CHAPTER 1.3

RESULTS AND DISCUSSION

1.3.1 Structural Elucidation of Compounds from the Twigs and Stems of

 C. serratumThe crude methanol extract from the twigs and stems of C. serratum was purified by chromatographic methods to yield four compounds; one steroid (CS-S1), one disaccharide (CS-S2), one triterpene (CS-S3) and one steroid glucoside (CS-S4). All structures were determined by 1D and/or 2D NMR spectroscopic data and/or comparison of ${ }^{1} \mathrm{H}$ and/or ${ }^{13} \mathrm{C}$ spectral data with those reported in the literature. The ${ }^{13} \mathrm{C}$ NMR signals were assigned from ${ }^{13} \mathrm{C}$, DEPT, HMQC and HMBC spectra.

1.3.1.1 CS-S1: Spinasterol

Compound CS-S1 was obtained as colourless needles, melting at 156.5-159.5 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{30}+10.91^{\circ}, \mathrm{c}=0.11, \mathrm{CHCl}_{3}$. The IR spectrum (Figure 3) exhibited an absorption band for a hydroxyl group at $3454 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 4)
(Table 15) of CS-S1 revealed six methyl groups, two tertiary methyl groups as singlet at $\delta_{\mathrm{H}} 0.55$ and 0.80 which could be assigned to $\mathrm{Me}-18$ and $\mathrm{Me}-19$, respectively. The signals of three secondary methyl groups were observed as doublets at $\delta_{\mathrm{H}} 1.03(J=6.5$ $\mathrm{Hz}), \delta_{\mathrm{H}} 0.80(J=6.0 \mathrm{~Hz})$ and $\delta_{\mathrm{H}} 0.85(J=6.5 \mathrm{~Hz})$, which were assigned to Me-21, Me-26 and Me-27, respectively. A triplet signal of Me-29 at $\delta_{\mathrm{H}} 0.81(t, J=7.5 \mathrm{~Hz})$ belonged to a primary methyl group. Two olefinic-proton resonanecs at $\delta_{\mathrm{H}} 5.16$ ($d d, J$ $=15.5$ and 8.5 Hz$)$ and $\delta_{\mathrm{H}} 5.03(d d, J=15.5$ and 8.5 Hz$)$ were assigned to the transolefinfc protons, $\mathrm{H}-22$ and $\mathrm{H}-23$, respectively. The remaining olefinic proton appeared at $\delta_{\mathrm{H}} 5.16(\mathrm{brm})$, which could be assigned to $\mathrm{H}-7$. One oxymethine proton was resonated at $\delta_{\mathrm{H}} 3.61(t t, J=11.0$ and 4.5 Hz$)$ with the large coupling constant $(J=11.0$ Hz) could be assigned to $\alpha-\mathrm{H}-3$. The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 5) (Table 15) recorded in CDCl_{3} showed 29 signals for 29 carbon atoms. Analysis of the DEPT spectrum (Figure 6) revealed six methyl carbon atoms ($\delta_{\mathrm{C}} 21.36,21.10,18.97,13.04$, 12.25 and 12.03), nine methylene carbon atoms ($\delta_{\mathrm{C}} 39.42,37.96,37.11,31.45,29.61$, 28.51, 25.39, 23.00 and 21.52), eleven methine carbon atoms (δ_{C} 138.17, 129.39, $117.44,71.05,55.84,55.10,51.23,49.40,40.84,40.22$ and 31.86$)$ and three quaternary carbon atoms $\left(\delta_{\mathrm{C}} 139.55,43.26\right.$ and 34.19$)$. From these results, the remaining sixteen protons of methylene and six methine protons were resonated at δ_{H} 0.81-2.00.

Table 15 The NMR spectral data of compound CS-S1 in CDCl_{3}

Position	$\boldsymbol{\delta}_{\mathrm{H}}$, mult., $J(\mathrm{~Hz})$	Type of C	$\boldsymbol{\delta}_{\mathrm{C}}$	HMBC
1	$1.80(m, 1 \mathrm{H}) ; 1.06(m, 1 \mathrm{H})$	CH_{2}	37.11	$\mathrm{C}-2, \mathrm{C}-5, \mathrm{C}-10$
2	$1.79(m, 1 \mathrm{H}) ; 1.36(m, 1 \mathrm{H})$	CH_{2}	31.45	$\mathrm{C}-3$
3	$3.61(t t, 11.0,4.5,1 \mathrm{H})$	CH	71.05	$\mathrm{C}-1$
4	$1.70(m, 1 \mathrm{H}) ; 1.25(m, 1 \mathrm{H})$	CH_{2}	37.96	$\mathrm{C}-2, \mathrm{C}-3, \mathrm{C}-10$

Table 15 (continued)

