CHAPTER 2

METHODOLOGY

Following are the steps and statistics used for the analysis of electricity usage in

Pattani.

Data

The data [or this analysis were obtained from the Pattani Electricity
Authority Substation. This substation is situated in Puyud Subdistrict, Muang Pattani
District, Pattani Province and controls electrical current for all of Pattani Province and
some part of Songkhla Province. It 1s administratively divided into six feceders. The
following data are daily meter rcadings for cach feeder in 1996, giving 366 values for
cach, recorded in kilowatt.hour units. However, after the 338th day, the meter for
feeder 8 was out of order. Therefore the substation used the meter for feeder6 to
record usage for feeder 8 as well, causing a large increase in the reading for feeder6

after 338 days.

Methodology

The analysis are present in the following steps.

1. Graphs of daily consumption for each feeder and feeder combined.

2. Summary of the numerical analysis of the daily consumption.

3. Comparison of the means of clectricity usage between feeders combined and
between days.

4. Correlation aﬁalysis between feeder combined.

5. Trend analysis of daily consumption.

6. Comparison of the electricity usage between days.

7. Development of a model of electricity usage by time series.

Software

The following software was used in the analysis.
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1. Microsoft Access Version2,0

Microsoft Access was used to construct the database file. The datafiles
exported from in Microsoft Access. Feeddif num is the file containing the electricity
usage per day for each feeder and the total for Pattani Province. This data is shown in

Table 7 of the appendix.

2. Matlab Version 4 { Hanselman & Littlefield,1995)
‘This software was used in the analysis to do lincar regression, plot scatterplot

matriccs and do time series analysis.

3. ASP (Asin Statistical Package)

Asp runs under Matlab Version 4 ( Hanselman & Littlefield, 1995). This
program was developed by Dr. Don McNeil from Macquarie University and a team in
the Department of Applied Mathematics and Computer Science in the Faculty of
Science and Technology at Pattam Campus ot Prince of Songkhla University (PSU} in

Thailand. It was used to do Iinear regression, scatterplot matrices and time series.

4, SPIDA Version 6.08
SPIDA was used in the analysis to do Two-way Anova variable models to

compare the mean of each feeder and was used in the correlation between feeders.

5. Microsoft word Version 6.0a

This was used to write the report.

Statistics used for the analysis.
1. Descriptive Statistics
1.1 Mean
Calculated from the formula
N
in

Y- =
N
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1.2 Standard Deviation (5.D.)

Calculated from the formula

o

2. Two-way Analysis of Variances

Two way Analysis of Variances was used to compare the mean of the usage
per day between each feeder, and to compare the mean usage per feeder for each day
of the year If the data array has 7 rows and no missing observation (givingn= rxc¢
observations altogether), a correct p - value is based on an £ - statistic defined as
(McNeil, 1995: 73)

(5, =8,/ (-1

F T s, /(n—c-r+1)
where
s, = ZZmﬁf
1ol
Sp = X2, -d -F, v y)
F=1 =l
and



¥

3. CoefTicient of Correlation

The co-efficient of correlation was found between each feeder pair for the
amount of electricity used each day. The researcher was able to calculate the
coefficient from the following equation for the Pearson’s Product-Moment

Correlation Coefficient {Wert, Neidt and Ahmann, 1954:83).

Ny XY -2 X2 Y

N 75 W oD R R B
When r — Pearson-Product-Moment Correlation Coetticient
n = Number of data

ZXY = the sum of X multiplied by Y

ZX = the sum of X

ZY = thesumof Y

> X = the sum of X squared

ZY : = the sum of Y squared

4. Time Series
A time series is a set of numerical data measured sequentially in time. The
Measurements are often equispaced in time or nearly so. Time sertes data arise in
economics and marketing ( company sales or profits in successive months, stock
market prices, currency relative values, etc.), in the physical sciences { barometric
pressure in successtve hours, snowtall in successive years, maximum and minimum
daily air temperatures), in engineering processes ( quality control charts, intervals
between equipment failures), in biology and demography (sizes of animal population in
successive seasons, birth and death rates in successive years, university enrollment,
ect.), and in many other applications areas.
Four important objectives arise in time series analysis. These are
1. Forecasting future values of a series.
2. Estimating the trend or overall character of a time series.

