
10

Chapter 2

Methodology

In this chapter we will describe in three sections. In the first section, we describe the

format of input file that is needed for using functions. The second, we describe the

theory used in programming. The last section, we describe the methodology of each

function, which include objective of each function, function syntax, algorithm and

example of the result from function.

2.1 The format of input file

The functions must have at least two files to create the map and display the

information, namely a spatial data file and an attribute data file. Each file must

contain a primary key, which must be composite, to uniquely identify each record.

The spatial data file and the attribute data file are described as below:

Spatial data file contains the Cartesian coordinates system. Figure 2.1 shows an

example of a spatial data file. It contains two columns plotID and pointID,

representing the primary key, and coorx and coory, representing the x- and y-

coordinates, respectively. The column called plotID represents the region code while

the pointID represents a sequential index of coordinates in each region. The fields

must be ordered by plotID, pointID, coorx and coory. However the names of fields

depend on the user.

11

Figure 2.1: An example of a spatial data file

The spatial data file has two types that are simple region and complex region.

Simple region is area that doesn’t have a hole. For example the figure 2.2 has five

simple regions, which we will call A, B , C, D and E.

Figure 2.2: S imple regions

12

If we look in the example text file (figure 2.3) it can be seen that each region has one

duplicated pair of x- and y- coordinates that is a polygon. The region of “940101” start

and end with x = 748125.6 and y = 758534.1, the region “940102” start and end with

x = 748553.7 and y = 759425.3, and the region “940103” start and end with

x = 749278.6 and y = 759369.6.

Figure 2.3: Text file containing x- and y- coordinates of simple regions

Complex region is area that has one or more holes, or an area is interspersed with

smaller polygons. As an example, figure 2.4 has two regions in a place, which we call

A and B .

13

Figure 2.4: Complex regions

If we look in file format, it can be seen that for one region there are two pairs or more

of duplicated x- and y- coordinates, as show n in figure 2.5. The region of “208184”

has two polygons, the first of polygon start and end with x = 688485.8 and y =

778128.7 and the second of polygon start and end with x = 689098.7 and y =

776879.8

Figure 2.5: Text file containing x- and y- coordinates of complex regions

Attribute data files contain statistical data. Figure 2.6 shows an example of an

attribute data file. In this file plotID is the primary key, representing the region code.

The column called name is the name of the region. The numEvn and numEvngrp

14

columns are the variables to display on the map. In this example, numEvn is the

number of terrorist events in each region, while numEvngrp is the same data

categorized into groups.

Figure 2.6: Example of an attribute data file

2.2 Theory related

Location reference systems for spatial features on the Earth’s surface use a

coordinates system. S ome maps are measured in longitude and latitude values, called

a geographic grid. Other maps are measured in two dimensional coordinates, which

are called a plane coordinate system or Cartesian coordinate system. Longitude values

are similar to x values in a coordinate system and latitude value are similar to

y values. The geographic grid consists of meridians and parallels. The meridians are

lines of longitude for the East-West direction. The parallels are lines of latitude for the

North-S outh direction. The plane coordinate systems are designed for detailed

calculations and positioning. S cales of measurement can vary, depending on the level

of detail and precision required. Four coordinates systems are commonly used in the

United S tates, with measurements varying between meters, feet and miles. In this

15

study a spatial data file that contains the Cartesian coordinates system was used

(Chang, 2002).

The theory that the researcher used to develop functions is described as below:

To calculate perimeter, suppose we are given the two points that are (x1, y1) and

(x2, y2), as shown in figure 2.7.

Figure 2.7: A line between two points

From the standard Pythagorean theorem for relating the parts of a triangle, we can

compute the distance between these points, which is given by the formula in

figure 2.8.

Figure 2.8: The Pythagorean theorem

where d is the distance, x2-x1 is difference in the x direction, y2-y1 is difference in the y

direction. We can compute the perimeter by aggregating the distances between every

pair of points. This formula is used for a coordinate system based on a projection,

such as the Universal Transverse Mercator (UTM), S tate Plane or United Kingdom

National Grid. It will not work for latitude and longitude.

