i> , 1.2)	111.7	CH_2	10, 11, 13
	4.71 (<i>br d</i> , 1.2)			
13	1.82 (s)	21.7	CH ₃	10, 11, 12
1′		105.1	С	
2'		150.0	С	
3'	6.47 (<i>s</i>)	99.1	СН	1', 2', 5'
4′		150.8	С	
5'		136.4	С	
6'		126.0	С	
5-ОН	13.0 (s)			4a, 5, 6
7-OMe	3.87 (s)	55.9	CH ₃	7
2′-ОН	7.66 (s)			1', 2', 3'
4'-OMe	3.95 (s)	56.2	CH ₃	4'
5′-OH	5.38 (s)			4', 5', 6'

Table 62 ¹H, ¹³C NMR, DEPT and HMBC spectral data of AI3

	AI3		Artoindonesian	in S ^{<i>a</i>}
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$
2		159.7		161.4
3		111.8		112.1
4		180.2		181.0
4a		105.0		105.5
5		162.3		162.8
6	6.39 (<i>d</i> , 2.4)	98.2	6.30 (<i>d</i> , 2.3)	98.6
7		165.1		166.0
8	6.38 (<i>d</i> , 2.4)	92.2	6.69 (<i>d</i> , 2.3)	93.1
8a		155.7		157.5
9	2.55 (<i>dd</i> , 16.0, 6.8)	21.7	2.45 (<i>dd</i> , 16.0, 6.6)	22.2
	3.41 (<i>dd</i> , 16.0, 1.2)		3.40 (<i>dd</i> , 16.0, 1.7)	
10	4.00 (<i>br d</i> , 6.8)	36.5	4.17 (<i>br d</i> , 6.8)	37.6
11		144.4		145.3
12	4.30 (<i>br d</i> , 1.2)	111.7	4.27 (<i>br s</i>)	111.7
	4.71 (<i>br d</i> , 1.2)		4.64 (<i>br s</i>)	
13	1.82 (s)	21.7	1.77 (<i>br m</i>)	21.9
1′		105.1		106.8
2'		150.0		151.0
3'	6.47 (<i>s</i>)	99.1	6.56 (<i>s</i>)	100.5
4'		150.8		152.6
5'		136.4		137.6
6'		126.0		127.9
5-OH	13.00 (<i>s</i>)		13.18 (s)	
7-OMe	3.87 (s)	55.9	3.90 (s)	56.3
2'-OH	7.66 (<i>s</i>)		7.47 (s)	

Table 63 Comparison of ¹H and ¹³C NMR spectral data of AI3 and Artoindonesianin S

Table 63 (Continued)

	AI3		Artoindonesianin S ^{<i>a</i>}	
position	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$	δ_{H} (mult., J_{Hz})	$\delta_{ m C}$
4'-OMe	3.95 (s)	56.2	3.91 (s)	56.3
5'-OH	5.38 (s)		8.20 (<i>s</i>)	

^{*a*} recorded in ^{*a*} recorded in acetone- d_6

3.3.1.4 Compound AI4

AI4 was isolated as yellow-brown viscous oil. The ¹H NMR spectrum (**Table 64, Figures 130** and **131**) showed the presence of a *singlet* of two methyls at δ 1.20 (6H, *s*). Two terminal olefinic protons resonated as *doublet of doublet* at δ 4.97 (1H, *dd*, *J* = 10.4, 1.2 Hz) and 5.01 (1H, *dd*, *J* = 17.6, 1.2 Hz) and an olefinic proton as *doublet of doublet* at δ 5.90 (1H, *dd*, *J* = 17.6, 10.4 Hz) could be assigned to an ABC pattern (-CH=CH₂). Two *doublets* of two olefinic methine protons resonating at δ 6.06 and 6.26 (each 1H, *d*, *J* = 16.4 Hz) was assigned to a trans double bond. Two *doublets* in a AA'BB' pattern resonating at δ 6.77 (2H, *d*, *J* = 8.4 Hz) and 7.25 (2H, *d*, *J* = 8.4 Hz), were assigned to a *p*-disubstituted benzene ring. The singlet at δ 4.82 (1H, *br s*) could be assigned to a phenolic hydroxyl group which was placed at C-4 because of its HMBC correlations to C-3 (δ 115.4), C-4 (δ 154.6) and C-5 (δ 115.4). Accordingly, **AI4** was characterized as corylifolin (Sun *et al.*, 1998).

