CHAPTER 1.3

RESULTS AND DISCUSSION

1.3.1 Structural Elucidation of Compounds from the Twigs and Stems of C. serratum

The crude methanol extract from the twigs and stems of *C. serratum* was purified by chromatographic methods to yield four compounds; one steroid (**CS-S1**), one disaccharide (**CS-S2**), one triterpene (**CS-S3**) and one steroid glucoside (**CS-S4**). All structures were determined by 1D and/or 2D NMR spectroscopic data and/or comparison of ¹H and/or ¹³C spectral data with those reported in the literature. The ¹³C NMR signals were assigned from ¹³C, DEPT, HMQC and HMBC spectra.

1.3.1.1 CS-S1: Spinasterol

Compound **CS-S1** was obtained as colourless needles, melting at 156.5-159.5 °C; $[\alpha]_D^{30}$ +10.91°, c = 0.11, CHCl₃. The IR spectrum (Figure 3) exhibited an absorption band for a hydroxyl group at 3454 cm⁻¹. The ¹H NMR spectrum (Figure 4)

(Table 15) of CS-S1 revealed six methyl groups, two tertiary methyl groups as *singlet* at $\delta_{\rm H}$ 0.55 and 0.80 which could be assigned to Me-18 and Me-19, respectively. The signals of three secondary methyl groups were observed as *doublets* at $\delta_{\rm H}$ 1.03 (J = 6.5 Hz), $\delta_{\rm H} 0.80 \ (J = 6.0 \text{ Hz})$ and $\delta_{\rm H} 0.85 \ (J = 6.5 \text{ Hz})$, which were assigned to Me-21, Me-26 and Me-27, respectively. A *triplet* signal of Me-29 at $\delta_{\rm H}$ 0.81 (t, J = 7.5 Hz) belonged to a primary methyl group. Two olefinic-proton resonances at $\delta_{
m H}$ 5.16 (dd, J = 15.5 and 8.5 Hz) and $\delta_{\rm H}$ 5.03 (dd, J = 15.5 and 8.5 Hz) were assigned to the transolefinfc protons, H-22 and H-23, respectively. The remaining olefinic proton appeared at $\delta_{\rm H}$ 5.16 (brm), which could be assigned to H-7. One oxymethine proton was resonated at $\delta_{\rm H}$ 3.61 (*tt*, *J* = 11.0 and 4.5 Hz) with the large coupling constant (*J* = 11.0 Hz) could be assigned to α -H-3. The ¹³C NMR spectrum (Figure 5) (Table 15) recorded in CDCl₃ showed 29 signals for 29 carbon atoms. Analysis of the DEPT spectrum (Figure 6) revealed six methyl carbon atoms (δ_{c} 21.36, 21.10, 18.97, 13.04, 12.25 and 12.03), nine methylene carbon atoms ($\delta_{\rm C}$ 39.42, 37.96, 37.11, 31.45, 29.61, 28.51, 25.39, 23.00 and 21.52), eleven methine carbon atoms ($\delta_{\rm C}$ 138.17, 129.39, 117.44, 71.05, 55.84, 55.10, 51.23, 49.40, 40.84, 40.22 and 31.86) and three quaternary carbon atoms ($\delta_{\rm c}$ 139.55, 43.26 and 34.19). From these results, the remaining sixteen protons of methylene and six methine protons were resonated at $\delta_{_{
m H}}$ 0.81-2.00.

Table 15 The NMR spectral data of compound CS-S1 in CDCl₃

Position	$\delta_{_{ m H}},$ mult., J (Hz)	Type of C	$\delta_{ m c}$	HMBC
1	1.80 (<i>m</i> , 1H); 1.06 (<i>m</i> , 1H)	CH ₂	37.11	C-2, C-5, C-10
2	1.79 (<i>m</i> ,1H); 1.36 (<i>m</i> , 1H)	CH ₂	31.45	C-3
3	3.61 (<i>tt</i> , 11.0, 4.5, 1H)	СН	71.05	C-1
4	1.70 (<i>m</i> , 1H); 1.25 (<i>m</i> , 1H)	CH_2	37.96	C-2, C-3, C-10

Table 15 (continued)