),(11 yx

),(22 yx

),(22 yx
12 xx −

12 yy −
2

12
2

12)()(yyxxd −+−=

),(11 yx

16

For computing the area of a polygon the formula in figure 2.9 was used.

∑
−

=
++ −=

1

0
11)(

2
1 N

i
iiii yxyxA

Figure 2.9: A polygon

where A is the area, i is a index for every Cartesian coordinate, and N is the total

number of coordinates, for the center of a polygon the formula below was used:

)()(
6
1

11

1

0
1 iiii

N

i
iix yxyxxx

A
C ++

−

=
+ −+= ∑ , ∑

−

=
+++ −+=

1

0
111))((

6
1 N

i
iiiiiiy yxyxyy

A
C

Where Cx is the center of x and Cy is the center of y, A is the area, i is an index for

every Cartesian coordinate and N is the total number of coordinates (B ourke, 1988).

These formulas also can apply to computing for triangle (figure 2.10) and square

(figure 2.11).

Figure 2.10: A triangle

),(33 yx

),(11 yx

),(22 yx

),(44 yx),(55 yx

),(66 yx

),(77 yx

),(88 yx

),(11 yx

),(22 yx),(44 yx

17

Figure 2.11: A square

For managing the integer variable into groups by using Frequency D istribution of

Grouped D ata, as the first step we calculated a range of data. The range of data is the

difference in value between a maximum value and a minimum value.

r = Max-Min

Where r is a range value, Max is a maximum value and Min is a minimum value. For

the second step, we computed a number of class from this formula:

k = 1+3.3logN

Where k is a number of class and N is a number of data. The third step calculates a

class interval value.

i = r/k

Where i is class interval value, r is a range value and k is a number of class. The class

interval must be the integer. If the value of class interval has a decimal, it must be

rounded up in value, whether it is less or more than 0.5. If the value of class interval is

an integer, it must be that integer plus one. The last step counts the number in each

class. The lower bound of the first class must cover the minimum value. The upper

bound of the last class must cover the maximum value (Hanmongkolpipat, 2003).

),(11 yx

),(22 yx

),(33 yx

),(44 yx

18

2.3 Methodology of each function

In this study we created 10 functions. They can be divided to three groups. The first

group being functions to manage regions, there are five functions, namely

create.map(), setcol.map(), setcol.cmap(), setnme.map() and combine.map(). The

second group contains functions to show statistics data, there are two functions which

are colstat.map() and piestat.map(). The third group contains functions to compute

area, perimeter and center of region, and these are area.map(), perimeter.map() and

center.map(). Figure 2.12 shows chart of functions that are created.

Figure 2.12: The functions are created

Functions

create.map()

 setcol.map()

 setcol.cmap()

 setnme.map()

 combine.map()

To manage regions

 area.map()

perimeter.map()

 center.map()

To compute area, perimeter and center

 colstat.map()

piestat.map()

To show statistics data

19

The create.map() function

Objective: To create a map.

Function syntax: create.map (flexy, xscl, yscl, scl.size, scl.col, wh, ww, header.text,

header.size, header.col, map.col, xylabel, xylabel.size, xylabel.col, xyline, xyline.col,

xyline.type)

The arguments are described in table 2.1.

Argument Description

flexy S patial data file

xscl The minimum and maximum value of x axis

yscl The minimum and maximum value of y axis

scl.size S ize of x axis and y axis

scl.col Color of x axis and y axis

wh Window height

ww Window width

header.text The main title name

header.size S ize of title name

header.col Color of title name

map.col Color of map

xylabel S how “UTM-North” on y label and “UTM-East” on x label

xylabel.size S ize of x label and y label

xylabel.col Color of x label and y label

xyline S how grid line

xyline.col Color of grid line

xyline.type Type of grid line

Table 2.1: The data input for create.map() function

20

The algorithm for creating map is described in algorithm 2.1. There are seven steps.

Algorithm 2.1: create.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-

coordinates, put the NA value between each region of each complex region.

