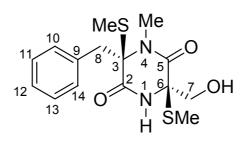

3. RESULTS AND DISCUSSION

Chemical investigation of the fungus *Verticillium hemipterigenum* BCC 1449 is divided into three parts. The first part involves the compounds in the extract from culture filtrate (broth extract), and the second part implies the compounds in the extract from mycelia (cell extract). The last part deals with compounds derived from the precursor-directed biosynthesis using BCC 1449. The structures of the compounds were elucidated by the analysis of 1D and 2D NMR data together with MS, UV and IR spectral data. For known compounds, their ¹H and ¹³C NMR data were compared with those reported in the literature.


3.1 Chemical constituents from broth extract of *Verticillium hemipterigenum* BCC 1449

Chemical investigation of the broth extract of the insect pathogenic fungus *Verticillium hemipterigenum* BCC 1449 was conducted (Nilanonta, *et al.* 2003a). Activity-guided chromatographic fractionation of the broth extract led to the isolation of two new diketopiperazines, **51** and **52**, together with four known compounds, pyrenocine A (**53**), pyrenocine B (**54**), enniatin B (**55**), and enniatin B_4 (**56**).

35

3.1.1 Structure elucidation of compound 51

Compound **51** was obtained as colorless crystals; mp 154-157 °C, $[\alpha]^{26}_{D}$ – 70 (*c* 0.21, CHCl₃). The UV spectrum of **51** showed the absorption at λ_{max} (log ε) 205 (4.35) and 258 (2.94) nm. The IR spectrum of **51** exhibited two strong absorption bands of amide carbonyls at v_{max} 1693 and 1634 cm⁻¹, hydroxyl and amide NH absorptions at v_{max} 3399 and 3205 cm⁻¹, and C-H deformation (out of plane) of a monosubstituted benzene at v_{max} 701 cm⁻¹.

The ¹H NMR spectrum of compound **51** (in CDCl₃, 400 MHz) indicated that this molecule possesses twenty protons. Four doublet signals at $\delta_{\rm H}$ 3.54 (1H, d, *J* = 13.9 Hz, Ha-8), 3.42 (1H, d, *J* = 11.8 Hz, Ha-7), 3.15 (1H, d, *J* = 13.8 Hz, Hb-8), and 2.74 (1H, brd, *J* = 11.6 Hz, Hb-7) indicated the presence of two non-equivalent methylenes. Multiplet signals at $\delta_{\rm H}$ 7.11-7.15 (2H, H-11 and H-13) and 7.26-7.32 (3H, H-10, H-12 and H-14) indicated five protons of a mono-substituted benzene. The ¹H NMR spectrum of **51** also exhibited three singlet signals of methyl groups at $\delta_{\rm H}$ 3.28 (amide N-C*H*₃), 2.23 (-SC*H*₃), and 2.20 (-SC*H*₃). Two D₂O exchangeable broad singlets at $\delta_{\rm H}$ 6.39 (1H) and 1.85 (1H) were assigned respectively to a secondary amide and a hydroxyl group.

The ¹³C NMR spectrum of compound **51** (in CDCl₃, 100 MHz) showed twelve carbon signals where two carbonyl carbons were superimposed at $\delta_{\rm C}$ 164.9 ppm. This was evident from the detection of two separate signals at $\delta_{\rm C}$ 167.3 and 167.4 ppm in the spectrum acquired in MeOH- d_4 (total 13 signals). Analysis of DEPTs and HMQC spectral data of compound **51** led to the categorization of each carbon into three methyl, two methylene, five methine (aromatic region) and five quaternary carbons. Since this compound possesses a mono-substituted benzene (benzyl group), it should consist of fifteen carbons. The molecular formula of **51**, $C_{15}H_{20}S_2N_2O_3$, was determined by HRMS (ESI-TOF) analysis, showing a $[M-H]^-$ ion peak at m/z 339.0841 ($\Delta = 0.4$ mmu). Therefore, this compound has IHD (index of hydrogen deficiency) = 7 indicating seven unsaturation points in its molecule.

The combined analysis of ¹H, ¹³C, DEPTs, COSY and HMQC spectral data revealed that compound **51** possesses a benzyl group, a hydroxymethyl group, two methylthio groups (δ_C 13.5, δ_H 2.23; and δ_C 14.4, δ_H 2.20), a tertiary amide with a N-methyl (δ_C 30.3, δ_H 3.28), a secondary amide (N-*H*; δ_H 6.39, exchangeable with D₂O), and two quaternary carbons at δ_C 64.8 and 75.7.

HMBC correlations (in MeOH- d_4) demonstrated that the benzyl group, one of the methylthio groups (δ_H 2.27), one carbonyl (δ_C 167.3), and the methylated amide nitrogen were attached to the δ_C 76.5 quaternary carbon. Another quaternary carbon at δ_C 66.6 was attached with a hydroxymethyl group, an amide carbonyl and a secondary amide nitrogen. Considering also other HMBC correlations shown in Figure 1, and its seven degree of unsaturation, this compound should form a cyclodipeptide ring, therefore, the gross structure of **51** was elucidated as depicted.

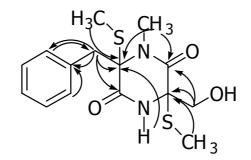
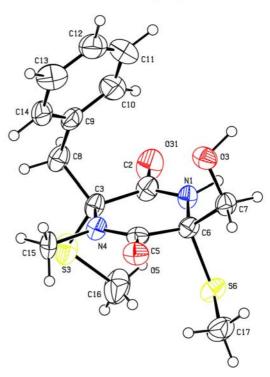



Figure 8. Selected HMBC correlations for 51

The structure of **51** was confirmed by X-ray crystallographic analysis and it revealed that the two methylthio groups are attached to the same side of the sixmembered ring (Figure 2). The absolute configuration of **51** was initially presented as (3S, 6S) (Nilanonta, *et al.*, 2003a), however, later it was revised to be (3R, 6R) (Figure 2; Isaka and Kongsaeree, unpublished).

Crystal Data

 $C_{15}H_{20}N_{2}O_{3}S_{2}$ $M_{r} = 340.464$ Monoclinic $P2_{1}$ a = 10.9060(5) Å b = 8.0074(2) Å c = 19.0249(8) Å $\alpha = 90.00^{\circ}$ $\beta = 94.790(2)^{\circ}$ $\gamma = 90.00^{\circ}$ $V = 1655.62(11) \text{ Å}^{3}$ Z = 4 $D_{x} = 1.360 \text{ Mg m}^{-3}$

Density measured by: not measured fine-focus sealed tube Mo K α radiation $\lambda = 0.71073$ Cell parameters from 2951 reflections $\theta = 0.998 - 24.72$ ° $\mu = 0.333$ mm⁻¹ T = 298 K Rod Colourless Source: *V. hemipterigenum* BCC1449

Figure 9. X-ray crystal structure of 51, and crystallographic data

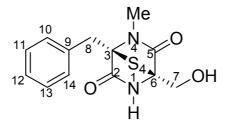

position	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	δ_{C} (mult.)	δ_{C} (mult.)
	in CDCl ₃	in CDCl ₃	in MeOH- <i>d</i> ₄
2		$164.9^{a}(s)$	$167.3^{b}(s)$
3		75.7 (s)	76.5 (s)
5		$164.9^{a}(s)$	$167.4^{b}(s)$
6		64.8 (s)	66.6 (s)
7	2.74 (brd, 11.6)	65.2 (t)	66.3 (t)
	3.42 (d, 11.8)		
8	3.15 (d, 13.8)	42.3 (t)	43.1 (t)
	3.54 (d, 13.9)		
9		133.7 (s)	135.6 (s)
10, 14	7.26-7.32 (m)	128.8 (d)	129.7 (d)
11, 13	7.11-7.15 (m)	130.0 (d)	131.1 (d)
12	7.26-7.32 (m)	128.0 (d)	128.7 (d)
N(4)- <i>CH</i> ₃	3.28 (s)	30.3 (q)	30.9 (q)
N(1)- <i>H</i>	6.39 (brs)		
3-8 <i>CH</i> ₃	2.20 (s)	14.4 (q)	14.1 (q)
6-S <i>CH</i> ₃	2.23 (s)	13.5 (q)	13.7 (q)
7-OH	1.85 (brs)		

 Table 4.
 ¹H and
 ¹³C NMR data of compound 51

^{*a*} Two ¹³C signals are overlapping. ^{*b*}Assignment can be interchanged.

Compound **51** is a new 1-desmethyl analog of the known bisdethiodi (methylthio)hyalodendrin (Strunz, *et al.*, 1974; Michel, *et al.*, 1974; DeVault and Rosenbrook, 1973). (3S,6S)-bisdethiodi(methylthio)hyalodendrin was previously isolated from *Hyalodendron* sp. (Strunz, *et al.*, 1974), and its (3R,6R)-isomer, A26771E, was isolated from *Penicillium turbatum* (Michel, *et al.*, 1974). Prior to these reports, the same compound is isolated from an unidentified fungus NRRL 3888 (DeVault and Rosenbrook, 1973), but its stereochemistry was not presented and lacked full spectral data. Thus, compound **51** could be designated as (3R,6R)-bisdethiodi(methylthio)-1-demethylhyalodendrin.

3.1.2 Structure elucidation of compound 52

Compound **52** was obtained as colorless crystals. The UV spectrum of **52** showed absorption bands at λ_{max} (log ε) 204 (4.35) and 299 (3.59) nm. The IR spectrum of **52** showed two absorption bands at v_{max} 1694 and 1634 cm⁻¹ indicating the C=O stretching of secondary amide and tertiary amide. IR spectrum also showed OH stretching peak at v_{max} 3290 cm⁻¹, associated with N-H stretching of the amide at v_{max} 3102 cm⁻¹.

The ¹H NMR spectrum of compound **52** (in CDCl₃, 400 MHz) suggested that this compound should have fourteen protons. The spectrum showed two doublet of doublets at $\delta_{\rm H}$ 3.94 (1H, dd, J = 12.2, 4.7 Hz, H-7) and 3.79 (1H, dd, J = 12.2, 8.7 Hz, H-7), two doublet at $\delta_{\rm H}$ 3.87 (1H, d, J = 14.6 Hz, H-8) and 3.30 (1H, d, J = 14.6Hz, H-8), which indicated the presence of two nonequivalent methylenes. Two multiplet at $\delta_{\rm H}$ 7.16-7.19 (2H, m, H-11, H-13) and 7.25-7.31 (3H, m, H-10, H-12, H-14) were five protons of benzene ring. A broad singlet at $\delta_{\rm H}$ 6.60 (1H, brs) and a multiplet at $\delta_{\rm H}$ 2.71 (1H, m) were respectively assignable to a secondary amide proton, and a hydroxyl. A singlet at $\delta_{\rm H}$ 3.17 (3H, s) was that of an amide N-methyl group.

The ¹³C NMR spectrum of compound **52** (in CDCl₃, 100 MHz) showed ten carbon signals, where two carbonyl carbon signals were superimposed at $\delta_{\rm C}$ 168.0 ppm. Analysis of ¹³C NMR, DEPTs and HMQC spectral data of **52** led to the categorization of carbons: one methyl ($\delta_{\rm C}$ 30.3, -CO-N-CH₃), two methylene, five methine (aromatic region) and five quaternary carbons. The presence of two downfield carbon signals at $\delta_{\rm C}$ 168.0 (inseparable in CDCl₃) indicated the appearance of two amide carbonyls in this molecule. The quaternary carbon at $\delta_{\rm C}$ 133.4 is an aromatic carbon and two quaternary carbons at δ_C 71.0 and 78.1 indicated R₃C-N partial structure in this molecule. From ¹³C NMR, DEPTs and HMQC data it was concluded that this compound should have thirteen carbons.

Combined analyses of ¹H, ¹³C, DEPTs, COSY and HMQC spectra revealed that this compound possesses a benzyl group, a hydroxymethyl group, a methyl group attached to an amide nitrogen (δ_C 30.3, δ_H 3.17 ppm), a secondary amide proton (δ_H 6.60 ppm), two quaternary carbons at δ_C 71.0 and 78.1 ppm, and two carbonyls.

The molecular formula of **52**, $C_{13}H_{14}S_4N_2O_3$, was determined by HRMS (ESI-TOF) analysis and data from ¹H NMR and ¹³C NMR spectra. The ion peak of $[M - H]^-$ was found at m/z 372.9820 ($\Delta = 1.2$ mmu). Thus, this compound has IHD value = 8, indicating eight unsaturation points in its molecule.

The NMR, IR and UV spectra of compound **52** were close to those of **51** except for the lack of the two NMR signals of sulfur-connected methyl groups both in ¹H and ¹³C spectra. The molecular formula of $C_{13}H_{14}S_4N_2O_3$, established by HRMS, requested a structure bearing –SSSS– bridge depicted as **52**, instead of the two methylthio groups in **51**. Taken together with the HMBC correlation data (Figure 3), the structure of **52** was elucidated as depicted.