Position	$\delta_{_{ m H}}$, mult., J (Hz)	Type of C	$\delta_{ m c}$	HMBC
5	1.38 (<i>m</i> , 1H)	СН	40.22	
6	1.74 (<i>m</i> , 2H)	CH ₂	29.61	
7	5.16 (<i>brm</i> , 1H)	СН	117.44	
8	-	С	139.55	
9	1.64 (<i>m</i> , 1H)	СН	49.40	
10	-	С	34.19	
11	1.59 (<i>m</i> , 1H); 1.44 (<i>m</i> , 1H)	CH ₂	21.52	C-10, C-12, C-13
12	2.03 (<i>m</i> , 1H); 1.22 (<i>m</i> , 1H)	CH ₂	39.42	C-11, C-13
13	-	С	43.26	
14	1.80 (<i>m</i> , 1H)	СН	55.10	C-7, C-8
15	1.34 (<i>m</i> , 2H)	CH ₂	23.00	
16	1.30 (<i>m</i> , 1H); 1.26 (<i>m</i> , 1H)	CH ₂	28.51	
17	1.24 (<i>m</i> , 1H)	СН	55.84	C-14
18	0.55 (s, 3H)	CH ₃	12.03	C-12, C-13, C-14
19	0.80 (s, 3H)	CH ₃	13.04 ^a	C-1, C-5, C-9, C-10
20	2.00 (<i>m</i> , 1H)	СН	40.84	C-23
21	1.03 (<i>d</i> , 6.5, 3H)	CH ₃	21.36	C-17, C-20, C-22
22	5.16 (<i>dd</i> , 15.5, 8.5, 1H)	СН	138.17	C-17, C-20, C-21, C-23, C-24
23	5.03 (<i>dd</i> , 15.5, 8.5, 1H)	СН	129.39	C-20, C-22, C-24, C-25, C-28
24	1.52 (<i>m</i> , 1H)	СН	51.23	
25	1.52 (<i>m</i> , 1H)	СН	31.86	C-22, C-24, C-26, C-27
26	$0.80 (d, 6.0, 3H)^{b}$	CH ₃	18.97	C-24, C-25
27	$0.85 (d, 6.5, 3H)^{b}$	CH ₃	21.10	C-24, C-25, C-26
28	*	CH ₂	25.39	
29	0.81 (<i>t</i> , 7.5, 3H)	CH ₃	12.25 ^ª	C-24, C-25

^{a, b} Assignment with the same superscript maybe interchange, *not observed

The HMBC spectrum (**Figure 8**) (**Table 15**), Me-21 ($\delta_{\rm H}$ 1.03) showed the correlation to C-17 ($\delta_{\rm C}$ 55.84), C-22 ($\delta_{\rm C}$ 138.17) and C-20 ($\delta_{\rm C}$ 40.84) and H-22 ($\delta_{\rm H}$ 5.16) showed correlation with C-17 ($\delta_{\rm C}$ 55.84), indicating that the side chain in compound **CS-S1** was linked to the C-17 of the main skeleton. In addition, Me-19 ($\delta_{\rm H}$ 0.80) showed correlation with C-1 ($\delta_{\rm C}$ 37.11), C-9 ($\delta_{\rm C}$ 49.40), C-10 ($\delta_{\rm C}$ 34.19) and C-5 ($\delta_{\rm C}$ 40.22), these results confirmed the location of Me-19. Finally, H-14 ($\delta_{\rm H}$ 1.79) showed correlations with C-8 ($\delta_{\rm C}$ 139.55) and C-7 ($\delta_{\rm C}$ 117.44), indicating that the trisubstituted double bond should be located at C-7.

HMBC correlations

Only the relative stereochemistry between the H-3 and H-5 was found to be *cis* by the NOE difference results as no enhancement of H-5 was observed after irradiation at Me-19 (**Figure 9**). At this stage, **CS-S1** might possess the same relative sterochemistry as ether **spinasterol** or **chondrillasterol** which differed from **spinasterol** in the stereochemistry at C-24.

Comparison of ¹³C NMR (**Table 16**) and ¹H NMR (**Table 17**) spectral data of compounds **CS-S1** with **spinasterol** (Kojima, *et al.*, 1990) and **chondrillasterol** (Wandji, *et al.*, 2002) showed similarity, but the differences were found in chemical shift of Me-26 and Me-27. **CS-S1** gave signals for both methyl groups almost identical to those of **spinasterol**. Furthermore, The ¹³C NMR spectral data of **CS-S1** were in

agreement with those spinasterol. Thus, compound CS-S1 was assigned as spinasterol.

