

สารประกอบเชิงซ้อนของคอปเปอร์(I)กับไตรฟีนิลฟอสฟีนและไดเมทิลไฮโอยูเรีย Copper(I) Complexes Containing Triphenylphosphine and *N,N*'-Dimethylthiourea

ลาตีป๊ะ ลาโอะ Latipah La-o

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมีศึกษา

มหาวิทยาลัยสงขลานครินทร์

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Chemical Studies

Prince of Songkla University

2552 ลิขสิทธิ์ของมหาวิทยาลัยสงขลานครินทร์

ชื่อวิทยานิพนธ์ สารประกอบเชิงซ้อนของคอปเปอร์(I)กับไตรฟีนิลฟอสฟีนและ		
	ใคเมทิลไธโอยูเรีย	
ผู้เขียน	นางสาวถาตีป๊ะ ถาโอะ	
สาขาวิชา	เคมีศึกษา	

อาจารย์ที่ปริกษาวิทยานี้พนธ์หลัก	คณะกรรมการสอบ
(ผู้ช่วยศาสตราจารย์ คร.เชวง ภควัตชัย)	ประธานกรรมการ (ผู้ช่วยศาสตราจารย์ คร.อรวรรณ ศิริโชติ)
	กรรมการ (ผู้ช่วยศาสตราจารย์ คร.เชวง ภควัตชัย)
	กรรมการ (คร.วีณา เอมเอก ทัพไชย)
	กรรมการ (ผู้ช่วยศาสตราจารย์ คร.หิริหัทยา เพชรมั่ง)
v d d v d v	୍ ୧ ୧୦୦୦ ୧ ୧ ୧ ସ୍ଥା ଅନ୍ମ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧ ୧

บัณฑิตวิทยาลัย มหาวิทยาลัยสงขลานครินทร์ อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็น ส่วนหนึ่งของการศึกษา ตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมีศึกษา

ชื่อวิทยานิพนธ์	สารประกอบเชิงซ้อนของคอปเปอร์(I)กับไตรฟีนิลฟอสฟีนและไคเมทิล
	វ្រ ទ្រព័ររួត
ผู้เขียน	นางสาวลาตีป๊ะ ลาโอะ
สาขาวิชา	เคมีศึกษา
ปีการศึกษา	2551

บทคัดย่อ

งานวิจัยนี้เป็นการสังเคราะห์สารประกอบเชิงซ้อนของกอปเปอร์(I)เฮไลค์ (CuX; X= Cl, Br, I) กับถิแกนค์ไตรพีนิถฟอสพีน(PPh.) และถิแกนค์ไคเมทิลไธโอยูเรีย(dmtu) ได้สารประ กอบเชิงซ้อน 3 ชนิดได้แก่ [Cu(PPh₃)₂(dmtu)Cl]· 0.5C ₃CN(1), [Cu(PPh₃)₂(dmtu)Br](2) และ [Cu(PPh,),(dmtu)I](3) ทำการศึกษาลักษณะทางเคมีของสารประกอบเชิงซ้อนทุกตัวโดยเทคนิคการ ้วิเคราะห์หาปริมาณธาตุที่เป็นองค์ประกอบ เทคนิคเอกซเรย์ฟูออเรสเซนซ์สเปกโทรเมตรี เทคนิคฟู เรียร์ทรานส์ฟอร์มอินฟราเรคสเปกโทรสโกปี และเทคนิคนิวเคลียร์แมกเนติกเรโซแนนซ์ สเปกโทรสโกปี ศึกษาโครงสร้างผลึกของสารประกอบเชิงซ้อนทั้งหมคโดยเทคนิคการเลี้ยวเบน ้ของรังสีเอกซ์บนผลึกเดี่ยว สารประกอบเชิงซ้อน(1) ตกผลึกอยู่ในระบบมอโนคลินิก หมู่ปริภูมิ $P2_{1}/n$ มีจำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 8 มีเซลล์พารามิเตอร์ ดังนี้ a = 13.7503(4), b =30.0495(9), c = 18.4227(5) Å, $\beta = 90.8740(10)^\circ$ สารประกอบเชิงซ้อน(2) ตกผลึกอยู่ในระบบโม ์ โนคลินิก หมู่ปริภูมิ $P2_{
m l}/c$ มีจำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 4 มีเซลล์พารามิเตอร์ดังนี้ a = 9.7886(3), b = 17.6205(6), c = 21.6517(7) Å, $\beta = 100.6460(10)^{\circ}$ สำหรับสารประกอบ(3) ตก ผลึกอยู่ในระบบโมโนคลินิก หมู่ปริภูมิ P2,/n มีจำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 4 มีเซลล์ พารามิเตอร์ดังนี้ a = 10.8474(5), b = 17.3669(7), c = 19.9418(9) Å, $\beta = 100.038(1)^\circ$ ซึ่งแต่ละ ้โครงสร้างเป็นแบบทรงสี่หน้าที่บิดเบี้ยว โดยมีคอปเปอร์(I) เป็นอะตอมกลางที่สร้างพันธะกับ ฟอสฟอรัสสองอะตอมจากลิแกนด์ PPh, สองโมเลกุล ซัลเฟอร์หนึ่งอะตอมจากลิแกนด์ dmtu และ อะตอมเฮไลด์หนึ่งอะตอม

Thesis Title	Copper(I) Complexes Containing Triphenylphosphine and	
	N,N'-Dimethylthiourea	
Author	Miss Latipah La-o	
Major Program	Chemical Studies	
Academic Year	2008	

ABSTRACT

The systematic complexes of copper(I) halides (CuX; X= Cl, Br, I) containing triphenylphosphine (PPh₃) and N,N'-dimethylthiourea (dmtu) ligands have been synthesized and characterized by elemental analysis, X-ray fluorescence spectrometry, Fourier transform infrared spectroscopy and Fourier transform nuclear magnetic spectroscopy. resonance The crystal structures of [Cu(PPh₃)₂(dmtu)Cl] · 0.5CH₃CN(1), [Cu(PPh₃)₂(dmtu)Br](2) and [Cu(PPh₃)₂(dmtu)I](3) have been established by single-crystal X-ray diffraction. The complex(1) crystallizes in monoclinic system, space group $P2_1/n$, Z = 8 with cell parameters a = 13.7503(4), b= 30.0495(9), c = 18.4227(5) Å, $\beta = 90.8740(10)^{\circ}$. The complex(2) crystallizes in monoclinic system, space group $P2_1/c$, Z = 4 with cell parameters a = 9.7886(3), b = 17.6205(6), c =21.6517(7) Å, $\beta = 100.6460(10)^{\circ}$ and the complex(3) crystallizes in monoclinic system, space group $P2_1/n$, Z = 4 with cell parameters a = 10.8474(5), b = 17.3669(7), c = 19.9418(9) Å, $\beta = 10.8474(5)$ 100.038(1)°. Each of these structures features a distorted tetrahedral copper(I) center coordinated to two phosphorus atoms from two triphenylphosphine molecules, one sulfur atom of N,N'dimethylthiourea molecule and one halogen atom.

กิตติกรรมประกาศ

วิทยานิพนธ์ฉบับนี้สำเร็จได้ ด้วยความกรุณาจาก ผู้ช่วยศาสตราจารย์ คร. เชวง ภควัตชัย อาจารย์ที่ปรึกษาวิทยานิพนธ์ ที่ได้ชี้แนะแนวทางในการศึกษาก้นคว้า ตรวจแก้ไขข้อบกพร่องต่าง ๆ จนลุล่วงไปได้ด้วยดี และให้คำปรึกษาที่เป็นประโยชน์ที่ดีเสมอมา

ผู้เขียนขอขอบคุณ ผู้ช่วยศาสตราจารย์ คร. อรวรรณ ศิริโชติ คร.วิณา เอมเอก ทัพไชย และ ผู้ช่วยศาสตราจารย์ คร.หิริหัทยา เพชรมั่ง ที่กรุณารับเป็นกรรมการสอบและตรวจแก้ไขวิทยานิพนธ์ ให้มีความสมบูรณ์มากยิ่งขึ้น

ผู้เขียนขอขอบคุณ คร.เสาวนิต ทรายทอง ผู้ซึ่งให้คำปรึกษาที่เป็นประโยชน์ในการศึกษา ค้นคว้าและให้ความช่วยเหลือในการหาโครงสร้างของสารประกอบโคยใช้โปรแกรม SHELXTL NT version 6.12 และ ผู้เขียนขอขอบคุณ คุณฤทัยรัตน์ นิ่มทอง ที่ได้ชี้แนะแนวทางในการทำวิจัย ตลอดมา

ผู้เขียนขอขอบคุณ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ที่มอบทุนผู้ช่วยนักวิจัย คณะวิทยาศาสตร์ (RA) และขอขอบคุณบัณฑิตวิทยาลัยที่ได้ให้ทุนอุดหนุนการวิจัย

ผู้เขียนขอขอบคุณ ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ที่เอื้อเฟื้อ สถานที่ในการทำวิจัยและให้โอกาสใช้เครื่องมือในการทำวิจัย ตลอดจนบุคลากรภาควิชาเคมีทุก ท่านที่ได้ช่วยอำนวยความสะดวกในเรื่องการประสานงานต่าง ๆ

ผู้เขียนขอขอบคุณทุกๆ คนในครอบครัว เพื่อน ๆ ที่ให้กำลังใจและให้คำปรึกษาที่ดีตลอด ระยะเวลาที่ทำการวิจัย

ลาตีป๊ะ ลาโอะ

สารบัญ

	หน้า
สารบัญ	(6)
รายการตาราง	(8)
รายการรูป	(9)
สัญลักษณ์คำย่อและตัวย่อ	(12)
1. บทนำ	1
1.1 บทนำต้นเรื่อง	2
1.2 การตรวจเอกสาร	4
1.3 วัตถุประสงค์	13
2. วัสคุ อุปกรณ์ วิธีการทคลอง	14
2.1 สารเคมี	14
2.2 อุปกรณ์และเครื่องมือ	14
2.3 การสังเคราะห์สารประกอบเชิงซ้อน	15
2.4 การศึกษาสมบัติทางกายภาพและการละลายของสารประกอบเชิงซ้อน	16
2.5 การวิเคราะห์หาปริมาณธาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน	16
2.6 การวิเคราะห์หาชนิดของธาตุในสารประกอบเชิงซ้อน โดยใช้เทคนิค XRF	16
2.7 การศึกษาการเปลี่ยนแปลงของแถบการดูดกลืน FT-IR	16
2.8 การศึกษา ¹ H NMRและ ¹³ C NMR	16
2.9 การศึกษาโครงสร้างของสารประกอบเชิงซ้อน โคยวิธีการเลี้ยวเบน	17
ของรังสีเอกซ์บนผลึกเดี่ยว	
3. ผลการทดลอง	25
3.1 การสังเคราะห์และศึกษาสมบัติทางกายภาพของสารประกอบเชิงซ้อน	25
3.2 การวิเคราะห์หาปริมาณธาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน	26
3.3 การวิเคราะห์หาชนิดของธาตุในสารประกอบเชิงซ้อน โดยใช้เทคนิค XRF	27
3.4 การศึกษาการเปลี่ยนแปลงของแถบการดูดกลืน FT-IR	35
3.5 การศึกษา ¹ H NMR และ ¹³ C NMR	40
3.6 การศึกษาโครงสร้างสารประกอบเชิงซ้อนโดยวิธีการเลี้ยวเบนของรังสีเอกซ์	50
บนผลึกเดี่ยว	

สารบัญ (ต่อ)

	หน้า
4. วิจารณ์ผลการทดลอง	71
4.1 การสังเคราะห์สารประกอบเชิงซ้อน	71
4.2 การวิเคราะห์หาปริมาณธาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน	71
4.3 การวิเคราะห์หาชนิดของธาตุในสารประกอบเชิงซ้อนโดยใช้เทกนิก XRF	71
4.4 การศึกษาการเปลี่ยนแปลงของแถบการดูดกลื่น FT-IR	72
4.5 การศึกษา ¹ H NMR และ ¹³ C NMR	75
4.6 การศึกษาโครงสร้างของสารประกอบเชิงซ้อนโดยใช้เทคนิคการเลี้ยวเบน	77
ของรังสีเอกซ์บนผลึกเคี่ยว	
5. สรุปผลการทคลอง	81
บรรณนานุกรม	83
ภาคผนวก	87
ข้อมูลผลึก	
ประวัติผู้เขียน	170

รายการตาราง

ตารางที่	หน้า
1.1 สมบัติทางกายภาพและเคมีของคอปเปอร์	2
3.1 สภาวะที่เหมาะสมในการเตรียมสารประกอบเชิงซ้อน	25
3.2 สมบัติทางกายภาพของถิแกนด์ และสารประกอบเชิงซ้อน	25
3.3 แสดงความสามารถในการละลายของสารประกอบเชิงซ้อน	26
ในตัวทำละลายต่าง ๆ ที่อุณหภูมิห้อง	
3.4 ผลการวิเคราะห์หาปริมาณชาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน	26
3.5 ข้อมูลผลึกของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN	50
3.6 ความยาวพันธะระหว่างอะตอมในโมเลกุล [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN	51
3.7 มุมพันธะระหว่างอะตอมในโมเลกุล [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN	52
3.8 พันธะไฮโครเจนในโมเลกุล[Cu(PPh ₃) ₂ (dmtu)Cl]・0.5CH ₃ CN	58
3.9 ข้อมูลผลึกของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br]	59
3.10 ความยาวพันธะระหว่างอะตอมในโมเลกุล [Cu(PPh ₃) ₂ (dmtu)Br]	60
3.11 มุมพันธะระหว่างอะตอมในโมเลกุล [Cu(PPh3)2(dmtu)Br]	60
3.12 พันธะไฮโครเจนในโมเลกุล[Cu(PPh ₃) ₂ (dmtu)Br]	64
3.13 ข้อมูลผลึกของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I]	65
3.14 ความยาวพันธะระหว่างอะตอมในโมเลกุล [Cu(PPh ₃) ₂ (dmtu)I]	66
3.15 มุมพันธะระหว่างอะตอมในโมเลกุล [Cu(PPh ₃) ₂ (dmtu)I]	66
3.16 พันธะไฮโครเจนในโมเลกุล[Cu(PPh ₃) ₂ (dmtu)I]	70
4.1 แสดงข้อมูลแถบการดูดกลื่นที่สำคัญในลิแกนด์ dmtu และสารประกอบเชิงซ้อน	74
4.2 แสดงค่า chemical shift ของ -(NH)	76
4.3 แสดงค่า chemical shift ของ C=S	77
4.4 แสดงอันตรกิริยาของพันธะ ไฮโครเจนในสารประกอบเชิงซ้อน	78
4.5 แสดงความยาวพันธะและมุมพันธะรอบอะตอมของคอปเปอร์	80

รายการรู ป

รูปที่	เน้า
1.1 แสดงโครงสร้างของ N,N'-dimethylthiourea(dmtu)	3
1.2 แสดงโครงสร้างของไตรฟีนิลฟอสฟีน(PPh₃)	3
1.3 แสดงโครงสร้างผลึกของ [Cu(PPH ₃) ₂ (pymth)Br]	4
1.4 แสดงโครงสร้างผลึกของ [Cu(PPh ₃) ₂ (meimtH)Br]	5
1.5 แสดงโครงสร้างผลึกของ [Cu(PPh ₃) ₂ (bzimtH ₂)Cl]	5
1.6 แสดงโครงสร้างผลึกของ [Cu(PPh ₃) ₂ (pymtH)I]	6
1.7 แสดงโครงสร้างผลึกของ (Ph ₃ P)Cu(SPPh ₂) ₂ N	7
1.8 แสดงโครงสร้างผลึกของ Cu ₂ (CH ₂) ₄ (CO ₂) ₂ (Ph ₃ P) ₄	7
1.9 แสดงโครงสร้างผลึกของ [Cu(bztzdtH)(PPh₃)Br]₂	8
1.10 แสดงโครงสร้างผลึกของ [Cu(PPh ₃) ₂ (tzdtH)Cl]	8
1.11 แสดงโครงสร้างผลึกของ [Cu(PPh3)2(bztzdtH)Cl]	9
1.12 แสดงโครงสร้างผลึกของ [$Cu_2(CN)_2(PPh_3)_4(hppH)$]	10
1.13 แสดงโครงสร้างผลึกของ [CuBr(η²-S- μ -C₅H₅NS)(p-Tol₃P)]₂	10
1.14 แสดงโครงสร้างผลึกของ [CuBr(dppet)(mftztH)]	11
1.15 แสดงโครงสร้างผลึกของ [Cu(oxine)(PPh $_3)_2$](BF $_4$)	12
1.16 แสดงโครงสร้างผลึกของ [Cu ₂ Cl ₂ (µ ₂ -S-Httsc) ₂ (PPh ₃) ₂]. 2CH ₃ CN	12
1.17 แสดงโครงสร้างผลึกของ [Cu(ptu)(PPh ₃) ₂ I]	13
2.1 แผนผังขั้นตอนในการศึกษาโครงสร้างผลึก	18
2.2 แสดงการเม้าท์ผลึก	19
2.3 แสดงการติดตั้งผลึกบนหัวโกนิโอมิเตอร์	20
2.4 เครื่องเอกซเรย์ดิฟแฟรกโทมิเตอร์ รุ่น SMART APEX	22
2.5 แกนหมุนทั้ง 4 ของเครื่องคิฟแฟรกโทมิเตอร์	23
2.6 แผนผังการหาโครงสร้างโดยใช้โปรแกรมคอมพิวเตอร์ระบบ SHELXTL NT	24
version 6.12	
3.1 XRF สเปกตรัมของคอปเปอร์ในสารประกอบเชิงซ้อน [CuCl(PPh3)2(dmtu)] • 0.5CH3CN	27

รายการรู ป (ต่ อ)

รูปที่	หน้า
3.2 XRF สเปกตรัมของซัลเฟอร์, ฟอสฟอรัสและ คลอรีนในสารประกอบเชิงซ้อน	28
$[CuCl(PPh_3)_2(dmtu)] \cdot 0.5CH_3CN$	
3.3 XRF สเปกตรัมของคอปเปอร์ในสารประกอบเชิงซ้อน [CuBr(PPh ₃) ₂ (dmtu)]	29
3.4 XRF สเปกตรัมของโบรมีนในสารประกอบเชิงซ้อน [CuBr(PPh ₃) ₂ (dmtu)]	30
3.5 XRF สเปกตรัมของซัลเฟอร์ในสารประกอบเชิงซ้อน [CuBr(PPh ₃) ₂ (dmtu)]	31
3.6 XRF สเปกตรัมของคอปเปอร์ในสารประกอบเชิงซ้อน [CuI(PPh ₃) ₂ (dmtu)]	32
3.7 XRF สเปกตรัมของไอโอคืนในสารประกอบเชิงซ้อน [CuI(PPh ₃) ₂ (dmtu)]	33
3.8 XRF สเปกตรัมของฟอสฟอรัสและในสารประกอบเชิงซ้อน [CuI(PPh ₃) ₂ (dmtu)]	34
3.9 FT-IR สเปกตรัมของลิแกนค์ใตรฟีนิลฟอสฟีน	35
3.10 FT-IR สเปกตรัมของลิแกนค์ใคเมทิลไช โอยูเรีย	36
3.11 FT-IR สเปกตรัมของในสารประกอบเชิงซ้อน [Cu(PPh3)2(dmtu)Cl] • 0.5CH3CN	37
3.12 FT-IR สเปกตรัมของในสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br]	38
3.13 FT-IR สเปกตรัมของในสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I]	39
3.14 ¹ H NMR สเปกตรัมของลิแกนค์ไคเมทิลไช โอยูเรียใน DMSO- d_6	40
3.15 ¹ H NMR สเปกตรัมของลิแกนค์ไตรฟีนิลฟอสฟีนใน DMSO-d ₆	41
3.16 ¹ H NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl] \cdot 0.5CH ₃ CN	42
ใน DMSO-d ₆	
3.17 ¹ H NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br]ใน DMSO- d_{δ}	43
3.18 ¹ H NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I]ใน DMSO- d_6	44
3.19 ¹³ C NMR สเปกตรัมของลิแกนค์ไคเมทิลไช โอยูเรียใน DMSO-d ₆	45
3.20 ¹³ C NMR สเปกตรัมของลิแกนด์ไตรฟีนิลฟอสฟีนใน DMSO-d ₆	46
3.21 ¹³ C NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br]ใน DMSO- d_6	47
3.22 13 C NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br]ใน DMSO- d_6	48
3.23 13 C NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I]ใน DMSO- d_6	49
3.24 โครงสร้างโมเลกุล A และ โมเลกุล B ของสารประกอบเชิงซ้อน	54
$[Cu(PPh_3)_2(dmtu)Cl] \cdot 0.5CH_3CN$	

(10)

รายการรู ป (ต่ อ)

รูปที่	หน้า
3.25 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN ในโมเลกุล A	55
3.26 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN ในโมเลกุล B	55
3.27 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh3)2(dmtu)Cl] • 0.5CH3CN ในหน่วยเซลล์	56
พลีอตตามแกน a	
3.28 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN ในหน่วยเซลล์	57
พลีอตตามแกน b	
3.29 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5CH ₃ CN ในหน่วยเซลล์	57
พลีอตตามแกน c	
3.30 แสดงอันตรกิริยาของพันธะไฮโดรเจนที่เกิดขึ้นภายในโมเถกุลและระหว่าง	58
โมเลกุล A กับ B ของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Cl]	
3.31 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh3)2(dmtu)Br]	61
3.32 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br] ในหน่วยเซลล์	62
พลีอตตามแกน a	
3.33 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br] ในหน่วยเซลล์	62
พล็อตตามแกน b	
3.34 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br] ในหน่วยเซลล์	63
พลีอตตามแกน c	
3.35 แสดงอันตรกิริยาของพันธะไฮโครเจนในสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)Br]	64
3.36 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I]	67
3.37 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I] ในหน่วยเซลล์	68
พล็อตตามแกน a	
3.38 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I] ในหน่วยเซลล์	68
พลีอตตามแกน b	
3.39 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I] ในหน่วยเซลล์	68
พลีอตตามแกน c	
3.40 แสดงอันตรกิริยาของพันธะไฮโครเจนในสารประกอบเชิงซ้อน [Cu(PPh ₃) ₂ (dmtu)I]	70
	11

(11)

สัญลักษณ์ คำย่อและตัวย่อ

0	=	องศา
°C	=	องศาเซลเซียส
Å	=	อังสตรอม (อังสตรอม = 10 ⁻¹⁰ เมตร)
cm ³	=	ลูกบาศก์เซนติเมตร
cm ⁻¹	=	wave number
mL	=	มิลลิลิตร
М	=	โมลต่อลิตร (Molar)
g	=	กรัม
g/cm ³	=	กรัมต่อลูกบาศก์เซนติเมตร
K	=	เกลวิน
kJ	=	กิโลจูล (kilo joule)
mg	=	มิลลิกรัม
keV	=	kilo electron volt
mmol	=	<u>ມີ</u> ດດີ ໂນດ
PPh ₃	=	triphenylphosphine
dmtu	=	N,N'-dimethylthiourea
tzdtH	=	1,3-thiazolidine-2-thione
pymtH	=	pyrimidine-2-thione
meimtH	=	1-methyl-1,3-imidazoline-2-thione
bzimtH ₂	=	benz-1,3-imidazoline-2-thione
bztzdtH	=	benz-1,3-thiazolidine-2-thione
dppet	=	cis-1,2-bis(diphenylphosphino)ethylene
mtdztH	=	5-methyl-1,3,4-thiadiazole-2-thione
Httsc	=	thiophene-2-carbaldehyde thiosemicarbazone
DMSO- d_6	=	hexadeutero-dimethyl sulphoxide

