CHAPTER 4
STATISTICAL MODELLING

In this chapter, the results of the mode! fitting are presented. These results may
be classified as follows.

(a) Analysis of the times of occurrence of successive high and low tides at
Pattani and Songkla during 1996, based on the tide tables.

(b) Analysis of the heights of successive high and low tidcs at Pattani and
Songkla during 1996, based on the tide tables.

In the preliminary analysis we saw (Figures 14 and 15) that the times of
occurrence of each high and low tide, relative to the lunar day, separate into four
clusters approximately 6 hours and 12 minutes apart. This is a standard feature of
semidiurnal tide patterns.

We also saw in the preliminary analysis that the variation in water levels is
complicated, showing seasonal vanation throughout the year (with peaks in January
and December and troughs in the July-August period (Figures 12 and 13), as well as
monthly and daily cycles (Figures 10 and 11).

The daily cycle in the water levels 1s removed if we scparate both the high and
low tides into those occurring at approximately the same time each lunar day. This
means that instead of analysing two series of water levels at each location (onc for the
high tide and one for the low tide), we analyse four scries as follows.

(i) the first low tide, which occurs at the beginning of the lunar day;

(i1) the first high tide, which occurs approximately 6 hours and 12 minutes into
the lunar day;

(iil) the second low tide, occurring at approximately 12 hours and 25 minutes;

(iv) the second high tide, occurring at approximately 18 hours and 37 minutes,
In this chapter, the methods of time series analysis, using harmonic periodic

components to describe the signal, and autoregressive parameters to describe the
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residuals, are applied to the eight series corresponding to the four tides, as described

abovce, at the two locations.

1. Times of occurrence at Pattani
Figure 16 shows the result of fitting the model to the series of times of

occurrence of the first low tide at Pattani during 1996.
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Figure 16: Analysis of times of occurrence of the first low tide at Pattani in 1996

The fitted signal includes harmonics at 12, 13, 24, 25 and 26 cycles with
amplitudes 0.37, 0.45, (.18, 0.80 and 0.27, respectively. These correspond to the
movemment of the moon around the earth. The fit is reasonable but not particularly
good. The r-squared for the signal is only 0.5603. Judging from the graph of the time
series with the model superimposed, the model fails lo accommodate the high single
peaks in the data which occur once during each lunar revolution,

After subtracting the signal, the noise may be modelled simply as a second
order autoregressive process with parameters 0.95 and -0.32. The r-squared associated

with this model is 0.233, giving a total r-squared of 0.793.



The series of residuals, after removing the signal and filtering the noise based
on the autoregressive process, still contains a statistically significant autocorrelation at
lag 28.

Figure 17 shows the result of fitting the modcl to the series of times of

occurrence of the first high tide at Pattani,
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Figure 17: Analysis of times of occurrence of the first high tide at Pattani in 1996

The fitted signal includes harmonics at 12, 13, 24, 25 and 26 cycles with
amplitudes 0.21, 0.34, 0.16, 0.81 and 0.25, respectively. Thesc again correspond to
the movement of the moon around the earth, and as for the first low tide the fit is
reasonable but not particularly good. The r-squared for the signal 1s 0.6025. Judging
from the graph of the time series with the mode! superimposed, the model fails to
accommodate some of the peaks and troughs in the data which occur during
successive lunar revo‘lutions.

After subtracting the signal, the noise may be modelled simply as a second
order antoregressive process with parameters 1.165 and -0.38. The r-squared

associated with this model is 0.298, giving a total r-squared of 0.900.
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As in the case of the first low tide occurrence times, the filtered noise has a
significant autocorrelation at lag 28.
Figure 18 shows the analysis for the times of occurrence of the second low tide

at Pattani.
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Figure 18: Analysis of times of occurrence of the second low tide at Pattani in 1996

The fitted signal includes harmonics at 12, 13, 24, 25 and 26 cycles with
amplitudes 0.11, 0.59, 0.20, 0.66 and 0.28, respectively. As before these correspond to
the movement of the moon around the carth. Again, the fit is reasonable but not
particularly good. The r-squared for the signal is 0.7137.