 Table 16 Comparison of ¹³C NMR spectral data of compounds CS-S1, spinasterol

 and chondrillasterol

Position	spinasterol ^a	chondrillasterol ^a	CS-S1 ^b
1	37.1	37.1	37.11
2	31.4	26.1	31.45
3	71.0	71.0	71.05
4	38.0	34.2	37.96
5	40.2	40.2	40.22
6	29.6	29.6	29.61
7	117.4	117.4	117.44
8	139.5	139.6	139.55
9	49.4	49.4	49.40
10	34.2	34.2	34.19
11	21.5	21.5	21.52
12	39.4	39.4	39.42
13	43.3	43.3	43.26
14	55.1	55.1	55.10
15	23.0	23.0	23.00

Position	spinasterol ^a	chondrillasterol ^a	CS-S1 ^b
16	28.5	28.5	28.51
17	55.8	55.9	55.84
18	12.0	12.0	12.03
19	13.0	13.0	13.04
20	40.8	40.8	40.84
21	21.4	21.1	21.36
22	138.7	138.2	138.17
23	129.4	129.4	129.39
24	51.2	51.2	51.23
25	31.9	31.9	31.86
26	21.2	19.0	18.97*
27	19.0	21.4	21.10*
28	25.4	25.4	25.39
29	12.3	12.2	12.25

Table 16 (Continued)

^a100 MHz in CDCl₃, ^b75 MHz in CDCl₃, * maybe interchange

Table 17 Comparison of ¹H NMR spectral data of compounds CS-S1, spinasteroland chondrillasterol

Position	$\delta_{_{ m H}}$, mult., J (Hz)				
	spinasterol ^a	chondrillasterol ^b	CS-S1 [°]		
3	3.59 (<i>m</i> , 1H)	-	3.61 (<i>tt</i> , 11.0, 4.5, 1H)		
7	5.15 (<i>m</i> , 1H)	-	5.16 (<i>brm</i> , 1H)		
18	0.55 (s, 3H)	0.55 (s, 3H)	0.55 (s, 3H)		
19	0.88 (s, 3H)	0.80 (s, 3H)	0.80 (s, 3H)		
21	1.02 (<i>d</i> , 6.5, 3H)	1.03 (<i>d</i> , 6.5, 3H)	1.03 (<i>d</i> , 6.5, 3H)		

Table 17 (Continued)

Position	$\delta_{_{ m H}}$, mult., J (Hz)					
	spinasterol ^a	chondrillasterol ^b	CS-S1 [°]			
22	5.15 (<i>dd</i> , 15.0, 9.0, 1H)	5.03 (<i>dd</i> , 7.5, 1H)	5.16 (<i>dd</i> , 15.5, 8.5, 1H)			
23	5.02 (<i>dd</i> , 15.0, 9.0, 1H)	5.16 (<i>dd</i> , 7.5, 1H)	5.03 (<i>dd</i> , 15.5, 8.5, 1H)			
26*	0.85 (<i>d</i> , 6.5, 3H)	0.83 (<i>d</i> , 6.5, 3H)	0.80 (<i>d</i> , 6.0*, 3H)			
27*	0.80 (<i>d</i> , 6.5, 3H)	0.85 (<i>d</i> , 6.3, 3H)	0.85 (<i>d</i> , 6.5*, 3H)			
29	0.80 (<i>t</i> , 7.5, 3H)	0.80 (<i>t</i> , 7.2, 3H)	0.81 (<i>t</i> , 7.5, 3H)			

* maybe interchange, ^a400 MHz in CDCl₃, ^b360 MHz in CDCl₃ (Garg, 1984),

^c300 MHz in CDCl₃

1.3.1.2 CS-S4: Spinasteryl-β-D-glucopyranoside

Compound CS-S4 was obtained as a white solid, melting at 262.4-262.7 °C; $[\alpha]_D^{29}$ -90.00, c = 0.10, CHCl₃. The IR spectrum (**Figure 10**) showed the absorption band for a hydroxyl group at 3410 cm⁻¹. Comparison of the ¹H NMR spectrum (**Figure 11**) (**Table 18**) of compound **CS-S4** with **CS-S1** revealed the same characteristic signals of the sterol unit.; [δ_H 5.21 (1H, dd, J = 15.5 and 9.0 Hz) and δ_H 5.07 (1H, dd, J