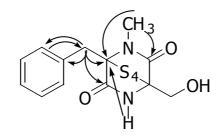


Figure 10. Selected HMBC correlations for 52

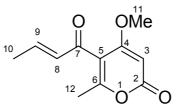

position	$\delta_{\rm H}$ (mult.; J in Hz)	δ_{C} (mult.)	
2	-	$168.0^{a}(s)$	
3	-	78.1 (s)	
5	-	$168.0^{a}(s)$	
6	-	71.0 (s)	
7	3.79 (dd, 12.2, 8.7)	65.4 (t)	
	3.94 (dd, 12.2, 4.7)		
8	3.30 (d, 14.6)	39.4 (t)	
	3.87 (d, 14.6)		
9		133.4 (s)	
10, 14	7.25-7.31 (m)	128.9 (d)	
11, 13	7.16-7.19 (m)	129.4 (d)	
12	7.25-7.31 (m)	127.9 (d)	
N(4)- <i>CH</i> ₃	3.17 (s)	30.3 (q)	
N(1)- <i>H</i>	6.60 (brs)		
7-OH	2.71 (m)		

Table 5. ¹H and ¹³C NMR data of compound 52 in CDCl₃

^{*a*} Two ¹³C signals are overlapping.

By analogy to the co-metabolite **51**, compound **52** should possess (3R,6R)configuration. Compound **52** is a new 1-desmethyl analog of the known hyalodendrin tetrasulfide (Michel, *et al.*, 1974; Strunz, *et al.*, 1975). (3*S*,6*S*)-hyalodendrin tetrasulfide has previously been isolated from *Hyalodendron* sp. (Strunz, *et al.*, 1975), while the (3*R*,6*R*)-isomer, A26771C, has been isolated from *Penicillium turbatum* (Michel, *et al.*, 1974). Therefore, compound **52** could be designated as (3*R*,6*R*)-1demethylhyalodendrin tetrasulfide.

3.1.3 Structure elucidation of compound 53 (pyrenocine A)

Compound **53** was obtained as a colorless solid. The UV spectrum of **53** displayed λ_{max} (log ε) at 205 (4.41), 228 (4.20) and 273 (3.96) nm, indicating conjugated carbonyl chromophore in this molecule. The IR spectrum of **53** exhibited two strong absorption bands at v_{max} 1728 and 1674 cm⁻¹, indicating the presence of a conjugated ester and a conjugated ketone, respectively. Also absorption bands at v_{max} 1629, 1603, 1558 and 1448 cm⁻¹ suggested aromatic-like nucleus in this molecule. The EIMS spectrum of **53** gave the molecular ion peak at m/z 208. The ¹H NMR spectrum of **53** indicated twelve protons, while its ¹³C NMR spectrum suggested eleven carbons. Therefore, the molecular formula of **53** was established as C₁₁H₁₂O₄.

Analysis of ¹³C NMR (in CDCl₃, 100 MHz) and DEPTs spectral data of compound **53** led to the categorization of the carbons: three methyls (including one - OCH₃ at δ_C 56.3), three methines, and five quaternary carbons. The carbon signal at δ_C 190.6 indicated the presence of a conjugated ketone.

The ¹H NMR spectrum of compound **53** (in CDCl₃, 400 MHz) showed signals of a *trans* olefin (J = 15.7 Hz) at $\delta_{\rm H}$ 6.32 (1H, dq, J = 15.7, 1.5 Hz, H-8) and 6.81 (1H, dq, J = 15.6, 6.9 Hz, H-9). A doublet signal of a methyl group at $\delta_{\rm H}$ 1.98 (3H, dd, J = 6.9, 1.3 Hz, H-10) was coupled with one of the *trans* olefinic protons (H-9) with a *J*-value of 6.9 Hz, also an allylic coupling, $J_{8,10} = 1.3$ Hz, was observed. The downfield shift of H-9 ($\delta_{\rm H}$ 6.81) suggested that the other side of the olefin is attached to a carbonyl, hence, the partial structure should be a crotonyl group. In addition to these proton signals, a ring proton at $\delta_{\rm H}$ 5.48 (1H, s, H-3), a methoxyl signal at $\delta_{\rm H}$ 3.81 (3H, s, H-11), and methyl protons attached to the lactone ring at $\delta_{\rm H}$ 2.18 (3H, s, H-12) were present. Analysis of the HMQC and HMBC spectral data revealed the gross structure of compound **53**. Thus, HMBC correlations from β -proton of α , β unsaturated ketone at δ_H 6.81 (1H) to ketone carbonyl carbon at δ_C 190.6 (C-7), and to methyl carbon at δ_C 18.5 (C-10) were observed. The α -proton of α , β -unsaturated ketone at δ_H 6.32 (1H) correlated to ketone carbonyl carbon at δ_C 190.6 (C-7), to aromatic carbon at δ_C 113.9 (C-5), and to methyl carbon at δ_C 18.5 (C-10). The α proton of α , β -unsaturated ester at δ_H 5.48 (1H) showed correlation to the ester carbonyl carbon at δ_C 163.1 (C-2), and to C-5 at δ_C 113.9, 161.4 (C-6), and 168.7 (C-4). The methoxy protons at δ_H 3.81 (3H) showed correlation to the ring carbons at δ_C 113.9 (C-5), and 168.7 (C-4). The H-12 methyl protons at δ_H 2.18 (3H) showed correlation to ester carbonyl carbon at δ_C 163.1 (C-2), and to ring carbons at δ_C 161.4 (C-6), 113.9 (C-5), while The H-10 methyl protons at δ_H 1.98 (3H) was correlated to α and β carbons of α , β -unsaturated ketone at δ_C 133.0 (C-8), and 147.4 (C-9), respectively.

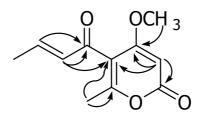
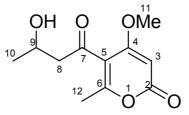


Figure 11. Selected HMBC correlations for 5:


Compound **53** is identical to pyrenocine A, which was previously isolated from an onion pink root fungus *Pyrenochaeta terrestris* (Sato, *et al.*, 1979), and soon later from *Penicillium citreo-viride* (Niwa, *et al.*, 1980). The X-ray crystal structure of pyrenocine A was reported by Sato *et al.* (1981). Spectral data of **53**, isolated from BCC 1449, were identical to those reported in the literature (Sato, *et al.*, 1981) in all respects.

	compound 53		pyrenocine A [literature] ^a	
position	$\delta_{\rm H}$ (mult., J in Hz)	δ_{C} (mult.)	$\delta_{\rm H}$ (mult., J in Hz)	δ_{C} (mult.)
2	-	163.1 (s)	-	163.0 (s)
3	5.48 (s)	87.6 (d)	5.44 (s)	87.7 (d)
4	-	168.7 (s)	-	168.7 (s)
5	-	113.9 (s)	-	114.4 (s)
6	-	161.4 (s)	-	161.4 (s)
7	-	190.6 (s)	-	190.5 (s)
8	6.32 (dq, 15.7, 1.5)	133.0 (d)	6.25 (dq, 16, 1)	133.1 (d)
9	6.81 (dq, 15.6, 6.9)	147.4 (d)	6.76 (m)	147.3 (d)
10	1.98 (dd, 6.9, 1.3)	18.5 (q)	1.97 (dd, 7, 1)	18.5 (q)
11	3.81 (s)	56.3 (q)	3.80 (s)	56.4 (q)
12	2.18 (s)	18.2 (q)	2.18 (s)	18.2 (q)

Table 6.	1 H and 13 C NMR data of compound 53 in CDCl ₃	

^{*a*} Literature data (Sato, *et al.*, 1981)

3.1.4 Structure elucidation of compound 54 (pyrenocine B)

Compound 54 was obtained as a pale yellow solid. The UV spectrum of 54 showed λ_{max} (log ε) at 204 (4.34), 220 (4.08), 258 (3.98) and 284 (3.86) nm, indicating conjugated carbonyl chromophore and aromatic-like nucleus in this molecule. The IR spectrum of 54 showed a hydroxyl absorption at v_{max} 3455 cm⁻¹ and two absorptions at v_{max} 1713 and 1684 cm⁻¹ indicated the -C=O stretching of conjugated ester and -C=O stretching of conjugated ketone. IR spectrum also showed characteristic peak of C=C stretching (skeletal) of aromatic compound at v_{max} 1604, 1547, 1449 cm⁻¹.

The ¹H NMR spectrum of compound **54** (in CDCl₃, 400 MHz) was similar to that of compound **53**. The proton and carbon signals of *trans* olefin in **53** were absent in **54**, instead, an oxymethine at δ_H 4.31 (1H, m, H-9), a pair of methylene protons at δ_H 2.92 (1H, dd, J = 17.5, 3.1 Hz, Ha-8) and 2.82 (1H, dd, J = 17.5, 8.8 Hz, Hb-8), and a hydroxyl proton at δ_H 2.73 (1H, brd, J = 3.2 Hz, OH) were present in **54**. The doublet at δ_H 1.25 (3H, d, J = 6.4 Hz H-10) lacked allylic coupling and downfield shifted when compared to H-10 methyl in **53**. A ring proton at δ_H 5.49 (1H, s, H-3), methoxyl protons at δ_H 3.87 (3H, s, H-11), and methyl protons at δ_H 2.28 (3H, s, H-12), similar to those of **53**, were observed.

Analysis of ¹³C NMR (CDCl₃) and HMQC spectral data of compound **54** led to the categorization of the eleven carbons: three methyl (one -OCH₃ at δ_C 56.5), one methylene, two methine and five quaternary carbons. The presence of one downfield carbon signal at δ_C 202.5 indicated the presence of C=O of a ketone.

The EIMS spectrum of **54** gave the molecular ion peak at m/z 226, which is 18 unit mass more than that of **53**. Taken together with the ¹H and ¹³C NMR data, the molecular formula of this compound was determined to be C₁₁H₁₄O₅. These data

indicated that compound **54** should possess a 3-hydroxybutanoyl group, instead of the crotonyl group in **53**.

The gross structure of **54** was confirmed by HMBC correlation data (Figure 5). Thus, HMBC correlations from α -proton of the α , β -unsaturated ester at δ_H 5.49 (1H) to ring carbons at δ_C 115.4 (C-5), and 168.2 (C-4) were observed. The methoxy protons at δ_H 3.87 (3H) showed correlation to ring carbon at δ_C 168.2 (C-4). Two methylene protons at δ_H 2.82 (1H) and δ_H 2.92 (1H) correlated to the ketone carbonyl carbon at δ_C 202.5 (C-7), and methine carbon at δ_C 64.3 (C-9). The H-12 methyl protons at δ_H 2.28 (3H) showed correlation to ester carbonyl carbon at δ_C 163.9 (C-2), and to ring carbons at δ_C 162.5 (C-6), and 115.4 (C-5), while the H-10 methyl protons at δ_H 1.25 (3H) correlated to methylene carbon at δ_C 52.8 (C-8), and methine carbon at δ_C 64.3 (C-9).

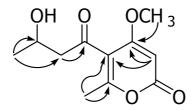
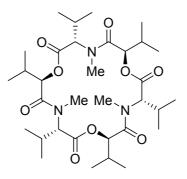


Figure 12. Selected HMBC correlations for 54


This compound is identical to pyrenocine B (Sato, *et al.*, 1979; 1981). It is argued, in the original report, that pyrenocine B might be an isolation artifact derived from hydration of pyrenocine A. Indeed, compound **54**, isolated from *V*. *hemipterigenum* BCC 1449, exhibited very poor optical rotation which strongly suggested that it is a racemate.

	compound 54		pyrenocine B [literature] ^a	
position	$\delta_{\rm H}$ (mult., J in Hz)	δ_{C} (mult.)	δ_{C} (mult.)	
2	-	163.9 (s)	163.8 (s)	
3	5.49 (s)	87.8 (d)	87.8 (d)	
4	-	168.2 (s)	168.3 (s)	
5	-	115.4 (s)	115.4 (s)	
6	-	162.5 (s)	162.4 (s)	
7	-	202.5 (s)	201.0 (s)	
8	2.92 (dd, 17.5, 3.1)	52.8 (t)	52.9 (t)	
	2.82 (dd, 17.5, 8.8)			
9	4.31 (m)	64.3 (d)	64.3 (d)	
10	1.25 (d, 6.4)	22.7 (q)	22.8 (q)	
11	3.87 (s)	56.3 (q)	56.5 (q)	
12	2.28 (s)	18.2 (q)	18.6 (q)	
9-OH	2.73 (brd, 3.2)	-	-	

 Table 7. ¹H and ¹³C NMR data of compound 54 in CDCl₃

^{*a*} Literature data (Sato, *et al.*, 1981)

3.1.5 Structure elucidation of compound 55 (enniatin B)

Compound **55** was obtained as a colorless solid; mp 173-175 °C. It displayed negative sign of optical rotation; $[\alpha]^{29}{}_D$ –96 (*c* 1.04, CHCl₃). The UV spectrum of **55** displayed λ_{max} (log ε) at 206 (4.57) and 291 (3.16) nm. The IR spectrum of **55** showed strong absorption bands at v_{max} 1741 and 1664 cm⁻¹ which suggested the presence of alkyl ester(s) and amide(s).

The ¹H NMR spectrum of compound **55** (in CDCl₃, 400 MHz) showed signals of nineteen protons: two downfield doublets at $\delta_{\rm H}$ 5.14 (1H, d, J = 8.6 Hz) and 4.52 (1H, d, J = 9.7 Hz), one singlet at $\delta_{\rm H}$ 3.13 (3H, s, N-CH₃), two multiplets at $\delta_{\rm H}$ 2.28 (1H, m) and $\delta_{\rm H}$ 2.31 (1H, m), and four doublets of methyl at $\delta_{\rm H}$ 1.06 (3H, d, J = 6.3 Hz), 0.99 (3H, d, J = 6.8 Hz), 0.96 (3H, d, J = 6.9 Hz) and 0.89 (3H, d, J = 6.7 Hz). The ¹³C NMR spectrum of **55** (in CDCl₃, 100 MHz) exhibited eleven carbon signals. The DEPT and HMQC experiment revealed the type of carbons: five methyl (four C-CH₃ at $\delta_{\rm C}$ 18.5, 18.7, 19.3 and 20.4, and one N-CH₃ at $\delta_{\rm C}$ 33.2), four methine ($\delta_{\rm C}$ 75.7, 63.2, 29.9 and 27.9) and two quaternary carbons ($\delta_{\rm C}$ 169.2 and 170.2, carbonyl).