Position	δ_{H}, mult., $J(\mathrm{~Hz})$	Type of C	$\delta_{\text {C }}$	HMBC
5	1.38 (m, 1H)	CH	40.22	
6	1.74 (m, 2H)	CH_{2}	29.61	
7	5.16 (brm, 1H)	CH	117.44	
8	-	C	139.55	
9	1.64 (m, 1H)	CH	49.40	
10	-	C	34.19	
11	1.59 (m, 1H); 1.44 (m, 1H)	CH_{2}	21.52	C-10, C-12, C-13
12	2.03 ($m, 1 \mathrm{H}) ; 1.22(m, 1 \mathrm{H})$	CH_{2}	39.42	C-11, C-13
13	-	C	43.26	
14	1.80 (m, 1H)	CH	55.10	C-7, C-8
15	1.34 (m, 2H)	CH_{2}	23.00	
16	$1.30(m, 1 \mathrm{H}) ; 1.26(m, 1 \mathrm{H})$	CH_{2}	28.51	
17	1.24 ($m, 1 \mathrm{H}$)	CH	55.84	C-14
18	0.55 ($s, 3 \mathrm{H})$	CH_{3}	12.03	C-12, C-13, C-14
19	0.80 ($s, 3 \mathrm{H})$	CH_{3}	$13.04{ }^{\text {a }}$	C-1, C-5, C-9, C-10
20	2.00 ($m, 1 \mathrm{H}$)	CH	40.84	C-23
21	1.03 (d, 6.5, 3H)	CH_{3}	21.36	C-17, C-20, C-22
22	5.16 (dd , 15.5, 8.5, 1H)	CH	138.17	C-17, C-20, C-21, C-23, C-24
23	5.03 (dd, 15.5, 8.5, 1H)	CH	129.39	C-20, C-22, C-24, C-25, C-28
24	1.52 ($m, 1 \mathrm{H}$)	CH	51.23	
25	$1.52(\mathrm{~m}, 1 \mathrm{H})$	CH	31.86	C-22, C-24, C-26, C-27
26	$0.80(d, 6.0,3 \mathrm{H})^{\text {b }}$	CH_{3}	18.97	C-24, C-25
27	$0.85(d, 6.5,3 \mathrm{H})^{\text {b }}$	CH_{3}	21.10	C-24, C-25, C-26
28	*	CH_{2}	25.39	
29	$0.81(t, 7.5,3 \mathrm{H})$	CH_{3}	$12.25{ }^{\text {a }}$	C-24, C-25

[^0]The HMBC spectrum (Figure 8) (Table 15), Me-21 ($\delta_{\mathrm{H}} 1.03$) showed the correlation to $\mathrm{C}-17\left(\delta_{\mathrm{C}} 55.84\right), \mathrm{C}-22\left(\delta_{\mathrm{C}} 138.17\right)$ and $\mathrm{C}-20\left(\delta_{\mathrm{C}} 40.84\right)$ and $\mathrm{H}-22\left(\delta_{\mathrm{H}}\right.$ 5.16) showed correlation with $\mathrm{C}-17\left(\delta_{\mathrm{C}} 55.84\right)$, indicating that the side chain in compound CS-S1 was linked to the $\mathrm{C}-17$ of the main skeleton. In addition, $\mathrm{Me}-19\left(\delta_{\mathrm{H}}\right.$ $0.80)$ showed correlation with $\mathrm{C}-1\left(\delta_{\mathrm{C}} 37.11\right)$, $\mathrm{C}-9\left(\delta_{\mathrm{C}} 49.40\right), \mathrm{C}-10\left(\delta_{\mathrm{C}} 34.19\right)$ and $\mathrm{C}-5$ ($\delta_{\mathrm{C}} 40.22$), these results confirmed the location of Me-19. Finally, $\mathrm{H}-14\left(\delta_{\mathrm{H}} 1.79\right)$ showed correlations with $\mathrm{C}-8\left(\delta_{\mathrm{C}} 139.55\right)$ and C-7 ($\left.\delta_{\mathrm{C}} 117.44\right)$, indicating that the trisubstituted double bond should be located at C-7.

HMBC correlations

Only the relative stereochemistry between the $\mathrm{H}-3$ and $\mathrm{H}-5$ was found to be cis by the NOE difference results as no enhancement of $\mathrm{H}-5$ was observed after irradiation at Me-19 (Figure 9). At this stage, CS-S1 might possess the same relative sterochemistry as ether spinasterol or chondrillasterol which differed from spinasterol in the stereochemistry at C-24.

Comparison of ${ }^{13} \mathrm{C}$ NMR (Table 16) and ${ }^{1} \mathrm{H}$ NMR (Table 17) spectral data of compounds CS-S1 with spinasterol (Kojima, et al., 1990) and chondrillasterol (Wandji, et al., 2002) showed similarity, but the differences were found in chemical shift of Me-26 and Me-27. CS-S1 gave signals for both methyl groups almost identical to those of spinasterol. Furthermore, The ${ }^{13} \mathrm{C}$ NMR spectral data of CS-S1 were in
agreement with those spinasterol. Thus, compound CS-S1 was assigned as spinasterol.

Table 16 Comparison of ${ }^{13} \mathrm{C}$ NMR spectral data of compounds CS-S1, spinasterol and chondrillasterol

Position	spinasterol $^{\mathrm{a}}$	chondrillasterol $^{\mathrm{a}}$	CS-S1 $^{\mathrm{b}}$
1	37.1	37.1	37.11
2	31.4	26.1	31.45
3	71.0	71.0	71.05
4	38.0	34.2	37.96
5	40.2	40.2	40.22
6	29.6	29.6	29.61
7	117.4	117.4	117.44
9	499.5	139.6	139.55
10	34.2	49.4	49.40
11	21.5	34.2	34.19
12	39.4	39.4	21.52
13	55.1	43.3	39.42
14	23.0	23.1	43.26
15		55.10	

Table 16 (Continued)

Table 17 Comparison of ${ }^{1} \mathrm{H}$ NMR spectral data of compounds CS-S1, spinasterol and chondrillasterol

Position	δ_{H}, mult., $J(\mathrm{~Hz})$		
	spinasterol ${ }^{\text {a }}$	chondrillasterol ${ }^{\text {b }}$	CS-S1 ${ }^{\text {c }}$
3	3.59 (m, 1H)	-	3.61 (tt, 11.0, 4.5, 1H)
7	5.15 (m, 1H)	-	5.16 (brm, 1H)
18	0.55 (s, 3H)	0.55 ($\mathrm{s}, 3 \mathrm{H}$)	0.55 ($s, 3 \mathrm{H})$
19	0.88 (s, 3H)	0.80 ($s, 3 \mathrm{H}$)	0.80 ($s, 3 \mathrm{H})$
21	$1.02(d, 6.5,3 \mathrm{H})$	1.03 (d, 6.5, 3H)	1.03 (d, 6.5, 3H)