บทนำ

บทนำต้นเรื่อง

การศึกษาปรากฏการณ์การเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction)จากผลึก ทำให้เกิด ความรู้ความเข้าใจเกี่ยวกับโครงสร้างโมเลกุลของสารประกอบชนิดต่างๆ วิธีนี้ถูกนำมาใช้ครั้งแรก ในปี 1913 โดย W.L. Bragg ซึ่งได้แสดงลักษณะโครงสร้างผลึกของโซเดียมคลอไรด์ (NaCl) และ อีก 15 ปีต่อมา Kathleen Lonsdale ได้ใช้วิธีการการเลี้ยวเบนของรังสีเอกซ์เพื่อแสดงให้เห็นว่าวง เบนซินมีลักษณะเป็นหกเหลี่ยมด้านเท่า ไม่ใช่วงของพันธะเดี่ยวสลับกับพันธะกู่ ผลนี้มีความสำคัญ มากต่อเคมีทฤษฎี ตั้งแต่นั้นมา วิธีการนี้ได้ถูกนำมาใช้อย่างแพร่หลายเพื่อศึกษารายละเอียดของ โครงสร้างผลึก ซึ่งอาจประกอบด้วยอะตอมของธาตุเดี่ยว ไอออน หรือโมเลกุล ซึ่งมีตั้งแต่โมเลกุล ที่ง่ายที่สุดจนถึงโมเลกุลที่มีจำนวนอะตอมเป็นพันๆอะตอมขึ้นไป ผลที่ได้จากการศึกษาเกี่ยวกับ โครงสร้างโมเลกุลก็ได้รับความสนใจและพัฒนามาตลอด เนื่องจากผลที่ได้นี้จะเป็นข้อมูลที่สำคัญ ที่นำไปสู่ความรู้ความเข้าใจเกี่ยวกับสมบัติต่างๆ ของสาร ทั้งทางเคมีและทางกายภาพด่อไป

ในงานวิจัยชิ้นนี้ได้ทำการศึกษาโครงสร้างของสารประกอบเชิงซ้อนของคอปเปอร์(I) โดย ที่คอปเปอร์ หรือทองแดง เป็นธาตุแรกของหมู่ IB หรือหมู่ 11 จัดเป็นโลหะทรานซิชัน และเป็น ทรานซิชันแถวที่หนึ่ง มีเลขอะตอม (atomic number) เท่ากับ 29 มีการจัดโครงสร้างอิเล็กตรอนเป็น [Ar] 3d¹⁰ 4s¹ ถึงแม้ว่าคอปเปอร์มีการจัดอิเล็กตรอนวงนอกอยู่ใน ns¹ คล้ายกับโลหะอัลคาไลน์ แต่ ก็มีสมบัติที่แตกต่างกันมากเช่น มีค่า effective nuclear charge และค่าพลังงานไอออไนซ์เซชันสูง กว่ามาก เลขออกซิเดชันของคอปเปอร์ในสารประกอบที่เสถียรและพบมาก คือ +1 และ +2 ส่วน +3 และ +4 พบน้อยมาก (Cotton and Wilkinsion, 1988)

ร่างกายมีทองแดงประมาณ 2.5-4.0 มิลลิกรัมมีมากในตับ ไตและหัวใจ ค่าปกติของ ทองแดงในพลาสมา 1.5-2.5 มิลลิกรัม/ลิตร 95% จับอยู่กับโกลบูลินเรียกว่าเซรูโลพลาสมิน 5% จับ อยู่กับอัลบูมินและกรดอะมิโน มีทองแดงส่วนน้อยอยู่ในม้ามและไขกระดูก

ร่างกายต้องการทองแคงน้อยมากและหาได้ง่ายในอาหาร การขาดทองแคงจึงไม่ก่อยพบ ปกติคนต้องการทองแคงประมาณ 2-5 มิลิกรัม/วัน ทองแคงมีการกระจายอยู่ในเอนไซม์และ โปรตีนต่าง ๆถึงแม้ทองแคงจะไม่ใช่ส่วนประกอบของฮีโมโกลบินในเม็คเลือด แต่เป็นตัวเร่ง ปฏิกิริยาเคมี ใช้ในการสร้างฮีโมโกลบินดังนั้นจึงถือว่าเป็นสารจำเป็นในการสร้างเม็คเลือดแดง เช่นเดียวกับเหล็ก หน้าที่และประโยชน์

- ช่วยให้การดูดซึมของธาตุเหล็กดีขึ้น และเกี่ยวข้องกับการสะสมธาตุเหล็ก โดยเอนไซม์ที่มีทองแดงผสมอยู่ คือ เฟอร์โรซิเดส ไปออกซิไดซ์เฟอร์รัสให้ เป็นเฟอร์ริก เพื่อให้จับกับทรานสเฟอร์ริน จากนั้นทรานสเฟอร์รินจึงปล่อย เหล็กเพื่อสร้างเม็ดเลือดแดงต่อไป
- ช่วยกระตุ้นเอนไซม์ในขบวนการสร้างฮีมและ โกลบินต่างๆ ในขบวนการ สร้างATP โดยกระบวนการหายใจระดับเซลล์
- เป็นส่วนสำคัญในการส่งผ่านอิเล็กตรอน เนื่องจากทองแดงเป็น ส่วนประกอบที่สำคัญของไซโตโครมออกซิเดส
- เป็นส่วนประกอบในเอนไซม์หลายตัว เช่น ไซโตโครม ซี ออกซิเดส ซึ่งเป็น ตัวรับอิเล็กตรอนตัวสุดท้ายในโซ่การขนส่งอิเล็กตรอนในไมโตคอนเครียซึ่ง เป็นตัวเชื่อมตัวสุดท้ายระหว่างไซโตโครมและออกซิเจน

ตัวอย่างของเอนไซม์อื่น ๆ ได้แก่ แอสกอร์บิกแอซิดออกซิเดส (Ascorbic acid oxidase) เป็น เอนไซม์ที่ใช้เร่งปฏิกิริยาออกซิเดชันของวิตามินซี โดยไฮโดรเจนเปอร์ออกไซด์สามารถยับยั้ง เอนไซม์ตัวนี้ได้ (หิริหัทยา, 2550) นอกจากนั้นแล้วคอปเปอร์ยังมีสมบัติทางกายภาพและเคมี แสดงรายละเอียด ดังตารางที่ 1.1

สมบัติทางกายภาพและเคมี	ข้อมูล
เลขอะตอม	29
ใอโซโทปที่เสถียร	⁶³ Cu, ⁶⁵ Cu
น้ำหนักอะตอม (g)	63.546
ความหนาแน่น (g/cm³)	8.94
จุดหลอมเหลว (°C)	1083
จุดเดือด (°C)	2582
เลขออกซิเคชัน	+1, +2 และ +3
โครงสร้างของผลึก	face-centered-cubic
Ionizations Energy(1) (kJ/mol)	745
Ionizations Energy(2) (kJ/mol)	1958
Ionic Radii (Å)	0.96

ตารางที่ 1.1 สมบัติทางกายภาพและเคมีของคอปเปอร์

ดังนั้นการสังเคราะห์สารประกอบเชิงซ้อนของคอปเปอร์(I) เพื่อศึกษาโครงสร้างของ สารประกอบที่สังเคราะห์ได้จึงมีผู้ให้ความสนใจมากขึ้น โครงสร้างสารประกอบเชิงซ้อนของคอป เปอร์(I) จะมีรูปทรงทางเรขาคณิตแตกต่างกันเนื่องมาจากการจัดอิเล็กตรอนเต็มใน d ออร์บิทัล (closed-shell configuration) ทำให้สารประกอบเชิงซ้อนของคอปเปอร์(I) เป็นแบบไดอะแมก เนติก (diamagnetic) และไม่มีสี ในกรณีที่มีสีอาจเป็นเพราะการที่สารประกอบเชิงซ้อนได้รับ พลังงานแสงแล้วทำให้อิเล็กตรอนใน d ออร์บิทัลของคอปเปอร์ (I) ถูกกระตุ้นเข้าไปอยู่ในออร์ บิทัลว่างของลิแกนด์ หรือเป็นเพราะลิแกนด์นั้นมีสี

คอปเปอร์(I) จัดเป็น soft acceptor จึงเกิดเป็นสารประกอบเชิงซ้อนกับพวก soft donor ligand ได้ดีโดยเฉพาะลิแกนด์ไรโอยูเรียและซับสติติวเตดไรโอยูเรีย เป็นลิแกนด์ที่น่าสนใจ เนื่องจากมีอะตอมของในโตรเจน(N) และซัลเฟอร์(S) ซึ่งทั้งในโตรเจนและซัลเฟอร์ ต่างก็เป็น อะตอมที่เป็นส่วนประกอบของโปรตีนหลายชนิดในสิ่งมีชีวิตที่สามารถเกิดพันธะกับโลหะคอป เปอร์ได้

รูปที่ 1.1 โครงสร้างของ N,N'-dimethylthiourea(dmtu)

นอกจากนั้น คอปเปอร์(I) ยังสามารถเกิดสารประกอบเชิงซ้อนกับถิแกนด์ที่มีอะตอมของ ฟอสฟอรัส(P) ได้คีโดยเฉพาะถิแกนค์ ไตรฟีนิถฟอสฟีน

รูปที่ 1.2 โครงสร้างของไตรฟีนิลฟอสฟีน(PPh3)

ในการศึกษาครั้งนี้ได้เลือกสังเคราะห์สารประกอบเชิงซ้อนของคอปเปอร์(I) ของ mixed ligand ซึ่งเป็นสารประกอบเชิงซ้อนที่น่าสนใจโดยเลือกลิแกนด์ประเภทซับสติติวเตดไขโอยูเรีย กือ *N,N*'-dimethylthiourea และลิแกนด์ฟอสฟีน คือ triphenylphosphine โดยที่ลิแกนด์เหล่านี้มีทั้ง อะตอมซัลเฟอร์(S) ในโตรเจน(N) และฟอสฟอรัส(P) ที่สามารถเกิดพันชะกับโลหะคอปเปอร์ได้

การตรวจเอกสาร

Lecomte และคณะ (Lecomte *et al.*, 1989) ทำการสังเคราะห์สารประกอบเชิงซ้อน ระหว่างคอปเปอร์(I) โบรไมด์กับลิแกนด์ pyrimidine-2-thione(pymth) และ triphenylphosphine พบว่าสารประกอบเชิงซ้อนที่ได้เป็นมอนอนิวเคลียร์ ทำการวิเคราะห์ลักษณะ โครงสร้างของ สารประกอบเชิงซ้อนที่ได้ โดยใช้เทคนิค elemental analysis, UV-vis และ NMR spectroscopy และใช้วิธี single-crystal X-ray diffraction ข้อมูลผลึก ลักษณะของผลึกมีสีเหลือง เป็น monoclinic หมู่ปริภูมิ $P2_1/n$, a = 13.035(2), b = 43.660(9), c = 13.446(2) Å, $\beta = 90.68(2)^{\circ}$ และ V = 7652 Å³, Z = 8 ซึ่งแสดงดังรูปที่ 1.3

รูปที่ 1.3 โครงสร้างผลึกของ [Cu(PPH₃)₂(pymth)Br]

Karagiannidis และคณะ (Karagiannidis *et al.*, 1990) ได้ทำการสังเคราะห์และศึกษา ลักษณะของสารประกอบเชิงซ้อนของคอปเปอร์(I)เฮไลด์ โดยใช้ลิแกนด์แบบ mixed ligand คือ 1methyl-1,3-imidazoline-2-thione(meimtH) และ triphenylphosphine พบว่าสารประกอบเชิงซ้อน มีสูตรทั่วไปคือ [Cu(PPh₃)₂(meimtH)X] (X = Cl, Br, I) และใช้วิธีทางเคมี เพื่อหาลักษณะของ สารประกอบเชิงซ้อนและใช้เทคนิค single-crystal X-ray diffraction เพื่อศึกษาโครงสร้างผลึก ของ [Cu(PPh₃)₂(meimtH)Br] ซึ่งมีข้อมูลผลึกดังนี้ ลักษณะของผลึกเป็น prisms หมู่ปริภูมิ $P\overline{1}$, a = 9.988(3), b = 10.212(2), c = 21.066(5) Å, $\alpha = 94.86(2), \beta = 91.70(2), \gamma = 119.16(2)^{\circ}, Z$ = 2, R = 0.0330 และ ไอออนของโลหะมีรูปร่างเป็นเตตระฮีครอลที่บิดเบี้ยว ซึ่งแสดงดังรูปที่ 1.4

รูปที่ 1.4 โครงสร้างผลึกของ [Cu(PPh₃)₂(meimtH)Br]

Skoulika และคณะ (Skoulika *et al.*, 1991) ใด้ทำการสังเคราะห์สารประกอบเชิงซ้อนของคอป เปอร์(I) คลอไรด์ โดยเลือกลิแกนด์แบบ mixed ligand คือ benz-1,3-imidazoline-2thione(bzimtH₂) และ triphenylphosphine และหาโครงสร้างผลึกของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(bzimtH₂)Cl] มีข้อมูลผลึกดังนี้ ระบบผลึกคือ monoclinic หมู่ปริภูมิ $P2_1/c$, a =13.147(2), b = 18.592(3), c = 17.259(3) Å , $\beta =$ 97.45(2)°, Z = 4, ลักษณะโครงสร้างของ สารประกอบเชิงซ้อนแสดงดังรูปที่ 1.5

รูปที่ 1.5 โครงสร้างผลึกของ [Cu(PPh₃)₂(bzimtH₂)Cl]

Aslanidis และคณะ (Aslanidis *et al.*, 1993) สังเคราะห์สารประกอบเชิงซ้อนระหว่าง [Cu(PPh₃)I]₄ กับ pyrimidine-2-thione(pymtH) และใช้วิธีทางเคมี เพื่อหาลักษณะของ สารประกอบเชิงซ้อนและใช้เทคนิค single-crystal X-ray diffraction เพื่อศึกษาโครงสร้างผลึก พบว่าสารประกอบเชิงซ้อนที่ได้เป็นมอนอนิวเคลียร์มีสูตรทั่วไปคือ [Cu(PPh₃)₂(L)I] (L = pymtH) ซึ่งมีข้อมูลผลึกของ [Cu(PPh₃)₂(pymtH)I] ดังนี้ ระบบผลึกคือ monoclinic หมู่ปริภูมิ $P2_1$ /n, a =9.708(2), b = 19.838(4), c = 19.893(4) Å, $\beta = 92.53(3)^\circ$, Z = 4 ซึ่งแสดงดังรูปที่ 1.6

รูปที่ 1.6 โครงสร้างผลึกของ [Cu(PPh₃)₂(pymtH)I]

Haiduc และคณะ (Haiduc *et al.*, 1994) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนของ (Ph₃P)Cu(SPPh₂)₂N โดยใช้ (Ph₃P)₂CuNO₃ และ K[(SPPh₂)₂N]ทำการศึกษาลักษณะของ สารประกอบเชิงซ้อนและ โดยใช้เทคนิค elemental analysis, IR, ¹Hและ³¹P-NMR spectroscopy และใช้วิธี single-crystal X-ray diffraction พบว่าสารประกอบเชิงซ้อนที่ได้คือ (Ph₃P)Cu(SPPh₂)₂N อยู่ในระบบผลึก monoclinic หมู่ปริภูมิ $P2_1/c$, a = 18.826(2), b = 10.619(2), c = 20.587(2) Å, $\beta = 112.46(2)$ °, V = 3803.6(8) Å³, Z = 4 แสดงดังรูปที่ 1.7

รูปที่ 1.7 โครงสร้างผลึกของ(Ph₃P)Cu(SPPh₂)₂N

Donald และคณะ (Donald *et al.*, 1996) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนของ คอปเปอร์ (I) โดยใช้ copper(I) butyrate และ triphenylphosphine และศึกษาโครงสร้างโดยใช้ เทคนิค IR spectroscopy และ X-ray crystallography พบว่าสารประกอบเชิงซ้อนที่ได้ $Cu_2(CH_2)_4(CO_2)_2(Ph_3P)_4$ มีระบบผลึกคือ monoclinic หมู่ปริภูมิ $P2_1/n$, a = 15.295(4), b = 12.555(2), c = 17.779(3) Å, $\beta = 106.870(2)^\circ$, Z = 2 ซึ่งแสดงดังรูปที่ 1.8

รูปที่ 1.8 โครงสร้างผลึกของ $Cu_2(CH_2)_4(CO_2)_2(Ph_3P)_4$

Jianping และคณะ (Jianping *et al.*, 1996) ทำการสังเคราะห์สารประกอบเชิงซ้อนของคอป เปอร์(I) โดยใช้ CuBr กับลิแกนด์ benz-1,3-thiazolidine-2-thione (bztzdtH) และ triphenylphosphine พบว่า สารประกอบเชิงซ้อนที่ได้คือ [Cu(bztzdtH)(PPh₃)Br]₂ ทำการศึกษา ลักษณะโครงสร้างของสารประกอบเชิงซ้อนที่ได้ โดยใช้วิธี single-crystal X-ray diffraction

ข้อมูลผลึกของ $[Cu(bztzdtH)(PPh_3)Br]_2$ ระบบผลึกคือ monoclinic หมู่ปริภูมิ C2/c, a = 25.991(14), b = 9.206(1), c = 19.943(3) Å, $\beta = 100.02(1)^\circ, Z = 4$ ซึ่งแสดงดังรูปที่ 1.9

รูปที่ 1.9 โครงสร้างผลึกของ [Cu(bztzdtH)(PPh3)Br]2

Aslanidis และคณะ (Aslanidis *et al.*, 1997) ได้ทำการ สังเคราะห์สารประกอบเชิงซ้อนระหว่าง [Cu(PPh₃)₃Cl] กับ 1,3-thiazolidine-2-thione(tzdtH) และใช้วิธีทางเคมี เพื่อหาลักษณะของ สารประกอบเชิงซ้อนและใช้เทคนิค single-crystal X-ray diffraction เพื่อศึกษาโครงสร้างผลึก พบว่าสารประกอบเชิงซ้อนที่ได้เป็นมอนอนิวเคลียร์มีสูตรทั่วไปคือ [Cu(PPh₃)₂(L)Cl] (L = tzdtH) ซึ่งมีข้อมูลผลึกมี ดังนี้ ระบบผลึกคือ monoclinic หมู่ปริภูมิ $P2_1$ /c, a = 14.31(2), b = 10.009(10), c = 29.52(2) Å, $\beta = 93.53(14)^\circ$, Z = 4 ซึ่งแสดงดังรูปที่ 1.10

รูปที่ 1.10 โครงสร้างผลึกของ [Cu(PPh₃)₂(tzdtH)Cl]

Cox และคณะ (Cox *et al.*, 1999) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนระหว่าง [Cu(PPh₃)₃Cl] กับ benz-1,3-thiazolidine-2-thione (bztzdtH) ได้สารประกอบเชิงซ้อน [Cu(PPh₃)₂(bztzdtH)Cl] ทำการศึกษาลักษณะของสารประกอบเชิงซ้อนและ โดยใช้เทคนิค IR, UV-vis, ¹H-NMR spectroscopy และใช้วิธี single-crystal X-ray diffraction เพื่อศึกษาโครงสร้าง ผลึกของ [Cu(PPh₃)₂(bztzdtH)Cl] ซึ่งมีข้อมูลผลึกดังนี้ ระบบผลึกคือ triclinic หมู่ปริภูมิ P_{1} , a= 9.998(5), b = 20.313(10), c = 20.874(7) Å, α = 82.93(6), β = 77.99(8), γ = 83.60(3)°, Z = 2, R = 0.060, R_w = 0.0399 ซึ่งแสดงดังรูปที่ 1.11

รูปที่ 1.11 โครงสร้างผลึกของ [Cu(PPh₃)₂(bztzdtH)Cl]

Coles และคณะ (Coles *et al.*, 2001) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนระหว่าง CuCN กับ ลิแกนด์ 1,3,4,6,7,8-Hexahydro-2*H*-pyrimido[1,2-*a*]pyrimidine (hppH) และ triphenylphosphine ศึกษาสารประกอบเชิงซ้อนที่ได้คือ [Cu₂(CN)₂(PPh₃)₄(hppH)] โดยใช้เทคนิก elemental analysis, infrared, UV-Vis, NMR spectroscopy และใช้วิธี single-crystal X-ray diffraction เพื่อศึกษาโครงสร้างผลึกซึ่งมีข้อมูลดังนี้ ระบบผลึกคือ triclinic หมู่ปริภูมิ P_{1} , *a* = 13.501(6), *b* = 14.3767(4), *c* = 19.6377(8) Å, α = 81.818(3), β = 78.002(2), γ =83.788(3)°, V = 3694.4(2) Å³, *Z* = 2 แสดงดังรูปที่ 1.12

รูปที่ 1.12 โครงสร้างผลึกของ [Cu2((CN)2((PPh3))4(hppH)]

Tarlok และคณะ (Tarlok *et al.*, 2002) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนระหว่าง CuBr₂(C₅H₅NS)₂กับ ลิแกนด์ tri-*p*-tolylphosphine(*p*-Tol₃P)ทำการศึกษาลักษณะของสารประกอบ เชิงซ้อนและ โดยใช้เทคนิค UV-Vis spectra, IR, ¹Hและ¹³C-NMR spectroscopy และใช้วิธี singlecrystal X-ray diffraction พบว่าสารประกอบเชิงซ้อนที่ได้มีสูตรทั่วไปคือ [CuBr(η^2 -S- μ -C₅H₅NS)(*p*-Tol₃P)]₂ ซึ่งจัดอยู่ในระบบไตรคลินิก พบว่าผลึกของสารประกอบ เชิงซ้อน มีหมู่ปริภูมิ $P\overline{1}$, *a* = 9.790(5), *b* = 10.391(7), *c* = 14.600(5) Å, α = 83.64(4), β =73.82(39), γ = 62.16(4)°, *V* = 1261.0(11) Å³ Z = 1, แสดงดังรูปที่ 1.13

รูปที่ 1.13 โครงสร้างผลึกของ[CuBr(η^2 -S- μ -C₅H₅NS)(*p*-Tol₃P)]₂

Aslanidis และคณะ (Aslanidis *et al.*, 2003) ได้ทำการ สังเคราะห์สารประกอบเชิงซ้อน ระหว่าง CuBr กับ ลิแกนด์ *cis*-1,2-bis(diphenylphosphino)ethylene(dppet) และ 5-methyl-1,3,4thiadiazole-2-thione (mtdztH)ทำการศึกษาลักษณะ โครงสร้างของสารประกอบเชิงซ้อนที่ได้ โดย ใช้วิธี single-crystal X-ray diffraction พบว่าสารประกอบเชิงซ้อนที่ได้คือ [CuBr(dppet)(mftztH)] ซึ่งมีข้อมูลผลึกของ [CuBr(dppet)(mftztH)] เป็นดังนี้ ระบบผลึกคือ triclinic หมู่ปริภูมิ $P\overline{1}$, a = 9.8429(2), b = 11.3450(4), c = 14.6006(5) Å, α =100.6860(10) β = 106.870(2), γ =98.312(2)° Z = 2 ซึ่งแสดงดังรูปที่ 1.14

รูปที่ 1.14 โครงสร้างผลึกของ [CuBr(dppet)(mftztH)]

Dan และคณะ (Dan et al., 2003) ได้ทำการ สังเคราะห์สารประกอบเชิงซ้อนระหว่าง Oxine (8-hydroxyquinoline) กับ [Cu(MeCN)₂(PPh₃)₂](BF₄) และใช้วิธีทางเคมี เพื่อหาลักษณะของ สารประกอบเชิงซ้อนและใช้เทคนิค single-crystal X-ray diffraction เพื่อศึกษาโครงสร้างผลึก ของ [Cu(oxine)(PPh₃)₂](BF₄) พบว่าสารประกอบเชิงซ้อนที่ได้เป็นมอนอนิวเคลียร์มีข้อมูลผลึก คือ monoclinic หมู่ปริภูมิ $P2_1/n$, a = 11.372(3), b = 22.171(5), c = 16.038(4) Å, $\beta = 97.942(5)^\circ$, V = 4005.0(16) Å³, Z = 4 แสดงคังรูปที่ 1.15

รูปที่ 1.15 โครงสร้างผลึกของ [Cu(oxine)(PPh₃)₂](BF₄)

Tarlok และคณะ (Tarlok *et al.*, 2007) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนของคอป เปอร์(I) กับลิแกนด์ thiophene-2-carbaldehyde thiosemicarbazone (Httsc)และ triphenylphosphine ทำการ ศึกษา ลักษณะของสารประกอบเชิงซ้อนและ โดยใช้เทคนิค elemental analysis, IR, ¹Hและ ³¹P-NMR spectroscopy และใช้วิธี single-crystal X-ray diffraction พบว่า สารประ กอบเชิงซ้อน ที่ได้มีสูตรคือ [Cu₂Cl₂(μ_2 -S-Httsc)₂(PPh₃)₂].2CH₃CN ซึ่งจัดอยู่ในระบบไตรคลินิก พบว่าผลึกของ สารประกอบเชิงซ้อน มีหมู่ปริภูมิ $P\overline{1}$, a = 9.2407(15), b = 11.1336(17), c = 14.125(2) Å, α = 74.720(9), β =71.123(9), γ = 78.615(9)°, V = 1316.4(3) Å³ Z = 2 แสดงดังรูปที่ 1.16

รูปที่ 1.16 โครงสร้างผลึกของ [Cu₂Cl₂(µ₂-S-Httsc)₂(PPh₃)₂]