Analysis of COSY and HMQC spectral data revealed that compound **55** consists of a *N*-methylvaline (*N*MeVal) and a 2-hydroxyisovaleric acid (Hiv) residues. Partial structures and their connectivity were established by analysis of HMBC data. Correlations from proton at δ_H 4.52 (1H) to carbon of N-CH₃, to methine carbon at δ_C 27.9 and to ester carbonyl carbon at δ_C 170.2 were observed. The proton at δ_H 5.14 (1H) correlated to the ester carbonyl carbon at δ_C 170.2, and methine protons at δ_H 2.31 (2H, overlapping) showed correlations to four methyl carbons at δ_C 18.5, 18.7,

19.3 and 20.4, and two methine carbons at δ_C 63.2 and 75.7. The methyl protons at δ_H 1.06 (3H) showed correlations to methine carbon at δ_C 63.2, methyl carbon at δ_C 19.3, and methine carbon at δ_C 27.9, while the methyl protons at δ_H 0.96 (3H) correlated to methine carbon at δ_C 75.7. On the basis of these data, a 2,5-diketomorpholine structure was initially proposed (Figure 6).

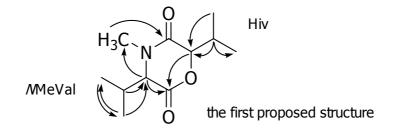


Figure 13. Selected HMBC correlations

The first proposed structure has molecular formula $C_{11}H_{19}NO_3$ (MW 213), however, it is not in accordance with the molecular ion peak at m/z 639 of the EIMS spectrum of 55. The ESI-TOF Mass spectrum also showed *pseudo* molecular ion peaks at m/z 640 [M + H]⁺ and 662 [M + Na]⁺. These data indicated that compound 55 must possess a trimeric structure of the first proposed compound, consisting of three units of *N*MeVal and three units of Hiv. Considering the *C*₃-symmetry shown in NMR spectra, the only possible structure is the cyclohexadepsipeptide where each 3 units of *N*MeVal and Hiv are connected alternately (Figure 7).

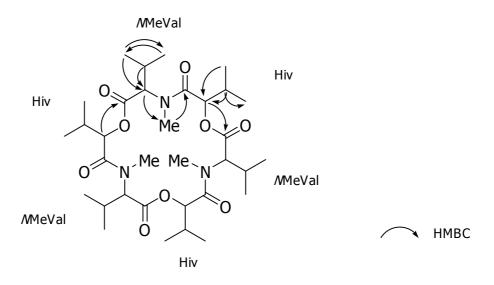


Figure 14. The gross structure of compound 55.

Based on literature search, it was found that compound **55** is identical to enniatin B (Plattner, *et al.*, 1948). The optical rotation data of **55** (isolated from BCC 1449) was consistent with the literature data, therefore, the α -position (C-2) of all three *N*MeVal residues possess (2*S*)-configuration, and the α -position (C-2) of all Hiv residues have (2*R*)-configuration.

	compound 55		enniatin B [literature] ^a	
position	¹³ C	¹ H (mult, J in Hz)	¹³ C	$^{1}\mathrm{H}$
NMeVal	(3 units, s	ymmetrical)		
1 <i>C</i> =O	170.2	-	170.3	-
2	63.2	4.52 (3H, d, 9.7)	63.2	4.42
3	27.9	2.31 (3H, m)	27.9	2.27
4	20.4	1.06 (9H, d, 6.3)	20.4	1.03
4'	19.3	0.89 (9H, d, 6.7)	19.3	0.86
N-CH ₃	33.2	3.13 (9H, s)	33.2	3.09
Hiv	(3 units, s	ymmetrical)		
1 <i>C</i> =0	169.2	-	169.3	-
2	75.7	5.14 (3H, d, 8.6)	75.7	5.11
3	29.9	2.28 (3H, m)	29.9	2.27
4	18.5	0.96 (9H, d, 6.9)	18.5	0.93
4'	18.7	0.99 (9H, d, 6.8)	18.6	0.96

 Table 8.
 ¹H and ¹³C NMR data of compound 55

^{*a*} Literature data (Visconti, *et al.*, 1992)

Enniatins are well-known antibiotics produced by various *Fusarium* species. This class of compounds have been known to exhibit antibiotic (Tsantrizos, *et al.*, 1993; Tomoda, *et al.*, 1992; Tirunarayanan and Sirsi, 1957), insecticidal (Strongman, *et al.*, 1988; Grove and Pople, 1980), and phytotoxic (Burmeister and Plattner, 1987; Gauman, *et al.*, 1960) activities. They also inhibit acyl-CoA: cholesterol acyltransferase (ACAT) (Tomoda, *et al.*, 1992a; Tomoda, *et al.*, 1992b).

Enniatin B is the most common analog in this class. All naturally-occurring enniatins possess (2S)-configuration at the *N*-methylamino acid residues, and (2R)-configuration at the Hiv residues.

During spectroscopic analysis of compound 55 (enniatin B) and other enniatins (as described in later sections), it was found that NOESY spectral data (in CDCl₃) provide useful information to confirm the relative stereochemistry of the six residues and also the conformation of the macrocyclic ring. An example using the known compound, 55, is shown in Figure 8. Intense NOESY correlations from Nmethyl protons of NMeVal residues to α -protons (H-2) of Hiv residues revealed that these protons are both directed to the same side and vertically oriented to the depsipeptide ring. In contrast, the NOESY cross signal between the N-methyl protons and the α -protons (H-2) of *N*MeVal is much weaker, suggesting that these are placed opposite to the macrocyclic ring. The large vicinal J-value (9.7 Hz) between α - and β protons of NMeVal and the weak NOE for these protons indicated an antiperiplanar relationship. This partial conformation was strongly supported by the observation of intense NOESY correlation from α -protons (H-2) to both of the methyl protons of the isopropyl, H-4 and H-4'. Similarly, the large coupling constant ($J_{2,3} = 8.6$ Hz) and weak NOESY correlation between H-2 and H-3 of the Hiv residues indicated their antiperiplanar relationship. NOESY correlation from H-2 of Hiv to both the methyl groups of the isopropyl side chain of Hiv was observed. These data suggested the relative configuration of the six residues as well as an approximate conformation of the cyclohexadepsipeptide in CDCl₃, and they are consistent with the known conformation of enniatin B in solution (Ovchinnikov, 1974) and crystal structures.

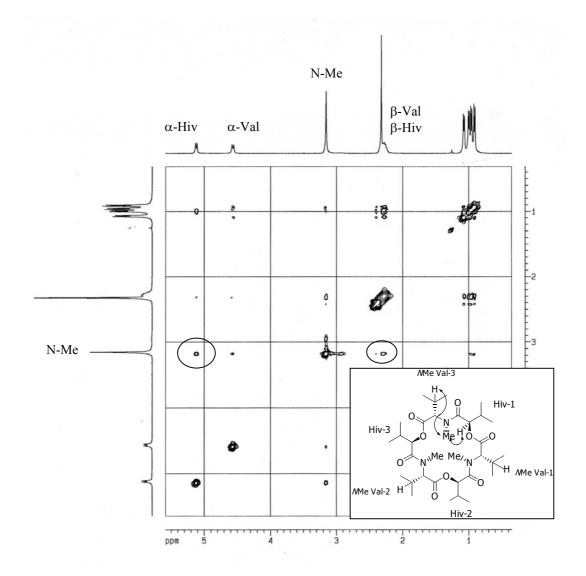
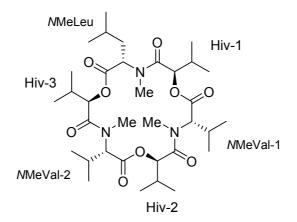



Figure 15. NOESY spectrum of compound 55 (enniatin B) in CDCl₃

3.1.6 Structure elucidation of compound 56 (enniatin B₄)

Compound **56** was obtained as a colorless amorphous solid. It displayed negative sign of optical rotation; $[\alpha]^{27}{}_{D}$ –57 (*c* 0.09, CHCl₃). The UV spectrum of **56** displayed λ_{max} (log ε) at 207 (4.30) and 279 (2.88) nm. The IR spectrum of **56** showed two strong absorption peaks at v_{max} 1733 and 1662 cm⁻¹, suggested the presence of alkyl ester(s) and amide(s).

The 400 MHz ¹H NMR and 100 MHz ¹³C NMR spectral data of **56** (in CDCl₃) were similar to those of **55**, but lacked symmetry. These spectra also indicated that compound **56** is an enniatin analog composing of three *N*-methyl amino acid and three Hiv residues. The EIMS spectrum of **56** exhibited molecular ion peak at m/z 653, which was 14 unit mass more than that of enniatin B (**55**).

The ¹H NMR spectrum of compound **56** showed six proton signals of α protons (H-2) for each residue: $\delta_{\rm H}$ 5.19 (1H, d, J = 8.4 Hz, Hiv), 5.00 (1H, d, J = 8.3Hz, Hiv), 4.99 (1H, d, J = 9.0 Hz, Hiv), 4.93 (1H, d, J = 10.0 Hz), 4.49 (1H, d, J =10.1 Hz) and 4.74 (1H, brs). Three amide *N*-methyls were present at $\delta_{\rm H}$ 3.15 (s, 3H), 3.14 (s, 3H) and 3.11 (s, 3H). Three multiplets were observed at $\delta_{\rm H}$ 2.33-2.21 (5H, m, H-3), 1.77-1.69 (2H, m) and 1.53 (1H, m) and many doublets of methyl at $\delta_{\rm H}$ 1.05-0.88 (total 36H).

Analysis of ¹³C NMR and DEPTs spectral data of compound **56** led to the categorization of carbons: fifteen methyl (twelve C-CH₃ and three *N*-CH₃), a methylene ($\delta_{\rm C}$ 37.9), twelve methine and six quaternary carbons. The downfield

carbon signals at δ_C 169.1, 169.3 and 169.7 confirmed the appearance of amides and the signals at δ_C 170.3, 170.4 and 170.7 indicated the presence of esters. Three methine carbons at δ_C 57.2, 61.3, 63.1 were assignable to those at α -position (C-2) of the *N*-methylamino acid residues, and three methine carbons at δ_C 75.0, 75.3 and 75.3 were the α -position (C-2) of the Hiv residues.

The COSY correlations, from $\delta_{\rm H}$ 4.74 proton (1H, brs) to $\delta_{\rm H}$ 1.77-1.69 methylene (2H, m), and that of these methylene protons to $\delta_{\rm H}$ 1.53 methine proton (1H, m), and the correlation from this methine proton to $\delta_{\rm H}$ 0.93 methyl (2 × 3H, d) indicated the presence of one *N*-methylleucine (*N*MeLeu) residue. COSY correlations from five α -protons at $\delta_{\rm H}$ 5.19 (1H, d), 5.00 (1H, d), 4.99 (1H, d), 4.93 (1H, d) and 4.49 (1H, d) to $\delta_{\rm H}$ 2.33-2.21 methines (5H, m) together with the correlations from these methine protons to methyl protons situated $\delta_{\rm H}$ 0.88-1.05 indicated the presence of two *N*MeVal and three Hiv residues.

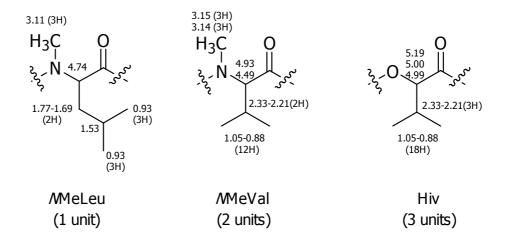


Figure 16. Proton assignments for six residue

On the basis of these spectroscopic data, it was concluded that compound **56** composed of two units of *N*MeVal, one unit of *N*Methylleucine (*N*MeLeu) and three units of Hiv. Three *N*-methylamino acid units and three Hiv units are cyclized alternately, in the same pattern as enniatin B, to form cyclohexadepsipeptide structure as depicted in the top of this subsection.

Compound **56** is identical to enniatin B_4 , whose absolute stereochemistry has been established (Visconti, *et al.*, 1992). The same compound is reported almost at the same time as enniatin D (Tomoda, *et al.*, 1992a). The optical rotation data of compound **56**, isolated from BCC 1449, was consistent with those of enniatin B_4 and enniatin D.

