Effect of Low Intensity Pulsed Ultrasound on New Bone Formation during
Mandibular Distraction Osteogenesis in Rabbit

Liangkun Xie

A Thesis Submitted in Fulfillment of the Requirements for the Degree of
Master of Science in Oral and Maxillofacial Surgery
Prince of Songkla University
2008

Copyright of Prince of Songkla University
Thesis Title: Effect of Low Intensity Pulsed Ultrasound on New Bone Formation during Mandibular Distraction Osteogenesis in Rabbit

Author: Mr. Liangkun Xie

Major Program: Oral and Maxillofacial Surgery

Major Advisor:

(assoc. Prof. Thongchai Nuntanaranont)

Co-advisors:

(Asst. Prof. Krassanai Wangrangsimakul)

(Asst. Prof. Dr. Srisurang Sutapreyasri)

Examine Committee:

(Sompid Kintarak Chairperson)

(assoc. Prof. Thongchai Nuntanaranont)

(Krassanai Wangrangsimakul)

(Asst. Prof. Krassanai Wangrangsimakul)

(Prof. Lim Kwong Cheung)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Oral and Maxillofacial Surgery

(Assoc. Prof. Dr. Krerkchai Thongnoo)

Dean of Graduate School
Abstract

Objective: The present study was to assess the effect of low intensity pulsed ultrasound on new bone formation during mandibular distraction osteogenesis in rabbit. Material and Method: Twenty four skeletally mature male New Zealand White rabbits underwent distraction osteogenesis at right side of mandible (3 days of latency period; 10 days of distraction period with rate of 0.5mm/12hr). Low intensity pulsed ultrasound (LIPUS) with 1.5 MHz, 30mw/cm² was conducted to 12 rabbits for a single 20 min treatment daily and started on the first day of distraction until rabbits were sacrificed on week 0, 2 and 4 after the distraction. Four rabbits were sacrificed at each time point, hence 3 ultrasound groups formed according to the time intervals. Other 12 rabbits followed the same sacrifice scheme without ultrasound treatment, 3 control groups were also formed corresponding to 3 ultrasound groups. Plain X-ray, microhardness test, micro-CT scan, histological examination were performed. Result: The animals were well tolerated to the entire distraction and ultrasound treatments. No infection and other complications occurred. All ultrasound groups showed more positive results, especially on week 0 and 2 after the distraction, significant more bone formation and higher surface microhardness were detected by plain X-ray, Micro-CT scan and microhardness test (p<0.05). The similar results revealed by histological evaluation. Conclusion: LIPUS accelerates new bone formation during mandibular distraction osteogenesis in rabbit, particularly during distraction and early weeks after the distraction. LIPUS may be an effective modality to shorten the treatment time of distraction osteogenesis.