After subtracting the signal, the noise may be modelled simply as a second
order autoregressive process with parameters 1.22 and -0.40. The r-squared associated
with this model is 0.226, giving a total r-squared of 0.94. The Ljung-Box p-values are
all smaller than 0.05, indicating that there is statistically significant autocorrelation in

the filtered series.
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Figure 19 shows the analysis for the times of occurrence of the sccond high tide

at Pattani.
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Figure 19: Analysis of times of occurrence of the second high tide at Pattani in 1996

The fitted signal includes harmonics at 12, 13, 24, 25 and 26 cycles with amplitudes
.12, 0.89,0.17, 0.71 and 0.28, respectively. Thesc again correspond to the movement
of the moon around the earth. As before, the fit is rcasonable but not particularly
good. The r-squared for the signal is 0.6618.

After subtracting the signal, the noise may be modelled simply as a second
order antoregressive process with parameters 1.164 and -0.37. The r-squared
associated with this model is 0.2547, giving a total r-squared of 0.9165. The
autocorrelation function has significant components at lags greater than 10, indicating

the inadequacy of the model.



2. Times of occurrence at Songkhla

Figure 20 shows the analysis for the times of occurrence of the first low tide at

Songkhla.

Fird low tide at Songkhla

3 —hourof tumarday

scaled periodagram: noise

propatioT ot vartarTe "T
o 01z
1 oA
o 0.05
-1
lunar day 0
0 100 200 300
1 eacfoffitered ot~
-1
0
5 2
a 3
0.5 1
L ]
Ljung-Box p-values lag fraquancy (cycleslundrday)
0 10 20 30 40 50 ¢ 0.t oz 0.3 0.4 Q.5

signal: y{t} = 0.18682 + 0.2416¢c05(12at-0.5825) + 0.3283cos(13z1+0.3877) + 0.1134cos(24at+1.267)
+0.8204cos(25at-1.939) +0.1427cos (26al-1.607) + X{1)
SEs:0.01989, 0.03878
noise: x(f) =0.9601 x{t-1)-0.3727 x(t-2} + () SEs: 0.05066, 0.05104
{t=lunarday,a=0.01775 r-sq: 0.5916 (signal) + 0.2255 {noise), sdfz] = 0.3742 n = 354)

Figure 20: Analysis of times of occurrence of the first low tide at Songkhla in 1996

The fitted signal includes harmonics at 12, 13, 24, 25 and 26 cycles with
amplitudes 0.24, 0.33, 0.11, .82 and 0.14, respectively. These correspond to the
movement of the moon around the earth. The fit is reasonable but not particularly
good. The r-squared for the signal is only 0.5916. Judging from the graph of the time
series with the mode! superimposed, the model fails to accommodate the peaks in the
data, which occur during each lunar revolution.

After subtracting the signal, the noise may be modelled simply as a second
order autoregressive process with parameters 0.96 and -0.37. The r-squared associated
with this model i{s 0.2255, giving a total r-squared of 0.8171.

The series of residuals, after removing the signal and filtering the noise base
on the guloregressive process, still contains a statistically significant autocorrelation at

lag 28.
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Figure 21 shows the analysis for the times of occurrence of the first high tide at

Songkhla.
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Figure 21. Analysis of times of occurrence of the first high tide at Songkhla in 1996

The fitted signal includes harmonics at 12, 13, 24, 25 and 26 cycles with
amplitudes 0.08, 0.55, 0.08, 0.50 and 0.05, respectively. These correspond to the
movement of the moon around the earth. Again, the fit is reasonable but not
particularly good. The r-squared for the signal is 0.6862. Judging from the graph of
the time series with the model superimposcd, the model fails to accommodate the
peaks 1n the data, which occur during each lunar revelution.

