สารบาญ

	หน้า
บทคัดย่อ	(3)
Abstract	(6)
กิตติกรรมประกาศ	(8)
ผลงานส่งตีพิมพ์เผยแพร่จากวิทยานิพนธ์นี้	(9)
สารบาญ	(10)
รายการตาราง	(12)
รายการภาพประกอบ	(15)
ตัวช่อและสัญลักษณ์	(18)
บทที่	
1 บทน้ำ	1
1.1 บทนำต้นเรื่อง	1
1.2 การใช้พลังงานในภาคอุตสาหกรรม	3
1.3 การอนุรักษ์พลังงานในภาคอุตสาหกรรม	4
1.4 วัตถุประสงค์ของการศึกษา	6
1.5 ขอบเขตการศึกษา	6
1.6 ประโยชน์ที่คาคว่าจะใค้รับ	6
2 วิธีการวิจัย	7
2.1 ทฤษฎีและหลักการ	7
2.2 วิธีคำเนินการ	23
2.3 วิเคราะห์ความถูกต้องของเครื่องมือ	28
2.4 สรุป	37
3 ผลและการอภิปลายผล	38
3.1 การใช้พลังงานในภาคอุตสาหกรรมของไทย	38
3.2 การเปรียบเทียบผลการคำนวณระหว่างแบบจำลองแบบ 2 และ 3 ตัวแปร	38
3.3 ผลจากแบบจำลองการประหยัดพลังงานในสาขาเหมืองแร่	41

สารบาญ (ต่อ)

		หน้า
	 ผลจากแบบจำลองการประหยัดพลังงานในสาขาการก่อสร้าง 	43
	 ผลจากแบบจำลองการประหยัดพลังงานในสาขาอุตสาหกรรมการผลิต 	47
	 ผลจากแบบจำลองการประหยัดพลังงานในภาคอุตสาหกรรม 	50
	3.7 ผลการประหยัคพลังงานในสาขาอุตสาหกรรมการผลิตย่อย	55
	3.8 การวิเคราะห์ความอ่อนใหวของการประหยัคพลังงาน	57
	3.9 บทสรุป	63
4	บทสรุปและข้อเสนอแนะ	65
	4.1 ความแตกต่างระหว่างการวิเคราะห์โดยแบบจำลองแบบ 2 และ 3 ตัวแปร	65
	4.2 การประหยัดพลังงานในสาขาเหมืองแร่	65
	4.3 การประหยัดพลังงานในสาขาการก่อสร้าง	66
	4.4 การประหยัดพลังงานในสาขาอุตสาหกรรมการผลิต	66
	4.5 การประหยัดพลังงานในภาคอุตสาหกรรม	67
	4.6 บทสรุป	67
	4.7 ข้อเสนอแนะ	68
5	บรรณานุกรม	69
6	ภาคผนวก	
	ภาคผนวก ก ผลจากแบบจำลองแบบ 2 ตัวแปร	71
	ภาคผนวก ข ความต้องการใช้พลังงานในสาขาอุตสาหกรรมการผลิต	97
	จำแนกตามสาขาย่อย	
	ภาคผนวก ค โปรแกรมการคำนวณแบบจำลองการประหยัคพลังงาน	99
	ภาคผนวก ง ต้นฉบับเพื่อส่งตีพิมพ์ในวารสารทางวิชาการ	106
7	ประวัติผู้เขียน	128