Selected HMBC correlations of AI4

position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	DEPT	НМВС
1		130.8	С	
2	7.25 (<i>d</i> , 8.4)	127.4	СН	4, 6, 7
3	6.77 (<i>d</i> , 8.4)	115.4	СН	1, 4, 5
4		154.6	С	
5	6.77 (<i>d</i> , 8.4)	115.4	СН	1, 4, 5
6	7.25 (<i>d</i> , 8.4)	127.4	СН	4, 6, 7
7	6.26 (<i>d</i> , 16.4)	125.6	СН	2, 6, 8, 9
8	6.06 (<i>d</i> , 16.4)	136.9	СН	1,7, 9, 12, 13
9		39.3	С	
10	5.90 (<i>d</i> , 17.6, 10.4)	147.1	СН	8, 9, 12, 13
11	4.97 (<i>dd</i> , 10.8, 1.2)	110.8	CH_2	9, 10
	5.01 (<i>dd</i> , 17.6, 1.2)			
12	1.20 (s)	27.0	CH ₃	8, 9, 10
13	1.20 (s)	27.0	CH ₃	8, 9, 10
4-OH	4.82 (s)			3, 4, 5

Table 64¹H, ¹³C NMR, DEPT and HMBC spectral data of AI4

	AI4		corylifolin	а
position	$\delta_{ m H}$ (mult., $J_{ m Hz}$)	$\delta_{ m C}$	δ_{H} (<i>mult.</i> , J_{Hz})	$\delta_{ m C}$
1		130.8		131.8
2	7.25 (<i>d</i> , 8.4)	127.4	7.23 (<i>d</i> , 8.6)	128.0
3	6.77 (<i>d</i> , 8.4)	115.4	6.76 (<i>d</i> , 8.6)	115.8
4		154.6		153.1
5	6.77 (<i>d</i> , 8.4)	115.4	6.76 (<i>d</i> , 8.6)	115.8
6	7.25 (<i>d</i> , 8.4)	127.4	7.23 (<i>d</i> , 8.6)	128.0
7	6.26 (<i>d</i> , 16.4)	125.6	6.27 (<i>d</i> , 16.3)	135.6
8	6.06 (<i>d</i> , 16.4)	136.9	6.08 (<i>d</i> , 16.3)	127.6
9		39.3		43.0
10	5.90 (<i>dd</i> , 17.6, 10.4)	147.1	5.90 (<i>dd</i> , 17.4, 10.7)	147.3
11	4.97 (dd, 10.8, 1.2)	110.8	5.00 (<i>m</i>)	111.9
	5.01 (<i>dd</i> , 17.6, 1.2)			
12	1.20 (s)	27.0	1.17 (s)	25.0
13	1.20 (s)	27.0	1.09 (s)	23.9
4- OH	4.82 (<i>s</i>)		9.65 (<i>br</i> s)	

Table 65 Comparison of ¹H and ¹³C NMR spectral data of AI4 and corylifolin

^{*a*} recorded in acetone- d_6

3.3.2 Biological activities of the isolated compounds from the roots of A.integer

The isolated compounds were evaluated for their antibacterial activity against both Gram-positive: *Bacillus subtilis*, *Staphylococcus aureus* and *Enterococcus faecalis* TISTR 459, Methicillin-Resistant *Staphylococcus aureus* (MRSA) ATCC 43300, Vancomycin-Resistant *Enterococcus faecalis* (VRE) ATCC 51299 and Gram-negative bacteria: *Salmonella typhi*, *Shigella sonei* and *Pseudomonas aeruginosa*. All compounds were also subjected to antifungal assay against *Candida albicans*. The results are summarized in **Table 66**. Only compound **AI2** exhibited strong activity against Methicillin-Resistant *Staphylococcus aureus* (MRSA).

	Antibacterial activity, MIC (µg/mL)								Antifungal
Compounds	Gram-positive bacteria					Gram-negative bacteria			activity,
									MIC (μ g/mL)
	В.	S.	Е.	MRSA	VRE	S.	S.	Р.	С.
	subtilis	aureus	faecalis			typhi	sonei	aeruginosa	albicans
AI1	>300	>300	>300	>300	>300	>300	>300	>300	>300
AI2	>300	75	>300	4.69	75	>300	>300	300	>300
AI3	37.5	300	300	75	150	>300	>300	>300	300
AI4	37.5	75	>300	37.5	75	>300	>300	>300	>300

Table 66 Antimicrobial activity of compounds isolated from the roots of A. integer