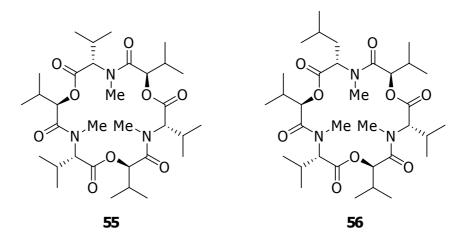
	con	npound 56	enniatin	B ₄ [literature] ^g
position	¹³ C	¹ H (mult, J in Hz)	¹³ C	¹ H
Hiv	(3 units)			
1 <i>C</i> =O	169.7	-	169.6	-
	169.3	-	169.3	-
	169.1	-	169.0	-
2	75.3	5.19 (1H, d, 8.4)	75.6	5.18 (1H, d, 8.4)
	75.3	5.00 (1H, d, 8.3)	75.2	5.09 (1H, d, 8.5)
	75.0	4.99 (1H, d, 9.0)	74.9	4.98 (1H, d, 9.0)
3	30.2 ^a	2.33-2.21 (3H, m) ^b	30.2	2.27 (1H, m)
	29.8 ^a		29.8	2.22 (1H, m)
	29.7 ^a		29.6	2.24 (1H, m)
4/1	19.0	1.00 (3H, d, 7.8)	18.3-18.9	0.93-0.97 (3H, m)
4′ /1	18.7	0.94 (3H, d, 7.0) ^c	18.3-18.9	0.93-0.97 (3H, m)
4/2	18.6	0.98 (3H, d, 7.2)	18.3-18.9	0.93-0.97 (3H, m)
4′/2	18.4	0.94 (3H, d, 7.0) ^c	18.3-18.9	0.93-0.97 (3H, m)
4/3	18.3 ^f	0.96 (3H, d, 7.4)	18.3-18.9	0.93-0.97 (3H, m)
4′/3	18.3 ^f	0.93 (3H, d, 7.0) ^d	18.3-18.9	0.93-0.97 (3H, m)
NMeVal	(2 units)			
1 <i>C</i> =0	170.4	-	170.4	-
	170.3	-	170.3	-
2	63.1	4.49 (1H, d, 10.1)	63.2	4.44 (1H, d, 10.0)

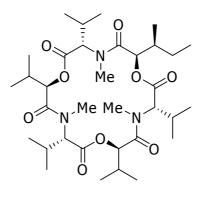
 Table 9.
 ¹H and
 ¹³C NMR data of compound 56

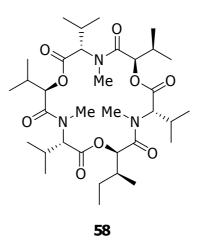
	compound 56		enniatin B ₄ [literature] ^g	
position	¹³ C	¹ H (mult, J in Hz)	¹³ C	¹ H
	61.3	4.93 (1H, d, 10.0)	61.3	4.89 (1H, d, 10.2)
3	27.8	2.33-2.21 (2H, m) ^b	27.8	2.16 (1H, m)
	27.6		27.5	2.23 (1H, m)
4	20.3 ×2	1.05 (3H, d, 6.4)	20.3 ×2	1.02 (3H, d, 6.2)
		1.03 (3H, d, 6.4)		1.02 (3H, d, 6.2)
4′	19.9 ×2	0.91 (3H, d, 6.8)	19.9 ×2	0.85 (3H, d, 6.8)
		0.88 (3H, d, 6.8)		0.85 (3H, d, 6.8)
N- <i>CH</i> ₃ /1	33.7	3.15 (3H, s)	33.8	3.10 (3H, s)
N- $CH_3/2$	32.9	3.14 (3H, s)	33.0	3.07 (3H, s)
NMeLeu	(1 unit)			
1 <i>C</i> =O	170.7	-	170.7	-
2	57.2	4.74 (1H, brs)	57.2	4.66
3	37.9	1.77-1.69 (2H, m) ^e	37.9	1.73 (1H, d, 13.5)
				1.81 (1H, dd, 10.1, 5.1)
4	25.3	1.53 (1H, m)	25.2	1.55 (1H, m)
5	23.3	0.93 (3H, d, 7.0) ^d	23.3	0.92 (3H, d, 6.6)
5'	21.5	0.93 (3H, d, 7.0) ^d	21.5	0.91 (3H, d, 6.6)
$N-CH_3$	31.7	3.11 (3H, s)	31.6	3.04 (3H, s)

 Table 9. ¹H and ¹³C NMR data of compound 56 (continued)

^a Assignments can be interchanged.

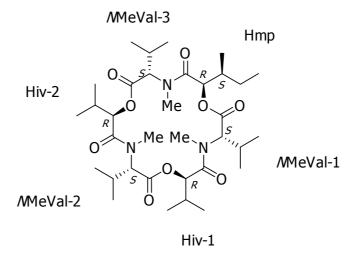

^{b-e} The ¹H signals are overlapping.


^f The ¹³C signals are superimposed.


^g Literature data (Visconti, *et al.*, 1992)

3.2 Chemical constituents from the cell extract of *Verticillium hemipterigenum* BCC 1449

Chemical investigation of the cell extract of the insect pathogenic fungus *Verticillium hemipterigenum* BCC1449 was conducted (Nilanonta, *et al.*, 2003b). Activity-guided chromatographic fractionation of the mycelial extract led to the isolation of two new enniatins, **57** and **58**, together with two known enniatins B (**55**) and B_4 (**56**).



57

3.2.1 Structure elucidation of compound 57 (enniatin H)

Compound **57** was obtained as a colorless solid; mp 105-106 °C, $[\alpha]^{29}_{D}$ - 102 (*c* 0.22, CHCl₃). The UV spectrum of **57** displayed absorption at λ_{max} (log ε) 206 (4.23) nm, similar to those of known enniatins. The IR spectrum of **57** was very similar to those of **55** and **56**, showing strong absorption bands at v_{max} 1743 and 1663 cm⁻¹, indicated the C=O stretching of alkyl ester and amide. The ESI-TOF mass spectrum of **57** showed the [M + Na]⁺ ion peak at *m/z* 676.4121 (calcd for C₃₄H₅₉N₃O₉Na 676.4149, Δ = 2.8 mmu), which indicated the molecular formula of this compound as C₃₄H₅₉N₃O₉.

The ¹H NMR spectrum of compound **57** (in CDCl₃, 400 MHz) presented the peak pattern of enniatins. It showed: a doublet at $\delta_{\rm H}$ 5.27 (1H, d, J = 6.8 Hz), six multiplets at $\delta_{\rm H}$ 5.15-5.13 (2H, m), 4.57-4.55 (3H, m), 2.29-2.28 (5H, m), 2.00 (1H, m), 1.46 (1H, m), and 1.19 (1H, m). Three singlets at $\delta_{\rm H}$ 3.14 (3H, s), 3.13 (3H, s) and 3.11 (3H, s) indicated amide N-CH₃. A set of multiplets at $\delta_{\rm H}$ 1.06-0.89 (36H) suggested twelve methyl groups in this molecule.

Analysis of ¹³C NMR (in CDCl₃), DEPTs, and HMQC spectral data of compound **57** led to the categorization of carbons: fifteen methyl (twelve C-*C*H₃ and three N-*C*H₃), one methylene, twelve methine and two quaternary carbons. Two downfield carbon signals at $\delta_{\rm C}$ 169.3 (three carbons were superimposed) and 170.3 (three carbons were superimposed) confirmed the presence of amides and esters. Six

methine carbons situated at δ_{C} 63.1, 63.2, 63.3, 74.3, 75.6, and 75.9 were assignable to α -protons (H-2) of *N*-methylamino acid and 2-hydroxycarboxylic acid residues.

NMR analysis (¹H, ¹³C, DEPTs, COSY, HMOC and HMBC; in CDCl₃) revealed that this compound consists of three N-methylvaline (NMeVal), two 2hydroxyisovaleric acid (Hiv) and one 2-hydroxy-3-methylpentanoic acid (Hmp) residues. Thus, in the ¹H NMR spectrum of 57, protons of three *N*MeVal residues and two Hiv residues appeared as superimposed signals with the chemical shifts very close to those of enniatin B (55). In addition to these, signals assignable to another 2hydroxycarboxylic acid residue were present. Signal at $\delta_{\rm H}$ 5.27 (1H, d, J = 6.8 Hz) assigned to the proton situated at the α -position (H-2; attached to C-2, δ_C 74.3) showed vicinal coupling (COSY) to a multiplet signal at $\delta_{\rm H}$ 2.00 (1H, H-3; attached to C-3, δ_C 36.1). This methine (C-3) which, in turn, was connected to a methyl group (δ_H 0.96, overlapping signal; δ_C 14.6) and a methylene (δ_H 1.46 and 1.19, 2H, H-4; δ_C 25.4, C-4). The C-4 methylene was attached to a terminal methyl (δ_H 0.92, overlapping signal, H-5; δ_C 11.3, C-5) as indicated by the COSY cross signal. Therefore, the 2-hydroxycarboxylic acid residue was assigned to 2-hydroxy-3methylpentanoic acid (Hmp), and this was consistent with HMBC correlations: H-2 to a carbonyl ($\delta_{\rm C}$ 170.3), C-3 and 3-CH₃; and H-4 to C-2, C-5 and 3-CH₃.

¹H and ¹³C NMR assignments of the three *N*MeVal residues for **57** could not be distinguished due to the very close signals overlap, however, this partial structure was confirmed by 2D-NMR analyses (COSY and HMBC) as a set of signals. Important HMBC correlations for *N*MeVal residues are H-2 to C-3, C-4, C-4', N-*C*H₃ and two carbonyl signals at $\delta_{\rm C}$ 169.3 and 170.3, and from both H-4 and H-4' to C-2. Two Hiv residues were also assigned as a set of signals (Table 10).

Analysis of NOESY spectral data revealed the connectivity of six residues, three *N*MeVal and three 2-hydroxycarboxylic acid. Thus, intense correlations were observed for the three *N*-methyl singlet signals at $\delta_{\rm H}$ 3.11, 3.13 and 3.14 respectively with the α -protons (H-2) of the 2-hydroxycarboxylic acid residues at $\delta_{\rm H}$ 5.27 (Hmp), 5.13 (Hiv) and 5.15 (Hiv), which clearly indicated that three *N*MeVal residues are linked alternately with the three 2-hydroxycarboxylic acid residues.

The connectivity of six residues was also established by analysis of HMBC correlations from α -protons of Hiv (δ_H 5.15-5.13) and Hmp (δ_H 5.27) to carbonyl carbons of *N*MeVal units (δ_C 170.3).

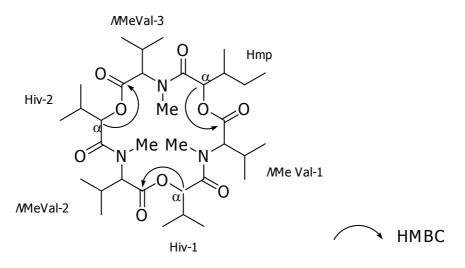


Figure 17. The gross structure of compound 57

Finally, ¹³C NMR assignment of the carbonyl carbons, which appeared as only two signals at $\delta_{\rm C}$ 169.3 and 170.3, was achieved based on the HMBC correlations from the three *N*-methyl proton signals to the $\delta_{\rm C}$ 169.3 peak, not to $\delta_{\rm C}$ 170.3. Therefore, the $\delta_{\rm C}$ 169.3 signal was assigned to that of amide carbonyls (C-1 for two Hiv and a Hmp), and $\delta_{\rm C}$ 170.3 signal to ester carbonyls (C-1 for three *N*MeVal). Another possibility of compound **57** structure, bearing one *N*MeIle instead of *N*MeVal in **55**, enniatin B₁, was clearly ruled out by these spectroscopic analysis. Furthermore, ¹H and ¹³C NMR spectral data of **57** (in CDCl₃) were apparently different from those reported for enniatin B₁ (Blais, 1992; Tomoda, 1992).

The relative stereochemistries at α -carbons of *N*MeVal, Hmp, and Hiv residues were confirmed by NOESY spectral analysis (Figure 11). NOESY correlations from *N*-methyl protons of *N*MeVal residues to α -protons of Hmp and Hiv residues revealed that these protons are both directed to the same side and vertically oriented to the depsipeptide ring. On the other hand, weak NOE between the N-methyl protons and the α -protons of *N*MeVal residues indicated that they are placed opposite to the macrocyclic ring. The absolute configuration of the β -carbon (C-3) of

Hmp unit could not be addressed by spectroscopic means, however, it was determined to be (3S)-configuration by precursor-directed biosynthesis, as described in the later section.