= 15.5 and 9.0 Hz) for trans-olefinic protons, H-22 and H-23, respectively, a broad multiplet signal of an olefinic proton at $\delta_{\rm H}$ 5.17 , the signal of oxymethine proton, H-3, in ring A of sterol unit and six methyl groups]. The difference between CS-S4 and CS-S1 was the presence of characteristic signal of a sugar moiety. An anomeric proton at $\delta_{\rm H}$ 4.93 (1H, d, J = 8.0 Hz), was inferred to β -configuration of sugar moiety, based on the value of the coupling constant. Other proton signals of sugar moiety were resonated at $\delta_{\rm H}$ 3.91 (1H, m), $\delta_{\rm H}$ 4.18 (1H, t, J = 8.5 Hz), $\delta_{\rm H}$ 4.13 (1H, t, J = 8.5 Hz), $\delta_{\rm H}$ 3.89 (1H, m), $\delta_{\rm H}$ 4.48 (1H, brd, J =12.0 Hz) and $\delta_{\rm H}$ 4.31 (1H, brdd, J = 12.0 and 5.5 Hz), which were assigned to H-2', H-3', H-4', H-5', H_a -6' and H_b -6', respectively. The proton signals of sugar units were assigned by ¹H-¹H COSY spectrum (Figure 16) (Table 18) and HMBC correlation experiment (Figure 15) (Table 18). From these results, the sugar unit was identified as glucose. The ¹³C NMR spectrum (Figure 12) (Table 18) showed 35 carbon atoms. Six carbon signals were in the glycosidic region corresponding to hexose moiety ($\delta_{\rm H}$ 99.91, 76.05, 75.90, 72.80, 69.43 and 60.61). The remaining 29 carbon signals were due to the steroidal aglycone. Analysis of the DEPT 90° and DEPT 135° spectra of this compound suggested the presence of six methyl carbon atoms ($\delta_{\rm C}$ 19.46, 19.17, 17.05, 10.91, 10.36 and 10.09), nine methylene carbon atoms ($\delta_{\rm C}$ 37.44, 35.13, 32.40, 27.77, 27.69, 26.68, 23.50, 21.12 and 19.52), eleven methine carbon atoms (δ_c 136.42, 127.42, 115.62, 75.03, 53.84, 53.10, 49.27, 47.37, 38.94, 37.97 and 29.96) and three signals for quaternary carbon atom ($\delta_{\!\scriptscriptstyle \rm C}$ 137.29, 41.26 and 32.33). The HMBC spectrum (Figure 15) (Table 18) showed the correlation between the anomeric proton with C-3 ($\delta_{\rm C}$ 75.03), indicating that the glycoside linkage was formed between sugar moiety and steroid at C-3 ($\delta_{\rm C}$ 75.03). On the basis of the evidence described above, the structure of CS-S4 was assigned as spinasteryl- β -Dglucopyranoside.

Position	$\delta_{_{ m H}}$, mult., J (Hz)	Type of C	$\delta_{ m c}$	¹ H- ¹ H COSY	HMBC
1	1.70 (<i>m</i> , 1H); 0.94 (<i>m</i> , 1H)	CH ₂	35.13		
2	H _a : 1.94 (<i>m</i> , 1H)	CH ₂	32.40		C-3, C-5
	H _b : 1.32 (<i>m</i> , 1H)				
3	3.93 (<i>m</i> , 1H)	СН	75.03	H-2 _a , H-2 _b ,	
				H-4 _b	
4	H _a : 2.00 (<i>m</i> , 1H)	CH ₂	27.69		C-6
	H _b : 1.55 (<i>m</i> , 1H)				
5	1.22 (<i>m</i> , 1H)	СН	37.97		C-19
6	1.69 (<i>m</i> , 2H)	CH ₂	27.77		
7	5.17 (<i>brm</i> , 1H)	СН	115.62	Н-6	
8	-	С	137.29		
9	1.60 (<i>m</i> , 1H)	СН	47.37		
10	-	С	32.33		
11	1.55 (<i>m</i> , 1H); 1.43 (<i>m</i> , 1H)	CH ₂	19.52		
12	1.97 (<i>m</i> , 2H)	CH ₂	37.44		C-11
13	-	С	41.26		
14	1.82 (<i>m</i> , 1H)	СН	53.10		
15	1.79 (<i>m</i> , 1H), 1.56 (<i>m</i> , 1H)	CH ₂	21.12		
16	1.30 (<i>m</i> , 2H)	CH ₂	26.68		
17	1.28 (<i>m</i> , 1H)	СН	53.84		C-16, C-20
18	0.58 (s, 3H)	CH ₃	10.09		C-12, C-13, C-14
19	0.72 (s, 3H)	CH ₃	10.91		C-1, C-5, C-9,
					C-10
20	2.06 (<i>m</i> , 1H)	СН	38.94	H-21, H-22	
21	1.08 (<i>d</i> , 6.5, 3H)	CH ₃	19.46	H-20	C-17, C-20, C-22
22	5.21 (<i>dd</i> , 15.5, 9.0, 1H)	СН	136.42	H-20, H-23	C-20, C-23, C-24
23	5.07 (<i>dd</i> , 15.5, 9.0, 1H)	СН	127.42	H-22, H-24	C-20, C-22, C-24

Table 18 The NMR spectral data of compound CS-S4 in pyridine- d_5 +CDCl₃

Table 18 (continued)