After sublracting the signal, the noisc may be modelled simply as a second
order autoregressive process with parameters 1.21 and -0.40. The r-squared associated
with this model 1s 0.247, giving a total r-squarcd of 0.9332.

As in the case of the first low tide occurrence times, the filtered noise has a

significant autocorrelation at lag 28.
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Figure 22 shows the analysis for the times of occurrence of the second low tide at

Songkhla.
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Figure 22: Analysis of times of occurrence of the second low tide at Songkhia in 1996

The fitled signal includes harmonics at 12, 13, 24, 25 and 26 cycles with
amplitudes 0.12, 0.56, 0.16, 0.62 and 0.16, respectively. As before these correspond to
the movement of the moon around the earth, Again, the fit is reasonable but not
particularly good. The r-squared for the signal is 0.7126.

After subtracting the signal, the noise may be modelled simply as a second
order autoregressive process with paramelers 1.38 and -0.59. The r-squared associated
with this model is 0.2365, giving a total r-squared of 0.9491,

The Ljung-Box p-values are greater than 0.05 only for 1Vag 7 and 8 indicating
that the stochastic part of the model is inadequate. Also there is a high autocorrelation

at lag 28.



37

Figurc 23 shows the analysis for the times of occurrence of the second high

tide at Songkhla.
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Figure 23. Analysis of times of occurrence of the second high tide ar Songkhla in
1996

The fitted signal includes harmonics at 11, 12, 13, 14, 24, 25 and 26 cycles
with amplitudes 0.358, 0.101, 0.576, 0.277, 0.110, 0.405 and 0.091, respectively. As
before these correspond to the movement of the moon around the earth. The fit is not
particularly good. The r-squared for the signal is 0.773.

After subtracting the signal, the noise may be modelled as a third order
autoregressive process with parameters 0, 1.822 and -1.047. The r-squared associated
with this model is 0.164, giving a tofal r-squared of 0.937.

The Ljung-Box p-values are all smaller than 0.05, indicating that there is
statistically significant autocorrelation in the filtered noise series. The model is clearly
not satisfactory, and a much more complicated model is required to obtain a

reasonable fit.




3. Heights of high and low tides at Pattani

Figure 24 shows the analysis for the heights of the first high tide at Pattani.
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Figure 24: Analysis of heights of the first high tide at Pattani in 1996

The graph of the base 10 logarithm of the periodogram gives 95% confidence
intcrvals for the individual periodogram values. Most of the periodogram values are
inside these confidence limits which indicates that the model fits the data. The fitted
signal includes harmonics at 1, 2, 11, 13, 14 and 25 cycles with amplitudes 0.204,
0.049, 0.027, 0.060, 0.032 and 0.065, respectively. The first and second harmonics
indicate a seasonal pattern, which may be caused by the monsoon winds. The other
two harmonics correspond to the movement of the moon around the earth. The r-
squared for the signal is 0.962. After subtracting the signal, the noise may be
modelled simply as a second order autoregressive process with parameters 1.564 and -
0.770. The r-squared associated with this model is 0.035, giving a total r-squared of
0.997, indicating that 99.7% of variation in the data can be explained by this model.

The fit is thus exiremely good.




From observing the autocorrelation function it may be seen that the Ljung-Box
p-values, indicated by circles on the graph, are greater than 0.05 only for lags less
than 26. Also there is a high autocorrelation at lag 28. This shows that despite the high
r-squared, some pattern remains in the residual filtered noise series.

Figure 25 shows the analysis for the heights of the first low tide at Pattani.
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Figure 25 Analysis of heights of the first low tide at Pattani in 1996

‘The fitted signal includes harmonics at 1, 2, 11, 13, 14 and 25 cycles with
amplitudes 0.189, 0.056, 0.023, 0.083, 0.059 and 0.058, respectively. The r-squared
for the signal is 0.942. After subtracting the signal, the noise may be modelled simply
as a second order autoregressive process with parameters 1.65 and -0.76. The r-
squared associated with this model is 0.056, giving a total r-squared of 0.998,
indicating that 99.8% of variation in the data can be explained by this model. The fit
15 thus extremely good.

