ชื่อวิทยานิพนธ์	องค์ประกอบทางเคมีจากผลของ Garcinia scortechinii
	และ Garcinia hanburyi
ผู้เขียน	นางสาวเยาวภา สุขพรมา
สาขาวิชา	เคมีอินทรีย์
ปีการศึกษา	2547

บทคัดย่อ

การศึกษาทางเคมีแบ่งออกเป็นสองตอน ตอนแรกเป็นการนำส่วนสกัดหยาบเมทานอลจาก ้ส่วนผลของ Garcinia scortechinii มาทำการแยกให้บริสุทธิ์ด้วยวิธีทางโครมาโทกราฟี สามารถ แยกสารใหม่ได้จำนวน 10 สาร ซึ่งเป็นสารประเภท sesquiterpenes จำนวน 2 สาร (GF1 และ GF2) สารประเภท caged-tetraprenylated xanthones งำนวน 4 สาร (GF8 GF9 GF15 และ GF18) และสารประเภท rearranged xanthones งำนวน 4 สาร (GF19 GF20 GF21 และ GF22) นอกจากนี้ยังแยกสารที่ทราบโครงสร้างแล้วจำนวน 14 สาร ซึ่งเป็นประเภท cagedpolyprenylated xanthones จำนวน 11 สาร [scortechinones A (GF3) B (GF16) C (GF14) D (GF5) E (GF6) F (GF13) H (GF10) I (GF11) L (GF4) M (GF12) utar P (GF17)] สารประเภท biflavonoids งำนวน 2 สาร [(+)-morelloflavone (GF23) และ (+)volkensiflavone (GF24)] และสารประเภท sesquiterpene งำนวน 1 สาร [germacra-4(15),5E,-10(14)-trien-1 β -ol (**GF7**)] ตอนที่สองเป็นการนำส่วนสกัดหยาบเมทานอลจากส่วน ผลของ Garcinia hanburyi มาแยกและทำให้บริสุทธิ์ด้วยวิธีทางโครมาโทกราฟี สามารถแยกสาร ประเภท caged-tetraprenylated xanthones งำนวน 5 สาร ซึ่งเป็นสารใหม่งำนวน 1 สาร (GF27) และสารที่ทราบโครงสร้างแล้วจำนวน 4 สาร [isomoreollin B (GF25) morellin (GF26) moreollic acid (GF28) และ morellic acid (GF29)] โครงสร้างทั้งหมดวิเคราะห์ โดยใช้ข้อมูล 1D และ 2DNMR สเปกโทรสโกปี ส่วนสัญญาณของ ¹³C สามารถวิเคราะห์ได้โดย อาศัยข้อมูลจาก DEPT HMQC และ HMBC สเปกตรับ สำหรับสารที่มีการรายงานโครงสร้าง แล้ว ได้เปรียบเทียบข้อมูล ¹H NMR สเปกตรัม และค่าการหมุนระนาบแสงกับข้อมูลที่ได้รายงาน ไว้

(4)

GF24: R = H

GF25: $R_1 = \xi$, $R_2 = CHO$, $R_3 = Me$ **GF27:** $R_1 = \xi$, $R_2 = Me$, $R_3 = CO_2H$ **GF28:** $R_1 = \xi$, $R_2 = Me$, $R_3 = CO_2H$

GF26: R = CHO **GF29:** R = CO₂H

Thesis Title	Chemical Constituents from the Fruits of Garcinia scortechinii
	and Garcinia hanburyi
Author	Miss Yaowapa Sukpondma
Major Program	Organic Chemistry
Academic Year	2004

ABSTRACT

Chemical investigation was divided into two parts. The first part involved the chromatographic separation of the crude methanol extract from the fruits of Garcinia scortechinii. Ten new compounds: two sesquiterpenes (GF1 and GF2), four cagedtetraprenylated xanthones (GF8, GF9, GF15 and GF18) and four rearranged xanthones (GF19, GF20, GF21 and GF22), were isolated along with fourteen known compounds: eleven caged-polyprenylated xanthones [scortechinones A (GF3), B (GF16), C (GF14), D (GF5), E (GF6), F (GF13), H (GF10), I (GF11), L (GF4) M (GF12) and P (GF17)], two biflavonoids [(+)-morelloflavone (GF23) and (+)volkensiflavone (GF24)] and one sesquiterpene [germacra-4(15), 5E, 10(14)-trien-1 β ol (GF7)]. The second part dealt with the investigation of the crude methanol extract from the fruits of *Garcinia hanburyi* using various chromatographic techniques. Five caged-tetraprenylated xanthones, including one new (GF27) and four known compounds [isomoreollin B (GF25), morellin (GF26), moreollic acid (GF28) and morellic acid (GF29)], were obtained. All structures were elucidated by analysis of 1D and 2D NMR spectroscopic data. The ¹³C NMR signals were assigned from DEPT, HMQC and HMBC spectra. For known compounds, their ¹H NMR data and optical rotation were compared with those reported in the literatures.

(8)

GF24: R = H

GF25: $R_1 = \{ \begin{array}{c} & & \\ \\ HO \\ HO \\ \hline \\ & \\ \end{array}, R_2 = CHO, R_3 = Me$ **GF27:** $R_1 = \{ \begin{array}{c} & \\ \\ & \\ \end{array}, R_2 = Me, R_3 = CO_2H \\ \hline \\ & \\ & \\ \end{array}$

GF26: R = CHO **GF29:** R = CO₂H