รายการตาราง

ตาราง	หน้า
2.1 Results of energy saving calculated by computer program of 2	30
dimensional model (mining sector)	
2.2 Results of energy saving calculated by computer program of 3	34
dimensional model (mining sector)	
2.3 Results of energy saving calculated by a computer program of 3	36
dimension model (mining sector)	
3.1 Energy consumption (ktoe), Gross domestic product of sectors	39
at 1988 prices (Millions of Baht) and energy intensity of the	
sectors (kgoe/1000 Baht) in Thai industry during 2530-2545.	
3.2 Percentage of difference in energy saving between 2 and 3 dimer	nsional 41
models during 2531-2545	
3.3 Decomposition of the change in energy consumption and energy	saving 42
in mining sector during 2531-2545 (ktoe), 3 dimensional model	
3.4 Decomposition of the change in energy consumption and energy	saving 44
in construction sector during 2531-2545 (ktoe), 3 dimensional mo	odel
3.5 The share of structural change in Thai industry (%), during 2530-	-2545 46
3.6 Decomposition of the change in energy consumption and energy	saving 49
in manufacturing sector during 2531-2545 (ktoe), 3 dimensional	model
3.7 Decomposition of the change in energy consumption and energy	saving 51
in Thai industry during 2531-2545 (ktoe), 3 dimensional model	
3.8 Decomposition of the change in energy consumption and energy	saving 56
in 9 manufacturing sub-sectors during 2531-2545 (ktoe), 2 dimen	ısional
model	
3.9 Sensitivity analysis of 2 dimensional model, during 2544-2545	58

รายการตาราง (ต่อ)

ì	าราง		หนา
	3.10	Sensitivity analysis of 3 dimensional model in Thai industry,	60
		during 2544-2545	
	A 1	Decomposition of the change in energy consumption and energy saving	72
		in mining sector during 2531-2545 (ktoe), 2 dimensional model	
	A 2	Decomposition of the change in energy consumption and energy saving	74
		in construction sector during 2531-2545 (ktoe), 2 dimensional model	
	A 3	Decomposition of the change in energy consumption and energy saving	76
		in manufacturing sector during 2531-2545 (ktoe), 2 dimensional model	
	A 4	Decomposition of the change in energy consumption and energy saving	78
		in industry during 2531-2545 (ktoe), 2 dimensional model	
	A 5	Decomposition of the change in energy consumption and energy saving	80
		in food and beverages sub-sector during 2531-2545 (ktoe), 2 dimensional	
		model	
	A 6	Decomposition of the change in energy consumption and energy saving	82
		in textiles sub-sector during 2531-2545 (ktoe), 2 dimensional model.	
	A 7	Decomposition of the change in energy consumption and energy saving	84
		in wood and furniture sub-sector during 2531-2545 (ktoe), 2 dimensional	
		model	
	A 8	Decomposition of the change in energy consumption and energy saving	86
		in paper sub-sector during 2531-2545 (ktoe), 2 dimensional model	
	A 9	Decomposition of the change in energy consumption and energy saving	88
		in chemical sub-sector during 2531-2545 (ktoe), 2 dimensional model	
	A 10	Decomposition of the change in energy consumption and energy saving	90
		in non-metallic sub-sector during 2531-2545 (ktoe), 2 dimensional mode	:l

รายการตาราง (ต่อ)

ศาราง		หน้า
A 11 Decom	position of the change in energy consumption and energy saving	91
in basi	c metal sub-sector during 2531-2545 (ktoe), 2 dimensional model	
A 12 Decom	position of the change in energy consumption and energy saving	93
in fabr	icated metal sub-sector during 2531-2545 (ktoe), 2 dimensional	
model		
A 13 Decom	position of the change in energy consumption and energy saving	95
in othe	rs (unclassified) sub-sector during 2531-2545 (ktoe), 2 dimensiona	ıl
model		
B 2 Energy	consumption in 9 manufacturing sub-sectors during 2530-2545	98
(ktoe)		
1. Energy	consumption (ktoe), GDP of sectors (Milions of US dollars	124
at 1988	price levels and exchange rates of 1988) and energy intensity	
of indus	try (kgoe per 1000 US\$) in Thai industry during 1987-2002	
2. Decomp	osition of the change in energy consumption and energy	125
saving in	n Thai manufacturing sector during 1988-2002 (ktoe)	
3. Decomp	osition of the change in energy consumption and energy	126
saving in	n Thai industry during 1988-2002 (ktoe)	
4. Sensitiv	ity analysis of 3 dimensional model in Thai industry during	127
2001-20	02	