Position	$\delta_{_{ m H}}$, mult., J (Hz)	Type of C	$\delta_{ m c}$	¹ H- ¹ H COSY	HMBC
24	1.57 (<i>m</i> , 1H)	СН	49.27		
25	1.56 (<i>m</i> , 1H)	СН	29.96		
26	0.86 (<i>d</i> , 7.0, 3H)	CH ₃	17.05		C-28
27	0.91 (<i>d</i> , 6.5, 3H)	CH ₃	19.17		C-24, C-25, C-26
28	1.42 (<i>m</i> , 2H)	CH ₂	23.50		
29	0.88 (<i>t</i> , 7.5, 3H)	CH ₃	10.36		C-24, C-25
1'	4.93(<i>d</i> , 8.0, 1H)	СН	99.91	H-2'	C-3
2′	3.91 (<i>m</i> , 1H)	СН	72.80	H-1',H-3'	C-3'
3'	4.18 (<i>t</i> , 8.5, 1H)	СН	76.05	H-2', H-4'	C-2′, C-4′
4'	4.13 (<i>t</i> , 8.5, 1H)	СН	69.43	H-3′, H-5′	C-5'
5'	3.89 (<i>m</i> , 1H)	СН	75.90	H-4', H _a -6',	
				H _b -6′	
6'	H _a : 4.48 (<i>brd</i> , 12.0, 1H)	CH ₂	60.61	H-5'	C-5'
	H _b : 4.31 (<i>brdd</i> , 12.0, 5.5, 1H)				

1.3.1.3 CS-S3: Bauer-9-en-3-one

Compound CS-S3 was obtained as a white solid, melting at 199.0-202.0 °C; $[\alpha]_{D}^{30}$ +34.00, c = 0.10, CHCl₃. This compound showed the character of triterpene by giving a purple spot in vanillin sulfuric acid reagent. Its IR spectrum (Figure 17) showed the presence of a carbonyl group at 1709 cm⁻¹. The ¹H NMR spectrum (Figure 18) (Table 19) with the characteristic peaks of the triterpene, demonstrated the presence of six methyl singlets at $\delta_{\rm H}$ 1.07 (2×Me), 1.21, 0.81, 0.79 and 0.77 and two methyl *doublets* at $\delta_{\rm H}$ 0.89 (J = 6.5 Hz) and 0.83 (J = 6.0 Hz). The methylene protons at $\delta_{\rm H}$ 2.72 (1H, ddd, J = 15.5, 13.5 and 6.5 Hz) and $\delta_{\rm H}$ 2.40 (1H, ddd, J = 15.5, 5.5 and 3.5 Hz) which could be assigned to H_a-2 (β H) and H_b-2 (α H), respectively, were shifted to downfield according to the anisotropic effect of the carbonyl group at C-3. The olefinfic proton resonated at $\delta_{\rm H}$ 5.29 (d, J = 6.5 Hz), which could be assigned the position C-11. The ¹³C NMR spectrum (Figure 19) (Table 19) showed 30 signals for 30 carbon atoms. The DEPT 90° and DEPT 135° spectrua (Figure 20) indicated that the existence of eight methyl carbon atoms ($\delta_{\rm C}$ 25.53, 22.99, 22.10, 22.04, 21.64, 16.95, 15.29 and 13.98), nine methylene carbon atoms (δ_{c} 36.64, 36.07, 35.86, 34.89, 29.62, 28.18, 26.27, 22.57 and 20.15), six methine carbon atoms ($\delta_{\rm c}$ 115.61, 59.59, 53.26, 51.99, 41.04 and 30.77) and seven quaternary carbon atoms ($\delta_{\rm C}$ 217.30, 147.41,