REFERENCES

- Achmad, S. A.; Hakim, E. H.; Julaiwaty, L. D.; Makmur, L.; Suyatno, N. A. 1996. A new prenylated flavone from *Artocarpus champeden*. J. Nat. Prod. 59, 878-879.
- Bauna, M. B. B.; Iqba, M.; Barus, T. F.; Al-Fatony, Z.; Sudrajat, H.; Khairi, S. 2009. Isolation and structural elucidation of new xanthone from root bark of *Cratoxylum sumatranum. Botany Research International* 2, 233-234.
- Bennett, G. J., Harrison, L. J., Sia, G.-L., Sim, K.-Y., 1993. Triterpenoids, tocotrienols and xanthones from the bark of *Cratoxylum cochinchinense*. *Phytochemistry* 32, 1245-1251.
- Boonnak, N. 2006. Chemical constituents from the barks of *Cratoxylum formosum* ssp. *pruniflorum*. Master of Science Thesis in Organic Chemistry, Prince of Songkla University, Songkhla, Thailand.
- Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Fun, H.-K.; Kanjana-Opas, A.; Chantrapromma, K. 2009. Anti-Pseudomonas aeruginosa Xanthones from the resin and green fruits of *Cratoxylum cochichinense*. *Tetrahedron* 65, 3003-3013.
- Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K.; Fun, H.-K. 2007. Quinonoids from the barks of *Cratoxylum formosum* ssp. *pruniflorum. Can. J. Chem.* 85, 341-345.
- Boonnak, N.; Karalai, C.; Chantrapromma, S.; Ponglimanont, C.; Fun, H.-K.; Kanjana-Opas, A.; Laphookhieo, S. 2006. Bioactive prenylated xanthones and anthraquinones from *Cratoxylum formosum* ssp. *pruniflorum. Tetrahedron* 62, 8850-8859.

- Boonsri, S.; Karalai, C.; Ponglimanont, C.; Kanjana-Opas, A.; Chantrapromma, K. 2006. Antibacterial and cytotoxic xanthones from the roots of *Cratoxylum formosum*. *Phytochemistry* 67, 723-727.
- Boonsri, S; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Kanjana-opas, A. 2008. Cytotoxic and antibacterial sesquiterpenes from *Thespesia populnea*. J. Nat. Prod. 71, 1173-1177.
- Botta, B.; Delle Monache, F.; Delle Monache, G.; Marini Bettolo, G. B.; Oguakwa,
 J. U. 1983. 3-Geranyloxy-6-methyl-1,8-dihydroxyanthraquinone and vismiones C, D and E from *Psorospermum febrifugum*. *Phytochemistry* 22, 539-542.
- Botta, B.; Delle Monache, G.; Delle Monache, F.; Marini Bettolo, G. B.; Menichini,
 F., 1986. Vismione H and prenylated xanthones from *Vismia guineensis*. *Phytochemistry* 25, 1217-1219.
- Chan, S. C.; Ko, H.-H.; Lin, C.-N. 2003. New prenylflavonoids from *Artocarpus* communis. J. Nat. Prod. 66, 427-430.
- Chang, C.-H.; Lin, C.-C.; Kawata, Y.; Hattori, M.; Namba, T. 1989. Prenylated xanthones from *Cudrania cochinchinensis*. *Phytochemistry* 28, 2823-2826.
- Datta, S. C.; Murti, V. V. S.; Sharma, N. N.; Seshadri, T. R. 1973. Glycosidic components of *Thespesia populnea* flowers. *Indian J. Chem* 11, 506-507.
- Datta, S. C.; Murti, V. V. S.; Seshadri, T. R. 1968. New components of the flowers of *Thespesia populnea*: (+)-Gossypol. *Curr. Sci* 37, 135.
- Goncalves, M. L. S.; Mors, W. B. 1981. Vismiaquinone, a Δ^1 -isopentenyl substituted anthraquinone from *Vismia reichardtiana*. *Phytochemistry* 20, 1947-1950.