Table 17 (Continued)

Position	δ_{H}, mult., $^{\|c\|} J(\mathrm{~Hz})$		
	spinasterol $^{\mathrm{a}}$	chondrillasterol $^{\mathrm{b}}$	CS-S1 $^{\mathrm{c}}$
22	$5.15(d d, 15.0,9.0,1 \mathrm{H})$	$5.03(d d, 7.5,1 \mathrm{H})$	$5.16(d d, 15.5,8.5,1 \mathrm{H})$
23	$5.02(d d, 15.0,9.0,1 \mathrm{H})$	$5.16(d d, 7.5,1 \mathrm{H})$	$5.03(d d, 15.5,8.5,1 \mathrm{H})$
26^{*}	$0.85(d, 6.5,3 \mathrm{H})$	$0.83(d, 6.5,3 \mathrm{H})$	$0.80\left(d, 6.0^{*}, 3 \mathrm{H}\right)$
27^{*}	$0.80(d, 6.5,3 \mathrm{H})$	$0.85(d, 6.3,3 \mathrm{H})$	$0.85\left(d, 6.5^{*}, 3 \mathrm{H}\right)$
29	$0.80(t, 7.5,3 \mathrm{H})$	$0.80(t, 7.2,3 \mathrm{H})$	$0.81(t, 7.5,3 \mathrm{H})$

* maybe interchange, ${ }^{\mathrm{a}} 400 \mathrm{MHz}$ in $\mathrm{CDCl}_{3},{ }^{\mathrm{b}} 360 \mathrm{MHz}$ in CDCl_{3} (Garg, 1984),
${ }^{c} 300 \mathrm{MHz}$ in CDCl_{3}

1.3.1.2 CS-S4: Spinasteryl- β-D-glucopyranoside

Compound CS-S4 was obtained as a white solid, melting at $262.4-262.7^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{29}-90.00, \mathrm{c}=0.10, \mathrm{CHCl}_{3}$. The IR spectrum (Figure 10) showed the absorption band for a hydroxyl group at $3410 \mathrm{~cm}^{-1}$. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 11) (Table 18) of compound CS-S4 with CS-S1 revealed the same characteristic signals of the sterol unit.; $\left[\delta_{\mathrm{H}} 5.21(1 \mathrm{H}, d d, J=15.5\right.$ and 9.0 Hz$)$ and $\delta_{\mathrm{H}} 5.07(1 \mathrm{H}, d d, J$
$=15.5$ and 9.0 Hz) for trans-olefinic protons, $\mathrm{H}-22$ and $\mathrm{H}-23$, respectively, a broad multiplet signal of an olefinic proton at $\delta_{\mathrm{H}} 5.17$, the signal of oxymethine proton, $\mathrm{H}-3$, in ring A of sterol unit and six methyl groups]. The difference between CS-S4 and CSS1 was the presence of characteristic signal of a sugar moiety. An anomeric proton at $\delta_{\mathrm{H}} 4.93(1 \mathrm{H}, d, J=8.0 \mathrm{~Hz})$, was infered to β-configuration of sugar moiety, based on the value of the coupling constant. Other proton signals of sugar moiety were resonated at $\delta_{\mathrm{H}} 3.91(1 \mathrm{H}, m), \delta_{\mathrm{H}} 4.18(1 \mathrm{H}, t, J=8.5 \mathrm{~Hz}), \delta_{\mathrm{H}} 4.13(1 \mathrm{H}, t, J=8.5 \mathrm{~Hz})$, $\delta_{\mathrm{H}} 3.89(1 \mathrm{H}, m), \delta_{\mathrm{H}} 4.48(1 \mathrm{H}, b r d, J=12.0 \mathrm{~Hz})$ and $\delta_{\mathrm{H}} 4.31(1 \mathrm{H}, b r d d, J=12.0$ and 5.5 Hz), which were assigned to $\mathrm{H}-2^{\prime}, \mathrm{H}-3^{\prime}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime}, \mathrm{H}_{\mathrm{a}}-6^{\prime}$ and $\mathrm{H}_{\mathrm{b}}-6^{\prime}$, respectively. The proton signals of sugar units were assigned by ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum (Figure 16) (Table 18) and HMBC correlation experiment (Figure 15) (Table 18). From these results, the sugar unit was identified as glucose. The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 12) (Table 18) showed 35 carbon atoms. Six carbon signals were in the glycosidic region corresponding to hexose moiety ($\delta_{\mathrm{H}} 99.91,76.05,75.90,72.80,69.43$ and 60.61). The remaining 29 carbon signals were due to the steroidal aglycone. Analysis of the DEPT 90° and DEPT 135° spectra of this compound suggested the presence of six methyl carbon atoms ($\delta_{\mathrm{C}} 19.46,19.17,17.05,10.91,10.36$ and 10.09), nine methylene carbon atoms ($\delta_{\mathrm{C}} 37.44,35.13,32.40,27.77,27.69,26.68,23.50,21.12$ and 19.52), eleven methine carbon atoms ($\delta_{\mathrm{C}} 136.42,127.42,115.62,75.03,53.84,53.10,49.27,47.37$, 38.94, 37.97 and 29.96) and three signals for quaternary carbon atom ($\delta_{\mathrm{C}} 137.29$, 41.26 and 32.33). The HMBC spectrum (Figure 15) (Table 18) showed the correlation between the anomeric proton with $\mathrm{C}-3\left(\delta_{\mathrm{C}} 75.03\right)$, indicating that the glycoside linkage was formed between sugar moiety and steroid at $\mathrm{C}-3\left(\delta_{\mathrm{C}} 75.03\right)$. On the basis of the evidence described above, the structure of CS-S4 was assigned as spinasteryl- β-Dglucopyranoside.