From observing the autocorrelation function it may be seen that the Ljung-Box

p-values, indicated by circles on the graph, are greater than 0.05 only for lags less than
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26. Also there is a high autocorrelation at lag 28. This shows that despite the high r-
squared, some pattern remains in the residual filtered noise series.

Figure 206 shows the analysis for the heights of the second high tide at Pattani.
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Figure 26: Analysis of heights of the second high tide at Puttani in 1996

The fitted signal includes harmonics at 1, 2, 11, 13, 14 and 25 cycles with
amplitudes 0.210, 0.051, 0.024, 0.047, 0.028 and 0.051, respectively. The r-squared
for the signal is 0,960. After subtracting the signal, the noise may be modelled simply
as a second order autoregressive process with parameters 1.65 and -0.83. The r-
squared associated with this model is 0.038, giving a total r-squared of 0.99R,
indicating that 99.8% of variation in the data can be explained by this model. As
before the fit is extremely good.

From observing the autocorrelation function it may be seen that the Ljung-Box
p-values, indicated by circles oﬁ the graph, are greater than (.05 only for lags less than
12. Also there is a high autocorrelation at lag 28. This shows that despite the high r-

squared, some pattern remains in the residual filtered noise series.
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Figure 27 shows the analysis for the heights of the second low tide at Pattani.
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Figure 27: Anulysis of heights of the second low tide at Pattani in 1996

The fitted signal includes harmonics at 1, 2, 11, 13, 14 and 25 cycles with
amplitudes 0.184, 0.054, 0.016, 0.048, 0.048 and 0.064, respectively. The r-squared
for the signal is 0.934. After subtracting the signal, the noise may be modelled simply
as a second order autoregressive process with parameters 1.06 and -0.81. The r-
squared associated with this model is 0.063, giving a total r-squared of 0.997,
indicating that 99.7% of variation in the data can be explained by this model. The fit
is again extremely good.

From observing the autocorrelation function it may be seen that the Ljung-Box
p-values are all smaller than 0.05, indicating that there is substantial statistically

significant autocorrelation in the filtered series.
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4. Heights of high and low tides at Songkhla
Figure 28 shows the analysis for the heights of the first high tide at Songkhla.
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Figure 28: Analysis of heights of the first high tide at Songlkhla in 1996

The graph of the base 10 Jogarithm of the periodogram gives 95% confidence
intervals for the individual periodogram values. The results arc similar to those for
Pattani. Most of the periodogram values are inside these confidence limits which
indicates that the model fits the data. The fitted signal includes harmonics at 1, 2, 11,
13, 14 and 25 cycles with amplitudes 0.218, 0.048, 0.011, 0.037, 0.015 and 0.094,
respectively. These correspond to the movement of the moon around the earth. The r-
squared for the signal is 0.970. After subtracting the signal, the noise may be
modelled simply as a second order autoregressive process with parameters 1.45 and -
0.75. The r-squared associated with this model is 0.026, giving a total r-squared of
0.996, indicating that 99.6% of variation in the data can be explained by this model.

The fit is thus extremely good.




From observing the autocorreiation function it may be seen that the Ljung-Box
p-values are all smaller than 0.05, indicating that there is statistically significant
autocorrelation in the filtercd series. Also there is a high autocorrelation at lag 28.