รายการภาพประกอบ

าาพประกอบ	หน้า
1.1 The final energy consumption of the major sectors in Thailand in 2545	2
1.2 The percentage of energy consumption in Thai industry in 2545	3
2.1 The sub-sectors of energy consumption in Thai industry	24
2.2 The research methodology	25
2.3 The flow chart of energy saving programming	26
2.4 The flow chart of sensitivity analysis programming	27
3.1 The share of structural change in Thai industry, mining, construction as	nd 40
manufacturing sector during 2530-2545	
3.2 The trend and real change of energy consumption in mining sector duri	ing 43
2530-2545, 3 dimensional model	
3.3 The trend and real change of energy consumption in construction secto	r 45
during 2530-2545, 3 dimensional model	
3.4 The trend and real change of energy consumption in manufacturing sec	tor 48
during 2530-2545, 3 dimensional model	
3.5 The trend and real change of energy consumption in Thai industry duri	ng 52
2530-2545, 3 dimensional model	
3.6 The trend and real change of energy consumption in non-metallic sub-	57
sector during 2530-2545, 2 dimensional model	
A 1 The trend and real change of energy consumption in mining sector dur	ring 73
2530-2545, 2 dimensional model	
A 2 The trend and real change of energy consumption in construction sector	or 75
during 2530-2545, 2 dimensional model	
A 3 The trend and real change of energy consumption in manufacturing sec	ctor 77
during 2530-2545, 2 dimensional model	

รายการภาพประกอบ (ต่อ)

าาพประกอบ	หน้า
A 4 The trend and real change of energy consumption in industry during 2530-	79
2545, 2 dimensional model	
A 5 The trend and real change of energy consumption in food and beverages	81
sub-sector during 2530-2545, 2 dimensional model	
A 6 The trend and real change of energy consumption in textiles sub-sector	83
during 2530-2545, 2 dimensional model	
A 7 The trend and real change of energy consumption in wood and furniture	85
sub-sector during 2530-2545, 2 dimensional model	
A 8 The trend and real change of energy consumption in paper sub-sector	87
during 2530-2545, 2 dimensional model	
A 9 The trend and real change of energy consumption in chemical sub-sector	89
during 2530-2545, 2 dimensional model	
A 10 The trend and real change of energy consumption in basic metal sub-	92
sector during 2530-2545, 2 dimensional model	
A 11 The trend and real change of energy consumption in fabricated metal sub-	- 94
sector during 2530-2545, 2 dimensional model	
A 12 The trend and real change of energy consumption in others (unclassified)	96
sub-sector during 2530-2545, 2 dimensional model	
1. The share of structural change in Thai industry (mining, construction	102
and manufacturing sector) during 1987-2002	
2. The trend and real change of energy consumption in Thai construction	121
sector during 1987-2002	

รายการภาพประกอบ (ต่อ)

ภาพประกอบ	หน้า
3. The trend and real change of energy consumption in Thai manufacturing	122
sector during 1988-2002	
4. The trend and real change of energy consumption in Thai industry during	123
1987-2002	

ตัวย่อและสัญลักษณ์

 dE^{t} = change in energy consumption in year t (ktoe) = change in energy consumption in mining sector in year t (ktoe) dE_1^t $dGDP^{t}$ = change in gross domestic product in industry in year t (Millions of Baht) $dI_{effect,i}$ = energy consumption due to energy intensity in an economic sector (ktoe) $dI_{effect,1}$ = change in energy consumption due to energy intensity in mining sector (ktoe) $dI_{effect,2}$ = change in energy consumption due to energy intensity in construction sector (ktoe) $dI_{effect,3}$ = change in energy consumption due to energy intensity in manufacturing sector (ktoe) $dS_{effect,i}$ = energy consumption due to economic structure in an economic sector (ktoe) $dS_{effect,1}$ = change in energy consumption due to economic structure in mining sector (ktoe) $dS_{effect,2}$ = change in energy consumption due to economic structure in construction sector (ktoe) $dS_{effect,3}$ = change in energy consumption due to economic structure in manufacturing sector (ktoe) = change in energy consumption in industry (ktoe) $d\psi$ $d\psi_1$ = change in energy consumption in mining sector (ktoe) = change in energy consumption in construction sector (ktoe) $d\psi$, = change in energy consumption in manufacturing sector (ktoe) $d\psi_3$ = energy consumption (ktoe) \boldsymbol{E} = energy consumption in an economic sector (ktoe) E_i E^{0} = energy consumption in base year (ktoe) E^{t} = energy consumption in year t (ktoe) E_1^0 = energy consumption in mining sector in base year (ktoe)