- Goyal, M. M.; Rani, K. K. 1989. Antibacterial activity of the natural products from the leaves of *Thespesia populnea*. *Acta Ciencia Indica Chemistry* 15, 117-124.
- Goyal, M. M.; Rani, K. K. 1985. *Thespesia populnea* –a Rich source of β-sitosterol and lupeol. *Acta Ciencia Indica, Chem.* 11, 163-164.
- Goyal, M. M.; Rani, K. K. 1987. Chemicals components from the leaves of *Thespesia* populnea. Bangladesh Journal of Scientific and Industrial Research 22, 8-11.
- Han, A.-R.; Kang, Y.-J.; Windono, T.; Lee, S.K.; Seo, E.-K. 2006, Prenylated flavonoids from the heartwood of *Artocarpus communis* with inhibitory activity on lipopolysaccharide-induced nitric oxide production. *J. Nat. Prod.* 69, 719-721.
- Hakim, E. H.; Fahriyati, A.; Kau, M. S.; Achmad, S. A.; Makmur, L.; Ghisalberti,E.L.; Nomura, T. 1999. Artoindonesianins A and B, Two new prenylatedflavones from the root of *Artocarpus champeden*. J. Nat. Prod. 62, 613-615.
- Hakim, E. H.; Yurnawilis, A.; Aimi, N.; Kitajima, M.; Takayama, H. 2002. Artonin P, a new prenylated flavone with cytotoxic activity from *Artocarpus lanceifolius*. *Fitoterapia* 73, 668-673.
- Hakim, E. H.; Ulinnuha, U. Z.; Syah, Y. M.; Ghisalberti, E. L. 2002. Artoindonesianins N and O, new prenylated stilbene and prenylated arylbenzofuran derivatives from *Artocarpus ggomezianus*. *Fitoterapia* 73, 597-603.
- Iinuma, M.; Tosa, H.; Tanaka, T.; Yonemori, S. 1994. Two xanthones from root bark of *Calophyllum inophyllum*. *Phytochemistry* 35, 527-532.

- Ito, C.; Itoigawa, M.; Takakura, T.; Ruangrungsi, N.; Enjo, F.; Tokuda, H.; Nishino, H.; Furukawa, H. 2003. Chemical constituents of *Garcinia fusca*: Structure elucidation of eight new xanthones and their cancer chemopreventive activity. *J. Nat. Prod.* 66, 200-205.
- Jayasinghe, L.; Balasooriya, B. A. I. S.; Padmini, W. C.; Hara, N.; Fujimoto, Y. 2004. Geranyl chalcone derivatives with antifungal and radical scavenging properties from the leaves of *Artocarppus nobilis*. *Phytochemistry* 65, 1287-1290.
- Jayasinghe, U. L. B.; Samarakoon, T. B.; Kumarihamy, B. M. M.; Hara, N.; Fujimoto, Y. 2008. Four new prenylated flavonoids and xanthones from the root bark of *Artocarpus nobilis. Fitoterapia* 79, 37-41.
- Jin, S.; Wang, N.; Zhang, X.; Dai, Y.; Yao, X. 2009. A new xanthone from *Cratoxylum cochichinenese*. Zhongcaoyao 40, 341-344.
- Jin, S.-L.; Wang, N.-L.; Zhang, X.; Dai, Y.; Yao, X.-S. 2009. Two new xanthones from the stem of *Cratoxylum cochichinense*. J. Asian Nat. Prod. Res. 11, 322-325.
- Kasim, S. M.; Neelakantan, S.; Raman, P. V. 1975. Chemical components of Indian medicinal plants (*Thespesia populnea* wood and *calycopteris floribunda* flowers). *Curr. Sci.* 44, 888-889.
- Kim, J.-P.; Kim, W.-G.; Koshino, H.; Jung, J.; Yoo, I.-D. 1996. Sesquiterpene Onaphthoquinones from the root bark of Ulmus Davidiana. Phytochemistry 43, 425-430.
- Ko, H.-H.; Lu, Y.-H.; Yang, S.-Z.; Won, S.-J.; Lin, C.-N. 2005. Cytotoxic prenylflavonoids from Artocarpus elasticus. J. Nat. Prod. 68, 1692-1695.