Nimthong และคณะ (Nimthong *et al.*, 2008) ได้ทำการสังเคราะห์สารประกอบเชิงซ้อนของ คอปเปอร์(I) กับลิแกนด์ *N*-phenylthiourea (ptu)และ triphenylphosphineและใช้วิธีทางเคมี เพื่อหา ลักษณะของสารประกอบเชิงซ้อนและใช้เทคนิค single-crystal X-ray diffraction เพื่อศึกษา โครงสร้างผลึกของ [Cu(ptu)(PPh₃)₂I] พบว่าสารประกอบเชิงซ้อนที่ได้มีหมู่ปริภูมิ P^{-1} , a =10.9505(9), b = 18.7294(15), c = 21.3731(18) Å, $\alpha = 67.422(1)$, $\beta = 77.215(1)$, $\gamma = 73.224(1)^\circ$, V = 3844.9(5) Å³ Z = 4 แสดงดังรูปที่ 1.17

รูปที่ 1.17 โครงสร้างผลึกของ[Cu(ptu)(PPh₃)₂I]

วัตถุประสงค์

- ศึกษาวิธีการสังเคราะห์สารประกอบเชิงซ้อนของคอปเปอร์(I) กับลิแกนด์ N,N'dimethylthiourea และ triphenylphosphine โดยใช้ตัวทำละลายที่เหมาะสม เพื่อให้เกิดผลึกเดี่ยว สำหรับศึกษาการเลี้ยวเบนของรังสีเอกซ์ โดยผลึก
- สึกษาสมบัติทางเคมีและคุณสมบัติทางกายภาพของสารประกอบเชิงซ้อนที่ สังเคราะห์ได้
- สึกษาองค์ประกอบของสารประกอบเชิงซ้อนที่เตรียมได้ โดยใช้เทคนิคทาง สเปกโทรสโกปีและวิเคราะห์หาปริมาณร้อยละของธาตุที่เป็นองค์ประกอบ
- หาโครงสร้างผลึกของสารประกอบเชิงซ้อนที่เครียมได้ โดยวิธีการเลี้ยวเบนของรังสีเอกซ์ (X-ray diffraction) บนผลึกเดี่ยวและคำนวณหาโครงสร้างผลึกของสารประกอบ โดยใช้โปรแกรมคอมพิวเตอร์ระบบเอกซ์ทอล (Xtal version 3.7) และเชลเลกซ์ (Shelxtl NT version 6.12)

บทที่ 2

วัสดุ อุปกรณ์ วิธีการทดลอง

2.1 สารเคมี

2.1.1 จาก Fluka Chemical, Buchs, Switzerland ใดเมทิลไธโอยูเรีย, C₅H₁₄N₂S, purum ไตรฟีนิลฟอสฟีน, C₁₈H₁₈P, purum คอปเปอร์(I)โบรไมด์ , CuBr, L.R. grade คอปเปอร์(I)คลอไรด์, CuCl, L.R. grade

2.1.2 III Lab-Scan Analytical Science

เอทานอล, C₂H₅OH, A.R. grade อะซีโตในไตรล์, CH₃CN, A.R. grade เอทิลอะซิเตค, C₄H₈O₂, A.R. grade อะซิโตน, CH₃OCH₃, A.R. grade 2.1.3 จาก Aldrich Chemical Company, Inc ลอปเปอร์(I)ไอโอไคด์, CuI, L.R. grade

2.2 อุปกรณ์และเครื่องมือ

- 2.2.1 เทอร์ โมมิเตอร์, Gallenkamp, England 0-360 °C
- 2.2.2 หลอดคาปีลลารี ขนาดเส้นผ่าศูนย์กลาง 0.4-0.5 มิลลิเมตร
- 2.2.3 Capillary melting point apparatus, Thomas Hoover, Unimelt 0-360 °C
- 2.2.4 Hot plate stirrer with magnetic bar
- 2.2.5 X-ray fluorescence spectrometer model PW 2400, Philips
- 2.2.6 Fourier transfrom infrared spectrometer, model 783, Perkin Elmer
- 2.2.7 Fourier transfrom NMR spectrometer 500 MHz, Model UNITY INOVA, Varian
- 2.2.8 Bruker SMART APEX CCD diffractometer
- 2.2.9 CHNS-O Analyzer, model Flash 112Series EA, Thermo finningan
- 2.2.10 Fiber glass, 0.1-0.4 mm. (in diameter)
- 2.2.11 กล้องจุลทรรศน์ Bin Steriom VT II, Olympus

2.3 การสังเคราะห์สารประกอบเชิงซ้อน

2.3.1 การสังเคราะห์สารประกอบเชิงซ้อน [Cu(PPh₃),(dmtu)Cl]• 0.5CH₃CN

สัคส่วนโมลของ CuCl: PPh3: dmtu เท่ากับ 1:2:1

ละลาย PPh, 0.5 มิลลิกรัม (2.02 มิลลิโมล) ลงไปในตัวทำละลาย acetonitrile ปริมาตร 30 มิลลิลิตร ทำการรีฟลักซ์จนละลายหมด จะได้สารละลายใสไม่มีสี จากนั้นเติม CuCl 0.10 กรัม (1 มิลลิโมล) ลงในสารละลาย PPh, จะได้สารละลายสีเขียวอ่อน ทำการรีฟลักซ์ต่อที่อุณหภูมิประมาณ 75° C เป็นเวลา 2 ชั่วโมง จะได้สารละลายขุ่นสีเขียว เติม dmtu 0.10 กรัม (1 มิลลิโมล) ลงไปใน สารละลาย สีของสารละลายจะเปลี่ยนแปลงเป็น ใสไม่มีสี ทำการรีฟลักซ์ต่อเป็นเวลา 5 ชั่วโมง จะ ได้สารละลายใสไม่มีสี นำสารละลายมากรองจะได้ฟิลเตรด (filtrate) ใสไม่มีสี วางไว้ที่ อุณหภูมิห้อง 1 คืน จะมีผลึกรูปเหลี่ยมลักษณะใสไม่มีสี ทำการกรองแยกผลึกออกมาด้วยวิธีลด ความดัน ผลึกที่ได้มีจุดหลอมเหลว195-198 °C

2.3.2 การสังเคราะห์สารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br]

สัคส่วนโมลของ CuBr : PPh3 : dmtu เท่ากับ 1 : 2 : 1

ละลาย PPh, 0.73 กรัม (2.78 มิลลิโมล) ลงไปในตัวทำละลาย acetone ปริมาตร 30 มิลลิลิตร ทำ การรีฟลักซ์จนละลายหมด จะได้สารละลายใสไม่มีสี จากนั้นเติม CuBr 0.20 กรัม (1.39 มิลลิโมล) ลงในสารละลาย PPh, จะได้สารละลายสีเขียวอ่อน ทำการรีฟลักซ์ต่อที่อุณหภูมิประมาณ 55° C เป็นเวลา 2 ชั่วโมง จะได้สารละลายขุ่นสีเขียว เติม dmtu 0.14 กรัม (1.39 มิลลิโมล) ลงไปใน สารละลาย สีของสารละลายจะเปลี่ยนแปลงเป็น ใสไม่มีสี ทำการรีฟลักซ์ต่อเป็นเวลา 5 ชั่วโมง จะ ได้สารละลายใสไม่มีสี นำสารละลายมากรองจะได้ฟิลเตรด (filtrate) ใสไม่มีสี วางไว้ที่ อุณหภูมิห้อง 1 คืน จะมีผลึกรูปเหลี่ยมลักษณะใสไม่มีสี ทำการกรองแยกผลึกออกมาด้วยวิธีลด ความดัน ผลึกที่ได้มีจุดหลอมเหลว 188-190 °C

2.3.3 การสังเคราะห์สารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)I]

สัดส่วนโมลของ CuI : PPh3 : dmtu เท่ากับ 1 : 2 : 1

ละลาย PPh₃ 0.55 กรัม (2 มิลลิโมล) ลงไปในตัวทำละลาย acetone ปริมาตร 30 มิลลิลิตร ทำการ รีฟลักซ์จนละลายหมด จะได้สารละลายใสไม่มีสี จากนั้นเติม CuI 0.20 กรัม (1 มิลลิโมล) ลงใน สารละลาย PPh₃ จะได้สารละลายสีเขียวอ่อน ทำการรีฟลักซ์ต่อที่อุณหภูมิประมาณ 50⁰ C เป็นเวลา 2 ชั่วโมง จะได้สารละลายขุ่นสีเขียว เติม dmtu 0.10 กรัม (1 มิลลิโมล) ลงไปในสารละลาย สีของ สารละลายจะเปลี่ยนแปลงเป็น ใสไม่มีสี ทำการรีฟลักซ์ต่อเป็นเวลา 5 ชั่วโมง จะได้สารละลายใส ไม่มีสี นำสารละลายมากรองจะได้ฟิลเตรด (filtrate) ใสไม่มีสี วางไว้ที่อุณหภูมิห้อง 1 ลืน จะมีผลึก รูปเหลี่ยมลักษณะใสไม่มีสีทำการกรองแยกผลึกออกมาด้วยวิธีลดความดัน ผลึกที่ได้มีจุดหลอม เหลว 180-183 ⁰C

2.4 การศึกษาสมบัติทางกายภาพและการละลายของสารประกอบเชิงซ้อน

2.4.1 การศึกษาสมบัติทางกายภาพ

สมบัติทางกายภาพที่ได้ทำการศึกษาได้แก่สี ลักษณะผลึก จุดหลอมเหลว และการ ละลายในตัวทำละลายชนิดต่างๆ

2.4.1.1 สีและลักษณะผลึกสังเกตได้ด้วยตาเปล่า

2.4.1.2 จุดหลอมเหลว นำไปวัดด้วยเครื่อง capillary melting point

2.4.1.3 การละลาย โดยละลายสารประกอบเชิงซ้อนในตัวทำละลายชนิดต่างๆ จากนั้นสังเกตการเปลี่ยนแปลงที่เกิดขึ้น

2.5 การวิเคราะห์หาปริมาณธาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน

หาปริมาณของธาตุการ์บอน(C), ไฮโดรเจน(H), ซัลเฟอร์(S) และ ในโตรเจน(N) ใน สารประกอบเชิงซ้อนโดยใช้เครื่อง CHN-O Analyzer, Ce Flash 1112 Series EA ของศูนย์เครื่องมือ กลาง มหาวิทยาลัยสงขลานครินทร์

2.6 การวิเคราะห์หาชนิดของธาตุในสารประกอบเชิงซ้อนโดยใช้เทคนิค XRF

นำผลึกที่สังเคราะห์ได้มาตรวจสอบว่าผลึกที่ได้เป็นผลึกของสารประกอบเชิงซ้อน ซึ่งจะ ให้สเปกตรัมของธาตุ คอปเปอร์(Cu) ,ฟอสฟอรัส(P) , ซัลเฟอร์(S) และเฮไลด์(Cl, Br หรือ I) โดย ใช้เครื่อง X-ray fluorescence, Phillips PW 2400 spectrometer ของศูนย์เครื่องมือกลาง มหาวิทยาลัยสงขลานครินทร์

2.7 การศึกษาการเปลี่ยนแปลงของแถบการดูดกลืน FT-IR

ศึกษาการเปลี่ยนแปลงของแถบการดูดกลืนของหมู่ฟังก์ชันที่สำคัญทั้งในลิแกนด์และ สารประกอบเชิงซ้อน โดยใช้ KBr discs การศึกษาครั้งนี้ได้ใช้เครื่อง Infrared Spectrophotometer, Perkin-Elmer 783 ของภาควิชาเคมี มหาวิทยาลัยสงขลานครินทร์

2.8 การศึกษา ¹H NMRและ ¹³C NMR

ศึกษาการเปลี่ยนแปลงค่า chemical shift ของ ¹H NMR สเปกตรัมและ ¹³C NMR สเปกตรัมของลิแกนด์อิสระเปรียบเทียบกับสารประกอบเชิงซ้อน ศึกษาโดยใช้ตัวทำละลาย dimethylsulfoxide-d₆ (DMSO-d₆)

2.9 การศึกษาโครงสร้างของสารประกอบเชิงซ้อนโดยวิธีการเลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยว

ศึกษาโครงสร้างของสารประกอบเชิงซ้อนโดยการเก็บข้อมูลการเลี้ยวเบนของรังสีเอกซ์ บนผลึกเดี่ยวด้วยเครื่องเอกซเรย์ดิฟแฟรกโทมิเตอร์และหาโครงสร้างด้วยโปรแกรมคอมพิวเตอร์ ระบบ Xtal version 3.7 และ SHELXTL version 6.12 ในการศึกษาโครงสร้างผลึกด้วยวิธีทางรังสี เอกซ์ มีขั้นตอนที่สำคัญดังนี้

- การเลือกผลึกและการเม้าท์ผลึก
- การทคลองเพื่อเก็บข้อมูลคิฟแฟรกชัน ข้อมูลที่ได้จะเป็นทิศทางหรือระนาบที่เกิดการ เลี้ยวเบนและความเข้มของรังสีเอกซ์ที่เลี้ยวเบนออกมาจากผลึก
- ค) การศึกษาเพื่อหาโครงสร้างอย่างคร่าวๆ แล้วใช้โครงสร้างที่ได้นี้คำนวณหาความเข้ม
 ของการเลี้ยวเบนของรังสีเอกซ์เพื่อเปรียบเทียบกับความเข้มที่วัดได้ ซึ่งจะเป็นตัวบอก
 ว่าโครงสร้างที่หาได้ถูกต้องมากน้อยแก่ไหนโดยมีก่าดัชนี (R-factor) ที่จะเป็นตัวบ่ง
 บอกความถูกต้องของโครงสร้าง
- การกระทำให้โครงสร้างมีความถูกต้องมากยิ่งขึ้น (refinement) เป็นขั้นตอนของการ ขัดเกลาโครงสร้างหรือปรับปรุงโครงสร้างให้มีความถูกต้องมากที่สุด โดยในการศึกษาโครงสร้างผลึกด้วยวิธีทางรังสีเอกซ์มีขั้นตอนแสดงดังรูป

รูปที่ 2.1 แผนผังขั้นตอนในการศึกษาโครงสร้างผลึก

2.9.1 การเลือกผลึก (Crystal selection)

การเลือกผลึกเป็นขั้นตอนที่สำคัญมากเพราะข้อมูลดิฟแฟรกชันที่ได้จะขึ้นอยู่กับ คุณภาพของผลึก ถ้าเลือกผลึกได้ดี ข้อมูลดิฟแฟรกชันก็จะดีสามารถที่จะหาหน่วยเซลล์ได้ เพื่อให้ ได้ข้อมูลดิฟแฟรกชันที่ดี มีสิ่งสำคัญที่ต้องกำนึงถึง 2 อย่างคือ

2.9.1.1 ต้องเป็นผลึกเดี่ยว

คือ ผลึกจะต้องมีโครงสร้างภายใน เช่น โมเลกุล หรืออิออน หรืออะตอมที่จัดตัว อย่างเป็นระเบียบสม่ำเสมอ ไม่เป็นผลึกแฝด (twinned crystal) เช่นไม่มีรอยแตกร้าว หรือเป็นผลึก บกพร่อง

2.9.1.2 ผลึกต้องมีขนาดและรูปร่างเหมาะสม

คือ ผลึกจะต้องไม่ใหญ่เกินลำรังสีเอกซ์ที่เข้ามา ไม่เช่นนั้นจะมีบางส่วนของผลึก ไม่ถูกรังสีเอกซ์ตกกระทบเลย ขนาดของผลึกไม่เล็กจนให้ความเข้มของรังสีเอกซ์ที่สะท้อนออกมา มีค่าต่ำเกินไป โดยขนาดของผลึกที่เหมาะสมจริงๆ นั้น หาได้จากการพิจารณาความเหมาะสม ที่สุด (optimum thickness) ของผลึกในรังสีเอกซ์ที่มีความยาวคลื่นต่างๆ และมีความสัมพันธ์ โดยตรงกับการดูดกลืนรังสีเอกซ์

2.9.2 การเม้าท์ผลึก (crystal mounting)

การเม้าท์ผลึก คือ การทำให้ผลึกอยู่กับที่ เพื่อให้สามารถปรับผลึกให้อยู่ในแนวเส้นตรง และอยู่ในตำแหน่งศูนย์กลางของกล้องถ่ายภาพเอกซเรย์ เพื่อที่จะเก็บข้อมูลดิฟแฟรกชัน โดยมี วิธีการคือ นำผลึกที่เลือกไว้ไปติดกับปลายข้างหนึ่งของใยแก้ว (fiber glass หรือ quartz fiber) ที่ มีขนาดเส้นผ่านศูนย์กลางเล็กกว่าผลึกเล็กน้อย โดยใยแก้วที่ใช้จะมีความยาวโดยประมาณ 1.5 เซนติเมตร โดยใช้กาวติด กาวที่ใช้ต้องไม่ละลายผลึก และติดไว้บนหมุดทองเหลือง (brass pin) ที่ มีความยาวประมาณ 10-15 มิลลิเมตร ดังรูปที่ 2.2

รูปที่ 2.2 แสดงการเม้าท์ผลึก

สำหรับการติดผลึกนั้นขึ้นอยู่กับรูปร่างของผลึกและแกนของผลึกที่ต้องการจะติด การติดจะกระทำโดยการใช้กล้องจุลทรรศน์แบบ 2 ตา เช่นถ้าผลึกเป็นแบบรูปเข็ม (needle) เรา มักจะติดไปตามแกนเข็ม (needle axis) ซึ่งแกนดังกล่าวนี้จะใช้เป็นแกนหมุนของผลึกต่อไป ถ้า เป็นพวกผลึกที่มีหลายๆ หน้า (polygon) มักจะติดไปตามหน้าที่ยาวที่สุดเป็นต้น

การติดผลึกนั้นกระทำได้โดยเริ่มจากการวางผลึกที่เลือกเอาไว้ลงบนแผ่นสไลด์ที่วาง อยู่บนแท่นเลนส์ของกล้องจุลทรรศน์ที่ปรับโฟกัสจนเห็นผลึกที่ชัดเจน จากนั้นก็แตะปลายของใย แก้วที่เตรียมไว้กับกาว (adhesive) แล้วนำไปแตะกับผลึกโดยให้แกนของใยแก้วมีทิศขนานไปกับ แกนของผลึกที่ต้องการจะติด จากนั้นก็ปรับผลึกให้อยู่ในทิศที่ต้องการโดยใช้ปลายเข็ม และเมื่อ กาวแห้งผลึกก็จะติดแน่นกับใยแก้ว จากนั้นก็นำผลึกที่ติดเสร็จแล้วไปใส่ไว้บนหัวโกนิโอมิเตอร์ (goniometer head) ดังรูปที่ 2.3

รูปที่ 2.3 แสดงการติดตั้งผลึกบนหัวโกนิโอมิเตอร์

2.9.3 การเก็บข้อมูลดิฟแฟรกชันและการหาหน่วยเซลล์

การวิเคราะห์หาโครงสร้างผลึกประกอบด้วย 3 ขั้นตอนสำคัญคือ

 การทคลองเพื่อเก็บข้อมูลดิฟแฟรกชัน ข้อมูลที่ได้มีทั้งตำแหน่งทิศทางและความเข้ม ของรังสีเอ็กซ์ที่เลี้ยวเบนออกมาจากผลึก

 การศึกษาเพื่อหาโครงสร้างอย่างคร่าวๆ แล้วใช้โครงสร้างที่ได้นี้คำนวณหาความเข้ม ของการเลี้ยวเบนของรังสีเอ็กซ์ เพื่อเปรียบเทียบกับความเข้มที่วัดได้จากการทดลองในขั้นตอนที่ 1 โครงสร้างที่ใช้ในการคำนวณความเข้มนั้นเป็นโครงสร้างผลึกที่กำลังศึกษาอยู่ แต่อย่างไรก็ตาม โครงสร้างที่ได้นี้เป็นโครงสร้างคร่าวๆเท่านั้น ขั้นตอนต่อไปจะต้องขัดเกลาหรือปรับปรุงให้ได้ โครงสร้างที่ถูกต้อง

 การทำให้โครงสร้างถูกต้องมากยิ่งขึ้น (refinement) เป็นขั้นตอนของการขัดเกลาหรือ ปรับปรุงเพื่อให้โครงสร้างคร่าวๆที่หามาได้จากขั้นที่ 2 มีความถูกต้องมากขึ้น โดยที่ความเข้มของ การเลี้ยวเบนที่คำนวณจากโครงสร้างที่หาได้ สอดคล้องมากที่สุดกับความเข้มที่ได้จากการทดลอง ซึ่งควรอยู่ในขอบเขตของการคลาดเคลื่อนทางการทดลองเท่านั้น

2.9.4 วิธีการเก็บข้อมูล (Data collection methods)

การเลือกใช้วิธีการในการเก็บข้อมูลดิฟแฟรกชัน ขึ้นกับปัจจัยหลายอย่าง ซึ่งแต่ละวิธีมีข้อ ใด้เปรียบเสียเปรียบรวมทั้งความเหมาะสมกับลักษณะงานแตกต่างกันออกไป ในที่นี้จะกล่าวถึง วิธีการ ที่นิยมใช้ทั่วไป ซึ่งอาจจัดวิธีต่างๆเหล่านี้ให้อยู่ในเทคนิคที่ต่างกัน 2 แบบ ซึ่งเทคนิคที่ ต่างกันขึ้นอยู่กับลักษณะของผลึก คือ เทคนิคดิฟแฟรกชันสำหรับผลึกเดี่ยว และเทคนิคดิฟแฟรก ชันสำหรับผง สำหรับงานวิจัยชิ้นนี้จะใช้เทคนิคดิฟแฟรกชันสำหรับผลึกเดี่ยว

2.9.5 เทคนิคดิฟแฟรกชันสำหรับผลึกเดี่ยว (Single-crystal diffraction techniques)

ขั้นตอนแรกผลึกที่เม้าท์แล้วจะถูกติดตั้งไว้บนหัวโกนิโอมิเตอร์ (goniometer) ที่ตรงปลาย โดยใช้สกรูยึดไว้ การวางผลึก ให้ผลึกด้านที่มีพื้นที่ผิวมากหันไปยังด้านที่รังสีตกกระทบ ปรับผลึก (aligned) ในแนวตั้ง (vertical) และแนวนอน (horizontal) ให้เหมาะสม โดยการปรับที่สกรู X, Y และ Z จากนั้นนำไปเก็บรวบรวมข้อมูลการเลี้ยวเบนด้วยเครื่องเอกซเรย์ดิฟแฟรกโทมิเตอร์ (รูปที่ 2.4) โดยใช้รังสีเอกซ์จาก K_α ของโมลิบดินัม ซึ่งมีความยาวคลื่น 0.71073 Å

รูปที่ 2.4 เครื่องเอกซเรย์คิฟแฟรกโทมิเตอร์ รุ่น SMART APEX

โดยข้อมูลดิฟแฟรกชันที่ต้องการคือตำแหน่งและความเข้มของรังสีเอกซ์ที่เลี้ยวเบนออกมา ในทิศทางต่างๆ กัน ในการวัดความเข้มรีเฟรกชันจะใช้วิธี rotation ซึ่งควบคุมการหมุนของผลึก และตัวตรวจวัด (detector) ด้วยโปรแกรมคอมพิวเตอร์ เมื่อฉายรังสีเอกซ์ความยาวคลื่น 0.71073 Å (Mo - K_{α}) ใปยังผลึกจะเกิดรังสีเลี้ยวเบนหรือสะท้อนอันเนื่องจากอะตอมในผลึกผ่านไปยังตัว ตรวจวัด ขณะที่ฉายรังสี ตัวตรวจวัดจะเคลื่อนที่ไปเป็นมุม 0 - 28° เพื่อบันทึกก่าความเข้มของรีเฟ รกชัน โดยในทางปฏิบัติจะเก็บข้อมูลของแลตทิซในระนาบส่วนกลับ (reciprocal lattice plane) ในขณะที่ผลึกหมุนไป 3 แกนที่เป็นอิสระต่อกันและอยู่ในแนวรังสีเอกซ์ ด้วยมุม 2 θ , ϕ และ χ (รูปที่ 2.4) โดยที่มุม χ จะคงที่(54.74) ° ข้อมูลที่ได้จะเป็นข้อมูลจาก 3 มิติ ถูกบันทึกไว้เป็นเฟรม ๆ (frame) โดยจากตำแหน่งของรีแฟรกชันที่หาออกมาได้ชุดหนึ่งจะถูกนำมาใช้ในการสร้างหน่วย เซลล์ (unit cell) ในระบบที่เหมาะสม ซึ่งจะได้ข้อมูลเบื้องด้นของผลึก เช่น ความยาวด้านทั้งสาม (a, b, c), มุมระหว่างด้านทั้งสาม (α , β , γ), ระบบผลึก และปริมาตรของหน่วยเซลล์