3. Create a window using windows() function.

4. Create a map using polygon() function.

5. If header.text is not null, display the title name on the top of a map using mtext()

function.

6. If xyline = T, display the grid line with abline() function.

7. D isplay the place code or the primary key of simple regions and complex regions

on R Console.

Example: Figure 2.13 shows the result from create.map() function. It is 13 sub-

distrincts of Mueang Pattani district, Pattani province. There are S abarang, Anoru,

Chabang Tiko, B ana, Tanyong Lulo, Khlong Maning, Kamiyo, B arahom, Paka

Harang, Rusa Milae, Talubo, B araho and Puyut.

Figure 2.13: The result from create.map() function

21

The setcol.map() function

Objective: To specify color of each region.

Function syntax: setcol.map (flexy, plcid, mcol)

The arguments are described in table 2.2.

Argument Description

flexy S patial data file

plcid The primary key of region to display color

mcol Color of each region

Table 2.2: The data input for setcol.map() function

The algorithm for specifying color of each region is described in algorithm 2.2. There

are six steps.

Algorithm 2.2: setcol.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-

coordinates, put the NA value between each region of each complex region.

3. If plcid is null, get the primary key in flexy.

4. If mcol is null, generate the color for mcol.

5. D isplay the color of each region using polygon() function. For complex regions, all

regions of each complex region will have the same color.

6. D isplay the place code or the primary key and the color of each region on R

Console.

Example: Figure 2.14 shows the result from setcol.map() function of Ko Mak sub-

district, Pak Phayun district, Phatthalung Province.

22

Figure 2.14: The result from setcol.map() function

The setcol.cmap() function

Objective: To specify color of complex region.

Function syntax: setcol.cmap (flexy, plcid, reg, mcol)

The arguments are described in table 2.3.

Argument Description

flexy S patial data file

plcid The primary key of a complex region to display color

reg S pecify regions are numeric (1, 2, 3, …, n) from the largest region to

the smallest region

mcol Color of each region

Table 2.3: The data input of setcol.cmap() function

The algorithm for specifying color of complex region is described in algorithm 2.3.

There are five steps.

23

Algorithm 2.3: setcol.cmap()

1. Read the data from syntax.

2. Count the number of region in plcid variable.

3. Compute the area of each region and sort them from the largest region to the

smallest region.

4. D isplay the color of each region with polygon() function.

5. D isplay the place code or the primary key and the color of each region on R

Console.

Example: Figure 2.15 shows the result from setcol.cmap() function. It is a complex

region of one place in figure 2.14.

Figure 2.15: The result from setcol.cmap() function

24

The setnme.map() function

Objective: To display a name on each region.

Function syntax: setnme.map (x, y, flexy, plcid, nme, frm, sfrm, wfrm, colfrm, sfont,

wfont, nmecmap)

The arguments are described in table 2.4.

Argument Description

x Position of x axis

y Position of y axis

flexy S patial data file

plcid The primary key of region to display name

nme The name to display

frm Frame of name

sfrm S ize of frame

wfrm Width of frame

colfrm Color of frame

sfont Font size of name

wfont Font width of name

nmecmap If do not display name of complex regions giving value to “F”

Table 2.4: The data input of setnme.map() function

The algorithm for displaying a name on each region is described in algorithm 2.4.

There are six steps.

25

Algorithm 2.4: setnme.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-

coordinates, put the NA value between each region of each complex region.

3. If x, y and nme is not null.

3.1 If frm is not null, display the frame using points() function.

3.2 D isplay the name on each region with text() function.

4. If plcid and nme is not null.

. 4.1 If frm is not null, display the frame using points() function.

4.2 For simple regions, compute the center of each region and display the

name using text() function on the center of each region.

4.3 For each complex region:

- Count the region number of a complex region.

- Compute the area of each region.

- Find the maximum area from all regions and compute the center.

- D isplay the name using text() function.

5. If x, y and plcid is null.

5.1 Find the place code or the primary key in flexy.

5.2 If frm is not null, display the frame using points() function.

5.3 For simple regions, compute the center of each region and display the

name using text() function on the center of each region.