- Kraus, G. A.; Jeo, I. 2006. Use of Allylic strain to enforce stereochemistry. Direct synthesis of 7,8-dihydroxycalamenene and mansonone C. Org. Lett. 8, 5315-5316.
- Laphookhieo, S.; Maneerat, W.; Buatip, T.; Syers, J.K. 2008. New xanthones from *Cratoxylum cochichinense. Can. J. Chem.* 86, 757-760.
- Laphookhieo, S.; Maneerat, W.; Koysomboon, S. 2009. Antimalarial and cytotoxic phenolic compounds from *Cratoxylum maingayi* and *Cratoxylum cochichinense*. *Molecules* 14, 1389-1395.
- Laphookhieo, S.; Syers, J. K.; Kiattansakul, R.; Chantrapromma, K. 2006. Cytotoxic and antimalarial prenylated xanthones from *Cratoxylum cochichinense*. *Chem. Pharm. Bull.* 54, 745-747.
- Letcher, R. M.; Shirley, I. M. 1992. *O*-Naphthoquinones from the heartwood of *Azanza garckeana*. *Phytochemistry* 31, 4171-4172.
- Lindgren, B. O.; Svahn, C. M. 1968. Extractives of elm wood. *Phytochemistry* 7, 1407-1408.
- Mahabusarakam, W.; Nuangnaowarat, W.; Taylor, W. C. 2006. Xanthones derivatives from *Cratoxylum cochichinense* roots. *Phytochemistry* 67, 470-474.
- Mahabusarakam, W.; Rattanaburi, S.; Phongpaichit, S.; Kanjana-Opas, A. 2008. Antibacterial and cytotoxic xanthones from *Cratoxylum cochichinense*. *Phytochemistry Letters* 1, 211-214.
- Milbrodt, M.; Konig, W. A.; Hausen, B. M. 1997. 7-Hydroxy-2,3,5,6-tetrahydro-3,6,9-trimethylnaptho[1,8-bc]pyran-4,8-dione from *Thespesia populnea*. *Phytochemistry* 45, 1523-1525.

- Meyers, A. I.; Willemsen, J. J. 1998. An Oxazoline approach to (S)-Gossypol. *Tetrahedron* 54, 10493-10511.
- Nagem, T.; De Oliveira, F. F. 1997. Xanthones and other constituents of Vismia parviflora. J. Braz. Chem. Soc. 8, 505-508.
- Neelakantan, S.; Rajagopalan, V.; Raman, P. V. 1983. Thespesone and thespone, two new mansones of heartwood of *Thespesia populnea* Sol. Ex Corr. (Fam. Malvaceae). *Indian J. Chem.*22B, 95-96.
- Neelakantam, K.; Rao, P. S.; Suryaprakasa, S. T. R. 1943. Chemical components of Indian tulip (*Thespesia populnea*) Flowers. *Indian Academy of Sciene, Section* A 17A, 26-31.
- Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.; taylor, P. B.; Votta, B. J.; Johnson, R. K. 2002. A new dimeric dihydrochalcone and a new prenyated flavone from the bud cover of *Artocarpus altilis*: potent inhibitors of cathepsin K. *J. Nat. Prod.* 65, 624-627.
- Phuwapraisirisan, P.; Udomchotphruet, S.; Surapinit, S.; Tip-Pyang, S. 2006. Antioxidant xanthones from *Cratoxylum cochinchinense*. Nat. Prod. Res. 20, 1332-1337.
- Puntmchai, A.; Kittakoop, P.; Gajviroongit, S.; Vimuttipong, S.; Likhitwitayawuid, K.; Thaebtaranonth, Y. 2004. Lakoochins A and B, new antimycobacterial stilbene derivatives from *Artocarpus lakoocha*. J. Nat. Prod. 67, 485-486.
- Puckhaber, L.S.; Stipanovic, R. D. 2004. Thespesenone and dehydrooxoperezenone-6-methyl ether, new sesquiterpene quinones from *Thespesia populnea*. J. Nat. Prod. 67, 1571-1573.

- Radwan, M. M.; Rodriguez-Guzman, R.; Manly, S. P.; Jacob, M.; Ross, S. A. 2009. Sepicanin A-A, new geranyl flavone from *Artocarpus sepicanus* with activity against Methicilin-Resistant Staphylococcus aureus (MRSA). *Phytochemistry* 2, 141-143.
- Reutrakul, V.; Chanakul, W.; Pohmkotr, M.; Jaipetch, T.; Yoosook, C.; Kasisit, J.; Napaswat, C.; Santisuk, T.; Prabpai, S.; Kongsaeree, P. 2006. Anti-HIV-1 constituents from leaves and twigs of *Cratoxylum aborescens*. *Planta Med*. 72, 1433-1435.
- Seo, E.-K.; Kim, N.-C.; Wani, M.C.; Wall, M. E.; Navarro, H. A.; Burgess, J. P.; Kawanishi, K.; Kardono, L. B. S.; Riswan, S.; Rose, W. C.; Fairchild, C. R.; Farnsworth, N. R.; Kinghorn, A. D. 2002. Cytotoxic prenylated xanthones and the unusual compounds anthraquinobenzoquinones from *Cratoxylum sumatranum. J. Nat. Prod.* 65, 299-305.
- Seshadri, T. R.; Sharma, N. N. 1975. Neutral Components of *Thespesia populnea* Flowers. *Curr.Sci.* 44, 109-110.
- Shirwaikar, A.; Srinivasan, K. K. 1996. New Flavonoids from the flowers of *Thespesia populnea*. J. Med. Aromat. Plants Sci. 18, 266-269.
- Silva, G. H.; Teles, H. L.; Zanardi, L. M.; Young, M. C. M.; Eberlin, M. N.; Hadad, R.; Pfenning, L. H.; Costo-Neto, C. M.; Castro-Gamboa, I.; Bolzani, V. S.; Araujo, A. R. 2006. Cadinane sesquiterpenenoids of *Phomopis cassia*, an endophytic fungus associated with *Cassia spectabilis* (Leguminosae). Phytochemistry 67, 1964-1969.
- Skehan , P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Keney, S.; Boyd, M.R. 1990. New colorimetric cytotoxicity assay for anticancer-drugs careening. *J. Natl. Cancer Inst.* 82, 1107-1112.