จากข้อมูลการเลี้ยวเบนเบื้องด้น ตรวจสอบระบบผลึกและเซลล์พารามิเตอร์ของหน่วย เซลล์ที่ได้ เมื่อพิจารณาแล้วหน่วยเซลล์สอดคล้องกับโครงสร้างที่จะหา ก็จะทำการเก็บรวบรวม ข้อมูลการเลี้ยวเบนทั้งหมด จากนั้นจึงนำข้อมูลความเข้มพร้อมตำแหน่งที่ได้ไปวิเคราะห์หาโครง สร้างผลึกต่อไป

รูปที่ 2.5 แกนหมุนทั้ง 4 ของเครื่องดิฟแฟรกโทมิเตอร์

2.9.6 การหาโครงสร้างโดยใช้โปรแกรมคอมพิวเตอร์ระบบ SHELXTL NT version 6.12 สามารถทำได้โดยการนำข้อมูลที่ได้จากการเลี้ยวเบนของรังสีเอกซ์ในผลึกมาคำนวณโดย ใช้โปรแกรมสำเร็จรูป SHELXTL NT version 6.12 โดยมีขั้นตอนแสดงในรูปที่ 2.6

รูปที่ 2.6 แผนผังการหาโครงสร้างโดยใช้โปรแกรมคอมพิวเตอร์ระบบ SHELXTL NT version 6.12
บทที่ 3

ผลการทดลอง

3.1 การสังเคราะห์และศึกษาสมบัติทางกายภาพของสารประกอบเชิงซ้อน

สภาวะที่เหมาะสมในการเตรียมสารประกอบเชิงซ้อนทั้งสาม แสดงในตารางที่ 3.1 ส่วน สมบัติทางกายภาพและความสามารถในการละลายในตัวทำละลายชนิดต่าง ๆ แสดงในตารางที่ 3.2 และ3.3 ตามลำดับ

สารตั้งต้น	อัตราส่วนโมล	ຕັວກຳລະລາຍ	อุณหภูมิ(^o C)	สารประกอบเชิงซ้อน
CuCl:PPh ₃ :dmtu	1:2:1	acetonitrile	70-75	[Cu(PPh ₃) ₂ (dmtu)Cl]·
				0.5CH ₃ CN
CuBr:PPh ₃ :dmtu	1:2:1	acetone	70-75	[Cu(PPh ₃) ₂ (dmtu)Br]
Cu :PPh ₃ :dmtu	1:2:1	acetone	70-75	[Cu(PPh ₃) ₂ (dmtu)]

ตารางที่ 3.1 สภาวะที่เหมาะสมในการเตรียมสารประกอบเชิงซ้อน

ตารางที่ 3.2 สมบัติทางกายภาพของลิแกนด์ และสารประกอบเชิงซ้อน

สารประกอบ	ลักษณะผลึก	จุดหลอมเหลว([°] C)
dmtu	ของแข็งไม่มีสึ	61-63
PPh ₃	เกร็ดสีขาววาว	79-81
$[Cu(PPh_3)_2(dmtu)Cl] \cdot 0.5CH_3CN$	รูปเหลี่ยมไม่มีสี	195-198
[Cu(PPh ₃) ₂ (dmtu)Br]	รูปเหลี่ยมไม่มีสี	188-190
[Cu(PPh ₃) ₂ (dmtu)]	รูปเหลี่ยมไม่มีสี	180-183

ตารางที่ 3.3 แสดงความสามารถในการละลายของสารประกอบเชิงซ้อนในตัวทำละลายต่าง ๆ ที่ อุณหภูมิห้อง

สารประกอบ	[Cu(PPh ₃) ₂ (dmtu)Cl]•	[Cu(PPh ₃) ₂ (dmtu)Br]	[Cu(PPh ₃) ₂ (dmtu)]
ตัวทำละลาย	0.5CH ₃ CN		
H ₂ O	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
CH ₃ OH	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
C ₂ H ₅ OH	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
CH ₃ CN	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
CH ₃ COCH ₃	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
CH ₃ COOC ₂ H ₅	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
CHCl ₃	ດະດາຍ	ດະດາຍ	ລະລາຍ
CH ₂ Cl ₂	ດະລາຍ	ດະດາຍ	ດະດາຍ
n-C ₆ H ₁₂	ไม่ละลาย	ไม่ละลาย	ไม่ละลาย
DMSO	ละลาย	ละลาย	ละลาย

3.2 การวิเคราะห์หาปริมาณชาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน

ตารางที่ 3.4 ผลการวิเคราะห์หาปริมาณชาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน

สูตรสารประกอบเชิงซ้อน(สูตรเคมี)		ปริมาณธาตุที่เป็นองค์ประกอบ(%)			
		С	Н	Ν	S
[Cu(PPh ₃) ₂ (dmtu)Cl]•	คำนวณ	64.20	5.32	4.68	4.28
0.5CH ₃ CN	ทคลอง	64.24	5.38	4.70	4.22
[Cu(PPh ₃) ₂ (dmtu)Br]	คำนวณ	64.86	5.30	3.89	4.43
	ทคลอง	64.82	5.48	3.91	4.38
[Cu(PPh ₃) ₂ (dmtu)]	คำนวณ	57.18	4.67	3.41	3.91
	ทคลอง	57.23	5.57	3.40	3.76

3.3 การวิเคราะห์หาชนิดของธาตุในสารประกอบเชิงซ้อนโดยใช้เทคนิค XRF

XRF สเปกตรัมของธาตุต่าง ๆ ในสารสารประกอบเชิงซ้อน แสดงคังรูปที่ 3.1-3.8

รูปที่ 3.1 XRF สเปกตรัมของคอปเปอร์ในสารประกอบเชิงซ้อน [Cu(PPh₃₎₂(dmtu)Cl]• 0.5CH₃CN

FT- R สเปกตรัมของลิแกนค์ไตรฟีนิลฟอสฟีน โคเมทิลไธโอยูเรีย และสารประกอบ เชิงซ้อน แสดงดังรูปที่ 3.9-3.13

รูปที่ 3.9 FT- R สเปกตรัมของลิแกนด์ใตรฟีนิลฟอสฟีน

รูปที่ 3.13 FT- R สเปกตร้มของในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)]

3.5 การศึกษา ¹H NMR และ¹³C NMR

¹H NMR สเปกตรัมของลิแกนค์ใคเมทิลไธโอยูเรีย ไตรฟีนิลฟอสฟีน และ สารประกอบเชิงซ้อนแสคงคังรูปที่ 3.14 – 3.18

รูปที่ 3.14 ¹H NMR สเปกตรัมของลิแกนด์ไดเมทิลไช โอยูเรียใน DMSO- d_{s}

รูปที่ 3.15 ¹H NMR สเปกตรัมของลิแกนด์ไตรฟีนิลฟอสฟีนใน DMSO- d_{δ}

รูปที่ 3.16 ¹H NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl] \cdot 0.5CH₃CN ใน DMSO- d_6

รูปที่ 3.17 ¹H NMR สเปกตรัมของสารประกอบเชิงซ้อน $[Cu(PPh_3)_2(dmtu)Br]$ ใน DMSO- d_6

รูปที่ 3.18 ¹H NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)]ใน DMSO- d_6

¹³C NMR สเปกตรัมของลิแกนค์ใคเมทิลไธโอยูเรีย ไตรฟีนิลฟอสฟีน และสารประกอบเชิงซ้อน แสคงคังรูปที่ 3.19 – 3.23

รูปที่ 3.19 $^{13}\mathrm{C}\,\mathrm{NMR}$ สเปกตรัมของลิแกนด์ไดเมทิลไธโอยูเรียใน DMSO- d_{s}

รูปที่ 3.21 ¹³C NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl] \cdot 0.5CH₃CN ใน DMSO- d_6

รูปที่ 3.22 13 C NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br]ใน DMSO- d_6

รูปที่ 3.23 ¹³C NMR สเปกตรัมของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)]ใน DMSO- d_{δ}

3.6 การศึกษาโครงสร้างสารประกอบเชิงซ้อนโดยวิธีการเลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยว ได้ทำการเก็บข้อมูลการเลี้ยวเบนของรังสีเอกซ์บนผลึกเคี่ยวและหาโครงสร้างของสารประกอบ เชิงซ้อนที่เตรียมได้โดยใช้โปรแกรม SHELXTL NT version 6.12 ตารางที่ 3.5 ข้อมูลผลึกของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl]· 0.5CH₃CN

Empirical formula	C40 H39.5 Cl Cu N2.5	P2 S1		
Formula weight		748.26		
Temperature		293(2) K		
Wavelength		0.71073 Å		
Crystal system		Monoclinic		
Space group		$P2_{1}/n$		
Unit cell dimensions		<i>a</i> = 13.7503(4) Å	$\alpha = 90^{\circ}$	
		<i>b</i> = 30.0495(9) Å	$\beta = 90.8740(10)^{\circ}$	
		c = 18.4227(5) Å	$\gamma = 90^{\circ}$	
Volume		7611.2(4) Å ³		
Ζ		8		
Density (calculated)		1.306 Mg/m ³		
Absorption coefficient		0.814 mm ⁻¹		
<i>F</i> (000)		3112		
Crystal size		0.356 0.121 0.079 mm ³		
Theta range for data coll	ection	1.30 to 25.00°.		
nde ranges		-16<=h<=16, -35<=k<=35,	-21<=1<=21	
Reflections collected		70507		
ndependent reflections		13413 [$R(int) = 0.0594$]		
Completeness to theta =	25.00°	100.0 %		
Absorption correction		Semi-empirical from equivalents		
Ma . and min. transmission		0.940 and 0.777		
Refinement method		Full-matri least-squares or	$n F^2$	
Goodness-of-fit on F^2		1.095		

Final <i>R</i> indices $[I \ge 2\sigma(I)]$	R1 = 0.0530, wR2 = 0.1031
R indices (all data)	R1 = 0.0744, wR2 = 0.1110
Largest diff. peak and hole	$0.525 \text{ and } -0.245 \text{ e. } \text{\AA}^{-3}$

พันธะ	ความยาวพันธะ (Å)	
	โมเลกุล A	
Cu(1A)-P(1A)		2.2847(9)
Cu(1A)-P(2A)		2.2850(9)
Cu(1A)-S(1A)		2.3716(10)
Cu(1A)-Cl(1A)		2.4014(9)
S(1A)-C(37A)		1.709(3)
N(1A)-C(37A)		1.331(4)
N(2A)-C(39A)		1.444(4)
N(2A)-H(2AA)		0.876(18)
P(1A)-C(7A)		1.832(3)
P(1A)-C(13A)		1.835(3)
P(1A)-C(1A)		1.838(3)
P(2A)-C(25A)		1.825(3)
P(2A)-C(19A)		1.830(4)
P(2A)-C(31A)		1.834(4)
	โมเลกุล B	
Cu(1B)-P(2B)		2.2831(9)
Cu(1B)-P(1B)		2.2989(9)
Cu(1B)-S(1B)		2.3857(9)
Cu(1B)-Cl(1B)		2.3956(9)

ตารางที่ 3.6 ความยาวพันธะระหว่างอะตอมในโมเลกุล[Cu(PPh₃)₂(dmtu)Cl] • 0.5CH₃CN

พันธะ	ความยาวพันธะ (Å)	
C(1D) C(2D)	1 700(2)	
S(1B)-C(3/B)	1.709(3)	
N(1B)-C(37B)	1.325(4)	
N(1B)-H(1BB)	0.869(18)	
N(2B)-C(37B)	1.323(4)	
P(1B)-C(1B)	1.833(3)	
P(1B)-C(7B)	1.834(3)	
P(1B)-C(13B)	1.836(3)	
P(2B)-C(25B)	1.820(3)	
P(2B)-C(19B)	1.834(3)	
P(2B)-C(31B)	1.837(3)	

ตารางที่ 3.7 มุมพันธะระหว่างอะตอมในโมเลกุล[Cu(PPh₃)₂(dmtu)Cl] • 0.5CH₃CN

พันธะ		มุมพันธะ (°)
	ໂນເດກຸດ A	
P(1A)-Cu(1A)-P(2A)		124.71(3)
P(1A)-Cu(1A)-S(1A)		107.56(4)
P(2A)-Cu(1A)-S(1A)		104.04(4)
P(1A)-Cu(1A)-Cl(1A)		104.71(3)
P(2A)-Cu(1A)-Cl(1A)		103.01(3)
S(1A)-Cu(1A)-Cl(1A)		112.92(3)
C(37A)-S(1A)-Cu(1A)		111.93(12)

พันธะ	มุมพันธะ (°)
	ໂມເລກຸລ B
P(2B)-Cu(1B)-P(1B)	120.07(3)
P(2B)-Cu(1B)-S(1B)	106.08(3)
P(1B)-Cu(1B)-S(1B)	108.79(3)
P(2B)-Cu(1B)-Cl(1B)	105.37(3)
P(1B)-Cu(1B)-Cl(1B)	107.62(3)
S(1B)-Cu(1B)-Cl(1B)	108.45(3)
C(37B)-S(1B)-Cu(1B)	109.86(12)

รูปที่ 3.24 โครงสร้างโมเลกุล A และ โมเลกุล B ของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl] • 0.5CH₃CN

รูปที่ 3.25 โครงสร้างโมเลกุล A ของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Cl] • 0.5CH₃CN

รูปที่ 3.26 โครงสร้างโมเลกุล B ของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Cl] • 0.5CH₃CN

รูปที่ 3.27 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Cl] ในหน่วยเซลล์ พล็อตตาม แกน a

หมายเหตุ สีเขียว แทน โมเลกุล A สีน้ำเงิน แทน โมเลกุล B

รูปที่ 3.28 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh3)2(dmtu)Cl] ในหน่วยเซลล์ พล็อตตามแกน b

รูปที่ 3.29 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh3)2(dmtu)Cl] ในหน่วยเซลล์ พล็อตตามแกน c

รูปที่ 3.30 แสดงอันตรกิริยาของพันธะไฮโครเจนที่เกิดขึ้นภายในโมเลกุลและระหว่างโมเลกุล A กับB ของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Cl]

ตารางที่ 3.8 พันธะไฮโครเจนในโมเลกุล[Cu(PPh₃)₂(dmtu)Cl]・0.5CH₃CN

H-bond	D—H	НА	DA	<i>D</i> —НА
nter-molecular interaction				
N(1B)-H(1B)Cl(1A)	0.869(18)	2.47(2)	3.262(3)	152(3)
[, y+1, z]				
ntra-molecular interaction				
N(2A)-H(2A)Cl(1A)	0.879(18)	2.36(2)	3.230(3)	169(3)
N(2B)-H(2B)Cl(1B)	0.876(18)	2.326(19)	3.197(3)	173(3)

หมายเหตุ : D = Donor atom

A = Acceptor atom

Empirical formula	$C_{39}H_{38}BrCuN_2P_2S$	
Formula weight	772.16	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$ (No. 14)	
Unit cell dimensions	a = 9.7886(3) Å	$\alpha = 90^{\circ}$
	b = 17.6205(6) Å	$\beta = 100.6460(10)^{\circ}$
	c = 21.6517(7) Å	$\gamma = 90^{\circ}$
Volume	3670.2(2) Å ³	
Ζ	4	
Density (calculated)	1.397 Mg/m ³	
Absorption coefficient	1.857 mm ⁻¹	
<i>F</i> (000)	1584	
Crystal size	0.358 0.16 0.115 mm	3
Theta range for data collection	1.50 to 28.05°	
nde ranges	-12<=h<=12, -23<=k<=23, -28<=l<=28	
Reflections collected	43462	
ndependent reflections	8875 [<i>R</i> (int) = 0.0328]	
Completeness to theta = 28.05°	99.9 %	
Absorption correction	Semi-empirical from equ	uvalents
Ma . and min. transmission	0.810 and 0.638	
Refinement method	Full-matri least-squares on F^2	
Goodness-of-fit on F^2	1.030	
Final R indices [$I > 2\sigma(I)$]	R1 = 0.0342, wR2 = 0.0823	
R indices (all data)	R1 = 0.0494, wR2 = 0.0887	
Largest diff. peak and hole	$0.610 \text{ and } -0.226 \text{ e. } \text{\AA}^{-3}$	

ตารางที่ 3.9 ข้อมูลผลึกของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br]

พันธะ	ความยาวพันธะ (Å)
Cu(1)-P(1)	2.2746(5)
Cu(1)-P(2)	2.2923(6)
Cu(1)-S(1)	2.3611(6)
Cu(1)-Br(1)	2.5423(3)
P(1)-C(11)	1.822(2)
P(1)-C(21)	1.827(2)
P(1)-C(31)	1.8306(19)
P(2)-C(51)	1.830(2)
P(2)-C(41)	1.832(2)
P(2)-C(61)	1.834(2)
S(1)-C(1)	1.711(2)
N(1)-C(1)	1.328(3)
N(1)-C(2)	1.457(4)

ตารางที่ 3.10 ความยาวพันธะระหว่างอะตอมในโมเลกุล[Cu(PPh₃)₂(dmtu)Br]

ตารางที่ 3.11 มุมพันธะระหว่างอะตอมใน โมเลกุล[Cu(PPh₃)₂(dmtu)Br]

พันธะ	มุมพันธะ (°)
P(1)-Cu(1)-P(2)	122.90(2)
P(1)-Cu(1)-S(1)	99.98(2)
P(2)-Cu(1)-S(1)	114.16(2)
P(1)-Cu(1)-Br(1)	104.351(16)
P(2)-Cu(1)-Br(1)	105.901(17)
S(1)-Cu(1)-Br(1)	108.650(19)
C(1)-S(1)-Cu(1)	110.11(9)

รูปที่ 3.31 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br]

รูปที่ 3.32 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Br] ในหน่วยเซลล์ พล็อตตาม แกน a

รูปที่ 3.33 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh3)2(dmtu)Br] ในหน่วยเซลล์ พล็อตตามแกน b

รูปที่ 3.34 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Br] ในหน่วยเซลล์ พล็อตตาม แกน c

รูปที่ 3.35 แสคงอันตรกิริยาของพันธะไฮโครเจนในสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Br]

ตารางที่ 3.12 พันธะไฮโครเจนในโมเลกุล[Cu(PPh₃)₂(dmtu)Br]

H-bond	<i>D</i> —Н	НА	DA	<i>D</i> —НА
ntra-molecular interaction N(2)-H(2)Br(1)	0.899(17)	2.429(18)	3.327(2)	176(3)

หมายเหตุ : D = Donor atom

A = Acceptor atom

Empirical formula	$C_{39}H_{38}Cu N_2P_2S$
Formula weight	819.17
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	$P2_{1}/n$
Unit cell dimensions	$a = 10.8474(5) \text{ Å} \qquad \alpha = 90^{\circ}$
	$b = 17.3669(7) \text{ Å} \qquad \beta = 100.038(1)^{\circ}$
	$c = 19.9418(9) \text{ Å} \qquad \gamma = 90^{\circ}$
Volume	3699.2(3) Å ³
Ζ	4
Density (calculated)	1.471 Mg/m ³
Absorption coefficient	1.597 mm ⁻¹
<i>F</i> (000)	1656
Crystal size	$0.249 0.229 0.135 \text{ mm}^3$
Theta range for data collection	1.57 to 25.00°
nde ranges	-12<=h<=12, -20<=k<=20, -23<=l<=23
Reflections collected	58592
ndependent reflections	6518 [<i>R</i> (int) = 0.0249]
Completeness to theta = 25.00°	100.0 %
Absorption correction	Semi-empirical from equivalents
Ma . and min. transmission	0.810 and 0.706
Refinement method	Full-matri least-squares on F^2
Goodness-of-fit on F^2	1.055
Final <i>R</i> indices [$I \ge 2\sigma(I)$]	R1 = 0.0245, wR2 = 0.0594
R indices (all data)	R1 = 0.0264, wR2 = 0.0605
Largest diff. peak and hole	0.620 and -0.390 e. Å ⁻³

ตารางที่ 3.13 ข้อมูลผลึกของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)]

พันธะ	ความยาวพันธะ (Å)
Cu(1)-P(2)	2.2951(6)
Cu(1)-P(1)	2.3121(6)
Cu(1)-S(1)	2.3704(6)
Cu(1)- (1)	2.7093(3)
S(1)-C(1)	1.702(2)
P(1)-C(31)	1.828(2)
P(1)-C(11)	1.832(2)
P(1)-C(21)	1.832(2)
P(2)-C(41)	1.823(2)
P(2)-C(51)	1.835(2)
P(2)-C(61)	1.842(2)
N(1)-C(1)	1.333(3)
N(1)-C(2)	1.439(4)

ตารางที่ 3.14 ความยาวพันธะระหว่างอะตอมในโมเลกุล[Cu(PPh₃)₂(dmtu)]

ตารางที่ 3.15 มุมพันธะระหว่างอะตอมใน โมเลกุล[Cu(PPh₃)₂(dmtu)]

พันธะ	มุมพันธะ (°)
P(2)-Cu(1)-P(1)	115.74(2)
P(2)-Cu(1)-S(1)	119.31(2)
P(1)-Cu(1)-S(1)	101.67(2)
P(2)-Cu(1)- (1)	107.645(17)
P(1)-Cu(1)- (1)	103.010(17)
S(1)-Cu(1)- (1)	108.118(19)
C(1)-S(1)-Cu(1)	110.40(9)

รูปที่ 3.36 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)]

รูปที่ 3.37 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)] ในหน่วยเซลล์ พล็อตตาม แกน a

รูปที่ 3.38 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)] ในหน่วยเซลล์ พล็อตตาม แกน b

รูปที่ 3.39 โครงสร้างของสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)] ในหน่วยเซลล์ พล็อตตาม แกน c

รูปที่ 3.40 แสดงอันตรกิริยาของพันธะไฮโครเจนในสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)]

ตารางที่ 3.16 พันธะไฮโครเจนในโมเลกุล[Cu(PPh₃)₂(dmtu)]

H-bond	<i>D</i> —Н	НА	DA	<i>D</i> —НА
ntra-molecular interaction				
N(1)-H(1) (1)	0.86	2.99	3.781(4)	153.5

หมายเหตุ : D = Donor atom

A = Acceptor atom

วิจารณ์ผลการทดลอง

4.1 การสังเคราะห์สารประกอบเชิงซ้อน

สารประกอบเชิงซ้อนทั้ง 3 ชนิด เตรียมได้โดยการทำปฏิกิริยากันระหว่าง คอปเปอร์(I) เฮไลด์ (CuX; X = Cl, Br, I) กับไตรฟีนิลฟอสฟีน(PPh₃) จากนั้นทำการเติมลิแกนด์ไดเมทิลไซโอยู เรีย (dmtu)โดยทำปฏิกิริยาภายใต้สภาวะที่เหมาะสมทำให้ได้สารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)X] ทำการศึกษาโครงสร้างสารประกอบเชิงซ้อนที่สังเคราะห์ได้ โดยวิธีการ เลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยว ดังนั้นผลึกของสารประกอบเชิงซ้อนจะต้องเป็นผลึกเดี่ยว สำหรับอัตราส่วนโมลที่ใช้ในการเกิดปฏิกิริยาของ คอปเปอร์(I) เฮไลด์ (CuX; X = Cl, Br, I) กับ ไตรฟินิลฟอสฟิน(PPh₃)และไดเมทิลไซโอยูเรีย (dmtu) เท่ากับ 1:2:1 โดยทำการรีฟลักซ์ที่อุณหภูมิ 70-75[°] C เป็นเวลา 7 ชั่วโมง

ผลึกที่ได้ทั้ง 3 ชนิดมีลักษณะเป็นรูปเหลี่ยมไม่มีสี มีจุดหลอมเหลว195-198 ⁰C,188-190 ⁰C, 180-183 ⁰C ตามลำดับ ในสารประกอบเชิงซ้อน[Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN, [Cu(PPh₃)₂(dmtu)Br]และ [Cu(PPh₃)₂(dmtu)I]

4.2 การวิเคราะห์หาปริมาณธาตุที่เป็นองค์ประกอบในสารประกอบเชิงซ้อน

จากการหาปริมาณธาตุการ์บอน ไฮโครเจน ในโตรเจน และซัลเฟอร์ในสารประกอบ เชิงซ้อนที่สังเคราะห์ได้ พบว่าผลที่ได้จากการทคลองมีค่าใกล้เคียงกับผลที่ได้จากการคำนวณจาก สูตรโมเลกุล