Table 18 The NMR spectral data of compound CS-S4 in pyridine- $d_{5}+\mathrm{CDCl}_{3}$

Position	δ_{H}, mult., $J(\mathrm{~Hz})$	Type of C	$\delta_{\text {C }}$	${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY	HMBC
1	1.70 (m, 1H); 0.94 ($\mathrm{m}, 1 \mathrm{H}$)	CH_{2}	35.13		
2	$\mathrm{H}_{\mathrm{a}}: 1.94(\mathrm{~m}, 1 \mathrm{H})$	CH_{2}	32.40		C-3, C-5
	$\mathrm{H}_{\mathrm{b}}: 1.32(\mathrm{~m}, 1 \mathrm{H})$				
3	3.93 (m, 1H)	CH	75.03	$\mathrm{H}-2{ }_{\mathrm{a}}, \mathrm{H}-2_{\mathrm{b}}$,	
				$\mathrm{H}-4_{\mathrm{b}}$	
4	$\mathrm{H}_{\mathrm{a}}: 2.00(\mathrm{~m}, 1 \mathrm{H})$	CH_{2}	27.69		C-6
	$\mathrm{H}_{\mathrm{b}}: 1.55(\mathrm{~m}, 1 \mathrm{H})$				
5	1.22 (m, 1H)	CH	37.97		C-19
6	1.69 (m, 2H)	CH_{2}	27.77		
7	5.17 (brm, 1H)	CH	115.62	H-6	
8	-	C	137.29		
9	1.60 ($m, 1 \mathrm{H}$)	CH	47.37		
10	-	C	32.33		
11	1.55 (m, 1H); 1.43 ($\mathrm{m}, 1 \mathrm{H}$)	CH_{2}	19.52		
12	1.97 (m, 2H)	CH_{2}	37.44		C-11
13	-	C	41.26		
14	1.82 (m, 1H)	CH	53.10		
15	$1.79(m, 1 H), 1.56(m, 1 H)$	CH_{2}	21.12		
16	1.30 (m, 2H)	CH_{2}	26.68		
17	1.28 (m, 1H)	CH	53.84		C-16, C-20
18	0.58 ($s, 3 \mathrm{H}$)	CH_{3}	10.09		C-12, C-13, C-14
19	0.72 ($s, 3 \mathrm{H}$)	CH_{3}	10.91		C-1, C-5, C-9,
					C-10
20	2.06 (m, 1H)	CH	38.94	H-21, H-22	
21	1.08 (d, 6.5, 3H)	CH_{3}	19.46	H-20	C-17, C-20, C-22
22	5.21 (dd, 15.5, 9.0, 1H)	CH	136.42	H-20, H-23	C-20, C-23, C-24
23	5.07 (dd, 15.5, 9.0, 1H)	CH	127.42	H-22, H-24	C-20, C-22, C-24

Table 18 (continued)

Position	δ_{H}, mult., ${ }^{\text {(}}$ (Hz)	Type of C	$\delta_{\text {c }}$	${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H} \operatorname{COSY}$	HMBC
24	1.57 ($m, 1 \mathrm{H}$)	CH	49.27		
25	1.56 ($m, 1 \mathrm{H}$)	CH	29.96		
26	0.86 (d, 7.0, 3H)	CH_{3}	17.05		C-28
27	0.91 (d, 6.5, 3H)	CH_{3}	19.17		C-24, C-25, C-26
28	1.42 ($m, 2 \mathrm{H}$)	CH_{2}	23.50		
29	0.88 (t, 7.5, 3H)	CH_{3}	10.36		C-24, C-25
1^{\prime}	4.93 (d, 8.0, 1H)	CH	99.91	H-2 ${ }^{\prime}$	C-3
2^{\prime}	3.91 ($m, 1 \mathrm{H}$)	CH	72.80	H-1 ${ }^{\prime}$, $\mathrm{H}-3^{\prime}$	C-3'
3^{\prime}	4.18 ($t, 8.5,1 \mathrm{H})$	CH	76.05	H-2', H-4'	C-2', C-4'
4^{\prime}	4.13 ($t, 8.5,1 \mathrm{H})$	CH	69.43	H-3', H-5'	C-5'
5^{\prime}	3.89 ($m, 1 \mathrm{H}$)	CH	75.90	$\begin{gathered} \mathrm{H}-4^{\prime}, \mathrm{H}_{\mathrm{a}}-6^{\prime}, \\ \mathrm{H}_{\mathrm{b}}-6^{\prime} \end{gathered}$	
6^{\prime}	$\begin{aligned} & \mathrm{H}_{\mathrm{a}}: 4.48(b r d, 12.0,1 \mathrm{H}) \\ & \mathrm{H}_{\mathrm{b}}: 4.31(b r d d, 12.0,5.5,1 \mathrm{H}) \end{aligned}$	CH_{2}	60.61	H-5'	C-5'