Smitinand, T. Thai Plant Name. Prachachon Publisher: Bangkok, 2001.

- Soekamto, N. H.; Achmad, S. A.; Ghisalberti, E. L.; Hakim, E. H.; Syah, Y. M. 2003. Artoindonesianins X and Y, Two isoprenylated 2-arylbenzofurans, from *Artocarpus fretessi* (Moraceae). *Phytochemistry* 64, 831-834.
- Srivastava, S. N.; Bhakuni, D. S.; Sharma, V. N. 1963. Chemical investigation of *Thespesia populnea. Indian J. Chem.*1, 451.
- Su, B.-N.; Cuendet, M.; Hawthorne, M. E.; Kardono, L. B. S.; Riswas, S.; Fong, H. S. S.; Mehta, R. G.; Pezzuto, J. M.; Kinghorn, A. D. 2002. Constituents of the bark and twigs of *Artocarpus dadah* with cyclooxygenase inhibitory activity. *J. Nat. Prod.* 65, 163-169.
- Sun, J. N.; Woo, S. H.; Cassady, J. M.; Snapka, R. M. 1998. DNA polymerase and topoisomerase II inhibitors from *Psoralea corylifolia*. J. Nat. Prod. 61, 362-366.
- Syah, Y. M.; Achmad, S. A.; Ghisalberti, E. L.; Hakim, E. H.; Mujahidin, D. 2004. Two new cytotoxic isoprenylated flavones, artoindonesianins U and V, from the heartwood of *Artocarpus champeden*. *Fitoterapia* 75, 134-140.
- Syah, Y. M.; Achmad, S. A.; Ghisalberti, E. L.; Hakim, E. H.; Makmur, L.; Mujahidin, D. 2002. Artoindonesianins Q-T, four isoprenylated flavones from *Artocarpus champeden* Spreng. (Moraceae). *Phytochemistry* 61, 949-953.
- Syah, Y. M.; Julaiwaty, L. D.; Achmad, S. A.; Hakim, E. H.; Ghisalberti, E. L. 2006. Cytotoxic prenylated flavones from *Artocarpus champeden*. J. Nat. Med. 60, 308-312.

- Tiew, P.; Takayama, H.; Kitajima, M.; Aimi, N.; Kokpol, U.; Chavasiri, W. 2003. A novel neolignan, mansoxetane, and two new sesquiterpenes, mansonones R and S, from *Mansonia gagei*. *Tet. Lett.* 44, 6759-6761.
- Veesommai, U.; Kavduengtain, P. Wild trees in Thailand. HN Group Publisher: Bangkok, 2004; pp 249-252
- Waller, D. P.; Bunyapraphatsara, N.; Martin, A.; Annamarie, V.; Christ, J.; Ahmed, M. S.; Soejarto, D. D.; Cordell, G. A.; Fong, H. S.; Russel, L. D.; Malone, J. P. 1983. Effects of (+)-gossypol on fertility in male hamsters. *J. Androl.* 4, 276-279.
- Wang, Y.-H.; Hou, A. J.; Chen, L.; Chen, D.-F.; Sun, H.-D.; Zhao, Q.-S.; Bastow, K. F.; Nakanish, Y.; Wang, X. H.; Lee, K.-H. 2004. New isoprenylated flavones, artochamins A-E, and cytotoxic principles from *Artocarpus chama. J. Nat. Prod.* 67, 757-761.
- Wang, Y.; Xu, K.; Lin, L.; Pan, Y.; Zheng, X. 2007. Geranyl flavonoids from the leaves of Artocarpus altilis. Phytochemistry 68, 1300-1306.
- Yu, H. Y.; Jin, S. L.; Zhang, X.; Liu, Y.; Ou, Y. F.; Wang, N. L.; Yao, X. S. 2009. Two new benzophenone glucosides from *Cratoxylum cochinchinensis*. *Chinese Chem. Lett.* 20, 459-461.
- Yu, H.-Y.; Wang, N.-L.; Zhang, X.; Jin, S.-L.; Yao, X.-S. 2009. Chemical constituents from Stem of *Cratoxylum cochinchinensis* Bl. *Shenyang Yaoke Daxue Xuebao* 26, 530-535.
- Zhang, X.; Zhu, H.; Zhang, S.; Yu, Q.; Xuan, L. 2007. Sesquiterpenoids from *Bombax* malabaricum. J. Nat. Prod. 70, 1526-1528.