4.3 การวิเคราะห์หาชนิดของธาตุในสารประกอบเชิงซ้อนโดยใช้เทคนิค XRF

เทกนิกเอกซเรย์ฟลูออเรสเซนซ์สเปกโทรเมทรึเป็นเทกนิกที่ใช้ในการวิเกราะห์หาชนิดของธาตุต่าง ๆ ในสารประกอบเชิงซ้อน โดยอาศัยหลักการที่ว่าเมื่อกระตุ้นสารตัวอย่าง (sample excitation) โดย การปล่อยอนุภาคหรือโฟตอนที่มีพลังงานสูง ซึ่งอาจเป็นอิเล็กตรอน รังสีเอกซ์ หรือรังสีแกมมา จากแหล่งอื่นไปกระทบกับอิเล็กตรอนในอะตอมของธาตุในสารตัวอย่าง เกิดการถ่ายทอดพลังงาน ให้แก่อิเล็กตรอน ทำให้อิเล็กตรอนมีพลังงานสูงมากพอที่จะหลุดออกเป็นอิเล็กตรอน อิสระ ทำให้ เกิดที่ว่าง อิเล็กตรอนที่อยู่ในชั้นที่สูงกว่าก็ตกลงมาแทนที่ และกายพลังงานส่วนหนึ่งออกมาในรูป รังสีเอกซ์ (สัมพันธ์, 2535) โดยธาตุที่ต้องการวิเคราะห์หาประกอบไปด้วย คอปเปอร์(Cu) ซัลเฟอร์ (S) ฟอสฟอรัส(P) คลอรีน(Cl) โบรมีน(Br) และไอโอคีน(I)

จาก XRF สเปกตรัมของสารประกอบเชิงซ้อนที่ได้จากการทดลองดังรูปที่ 3.1-3.8 พบ ว่าสารประกอบเชิงซ้อนของ[Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN [Cu(PPh₃)₂(dmtu)Br] และ [Cu(PPh₃)₂(dmtu)I] จะแสดงแถบพลังงานที่ 2.01, 2.31 และ 8.04 keV ซึ่งมีค่าตรงกับ K_α ของธาตุ ฟอสฟอรัส(P) ซัลเฟอร์(S) และ คอปเปอร์(Cu) ตามลำดับ นอกจากนี้ยังพบว่า XRF สเปกตรัมของ สารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN [Cu(PPh₃)₂(dmtu)Br] และ [Cu(PPh₃)₂(dmtu)I] แสดงแถบพลังงานที่ 2.63, 11.92 และ 25.54 keV ซึ่งมีค่าตรงกับ K_α ของธาตุ คลอรีน(Cl) โบรมีน(Br) และไอโอดีน(I) ตามลำดับ ซึ่งจากผลที่ได้สามารถยืนยันได้ว่า ใน สารประกอบเชิงซ้อนที่สังเคราะห์ได้มีธาตุเหล่านี้อยู่จริง

4.4 การศึกษาการเปลี่ยนแปลงของแถบการดูดกลืน FT-IR

ลิแกนด์ dmtu เป็นลิแกนด์ที่ประกอบด้วยกลุ่ม NHCS สามารถเกิด tautomer ได้ ทำให้ โมเลกุลมี 2 แบบ คือ thione และ thiol ดังแสดง

ดังนั้นลิแกนด์ dmtu สามารถที่จะใช้อะตอมซัลเฟอร์(S) หรือ อะตอมในโตรเจน(N) ในการสร้างพันธะกับโลหะคอปเปอร์ (Cu) แต่จากการทดลองพบว่าลิแกนด์ dmtu อยู่ในรูป thione ทั้งขณะที่เป็นลิแกนด์อิสระและขณะที่เกิดสารประกอบเชิงซ้อน เนื่องจากปรากฏแถบการดูดกลืน ใน ช่วง 3000-4000 cm⁻¹ของ V (N-H) และไม่พบแถบการดูดกลืนในย่าน 2500-2600 cm⁻¹ ของ V (S-H) (Hadjikakau *et al.*, 1991)

ใด้มีการศึกษาแถบการดูดกลื่นของถิแกนด์ในกลุ่มของไช โอยูเรียในสารประกอบ เชิงซ้อนดังนี้

SinghและDikshit (Singh, R. and Dikshit, S.K., 1995) ได้ทำการศึกษาโครงสร้างและ สมบัติทางอินฟราเรดสเปกโทรสโกปีของสารประกอบเชิงซ้อน คอปเปอร์(I)เฮไลด์ กับลิแกนด์ dimethyl-phenylthiourea(dmptH) และ dibutyl-phenylthiourea(dbptH) โดยกำหนดแถบการ ดูดกลืนแสงอินฟราเรดของ thioamide ที่ตำแหน่งต่าง ๆ ดังนี้

แบนด์ที่	ตำแหน่งที่ดูดกลืน	แถบการดูดกลื่น
Ι	1500 cm^{-1}	$\nu (\text{C-N}) \!$
II	1300 cm^{-1}	$V_{S}(C=N) + V(C=S) + V(C-H)$
III	1000 cm^{-1}	V_{s} (C-N)+(C-S)
IV	800 cm ⁻¹	V_{s} (C-S)

Karagiannidisและคณะ (Karagiannidis *et al.*, 1989) ได้ทำการศึกษาโครงสร้างและ สมบัติทางอินฟราเรคสเปกโทรสโกปีของสารประกอบเชิงซ้อน คอปเปอร์(I) กับลิแกนด์กลุ่ม heterocyclic thiones และ triphenylphosphine ที่ตำแหน่งต่าง ๆ ดังนี้

แบนด์ที่	ตำแหน่งที่ดูดกลืน	แถบการดูดกลื่น
Ι	2900 cm ⁻¹	V (N-H)
II	1510 cm^{-1}	$\delta(\mathrm{NH}_2)$
III	1320 cm^{-1}	V(C=N)+V(C-N)+V(C=S)
IV	1000 cm^{-1}	V(C=S) + V(C-N)
V	750 cm^{-1}	V(C=S)

Lecomteและคณะ (Lecomte *et al.*,1989) ได้ทำการศึกษาโครงสร้างและสมบัติทาง อินฟราเรคสเปกโทรสโกปีของสารประกอบเชิงซ้อน คอปเปอร์(I) โบรไมค์ กับลิแกนค์กลุ่ม heterocyclic thiones และ triphenylphosphine ที่ตำแหน่งต่าง ๆ ดังนี้

แบนด์ที่	ตำแหน่งที่ดูดกลื่น	แถบการดูดกลื่น
Ι	3180-3130 cm ⁻¹	V (N-H)
II	$1505-1515 \text{ cm}^{-1}$	$\delta(\mathrm{NH}_2)$
III	1330-1250cm ⁻¹	V(C=N)+V(C-N)+V(C=S)
IV	$1030-990 \text{ cm}^{-1}$	V(C=S) + V(C-N)
V	900 cm ⁻¹	V(C=S)

สำหรับข้อมูลทางอินฟราเรคสเปกโทรสโกปีของสารประกอบเชิงซ้อนที่เตรียมได้ แสดง ดังรูปที่ 3.9-3.13 โดยที่แสดงแถบการยืดของ N-H ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN และ [Cu(PPh₃)₂(dmtu)Br] ปรากฏที่ตำแหน่งที่มีพลังงานน้อยลง เนื่องมาจากการเกิด พันธะไฮโครเจนภายในโมเลกุล โดยเมื่อสารประกอบเชิงซ้อนเกิดพันธะไฮโครเจน (N-H...X) (X= Cl, Br, I) จะทำให้กวามหนาแน่นของอิเล็กตรอนบริเวณพันธะ N-H น้อยลงโดยถูกอะตอม Cl และ

Br ซึ่งต่างก็มีความสามารถในการคึงอิเล็กตรอนได้ดี คึงอิเล็กตรอนไปทำให้พันธะระหว่าง N กับ H อ่อนลง พลังงานที่ใช้ในการสั่นของพันธะก็จะน้อยตามไปด้วย

สารประกอบ	ประเภทการสั่น/เลขคลื่น (cm ⁻¹)				
	V (N-H)	Band I	Band II	Band III	Band IV
ลิแกนด์ dmtu	3229	1504	1308	1039	723
[Cu(PPh ₃) ₂ (dmtu)Cl]•	3198	1531	1327	1092	
0.5CH ₃ CN					
[Cu(PPh ₃) ₂ (dmtu)Br]	3196	1527	1372	1092	
[Cu(PPh ₃) ₂ (dmtu)I]	3284	1568	1368	1091	

ตารางที่ 4.1 แสดงข้อมูลแถบการดูดกลืนที่สำคัญในลิแกนด์ dmtu และสารประกอบเชิงซ้อน

ส่วนสารประกอบเชิงซ้อน $[Cu(PPh_3)_2(dmtu)I]$ นั้นแถบการดูดกลืนจะเคลื่อนไปยัง ตำแหน่งที่มีพลังงานสูงแม้ว่าจะมีพันธะไฮโดรเจนเกิดภายในโมเลกุลก็ตาม เนื่องจากอะตอมของ ไอโอดีนมีขนาดที่ใหญ่ก่า EN ต่ำกว่า คลอรีนและโบรมีน ความสามารถในการดึงอิเล็กตรอนก็น้อย กว่า ทำให้พันธะไฮโดรเจนที่เกิดขึ้นเป็นแบบอ่อน ๆ (N-H---I เท่ากับ 2.99 Å ในขณะที่ N-H---Cl,Br เท่ากับ 2.326, 2.429 Å ตามลำดับ) และเมื่อเปรียบเทียบกับอีกด้านหนึ่งที่มีการถ่ายโอนประจุ ผ่านอะตอมของไนโตรเจนไปให้อะตอมซัลเฟอร์สร้างพันธะกับอะตอมคอปเปอร์ ทำให้พันธะ ระหว่างไนโตรเจนกับไฮโดรเจนของ $[Cu(PPh_3)_2(dmtu)I]$ มีความแข็งแรงมากขึ้นพลังงานที่ใช้ใน การสั่นพันธะก็เพิ่มขึ้น ซึ่งผลจากการที่พบแถบการดูดกลืนของ V (N-H) สามารถระบุได้ว่า ลิ แกนด์ไดเมทิลไธโอยูเรียในสารประกอบเชิงซ้อนอยู่ในรูปของ thione

อย่างไรก็ตามได้มีการวิเคราะห์หาแถบการดูดกลื่นของหมู่ amide เพื่อพิจารณาว่าเกิด พันธะระหว่าง M-N และM-S ในลิแกนด์กลุ่มของ thione ligand (Karagiannidis *et al.*, 1990) แถบ การดูดกลื่นที่พบได้ในช่วงของ 1531-1568 cm⁻¹ สามารถอธิบายได้ว่าเป็นแถบการดูดกลื่นของ thioamide แถบที่ I โดยที่แถบการดูดกลื่นจะเลื่อนไปยังตำแหน่งที่มีพลังงานสูงขึ้นในสารประกอบ ทั้ง 3 ชนิด เนื่องจากเกิดแรงกระทำของพันธะไฮโดรเจนในสารประกอบเชิงซ้อน แถบการดูดกลืนของ thioamide แถบที่ II และIII คือแถบการยืดของ C=S และ C=N โดยที่ แถบการดูดกลืนจะเลื่อนไปยังตำแหน่งที่มีพลังงานสูงในสารประกอบทั้ง 3 ชนิด เนื่องจากความ เป็นพันธะคู่ระหว่าง C=S ลดลง แต่ความเป็นพันธะคู่ระหว่าง C=N เพิ่มขึ้นเนื่องจากการโดออร์ดิ เนชันผ่านอะตอมซัลเฟอร์แล้วเกิดการถ่ายโอนประจุไปยังอะตอม ซัลเฟอร์ ทำให้ C-N แข็งแรงขึ้น มีความเป็นพันธะคู่มากขึ้น(Aslanidis *et al.*, 1994) แต่ในสารประกอบเชิงซ้อนนั้นไม่สามารถระบุ แบนด์ที่ IV ของ thioamide เนื่องจากการเกิดการซ้อนทับกันกับแถบการดูดกลืนของไตรฟีนิลฟอส ฟีนซึ่งสอดกล้องกับงานวิจัยของ Karagiannidis (Karagiannidis *et al.*, 1990) ที่ทำการศึกษาแถบ การดูดกลืนของ thioamide ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(meimtH)Br]ซึ่งไม่สามารถระบุ แบนด์ของ thioamide ได้หมดเนื่องจากการซ้อนทับของไตรฟีนิลฟอสฟีน

จากนั้นทำการศึกษาแถบการดูดกลื่นของลิแกนค์ไตรฟีนิลฟอสฟีนซึ่งจะพบแถบการ ดูดกลื่นที่สำคัญทั้งในลิแกนค์อิสระไตรฟีนิลฟอสฟีน และสารประกอบเชิงซ้อนคังนี้

แถบการดูดกลื่นของ V (=C-H)	ที่ 3064 cm ⁻¹
แถบการดูดกลื่นของ V (C=C)	ที่ 1580และ 1474 cm ⁻¹
แถบการดูดกลื่นของ δ (=C-H) ในระนาบ	ที่ 1088 cm ⁻¹
แถบการดูดกลื่นของ δ (=C-H) นอกระนาบ	ที่ 741 และ692 cm ⁻¹

โดยเมื่อพิจารณาเปรียบเทียบพบว่าแถบการดูดกลืนของไตรฟีนิลฟอสฟีนทั้งในลิแกนด์ อิสระไตรฟีนิลฟอสฟีน และสารประกอบเชิงซ้อนไม่พบการเปลี่ยนแปลงที่สำคัญ ซึ่งสอดคล้องกับ งานวิจัยของ Karagiannidis (Karagiannidis *et al.*, 1990) ที่ไม่พบการเปลี่ยนแปลงแถบการดูดกลืน ของวงอะโรมาติกฟอสฟีน ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(meimtH)Br] เมื่อเทียบกับลิแกนด์ อิสระ

4.5 การศึกษา ¹H NMR และ¹³C NMR

วิเคราะห์หา¹H NMR ในสารละลาย DMSO-d₆ ทำการตรวจวัดที่อุณหภูมิห้อง จะพบ สัญญาณของโปรตอนจากกลุ่มของ phosphine จากลิแกนด์ไตรฟีนิลฟอสฟีน และกลุ่มของthione จากลิแกนด์ไดเมทิลไธโอยูเรีย ซึ่งประกอบด้วยโปรตอน –(NH) และโปรตอน –CH₃ โดยที่ สัญญาณของ –(NH) จะปรากฏที่ chemical shift 7-9 ppm

โดยเมื่อพิจารณา¹H NMR spectra ของลิแกนด์ไตรฟีนิลฟอสฟีนในสารประกอบ เชิงซ้อนพบว่า ไม่มีการเปลี่ยนแปลงที่สำคัญเมื่อเปรียบเทียบกับลิแกนด์อิสระไตรฟีนิลฟอสฟีน โดยค่า chemical shift มีการเปลี่ยนแปลงเล็กน้อย สำหรับค่า chemical shift ของลิแกนด์ไดเมทิลไร โอยูเรียเปรียบเทียบกับสารประกอบเชิงซ้อน พบการเปลี่ยนแปลงค่า chemical shift ที่สำคัญของ –(NH) ซึ่งแสดงดังตารางที่ 4.2

จากตารางพบว่าสัญญาณของ –(NH) ในสารประกอบเชิงซ้อนปรากฎที่ chemical shift ที่สนามต่ำ (down field) เมื่อเทียบกับถิแกนด์อิสระ ทั้งนี้เนื่องมาจากอันตรกิริยาของพันธะ ไฮโดรเจนที่เกิดขึ้นภายในโมเถกุลของสารประกอบเชิงซ้อน โดยจะลดลงเป็นลำดับจาก [Cu(PPh₃)₂(dmtu)Cl], [Cu(PPh₃)₂(dmtu)Br] และ[Cu(PPh₃)₂(dmtu)I] (Satyanarayana *et al.*, 2004)

ซึ่งผลจากการที่พบสัญญาณของ–(NH) โปรตอนในขณะที่สัญญาณของ S-H โปรตอน ใม่ปรากฏ สามารถยืนยันได้ว่า ใดเมทิลไธโอยูเรียทั้งในรูปของลิแกนด์และสารประกอบเชิงซ้อน อยู่ในรูปของ thione (Skoulika *et al.,* 1991)

สารประกอบ	δ N-H (ppm)
dmtu	7.34
$[Cu(PPh_3)_2(dmtu)Cl] \cdot 0.5CH_3CN$	8.72
[Cu(PPh ₃) ₂ (dmtu)Br]	8.38
[Cu(PPh ₃) ₂ (dmtu)I]	8.21

ตารางที่ 4.2 แสดงค่า chemical shift ของ –(NH)

สำหรับการ¹³C NMR ของลิแกนด์ไตรฟีนิลฟอสฟีนในสารประกอบเชิงซ้อนกับลิแกนด์ อิสระไตรฟีนิลฟอสฟีน พบว่าไม่มีการเปลี่ยนแปลงที่สำคัญ สำหรับค่า chemical shift ของ C=S ใน ลิแกนด์ไดเมทิลไซโอยูเรียในสารประกอบเชิงซ้อนเมื่อเทียบกับลิแกนด์อิสระ พบว่ามีการ เปลี่ยนแปลงค่า chemical shift ที่สนามสูง (upfield) ทั้งนี้เป็นผลมาจากการกำบังของอิเล็กตรอนที่ มากขึ้น ซึ่งสามารถอชิบายได้ว่า C=S มี bond order ที่ลดลงเนื่องจากมีการโกออร์ดิเนต โดยมีการ เปลี่ยนแปลงของความหนาแน่นของอิเล็กตรอนจาก N→C เพื่อสร้างพันชะผ่านอะตอมของ การ์บอน (C=S) ผลจากตรงนี้ทำให้ C-N มีความเป็นพันชะคู่มากขึ้นและอะตอมของการ์บอนที่ต่อ กับอะตอมของซัลเฟอร์ถูกกำบังจากอิเล็กตรอนเพิ่มมากขึ้น ค่า chemical shift ลดต่ำลง แสดงดัง ตารางที่ 4.3

ตารางที่ 4.3 แสดงค่า chemical shift ของ C=S

สารประกอบ	δ C=S (ppm)
dmtu	182.88
[Cu(PPh ₃) ₂ (dmtu)Cl] • 0.5 CH ₃ CN	179.82
[Cu(PPh ₃) ₂ (dmtu)Br]	178.20
[Cu(PPh ₃) ₂ (dmtu)I]	178.11

4.6 การศึกษาโครงสร้างของสารประกอบเชิงซ้อนโดยใช้เทคนิคการเลี้ยวเบนของรังสีเอกซ์บนผลึก เดี่ยว

4.6.1 โครงสร้างของสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN

จากการศึกษาโดยใช้เทคนิคการเลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยว พบว่า สารประกอบ เชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl]· 0.5CH₃CN ตกผลึกอยู่ในระบบมอโนคลินิก หมู่ปริภูมิ $P2_1/n$ มี จำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 4 มีเซลล์พารามิเตอร์ ดังนี้ a = 13.7503(4) Å , b = 30.0495(9)Å, c = 18.4227(5) Å, $\beta = 90.8740(10)^{\circ}$ โครงสร้างของสารประกอบเชิงซ้อนจะประกอบไปด้วย [Cu(PPh₃)₂(dmtu)Cl] 2 โมเลกุลที่เป็นอิสระกัน (two independent molecules) โดยรูปทรงทาง เรขาคณิตรอบอะตอมคอปเปอร์ของทั้ง 2 โมเลกุล เป็นแบบทรงเหลี่ยมสี่หน้าที่บิดเบี้ยว โดยรอบ อะตอมคอปเปอร์จะประกอบไปด้วย หนึ่งพันธะที่สร้างกับเฮไลด์ หนึ่งพันธะที่สร้างกับซัลเฟอร์ จากลิแกนด์ไดเมทิลไธโอยูเรีย และสองพันธะที่สร้างกับฟอสฟอรัสจากลิแกนด์ไตรฟีนิลฟอสฟีน จำนวน 2 โมเลกุล

เมื่อพิจารณามุมรอบ ๆ อะตอมของคอปเปอร์พบว่ามีลักษณะที่คลาดเคลื่อนไปจาก มุมทรง สี่หน้าปกติ (109.4 °) แสดงในตารางที่ 4.5 โดยเป็นผลมาจากความเกะกะของลิแกนด์ไตรฟีนิลฟอส ฟีนที่มีขนาดใหญ่ ซึ่งสอดคล้องกับผลการศึกษาก่อนหน้านี้[Cu(PPh₃)₂(py2SH)Cl](P-Cu-P=122.41(11), P-Cu-Cl = 112.01 (10), P-Cu-Cl = 99.17(9), P-Cu-S = 102.38(13) °)(Aslanidis *et al.*, 1998)

เมื่อพิจารณาความยาวพันธะรอบอะตอมคอปเปอร์สารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl] ดังแสดงในตารางที่ 4.5 มีความใกล้เคียงกับความยาวพันธะรอบอะตอม คอป เปอร์สารประกอบเชิงซ้อน [Cu(PPh₃)₂(bztzdtH)Cl] (Cu-P(1) = 2.269(2), Cu-P(2) = 2.285(3), Cu-S = 2.37(3), Cu-Cl = 2.40(2) Å)(Cox *et al.*, 1999) และ [Cu(PPh₃)₂(py2SH)Cl] (Cu-Cl = 2.344(3), Cu-P(1) = 2.287(3), Cu-P(2) = 2.298(2), Cu-S = 2.418(5) Å)(Aslanidis *et al.*, 1998) นอกจากนี้ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Cl]· 0.5CH₃CN เกิดพันธะ ใฮโครเจนระหว่าง N(2)-H(2)---Cl(1) และยังมีแรงที่เกิดขึ้นระหว่างโมเลกุลระหว่าง N(1B)-H(1B)---Cl(1A)โคยแรงกระทำดังกล่าวนี้ทำให้สารประกอบเชิงซ้อนมีความเสถียรในสภาวะ ของแข็ง ดังแสดงในตารางที่ 4.4

สารประกอบ	D-HA	คว	ามยาวพันธะ	(Å)	มุมพันธะ
เชิงซ้อน					(°)
		D-H	HA	DA	D-HA
[Cu(PPh ₃) ₂ (dmtu)Cl]	N(2)-H(2)Cl(1)	0.876(18)	2.326(19)	3.197(3)	173(3)
โมเลกุล A	N(1A)-H(1A)Cl(1B)	0.875(18)	2.43(2)	3.234(3)	153(3)
[Cu(PPh ₃) ₂ (dmtu)Cl]	N(2)-H(2)Cl(1)	0.879(18)	2.36(2)	3.230(3)	169(3)
ໂມເດກຸດ B	N(1B)-H(1B)Cl(1A)	0.869(18)	2.47(2)	3.262(3)	152(3)
[Cu(PPh ₃) ₂ (dmtu)Br]	N(2)-H(2)Br(1)	0.899(17)	2.429(18)	3.327(2)	176(3)
[Cu(PPh ₃) ₂ (dmtu)I]	N(1)-H(1)I(1)	0.86	2.99	3.781(2)	153.5

ตารางที่ 4.4 แสดงอันตรกิริยาของพันธะไฮโครเจนในสารประกอบเชิงซ้อน

หมายเหตุ: D = Donor atom

A = Acceptor atom

4.6.2 โครงสร้างของสารประกอบเชิงซ้อน $[Cu(PPh_3)_2(dmtu)Br]$ และ $[Cu(PPh_3)_2(dmtu)I]$

จากการศึกษาโดยใช้เทคนิคการเลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยว พบว่า สารประกอบ เชิงซ้อน [Cu(PPh₃)₂(dmtu)Br] ตกผลึกอยู่ในระบบมอโนคลินิก หมู่ปริภูมิ $P2_1/c$ มีจำนวนโมเลกุล ในหน่วยเซลล์เท่ากับ 4 มีเซลล์พารามิเตอร์ ดังนี้ a = 9.7886(3) Å, b = 17.6205(6) Å, c = 21.6517(7) Å, $\beta = 100.6460(10)^\circ$ และสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)I] ตกผลึกอยู่ใน ระบบมอโนคลินิก หมู่ปริภูมิ $P2_1/c$ มีจำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 4 มีเซลล์พารามิเตอร์ ดังนี้ a = 10.8474(5) Å, b = 17.3669(7) Å, c = 19.9418(9) Å, $\beta = 100.038(1)^\circ$ โดยที่สารประกอบ เชิงซ้อนทั้งสอง เป็น isomorphous กันโดยมีโครงสร้างที่เหมือนกัน

