Chapter 2
Theory and Methods

In this chapter we describe the data and summarise the statistical methods used
to analyse them. These methods include standard methods for the analysis of time
series data, as well as some newer methods for handling stochastic volatility,

including some new theoretical developments.
Source of data

The original data comprise the exchange rates of the British pound stetling,
the Japanese yen, and the German deutsche mark, relative to the US dollar. These
rates change almost continuously in time. For convenience, observations are taken at
the end of successive trading days, that is, days when the stock exchanges in these
countries are open for business. As a result, the data do not satisfy the standard
assumption madc in time series analysis of equispaced observations in discrete time.
However, since most economic movements tend to slow down during non-business
days, for practical purposes the observations may be assumed to occur at discrete,

equispaced, intervals of time.

The US dollar is chosen as the reference currency because the United States is
the world’s largest cconomy and its currency is thus the driving force in world

financial markets.

The period selected for study is from 3 January 1986 to 12 April 1994,
comprising 2158 successive trading days. This period is selected because it is
comparatively recent and thus our findings are likely. to be still relevant. But we have
excluded the most recent period encompassing the Asian economic crisis, on the
grounds that we do not wish our findings to be unduly influenced by the particular

events associated with this phenomenon.

These data have been studied to some extent by other researchers, including
Shephard (1996), who presented graphs of the distributions of the daily percentage

returns for the yen and deutsche mark relative to the pound during this period. These



graphs show that these returns have very long-tailed distributions, invalidating the

basic statistical assumptions of normality.

Time series statistical methods

A time series is a set of numerical data measured sequentiaily in time. The
measurements are often equispaced in time or nearly so. Time series data arise in
many arcas. These include economics and marketing (company sales or profits in
successive months, stock market prices, currency relative values, etc.) and the
physical sciences (barometric pressure in successive hours, snowfall in successive
years, maximum and minimum daily air temperatures, etc.). Time series also arise in
engineering processes (quality control charts, intervals between equipment failures,
etc.), in biology and demography (sizes of animal population in successive seasons,
birth and death rates in successive years, and university enrolments), and in many

other applications areas.

The statistical analysis of time series data has shown the subject of many
theoretical texts. These include Durbin (1996), Hamilton (1994), Diggle (1990), Tong
(1990), Chatfield (1989), Abraham and Ledolter (1983), Whittle (1983), Anderson
(1976), Bloomfeild (1976), Box and Jenkins (1976), Fuller (1976), Anderson, (1971),
Hannan (1970), Jenkins and Watts (1968), Brown (1963), and Hannan (1960).
However, as in many areas of statistics, modcrn developments in computer
technology have made time series methods accessible to persons with a minimal

background in mathematics.

Four important objectives arise in time series analysis. These are

1. Forecasting future values of a series.

2. Estimating the trend or averall character of a time series.

3. Modeling the dynamic relations between two or more time series.

4, Summarizing characteristic featurcs of a time series.
1. Data transformation

Because time series methods are based on linear models, it is frequently

necessary to transform the data. A logarithm transformation is usually needed for



rates and financial data, whereas square roots are often better for transforming counts.
The need for a transformation is usually apparent from an inspection of graph of the
data. A more precise diagnosis, popularised by Tukey (19706), is obtained by grouping
the data into relatively short intervals of time and graphing the standard deviation of
fhesc samples against their means, preferably using a logarithm scale on each axis. If

a linear relation is apparent in this graph, the data should be transformed.
2. Removing a trend

Many time series have a trend. In these situations it may be useful to fit a
straight line, or possibly a quadratic function, and use the residuals as a basis for
further statistical analysis. Least squares regression may be used to fit a linear or

quadratic trend to time series data.
3. Spectrum analysis

A time series is stationary if its statistical properties do not change with time.
1t is unlikely that a stationary time series will repeat itself exactly, but the series is
repeatable in a probabilistic sense. Another way of looking at this is to say that the
character of the series persists as you move forward or backward in time, and the only
aspect that changes is the sampling error, which does not contain useful information.
Of course these sampling fluctuations could be relatively large compared to the
persistent characteristic. These ideas lead to the sinusoid (the simplest function that
repeats itself) and to the idea of measuring the amount of periodicity or repeatability
in a time series by finding its covariance or correlation with a sine wave having a
given period. A sinusoid is characterized by the property that talking a linear
transformation of its argument only shifts its frequency and its phase or position
relative to some origin. The cosine function is just a sine function whosc argument is

shifted by n/2, that is
cos(x) = sin(x+ 1/2) (1)