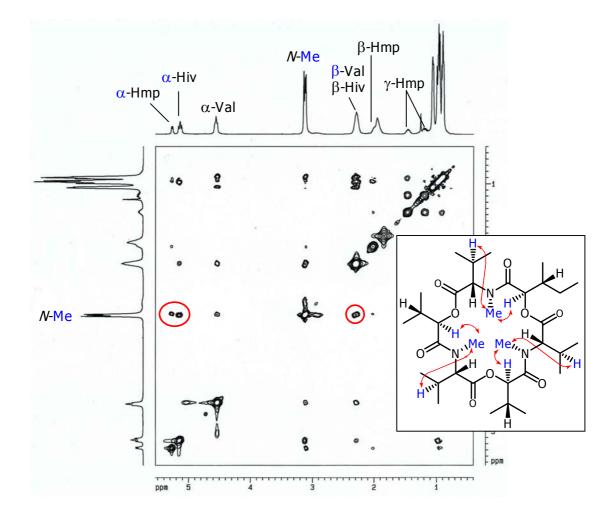
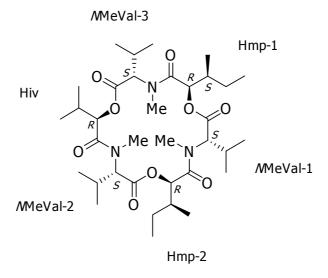


Figure 18. NOESY spectrum of compound 57

Compound 57, named enniatin H, is an unusual new enniatin analog possessing a Hmp unit instead of Hiv. All known naturally-occurring enniatins possess three Hiv units, while their structures differ to each other at the three *N*-methylamino acid moieties.

position	δ _C	$\delta_{\rm H}$ (mult., <i>J</i> in Hz)	HMBC (H to C)
NMeVal	(3 units)		
1 <i>C</i> =O	170.3×3	-	-
2	63.3, 63.2, 63.1	4.57-4.55 (3H, m)	1, 3, 4, 4', δ _C 169.3, N-CH ₃
3	28.0, 27.9, 27.8	2.29-2.28 (3H, m) ^a	-
4	20.4, 20.3×2	1.06 (9H, m)	2, 3, 4'
4'	19.5, 19.4, 19.3	0.90-0.89 (9H, m)	2, 3, 4
$N-CH_3$	33.1, 32.9×2	3.14 (3H, s)	1, δ _C 169.3
		3.13 (3H, s)	1, δ _C 169.3
		3.11 (3H, s)	1, δ _C 169.3
Hiv	(2 units)		
1 <i>C</i> =0	169.3×2^{c}	-	-
2	75.9, 75.6	5.15-5.13 (2H, m)	3, 4, 4'
3	29.9×2	2.28 (2H, m) ^{<i>a</i>}	2, 4, 4′
4	18.7 ^{<i>d</i>} , 18.6 ^{<i>d</i>}	0.98 (6H, m) ^b	2, 3, 4'
4′	18.5×2 ^d	$0.96 (6H, m)^b$	2, 3, 4
Нтр	(1 unit)		
1 <i>C</i> =0	169.3°	-	-
2	74.3	5.27 (1H, d, 6.8)	3, 3- <i>C</i> H ₃ , δ _C 170.3
3	36.1	2.00 (1H, m)	-
4	25.4	1.46 (1H, m)	2, 5, 3- <i>C</i> H ₃
		1.19 (1H, m)	3
5	11.3	0.92 (3H, m)	3
3- <i>CH</i> ₃	14.6	0.96 (3H, m) ^b	3, 4


Table 10. NMR data for compound 57 in CDCl₃

^{*a,b*} The ¹H signals are overlapping.

^c The carbon signals are superimposed.

^d Assignments can be interchanged.

3.2.2 Structure elucidation of compound 58 (enniatin I)

Compound **58** was obtained as a colorless gum; $[\alpha]^{29}{}_{\rm D}$ -87 (*c* 0.12, CHCl₃). The UV spectrum of **58** displayed absorption at $\lambda_{\rm max}$ (log ε) 207(4.23) nm similar to those of enniatins **55**, **56** and **57**. The IR spectrum of **58** also resembled those of other enniatins, showing $v_{\rm max}$ 2965, 1745, 1665, 1468, 1383, 1281, 1192, and 1012 cm⁻¹. The ESI-TOF mass spectrum of **58** showed the [M + Na]⁺ ion peak at *m/z* 690.4277 (calcd for C₃₅H₆₁N₃O₉Na, 690.4306; $\Delta = 2.9$ mmu), which indicated the molecular formula of this compound as C₃₅H₆₁N₃O₉.

The ¹H NMR spectrum of compound **58** (in CDCl₃, 400 MHz) showed signals of a doublet at $\delta_{\rm H}$ 5.15 (1H, d, J = 8.2 Hz), and six multiplets at $\delta_{\rm H}$ 5.28-5.27 (2H, m), 4.56-4.55 (3H, m), 2.30-2.28 (4H, m), 2.02 (2H, m), 1.46 (2H, m) and 1.19-1.18 (2H, m). Three singlets at $\delta_{\rm H}$ 3.12 (3H, s), 3.11 (3H, s) and 3.09 (3H, s) indicated the presence of three N-CH₃ groups. A set of multiplets at $\delta_{\rm H}$ 1.06-0.89 (36H) suggested twelve methyl groups in this molecule.

Analysis of ¹³C NMR (in CDCl₃), DEPTs and HMQC spectral data of compound **58** led to the categorization of carbons: fifteen methyl (twelve C-*C*H₃ and three N-*C*H₃), two methylene, twelve methine and two quaternary carbons. The appearance of two carbonyl carbon signals at $\delta_{\rm C}$ 169.2 (three carbon signals are

overlapped) and 170.3 (three carbon signals are overlapped) confirmed the presence of amides and esters. Six methine carbons situated at $\delta_{\rm C}$ 63.1 (three carbons), 74.2, 74.4, and 75.7 were assigned to α -carbons (C-2) for *N*-methylamino acid and 2hydroxycarboxylic acid residues..

¹H and ¹³C NMR spectra of **58** were similar to those of **57** where chemical shifts of the protons and carbons in each residue were superimposed but with different composition. Compound **58** composed of three *N*MeVal, one Hiv, and two Hmp as described below.

Vicinal coupling (COSY) from $\delta_{\rm H}$ 2.30-2.28 methine protons (3H, m, H-3, *N*MeVal) to $\delta_{\rm H}$ 1.06 methyls (9H, m, H-4, *N*MeVal) and 0.89 methyls (9H, m, H-4', *N*MeVal) revealed the assignments of the isopropyl groups in three *N*MeVal. COSY correlations from $\delta_{\rm H}$ 2.02 (2H, m, H-3, Hmp) to $\delta_{\rm H}$ 0.96 (6H, m, 3-CH₃, Hmp) indicated methyl group on Hmp unit at position 3, while the correlations from $\delta_{\rm H}$ 1.46 (2H, m, H-4, Hmp) and 1.19-1.18 (2H, m, H-4, Hmp) methylene protons to $\delta_{\rm H}$ 0.92 (6H, t, *J* = 7.5 Hz, H-5, Hmp) indicated ethyl group on Hmp unit. The COSY spectrum also exhibited the correlations from H-2 to H-3 of each residue: from $\delta_{\rm H}$ 5.28-5.27 (2H, m, H-2, Hmp) to $\delta_{\rm H}$ 2.02 (2H, m, H-3, Hmp), from $\delta_{\rm H}$ 5.15 (1H, d, *J* = 8.2 Hz, H-2, Hiv) to $\delta_{\rm H}$ 2.29 (1H, m, H-3, Hiv), and from $\delta_{\rm H}$ 4.56-4.55 (3H, m, H-2, *N*MeVal) to $\delta_{\rm H}$ 2.30-2.28 (3H, m, H-3, *N*MeVal).

HMBC correlations for *N*MeVal residues are H-2 (δ_{H} 4.56-4.55) to C-3 (δ_{C} 27.9 × 2, 27.8), C-4 (δ_{C} 20.3 × 3), C-4' (δ_{C} 19.2, 19.3, 19.4), N-CH₃ (δ_{C} 32.7, 32.9 × 2 and two carbonyl signals at δ_{C} 169.2 and 170.3, from protons in N-CH₃ group (δ_{H} 3.09, 3.11, 3.12) to C-2 (δ_{C} 63.1 × 3), and carbonyl signal at δ_{C} 169.2, from H-3 (δ_{H} 2.30-2.28) to C-2 (δ_{C} 63.1 × 3), C-4 (δ_{C} 20.3 × 3), and C-4' (δ_{C} 19.2, 19.3, 19.4), and from both H-4 (δ_{H} 1.06) and H-4' (δ_{H} 0.89) to C-2 (δ_{C} 63.1 × 3), and C-3 (δ_{C} 27.9 × 2, 27.8). The NOESY spectral data further supported these assignments for the three *N*MeVal residues: from H-2 (δ_{H} 4.56-4.55) to H-3 (δ_{H} 2.30-2.28), H-4 (δ_{H} 1.06), H-4' (δ_{H} 0.89), N-CH₃ (δ_{H} 3.12, 3.11, 3.09), from H-3 (δ_{H} 2.30-2.28) to H-4 (δ_{H} 1.06), H-4' (δ_{H} 0.89), from N-CH₃ (δ_{H} 3.12, 3.11, 3.09) to H-4 (δ_{H} 1.06), H-4' (δ_{H} 0.89).

HMBC correlations for Hiv residues are H-4 ($\delta_{\rm H}$ 0.98) to C-2 ($\delta_{\rm C}$ 75.7), C-3 ($\delta_{\rm C}$ 29.9), C-4' ($\delta_{\rm C}$ 18.5), and from H-4' ($\delta_{\rm H}$ 0.95) to C-2 ($\delta_{\rm C}$ 75.7), C-3 ($\delta_{\rm C}$ 29.9), C-4 ($\delta_{\rm C}$ 18.6). The NOESY spectral data further supported these assignments for the Hiv residue: from H-2 ($\delta_{\rm H}$ 5.15) to H-3 ($\delta_{\rm H}$ 2.29), H-4 ($\delta_{\rm H}$ 0.98), H-4' ($\delta_{\rm H}$ 0.95), N-CH₃ ($\delta_{\rm H}$ 3.12, 3.11, 3.09), from H-3 ($\delta_{\rm H}$ 2.29) to H-4 ($\delta_{\rm H}$ 0.98), H-4' ($\delta_{\rm H}$ 0.95).

HMBC correlations for Hmp residues are H-3 (δ_{H} 2.02) to 3-*C*H₃ (δ_{C} 14.6 × 2), from H-4a (δ_{H} 1.46) to C-2 (δ_{C} 74.4, 74.2), C-3 (δ_{C} 36.1 × 2), C-5 (δ_{C} 11.3 × 2), 3-*C*H₃ (δ_{C} 14.6 × 2), from H-4b (δ_{H} 1.19-1.18) to C-3 (δ_{C} 36.1 × 2), C-5 (δ_{C} 11.3 × 2), 3-*C*H₃ (δ_{C} 14.6 × 2), and from protons of 3-*C*H₃ (δ_{H} 0.96) to C-2 (δ_{C} 74.4, 74.2), C-3 (δ_{C} 36.1 × 2), C-4 (δ_{C} 25.3 × 2), and from H-5 (δ_{H} 0.92) to C-3 (δ_{C} 36.1 × 2), C-4 (δ_{C} 25.3 × 2). The NOESY spectral data further supported these assignments for the two Hmp residues: from H-2 (δ_{H} 5.28-5.27) to H-3 (δ_{H} 2.02), H-4a (δ_{H} 1.46), H-4b (δ_{H} 1.19-1.18), H-5 (δ_{H} 0.92), 3-*C*H₃ (δ_{H} 0.96), N-*C*H₃ (δ_{H} 0.96), from H-4a (δ_{H} 1.46) to H-4b (δ_{H} 1.19-1.18), H-5 (δ_{H} 0.92), 3-*C*H₃ (δ_{H} 0.96), from H-4b (δ_{H} 1.19-1.18) to H-4a (δ_{H} 1.46), H-5 (δ_{H} 0.92), 3-*C*H₃ (δ_{H} 0.96), from H-4b (δ_{H} 1.19-1.18) to H-4a (δ_{H} 1.46).

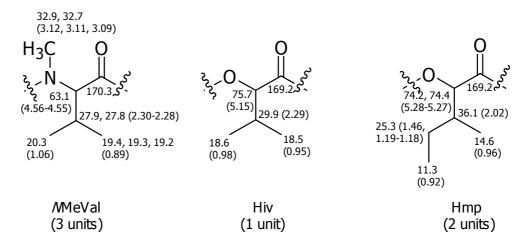


Figure 19. Partial structures and NMR assignments for compound 58

Analysis of NOESY spectral data also revealed the connectivity of six residues, three *N*MeVal and three 2-hydroxycarboxylic acid. Thus, intense

correlations were observed for the three *N*-methyl singlet signals at δ_H 3.12, 3.11 and 3.09 respectively with the α -protons (H-2) of the 2-hydroxycarboxylic acid residues at δ_H 5.28-5.27 (Hmp), and 5.15 (Hiv), which clearly indicated that three *N*MeVal residues are linked alternately with the three 2-hydroxycarboxylic acid residues.

The relative stereochemistries at α -carbons of *N*MeVal, Hmp, and Hiv residues were confirmed by NOESY spectral analysis (Figure 13).

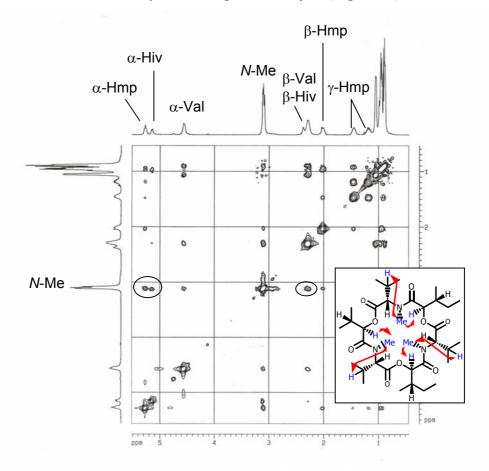


Figure 20. NOESY spectrum of compound 58

NOESY correlations from *N*-methyl protons of *N*MeVal residues to α protons of Hmp and Hiv residues revealed that these protons are both directed to the same side and vertically oriented to the depsipeptide ring. On the other hand, weak NOE between the N-methyl protons and the α -protons of *N*MeVal residues indicated that they are placed opposite to the macrocyclic ring. Therefore, the structure of compound **58** was established as depicted on the top of this subsection. The absolute configuration of the β -carbon (C-3) of the two Hmp units was determined to be (3*S*) by precursor-directed biosynthesis, as described in the following section.