เมื่อพิจารณาความยาวพันธะรอบอะตอมคอปเปอร์สารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br] และ [Cu(PPh₃)₂(dmtu)I] ดังแสดงในตารางที่ มีความใกล้เคียงกับความยาว พันธะรอบอะตอมคอปเปอร์ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(meimtH)Br] (Cu-Br = 2.509(0), Cu-S= 2.375(1), Cu-P(1) = 2.268(1), Cu-P(2) = 2.281(1) Å) (Karagiannidis *et al.*, 1990) และ [Cu(PPh₃)₂(pymtH)I] (Cu-I = 2.674(2), Cu-S= 2.338(4), Cu-P(1) = 2.296(4), Cu-P(2) = 2.303(4) Å) (Aslanidis *et al.*, 1993)

เมื่อพิจารณามุมรอบ ๆ อะตอมของคอปเปอร์พบว่าอยู่ในช่วง 99.98(2)- 122.90(2) ° และ 101.67(2)- 119.31(2) °ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br] และ [Cu(PPh₃)₂(dmtu)I] ตามถำดับ มีลักษณะที่คลาดเคลื่อนไปจาก มุมทรงสี่หน้าปกติ (109.4 °) แสดงในตารางที่4.5 ซึ่ง สอดคล้องกับผลการศึกษาก่อนหน้านี้ [Cu(PPh₃)₂(pymtH)Br] (Br-Cu-P(1) = 108.0(1), Br-Cu-P(2) = 111.0(1), Br-Cu-S = 108.2(1), P(1)-Cu-P(2) = 112.9(1),P(1)-Cu-S = 106.5(1), P(2)-Cu-S = 110.0(1) °) (Lecomte *et al.*, 1989)และ [Cu(PPh₃)₂(pymtH)I] (I-Cu-S = 116.5(1), I-Cu-P(1) = 103.6(1), S-Cu-P(1) = 105.4(1), S-Cu-P(2) = 103.4(1), P(1)-Cu-P(2) = 125.3(1) °) (Aslanidis *et al.*, 1993)

นอกจากนี้ในสารประกอบเชิงซ้อน [Cu(PPh₃)₂(dmtu)Br] และ [Cu(PPh₃)₂(dmtu)I] เกิด พันธะไฮโคนเจนระหว่าง N(2)-H(2)---Br(1) และ N(1)-H(1)---I(1) ตามลำคับ

จากข้อมูลพันธะไฮโครเจนของสารประกอบเชิงซ้อนทั้ง 3 ชนิค พบว่าความแข็งแรงของ พันธะไฮโครเจนใน [Cu(PPh₃)₂(dmtu)Cl] > [Cu(PPh₃)₂(dmtu)Br]> [Cu(PPh₃)₂(dmtu)I] โคย พิจารณาจากความยาวพันธะของ H---A ในตาราง ถ้าความยาวพันธะของ H---A มีค่าน้อยแสดงว่า พันธะมีความแข็งแรงมาก ตารางที่ 4.5 แสดงความยาวพันธะและมุมพันธะรอบอะตอมของคอปเปอร์

สารประกอบเชิงซ้อน	[Cu(PPh ₃) ₂ (dmtu)Cl]·	[Cu(PPh ₃) ₂ (dmtu)Br]	[Cu(PPh ₃) ₂ (dmtu)I]
	0.5CH ₃ CN		
Cu1-X	2.4014(9) ^a	2.5423(3)	2.7093(3)
	2.3956(9) ^b		
Cu1-S1	2.3716(10) ^a	2.3611(6)	2.3704(6)
	2.3857(9) ^b		
Cu1-P1	2.2847(9) ^a	2.2746(5)	2.2951(6)
	2.2989(9) ^b		
Cu1-P2	2.2850(9) ^a	2.2923(6)	2.3121(6)
	2.2831(9) ^b		
P1-Cu1-P2	124.71(3) ^a	122.90(2)	115.74(2)
	120.07(3) ^b		
P1-Cu1-S1	107.56(4) ^a	99.98(2)	101.67(2)
	106.08(3) ^b		
P2-Cu1-S1	104.04(4) ^a	114.16(2)	119.31(2)
	108.79(3) ^b		
P1-Cu1-X	104.71(3) ^a	104.351(16)	103.010(17)
	105.37(3) ^b		
P2-Cu1-X	103.01(3) ^a	105.901(17)	107.645(17)
	107.62(3) ^b		
S1-Cu1-X	112.92(3) ^a	108.650(19)	108.118(19)
	108.45(3) ^b		

a แทนโมเลกุล A

b แทน โมเลกุล B

สรุปผลการทดลอง

งานวิจัยนี้มีวัตถุประสงค์เพื่อทำการสังเคราะห์สารประกอบเชิงซ้อนของคอปเปอร์(I) เฮไลด์กับลิแกนด์ไตรฟินิลฟอสฟิน(PPh.) และลิแกนด์ไคเมทิลไธโอยูเรีย(dmtu) ได้สารประกอบ เชิงซ้อน 3 ชนิดได้แก่ [Cu(PPh₂)₂(dmtu)Cl]• 0.5CH₂CN, [Cu(PPh₂)₂(dmtu)Br]และ [Cu(PPh,),(dmtu)I] พร้อมทั้งสามารถสรุปสูตรและ โครงสร้างทางเคมีโดยใช้เทคนิคการเลี้ยวเบน ของรังสีเอกซ์บนผลึกเคี่ยว พบว่า สารประกอบเชิงซ้อน [Cu(PPh,),(dmtu)Cl] ตกผลึกอยู่ในระบบ มอโนกลินิก หมู่ปริภูมิ $P2_1/n$ มีจำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 8 มีเซลล์พารามิเตอร์ ดังนี้ a= 13.7503(4) Å, b = 30.0495(9) Å, c = 18.4227(5) Å, β = 90.8740(10)° สำหรับสารประกอบ เชิงซ้อน [Cu(PPh₃),(dmtu)Br] ตกผลึกอยู่ในระบบโมโนคลินิก หมู่ปริภูมิ P2₁/c มีจำนวนโมเลกุล ในหน่วยเซลล์เท่ากับ 4 มีเซลล์พารามิเตอร์ดังนี้ a = 9.7886(3) Å, b = 17.6205(6) Å, c = 21.6517(7) Å, $\beta = 100.6460(10)^{\circ}$ สำหรับสารประกอบ[Cu(PPh₃)₂(dmtu)I] ตกผลึกอยู่ในระบบโม ์ โนคลินิก หมู่ปริภูมิ $P2_1/n$ มีจำนวนโมเลกุลในหน่วยเซลล์เท่ากับ 4 มีเซลล์พารามิเตอร์ดังนี้ a=10.8474(5) Å, b = 17.3669(7) Å, c = 19.9418(9) Å, $\beta = 100.038(1)^{\circ}$ โดยรูปทรงทางเรขากณิตรอบ อะตอมคอปเปอร์ของสารประกอบเชิงซ้อนทั้ง 3 ชนิด เป็นแบบทรงเหลี่ยมสี่หน้าที่บิดเบี้ยว โดยรอบอะตอมคอปเปอร์จะประกอบไปด้วย หนึ่งพันธะที่สร้างกับเฮไลด์ หนึ่งพันธะที่สร้าง ้กับซัลเฟอร์จากลิแกนด์ไคเมทิลไธโอยูเรีย และสองพันธะที่สร้างกับฟอสฟอรัสจากลิแกนด์ไตรฟี นิลฟอสฟินจำนวน 2 โมเลกุล

จากนั้นได้ศึกษาสมบัติทางเคมีและคุณสมบัติทางกายภาพของสารประกอบเชิงซ้อนที่ สังเคราะห์ได้ และศึกษาองค์ประกอบของสารประกอบเชิงซ้อนที่เตรียมได้ โดยใช้เทคนิคทาง เอกซเรย์ฟูออเรสเซนซ์สเปกโทรสโกปี เทคนิคฟูเรียร์ทรานส์ฟอร์มอินฟราเรดสเปกโทรสโกปีและ เทคนิคฟูเรียร์ทรานส์ฟอร์มนิวเคลียร์แมกเนติกเรโซแนนซ์สเปกโทรสโกปีและวิเคราะห์หาปริมาณ ร้อยละของธาตุที่เป็นองค์ประกอบของสารประกอบเชิงซ้อนทั้ง3 ชนิดเพื่อเป็นการยืนยันโครงสร้าง ที่ได้จากเทคนิคการเลี้ยวเบนของรังสีเอกซ์บนผลึกเดี่ยว ซึ่งพบว่าข้อมูลที่ได้สอดกล้องกัน ข้อเสนอแนะสำหรับผู้สนใจที่จะทำวิจัยต่อไป

- 1. เปลี่ยนใช้แอนไอออนอื่น ๆ แทนเฮไลด์ เช่น ในเตรด (NO3), ไธโอไซยาเนต (SCN)
- 2. ใช้โลหะหมู่อื่นๆ แทนคอปเปอร์ เช่น Ag(I)
- นำสารประกอบเชิงซ้อนที่ได้ไปเป็นแบบอย่างในการสังเคราะห์สารประกอบเชิงซ้อน
 อื่น ๆ ที่มีโครงสร้างแบบเดียวกันหรือคล้ายกัน

บรรณานุกรม

จินตนา สิริพิทยานนท์. 2537. <u>การวิเคราะห์ โครงสร้างผลึก</u>. ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่.

วัฒนา เรื่องวุฒิ. 2549. สารประกอบเชิงซ้อนคอปเปอร์(I)กับเอธิลีนไธ โอยูเรียและไตรฟีนิลฟอสฟีน. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยสงขลานครินทร์.

ศิริวรรณ วตะภรณ์. 2549. 2-เมอร์แคปโตเบนซิมิดาโซลและสารประกอบเชิงซ้อนคอปเปอร์. วิทยานิพนธ์วิทยาศาสตรมหาบัณฑิต มหาวิทยาลัยสงขลานครินทร์.

สัมพันธ์ วงศ์นาวา. 2535. <u>การเรืองรังสีเอกซ์แบบกระจายพลังงานเบื้องต้น</u>. ภาควิชาเคมี มหาวิทยาลัยสงขลานครินทร์.

หริหัทยา เพชรมั่ง. 2550. <u>เคมือนินทรีย์2.</u> ภาควิชาเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยทักษิณ.

- Aslanidis, P., Hadjikakou, S. K., Karagiannidis, P., Gdaniec, M. and Kosturkiewicz, Z. 1993.
 Four-Coordinate Copper(I) iodide Complexes with Triphenylphosphine Heterocyclic Thiones Ligands. The Crystal Structure of [Cu(PPh₃)₂(pymtH)I]. Polyhedron. 12, 2221-2226.
- Aslanidis, P., Hadjikakou, S.K., Karagiannidis, P. Kojic-Prodic, B. and Luic, M. 1994.
 Preparation and spectral studies of dinuclear mixed-ligand copper(I) complexes. The crystal structure of bis[µ-s(pyridine-2-thione)(tmtp) copper(I) bromide], Polyhedron. 13, 3119-3125.
- Aslanidis, P., Hadjikakou, S.K., Karagiannidis, P. and Cox, P.J. 1998. Synthesis and characterization of copper(1) complexes withtriphenylphosphine and heterocyclic thione ligands: the crystal structureof (thiazolidine-2-thione) (bistriphenylphosphine) copper(1) chloride. Inorganica Chimica Acta 271, 243-247.

- Aslanidis, P., Cox, P.J., Divanidis, S. and Karagiannidis, P. 2003. Copper(I) halide complexes from cis-1,2-bis(diphenylphosphino) ethylene and some heterocyclic thiones. Inorganica Chimica Acta 357, 1063–1076.
- Cox, P.J., Aslanidis, P., Karagiannidis, P. and Hadjikakou, S.K. 1999. Synthesis, spectroscopic and computational studies plus crystal structure of[(bis-benzo-1,3-thiazolidine-2thione)(bistriphenylphoshine)copper(I)] [chloro(benzothiazolidine-2thione)(bistriphenylphoshine) copper(I)]. Polyhedron 18, 1501–1506.
- Cotton, F.A. and Wilkinson, G. 1988. <u>Advanced Inorganic Chemistry</u>, 5th ed., New York : John Wiley & Sons.
- Dan, L., Rong-Zhen , L., Zheng, N., Zhi-Yu O., Xiao-Long, F. and Ji-Wen, C. 2003. Synthesis and crystal structure of photoluminescent copper(I)–phosphine complexes with oxygen and nitrogen donor ligands. Inorganic Chemistry Communications 6, 469– 473.
- Donald, J., Matthew, W. and Joseph, H. 1996. Structural complexes characterizations of coordination of bis-triphenylphosphine copper(I) dicarboxylates. Polyhedron 15, 2341-2349.
- Jianping, L. and Kazuyuki, T. 1996. Synthesis and Crystal Structure of A Binuclear Copper (I) Bromide Complex of Benz-1,3-thiazolidine-2-thione and Triphenylphosphine, [Cu(bztzdtH)(PPh₃)Br]₂. Polyhedron 15, 2127-2130.
- Karagiannidis, P., Aslanidis, P., Papastefanou, S., Mentzafos, D., Hountas, A. and Terzis, A. 1989. Cu(I) Complexes with Heterocyclic Thiones and Triphenylphosphine as Ligands. The Crystal Structure of [Cu(tzdtH)₂(PPh₃)₂]NO₃, Inorganica Chimica Acta. 156, 265-270.

- Karagiannidis, P., Aslanidis, P., Papastefanou, S., Mentzafos, D., Hountas, A. and Terzis, A.
 1990. Synthesis and Characterization of Copper(I) halide Complexes with Heterocyclic Thiones and Triphenylphosphine as Ligands. The X-ray Crystal Structure of copper(I)1-methyl-1,3-imidazoline-2-thione bis(triphenylphosphine)bromide, [Cu(PPh₃)₂meimtH)Br]. Polyhedron 9, 981-986.
- Hadjikakou, S.K., Aslanidis, P., Karagiannidis, P., Mentzafos, D. and, Terzis, A.
 1991. Synthesis and photolysis of a new series of Cu(I) complexes with triootolylphosphine and heterocyclic thiones as ligands. The crystal structure of (thiazolidine-2-thione)(tri-o-tolylphosphine) copper(I) bromide, Inorganica Chimica Acta. 186, 199-204.
- Ionel, H., Raymundo, C., Rubina, T. and Cristian, S. 1995. X-ray crystal structure of (tetraphenyldithiomidodiphosphinato) (triphenylphosphine) copper(I), (Ph₃P)Cu(SPPh₂h)₂N, a monocyclic inorganic (carbon-free) chelate ring compound. Polyhedron 14, 1067-1071.
- Lecomte, C., Skoulika, St., Aslanidis, P., Karagiannidis, P. and Papastefanou, St. 1989. Copper(I)
 Bromide Complexes with Heterocyclic Thiones and Triphenylphosphine as
 Ligands. The X-ray Crystal Structure of Coppet(I) Pyrimidine-2-thione
 Bis(triphenylphosphine)Bromide [Cu(PPh₃)₂(PymtH)Br]. Polyhedron 8, 1103-1109.
- Martyn, P. and Peter, B. 2001. Synthesis and X-ray crystal structure of polymeric and dimericcopper(I) cyanide complexes incorporating a bicyclic guanidine ligand. Polyhedron 20, 3027–3032.
- Nimthong, R., Pakawatchai, C., Saithong, S. and Charmant, P.H. 2008. Iodido(*N*-phenylthiourea) bis(triphenylphosphine)copper(I). Acta Crystallographica Section E.64, 977.

- Satyanarayana, S. and Nagasundara, K. R. 2004. Synthesis and spectral properties of the complexes of cobalt(II), copper(II), Zinc(II), and cadmium(II) with 2-(thiomethyl-2benzimidazolyl-benzimidazole). Synthesis and reactivity in inorganic and metalorganic chemistry. 34, 883-895.
- Singh, R. and Dikshit, S.K. 1995. Synthesis and characterization of mixed ligand copper(I) complexes containing halides, triphenylarsine and *N*,*N*-dimethyl-N[']-phenylthiourea (dmptH), *N*,*N*-dibutyl-N[']-phenylthiourea (dbptH) or 1,3-thiazolidine-2-thione (tzdtH). The X-ray crystal structure of [Cu(PPh₃)₂(dmptH)Cl], Polyhedron. 14, 1799-1807.
- Skoulika, S., Aubry, A., Karagianidis, P., Aslanidis, P. and Papastefanou, S. 1990.
 New Copper(I) Chloride Complexes with Heterocyclic Thiones and Triphenylphosphine as Ligands. Crystal Structure of [Cu(PPh₃)₂(bzimtH₂)Cl]CH₃COCH₃ and [Cu(PPh₃)₂(nbzimtH₂)Cl], Inorganica Chimica Acta. 183, 207-211.
- Tarlok, S. and Alfonso, C. 2002. Metal heterocyclic thione interactions.13. Pyridine-2-thione derivatives of copper(I): crystal structure of dinuclear [bromo(pyridine-2-thione)(trip-tolylphosphine)copper(I)]2 complex. Polyhedron 21, 1603-1611.
- Tarlok, S., Pannu, A.P.S., Hundal, G., Butcher, R. and Castineiras, A. 2007. Synthesis and structures of monomeric [chloro(isatin-3thiosemicarbazone)bis(triphenylphosphine)] copper(I) and dimeric [dichlorobis(thiophene-2-carbaldehyde thiosemicarbazone) bis(triphenylphosphine)] dicopper(I)] complexes. Polyhedron 26, 2621–2628.

ภาคผนวก

ข้อมูลผลิก (Crystallographic data)

พันธะ	ความยาวพันธะ (Å)
	โมเลกุล A
Cu(1A)-P(1A)	2.2847(9)
Cu(1A)-P(2A)	2.2850(9)
Cu(1A)-S(1A)	2.3716(10)
Cu(1A)-Cl(1A)	2.4014(9)
S(1A)-C(37A)	1.709(3)
N(1A)-C(37A)	1.331(4)
N(1A)-C(38A)	1.453(5)
N(1A)-H(1AA)	0.875(18)
N(2A)-C(37A)	1.315(4)
N(2A)-C(39A)	1.444(4)
N(2A)-H(2AA)	0.876(18)
P(1A)-C(7A)	1.832(3)
P(1A)-C(13A)	1.835(3)
P(1A)-C(1A)	1.838(3)
P(2A)-C(25A)	1.825(3)
P(2A)-C(19A)	1.830(4)
P(2A)-C(31A)	1.834(4)
C(1A)-C(6A)	1.358(5)
C(1A)-C(2A)	1.363(5)
C(2A)-C(3A)	1.389(6)
C(2A)-H(2A)	0.9300
C(3A)-C(4A)	1.348(7)

ตารางที่ 1 ความยาวพันธะระหว่างโมเลกุล [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN

พันธะ	ความยาวพันธะ (Å)
С(3А)-Н(3А)	0.9300
C(4A)-C(5A)	1.349(7)
C(4A)-H(4A)	0.9300
C(5A)-C(6A)	1.384(6)
C(5A)-H(5A)	0.9300
C(6A)-H(6A)	0.9300
C(7A)-C(8A)	1.376(5)
C(7A)-C(12A)	1.378(5)
C(8A)-C(9A)	1.380(5)
C(8A)-H(8A)	0.9300
C(9A)-C(10A)	1.348(6)
C(9A)-H(9A)	0.9300
C(10A)-C(11A)	1.365(6)
C(10A)-H(10A)	0.9300
C(11A)-C(12A)	1.378(5)
C(11A)-H(11A)	0.9300
C(12A)-H(12A)	0.9300
C(13A)-C(18A)	1.373(5)
C(13A)-C(14A)	1.380(5)
C(14A)-C(15A)	1.386(5)
C(14A)-H(14A)	0.9300
C(15A)-C(16A)	1.357(6)
C(15A)-H(15A)	0.9300
C(16A)-C(17A)	1.359(6)
C(16A)-H(16A)	0.9300
C(17A)-C(18A)	1.386(6)

พันธะ	ความยาวพันธะ (Å)	
C(17A)-H(17A)	0.9300	
C(18A)-H(18A)	0.9300	
C(19A)-C(24A)	1.368(5)	
C(19A)-C(20A)	1.377(5)	
C(20A)-C(21A)	1.380(6)	
C(20A)-H(20A)	0.9300	
C(21A)-C(22A)	1.345(7)	
С(21А)-Н(21А)	0.9300	
C(22A)-C(23A)	1.340(7)	
C(22A)-H(22A)	0.9300	
C(23A)-C(24A)	1.395(6)	
C(23A)-H(23A)	0.9300	
C(24A)-H(24A)	0.9300	
C(25A)-C(30A)	1.372(5)	
C(25A)-C(26A)	1.379(5)	
C(26A)-C(27A)	1.387(6)	
C(26A)-H(26A)	0.9300	
C(27A)-C(28A)	1.339(7)	
С(27А)-Н(27А)	0.9300	
C(28A)-C(29A)	1.357(6)	
C(28A)-H(28A)	0.9300	
C(29A)-C(30A)	1.379(5)	
C(29A)-H(29A)	0.9300	
C(30A)-H(30A)	0.9300	
C(31A)-C(32A)	1.353(5)	
C(31A)-C(36A)	1.376(5)	

พันธะ	ความยาวพันธะ (Å)
C(32A)-C(33A)	1.396(6)
С(32А)-Н(32А)	0.9300
C(33A)-C(34A)	1.351(7)
С(33А)-Н(33А)	0.9300
C(34A)-C(35A)	1.342(7)
C(34A)-H(34A)	0.9300
C(35A)-C(36A)	1.378(6)
С(35А)-Н(35А)	0.9300
С(36А)-Н(36А)	0.9300
C(38A)-H(38D)	0.9600
C(38A)-H(38E)	0.9600
C(38A)-H(38F)	0.9600
C(39A)-H(39A)	0.9600
C(39A)-H(39B)	0.9600
C(39A)-H(39C)	0.9600
	โมเลกุล B
Cu(1B)-P(2B)	2.2831(9)
Cu(1B)-P(1B)	2.2989(9)
Cu(1B)-S(1B)	2.3857(9)
Cu(1B)-Cl(1B)	2.3956(9)
S(1B)-C(37B)	1.709(3)
N(1B)-C(37B)	1.325(4)
N(1B)-C(38B)	1.440(5)
N(1B)-H(1BB)	0.869(18)

_

_

พันธะ	ความยาวพันธะ (Å)
N(2B)-C(37B)	1.323(4)
N(2B)-C(39B)	1.451(5)
N(2B)-H(2BB)	0.879(18)
P(1B)-C(1B)	1.833(3)
P(1B)-C(7B)	1.834(3)
P(1B)-C(13B)	1.836(3)
P(2B)-C(25B)	1.820(3)
P(2B)-C(19B)	1.834(3)
P(2B)-C(31B)	1.837(3)
C(1B)-C(6B)	1.378(5)
C(1B)-C(2B)	1.380(5)
C(2B)-C(3B)	1.386(5)
C(2B)-H(2B)	0.9300
C(3B)-C(4B)	1.354(6)
C(3B)-H(3B)	0.9300
C(4B)-C(5B)	1.367(6)
C(4B)-H(4B)	0.9300
C(5B)-C(6B)	1.386(5)
C(5B)-H(5B)	0.9300
C(6B)-H(6B)	0.9300
C(7B)-C(12B)	1.377(5)
C(7B)-C(8B)	1.378(5)
C(8B)-C(9B)	1.377(6)
C(8B)-H(8B)	0.9300
C(9B)-C(10B)	1.380(6)
С(9В)-Н(9В)	0.9300

พันธะ	ความยาวพันธะ (Å)
C(10B)-C(11B)	1 359(6)
С(10В)-Н(10В)	0.9300
C(11B)-C(12B)	1 368(5)
C(11B)-H(11B)	0.9300
C(11D)-H(11D)	0.9300
C(12B) - H(12B)	0.9500
C(13B)-C(14B)	1.363(5)
C(13B)-C(18B)	1.382(5)
C(14B)-C(15B)	1.388(6)
C(14B)-H(14B)	0.9300
C(15B)-C(16B)	1.351(7)
C(15B)-H(15B)	0.9300
C(16B)-C(17B)	1.349(7)
C(16B)-H(16B)	0.9300
C(17B)-C(18B)	1.380(6)
C(17B)-H(17B)	0.9300
C(18B)-H(18B)	0.9300
C(19B)-C(20B)	1.378(5)
C(19B)-C(24B)	1.381(5)
C(20B)-C(21B)	1.378(5)
C(20B)-H(20B)	0.9300
C(21B)-C(22B)	1.357(6)
C(21B)-H(21B)	0.9300
C(22B)-C(23B)	1 362(6)
C(22B)-H(22B)	0.0300
C(22D) C(24D)	1 200(5)
$U(23D)^{-}U(24D)$	1.399(3)

