Chapter 2
Methodology

This chapter describes the methods for selecting the subjects from the target population,
and lor collecting the data from the subjects, and the statistical methods used to analyse
the data. Factor analysis 1s used 1o reduce the dimensionality ol the multivanate
outcomes. Since the outcomes are continuous we use linedr regression Lo answer the
questions ol interest and Lo measure the association between the oulcomes and the

determinants.
2.1 Data Collection

The data were collected by the Graduate School al Pomee ol Songkla University.
Questionnaires were administered to gradu'ating students in 2002, and the data from

these questionnaires were linked to records in the Registrar’s Office.
2.2 Graphical and Statistical Methods

The data are stored in Excel, imported to Microsoft SQL Scrver and analyzed using
Websiat, the new statistical expert system technology written in HTML and VBSecript.

The Excel add-in Ecstat and imported to SPSS for windows version 11.0 are also used for
statistical data analysis. This is a suite of functions for graphing and analysis statistical data,
as follow: histogram and numerical summaries for data from all variables, factor analysis,
two-sample t-test, one way analysis of variance and multiple regression analysis of the

variables described Ly box plols and 95% conlidence intervals of means.
Factor Analysis

Since we have multivariate outcomes, factor anatysis is used to reduce the
dimensionality of these outcomes. T'actor analysis is a data reduction technique. It is a
group of procedures designed for removing duplicated information from a sct of
correlated variables and representing the variables with a smaller set of derived
variables or factors. There are three procedures involved, The first stage is obtaining the
original data matrix. A set of subjects O, O, .., are measured with a different
number of variables Fy with ¥, V) with V3 efc., according to the following formula: If x;

is the observation from subject i on ) and v, 1s the observation from subject i on V5,



then the correlalion hetween V7 and Va2 is given by

S, -0, — )

=

(n—1)s,s,

where s, and s, ate the sample standard deviations of ¥y and ¥3, and n is the number of

pairs of ubservations.

The last stage involves the factor loadings. These reveal the extent to wiich each of the
variables coniributes to the meaning of each of the factors. Within any one column of
the factor matrix, some of the loadings will be high and some will be low. The variables
with a high loading on a factor will be the oncs that provide the meaning of the factor

(Kachigan, 1991).

There are many ways to determine the number of [actors. Educalional researchers often
nse methods based on eigenvalues. Since the aim of factor analysis is to reduce the
number of variables, eigenvalues less than one indicate that this factor contributes lcss

than the original variable and therefore should not be retained.

While methods based on sizes of eigenvalues have some popular appeal, the most
statistically valid method 1s based on maximum likelihood estimation of the coefficients

n the factor analysis decomposition.

Maximum likelihood factor analysis is a widely used method. This method enables us to
carry out test of the goodness of fit of a solution comprising & factors. [t provides a test
of the null hypothesis that £ common factors are sufficient to descnibe the data. The

algorithms for this method are given as follows,

Suppose we have p variables and want to fit & factors. Let R be the p x p correlation
matrix of the variables, £ the p x £ matrix of tactor loadings, and y the vector of length
p containing the unique variances, Then we need to find values for L and  that

maximise the likelihood function, 1'(Z, ).

For the [ixed value of y, we maxmize f (7., y7) with respect to L. The value of L is then

substituted into (L, ). Now fcan be reviewed as a function of . A transformation of

this function gives
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M= logy +— -1

m=k1t
! nr

where y, <y,.. <y, are the eigenvalucs of yR 'y. We then minimize m (1) . This

mives an estimate of w, which is then put into the likelihood f/(L, 4. Then the
likelihood is again maximized with respect to L. Then a new value for m () is

compuied and so on.

After making the decision on how many factors to extract from the original set of
variables we can redefine the factors so that the explained variance is redistributed
among the new factors. This technique is used to sharpen the distinction in the mecaning
of the factors. A redefinition of the factors, with the loading on the various factors cither
very high or very low, and then eliminating as many medium sized loading, aids in the

mterpretation ol [aclors,

Varimax rotation is one of many types of rotation and is regarded as the standard
approach. This approach places more emphasis on the simplification of the factors. It
tends to avoid a general factor, Using the comprehensibility method to select a number
of factors, suppose that three factors are relained. Table 2.1 shows the factor loadings

before and after using a rotation ot the factors.