3. Modeling the dynamic relations between two or more time series.
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4. Summarizing characteristic features of a time series.

Because time series methods are based on linear models, it 1s frequently
necessary to transform the data. A logarithm transformation is usually needed for rates
and financial data, whereas squarc roots are often better for transforming counts. The
need for a transformation is usually apparent from an inspection of graph of the data.
Many time series, including the transformed data have a linear trends. In these
situations it may be useful to fit a straight line and use the residuals as a basis for
further statistical analysis. This approach is not the only way of modelling a trend in a
time series. and other methods will be considered, and shown to be superior in ccrtain
situations. A straight line may be fitted to time series data simply by least squares
regression. If the data are denoted by vy (t =1, 2, ..., n), the least squares fitted line is

given by the equation

A A A
y, =a+bit (1)
where
2O
2.(-1y
N
a=y-bt

A residual time series z, 1s now obtained by subtracting the fitted lined from the

data, giving
A

2, =y, - (a+3z‘) (2)
If only a short term forecast is needed, an intuitively appealing method is to fit -
a straight line model to the most recent values of the series and extrapolate this line.
This procedure works well for forecasting series with slowly changing, since the
forecast values can adapt quietly whenever a series changes its overall direction. If one
were to fit a straight line to the two most recent values of a series and then use this line

to forecast the observation, the forecast formula would be as follows.

I

Yen = Zy: =Y (3)

This forecast formula may be generalized to take the form
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This forecast formula may be generalized to take the form

A
ym:b:Y:'}'bz}’z»] 4

where, to keep the forecasts on track with the data, the sum of the coefficients bi+b;

is assumed to be 1. If the most recent observations in the time series contain most of
the information about where the next value is going to be, Equation (3) should provide
a good forecast. On the other hand if there is very little information in the most recent
data it would be more reasonable to regard the time series as a sample of independent

observation, from which the best estimate of the next value is just the sample mean

Z Ve, = (3)

yul:

We could alsa choose a weighted linear combination of the twa forecast formulas,

that is
A _
YV =0=b-b)y+dy, +by,, (6)

where b; + b, 1s now between 0 and 1. This formula may be expressed alternatively as

A R _ -
Y= Y=~ ) +b,(y,, —y) (7

More generally still, the forecast may involve any number (p) of recent observations,

talking the form

A _ P -
Yia= V= 2280 =) (8)
=1
or, more generally (for data that are not mean-corrected, as would be the case for a

nonstationary series),

;m b, + ibkyr K+l )
Forecasting the next value in time series thus involves choosing a set of coetlicients &;
for k=1,2,...,p(ork=0,1,2, . p,if the data are not mean-corrected) which is
optimal in some sense, such as minimizing the squared error. Note that Equation (8)
and (9) may be used to forecast more than one time unit ahead, simply by repeatedly

using the forecasts as if they were observed data.
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A residual time series z; may be obtained by subtracting the forecast from each
observation y,. If the forecasts are obtained from Equation (9), the residual series is

given by

fom - by - b (10)
with a similar representation if_Equation (8) is used. ldeally, there will no information
present in these residuals since if information were present it could be used to improve
the forccast formula. Consequently the residuals should resemble a white noise series.
The process of using a formula such as Equation (8) {(or (9)) to obtain a residual series
is called filtering a time series, and the sct of coefficients &, ( k=1, 2,..., p) is called a
linear filter with span p. 1f the span is known the filter coefficients may be estimated
from the data using regression analysis, where the response variable campriscs the time
Series (Ve, Vi ,-oee Yp+1 ) and there are p predictor vartables, (Vi ez, ..., Yp), 2,
Yoz s oo Voi) o Vepy Yipats oo J1). Note that the number of observations used to fit

this regression model is »-p.