47.64, 42.80, 39.30, 38.18 and 36.75). The HMBC spectrum (Figure 22) (Table 19) showed the correlations of Me-25 ($\delta_{\rm H}$ 1.21) with C-1 ($\delta_{\rm C}$ 36.64), C-5 ($\delta_{\rm C}$ 53.26), C-9 $(\delta_{\rm C} 147.41)$ and C-10 $(\delta_{\rm C} 39.30)$; olefinic proton H-11 $(\delta_{\rm H} 5.29)$ with C-8 $(\delta_{\rm C} 41.04)$, C-10 ($\delta_{\rm C}$ 39.30) and C-13 ($\delta_{\rm C}$ 36.75). These results confirmed the location of Me-25 and olefinic proton H-11. The correlations of H-1 ($\delta_{\rm H}$ 2.09), H-2 ($\delta_{\rm H}$ 2.72 and 2.40), Me-23 ($\delta_{\rm H}$ 1.07) and Me-24 ($\delta_{\rm H}$ 1.07) with carbonyl carbon, indicated that the carbonyl carbon was located at C-3 ($\delta_{\rm C}$ 217.30). In addition, the HMBC spectrum showed the correlations of Me-26 ($\delta_{\rm H}$ 0.79) with C-18 ($\delta_{\rm C}$ 51.99); Me-27 ($\delta_{\rm H}$ 0.81) with C-12 ($\delta_{\rm C}$ 29.62) and C-18 ($\delta_{\rm C}$ 51.99); Me-28 ($\delta_{\rm H}$ 0.77) with C-17 (42.80), C-18 ($\delta_{\rm C}$ 51.99) and C-19 ($\delta_{\rm C}$ 59.59); Me-29 ($\delta_{\rm H}$ 0.83) with C-19 ($\delta_{\rm C}$ 59.59), C-20 ($\delta_{\rm C}$ 30.77) and C-30 ($\delta_{\rm C}$ 22.10) and Me-30 ($\delta_{\rm H}$ 0.89) with C-19 ($\delta_{\rm C}$ 59.59), C-20 ($\delta_{\rm C}$ 30.77) and C-29 ($\delta_{\rm C}$ 22.99). These results confirmed the location of Me-26, Me-27, Me-28, Me-29 and Me-30, respectively. The relative stereochemistry of CS-S3 was established by the NOE difference results. Firstly, the signals of Me-24 ($\delta_{\rm H}$ 1.07) and Me-25 ($\delta_{\rm H}$ 1.21) were enhanced when the H_a-2 ($\delta_{\rm H}$ 2.72) was irradiated (Figure 24). Secondly, the enhancement of Me-25 ($\delta_{\rm H}$ 1.21) and Me-26 ($\delta_{\rm H}$ 0.79) signals by the irradiation of H-8 ($\delta_{\rm H}$ 2.07) (Figure 23). These results indicated that H_a-2, Me-24, Me-25, H-8 and Me-26 located on the same side of the molecule, the β -side in CS-S3. Other relative stereochemistry could not be assigned by the NOE experiment. However, it is believed that **CS-S3** possessed the same relative stereochemistry as bauerene skeleton. On the basis of the evidence described above, the structure of CS-S3 was assigned to Bauer-9-en-3-one.

Position	$\delta_{\!\scriptscriptstyle\mathrm{H}}$, mult., J (Hz)	Type of C	$\delta_{\!\scriptscriptstyle m c}$	HMBC
1	2.09 (<i>ddd</i> , 13.5, 6.5, 3.5, 1H);	CH ₂	36.64	C-3, C-5, C-9, C-10
	1.78 (<i>m</i> , 1H)			
2	H _a : 2.72 (<i>ddd</i> , 15.5, 13.5, 6.5, 1H);	CH ₂	34.89	C-1, C-3, C-10
	H _b : 2.40 (<i>ddd</i> , 15.5, 5.5, 3.5, 1H)			
3	-	С	217.30	
4	-	С	47.64	
5	1.35 (<i>m</i> , 1H)	СН	53.26	C-4, C-10, C-25
6	1.46 (<i>m</i> , 1H); 1.38 (<i>m</i> , 1H)	CH ₂	35.86	
7	1.23 (<i>m</i> , 2H)	CH ₂	28.18	
8	2.07 (<i>m</i> , 1H)	СН	41.04	C-5, C-9
9	-	С	147.41	
10	-	С	39.30	
11	5.29 (<i>d</i> , 6.5, 1H)	СН	115.61	C-8, C-10, C-13
12	1.44 (<i>m</i> , 1H); 1.26 (<i>m</i> , 1H)	CH ₂	29.62	C-9, C-11, C-14
13	-	С	36.75	
14	-	С	38.18	
15	1.34 (<i>m</i> , 1H); 1.30 (<i>m</i> , 1H)	CH_2	20.15	
16	1.60 (<i>m</i> , 2H)	CH ₂	22.57	C-13, C-17, C-19,
				C-27, C-28
17	-	С	42.80	
18	1.60 (<i>m</i> , 1H)	СН	51.99	
19	0.98 (q, 9.5, 1H)	СН	59.59	
20	*	СН	30.77	
21	1.86 (<i>m</i> , 1H); 1.24 (<i>m</i> , 1H)	CH ₂	26.27	
22	1.70 (<i>m</i> , 2H)	CH ₂	36.07	
23	1.07 (s, 3H)	CH ₃	22.04	C-3, C-4, C-5, C-24
24	1.07 (s, 3H)	CH ₃	25.53	C-3, C-4, C-5, C-23

Table 19 The NMR spectral data of compound CS-S3 in $CDCl_3$

 Table 19 (continued)