Since sinusoidal functions are periodic it is natural to use them as a basis for
approximating a stationary time series. This basic comprises sine waves with different
frequencies each defined on the time interval spanned by the data. The first
componcnt appears exactly once on this time interval, the second comprises two

repeated sinusoids, the third three sinusoids, and so on. These components are also



called harmonics. The functional form for the /™ harmonic is a cosine wave with some
phase ¢, that is, cos{2mj(+—1/n+g@}, =1, 2, ..., n. Using the mathematical theory of
Fourier analysis any function defined at n equispaccd points on a finite interval may
be represented exactly by a constant plus n—1 harmonics. The number of different
frequencies in these components, m, is (n—1)/2 or n/2 (depending on whether 2 is odd

or even) since there is a sine and a cosine harmonic at each frequency. If » is even this

Fourier representation takes the form
ye= apt2[acos {2n(r—1)/n} +bsin{ 2mj(t-1)/n} 1+a.cos{n(—=1) } (2)

where the summation is from j = 1 to j = m—1. (Since sin{n(r—1)} is O for all integers
t, in this case there is no sine harmonic at the highest frequency). A similar formula
applies if n is odd. Using the fact that a linear combination of a sine function and a
cosine {unction at the same frequency may be expressed as a single sinusoid with

some phase ¢, an alternative formula for the Fourier representation is
yi=ag+ 2Acos{2mi(+—1)n}+@; } 3)

where the amplilude A; = V(a;* + b;%) and the summation is from 1 to m. This Fourier
representation is similar to linear regression analysis, where the sinusoidal
components play the role of determinants or predictor variables. Since the number of
parameters is exactly equal to number of data values, there is no residual error: the
regression mode! provides a perfect to the data. Moreover it may be shown that the
sum of products or sine and/or cosine harmonics over the range of frequencies is zero,
which means that these harmonics are statistically uncorrclated with each other,
Consequently each Fourier coefficient (g; or b;) is the regression coefficient of the

time series y; on the corresponding harmonic, The formulas for these coefficients (for

n even) are as follows:
ay =X yiin, an =2 (1) "yin,
a; =(2/n) X yrcos{2mj(+—1)/n}, .
b, =(2/n) X, y,sin{2mj(t-1)/n}.

We can see from these formulas that each Fourier coefficient may be

interpreted as a covariance between the data and a sinusoid at the given frequency.
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The periodogram of a time series (I;, j = 1, 2, .., m) is defined in terms of the

amplitudes of the harmonics in the Fourier representation as

L = @mi2)af + b 4)

The multiplier n/2 ensures that the i periodogram value is equal to the component of
the variance in the data accounted for by sinusoidal function with frequency j/a. Since

the sinusoidal terms are uncorrelated with each other, it follows that
X Zydny = L1, (5)

This uscful formula is known as Parseval’s theorem. This relation is just an analysis
of variance for a time series. So the sum of the periodogram ordinates is equal to the
total squared error of the data, and consequently the periodogram shows how much of
the squared error of the data is accounted for by the various harmonics. For this
reason it useful to graph the scaled periodogram, obtained by dividing the
periodogram by its sum. The scaled periodogram thus shows what proportion of the
squared error is associated with each harmonic. Note that the fréquency jinis
expressed in terms of the number of cycles per unit time. Since the values of j are 1, 2,
..., m, the lowest frequency is 1/n, corresponding to a period equal to the wholc range
of the data, and the highest frequency is close to 0.5 { exactly 0.5 if n is even),

corresponding to cycles of length 2 with the data oscillating from one value to the

next.
4. Decomposition of a time series
A time series may be written in the form

Y=+t (6)

where p;is a trend (usuaily linear or quadratic), s, is a stationary signal having the
Fourier series representation given by Equation (5), and z, is the residual, or noise
series. In classical time series analysis, we assume that z; has a normal distribution. In

the simplest case, the terms in the process z; are mutually uncorrelated, in which casec

the noise is called white noise.