1.3.1.3 CS-S3: Bauer-9-en-3-one

Compound CS-S3 was obtained as a white solid, melting at $199.0-202.0^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{30}+34.00, \mathrm{c}=0.10, \mathrm{CHCl}_{3}$. This compound showed the character of triterpene by giving a purple spot in vanillin sulfuric acid reagent. Its IR spectrum (Figure 17) showed the presence of a carbonyl group at $1709 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 18) (Table 19) with the characteristic peaks of the triterpene, demonstrated the presence of six methyl singlets at $\delta_{\mathrm{H}} 1.07(2 \times \mathrm{Me}), 1.21,0.81,0.79$ and 0.77 and two methyl doublets at $\delta_{\mathrm{H}} 0.89(J=6.5 \mathrm{~Hz})$ and $0.83(J=6.0 \mathrm{~Hz})$. The methylene protons at $\delta_{\mathrm{H}} 2.72(1 \mathrm{H}, d d d, J=15.5,13.5$ and 6.5 Hz$)$ and $\delta_{\mathrm{H}} 2.40(1 \mathrm{H}, d d d, J=15.5,5.5$ and 3.5 Hz) which could be assigned to $\mathrm{H}_{\mathrm{a}}-2(\beta \mathrm{H})$ and $\mathrm{H}_{\mathrm{b}}-2(\alpha \mathrm{H})$, respectively, were shifted to downfield according to the anisotropic effect of the carbonyl group at C-3. The olefinfic proton resonated at $\delta_{\mathrm{H}} 5.29(d, J=6.5 \mathrm{~Hz})$, which could be assigned the position C-11. The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 19) (Table 19) showed 30 signals for 30 carbon atoms. The DEPT 90° and DEPT 135° spectrua (Figure 20) indicated that the existence of eight methyl carbon atoms $\left(\delta_{\mathrm{C}} 25.53,22.99,22.10,22.04,21.64\right.$, 16.95, 15.29 and 13.98), nine methylene carbon atoms ($\delta_{\mathrm{C}} 36.64,36.07,35.86,34.89$, 29.62, 28.18, 26.27, 22.57 and 20.15), six methine carbon atoms ($\delta_{\mathrm{C}} 115.61,59.59$, $53.26,51.99,41.04$ and 30.77) and seven quaternary carbon atoms $\left(\delta_{\mathrm{C}} 217.30,147.41\right.$,
47.64, 42.80, 39.30, 38.18 and 36.75). The HMBC spectrum (Figure 22) (Table 19) showed the correlations of Me-25 ($\delta_{\mathrm{H}} 1.21$) with $\mathrm{C}-1\left(\delta_{\mathrm{C}} 36.64\right)$, $\mathrm{C}-5\left(\delta_{\mathrm{C}} 53.26\right), \mathrm{C}-9$ ($\delta_{\mathrm{C}} 147.41$) and C-10 ($\delta_{\mathrm{C}} 39.30$); olefinic proton $\mathrm{H}-11\left(\delta_{\mathrm{H}} 5.29\right)$ with $\mathrm{C}-8\left(\delta_{\mathrm{C}} 41.04\right)$, $\mathrm{C}-10\left(\delta_{\mathrm{C}} 39.30\right)$ and $\mathrm{C}-13\left(\delta_{\mathrm{C}} 36.75\right)$. These results confirmed the location of $\mathrm{Me}-25$ and olefinic proton $\mathrm{H}-11$. The correlations of $\mathrm{H}-1\left(\delta_{\mathrm{H}} 2.09\right), \mathrm{H}-2\left(\delta_{\mathrm{H}} 2.72\right.$ and 2.40), Me-23 ($\delta_{\mathrm{H}} 1.07$) and Me-24 ($\delta_{\mathrm{H}} 1.07$) with carbonyl carbon, indicated that the carbonyl carbon was located at $\mathrm{C}-3\left(\delta_{\mathrm{C}} 217.30\right)$. In addition, the HMBC spectrum showed the correlations of Me-26 ($\delta_{\mathrm{H}} 0.79$) with C-18 ($\delta_{\mathrm{C}} 51.99$); Me-27 $\left(\delta_{\mathrm{H}} 0.81\right)$ with $\mathrm{C}-12\left(\delta_{\mathrm{C}}\right.$ 29.62) and C-18 ($\delta_{\mathrm{C}} 51.99$); Me-28 ($\delta_{\mathrm{H}} 0.77$) with $\mathrm{C}-17$ (42.80), $\mathrm{C}-18\left(\delta_{\mathrm{C}} 51.99\right)$ and $\mathrm{C}-19\left(\delta_{\mathrm{C}} 59.59\right)$; Me-29 ($\delta_{\mathrm{H}} 0.83$) with C-19 $\left(\delta_{\mathrm{C}} 59.59\right), \mathrm{C}-20\left(\delta_{\mathrm{C}} 30.77\right)$ and C-30 $\left(\delta_{\mathrm{C}}\right.$ 22.10) and Me-30 ($\delta_{\mathrm{H}} 0.89$) with $\mathrm{C}-19\left(\delta_{\mathrm{C}} 59.59\right), \mathrm{C}-20\left(\delta_{\mathrm{C}} 30.77\right)$ and $\mathrm{C}-29\left(\delta_{\mathrm{C}}\right.$ 22.99). These results confirmed the location of $\mathrm{Me}-26, \mathrm{Me}-27, \mathrm{Me}-28, \mathrm{Me}-29$ and $\mathrm{Me}-$ 30, respectively. The relative stereochemistry of CS-S3 was established by the NOE difference results. Firstly, the signals of Me-24 ($\delta_{\mathrm{H}} 1.07$) and Me-25 ($\delta_{\mathrm{H}} 1.21$) were enhanced when the $\mathrm{H}_{\mathrm{a}}-2\left(\delta_{\mathrm{H}} 2.72\right)$ was irradiated (Figure 24). Secondly, the enhancement of Me-25 ($\delta_{\mathrm{H}} 1.21$) and Me-26 ($\delta_{\mathrm{H}} 0.79$) signals by the irradiation of $\mathrm{H}-8$ ($\delta_{\mathrm{H}} 2.07$) (Figure 23). These results indicated that $\mathrm{H}_{\mathrm{a}}-2$, Me-24, Me-25, $\mathrm{H}-8$ and Me26 located on the same side of the molecule, the β-side in CS-S3. Other relative stereochemistry could not be assigned by the NOE experiment. However, it is believed that CS-S3 possessed the same relative stereochemistry as bauerene skeleton. On the basis of the evidence described above, the structure of CS-S3 was assigned to Bauer-9-en-3-one.