APPENDIX

Figure 5 UV (MeOH) spectrum of compound CF1

Figure 6 IR (neat) spectrum of compound CF1

Figure 7¹H NMR (300 MHz) (CDCl₃) spectrum of compound CF1

Figure 8¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **CF1**

Figure 9 IR (KBr) spectrum of compound CF2

Figure 10 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **CF2**

Figure 11¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF2

Figure 12 UV (MeOH) spectrum of compound CF3

Figure 13 IR (KBr) spectrum of compound CF3

Figure 14 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **CF3**

Figure 15¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **CF3**

Figure 16 UV (MeOH) spectrum of compound CF4

Figure 17 IR (KBr) spectrum of compound CF4

Figure 18 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CF4

Figure 19¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF4

Figure 20 UV (MeOH) spectrum of compound CF5

Figure 21 $\,$ IR (KBr) spectrum of compound CF5

Figure 22 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CF5

Figure 23¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF5

Figure 24 UV (MeOH) spectrum of compound CF6

Figure 25 IR (KBr) spectrum of compound CF6

Figure 26 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CF6

Figure 27¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF6

Figure 28 UV (MeOH) spectrum of compound CF7

Figure 29 IR (KBr) spectrum of compound CF7

Figure 30 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound CF7

Figure 31¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF7

Figure 32 UV (MeOH) spectrum of compound CF8

Figure 33 IR (KBr) spectrum of compound CF8

Figure 34 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **CF8**

Figure 35¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF8

Figure 36 UV (MeOH) spectrum of compound CF9

Figure 37 IR (KBr) spectrum of compound CF9

Figure 38 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **CF9**

Figure 39¹³C NMR (75 MHz) (CDCl₃) spectrum of compound CF9

Figure 40 UV (MeOH) spectrum of compound TP1

Figure 41 IR (KBr) spectrum of compound TP1

Figure 42¹H NMR (300 MHz) (CDCl₃) spectrum of compound TP1

Figure 43¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP1

Figure 44 UV (MeOH) spectrum of compound TP2

Figure 45 IR (neat) spectrum of compound TP2

Figure 46 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP2**

Figure 47¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP2

Figure 48 UV (MeOH) spectrum of compound TP3

Figure 49 IR (neat) spectrum of compound TP3

Figure 50 ¹H NMR (300 MHz) (CDCl₃+CD₃OD) spectrum of compound **TP3**

Figure 51¹³C NMR (75 MHz) (CDCl₃+CD₃OD) spectrum of compound **TP3**

Figure 52 UV (MeOH) spectrum of compound TP4

Figure 53 IR (neat) spectrum of compound TP4

Figure 54 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP4**

Figure 55¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP4

Figure 56 UV (MeOH) spectrum of compound TP5

Figure 57 IR (neat) spectrum of compound TP5

Figure 58 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP5**

Figure 59 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP5**

Figure 60 UV (MeOH) spectrum of compound TP6

Figure 61 IR (neat) spectrum of compound TP6

Figure 62 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP6**

Figure 63 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP6**

Figure 64 UV (MeOH) spectrum of compound TP7

Figure 65 IR (neat) spectrum of compound TP7

Figure 66 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP7**

Figure 67 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP7**

Figure 68 UV (MeOH) spectrum of compound TP8

Figure 69 IR (neat) spectrum of compound TP8

Figure 70 ¹H NMR (300 MHz) (CDCl₃+DMSO- d_6) spectrum of compound **TP8**

Figure 71 ¹³C NMR (75 MHz) (CDCl₃+DMSO- d_6) spectrum of compound **TP8**

Figure 72 (MeOH) spectrum of compound TP9

Figure 73 IR (neat) spectrum of compound TP9

Figure 74 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP9**

Figure 75¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP9**

Figure 76 UV (MeOH) spectrum of compound TP10

Figure 77 IR (neat) spectrum of compound TP10