Refore rotation After rotation
Variable i F, F5 Variable
\2 M| M T v,
Vi H L L Vs
V3 M M L Vs
' M L H Vy
Vs H M M Vs
Vo H M M Vo
V3 L H M Vi
Vs M M H Vs
Vy M M L Vo

Factor loading II: high, M: medium and L: low

Table 2.1 Factor rotation
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Twao sample t-test

The two samplc t-test is used to test the null hypothesis that the population means are

the same, and the t-statistic is obtained as follows

5, o
' \fn.l i,

Il %, and «, denote the standard deviations of the two samples, respectively, it may be

A
shown that the pooled sample standard deviation is given by the formula

(ny - l)s Jr(n —l)s

8
"y H|+H2 2

A p-value is now obtainable from the table of the two-tailed ¢ distribution with

i, +n, —2 degree of freedom. This statistical procedure is called the two sample (-test

(McNeil, 2000).
One-way analysis of variance

Constdering the analysis of data in which the outcome is continuous and the
determinant is categorical, this leads (o a procedure called the (one-way) mnalysis ol
variance (anova). The null hypothesis is that the population means of the outcome
variable corresponding to the different categories of the determinant are the same, and
this hypothesis is tested by computing a statistic called the F-Statistic and comparing it

with an approprate distnbution lo get a p-value. Suppose Lhal there are n; observahion

in sample /, denoted by y, fori=1,2,..., n,. The F-statistic is

sy =5 H(e~1)
- s, /(n—¢)

e My PR

where & ﬁll(yu }" 2 Zl(yrr

Aol i= -1

1 " 1 J [
and TR RISESDWRIREDW)
=i =t i =1
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s, 18 the sum of squares of the data afler subtracting their overall mean, whiles, is the

Q0
sum of squared of the residuals obtained by subtracting each sample mean. If the
population means arc the same, the numerator and the denominator in the F-statistic are
independent cstimates of the square of the population standard deviaiton (assumed the
same for each population}. The p-valuc is the area in the tail of the F-distribution with ¢-

1 and n-¢ degrees of freedom (MeNeil, 1996).
Multiple Linear Regression Analysis

| inear regression analysis is used to analyze data in which both the determinants and
the outcome are continwous varlables. In the simplest case wvolving a single
determinant, it can suimmaries the dala in the scatier plot by fitting a straight line. [n
conventional statistical analysis the hne [illed 7s the least squares hine, which minimizes
the distances of the points to the line, measured in the vertical direction. If there 1s more
than one determinant, the method generalizes to multiple lincar regression, in which the

regression line extends to the multiple lincar relation represcnted as (MceNeil, 1998).

Y=+ fx +e
where Y 1s the oulcome variable, /3, 1s a constant, {53, ) 1s a set of parameters (I =1 o p,
the number of determinants), and {x;} is a set of determinants (7 = 1 to p).

The model is filted to data using least squares, which minimnizes the sum of squares of

the residualks.

Lincar regression analysis resets on three assumptions as follows.
{1) The association 18 linear.

(2) The variability of the errar (in the outcome variable) is uniform.
(3) These errors are normally distributed.

If these assumptions are not met, a transformation of the data may be appropriate.
LLinear regression analysis may also be used when one or more of the determinants is
categorical. In this case the categorical determinant is broken down into ¢-1 scparate

binary determinants, where ¢ is the number of categories. The omitted category is taken

as the baseline or referent category.
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Correlation Coefficient
The correlation coefficient is a measure of the linear or straight-line, relationship
hetween variables and level of relation. The model of corrclation coefficient is delined
as (McNell, 1998).
20y
I =, - )

It may be shown that » ranges [rom a minimum of -1 to maximum value of 1. A

corrclation coefficient equal to U mdicales no linear relationship between the two

variables.