Figure 29 shows the analysis for the heights of the first low tide at Songkhla.
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Figure 29: Analysis of heights of the first low tide at Songkhla in 1996

The fitted signal includes harmonics at 1, 2, 11, 13, 14 and 25 cycles with
amplitudes 0.230, 0.052, 0.035, 0.101, 0.091 and 0.045, respectively. Again the
results are similar to those at Pattani. The r-squared for the signal is 0.940. After
subtracting the signal, the noise may be modelled simply as a sccond order
autoregressive process with parameters 1.74 and -0.83. The r-squared associated with
this model is 0.058, giving a total r-squared of 0.998, indicating that 99.8% of
variation in the data can explain by this model. The fit extrcmely good.

From observing the autocorrelation function it may be seen that the Ljung-Box
p-values are all smaller than 0.05, indicating that there is statistically significant

autocorrelation in the filtered senes.



Figure 30 shows the analysis for the heights of the second high tide at
Songkhla.
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Songkhla: January 1 - December 31, 19496 scaled periodogram: noise
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Figure 30: Analysis of heights of the second high tide ar Songkhla in 1996

The fitted signal includes harmonics at 1, 2, 11, 13, 14 and 25 cycles with
amplitudes 0.22, 0.05, 0.05 and 0.05, respectively. The r-squared for the signal is

0.951. After subtracting the signal, the noise may be modelled simply as a sccond

order autoregressive process with parameters 1.67 and -0.87. The r-squared associated

with this model is 0.046, giving a total r-squared of 0.997, indicating that 99.7% of

variation in the data can be explained by this model. The fit is thus extremcly good.

From observing the autocorrelation function it may be seen that the Ljung-Box

p-values are greatcr than 0.05 only for lag 5 -12, indicating that the stochastic part of

the model is inadequate. Also there is a high antocorrelation at lag 28.
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Figure 31 shows the analysis for the heights of the second low tide at
Songkhia,

Songkhla: January 1 - December 31, 1986 scaled perodagram: noise
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Figure 31: Analysis of heights of the second low tide at Songkhla in 1996

The fitted signal includes harmonics at 1, 2, 11, 13, 14 and 25 cyeles with
amplitudes 0.220, 0.052, 0.039, 0.083, 0.058 and 0.049, respectively. The r-squared
for the signal is 0.940. After subtracting the signal, the noisc may be modelled simply
as a second order autoregressive process with parameters 1.73 and -0.85. The r-
squared associated with this model is 0.057, giving a total r-squared of 0.997,
indicating that 99.7% of variation in the data can be explaincd by this model. The fit
1s thus extremely good.

From obscrving the autocorrelation finction it may be seen that the Ljung-Box
p-values are all smaller than 0.03, indicating that there is statistically significant
autocorrelation in the filtered senes.

Overall, the results at Pattani and Songkhla aré similar, but there are some

important differences. These results will be discussed further in Chapter 5.



5. Overall summary of results

5.1 Times of occurrence
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signal: yj(t) = ¢j + Ay cos(11att ¢j)) + Apa cos(12at+ ¢j12) + Az cos(13at+ d;,3)

+ A cos(l4at+ l!)j;a,) +Asy cos(24at+ ¢’j14) + Ass cos(25at+ ¢j25)

+ A cos(26att ¢jaq) ; where a=0.0178 and j is station (Pattani and Songkhla)

Tahle 1. Signal parameters for times of occurrence

Tides e Ay A Ap A Ay Ass A r-sg(signal)
Low | (Pattani) 0.092 - 0.372 | 0.449 - 0.178 | 0.800 | 0.267 0.583 —
Low 1 (Songkhla) | 0.186 - 0.242 | 0.328 - 0.113 | 0.820 | 0.143 0.592
High 1 (Pattani) 6.098 - 0.209 | 0.344 - 0.159 | 0.80% | 0.245 0.602 ‘1
High 1 {Songkhla) | 6.462 - 0.079 1 0.553 - 0.076 | 0.492 | 0.048 0.686
Low 2 (Pattani) 12.45 - 0.112 | 0.588 - 0.196 | 0.658 | 0.279 0.714
l.ow 2 (Songkhla) 12.57 - 0.120 | 0.563 - 0.159 | 0.620 | 0.163 0.713
High 2 (Pattani) 18.41 - 0.122 | 0.886 - 0172 1 0.711 | 0.279 0.662 J
High 2 {Songkhla) | 18.61 | 0.338 | 0.101 | 0.576 | 0.277 | 0.110 | 0.405 | 0.091 0.773

noise: x;(t) = by x(t-1) + bjz x(t-2) + bj3 x{1-3); where j is station (Pattani or Songkhla)