Provided the noise is normally distributed, it may be shown that the
periodogram coefficients are exponentially distributed. Now an exponential

distribution has the property that its standard deviation is equal to its mean. However,
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the logarithm of an exponential distribution has approximately constant standard
deviation. For this reason, it is useful, when analysing time series data, to plot the

logarithm of the periodogram.
5. Testing for white noise

The periodogram and its logarithm may be used to investigate the character of
a time series. Another useful graphical tool is the correlogram, or sample
autocorrelation function, which comprises the set of estimated corrclation coefficients
between the series and itself at various spacings. Thus the (auto)correlation coefficient

at spacing (or lag) s may be estimated from the formula

S0, D0
= )
Z(y, -3)°

and the correlogram is a graph of the series (7, , s = 1, 2, .5 ) against the spacing s.
Since the number of terms used to calculate the correlation coefficient at lag s is n—s
where n is the length of the time series, the maximum spacing $ should be
substantially less than n. According to statistical theory, when the sample size » is
large the standard error of a correlation coefficient is approximately normally
distributed with standard deviation 1/¥n, which tends to O as n gets large. This means
that as the length of an observed time series increases, the sample autocorrelation
function of a stationary time series stabilizes, approaching a smooth curve. For a
white noise process the theoretical corrclation between observations at different

spacing is zero, so you would expect the graph of its sample autocorrelation function

to approach the horizontal axis r = 0 as n gets large.

Based on the normal distribution which has 95% of its probability within 1.96
standard deviations of its mean, a 93% confidence interval for the autocorrelation at
lag s ranges from —1.96/N(n—s) to 1.96/¥(n~s). In contrast, the periodogram values of
a while noise process, being exponentially distributed with constant standard
deviation, do not settle down as the length of the series increases. Instead they become
more densely packed, as we saw in the preceding section. Ljung & Box (1978)

suggested using the statistic



i2

2
0= n(n+2)2 i ®)

n
where m is a specified integer substantially less than the series iength », to test the
hypothesis that a time series is a sample from a white noise process. If it is necessary
to fit a linear model involving p parameters to transform the series to a white noise
process, where these parameters are estimated from the data, then Q is distributed

approximately as a chi-squared distribution with m—p degrees of freedom.
6. Autoregressive processes

Now let us consider more general models for describing a noise process z;. A

simple model, involving just a single parameter, takes the form

=4y g +w 9)
where w;, is a white noise process. This process is called a simple Markov process, and
is characteriscd by the fact that the best forecast of its next value, z,1, is based only on
the current value, z,, Note that this process reduces to white noise when the parameter
is 0.

This leads us to consider introducing a second parameter, extending the simple

Markov process to the second-order autoregressive model, which takes the form
y=a1 i ray e+ w (10}
The general autoregressivc'process of order p takes the form
=X a;zi+w (11)
where the summation goes from j =1toj=p.
It may be shown that an autoregressive process is stationary if and only if all of the

roots of the characteristic polynomial

P(z) =1-Xa7 (12)

are outside the unit circle | z| = 1 in the plane of complex numbers z. In particular, this
means that a simple Markov process is stationary if | a; | < 1. The condition for a
second-order autoregressive process is rather more complicated, but it may be shown
that necessary and sufficient conditions are

G+ az<l,aa—a <1, |a]<l.



Stochastic volatility models

1. Moment generating function

The moment generating function of a random variable X is defined as the

function

(6 ) = Elexp(-6X)] (13)

where E denotes the expected value of a random variable and 8 is a real number.

Thus if X has probability density function f{x}, its moment generating function is

®6)= [exp(-0x)f (x)d (14)

—r

The moment generating function is useful because the moments of the distribution of

X are obtained as mathematical denivatives of @0 ), that is
E X" = o™ (8)-1)°
This is because, using the Taylor series expansion of exp(—8 x) about 0,
@0) = E[l-0x+102x>—16°%..]
= 1-0 E[X]++0°E[X’]- L *E[X*1+...