ตัวย่อและสัญลักษณ์ (ต่อ)

```
E_2^0
       = energy consumption in construction sector in base year (ktoe)
E_3^0
       = energy consumption in manufacturing sector in base year (ktoe)
E_1^t
       = energy consumption in mining sector in year t (ktoe)
E_2^t
       = energy consumption in construction sector in year t (ktoe)
E_3'
       = energy consumption in manufacturing sector in year t (ktoe)
\Delta E
       = change in energy consumption (ktoe)
GDP = gross domestic product in industry (Millions of Baht)
GDP<sup>0</sup> = gross domestic product in industry in base year (Millions of Baht)
GDP' = gross domestic product in industry in year t (Millions of Baht)
GDP_{effect} = energy consumption due to economic growth (ktoe)
\triangle GDP = change in gross domestic product in industry (Millions of Baht)
I
       = energy intensity (kgoe/1000 Baht)
       = energy intensity in an economic sector (kgoe/1000 Baht)
I_{i}
I^0
       = energy intensity in base year (kgoe/1000 Baht)
I^{t}
       = energy intensity in year t (kgoe/1000 Baht)
I_i^0
       = energy intensity in an economic sector in base year (kgoe/1000 Baht)
I_i^t
       = energy intensity in an economic sector in year t (kgoe/1000 Baht)
       = energy consumption due to energy intensity (ktoe)
I_{\it effect}
       = change in energy intensity (kgoe/1000 Baht)
\Delta I
\Delta I_i
       = change in energy intensity in an economic sector (kgoe/1000 Baht)
Q
       = sectoral gross domestic product (Millions of Baht)
       = gross domestic product in an economic sector (Millions of Baht)
Q_i
       = gross domestic product in mining sector (Millions of Baht)
Q_1
       = gross domestic product in construction sector (Millions of Baht)
Q_2
       = gross domestic product in manufacturing sector (Millions of Baht)
Q_3
```

ฝ่ายหอสมุด คุณหญิงหลง อรรถกระวีสุนท**ร**

ตัวย่อและสัญลักษณ์ (ต่อ)

= sectoral gross domestic product in an economic sector (Millions of Baht) Q_i Q_i^t = sectoral gross domestic product in an economic sector in year t (Millions of Baht) Q_1^0 = gross domestic product in mining sector in base year (Millions of Baht) Q_2^0 = gross domestic product in construction sector in base year (Millions of Baht) Q_3^0 = gross domestic product in manufacturing sector in base year (Millions of Baht) Q_i^t = gross domestic product in mining sector in year t (Millions of Baht) = gross domestic product in construction sector in year t (Millions of Baht) Q_2^t Q_3^t = gross domestic product in manufacturing sector in year t (Millions of Baht) = real energy consumption (ktoe) Real S = specific gross domestic product (decimal) = specific gross domestic product in an economic sector (decimal) S_{i} S^{0} = specific gross domestic product in base year (decimal) S^{t} = specific gross domestic product in year t (decimal) S_i^0 = specific gross domestic product in an economic sector in base year (decimal) S_i^t = specific gross domestic product in an economic sector in year t (decimal) S_{effect} = energy consumption due to economic structure (ktoe) ΔS . = change in specific gross domestic product in an economic sector (decimal) Trend = trend (or predicted) energy consumption (ktoe) = energy saving in industry (ktoe) Ψ = energy saving in an economic sector (ktoe) ψ_i = energy consumption in mining sector (ktoe) ψ_1 = energy consumption in construction sector (ktoe) ψ_2 = energy consumption in manufacturing sector (ktoe) ψ_3

ตัวย่อและสัญลักษณ์ (ต่อ)

 ψ_1^0 = energy saving in mining sector in base year (ktoe)

 ψ_1' = energy saving in mining sector in year t (ktoe)

 $\Delta \psi_1$ = change in energy saving in mining sector (ktoe)