Compound **58**, named enniatin I, is also an unusual new enniatin analog. **Table 11.** NMR data for compound **58** in CDCl₃

position	δ _C	$\delta_{\rm H}$ (mult., J in Hz)	HMBC (H to C)
NMeVal	(3 units)		
1 <i>C</i> =O	170.3×3	-	-
2	63.1×3	4.56-4.55 (3H, m)	1, 3, 4, 4', δ _C 169.2, N- <i>C</i> H ₃
3	27.9×2, 27.8	2.30-2.28 (3H, m) ^a	2, 4, 4'
4	20.3×3	1.06 (9H, m)	2, 3, 4'
4'	19.4, 19.3, 19.2	0.89 (9H, m)	2, 3, 4
N-CH ₃	32.9×2, 32.7	3.12 (3H, s)	1, δ _C 169.2
		3.11 (3H, s)	1, δ _C 169.2
		3.09 (3H, s)	1, δ _C 169.2
Hiv	(1 unit)		
1 <i>C</i> =O	169.2 ^{<i>c</i>}	-	-
2	75.7	5.15 (1H, d, 8.2)	-
3	29.9	2.29 (1H, m) ^{<i>a</i>}	4, 4'
4	18.6 ^d	$0.98 (3H, m)^{b}$	2, 3, 4'
4′	18.5 ^{<i>d</i>}	0.95 (3H, m) ^b	2, 3, 4
Hmp	(2 units)		
1 <i>C</i> =0	169.2 ×2 ^c	-	-
2	74.4, 74.2	5.28-5.27 (2H, m)	-
3	36.1×2	2.02 (2H, m)	-
4	25.3×2	1.46 (2H, m)	3, 5, 3- <i>C</i> H ₃
		1.19-1.18 (2H, m)	-
5	11.3×2	0.92 (6H, t, 7.5)	3, 4

2, 3, 4

^{*a,b* 1}H signals are overlapping.

^{*c*} The carbon signals are superimposed.

^{*d*} Assignments can be interchanged.

3.3 Studies on precursor-directed biosynthesis using *Verticillium hemipterigenum* BCC 1449

Enniatin synthetase, a multifunctional enzyme catalyzing enniatin biosynthesis, has previously been isolated from *Fusarium oxysporum* (Zocher *et at.*, 1982) and the cell-free synthesis of enniatins has also been reported (Zocher *et al.*, 1976, 1978, 1982; Pieper *et al.*, 1992). It is known that the biosynthetic precursor for L-*N*MeVal residues of the major metabolite enniatin B (compound **51**) is L-valine, which was elucidated by the uptake of radio-active substrate as reported in the literature (Lee *et al.*, 1992). It is also claimed that the D-2-hydroxyisovaleric acid (D-Hiv) residues are derived from L-valine via 2-ketoisovalerate (Figure 14).

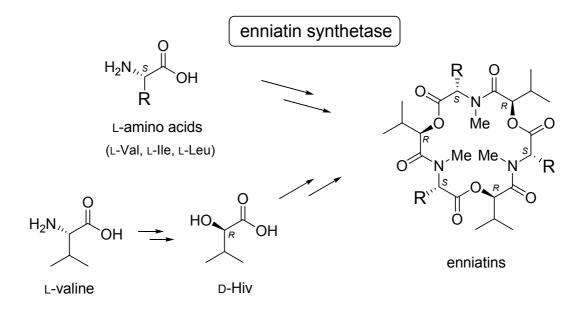
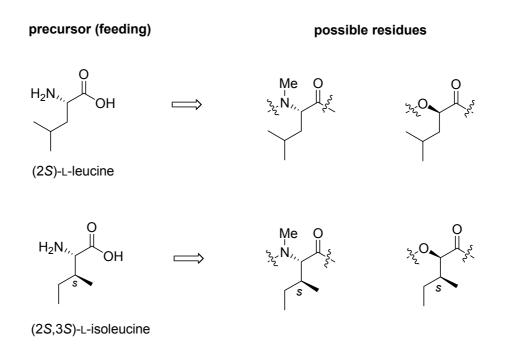
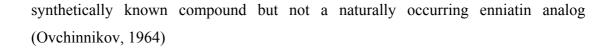


Figure 21. Biosynthesis of enniatins

Enniatin H (57) and enniatin I (58), found in this study, possess one and two 2-hydroxy-3-methylpentanoic acid (Hmp) moiety instead of Hiv. It suggested that the nature of enniatin synthetase of the fungus *V. hemipterigenum* BCC 1449 might be different from those of previously investigated enniatins-producing *Fusarium* species, especially at the region associated with Hiv substrate recognition. Because the NMR data did not provide enough information to determine the stereochemistry at C-3 of Hmp unit of two new enniatins, it was planed to undertake directed biosynthesis using L-leucine and L-isoleucine as precursors. By this method, the feeding of the substrate analog might provide the incorporation of these mimics at L-*N*-methylamino acid or D-2-hydroxycarboxylic acid residues in the enniatin molecules.




Figure 22. Precursors and possible residues in enniatins

3.3.1 Precursor-directed biosynthesis

A feeding experiment with 20 mM of L-leucine (fermentation: $4 \times 1L$ Erlenmeyer flasks, each containing 250 mL of potato dextrose broth) led to the enhanced production of enniatins as compared to controlled fermentation (no additive) (Figure 16). HPLC/UV analysis (ODS column: MeCN/H₂O = 70:30; detection at 210 nm) of the extract from culture filtrate showed that enniatin B₄ (**56**) and a new analog (**59**), corresponding to the peak at t_R 20 min, were produced in higher amounts relative to enniatin B (**55**). In addition, HPLC peaks due to several other minor isomers were observed. It should also be noted that the total amount of enniatins in the L-leucine-fed culture, 16 mg of total enniatins per 1 L culture broth (calculated using an internal standard), was higher than that of the control (5 mg per 1 L culture broth). Similar results were observed for the analysis of the extract from mycelia (Figure 17).

The extracts from filtrate and mycelia were combined and subjected to chromatographic separation. Compounds **55**, **56**, **59** and a minor product corresponding to the HPLC peak at t_R 25 min (**60**) were isolated (see experimental section). Although the HPLC retention time (in MeCN/H₂O) of compound **59** was very close to **57**, the preparative HPLC fraction corresponding to this peak contained mainly compound **59** and a trace amount of **57** which was removed by subsequent re-chromatography employing MeOH/H₂O as the solvent system. Spectral data for enniatins B (**55**) and B₄ (**56**) obtained from this feeding experiment were identical to those obtained from non-additive fermentation.

NMR analysis of another major product, **59**, having a molecular formula of $C_{35}H_{61}N_3O_9$ (HRMS, ¹³C NMR), revealed that this molecule consists of one *N*MeVal, two *N*MeLeu and three Hiv residues, hence, the structure was identical to enniatin G which was isolated from the mangrove fungus *Halosarpheia* sp. (strain 732) (Lin *et al.*, 2002). The minor product, **60**, exhibited a *C*₃-symmetric structure as indicated by its molecular formula ($C_{36}H_{63}N_3O_9$, HRMS) and ¹H and ¹³C NMR spectra. Analysis of the 2D-NMR spectral data revealed that this compound consists of *N*MeLeu and Hiv residues, therefore, it is identical to enniatin C which is a

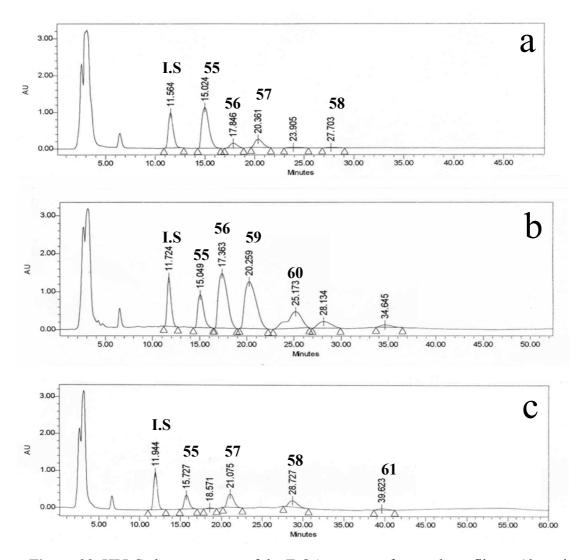


Figure 23. HPLC chromatogram of the EtOAc extracts from culture filtrate (detection at 210 nm): (a) control (non-additive); (b) L-leucine fed (20 mM); (c) L-Isoleucine fed (20 mM). Internal standard (I.S.): ethyl 4-phenylbenzoate (0.50 mg)

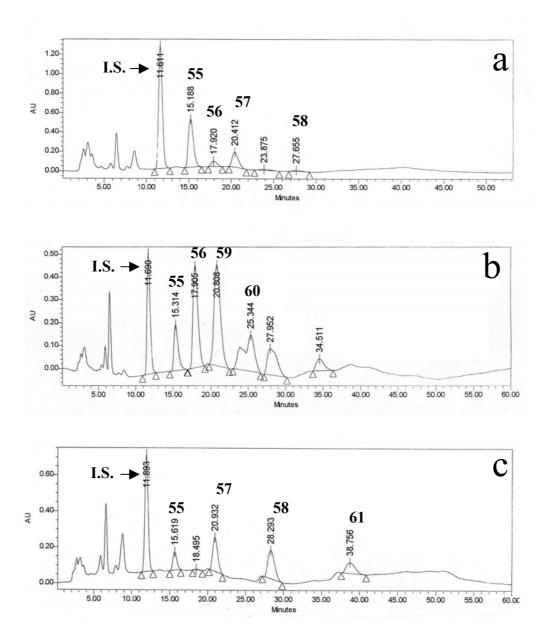


Figure 24. HPLC chromatogram of the MeOH extracts from mycelia (detection at 210 nm): (a) control (non-additive); (b) L-leucine fed (20 mM); (c) L-Isoleucine fed (20 mM). Internal standard (I.S.): ethyl 4-phenylbenzoate (0.50 mg)

A feeding experiment with L-isoleucine (20 mM) gave dramatically different results in which enhanced production of enniatins H (57) and I (58), and the appearance of another derivative, 61, at t_R 40 min, were observed by HPLC/UV analysis (Figure 16). Due to the small amounts of enniatin products, a 10 Litre fermentation (250 mL × 40 flasks) was conducted from which four compounds, 55,

57, 58, and 61, were isolated. Spectral data of 55, 57 and 58, obtained from the Lisoleucine-fed culture were identical in all respects to those from non-additive fermentation. The newly produced analog, 61, molecular formula $C_{36}H_{63}N_3O_9$ (HRMS), possessed a C_3 -symmetric structure as indicated by its NMR spectra. NMR analyses also revealed that this compound bears three *N*MeVal and three Hmp residues. Results from L-isoleucine-feeding experiments also confirmed the (3*S*)configuration at the β -position of Hmp residues in the naturally occurring enniatins H (57) and I (58), and the missing analog, 61. A related compound MK1688, obtained from *Fusarium oxysporum* D338, was claimed as an antifungal substance in a Japanese patent (Mikawa *et al.*, 1991) although its stereochemistries at the Hmp residues have not been presented. By comparison of ¹H NMR (taken in methanol- d_6) and IR spectrum, and optical rotation data of 61, with those of MK1688 in the patent, it was concluded that they are the same compound. Therefore, MK1688 (61) possesses (2*R*,3*S*)-configuration at the Hmp residues.

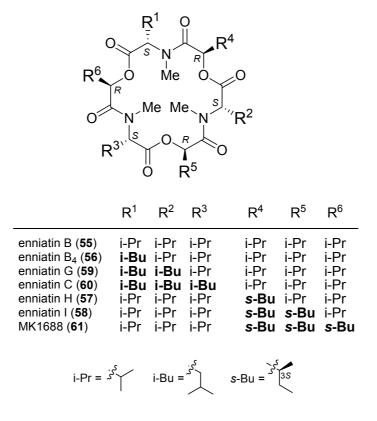
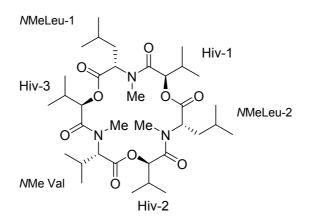


Figure 25. Enniatins from precursor-directed biosynthesis

feeding	extract	enniatin composition: mg per $(1 \text{ Litre fermentation})^a$						Total		
U	-	В	B ₄	G	С	Н	I	МК	others ^b	
control	filtrate mycelia	3.25 0.99	0.38 0.13	-	-	0.71 0.37	0.05 0.05	-	0.08 0.04	4.5 1.8
		••••								
+ L-Leu	filtrate	1.93	4.86		1.97	с	d	-	1.55	
	mycelia	0.96	2.48	3.21	1.32	С	d	-	2.46	10.4
+ L-Ile	filtrate	0.89	0.06	-	-	1.11	0.71	0.14	0.00	2.9
	mycelia	0.36	0.03	-	-	0.83	0.94	0.47	0.00	2.6

Table 12. Enniatin composition in extracts from precursor-feeding experiments

^{*a*} Amount of each compound was determined by HPLC analysis using an internal standard (ethyl 4-phenylbenzoate, 0.50 mg).


^b Other unidentified minor enniatin isomers (combined amount).

^c Peak of enniatin H (minor) was overlapped with that of enniatin C (major).

^d Peak of enniatin I was overlapped with those of unidentified minor isomers.

The present results are of particular interest concerning specificity of the substrate recognition domain of the enzyme enniatin synthetase in strain *V*. *hemipterigenum* BCC 1449. It is evident that the enzyme favors L-leucine over L-isoleucine as a substrate of the L-*N*-methylamino acid residue in enniatin biosynthesis. In contrast, the domain which recognizes 2-hydroxycarboxylic acid substrates readily accepts Hmp, derived from L-isoleucine, as indicated by the enhancement of production of enniatins H (57), I (58) and MK1688 (61) in the feeding experiment as well as by the production of 57 and 58 even in the standard fermentation. It should be noted that this observation is of marked contrast to the study of substrate specificity in the precursor-directed biosynthesis of *Fusarium* spp, recently reported by Zocher's group (Krause *et al.*, 2001).