5.4 For each complex region:

- Count the region number of a complex region.

- Compute the area of each region.

26

- Find the maximum area from all regions and compute the center.

- D isplay the name using text() function.

5.5 D isplay the name of each region, that is numeric from 1 to n (n is a

number of region) with text() function on the center of region.

6. D isplay the place code or the primary key and the name of each region on R

Console.

Example: Figure 2.16 shows the result from setnme.map() function.

Figure 2.16: The result from setnme.map() function

The combine.map() function

Objective: To combine different regions into one region.

Function syntax: combine.map (flexy, plcid, mcol, mline)

The arguments are described in table 2.5.

27

Argument Description

flexy S patial data file

plcid The primary key of region to combining

mcol Color of region after combining

mline Line type of region after combining

Table 2.5: The data input of combine.map() function

The algorithm for combining regions is described in algorithm 2.5. There are five

steps.

Algorithm 2.5: combine.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-

coordinates, put the NA value between each region of each complex region.

3. If mcol is not null, display the color of each region using polygon() function.

4. Merge place which is specified in plcid variable with merge() function.

5. D raw new line, especially the x- and y- coordinates are matched by using line()

function.

Example: Figure 2.17 shows the result from combine.map() function.

28

Figure 2.17: The result from combine.map() function

The colstat.map() function

Objective: To display statistical data on the map using color shade.

Function syntax: colstat.map (flexy, plcid, dat, mcol, grp, mline, xlg, ylg, lg, pslg,

slg, ncollg)

The arguments are described in table 2.6.

Argument Description

flexy S patial data file

plcid The primary key of region

dat The statistical data or the information

mcol Color of each group

grp Group number

mline Type of line.

xlg Position of x axis to show legend

ylg Position of y axis to show legend

lg S how legend defaults to “TRUE”

29

Argument Description

pslg Position of legend

slg S ize of legend

ncollg Column number of legend

Table 2.6: The data input of colstat.map() function

The algorithm for displaying color shade is described in algorithm 2.6. There are six

steps.

Algorithm 2.6: colstat.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-

coordinates, put the NA value between each region of each complex region.

3. If dat is a categorical variable, display the color of each group using polygon()

function and display the type of line using method like combine.map() function.

4. If dat is a continuous variable.

4.1 Manage dat variable to be categorical variable by using Frequency

D istribution of Grouped D ata including:

- Compute range of data using formula: r = Max-Min

- If grp is not null, give k = grp. If grp is null, compute number of

group using formula: k = 1+3.3logN

- Compute class interval using formula: i = r/k

- Give the value for each group, which are k groups.

4.2 D efine value, which is the categorical data, to dat variable.

30

4.3 D isplay the color of each group with polygon() function and display the

type of line using method like combine.map() function.

5. If lg = T, display the legend of data with legend() function using position of xlg, ylg

or pslg.

6. D isplay the name and the color of each group on R Console.

Example: Figure 2.18 shows the result from colstat.map() function.

Figure 2.18: The result from colstat.map() function

The piestat.map() function

Objective: To display statistical data on the map using circle.

Function syntax: piestat.map (flexy, plcid, dat, mcol, grp, xlg, ylg, lg, pslg, slg,

ncollg, strpie)

The arguments are described in table 2.7.

31

Argument Description

flexy S patial data file

plcid The primary key of region

dat The statistical data or the information

mcol Color of circle

grp Group number, when dat variable is integer

xlg Position of x axis to show legend

ylg Position of y axis to show legend

lg S how legend defaults to “TRUE”

pslg Position of legend

slg S ize of legend

ncollg Column number of legend

strpie The start size of circle

Table 2.7: The data input of piestat.map() function

The algorithm for displaying circle is described in algorithm 2.7. There are six steps.

Algorithm 2.7: piestat.map()

1. Read the data from syntax.

2. Check complex regions, if one region has two pairs or more of duplicated x- and y-

coordinates, put the NA value between each region of each complex region.

3. If dat is categorical variable.

3.1 For simple regions, display the circle on the center of each region using

points() function. S ize of the circle should be increased for each group.