Differencing

If a time series has a linear trend it is reasonable to fit a straight line and to use
this line as a first step for forecasting the series. Subtracting a line may produce
residuals that look stationary, and these residuals in turn may be further modeled using
time serics techniques. Another way of removing a linear trend from a time series is to

difference it. The series of first differences is simply
Dye =y -y (11)

where D denotes the difference operator. More generally a series may be differenced at
any lag s, giving

U_i)&:y; 'yt-s (12)
If a series has a seasonal component at spacing s, differencing at lag s may remove this

component. Differencing is thus the special case of filtering that arises when all of the
coefficients in the filter are O except b, which is 1. Differencing may be repeated. For

example differencing twice at lag 1 gives

r’ = D(}’: ) = Vi 2VerF Yoo (13)
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(secondary differencing), while, more generally, differencing at lags | and s gives
DDy, = DOy = yeyerVestYess = DDy (14)

Differencing is widely used by econometricians as a technique for producing a series of
residuals that looks stationary and is thus more amenable to statistical analysis. The

method has also been suggested by statisticians including Box & Yenkins (1970).

Spectrum Analysis

A time series is stationary if its statistical properties do not change with time. It
is unlikely that a stationary time series will repeat itself exactly, but the series is
repeatable in a probabilistic sense. Another way of looking at this is to say that the
character of the series persists as you move forward or backward in time, and the only
aspect that changes is the sampling error, which does not contain usetul information.
Of course these sampling fluctuations could be relatively large compared to the
persistent characteristic. These ideas lead to the sinusoid { the simplest function that
repeats itself) and to the idea of measuring the amount of periodicity or repeatability in
a time series by finding its covariance or correlation with a sine wave having a give
period. A sinusoid is characterized by the property that taking a linear transformation
of its argument only shifis its frequency and its phase or position relative to some
origin. The cosine function is just a sine function whose argument is shifted by n/2,
that is

cos(x) = sin(x+ 7/2) (13)

Since sinusoidal function are periodic it 1s natural to use them as a basis for
approximating a stationary time series. This basic comprises sine waves with different
frequencies each defended on the time interval spannéd by the data. The first
component appears exactly oncc on this time interval, the second comprises two
repeated sinusoids, the third three sinusoids, and so on. These components are also
called harmonics. The functional form for the j™ harmonic is cosine wave with some
phase OJ, that is , cos{2nj(t-1)/n+}, t=1, 2, ..., n. Using the mathematical theory of
Fourier analysis any function defined at n equispaced points on a finite interval may be
represented exactly by a constant plus n-1 harmonics. The number of different

frequencies in these components, m, is (n-1)/2 or n/2 ( depending on whether n is odd
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or even) since there is a sine and a cosine harmonic at each frequency. If n is even this
Fourier representation takes the form

¥ = agt acos{2xj(t-1)/n} Fbjsin{2wj(t-1)/n} Jramcos{n(t-1)} (16)
where the summation is from =1 to j=m-1. ( Sincé sin{m(t-1)} is O for all integers t, in
this case there is no sine harmonic at the highest frequency). A similar formula applies
if n is odd. Using the fact that a linear combination of a sine function and a cosine
function at the same {requency may be expressed as a single sinusoid with some phase
&, an alternative formula for the Fourier representation is

y: = ap + 2Acos{27j(t-1)/n}+; } (1N

where the amplitude A; = V(a;* + b;%) and the summation is from 1 to m.This Fourier
representation is sumilar to linear regression analysis, where the sinusoidal components
play the role of deternunants or predictor variables. Since the number of parameters is
exactly equal to number of data values, there is no residual error:the regression model
provides a perfection for the data. Moreover it may be show that the sum of products
or sine and/or cosine harmonics over the range of frequencies 1s zero, which means
that these harmonics are statistically uncorrelated with each other. Consequently each
Fouricr coefficient { a; or b; ) 1s the regression coefficient of the time series y; on the
corresponding harmonic. The formulas for these cocfficients (for n even) are as
follows.