Table 19 The NMR spectral data of compound CS-S3 in CDCl_{3}

Position	δ_{H}, mult., $J(\mathrm{~Hz})$	Type of C	$\delta_{\text {c }}$	HMBC
1	2.09 (ddd, 13.5, 6.5, 3.5, 1H);	CH_{2}	36.64	C-3, C-5, C-9, C-10
	1.78 ($\mathrm{m}, 1 \mathrm{H}$)			
2	$\mathrm{H}_{\mathrm{a}}: 2.72$ (ddd, 15.5, 13.5, 6.5, 1H);	CH_{2}	34.89	$\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-10$
	$\mathrm{H}_{\mathrm{b}}: 2.40$ (ddd, 15.5, $\left.5.5,3.5,1 \mathrm{H}\right)$			
3	-	C	217.30	
4	-	C	47.64	
5	1.35 ($\mathrm{m}, 1 \mathrm{H}$)	CH	53.26	C-4, C-10, C-25
6	1.46 ($\mathrm{m}, 1 \mathrm{H}$); $1.38(\mathrm{~m}, 1 \mathrm{H})$	CH_{2}	35.86	
7	1.23 ($\mathrm{m}, 2 \mathrm{H}$)	CH_{2}	28.18	
8	2.07 ($\mathrm{m}, 1 \mathrm{H}$)	CH	41.04	C-5, C-9
9	-	C	147.41	
10	-	C	39.30	
11	5.29 (d, 6.5, 1H)	CH	115.61	C-8, C-10, C-13
12	1.44 ($\mathrm{m}, 1 \mathrm{H}$); 1.26 ($\mathrm{m}, 1 \mathrm{H}$)	CH_{2}	29.62	C-9, C-11, C-14
13	-	C	36.75	
14	-	C	38.18	
15	$1.34(m, 1 \mathrm{H}) ; 1.30(m, 1 \mathrm{H})$	CH_{2}	20.15	
16	1.60 ($m, 2 \mathrm{H}$)	CH_{2}	22.57	C-13, C-17, C-19,
				C-27, C-28
17	-	C	42.80	
18	1.60 ($\mathrm{m}, 1 \mathrm{H}$)	CH	51.99	
19	0.98 ($q, 9.5,1 \mathrm{H})$	CH	59.59	
20	*	CH	30.77	
21	1.86 ($\mathrm{m}, 1 \mathrm{H}$); $1.24(\mathrm{~m}, 1 \mathrm{H})$	CH_{2}	26.27	
22	1.70 ($\mathrm{m}, 2 \mathrm{H}$)	CH_{2}	36.07	
23	1.07 ($s, 3 \mathrm{H})$	CH_{3}	22.04	C-3, C-4, C-5, C-24
24	1.07 (s, 3H)	CH_{3}	25.53	$\mathrm{C}-3, \mathrm{C}-4, \mathrm{C}-5, \mathrm{C}-23$

Table 19 (continued)

Position	$\boldsymbol{\delta}_{\mathrm{H}}$, mult., $J(\mathrm{~Hz})$	Type of C	$\boldsymbol{\delta}_{\mathrm{C}}$	HMBC
25	$1.21(s, 3 \mathrm{H})$	CH_{3}	21.64	$\mathrm{C}-1, \mathrm{C}-5, \mathrm{C}-9, \mathrm{C}-10$
26	$0.79(s, 3 \mathrm{H})$	CH_{3}	15.29	$\mathrm{C}-18$
27	$0.81(s, 3 \mathrm{H})$	CH_{3}	16.95	$\mathrm{C}-12, \mathrm{C}-18$
28	$0.77(s, 3 \mathrm{H})$	CH_{3}	13.98	$\mathrm{C}-17, \mathrm{C}-18, \mathrm{C}-19$
29	$0.83(d, 6.0,3 \mathrm{H})$	CH_{3}	22.99	$\mathrm{C}-19, \mathrm{C}-20, \mathrm{C}-30$
30	$0.89(d, 6.5,3 \mathrm{H})$	CH_{3}	22.10	$\mathrm{C}-19, \mathrm{C}-20, \mathrm{C}-29$