พันธะ	ความยาวพันธะ (Å)	
C(23B)-H(23B)	0.9300	
C(24B)-H(24B)	0.9300	
C(25B)-C(30B)	1 384(5)	
C(25B) - C(26B)	1 393(5)	
C(26B)-C(27B)	1.374(5)	
C(26B)-H(26B)	0.9300	
C(27B)-C(28B)	1.367(6)	
C(27B)-H(27B)	0.9300	
C(28B)-C(29B)	1 359(6)	
C(28B)-H(28B)	0.9300	
C(20B) - C(30B)	1 387(5)	
C(29B)-H(29B)	0.9300	
C(20B)-H(20B)	0.9300	
C(30B)-f(30B)	1.378(5)	
C(31B)-C(32B)	1.373(5)	
C(31B)-C(32B)	1.382(5)	
C(32D)-U(33D)	0.0200	
C(32B)-H(32B)	0.9300	
C(33B)-C(34B)	1.371(0)	
C(33B)-H(33B)	0.9300	
C(34B) - C(35B)	1.370(5)	
C(34B)-H(34B)	0.9300	
C(35B) - C(36B)	1.384(5)	
C(35B)-H(35B)	0.9300	
С(36В)-Н(36В)	0.9300	
C(38B)-H(38A)	0.9600	

ตารางที่ 1 (ต่อ)

พันธะ	ความยาวพันธะ (Å)	
C(38B)-H(38B)	0.9600	
С(38В)-Н(38С)	0.9600	
C(39B)-H(39D)	0.9600	
C(39B)-H(39E)	0.9600	
C(39B)-H(39F)	0.9600	
C(1)-C(2)	1.436(8)	
C(1)-H(1A)	0.9600	
C(1)-H(1B)	0.9600	
C(1)-H(1C)	0.9600	
C(2)-N(3)	1.116(7)	

พันธะ	มุมพันธะ(°)
ໂນເດກຸລ A	
P(1A)-Cu(1A)-P(2A)	124.71(3)
P(1A)-Cu(1A)-S(1A)	107.56(4)
P(2A)-Cu(1A)-S(1A)	104.04(4)
P(1A)-Cu(1A)-Cl(1A)	104.71(3)
P(2A)-Cu(1A)-Cl(1A)	103.01(3)
S(1A)-Cu(1A)-Cl(1A)	112.92(3)
C(37A)-S(1A)-Cu(1A)	111.93(12)
C(37A)-N(1A)-C(38A)	124.4(3)
C(37A)-N(1A)-H(1AA)	120(3)
C(38A)-N(1A)-H(1AA)	116(3)
C(37A)-N(2A)-C(39A)	125.5(3)
C(37A)-N(2A)-H(2AA)	114(2)
C(39A)-N(2A)-H(2AA)	120(2)
C(7A)-P(1A)-C(13A)	102.24(15)
C(7A)-P(1A)-C(1A)	102.89(15)
C(13A)-P(1A)-C(1A)	105.54(16)
C(7A)-P(1A)-Cu(1A)	115.08(11)
C(13A)-P(1A)-Cu(1A)	114.40(11)
C(1A)-P(1A)-Cu(1A)	115.16(11)
C(25A)-P(2A)-C(19A)	103.78(17)
C(25A)-P(2A)-C(31A)	103.71(16)
C(19A)-P(2A)-C(31A)	103.47(17)
C(25A)-P(2A)-Cu(1A)	115.18(12)
C(19A)-P(2A)-Cu(1A)	116.67(12)
C(31A)-P(2A)-Cu(1A)	112.51(12)

ตารางที่ 2 มุมพันธะระหว่างอะตอมใน โมเลกุล[Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN
พันธะ	มุมพันธะ (°)
C(6A)-C(1A)-C(2A)	117.2(4)
C(6A)-C(1A)-P(1A)	117.2(3)
C(2A)-C(1A)-P(1A)	125.6(3)
C(1A)-C(2A)-C(3A)	120.9(4)
C(1A)-C(2A)-H(2A)	119.5
C(3A)-C(2A)-H(2A)	119.5
C(4A)-C(3A)-C(2A)	120.6(4)
C(4A)-C(3A)-H(3A)	119.7
C(2A)-C(3A)-H(3A)	119.7
C(3A)-C(4A)-C(5A)	119.5(4)
C(3A)-C(4A)-H(4A)	120.3
C(5A)-C(4A)-H(4A)	120.3
C(4A)-C(5A)-C(6A)	119.7(5)
C(4A)-C(5A)-H(5A)	120.2
C(6A)-C(5A)-H(5A)	120.2
C(1A)-C(6A)-C(5A)	122.2(4)
C(1A)-C(6A)-H(6A)	118.9
C(5A)-C(6A)-H(6A)	118.9
C(8A)-C(7A)-C(12A)	116.8(3)
C(8A)-C(7A)-P(1A)	118.7(3)
C(12A)-C(7A)-P(1A)	124.6(3)
C(7A)-C(8A)-C(9A)	121.6(4)
C(7A)-C(8A)-H(8A)	119.2
C(9A)-C(8A)-H(8A)	119.2
C(10A)-C(9A)-C(8A)	120.3(4)
C(10A)-C(9A)-H(9A)	119.8

ตารางที่ 2 (ต่อ)

พันธะ	มุมพันธะ (°)
С(8А)-С(9А)-Н(9А)	119.8
C(9A)-C(10A)-C(11A)	119.5(4)
C(9A)-C(10A)-H(10A)	120.3
C(11A)-C(10A)-H(10A)	120.3
C(10A)-C(11A)-C(12A)	120.2(4)
C(10A)-C(11A)-H(11A)	119.9
C(12A)-C(11A)-H(11A)	119.9
C(7A)-C(12A)-C(11A)	121.4(4)
C(7A)-C(12A)-H(12A)	119.3
C(11A)-C(12A)-H(12A)	119.3
C(18A)-C(13A)-C(14A)	118.2(3)
C(18A)-C(13A)-P(1A)	123.6(3)
C(14A)-C(13A)-P(1A)	118.2(3)
C(13A)-C(14A)-C(15A)	120.6(4)
C(13A)-C(14A)-H(14A)	119.7
C(15A)-C(14A)-H(14A)	119.7
C(16A)-C(15A)-C(14A)	120.1(4)
C(16A)-C(15A)-H(15A)	120.0
C(14A)-C(15A)-H(15A)	120.0
C(15A)-C(16A)-C(17A)	120.3(4)
C(15A)-C(16A)-H(16A)	119.9
C(17A)-C(16A)-H(16A)	119.9
C(16A)-C(17A)-C(18A)	119.9(4)
C(16A)-C(17A)-H(17A)	120.1
C(18A)-C(17A)-H(17A)	120.1
C(13A)-C(18A)-C(17A)	121.0(4)

ตารางที่ 2 (ต่อ)

พันธะ	มุมพันธะ (°)
С(13А)-С(18А)-Н(18А)	119.5
С(17А)-С(18А)-Н(18А)	119.5
C(24A)-C(19A)-C(20A)	117.7(4)
C(24A)-C(19A)-P(2A)	124.8(3)
C(20A)-C(19A)-P(2A)	117.4(3)
C(19A)-C(20A)-C(21A)	120.6(4)
C(19A)-C(20A)-H(20A)	119.7
C(21A)-C(20A)-H(20A)	119.7
C(22A)-C(21A)-C(20A)	121.0(5)
C(22A)-C(21A)-H(21A)	119.5
C(20A)-C(21A)-H(21A)	119.5
C(23A)-C(22A)-C(21A)	119.3(5)
C(23A)-C(22A)-H(22A)	120.3
C(21A)-C(22A)-H(22A)	120.3
C(22A)-C(23A)-C(24A)	120.9(5)
C(22A)-C(23A)-H(23A)	119.5
C(24A)-C(23A)-H(23A)	119.5
C(19A)-C(24A)-C(23A)	120.3(5)
C(19A)-C(24A)-H(24A)	119.8
C(23A)-C(24A)-H(24A)	119.8
C(30A)-C(25A)-C(26A)	117.1(4)
C(30A)-C(25A)-P(2A)	118.6(3)
C(26A)-C(25A)-P(2A)	124.3(3)
C(25A)-C(26A)-C(27A)	120.1(4)
C(25A)-C(26A)-H(26A)	120.0
C(27A)-C(26A)-H(26A)	120.0

พันธะ	มุมพันธะ (°)
C(28A)-C(27A)-C(26A)	121.7(5)
C(28A)-C(27A)-H(27A)	119.1
C(26A)-C(27A)-H(27A)	119.1
C(27A)-C(28A)-C(29A)	119.0(4)
C(27A)-C(28A)-H(28A)	120.5
C(29A)-C(28A)-H(28A)	120.5
C(28A)-C(29A)-C(30A)	120.2(5)
C(28A)-C(29A)-H(29A)	119.9
C(30A)-C(29A)-H(29A)	119.9
C(25A)-C(30A)-C(29A)	121.8(4)
C(25A)-C(30A)-H(30A)	119.1
С(29А)-С(30А)-Н(30А)	119.1
C(32A)-C(31A)-C(36A)	117.7(4)
C(32A)-C(31A)-P(2A)	124.7(3)
C(36A)-C(31A)-P(2A)	117.5(3)
C(31A)-C(32A)-C(33A)	120.9(5)
C(31A)-C(32A)-H(32A)	119.5
C(33A)-C(32A)-H(32A)	119.5
C(34A)-C(33A)-C(32A)	119.8(5)
C(34A)-C(33A)-H(33A)	120.1
C(32A)-C(33A)-H(33A)	120.1
C(35A)-C(34A)-C(33A)	120.4(5)
C(35A)-C(34A)-H(34A)	119.8
C(33A)-C(34A)-H(34A)	119.8
C(34A)-C(35A)-C(36A)	119.7(5)
C(34A)-C(35A)-H(35A)	120.1

พันธะ	มุมพันธะ (°)
С(36А)-С(35А)-Н(35А)	120.1
C(31A)-C(36A)-C(35A)	121.5(4)
С(31А)-С(36А)-Н(36А)	119.3
С(35А)-С(36А)-Н(36А)	119.3
N(2A)-C(37A)-N(1A)	118.5(3)
N(2A)-C(37A)-S(1A)	121.2(3)
N(1A)-C(37A)-S(1A)	120.3(3)
N(1A)-C(38A)-H(38D)	109.5
N(1A)-C(38A)-H(38E)	109.5
H(38D)-C(38A)-H(38E)	109.5
N(1A)-C(38A)-H(38F)	109.5
H(38D)-C(38A)-H(38F)	109.5
H(38E)-C(38A)-H(38F)	109.5
N(2A)-C(39A)-H(39A)	109.5
N(2A)-C(39A)-H(39B)	109.5
H(39A)-C(39A)-H(39B)	109.5
N(2A)-C(39A)-H(39C)	109.5
H(39A)-C(39A)-H(39C)	109.5
H(39B)-C(39A)-H(39C)	109.5
ໂມເດກຸດ B	
P(2B)-Cu(1B)-P(1B)	120.07(3)
P(2B)-Cu(1B)-S(1B)	106.08(3)
P(1B)-Cu(1B)-S(1B)	108.79(3)
P(2B)-Cu(1B)-Cl(1B)	105.37(3)
P(1B)-Cu(1B)-Cl(1B)	107.62(3)

พันธะ	มุมพันธะ (°)
S(1B)-Cu(1B)-Cl(1B)	108.45(3)
C(37B)-S(1B)-Cu(1B)	109.86(12)
C(37B)-N(1B)-C(38B)	124.9(3)
C(37B)-N(1B)-H(1BB)	119(3)
C(38B)-N(1B)-H(1BB)	116(3)
C(37B)-N(2B)-C(39B)	124.9(3)
C(37B)-N(2B)-H(2BB)	116(3)
C(39B)-N(2B)-H(2BB)	119(3)
C(1B)-P(1B)-C(7B)	103.14(15)
C(1B)-P(1B)-C(13B)	102.46(15)
C(7B)-P(1B)-C(13B)	101.02(16)
C(1B)-P(1B)-Cu(1B)	116.22(10)
C(7B)-P(1B)-Cu(1B)	114.62(11)
C(13B)-P(1B)-Cu(1B)	117.19(12)
C(25B)-P(2B)-C(19B)	102.78(15)
C(25B)-P(2B)-C(31B)	105.67(15)
C(19B)-P(2B)-C(31B)	99.76(15)
C(25B)-P(2B)-Cu(1B)	114.17(11)
C(19B)-P(2B)-Cu(1B)	115.73(11)
C(31B)-P(2B)-Cu(1B)	116.81(11)
C(6B)-C(1B)-C(2B)	118.3(3)
C(6B)-C(1B)-P(1B)	118.5(3)
C(2B)-C(1B)-P(1B)	123.1(3)
C(1B)-C(2B)-C(3B)	120.4(4)
C(1B)-C(2B)-H(2B)	119.8
C(3B)-C(2B)-H(2B)	119.8

พันธะ	มุมพันธะ (°)
C(4B)-C(3B)-C(2B)	120.8(4)
C(4B)-C(3B)-H(3B)	119.6
C(2B)-C(3B)-H(3B)	119.6
C(3B)-C(4B)-C(5B)	119.6(4)
C(3B)-C(4B)-H(4B)	120.2
C(5B)-C(4B)-H(4B)	120.2
C(4B)-C(5B)-C(6B)	120.3(4)
C(4B)-C(5B)-H(5B)	119.9
C(6B)-C(5B)-H(5B)	119.9
C(1B)-C(6B)-C(5B)	120.6(4)
C(1B)-C(6B)-H(6B)	119.7
C(5B)-C(6B)-H(6B)	119.7
C(12B)-C(7B)-C(8B)	117.9(3)
C(12B)-C(7B)-P(1B)	124.8(3)
C(8B)-C(7B)-P(1B)	117.2(3)
C(9B)-C(8B)-C(7B)	120.6(4)
C(9B)-C(8B)-H(8B)	119.7
C(7B)-C(8B)-H(8B)	119.7
C(8B)-C(9B)-C(10B)	120.1(4)
C(8B)-C(9B)-H(9B)	120.0
C(10B)-C(9B)-H(9B)	120.0
C(11B)-C(10B)-C(9B)	119.6(4)
C(11B)-C(10B)-H(10B)	120.2
C(9B)-C(10B)-H(10B)	120.2
C(10B)-C(11B)-C(12B)	120.1(4)
C(10B)-C(11B)-H(11B)	120.0

พันธะ	มุมพันธะ (°)
С(12В)-С(11В)-Н(11В)	120.0
C(11B)-C(12B)-C(7B)	121.6(4)
С(11В)-С(12В)-Н(12В)	119.2
C(7B)-C(12B)-H(12B)	119.2
C(14B)-C(13B)-C(18B)	118.0(4)
C(14B)-C(13B)-P(1B)	119.3(3)
C(18B)-C(13B)-P(1B)	122.7(3)
C(13B)-C(14B)-C(15B)	120.8(4)
С(13В)-С(14В)-Н(14В)	119.6
C(15B)-C(14B)-H(14B)	119.6
C(16B)-C(15B)-C(14B)	120.6(5)
С(16В)-С(15В)-Н(15В)	119.7
С(14В)-С(15В)-Н(15В)	119.7
C(17B)-C(16B)-C(15B)	119.3(5)
C(17B)-C(16B)-H(16B)	120.3
C(15B)-C(16B)-H(16B)	120.3
C(16B)-C(17B)-C(18B)	120.9(5)
С(16В)-С(17В)-Н(17В)	119.5
С(18В)-С(17В)-Н(17В)	119.5
C(17B)-C(18B)-C(13B)	120.4(5)
C(17B)-C(18B)-H(18B)	119.8
C(13B)-C(18B)-H(18B)	119.8
C(20B)-C(19B)-C(24B)	118.7(3)
C(20B)-C(19B)-P(2B)	117.0(3)
C(24B)-C(19B)-P(2B)	124.3(3)
C(21B)-C(20B)-C(19B)	121.2(4)

พันธะ	มุมพันธะ (°)
C(21B)-C(20B)-H(20B)	119.4
C(19B)-C(20B)-H(20B)	119.4
C(22B)-C(21B)-C(20B)	119.7(4)
C(22B)-C(21B)-H(21B)	120.1
C(20B)-C(21B)-H(21B)	120.1
C(21B)-C(22B)-C(23B)	120.6(4)
C(21B)-C(22B)-H(22B)	119.7
C(23B)-C(22B)-H(22B)	119.7
C(22B)-C(23B)-C(24B)	120.2(4)
C(22B)-C(23B)-H(23B)	119.9
C(24B)-C(23B)-H(23B)	119.9
C(19B)-C(24B)-C(23B)	119.6(4)
C(19B)-C(24B)-H(24B)	120.2
C(23B)-C(24B)-H(24B)	120.2
C(30B)-C(25B)-C(26B)	117.3(3)
C(30B)-C(25B)-P(2B)	125.8(3)
C(26B)-C(25B)-P(2B)	116.9(3)
C(27B)-C(26B)-C(25B)	121.4(4)
C(27B)-C(26B)-H(26B)	119.3
C(25B)-C(26B)-H(26B)	119.3
C(28B)-C(27B)-C(26B)	120.2(4)
C(28B)-C(27B)-H(27B)	119.9
C(26B)-C(27B)-H(27B)	119.9
C(29B)-C(28B)-C(27B)	119.7(4)
C(29B)-C(28B)-H(28B)	120.2
C(27B)-C(28B)-H(28B)	120.2

พันธะ	มุมพันธะ (°)
C(28B)-C(29B)-C(30B)	120.8(4)
C(28B)-C(29B)-H(29B)	119.6
С(30В)-С(29В)-Н(29В)	119.6
C(25B)-C(30B)-C(29B)	120.7(4)
С(25В)-С(30В)-Н(30В)	119.7
С(29В)-С(30В)-Н(30В)	119.7
C(36B)-C(31B)-C(32B)	119.0(3)
C(36B)-C(31B)-P(2B)	118.9(3)
C(32B)-C(31B)-P(2B)	122.0(3)
C(33B)-C(32B)-C(31B)	120.3(4)
С(33В)-С(32В)-Н(32В)	119.9
С(31В)-С(32В)-Н(32В)	119.9
C(34B)-C(33B)-C(32B)	120.5(4)
С(34В)-С(33В)-Н(33В)	119.8
С(32В)-С(33В)-Н(33В)	119.8
C(35B)-C(34B)-C(33B)	119.6(4)
C(35B)-C(34B)-H(34B)	120.2
C(33B)-C(34B)-H(34B)	120.2
C(34B)-C(35B)-C(36B)	120.3(4)
C(34B)-C(35B)-H(35B)	119.8
C(36B)-C(35B)-H(35B)	119.8
C(31B)-C(36B)-C(35B)	120.3(4)
C(31B)-C(36B)-H(36B)	119.9
C(35B)-C(36B)-H(36B)	119.9
N(2B)-C(37B)-N(1B)	117.9(3)
N(2B)-C(37B)-S(1B)	120.8(3)

พันธะ	มุมพันธะ (°)
N(1B)-C(37B)-S(1B)	121.3(3)
N(1B)-C(38B)-H(38A)	109.5
N(1B)-C(38B)-H(38B)	109.5
H(38A)-C(38B)-H(38B)	109.5
N(1B)-C(38B)-H(38C)	109.5
H(38A)-C(38B)-H(38C)	109.5
H(38B)-C(38B)-H(38C)	109.5
N(2B)-C(39B)-H(39D)	109.5
N(2B)-C(39B)-H(39E)	109.5
H(39D)-C(39B)-H(39E)	109.5
N(2B)-C(39B)-H(39F)	109.5
H(39D)-C(39B)-H(39F)	109.5
H(39E)-C(39B)-H(39F)	109.5
C(2)-C(1)-H(1A)	109.5
C(2)-C(1)-H(1B)	109.5
H(1A)-C(1)-H(1B)	109.5
C(2)-C(1)-H(1C)	109.5
H(1A)-C(1)-H(1C)	109.5
H(1B)-C(1)-H(1C)	109.5
N(3)-C(2)-C(1)	178.9(8)

พันธะ	มุมพันธะ (°)
ໂມເດກຸດ A	
P(1A)-Cu(1A)-S(1A)-C(37A)	111.26(13)
P(2A)-Cu(1A)-S(1A)-C(37A)	-114.72(13)
Cl(1A)-Cu(1A)-S(1A)-C(37A)	-3.76(13)
P(2A)-Cu(1A)-P(1A)-C(7A)	-63.24(12)
S(1A)-Cu(1A)-P(1A)-C(7A)	58.69(12)
Cl(1A)-Cu(1A)-P(1A)-C(7A)	179.05(12)
P(2A)-Cu(1A)-P(1A)-C(13A)	178.77(12)
S(1A)-Cu(1A)-P(1A)-C(13A)	-59.29(12)
Cl(1A)-Cu(1A)-P(1A)-C(13A)	61.07(12)
P(2A)-Cu(1A)-P(1A)-C(1A)	56.23(13)
S(1A)-Cu(1A)-P(1A)-C(1A)	178.16(12)
Cl(1A)-Cu(1A)-P(1A)-C(1A)	-61.48(13)
P(1A)-Cu(1A)-P(2A)-C(25A)	66.15(14)
S(1A)-Cu(1A)-P(2A)-C(25A)	-57.33(13)
Cl(1A)-Cu(1A)-P(2A)-C(25A)	-175.35(13)
P(1A)-Cu(1A)-P(2A)-C(19A)	-55.91(14)
S(1A)-Cu(1A)-P(2A)-C(19A)	-179.39(13)
Cl(1A)-Cu(1A)-P(2A)-C(19A)	62.59(14)
P(1A)-Cu(1A)-P(2A)-C(31A)	-175.27(13)
S(1A)-Cu(1A)-P(2A)-C(31A)	61.25(13)
Cl(1A)-Cu(1A)-P(2A)-C(31A)	-56.77(13)
C(7A)-P(1A)-C(1A)-C(6A)	85.3(4)
C(13A)-P(1A)-C(1A)-C(6A)	-167.9(3)
Cu(1A)-P(1A)-C(1A)-C(6A)	-40.7(4)
C(7A)-P(1A)-C(1A)-C(2A)	-94.5(4)

ตารางที่ 3 มุม Torsion ในโมเลกุล [Cu(PPh₃)₂(dmtu)Cl] · 0.5CH₃CN

พันธะ	มุมพันธะ (°)
C(13A)-P(1A)-C(1A)-C(2A)	12.3(4)
Cu(1A)-P(1A)-C(1A)-C(2A)	139.5(3)
C(6A)-C(1A)-C(2A)-C(3A)	-1.0(7)
P(1A)-C(1A)-C(2A)-C(3A)	178.9(4)
C(1A)-C(2A)-C(3A)-C(4A)	1.1(8)
C(2A)-C(3A)-C(4A)-C(5A)	-0.7(8)
C(3A)-C(4A)-C(5A)-C(6A)	0.2(9)
C(2A)-C(1A)-C(6A)-C(5A)	0.5(8)
P(1A)-C(1A)-C(6A)-C(5A)	-179.3(5)
C(4A)-C(5A)-C(6A)-C(1A)	-0.1(9)
C(13A)-P(1A)-C(7A)-C(8A)	79.7(3)
C(1A)-P(1A)-C(7A)-C(8A)	-170.9(3)
Cu(1A)-P(1A)-C(7A)-C(8A)	-44.9(3)
C(13A)-P(1A)-C(7A)-C(12A)	-101.4(3)
C(1A)-P(1A)-C(7A)-C(12A)	7.9(4)
Cu(1A)-P(1A)-C(7A)-C(12A)	134.0(3)
C(12A)-C(7A)-C(8A)-C(9A)	-3.8(6)
P(1A)-C(7A)-C(8A)-C(9A)	175.1(4)
C(7A)-C(8A)-C(9A)-C(10A)	0.9(8)
C(8A)-C(9A)-C(10A)-C(11A)	3.0(8)
C(9A)-C(10A)-C(11A)-C(12A)	-3.8(8)
C(8A)-C(7A)-C(12A)-C(11A)	3.0(6)
P(1A)-C(7A)-C(12A)-C(11A)	-175.9(4)
C(10A)-C(11A)-C(12A)-C(7A)	0.8(8)
C(7A)-P(1A)-C(13A)-C(18A)	39.2(4)
C(1A)-P(1A)-C(13A)-C(18A)	-68.1(3)