Figure 78 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP10**

Figure 79¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP10**

Figure 80 UV (MeOH) spectrum of compound TP11

Figure 81 IR (neat) spectrum of compound TP11

Figure 82 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP11**

Figure 83 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP11**

Figure 84 UV (MeOH) spectrum of compound TP12

Figure 85 IR (neat) spectrum of compound TP12

Figure 86 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP12**

Figure 87¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP12

Figure 88 UV (MeOH) spectrum of compound TP13

Figure 89 IR (neat) spectrum of compound TP13

Figure 90 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP13**

Figure 91 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound **TP13**

Figure 92 UV (MeOH) spectrum of compound TP14

Figure 93 IR (neat) spectrum of compound TP14

Figure 94 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP14**

Figure 95¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP14

Figure 96 UV (MeOH) spectrum of compound TP15

Figure 97 IR (neat) spectrum of compound TP15

Figure 98 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP15**

Figure 99 ¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP15

Figure 100 UV (MeOH) spectrum of compound TP16

Figure 101 IR (neat) spectrum of compound TP16

Figure 102 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound TP16

Figure 103¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP16

Figure 104 UV (MeOH) spectrum of compound TP17

Figure 105 IR (neat) spectrum of compound TP17

Figure 106 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound TP17

Figure 107¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP17

Figure 108 UV (MeOH) spectrum of compound TP18

Figure 109 IR (neat) spectrum of compound TP18

Figure 110 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP18**

Figure 111¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP18

Figure 112 UV (MeOH) spectrum of compound TP19

Figure 113 IR (neat) spectrum of compound TP19

Figure 114 ¹H NMR (300 MHz) (CDCl₃) spectrum of compound **TP19**

Figure 115¹³C NMR (75 MHz) (CDCl₃) spectrum of compound TP19

Figure 116 UV (MeOH) spectrum of compound AI1

Figure 117 IR (KBr) spectrum of compound AI1

Figure 118 ¹H NMR (400 MHz) (CDCl₃) spectrum of compound AI1

Figure 119¹³C NMR (100 MHz) (CDCl₃) spectrum of compound AI1

Figure 120 UV (MeOH) spectrum of compound AI2

Figure 121 IR (KBr) spectrum of compound AI2

Figure 122 ¹H NMR (400 MHz) (CDCl₃) spectrum of compound AI2

Figure 123 ¹³C NMR (100 MHz) (CDCl₃) spectrum of compound **AI2**

Figure 124 UV (MeOH) spectrum of compound AI3

Figure 125 IR (KBr) spectrum of compound AI3

Figure 126 ¹H NMR (400 MHz) (CDCl₃) spectrum of compound AI3

Figure 127¹³C NMR (100 MHz) (CDCl₃) spectrum of compound AI3

Figure 128 UV (MeOH) spectrum of compound AI4

Figure 129 IR (KBr) spectrum of compound AI4

Figure 130 ¹H NMR (400 MHz) (CDCl₃) spectrum of compound AI4

Figure 131 ¹³C NMR (100 MHz) (CDCl₃) spectrum of compound AI4

VITAE

NAME Mr. S	ompong Boonsri	
Student ID 47230	4723011	
Educational Attainment		
Degree N	ame of Institution	Year of Graduate
B. Sc. (Chemistry)	Rajabhat Phuket University	1999
M. Sc. (Organic Chemistry)	Prince of Songkla University	2003

Scholarship Awards during Enrolment

Scholarship was awarded by the Royal Golden Jubilee Ph. D. Program of the Thailand Research Fund, the Higher Education Development Project: Center for innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC), the Commission and Higher Education (CHE-RES-RG), the Directed Basic Research in Medicinal Chemistry (Thailand Research Fund) and the Graduate School, Prince of Songkla University.

List of Publication and proceedings

Publications

- Boonsri, S; Karalai, C.; Ponglimanont, C.; Chantrapromma, S.; Kanjana-opas, A. 2008. Cytotoxic and antibacterial sesquiterpenes from *Thespesia populnea*. J. Nat. Prod. 71, 1173-1177.
- Boonsri, S.; Chantrapromma, S.; Fun, H.-K.; Karalai, C. 2007. 1,5,8-Trimethyl-1, 2-dihydronaphtho[2,1-b]furan-6,7-dione. Acta Crystallographica E63, 04901/1-04901/10.