*not observed

1.3.1.4 CS-S2: Sucrose

Compound CS-S2 was obtained as colourless crystals, melting at 175.2-176.9 ${ }^{\circ}$ $\mathrm{C} ;[\alpha]_{\mathrm{D}}^{28}+78.37, \mathrm{c}=0.25$, pyridine. The IR spectrum (Figure 25) exhibited an absorption band for a hydroxyl group at $3373 \mathrm{~cm}^{-1}$. The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 26) (Table 20) recorded in pyridine- d_{5} showed typical signals of two sugar units. A doublet signal with a small coupling constant at $\delta_{\mathrm{H}} 5.94(J=4.0 \mathrm{~Hz})$ was assignable to the anomeric proton of the sugar unit. According to chemical shifts and splitting pattern of this proton as well as the presence of oxymethylene protons at $\delta_{\mathrm{H}} 4.28$ ($d d, J$ $=12.0$ and $2.5 \mathrm{~Hz}, 1 \mathrm{H})$ and $4.14(d d, J=12.0$ and $4.5 \mathrm{~Hz}, 1 \mathrm{H})$, characteristic signals of H-6 of glucose unit. Four oxymethylene protons at $\delta_{\mathrm{H}} 4.07(s, 2 \mathrm{H}), \delta_{\mathrm{H}} 4.05(1 \mathrm{H}, d, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H})$ and $\delta_{\mathrm{H}} 4.13(1 \mathrm{H}, d, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$ were attributed to $\mathrm{H}-1^{\prime}$ and $\mathrm{H}-6^{\prime}$ of
the fructose unit, respectively. Thus, two sugar units were determined as glucose and fructose. The proton signals of glucose and fructose units were assigned by ${ }^{1} \mathrm{H}^{1}-\mathrm{H}$ COSY spectrum (Figure 31) (Table 20) and HMBC correlation experiment (Figure 30) (Table 20). The ${ }^{13} \mathrm{C}$ NMR spectrum (Figure 27) (Table 20) showed 12 carbon atoms. Analysis of the DEPT 90° and DEPT 135° spectra of this compound suggested the presence of three methylene carbon atoms ($\delta_{\mathrm{C}} 62.90,60.25$ and 60.12), eight methine carbon atoms ($\delta_{\mathrm{C}} 91.31,82.03,78.25,73.09,72.67,72.63,70.98$ and 69.40) and one quaternary carbon atom ($\delta_{\mathrm{C}} 103.35$). These signals corresponded to signals of sucrose. This conclusion was confirmed by acetylation reaction of CS-S2. The ${ }^{1} \mathrm{H}$ NMR spectrum of its acetate showed the signals of sucrose unit together with methyl protons of eight acetyl groups $\left[\delta_{\mathrm{H}} 2.18,2.12(2 \mathrm{xMe}), 2.11,2.10(2 \mathrm{xMe}), 2.05\right.$ and 2.02] and the ${ }^{13} \mathrm{C}$ NMR spectral data (Figure 34) (Table 21)exhibited eight carbonyl carbons $\left(\delta_{\mathrm{C}} 170.68,170.47,170.08(3 \mathrm{xC}), 169.90,169.65\right.$ and 169.50$)$ together with eight methine carbons [$\delta_{\mathrm{C}} 89.89,79.07,75.65,74.94,70.23,69.59,68.46$ and 68.18], three methylene carbons [$\delta_{\mathrm{C}} 63.61,62.84$ and 61.71] and one $s p^{3}$ quaternary carbon atom ($\delta_{\mathrm{C}} 103.96$). This was further confirmed by comparing the NMR data of AcCSS2 with those of previousely reported for sucrose octaacetate (Nishida, et al., 1986) (Table 21). On the above accumulated evidence, the structure of AcCS-S2 was established as sucrose octaacetate.

Table 20 The NMR spectral data of compound CS-S2 in pyridine- d_{5}

Position	$\boldsymbol{\delta}_{\mathrm{H}}$, mult., $J(\mathrm{~Hz})$	Type of C	$\boldsymbol{\delta}_{\mathrm{C}}$	${ }^{1} \mathrm{H}^{1} \mathrm{H}$ COSY	HMBC
1	$5.94(d, 4.0,1 \mathrm{H})$	CH	91.31	$\mathrm{H}-2$	$\mathrm{C}-3$
2	$3.98(d d, 9.5,4.0,1 \mathrm{H})$	CH	70.98	$\mathrm{H}-1, \mathrm{H}-3$	
3	$4.39(t, 9.5,1 \mathrm{H})$	CH	72.63	$\mathrm{H}-2, \mathrm{H}-4$	$\mathrm{C}-2, \mathrm{C}-4$
4	$3.97(t, 9.5,1 \mathrm{H})$	CH	69.40	$\mathrm{H}-3, \mathrm{H}-5$	$\mathrm{C}-3$

Table 20 (continued)

Position	δ_{H}, mult., $J(\mathrm{~Hz})$	Type of C	$\delta_{\text {C }}$	${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY	HMBC
5	4.46 (ddd, 9.5, 4.5, 2.5, 1H)	CH	72.67	$\mathrm{H}-4, \mathrm{H}_{\mathrm{b}}-6$	
6	$\mathrm{H}_{\mathrm{a}}: 4.28$ (dd, 12.0, 2.5, 1H);	CH_{2}	$60.12^{\text {a }}$	$\mathrm{H}_{\mathrm{b}}-6$	
	$\mathrm{H}_{\mathrm{b}}: 4.14(d d, 12.0,4.5,1 \mathrm{H})$			$\mathrm{H}-5, \mathrm{H}_{\mathrm{a}}-6$	
1^{\prime}	4.07 ($s, 2 \mathrm{H})$	CH_{2}	$60.25^{\text {a }}$		$\mathrm{C}-5^{\prime}$
2^{\prime}	-	C	103.35		
3^{\prime}	4.67 (d, 8.0, 1H)	CH	78.25	H-4 ${ }^{\prime}$	
4^{\prime}	4.78 ($t, 8.0,1 \mathrm{H})$	CH	73.09	$\mathrm{H}-3^{\prime}, \mathrm{H}-5^{\prime}$	C-4', C-6 ${ }^{\prime}$
5^{\prime}	4.24 (td, 8.0, 4.0, 1H)	CH	82.03	$\mathrm{H}-4^{\prime}, \mathrm{H}_{\mathrm{a}}-6^{\prime}$	$\mathrm{C}-3^{\prime}, \mathrm{C}-1^{\prime}$
6^{\prime}	$\begin{aligned} & \mathrm{H}_{\mathrm{a}}: 4.05(d, 12.0,1 \mathrm{H}) \\ & \mathrm{H}_{\mathrm{b}}: 4.13(d, 12.0,1 \mathrm{H}) \end{aligned}$	CH_{2}	62.90	H-5 ${ }^{\prime}$	$\mathrm{C}-2^{\prime}, \mathrm{C}-3^{\prime}$