a =2Xy/n

am =2 (-1)'y/n

8 — (2Mm)2ycos{2mj(t-1)/n}

by =(MmZysin{2mj(t-1)/n}
We can see from these formulas that each Fourter coefficient may be interpreted as a
covariance between the data and a sinusoid at the given frequency. The periodogram
of a time series (1, j= 1, 2, .., m} is defined in terms of the amplitudes of the
harmonics in the Fourier representation as

L = (w2)(a" + b (18)
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The multiplier n/2 ensures that the j* periodogram value is equal to the component of
the variance in the data accounted for by sinusoidal function with frequency j/n. Since

the sinusocidal terms are uncorrelated with each other, it follows that

Xy Zyin)’ = X(L) | (19)
This useful formula is known as Parseval’s theorem. This relation is just an analysis of
variance for a time series. So the sum of the periodogram ordinates is equal 10 the total
squared error of the data, and consequently the pericdogram shows how much of the
squared error of the data is accounted for by each various harmonics. For this reason it
is useful to graph the scaled periodogram, obtained by dividing the periodogram by its
sum. The scaled periodogram thus shows what proportion of the squared error is
associated with each harmonic Note that the frequency j/n is expressed in terms of the
number of cycles per unit tume. Since the values of jare 1, 2, ..., m, the lowest
frequency is 1/n, corresponding to a period equal to the whole range of the data. and
the highest frequency is close to 0.5 ( exactly 0.5 if n is even), corresponding to cycles
of length 2 with the data oscillating from one value to the next. A function zsplot may

be used to show a periodogram of a time series.

Autoregressive Models

We saw how the periodogram and its logarithm may be used to investigate the
character of a time series. Another useful graphical tool is the correlogram, or sample
autocorrelation function, which comprises the set of estimated correlation coefficients
between the series and itself at various spacing. Thus the (auto)correlation coefficient

at spacing (or lag) s may be estimated from the formula

Z(.yz _j})(ym-: Fj)

t=1 - ) (20)
Z ()}r - J_))z

=1

I, =

and the correlogram is a graph of the series (r, , s=1, 2, .., s) against the spacing s.
Since the number of terms used to calculate the correlation coefficient at lag s 1s n-s
where n is the length of the time serics, the maximum spacing s should be substantially

less than n. According to statistical theory, when the sample size n is large the standard
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error of a correlation coefficient is approximately normalily distributed with standard
deviation 1/vn, which tends to 0 as n gets large. This means that as the length of an
observed time series increases, the sample autocorrelation function of a stationary time
series stabilizes, approaching a smooth curve. For a white noise process the theoretical
correlation between observations at different spacing is zero, so cne would expect the
graph of its sample autocorrelation function to approach the horizontal axist=0asn
gets large. Based on the normal distribution which has 95% of its probability within
1.96 standard deviations of its mcan, a 95% confidence interval for the autocorrelation
atllag s ranges from -1.96/Y(n-s) to 1.96/N(n-s). In contrast, the periodogram values of
a white noise process, being exponentially distributed with constant standard deviation,
do not settle down as the length of the series wicreases. Instcad they become more
densely packed, as we saw in the preceding section Ljung & Box (1978) suggested
using the statistic

2
rs

Q= n(n +2)Z (21)
S H—5
where m is a specified integer substantially icss than the series length n, to the
hypothesis that a time series is a samplc from a white noise process. It it is necessary to
fit a linear model involving p parameters to transform the series to a white noise
process, where these parameters are estimated from the data, then Q is distributed

approximately as a chi-squared distribution with m-p degrees of frecdom.