Position	$\delta_{_{ m H}}$, mult., J (Hz)	Type of C	$\delta_{ m c}$	HMBC
25	1.21 (s, 3H)	CH ₃	21.64	C-1, C-5, C-9, C-10
26	0.79 (s, 3H)	CH ₃	15.29	C-18
27	0.81 (s, 3H)	CH ₃	16.95	C-12, C-18
28	0.77 (s, 3H)	CH ₃	13.98	C-17, C-18, C-19
29	0.83 (<i>d</i> , 6.0, 3H)	CH ₃	22.99	C-19, C-20, C-30
30	0.89 (<i>d</i> , 6.5, 3H)	CH ₃	22.10	C-19, C-20, C-29

*not observed

1.3.1.4 CS-S2: Sucrose

Compound **CS-S2** was obtained as colourless crystals, melting at 175.2-176.9 ° C; $[\alpha]_D^{28}$ +78.37, c = 0.25, pyridine. The IR spectrum (**Figure 25**) exhibited an absorption band for a hydroxyl group at 3373 cm⁻¹. The ¹H NMR spectrum (**Figure 26**) (**Table 20**) recorded in pyridine- d_5 showed typical signals of two sugar units. A *doublet* signal with a small coupling constant at $\delta_H 5.94$ (J = 4.0 Hz) was assignable to the anomeric proton of the sugar unit. According to chemical shifts and splitting pattern of this proton as well as the presence of oxymethylene protons at $\delta_H 4.28$ (dd, J= 12.0 and 2.5 Hz, 1H) and 4.14 (dd, J = 12.0 and 4.5 Hz, 1H), characteristic signals of H-6 of glucose unit. Four oxymethylene protons at $\delta_H 4.07$ (s, 2H), $\delta_H 4.05$ (1H, d, J =12.0 Hz, 1H) and $\delta_H 4.13$ (1H, d, J = 12.0 Hz, 1H) were attributed to H-1' and H-6' of

the fructose unit, respectively. Thus, two sugar units were determined as glucose and fructose. The proton signals of glucose and fructose units were assigned by ${}^{1}H^{-1}H$ COSY spectrum (Figure 31) (Table 20) and HMBC correlation experiment (Figure 30) (Table 20). The ¹³C NMR spectrum (Figure 27) (Table 20) showed 12 carbon atoms. Analysis of the DEPT 90° and DEPT 135° spectra of this compound suggested the presence of three methylene carbon atoms ($\delta_{\rm C}$ 62.90, 60.25 and 60.12), eight methine carbon atoms (δ_{c} 91.31, 82.03, 78.25, 73.09, 72.67, 72.63, 70.98 and 69.40) and one quaternary carbon atom ($\delta_{\rm C}$ 103.35). These signals corresponded to signals of sucrose. This conclusion was confirmed by acetylation reaction of CS-S2. The ¹H NMR spectrum of its acetate showed the signals of sucrose unit together with methyl protons of eight acetyl groups [$\delta_{\rm H}$ 2.18, 2.12 (2xMe), 2.11, 2.10 (2xMe), 2.05 and 2.02] and the ¹³C NMR spectral data (Figure 34) (Table 21)exhibited eight carbonyl carbons ($\delta_{\rm C}$ 170.68, 170.47, 170.08 (3xC), 169.90, 169.65 and 169.50) together with eight methine carbons [δ_{c} 89.89, 79.07, 75.65, 74.94, 70.23, 69.59, 68.46 and 68.18], three methylene carbons [$\delta_{\rm C}$ 63.61, 62.84 and 61.71] and one sp^3 quaternary carbon atom ($\delta_{
m c}$ 103.96). This was further confirmed by comparing the NMR data of AcCS-S2 with those of previousely reported for sucrose octaacetate (Nishida, et al., 1986) (Table 21). On the above accumulated evidence, the structure of AcCS-S2 was established as sucrose octaacetate.

Table 20 The NMR spectral data of compound CS-S2 in pyridine- d_5

Position	$\delta_{\!\scriptscriptstyle\mathrm{H}}$, mult., J (Hz)	Type of C	$\delta_{ m c}$	¹ H- ¹ H COSY	HMBC
1	5.94 (<i>d</i> , 4.0, 1H)	СН	91.31	Н-2	C-3
2	3.98 (<i>dd</i> , 9.5, 4.0, 1H)	СН	70.98	H-1, H-3	
3	4.39 (<i>t</i> , 9.5, 1H)	СН	72.63	H-2, H-4	C-2, C-4
4	3.97 (<i>t</i> , 9.5, 1H)	СН	69.40	H-3, H-5	C-3

Table 20 (continued)