If X has a normal (or Gaussian) distribution with mean g and standard deviation o, its

probability density function is

_ 1 _Ifx-pY
ﬂx)-mccxp[ 2( - ]] (13)

s0 its moment gencrating function is

which may be evaluated to

o) = cxp(—9ﬂ+-%9202). (16)
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2. Models for compounded returns

Suppose that x, is the value of an asset on day 7. The percentage compounded

return is defined as

-1

y, =100 loge( al ] | an
x

In the simplest model, we assume that y, is a process of independent, identically
distributed random variables having a normal distribution with mean y and standard

deviation ¢. In this case we can write

Vi=Htoz (18)

The parameter o (or its square, in some definitions) is called the volatility of the

compounded return.
Thus the logarithm of the asset price follows a random walk with drift, that is
logx,;=logx1+U+0z. _ (19)

In this case can be shown that log x; is normally distributed with mean p¢ and

standard deviation oVt. (see, for example, Taylor 1986)
Now consider the more general model
= +(c+éu;) z,, (20)

where u, is a stationary first-order autoregressive process

W= Oy + Wy, (21)

and w, is Gaussian white noise (with mean 0 and standard deviation 1), and the
correlation between z, and wy., is pg; where 8, = 1 if s =0, and 0 otherwise. Note that
the condition for this process to be stationary is Il < 1. Since the volatility should be

relatively smooth, we will assume that &> 0. The volatility of y, is thus o+ u, .

Since the volatility should be nou-negative, the autoregressive pracess
should never be less than —o /8, which means that there should be a reflecting barrier

at this value. An alternative model, which ensures that the volatility is non-negative,
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has been suggested (see, for example, Shephard, 1996, page 22). This model may be

written in the form

=l +cexp(du/o) z (22)
where u; is again given by equation (21).
Models (20) and (22) may be incorporated into the more general model

ye=p + 0 {148 u/(ch)} z (23)
When k is 1, this model reduces to {20), and (22) arises in the limit as & tends to
infinity.

The following special cases of model (20) are of interest.

(a) When 6is 0, y; is just Gaussian white noise, in which the volatility is

constant.
(b) When ¢ is 0, the model corresponds to that considered by Heston (1993).

(c) When ¢ is O, the volatility itself is white noise, and is thus completely

unpredictable.

(d) When 6 — 0 and & — 1, in such a way that § /N(1—¢) is constant, an

interesting limiting process arises.

3. The stationary distribution of y,

The model given by equations (20) and (21) has five parameters, i, o, 8, .

and p. To estimate them, we consider the stationary distribution of y, .

First, we will denive the moment generating function of y,, conditional on ;. We
proceed as follows. For simplicity, assume that g is 0. If zt is not 0, we simply

multiply the moment génerating function by exp(—@ it ). Substituting equation (20),
E[exp(=0y) | u;-1] = E{ exp(—0 (0 +6 1, ) z0) | 4]
Substituting equation (21), this becomes

Efexp(—0y) lupy ] =E[ exp(-0(0+dX tty1 + Sw; ) z0) 1.
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Since w; and z, are jointly distributed as a standardised bivariate normal distribution

with correlation coefficient p, this expression may be written as

— ] i "’
———=——= |l exp -8 (c+ocu, +dwyz— (w -2pwz+2z ))dwdz.
21— p? ‘{ ‘ 2A{-p?