3.3.2 Structure elucidation of compound 59 (enniatin G)

Compound **59** was obtained as a colorless solid; mp 143-145 °C, $[\alpha]^{26}_{D}$ – 75 (*c* 0.21, CHCl₃). It possesses the molecular formula C₃₅H₆₁N₃O₉, as determined by the HRMS (ESI-TOF) *m/z* 690.4301 [M + Na]⁺ (calcd for C₃₅H₆₁N₃O₉Na, 690.4306, $\Delta = 0.5$ mmu). The UV spectrum of **59** showed an intense absorption at λ_{max} (log ε) 206(4.28) nm and its IR spectrum showed the absorption bands at v_{max} 2964, 1749, 1740, 1655, 1471, 1269, 1204 and 1016 cm⁻¹, which revealed that compound **59** is also an enniatin analog.

The ¹H NMR spectrum of compound **59** (in CDCl₃, 400 MHz) was similar to that of **56** (enniatin B₄) which showed: signals of two double doublet at $\delta_{\rm H}$ 5.26 (1H, dd, J = 10.8, 4.4 Hz, H–2, *N*MeLeu), 4.84 (1H, dd, J = 10.3, 5.1 Hz, H–2, *N*MeLeu), four doublet signals at $\delta_{\rm H}$ 5.05 (1H, d, J = 8.8 Hz, H–2, Hiv), 5.02 (1H, d, J =8.8 Hz, H–2, Hiv), 4.97 (1H, d, J = 8.8 Hz, H–2, Hiv), 4.92 (1H, d, J = 10.1 Hz, H–2, *N*MeVal), two singlets at $\delta_{\rm H}$ 3.15 (3H, s, N-CH₃), 3.13 (6H, s, 2 × N-CH₃), six multiplets at $\delta_{\rm H}$ 2.31-2.18 (3H, m, H–3, Hiv), 2.20 (1H, m, H-3, *N*MeVal), 1.79-1.74 (2H, m, H-3a, *N*MeLeu), 1.73-1.65 (2H, m, H-3b, *N*MeLeu), 1.53 (1H, m, H-4, *N*MeLeu), 1.47 (1H, m, H-4, *N*MeLeu), a set of doublets and multiplets at $\delta_{\rm H}$ 0.90-1.04 (total 36H, 12 methyl groups).

Analysis of ¹³C NMR, DEPTs and HMQC spectral data of compound **59** led to the categorization of carbons: fifteen methyl (twelve C-*C*H₃ and three N-*C*H₃), two methylene (δ_C 37.6 and 37.8), twelve methine and six quaternary carbons. The downfield carbon signals at δ_C 169.6, 169.8 and 169.9 confirmed the presence of

amides and the signals at δ_C 170.6, and 171.0 (two carbons) indicated the esters moieties. Three methine carbons at δ_C 54.6, 56.0 and 61.3 were assignable to α position (C-2) of the *N*-methylamino acid residues, while three methine carbons at δ_C 75.0 and 75.8 (two carbons) were α -position (C-2) of the Hiv residues.

The COSY spectrum showed correlations from $\delta_{\rm H}$ 5.26 (1H, dd) and 4.84 (1H, dd) protons to $\delta_{\rm H}$ 1.79-1.74 methylene (2H, m), and $\delta_{\rm H}$ 1.73-1.65 methylene (2H, m). These methylene protons coupled with $\delta_{\rm H}$ 1.53 (1H, m) and 1.47 (1H, m) methine protons, respectively, and these two methine protons correlated with two methyls, each, situated at $\delta_{\rm H}$ 0.93-0.91 and 0.95-0.94. These data indicated the presence of two *N*-methylleucine (*N*MeLeu) residues. COSY correlations from three α -protons at $\delta_{\rm H}$ 5.05 (1H, d), 5.02 (1H, d) and 4.97 (1H, d) to $\delta_{\rm H}$ 2.33-2.21 methines (3H, m) and one α -proton at $\delta_{\rm H}$ 4.92 (1H, d) to $\delta_{\rm H}$ 2.20 methine (1H, m) were observed. These four methine protons showed COSY cross signals to methyl protons situated $\delta_{\rm H}$ 0.90-1.04 which indicated the presence of three Hiv and one *N*MeVal residues.

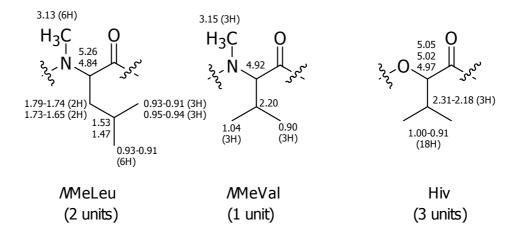
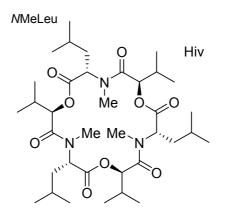


Figure 26. Proton assignments for six residues

On the basis of these spectroscopic data, it was concluded that compound **59** composed of two units of *N*MeVal, one unit of *N*MeLeu and three units of Hiv. Three *N*-methylamino acid units and three Hiv units alternately linked, in the same pattern as other enniatins, to form cyclohexadepsipeptide structure as depicted previously in this subsection.

Compound **59** is identical to enniatin G, which was previously isolated from the mangrove fungus *Halosarpheia* sp. (strain 732) collected from the South China Sea (Lin, *et al.*, 2002).

position	¹³ C	¹ H (mult, J in Hz)	HMBC (H to C)
Hiv	(3 units)		
1 <i>C</i> =O	169.6, 169.8, 169.9	-	-
2	75.0	5.05 (1H, d, 8.8)	1, 3, 4, 4′, δ _c 171.0
	75.8	5.02 (1H, d, 8.8)	1, 3, 4, 4′, δ _c 170.6
	75.8	4.97 (1H, d, 8.8)	1, 3, 4, 4', δ _c 171.0
3	29.7, 30.0, 30.1	2.31-2.18 (3H, m) ^a	1, 2, 4, 4'
4	18.1	0.93-0.91 (3H, m) ^b	2, 3
	18.3	0.95-0.94 (3H, m) ^c	3
	18.2	0.95-0.94 (3H, m) ^c	3
4'	18.55	0.98 (3H, d, 6.6)	2, 3
	18.8	1.00 (3H, m)	2, 3
	18.6	0.996 (3H, d, 6.5)	2, 3
NMeVal	(1 unit)		
1 <i>C</i> =O	170.6	-	-
2	61.3	4.92 (1H, d, 10.1)	1, 3, 4, 4′, δ _c 169.9
3	27.8	2.20 (1H, m) ^a	1, 2, 4, 4'
4	19.5	0.90 (3H, m)	2, 3, 4'
4′	20.0	1.04 (3H, d, 6.6)	2, 3, 4
N-CH ₃	32.0	3.15 (3H, s)	1, 2, δ _c 169.9


 Table 13. NMR data for compound 59 (enniatin G) in CDCl3

osition	¹³ C	1 H (mult, J in Hz)	HMBC (H to C)
MeLeu	(2 units)		
C=O	171.0×2	-	-
	54.6	5.26 (1H, dd, 10.8, 4.4)	3, δ _c 169.8
	56.0	4.84 (1H, dd, 10.3, 5.1)	3, δ _c 169.6
	37.6	1.73-1.65 (2H, m)	1, 2, 4, 5, 5'
	37.8	1.79-1.74 (2H, m)	1, 2, 4, 5, 5'
	25.1	1.53 (1H, m)	3, 5, 5'
	25.2	1.47 (1H, m)	3, 5, 5'
	21.3×2	0.93-0.91 (6H, m) ^b	3, 4
	23.30	0.93-0.91 (3H, m) ^b	3, 4, 5'
	23.35	0.95-0.94 (3H, m) ^c	3, 4
CH ₃	31.8, 32.0	3.13 (6H, s)	1, 2, δ _c 169.8

 Table 13. NMR data for compound 59 (enniatin G) in CDCl₃ (continued)

^{a-c} The ¹H signals are overlapping.

3.3.3 Structure elucidation of compound 60 (enniatin C)

Compound **60** was obtained as a colorless solid; mp 159-160 °C, $[\alpha]^{27}_{D}$ – 47 (*c* 0.11, CHCl₃). It possesses the molecular formula C₃₆H₆₃N₃O₉, as determined by the HRMS (ESI-TOF) *m/z* 704.4443 [M + Na]⁺ (calcd for C₃₆H₆₃N₃O₉Na, 704.4462, $\Delta = 1.9$ mmu), which is 42 unit mass more than enniatin B (**55**). The UV spectrum of **60** showed an intense absorption at λ_{max} (log ε) 205 (4.23) nm and its IR spectrum showed the absorption bands at v_{max} 2964, 1748, 1659, 1471, 1268, 1204 and 1014 cm⁻¹, which revealed that compound **60** was also an enniatin analog.

The ¹H NMR spectrum of compound **60** (in CDCl₃, 400 MHz) also indicated that it was a C_3 -symmetric enniatin analog, showing signals of twenty-one protons: a broad doublet at δ_H 5.33 (1H, brd, J = 7.1 Hz), a doublet at δ_H 4.91 (1H, d, J = 8.2 Hz, H–2), one singlet at δ_H 3.10 (3H, s, N-CH₃), four multiplet at δ_H 2.20 (1H, m), 1.73 (1H, m), 1.66 (1H, m) and 1.45 (1H, m), and four doublets at δ_H 1.01 (3H, d, J = 6.4 Hz), 0.95 (3H, d, J = 6.5 Hz), 0.94 (3H, d, J = 6.7 Hz), and 0.91 (3H, d, J =6.5 Hz). The ¹³C NMR spectrum of **60** (in CDCl₃, 100 MHz) exhibited 12 signals. The HMQC spectral data revealed categorization of carbons: five methyl, one methylene, four methine and two quaternary carbons.

The COSY correlations from δ_H 4.91 proton (1H, d) to δ_H 2.20 methine (1H, m), and the correlation from this methine proton to methyl protons at δ_H 1.01 (3H, d) and 0.94 (3H, d), indicated the Hiv structure. Correlations from δ_H 5.33 proton (1H, brd) to δ_H 1.73 (1H, m) and 1.66 (1H, m) methylene, and from this methylene protons to δ_H 1.45 methine (1H, m) were observed. This methine proton attached to two methyl groups situated at δ_H 0.95 (3H, d) and 0.91 (3H, d). Therefore, the other unit was assigned to *N*MeLeu.

HMBC correlations from α -proton at δ_H 4.91 (1H) to ester carbonyl carbon at δ_C 171.1, to methine carbon at δ_C 30.0, and to two methyl carbons at δ_C 18.6 and 18.0 were observed. Methine proton at δ_H 2.20 (1H) correlated to the methine carbon at δ_C 75.7 and two methyl carbons at δ_C 18.6 and 18.0. Methyl protons at δ_H 1.01 (3H) showed correlations to two methine carbons at δ_C 75.7, and 30.0, and to the methyl carbon at δ_C 18.6. These HMBC data confirmed the partial structural assignments for the Hiv residue.

Another set of HMBC correlation data confirmed the *N*MeLeu residue. Correlations from the amide *N*-methyl at $\delta_{\rm H}$ 3.10 (3H, s) to methine carbon at $\delta_{\rm C}$ 54.2 (C-2) and amide carbonyl carbon at $\delta_{\rm H}$ 170.3, and to ester carbonyl carbon at $\delta_{\rm H}$ 171.1 were observed. The methylene protons at $\delta_{\rm H}$ 1.73 and 1.66 (H-3) correlated to the ester carbonyl ($\delta_{\rm C}$ 171.1), methine carbons at $\delta_{\rm C}$ 54.2 (C-2) and 25.3 (C-4), and methyl carbons at $\delta_{\rm C}$ 23.4 and 20.9. The methine proton at $\delta_{\rm H}$ 1.45 (H-4) showed correlations to methyl carbon at $\delta_{\rm C}$ 23.4 (C-5). Methyl protons at $\delta_{\rm H}$ 0.95 (3H, H-5) exhibited correlations to methylene carbon at $\delta_{\rm C}$ 37.3 (C-3), methine carbon ($\delta_{\rm C}$ 25.3, C-4) and another methyl ($\delta_{\rm C}$ 20.9, C-5'), while the methyl proton at $\delta_{\rm H}$ 0.91 (3H, H-5') correlated to C-3 ($\delta_{\rm C}$ 37.3), C-4 ($\delta_{\rm C}$ 25.3) and C-5 ($\delta_{\rm C}$ 23.4).