${ }^{a}$ maybe interchange

Table 21 The NMR spectral data of compounds AcCS-S2 and sucrose octaacetate

Position	AcCS-S2		sucrose octaacetate	
	δ_{H}, mult., $J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	δ_{H}	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$
1	$5.65(d, 3.6,1 \mathrm{H})$	$89.89(\mathrm{CH})$	$5.69(1 \mathrm{H})$	$89.93(\mathrm{CH})$
2	$4.83(d d, 10.2,3.6,1 \mathrm{H})$	$70.23(\mathrm{CH})$	$4.87(1 \mathrm{H})$	$70.26(\mathrm{CH})$
3	$5.40(t, 10.2,1 \mathrm{H})$	$69.59(\mathrm{CH})$	$5.44(1 \mathrm{H})$	$69.61(\mathrm{CH})$
4	$5.04(t, 10.2,1 \mathrm{H})$	$68.18(\mathrm{CH})$	$5.08(1 \mathrm{H})$	$68.17(\mathrm{CH})$
5	$4.26(m, 1 \mathrm{H})$	$68.46(\mathrm{CH})$	$4.28(1 \mathrm{H})$	$68.50(\mathrm{CH})$
6	$4.14(m, 1 \mathrm{H}), 4.28(m, 1 \mathrm{H})$	$61.71\left(\mathrm{CH}_{2}\right)$	$4.14(1 \mathrm{H}), 4.28(1 \mathrm{H})$	$61.75\left(\mathrm{CH}_{2}\right)$
1^{\prime}	$4.15(s, 2 \mathrm{H})$	$62.84\left(\mathrm{CH}_{2}\right)$	$4.17(2 \mathrm{H})$	$62.85\left(\mathrm{CH}_{2}\right)$
2^{\prime}	-	$103.96(\mathrm{C})$	-	$104.02(\mathrm{C})$
3^{\prime}	$5.42(d, 5.7,1 \mathrm{H})$	$75.65(\mathrm{CH})$	$5.47(1 \mathrm{H})$	$75.68(\mathrm{CH})$
4^{\prime}	$5.33(t, 5.7,1 \mathrm{H})$	$74.94(\mathrm{CH})$	$5.36(1 \mathrm{H})$	$74.98(\mathrm{CH})$

Table 21 (continued)

Position	AcCS-S2		sucrose octaacetate	
	δ_{H}, mult., $J(\mathrm{~Hz})$	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$	δ_{H}	$\delta_{\mathrm{C}}(\mathrm{C}-\mathrm{Type})$
5^{\prime}	$4.18(m, 1 \mathrm{H})$	$79.07(\mathrm{CH})$	$4.21(1 \mathrm{H})$	$79.14(\mathrm{CH})$
6^{\prime}	$4.31(d d, 12.0,4.8,2 \mathrm{H})$	$63.61\left(\mathrm{CH}_{2}\right)$	$4.35(1 \mathrm{H}), 4.29(1 \mathrm{H})$	$63.63\left(\mathrm{CH}_{2}\right)$
COCH_{3}		$170.68(\mathrm{C})$		$170.07(\mathrm{C})$
COCH_{3}		$170.47(\mathrm{C})$		$170.01(\mathrm{C})$
COCH_{3}		$170.08(3 x \mathrm{C})$		$169.50(\mathrm{C})$
COCH_{3}		$169.90(\mathrm{C})$		$170.66(\mathrm{C})$
COCH_{3}		$190.65(\mathrm{C})$		$170.09(\mathrm{C})$
COCH_{3}		$169.50(\mathrm{C})$		$169.65(\mathrm{C})$
COCH_{3}				$169.88(\mathrm{C})$
COCH_{3}				$170.46(\mathrm{C})$
COCH_{3}	$2.10(s, 3 \mathrm{H})$	20.60	$2.10(3 \mathrm{H})$	$20.64\left(\mathrm{CH}_{3}\right)$
COCH_{3}	$2.02(s, 3 \mathrm{H})$	$(8 x \mathrm{CH})$	$2.02(3 \mathrm{H})$	$20.66\left(\mathrm{CH}_{3}\right)$
$\left.\mathrm{COCH}_{3}\right)$	$2.05(s, 3 \mathrm{H})$		$2.05(3 \mathrm{H})$	$20.61\left(\mathrm{CH}_{3}\right)$
COCH_{3}	$2.10(s, 3 \mathrm{H})$		$2.10(3 \mathrm{H})$	$20.58\left(\mathrm{CH}_{3}\right)$
COCH_{3}	$2.12(s, 3 \mathrm{H})$		$2.12(3 \mathrm{H})$	$20.69\left(\mathrm{CH}_{3}\right)$
COCH_{3}	$2.18(s, 3 \mathrm{H})$		$2.18(3 \mathrm{H})$	$20.56\left(\mathrm{CH}_{3}\right)$
COCH_{3}	$2.11(s, 3 \mathrm{H})$		$2.11(3 \mathrm{H})$	$20.72\left(\mathrm{CH}_{3}\right)$
COCH_{3}	$2.12(s, 3 \mathrm{H})$		$2.12(3 \mathrm{H})$	$20.63\left(\mathrm{CH}_{3}\right)$

[^0]: ${ }^{\text {a, } b}$ Assignment with the same superscript maybe interchange, *not observed