Position	$\delta_{_{ m H}}$, mult., J (Hz)	Type of C	$\delta_{ m c}$	¹ H- ¹ H COSY	HMBC
5	4.46 (<i>ddd</i> , 9.5, 4.5, 2.5, 1H)	СН	72.67	H-4, H _b -6	
6	H _a : 4.28 (<i>dd</i> , 12.0, 2.5, 1H);	CH ₂	60.12 ^ª	H _b -6	
	H _b : 4.14 (<i>dd</i> , 12.0, 4.5, 1H)			H-5, H _a -6	
1 ′	4.07 (s, 2H)	CH_2	60.25 ^a		C-5'
2'	-	С	103.35		
3'	4.67 (<i>d</i> , 8.0, 1H)	СН	78.25	H-4 ′	
4 ′	4.78 (<i>t</i> , 8.0, 1H)	СН	73.09	H-3′, H-5′	C-4′, C-6′
5'	4.24 (<i>td</i> , 8.0, 4.0, 1H)	СН	82.03	H-4', H_{a} -6'	C-3′, C-1′
6'	H _a : 4.05 (<i>d</i> , 12.0, 1H);	CH ₂	62.90	H-5'	C-2', C-3'
	H _b : 4.13 (<i>d</i> , 12.0, 1H)				

^amaybe interchange

Table 21	The NMR spectral	data of compounds	AcCS-S2 and sucrose octaacetate

Position	AcCS-S2		sucrose octaacetate	
	$\delta_{_{ m H}},$ mult., J (Hz)	$\delta_{\rm c}$ (C-Type)	$\delta_{\scriptscriptstyle \mathrm{H}}$	$\delta_{\rm c}$ (C-Type)
1	5.65 (<i>d</i> , 3.6, 1H)	89.89 (CH)	5.69 (1H)	89.93 (CH)
2	4.83 (<i>dd</i> , 10.2, 3.6, 1H)	70.23 (CH)	4.87 (1H)	70.26 (CH)
3	5.40 (<i>t</i> , 10.2, 1H)	69.59 (CH)	5.44 (1H)	69.61 (CH)
4	5.04 (<i>t</i> , 10.2, 1H)	68.18 (CH)	5.08 (1H)	68.17 (CH)
5	4.26 (<i>m</i> , 1H)	68.46 (CH)	4.28 (1H)	68.50 (CH)
6	4.14 (<i>m</i> , 1H), 4.28 (<i>m</i> , 1H)	61.71 (CH ₂)	4.14 (1H), 4.28 (1H)	61.75 (CH ₂)
1'	4.15 (s, 2H)	62.84 (CH ₂)	4.17 (2H)	62.85 (CH ₂)
2'	-	103.96 (C)	-	104.02 (C)
3'	5.42 (<i>d</i> , 5.7, 1H)	75.65 (CH)	5.47 (1H)	75.68 (CH)
4'	5.33 (<i>t</i> , 5.7, 1H)	74.94 (CH)	5.36 (1H)	74.98 (CH)

Table 21	(continued)
----------	-------------

Position	AcCS-S2		sucrose octaacetate	
	$\delta_{_{ m H}},$ mult., J (Hz)	$\delta_{\rm c}$ (C-Type)	$\delta_{\scriptscriptstyle \mathrm{H}}$	$\delta_{\rm C}$ (C-Type)
5'	4.18 (<i>m</i> , 1H)	79.07 (CH)	4.21 (1H)	79.14 (CH)
6'	4.31 (<i>dd</i> , 12.0, 4.8, 2H)	63.61 (CH ₂)	4.35 (1H), 4.29 (1H)	63.63 (CH ₂)
COCH ₃		170.68 (C)		170.07 (C)
COCH ₃		170.47 (C)		170.01 (C)
COCH ₃		170.08 (3xC)		169.50 (C)
COCH ₃		169.90 (C)		170.66 (C)
COCH ₃		190.65 (C)		170.09 (C)
COCH ₃		169.50 (C)		169.65 (C)
COCH ₃				169.88 (C)
COCH ₃				170.46 (C)
CO <u>CH</u> ₃	2.10 (s, 3H)	20.60	2.10 (3H)	20.64 (CH ₃)
CO <u>CH</u> ₃	2.02 (s, 3H)	(8xCH ₃)	2.02 (3H)	20.66 (CH ₃)
CO <u>CH</u> ₃	2.05 (s, 3H)		2.05 (3H)	20.61 (CH ₃)
CO <u>CH</u> ₃	2.10 (s, 3H)		2.10 (3H)	20.58 (CH ₃)
CO <u>CH</u> ₃	2.12 (s, 3H)		2.12 (3H)	20.69 (CH ₃)
CO <u>CH</u> ₃	2.18 (s, 3H)		2.18 (3H)	20.56 (CH ₃)
CO <u>CH</u> ₃	2.11 (s, 3H)		2.11 (3H)	20.72 (CH ₃)
CO <u>CH</u> ₃	2.12 (s, 3H)		2.12 (3H)	20.63 (CH ₃)