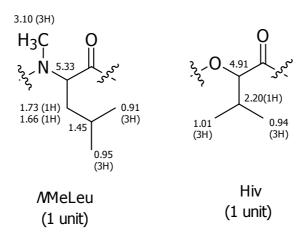


Figure 27. Proton assignments for two residues

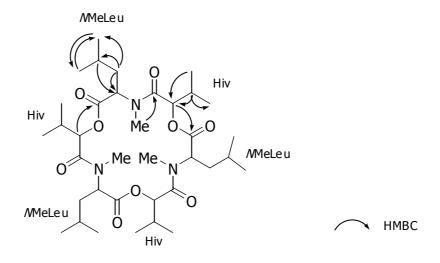
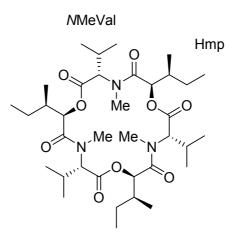


Figure 28. The gross structure of compound 60


The relative stereochemistry at α -carbons of *N*MeLeu and Hiv residues was confirmed by NOESY correlations. Intense NOESY correlations from *N*-methyl protons of *N*MeLeu residues to α -protons of Hiv residues were observed, which strongly suggested that these protons are both situated on the same side and vertically oriented to the depsipeptide ring. In contrast, the NOESY cross signal from the Nmethyl to α -protons of *N*MeLeu was much weaker, hence, the opposite orientation on the macrocyclic ring. These data were similar to other enniatins. By comparison with the co-metabolites (e.g., enniatin B), the absolute configuration of compound **60** should be 2*R* for Hiv, and 2*S* for *N*MeLeu.

The structure of compound **60** is identical to enniatin C, which was previously reported as a synthetic compound (Ovchinnikov, 1964) but not known as a naturally occurring enniatin analog.

position	¹³ C	1 H (mult, J in Hz)	HMBC (H to C)
NMeLeu	(3 units, sym	metrical)	
1 <i>C</i> =O	171.1	-	-
2	54.2	5.33 (3H, brd, 7.1)	-
3	37.8	1.73 (3H, m)	1, 2, 4, 5, 5'
		1.66 (3H, m)	1, 2, 4, 5, 5'
4	25.3	1.45 (3H, m)	5
5	23.4	0.95 (9H, d, 6.5)	3, 4, 5'
5'	20.9	0.91 (9H, d, 6.5)	3, 4, 5
$I-CH_3$	31.4	3.10 (9H, s)	1, 2, δ _c 170.3
liv	(3 units, sym	metrical)	
<i>C</i> =0	170.3	-	-
	75.7	4.91 (3H, d, 8.2)	3, 4, 4′, δ _c 171.1
	30.0	2.20 (3H, m)	2, 4, 4'
ļ	18.6	1.01 (9H, d, 6.4)	2, 3, 4'
.'	18.0	0.94 (9H, d, 6.7)	2, 3, 4

Table 14. NMR data for compound 60 (enniatin C) in CDCl₃

3.3.4 Structure elucidation of compound 61 (MK1688)

Compound **61** was obtained as a colorless gum; $[\alpha]^{26}{}_{\rm D}$ -89 (*c* 0.25, CHCl₃). It possesses the molecular formula C₃₆H₆₃N₃O₉, as determined by the HRMS *m/z* 704.4458 [M + Na]⁺ (calcd for C₃₆H₆₃N₃O₉Na, 704.4462), which is the same mass as enniatin C (**60**) but 42 unit mass more than enniatin B (**55**). The UV spectrum of **61** showed an intense absorption at λ_{max} (log ε) 207 (4.17) nm, and its IR spectrum showed the absorption bands at v_{max} 2970, 1737, 1662, 1465, 1191, and 1007 cm⁻¹, which revealed that compound **61** is also an enniatin analog.

The ¹H NMR spectrum of compound **61** (in CDCl₃, 400 MHz) showed signals of twenty-one protons, and the ¹³C NMR spectrum (in CDCl₃, 100 MHz) exhibited 12 signals, indicated that this compound is C_3 -symmetric. The ¹H NMR spectrum exhibited two downfield doublets at δ_H 5.28 (1H, brd, J = 5.6 Hz) and 4.59 (1H, brd, J = 9.4 Hz), one singlet at δ_H 3.10 (3H, s, N-CH₃), four multiplets at δ_H 2.29 (1H, m), 2.02 (1H, m), 1.45 (1H, m), 1.19 (1H, m), three doublets at δ_H 1.06 (3H, d, J = 6.3 Hz), 0.96 (3H, d, J = 6.4 Hz), 0.89 (3H, d, J = 6.7 Hz) and one triplet at δ_H 0.92 (3H, t, J = 7.4 Hz). Analysis of DEPT135 and HMQC spectra disclosed that five methyl, one methylene, four methine and two quarternary carbons were the same types as those of all carbons in compound **61** and also confirmed the existence of a methylene carbon of Hmp residue.

The COSY showed correlation from the δ_H 5.28 methine proton to δ_H 2.02 methine (1H, m, H-3), and that of this methine proton (H-3) to δ_H 0.96 methyl (3H, d,

3-CH₃), and $\delta_{\rm H}$ 1.45 and 1.19 methylene protons (H-4). The data also indicated that the methylene (H-4) was attached to $\delta_{\rm H}$ 0.92 methyl (3H, t, H-5). Therefore, the 2hydroxycarboxylic acid unit was assigned as Hmp. The *N*-methylamino acid residue of **61** was found to be *N*MeVal based on following COSY correlation data: $\delta_{\rm H}$ 4.59 methine proton (1H, brd, H-2) to methine proton at $\delta_{\rm H}$ 2.29 (1H, m, H-3), H-3 to two methyl groups at $\delta_{\rm H}$ 1.06 (3H, d, H-4), and 0.89 (3H, d, H-4').

Analysis of HMBC correlation data confirmed Hmp and *N*MeVal partial structures. Correlations from proton at $\delta_{\rm H}$ 1.45 (1H) to methine carbons at $\delta_{\rm C}$ 74.3, and 36.2, to methyl carbons at $\delta_{\rm C}$ 14.6, and 11.3 were observed. The methyl protons at $\delta_{\rm H}$ 0.96 (3H) correlated to methine carbons at $\delta_{\rm C}$ 74.3, and 36.2, and to methylene carbon at $\delta_{\rm C}$ 25.4, while methyl protons at $\delta_{\rm H}$ 0.92 (3H) correlated to the amide carbonyl ($\delta_{\rm C}$ 169.2), methine carbon at $\delta_{\rm C}$ 36.2 (C-3), and methylene carbon at $\delta_{\rm C}$ 25.4. These HMBC data confirmed the presence of Hmp residue. HMBC correlations from *N*-methyl ($\delta_{\rm H}$ 3.10) to the amide carbonyl ($\delta_{\rm C}$ 169.2) and ester carbonyl ($\delta_{\rm C}$ 170.4) were observed. The methyl protons at $\delta_{\rm H}$ 1.06 (H-4) showed correlations to methine carbons at $\delta_{\rm C}$ 63.1 (C-2) and 27.8 (C-3), and methyl proton at $\delta_{\rm C}$ 63.1 (C-2) and 27.8 (C-3), and correlated to methine carbons at $\delta_{\rm C}$ 63.1 (C-2) and 27.8 (C-3). These HMBC data confirmed the assignment of the *N*MeVal residue.

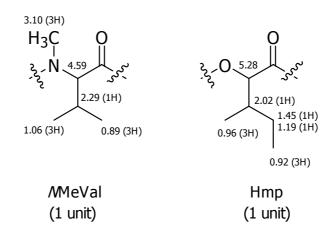


Figure 29. Proton assignments for two residues

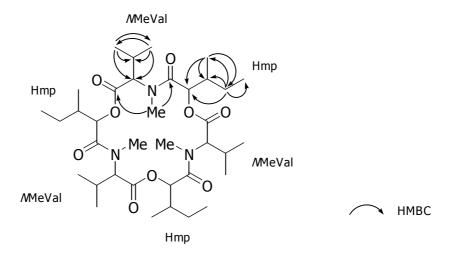


Figure 30. The gross structure of compound 61.

The relative stereochemistry at α -carbons of *N*MeVal and Hiv residues was confirmed by NOESY correlation data. Intense NOESY correlations from *N*methyl protons of *N*MeVal residues to α -protons (H-2) of Hiv residues were observed, which strongly suggested that these protons are both directed to the same side and vertically oriented to the depsipeptide ring. In contrast, the NOESY cross signal from the N-methyl to α -protons (H-2) of *N*MeVal was much weaker, hence, the opposite orientation on the macrocyclic ring. These data were similar to other enniatins. By comparison with the co-metabolites (e.g., enniatin B), the absolute configuration of compound **61** should be 2*R* for Hiv, and 2*S* for *N*MeVal. As described earlier, the configuration at C-3 of Hmp should be identical to that of the precursor, L-isoleucine, therefore, 3*S*-configuration.

Spectral data of compound **61** were identical, in all respects, to those of the antifungal substance, MK1688, which is claimed in a Japanese patent (Mikawa *et al.*, 1991).

position	¹³ C	1 H (mult, J in Hz)	HMBC (H to C)		
NMeVal	(3 units, sym	metrical)			
1 <i>C</i> =O	170.4	-	-		
2	63.1	4.59 (3H, brd, 9.4)	-		
3	27.8	2.29 (3H, m)	-		
4	20.3	1.06 (9H, d, 6.1)	2, 3, 4'		
4'	19.3	0.89 (9H, d, 6.9)	2, 3, 4		
N-CH ₃	32.7	3.10 (9H, s)	1, δ _C 169.2		
Нтр	(3 units, sym	metrical)			
1 <i>C</i> =O	169.2	-	-		
2	74.3	5.28 (3H, brd, 5.6)	-		
3	36.2	2.02 (3H, m)	-		
4	25.4	1.45 (3H, m)	2, 3, 5, 3- <i>C</i> H ₃		
		1.19 (3H, m)	2, 3, 5, 3- <i>C</i> H ₃		
5	11.3	0.92 (9H, t, 7.4)	1, 3, 4		
3- <i>CH</i> ₃	14.6	0.96 (9H, d, 6.4)	2, 3, 4		

Table 15. NMR data for compound **61** (MK 1688) in $CDCl_3$

3.4 Biological activities

Compounds **51-58**, isolated from the fungus *V. hemipterigenum* BCC 1449, and compounds **59-61**, obtained by precursor-directed biosynthesis, were tested for their activities against *Plasmodium falciparum* K1, and cytotoxic activity towards two cancer cell-lines (KB, BC-1) and Vero cells (Table 16). For enniatins, antitubercular activity against *Mycobacterium tuberculosis* H₃₇Ra were also tested.

The new diketopiperazine **51** was inactive against *P. falciparum*, and it was non-cytotoxic. In contrast, the tetrathio analog, **52**, exhibited cytotoxic activities. Pyrenosines A (**53**) and B (**54**) showed moderate antimalarial and cytotoxic activities. Enniatins **55-61** strongly inhibited the proliferation of the human malaria parasite (*P. falciparum* K1), they also exhibited inhibitory activity against the growth of mycobacteria (*M. tuberculosis* H37Ra). This is the first report on the in vitro activities of enniatins against *P. falciparum* and *M. tuberculosis*, although enniatin B was previously reported to be active against *M. paratuberculosis* and *M. phlei* (Plattner, et. al., 1948). It should also be commented that these enniatins also exhibited cytotoxic activities.

	anti-malaria ^a	anti-TB ^b	cytotoxicity ^c (IC ₅₀ , μ g/mL)		
compound	(IC ₅₀ , µg/mL)	(MIC, µg/mL)	KB	BC-1	Vero
compound 51	>20	n.t. ^d	>20	>20	>50
compound 52	2.5	n.t. ^d	15	3.9	8.9
pyrenocine A (53)	7.1	n.t. ^d	3.2	1.2	1.3
pyrenocine B (54)	22	n.t. ^d	>20	4.3	7.2
enniatin B (55)	0.27	3.12	16	18	17
enniatin B ₄ (56)	0.20	3.12	11	12	18
enniatin H (57)	1.9	6.25	>20	5.5	38
enniatin I (58)	0.24	6.25	>20	18	38
enniatin G (59)	0.46	6.25	>20	>20	45
enniatin C (60)	1.1	6.25	>20	>20	>50
compound 61	0.22	1.56	11	8.1	1.4

 Table 16.
 Antiplasmodial, antimycobacterial, and cytotoxic activities of enniatins 55-61

 a IC_{50} values of the standard antimalarial compounds, chloroquine diphosphate and artemisinin, were 0.16 and 0.0011 μ g/mL, respectively.

 b MIC value of the standard drug, isoniazide, was 0.050 $\mu g/mL.$

 c IC₅₀ values of the standard compound, ellipticine, were 0.46 µg/mL for KB cells,

0.60 μ g/mL for BC-1 cells, and 1.0 μ g/mL for Vero cells.

^d Not tested.

Conclusion

Chemical investigation of the insect pathogenic fungus *Verticillium hemipterigenum* BCC 1449 resulted in the isolation and structural determination of eight compounds of three different chemical classes: two new epipolythiodiketopiperazines **51** and **52**; two pyrone derivatives, pyrenocines A (**53**) and B (**54**); four cyclohexadepsipeptides, enniatins B (**55**), B₄ (**56**), H (**57**) and I (**58**). Enniatins H (**57**) and I (**58**) are new "unusual" analogs, possessing one and two 2-hydroxy-3-methylpentanoic acid residues instead of 2-hydroxyisovaleric acid. These results demonstrate that the fungus *Verticillium hemipterigenum* is a unique source for bioactive metabolites.

Studies on precursor-directed biosynthesis using *V. hemipterigenum* BCC 1449 led to the discovery of a unique substrate specificity by enniatin synthetase of this fungus: L-leucine is selectively incorporated in enniatin molecule as *N*-methyl amino acid residues, in contrast, L-isoleucine is predominantly employed as 2-hydroxy acid residues via (2R,3S)-2-hydroxy-3-methylpentanoic acid (Hmp). The latter result was used to determine the stereochemistry of the new naturally occurring enniatins H (**57**) and I (**58**). Moreover, these preliminary results will be useful for application to systematic studies on the production of a series of "unnatural" natural analogs.