3.2 For each complex region:

- Count the number of region of a complex region.

32

- Compute the area of each region.

- Find the maximum area from all regions and compute the center of

that region.

- D isplay the circle using points() function.

4. If dat is continuous variable.

4.1 Manage dat variable to be categorical variable by using Frequency

D istribution of Grouped D ata including:

- Compute range of data using formula: r = Max-Min

- If grp is not null, give k = grp. If grp is null, compute the number of

group using formula: k = 1+3.3logN

- Compute class interval using formula: i = r/k

- Give the value for each group, which are k groups.

4.2 D efine value, which is the categorical data, to dat variable.

4.3 For simple regions, display the circle on the center of each region using

points() function. S ize of the circle should be increased for each group.

4.4 For each complex region:

- Count the number of region of a complex region.

- Compute the area of each region.

- Find the maximum area from all regions and compute the center of

that region.

- D isplay the circle using points() function.

5. If lg = T, display the legend of data with legend() function using position of xlg, ylg

or pslg.

6. D isplay the name and the circle size of each group on R Console.

33

Example: Figure 2.19 shows the result from piestat.map() function.

Figure 2.19: The result from piestat.map() function

The area.map() function

Objective: To compute the area of each region.

Function syntax: area.map (flexy, plcid, mshow)

The arguments are described in table 2.8.

Argument Description

flexy S patial data file

plcid The primary key of region

mshow S how the area on map, defaults to “FALSE”

Table 2.8: The data input of area.map() function

The algorithm for computing area is described in algorithm 2.8. There are six steps.

Algorithm 2.8: area.map()

1. Read the data from syntax.

2. If plcid is null, get the primary key in flexy.

34

3. For complex regions, count the number of region of each complex region.

4. Compute the area of simple regions and each region of complex regions.

5. If mshow = T, display the area on the center of each region.

6. D isplay the area of each region on R Console.

Example: Figure 2.20 shows the result from area.map() function.

Figure 2.20: The result from area.map() function

The perimeter.map() function

Objective: To compute the perimeter of each region.

Function syntax: perimeter.map (flexy, plcid, mshow)

The arguments are described in table 2.9.

35

Argument Description

flexy S patial data file

plcid The primary key of region

mshow S how the area on map, defaults to “FALSE”

Table 2.9: The data input of perimeter.map() function

The algorithm for computing perimeter is described in algorithm 2.9. There are six

steps.

Algorithm 2.9: perimeter.map()

1. Read the data from syntax.

2. If plcid is null, get the primary key in flexy.

3. For complex regions, count the number of region of each complex region.

4. Compute the perimeter of simple regions and each region of complex regions.

5. If mshow = T, display the perimeter on the center of each region.

6. D isplay the perimeter of each region on R Console.

Example: Figure 2.21 shows the result from perimeter.map() function. It is the

Na Thap canal in Na Thap sub-district, Chana district, S ongkhla province.

36

Figure 2.21: The result from perimeter.map() function

The center.map() function

Objective: To compute the center of each region.

Function syntax: center.map (flexy, plcid)

The arguments are described in table 2.10.

Argument Description

flexy S patial data file

plcid The primary key of region

Table 2.10: The data input of center.map() function

The algorithm for computing the center is described in algorithm 2.10. There are five

steps.

37

Algorithm 2.10: center.map()

1. Read the data from syntax.

2. If plcid is null, get the primary key in flexy.

3. For complex regions, count the number of region of each complex region.

4. Compute the center of simple regions and each region of complex regions.

5. D isplay the center of each region on R Console.

Example: Figure 2.22 shows the result from center.map() function.

Figure 2.22: The result from center.map() function

In summary, the functions must have at least two files to create the map and display

the information, there are a spatial data file and an attribute data file. The spatial data

file has two types that are simple region and complex region. In this chapter also we

described the methodology to create function of 10 functions, which include the

objective, function syntax, algorithm and the example of result of each function.

For next chapter, we will describe the detail of result for each function. How is the

ability of each function?