The range of integration for both w and z is from —ee to +eo. Completing the square on

w and then integrating with respect to w, we obtain

.”2” 11—p { 5(1_'0_){” ~2wlp—{t-p*P8)+{p (1 - pz)%)zzz}]dw
XexP(ﬂl_:_l?j{(p“(l"Pz)%‘)z—l}Zz~9(G+5au,_,)szz,

2
- [ exp[__ o0 p s et 0 (a+szau,ﬁ.f}}z

K K

2 2
Xexp[e (o +dcu,_,) ],

2
where k= 1+2p66 -8 5 2(1—,;:) ) Integrating onc more time, this reduces to

8% (o +6ou, )

1
e 24
J1+2808 - 52(1- p*)o? XP(2(1+2599 —52(1—9%2)} “

Finally, we integrate over the stationary distribution of #,_;, which is normal with

Elexp(=8y) lua] =

mean O and standard deviation 1/~N(1—c?). This gives

Elexpl-6y )] = J‘Jl_a— F{ *(o + o)’ 1054) ]d
SE ]

cexe 8707 1-a”( 8%0a ’ y
A2 2 \l-ai)xy )7
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1 {920.2 +—1-[ o’ \945202},

—_— 1 e
A 1-a? | %

where y=1-0%8%a /{ x(1-a H)}. Putting f= a N(1—07), and including the drift

parameter i, this expression finally simplifies to

Elexp(-0y)]

= L exp — ué + 6" (25)
J1+2p80-87(1—p* + B0 21+2p86-6(1- p* + B*)6°)

Note that when & is 0, this function reduces to exp(—u8 + Y2626 %), the moment

generating function of a normal distribution with mean g and standard deviation o.

The moments may be obtained by expanding the moment generating function
as a Taylor series about 8 = 0. The moments are then obtained by taking the
coefficients of powers of 8. In this way, we obtain, are some lengthy but
straightforward algebraic manipulations, the following expressions for the mean,
standard deviation, skewness and kurtosis. Note that the skewness is defined as the
third moment about the mean divided by the cube of the standard deviation, and the
kurtosis is similarly defined as the fourth moment about the mean divided by the

fourth power of the standard deviation.

meanly] = u+8p (26)
sd[y]=o? + 82+ p2 + ) 27
2 2 62 2 3 2
Sk[y]Z 5.0(30- ': (3':}) ': l?z )) (28)
(0% +82+p> + B2
4 262 2 2 4 2 3 4 20,2 4
urfy]= 3ot +20°623+7p* +3B%)+5* B+14p> +6B° +6p* +14p° B +30%)) 29

(0* +82+p* +

These equations may be used to estimate the parameters, using the observed
momernts of the distribution of y. However, there are five parameters to be estimated,

and only four moments available.

We can get further information by considering the joint distribution of y, and

Y5, fOr values of s 2 1. It turns out that the correlation between y, and y,_, is 0. So let
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us derive a formula for the correlation between (Y:)Z and (y,_s)z, which is not zero.

Using equations (20) and (21)

(v, v,V =lo+8au,_ +w, Yz o +8u_ )22,

2

5

2 i z 2

:(0' +d0tu,_, +8 Y 0'w, ] 2o +8au, , +6w,_ )z} ,.
i=0

Taking the expected value of this expression, using the facts that

(a) w, and z, are jointly distributed as a standardised bivariate normal
distribution with correlation coefficient p, and

(b) the stationary distribution of u,; is normal with mean 0 and standard
deviation /¢, we obtain, again after some lengthy but straightforward algebraic
calculations, the following resuit.
Corr{(y), (=)

_ 8" ara’ (+2p% + BP)+0™ [pPa +87(145p +257 +5p° B2 + B4)))

ot 420767 (8+17p2 +452 )25 (2417p% +487 +5p* +17p7 B7 +2*)

(30)

The estimation problem is still quite difficult.

For simplicity, let us assume for the moment that the model for the process y,
is given by the special limiting case (d), that is, § = 0 and &~ 1, in such a way that
83 = k, a constant.

In this case, with § = 1, equations (26) — (30) reduce to the following:

meanly] = U 31
sd[y]=veo? +«? (32)
sk[y]=0 (33)
4 2.2 4

kurfy) = 3(0 +6x°c ;l‘?)K ) (34)

(cr2 +x2)

5.2 2 x
Corrd 0 es] =2 20" +a'’) (35)

ot +8¢% Kkt +dx*

The estimates of the parameters are thus
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£ = mean(y) (36)
G’ = 52 N(1.5~kurtosis/6) 37
£ =82 (38)

Equation (35) may now be used to see how well the mode! fits the data.

In the general case, equations (26) — (30) may be solved iteratively.