Table 2: Noise parameters for limes of occurrence

Tides

b, b; b; c r-sg(noise) | r-sq(total)
Low 1 (Pattani) 0.895 1 -0.339 - (1.4486 0.212 0.795
Low 1 (Songkhta) 0960 ;| -0.373 - 0.3742 0.226 0.818
ﬁligh 1 (Pattani) 0.276 | 0.197 - 0.2765 0.298 0.900
High 1 (Songkhla) 1.214 } -0.399 - 0.1732 0.247 0933
%Low 2 (Pattun) ¢.960 | -0.373 - 0.1976 0.226 0.940
Low 2 (Songkhla) 1.381 -0.587 - 0.165 0.237 0.950
High 2 (Pattani) 1.214 | -0.399 - 0.2979 0.255 0917
High 2 (Songkhla) - 1.822 | -1.047 0.1628 0.164 0.937




5.2 Heights of tides

signal : y;(t) = ¢; + A cos(at+ ¢;1) + A; cos(2at+ ¢jp) + Ay cos(11at+ 1)

+ A3z cos(13at+ ¢j]3) + Ay cos(14al+ ¢j14) + Ajs cos(25att ¢jps)

where a= 0.0178 and j is station (Pattani and Songkhla)

Table 3. Signal parameters for heights of tides

Tides [ A A, Ay Az Al Ass r-sq{signal)
High 1 (Pattani) 0.860 | 0.204 | 0.04% | 0.027 | 0.060 | 0.032 | 0.065 0.962
High 1 {(Songkhla) | 1.413 [ G.218 | 0.048 | G011 | 0.037 | 0.015 | 0.0v4 0.970
Luw 1 (Pattanr) 0.524 | 0.190 | 0.057 | 0.023 | 0.083 | 0.059 | 0.058 0.942
Low 1 (Songkhla) 1.001 | 0230 | 0.052 | 0.035 | 0.101 | 0.091 ] 0.045 0.940
High 2 (Pattani) 0.865 [ 0.210 | 0.051 | 0.024 ;7 0.047 | 0.028 | 0.051 0.960
High 2 (Songkhla) | 1.427 | 0.221 | 0.050 | 0.013 | 0.051 | 0.031 | 0.069 0.95]
Low 2 (Pattani) 3.517 | 0.184 | 0.054 | 0.016 | 0.048 | 0.048 } 0.064 0.934
Low 2 (Songkhla) 0991 | 0220 | 0.052 | 0.039 | 0.083 | 0.058 | (L.04Y 0.941

noise : x;(t} = bj; x(t-1) + bj2 x(t-2) ; where ; is slation (Pattani or Songkhla)

Table 4: Noise parameters for heiglits of tides

Tides

b, b, o r-sg(noise) | r-sq(total)
High 1 (Pattani) 1.564 -0.770 0.0010 0.035 0.997
High 1 (Songkhla) 1.45 -0.751 0.0118 0.026 0.996
Low 1 (Pattan1) 1.663 -0.760 0.0089 0.056 0.998
Low 1 (Songkhla) 1.738 -0.829 0.0090 0.058 0.998
High 2 (Pattani) 1.647 -0.827 0.0084 0.038 0.998
High 2 (Songkhla) 1671 -0.868 0.00%0 0.046 0.997
T.ow 2 (Pattani) 1.664 -0.810 0.0092 0.063 0.997
Low 2 (Songkhla) 1.728 -0.852 0.0086 0.057 0.998