พันธะ	มุมพันธะ (°)
$C_{1}(1A) \mathbb{D}(1A) C(12A) C(12A)$	1(4.2(2))
Cu(1A)-P(1A)-C(13A)-C(18A)	164.3(3)
C(7A)-P(1A)-C(13A)-C(14A)	-137.6(3)
C(1A)-P(1A)-C(13A)-C(14A)	115.1(3)
Cu(1A)-P(1A)-C(13A)-C(14A)	-12.6(3)
C(18A)-C(13A)-C(14A)-C(15A)	0.6(6)
P(1A)-C(13A)-C(14A)-C(15A)	177.6(3)
C(13A)-C(14A)-C(15A)-C(16A)	0.6(7)
C(14A)-C(15A)-C(16A)-C(17A)	-1.0(8)
C(15A)-C(16A)-C(17A)-C(18A)	0.1(8)
C(14A)-C(13A)-C(18A)-C(17A)	-1.4(6)
P(1A)-C(13A)-C(18A)-C(17A)	-178.3(3)
C(16A)-C(17A)-C(18A)-C(13A)	1.2(7)
C(25A)-P(2A)-C(19A)-C(24A)	-3.9(4)
C(31A)-P(2A)-C(19A)-C(24A)	-112.0(4)
Cu(1A)-P(2A)-C(19A)-C(24A)	123.9(3)
C(25A)-P(2A)-C(19A)-C(20A)	179.9(3)
C(31A)-P(2A)-C(19A)-C(20A)	71.9(3)
Cu(1A)-P(2A)-C(19A)-C(20A)	-52.3(3)
C(24A)-C(19A)-C(20A)-C(21A)	1.9(7)
P(2A)-C(19A)-C(20A)-C(21A)	178.4(4)
C(19A)-C(20A)-C(21A)-C(22A)	-2.4(8)
C(20A)-C(21A)-C(22A)-C(23A)	0.9(9)
C(21A)-C(22A)-C(23A)-C(24A)	0.9(9)
C(20A)-C(19A)-C(24A)-C(23A)	-0.2(7)
P(2A)-C(19A)-C(24A)-C(23A)	-176.3(4)
C(22A)-C(23A)-C(24A)-C(19A)	-1.3(9)

พันธะ	มุมพันธะ (°)		
C(19A)-P(2A)-C(25A)-C(30A)	91.1(3)		
C(31A)-P(2A)-C(25A)-C(30A)	-161.0(3)		
Cu(1A)-P(2A)-C(25A)-C(30A)	-37.6(4)		
C(19A)-P(2A)-C(25A)-C(26A)	-89.9(4)		
C(31A)-P(2A)-C(25A)-C(26A)	18.0(4)		
Cu(1A)-P(2A)-C(25A)-C(26A)	141.4(4)		
C(30A)-C(25A)-C(26A)-C(27A)	-0.2(7)		
P(2A)-C(25A)-C(26A)-C(27A)	-179.2(4)		
C(25A)-C(26A)-C(27A)-C(28A)	-2.3(9)		
C(26A)-C(27A)-C(28A)-C(29A)	3.4(9)		
C(27A)-C(28A)-C(29A)-C(30A)	-2.0(8)		
C(26A)-C(25A)-C(30A)-C(29A)	1.6(7)		
P(2A)-C(25A)-C(30A)-C(29A)	-179.3(4)		
C(28A)-C(29A)-C(30A)-C(25A)	-0.5(8)		
C(25A)-P(2A)-C(31A)-C(32A)	-108.7(4)		
C(19A)-P(2A)-C(31A)-C(32A)	-0.6(4)		
Cu(1A)-P(2A)-C(31A)-C(32A)	126.2(3)		
C(25A)-P(2A)-C(31A)-C(36A)	73.7(3)		
C(19A)-P(2A)-C(31A)-C(36A)	-178.2(3)		
Cu(1A)-P(2A)-C(31A)-C(36A)	-51.4(3)		
C(36A)-C(31A)-C(32A)-C(33A)	-0.3(7)		
P(2A)-C(31A)-C(32A)-C(33A)	-178.0(4)		
C(31A)-C(32A)-C(33A)-C(34A)	-0.2(8)		
C(32A)-C(33A)-C(34A)-C(35A)	-0.5(8)		
C(33A)-C(34A)-C(35A)-C(36A)	1.7(8)		

พันธะ	มุมพันธะ (°)	
C(32A)- $C(31A)$ - $C(36A)$ - $C(35A)$	1.6(6)	
P(2A)-C(31A)-C(36A)-C(35A)	179.4(3)	
C(34A)-C(35A)-C(36A)-C(31A)	-2.3(7)	
C(39A)-N(2A)-C(37A)-N(1A)	5.3(6)	
C(39A)-N(2A)-C(37A)-S(1A)	-174.0(3)	
C(38A)-N(1A)-C(37A)-N(2A)	178.2(4)	
C(38A)-N(1A)-C(37A)-S(1A)	-2.5(6)	
Cu(1A)-S(1A)-C(37A)-N(2A)	-4.3(3)	
Cu(1A)-S(1A)-C(37A)-N(1A)	176.4(3)	
ໂນເລກຸລ B		
P(2B)-Cu(1B)-S(1B)-C(37B)-	150.75(13)	
P(1B)-Cu(1B)-S(1B)-C(37B)	78.79(13)	
Cl(1B)-Cu(1B)-S(1B)-C(37B)	-37.99(13)	
P(2B)-Cu(1B)-P(1B)-C(1B)	50.41(13)	
S(1B)-Cu(1B)-P(1B)-C(1B)	172.76(13)	
Cl(1B)-Cu(1B)-P(1B)-C(1B)	-69.93(13)	
P(2B)-Cu(1B)-P(1B)-C(7B)	-69.88(13)	
S(1B)-Cu(1B)-P(1B)-C(7B)	52.47(13)	
Cl(1B)-Cu(1B)-P(1B)-C(7B)	169.78(12)	
P(2B)-Cu(1B)-P(1B)-C(13B)	171.97(12)	
S(1B)-Cu(1B)-P(1B)-C(13B)	-65.69(13)	
Cl(1B)-Cu(1B)-P(1B)-C(13B)	51.63(13)	
P(1B)-Cu(1B)-P(2B)-C(25B)	66.44(12)	
S(1B)-Cu(1B)-P(2B)-C(25B)	-57.21(12)	

พันธะ	มุมพันธะ (°)		
Cl(1B)-Cu(1B)-P(2B)-C(25B)	-172.10(12)		
P(1B)-Cu(1B)-P(2B)-C(19B)	-52.59(13)		
S(1B)-Cu(1B)-P(2B)-C(19B)	-176.25(13)		
Cl(1B)-Cu(1B)-P(2B)-C(19B)	68.87(13)		
P(1B)-Cu(1B)-P(2B)-C(31B)	-169.61(12)		
S(1B)-Cu(1B)-P(2B)-C(31B)	66.73(12)		
Cl(1B)-Cu(1B)-P(2B)-C(31B)	-48.15(12)		
C(7B)-P(1B)-C(1B)-C(6B)	74.3(3)		
C(13B)-P(1B)-C(1B)-C(6B)	178.9(3)		
Cu(1B)-P(1B)-C(1B)-C(6B)	-52.0(3)		
C(7B)-P(1B)-C(1B)-C(2B)	-107.7(3)		
C(13B)-P(1B)-C(1B)-C(2B)	-3.0(4)		
Cu(1B)-P(1B)-C(1B)-C(2B)	126.1(3)		
C(6B)-C(1B)-C(2B)-C(3B)	-1.0(6)		
P(1B)-C(1B)-C(2B)-C(3B)	-179.1(3)		
C(1B)-C(2B)-C(3B)-C(4B)	-0.9(7)		
C(2B)-C(3B)-C(4B)-C(5B)	2.0(7)		
C(3B)-C(4B)-C(5B)-C(6B)	-1.1(7)		
C(2B)-C(1B)-C(6B)-C(5B)	1.9(5)		
P(1B)-C(1B)-C(6B)-C(5B)	-180.0(3)		
C(4B)-C(5B)-C(6B)-C(1B)	-0.8(6)		
C(1B)-P(1B)-C(7B)-C(12B)	-4.2(4)		
C(13B)-P(1B)-C(7B)-C(12B)	-109.9(3)		
Cu(1B)-P(1B)-C(7B)-C(12B)	123.1(3)		
C(1B)-P(1B)-C(7B)-C(8B)	176.5(3)		

พันธะ	มุมพันธะ (°)		
C(13B)-P(1B)-C(7B)-C(8B)	70.8(3)		
Cu(1B)-P(1B)-C(7B)-C(8B)	-56.2(3)		
C(12B)-C(7B)-C(8B)-C(9B)	2.3(7)		
P(1B)-C(7B)-C(8B)-C(9B)	-178.4(4)		
C(7B)-C(8B)-C(9B)-C(10B)	-1.7(8)		
C(8B)-C(9B)-C(10B)-C(11B)	0.1(8)		
C(9B)-C(10B)-C(11B)-C(12B)	0.9(7)		
C(10B)-C(11B)-C(12B)-C(7B)	-0.3(7)		
C(8B)-C(7B)-C(12B)-C(11B)	-1.3(6)		
P(1B)-C(7B)-C(12B)-C(11B)	179.4(3)		
C(1B)-P(1B)-C(13B)-C(14B)	107.1(3)		
C(7B)-P(1B)-C(13B)-C(14B)	-146.7(3)		
Cu(1B)-P(1B)-C(13B)-C(14B)	-21.4(4)		
C(1B)-P(1B)-C(13B)-C(18B)	-72.3(3)		
C(7B)-P(1B)-C(13B)-C(18B)	34.0(3)		
Cu(1B)-P(1B)-C(13B)-C(18B)	159.3(3)		
C(18B)-C(13B)-C(14B)-C(15B)	-0.5(7)		
P(1B)-C(13B)-C(14B)-C(15B)	-179.9(4)		
C(13B)-C(14B)-C(15B)-C(16B)	1.3(8)		
C(14B)-C(15B)-C(16B)-C(17B)	-1.3(8)		
C(15B)-C(16B)-C(17B)-C(18B)	0.5(8)		
C(16B)-C(17B)-C(18B)-C(13B)	0.3(7)		
C(14B)-C(13B)-C(18B)-C(17B)	-0.2(6)		
P(1B)-C(13B)-C(18B)-C(17B)	179.1(3)		
C(25B)-P(2B)-C(19B)-C(20B)	-178.2(3)		
C(31B)-P(2B)-C(19B)-C(20B)	73.1(3)		

พันธะ	มุมพันธะ (°)
Cu(1B)-P(2B)-C(19B)-C(20B)	-53.1(3)
C(25B)-P(2B)-C(19B)-C(24B)	2.4(3)
C(31B)-P(2B)-C(19B)-C(24B)	-106.2(3)
Cu(1B)-P(2B)-C(19B)-C(24B)	127.5(3)
C(24B)-C(19B)-C(20B)-C(21B)	0.4(6)
P(2B)-C(19B)-C(20B)-C(21B)	-179.0(3)
C(19B)-C(20B)-C(21B)-C(22B)	-1.6(7)
C(20B)-C(21B)-C(22B)-C(23B)	1.9(7)
C(21B)-C(22B)-C(23B)-C(24B)	-1.0(7)
C(20B)-C(19B)-C(24B)-C(23B)	0.4(6)
P(2B)-C(19B)-C(24B)-C(23B)	179.8(3)
C(22B)-C(23B)-C(24B)-C(19B)	-0.2(7)
C(19B)-P(2B)-C(25B)-C(30B)	-94.0(3)
C(31B)-P(2B)-C(25B)-C(30B)	10.2(3)
Cu(1B)-P(2B)-C(25B)-C(30B)	139.9(3)
C(19B)-P(2B)-C(25B)-C(26B)	85.2(3)
C(31B)-P(2B)-C(25B)-C(26B)	-170.7(3)
Cu(1B)-P(2B)-C(25B)-C(26B)	-41.0(3)
C(30B)-C(25B)-C(26B)-C(27B)	1.7(6)
P(2B)-C(25B)-C(26B)-C(27B)	-177.5(3)
C(25B)-C(26B)-C(27B)-C(28B)	-1.6(6)
C(26B)-C(27B)-C(28B)-C(29B)	0.2(6)
C(27B)-C(28B)-C(29B)-C(30B)	1.0(7)
C(26B)-C(25B)-C(30B)-C(29B)	-0.6(5)
P(2B)-C(25B)-C(30B)-C(29B)	178.5(3)
C(28B)-C(29B)-C(30B)-C(25B)	-0.8(6)

พันธะ	มุมพันธะ (°)	
C(25B)-P(2B)-C(31B)-C(36B)	111.2(3)	
C(19B)-P(2B)-C(31B)-C(36B)	-142.5(3)	
Cu(1B)-P(2B)-C(31B)-C(36B)	-17.0(3)	
C(25B)-P(2B)-C(31B)-C(32B)	-71.8(3)	
C(19B)-P(2B)-C(31B)-C(32B)	34.5(3)	
Cu(1B)-P(2B)-C(31B)-C(32B)	160.0(3)	
C(36B)-C(31B)-C(32B)-C(33B)	-1.9(6)	
P(2B)-C(31B)-C(32B)-C(33B)	-178.9(3)	
C(31B)-C(32B)-C(33B)-C(34B)	1.6(6)	
C(32B)-C(33B)-C(34B)-C(35B)	-0.3(7)	
C(33B)-C(34B)-C(35B)-C(36B)	-0.7(6)	
C(32B)-C(31B)-C(36B)-C(35B)	1.0(5)	
P(2B)-C(31B)-C(36B)-C(35B)	178.1(3)	
C(34B)-C(35B)-C(36B)-C(31B)	0.3(6)	
C(39B)-N(2B)-C(37B)-N(1B)	5.9(6)	
C(39B)-N(2B)-C(37B)-S(1B)	-175.8(3)	
C(38B)-N(1B)-C(37B)-N(2B)	-178.7(4)	
C(38B)-N(1B)-C(37B)-S(1B)	3.0(6)	
Cu(1B)-S(1B)-C(37B)-N(2B)	27.2(3)	
Cu(1B)-S(1B)-C(37B)-N(1B)	-154.6(3)	

อะตอม	Х	у	Z	U(eq)A**2	
 ໂມເດກຸລ A					
Cu(1A)	8337(1)	2233(1)	6689(1)	40(1)	
Cl(1A)	7633(1)	1502(1)	6673(1)	52(1)	
S(1A)	9985(1)	2235(1)	7087(1)	51(1)	
N(1A)	11290(2)	1651(1)	7551(2)	61(1)	
N(2A)	9764(2)	1379(1)	7361(2)	52(1)	
P(1A)	7460(1)	2617(1)	7527(1)	38(1)	
P(2A)	8411(1)	2411(1)	5485(1)	42(1)	
C(1A)	6156(2)	2674(1)	7313(2)	43(1)	
C(2A)	5422(3)	2638(2)	7798(2)	73(1)	
C(3A)	4458(3)	2695(2)	7580(3)	92(2)	
C(4A)	4228(3)	2779(2)	6880(3)	86(2)	
C(5A)	4943(4)	2813(2)	6390(3)	114(2)	
C(6A)	5902(3)	2760(2)	6611(2)	92(2)	
C(7A)	7845(2)	3194(1)	7674(2)	40(1)	
C(8A)	8823(3)	3284(1)	7747(3)	72(1)	
C(9A)	9167(3)	3714(1)	7805(3)	85(2)	
C(10A)	8543(3)	4060(1)	7802(3)	75(1)	
C(11A)	7566(3)	3981(1)	7774(3)	86(2)	
C(12A)	7222(3)	3553(1)	7706(2)	69(1)	
C(13A)	7527(2)	2386(1)	8447(2)	43(1)	
C(14A)	7917(3)	1966(1)	8537(2)	62(1)	
C(15A)	8018(4)	1781(2)	9224(2)	80(1)	
C(16A)	7725(4)	2012(2)	9815(2)	81(1)	
C(17A)	7343(4)	2426(2)	9739(2)	84(2)	
C(18A)	7252(3)	2615(1)	9055(2)	68(1)	

ตารางที่ 4 พิกัดของอะตอม(ยกเว้นไฮโดรเจน)ในโมเลกุล [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN

ตารางที่ 4 (ต่อ)

อะตอม	x	у	Z	U(eq)A**2
C(19A)	7252(3)	2447(1)	4987(2)	50(1)
C(20A)	6629(3)	2090(2)	5034(2)	74(1)
C(21A)	5732(3)	2098(2)	4688(3)	95(2)
C(22A)	5430(4)	2460(2)	4319(3)	97(2)
C(23A)	6016(4)	2815(2)	4280(3)	107(2)
C(24A)	6937(3)	2812(2)	4607(2)	83(1)
C(25A)	9008(3)	2938(1)	5285(2)	47(1)
C(26A)	9612(4)	3006(2)	4704(3)	89(2)
C(27A)	10042(4)	3418(2)	4602(3)	106(2)
C(28A)	9863(4)	3763(2)	5041(3)	88(2)
C(29A)	9285(4)	3701(2)	5622(3)	87(2)
C(30A)	8865(3)	3291(1)	5743(2)	70(1)
C(31A)	9103(3)	2002(1)	4965(2)	49(1)
C(32A)	8768(3)	1791(2)	4363(3)	82(1)
C(33A)	9334(4)	1473(2)	4013(3)	105(2)
C(34A)	10232(4)	1376(2)	4275(3)	92(2)
C(35A)	10585(4)	1584(2)	4867(3)	82(1)
C(36A)	10018(3)	1891(1)	5220(2)	68(1)
C(37A)	10368(2)	1718(1)	7348(2)	43(1)
C(38A)	12041(3)	1991(1)	7544(3)	91(2)
C(39A)	9991(3)	940(1)	7634(2)	68(1)
โมเลกุล B				
Cu(1B)	3114(1)	10192(1)	7598(1)	39(1)
Cl(1B)	2657(1)	10866(1)	8199(1)	49(1)
S(1B)	4845(1)	10139(1)	7623(1)	48(1)

อะตอม	х	у	Z	U(eq)A**2
N(1B)	6224(2)	10702(1)	7228(2)	60(1)
N(2B)	4872(2)	11018(1)	7694(2)	61(1)
P(1B)	2587(1)	10243(1)	6411(1)	39(1)
P(2B)	2567(1)	9630(1)	8319(1)	38(1)
C(1B)	1268(2)	10218(1)	6256(2)	41(1)
C(2B)	757(3)	10539(2)	5873(2)	70(1)
C(3B)	-243(3)	10504(2)	5783(3)	88(2)
C(4B)	-733(3)	10154(2)	6060(2)	74(1)
C(5B)	-240(3)	9837(2)	6452(2)	65(1)
C(6B)	758(3)	9870(1)	6554(2)	52(1)
C(7B)	3047(2)	9805(1)	5814(2)	45(1)
C(8B)	4042(3)	9756(2)	5777(2)	76(1)
C(9B)	4443(3)	9442(2)	5327(3)	93(2)
C(10B)	3848(4)	9164(2)	4921(2)	83(1)
C(11B)	2867(3)	9203(2)	4968(2)	73(1)
C(12B)	2472(3)	9520(1)	5408(2)	61(1)
C(13B)	2930(2)	10744(1)	5906(2)	46(1)
C(14B)	3182(3)	11120(1)	6278(2)	78(1)
C(15B)	3444(4)	11505(2)	5913(3)	101(2)
C(16B)	3434(3)	11517(2)	5180(3)	91(2)
C(17B)	3186(3)	11148(2)	4803(3)	87(2)
C(18B)	2935(3)	0760(2)	5156(2)	67(1)
C(19B)	1242(2)	9568(1)	8357(2)	44(1)
C(20B)	712(3)	9941(1)	8533(2)	61(1)
C(21B)	-286(3)	9925(2)	8586(3)	78(1)
C(22B)	-763(3)	9538(2)	8446(3)	85(2)

ตารางที่ 4 (ต่อ)

อะตอม	x	у	Z	U(eq)A**2
C(23B)	-262(3)	9163(2)	8273(3)	83(1)
C(24B)	752(3)	9174(1)	8228(2)	62(1)
C(25B)	2967(2)	9079(1)	8046(2)	43(1)
C(26B)	2962(3)	8988(1)	7305(2)	58(1)
C(27B)	3214(3)	8576(1)	7044(2)	69(1)
C(28B)	3500(3)	8247(1)	7513(3)	70(1)
C(29B)	3532(3)	8329(1)	8238(3)	73(1)
C(30B)	3262(3)	8741(1)	8510(2)	59(1)
C(31B)	2855(2)	9672(1)	9294(2)	42(1)
C(32B)	2338(3)	9439(1)	9808(2)	57(1)
C(33B)	2566(3)	9484(2)	10535(2)	69(1)
C(34B)	3290(3)	9768(2)	10759(2)	68(1)
C(35B)	3792(3)	10007(1)	10254(2)	64(1)
C(36B)	3578(2)	9959(1)	9522(2)	53(1)
C(37B)	5344(2)	10654(1)	7501(2)	44(1)
C(38B)	6826(3)	10342(1)	6979(3)	82(1)
C(39B)	5206(3)	11469(1)	7571(3)	87(2)
C(1)	8259(4)	9111(3)	6(3)	139(3)
C(2)	9263(5)	9048(2)	207(3)	105(2)
N(3)	10045(4)	8995(2)	354(3)	137(2)

Гылар к H(1AA) 11480(30) 1385(8) 7690(20) 74 H(2AA) 9202(17) 1429(12) 7146(18) 62 H(2A) 5568 2575 8282 87 H(3A) 3968 2674 7921 111 H(4A) 3581 2814 6736 103 H(5A) 4792 2872 5906 137 H(6A) 6389 2783 6269 111 H(8A) 9263 3049 7757 87 H(9A) 9833 3765 7847 102 H(10A) 8777 4350 7819 90 H(11A) 7131 4218 7800 103 H(12A) 6554 3504 7681 82 H(14A) 8113 1805 8134 75 H(15A) 7185 1885 10274 98 H(17A) 7143 2583 10146 100 H(18A)	อะตอม	X	у	Z	U(eq)A**2		
H(1AA)11480(30)1385(8)7690(20)74H(2AA)9202(17)1429(12)7146(18)62H(2A)55682575828287H(3A)396826747921111H(4A)358128146736103H(5A)479228725906137H(6A)638927836269111H(8A)9263304975787H(10A)877743507847102H(10A)713142187800103H(14A)65543504768182H(15A)82881499927996H(16A)778518851027498H(16A)701258310146100H(18A)70128144710114H(22A)681518404710114H(22A)580630674031129H(24A)73403059456799H(26A)97312754381107H(28A)1013240414948105	โมเลกุล A						
H(2AA)9202(17)1429(12)7146(18)62H(2A)55682575828287H(3A)396826747921111H(4A)358128146736103H(5A)479228725906137H(6A)638927836269111H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)71314218768182H(14A)81131805813475H(16A)778518851027498H(16A)778518851027498H(17A)7143258310146100H(18A)7001290190782H(20A)68151840530188H(21A)530618494031117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(28A)1046734564218127	H(1AA)	11480(30)	1385(8)	7690(20)	74		
H(2A)55682575828287H(3A)396826747921111H(4A)358128146736103H(5A)479228725906137H(6A)638927836269111H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)73127754381107H(28A)1046734564218127H(28A)1013240414948105	H(2AA)	9202(17)	1429(12)	7146(18)	62		
H(3A)396826747921111H(4A)358128146736103H(5A)479228725906137H(6A)638927836269111H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)973127754381107H(28A)1046734564218127H(28A)1046734564218105	H(2A)	5568	2575	8282	87		
H(4A)358128146736103H(5A)479228725906137H(6A)638927836269111H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)973127754381107H(28A)1046734564218127H(28A)1013240414948105	H(3A)	3968	2674	7921	111		
H(5A)479228725906137H(6A)638927836269111H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)7012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)973127754381107H(28A)1046734564218127H(28A)1013240414948105	H(4A)	3581	2814	6736	103		
H(6A)638927836269111H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(5A)	4792	2872	5906	137		
H(8A)92633049775787H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)681518494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(28A)1013240414948105	H(6A)	6389	2783	6269	111		
H(9A)983337657847102H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(28A)1013240414948105	H(8A)	9263	3049	7757	87		
H(10A)87774350781990H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)973127754381107H(28A)1046734564218127H(28A)1013240414948105	H(9A)	9833	3765	7847	102		
H(11A)713142187800103H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(10A)	8777	4350	7819	90		
H(12A)65543504768182H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(28A)1046734564218127	H(11A)	7131	4218	7800	103		
H(14A)81131805813475H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127	H(12A)	6554	3504	7681	82		
H(15A)82881499927996H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(14A)	8113	1805	8134	75		
H(16A)778518851027498H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(28A)1046734564218127	H(15A)	8288	1499	9279	96		
H(17A)7143258310146100H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(16A)	7785	1885	10274	98		
H(18A)70012901900782H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(17A)	7143	2583	10146	100		
H(20A)68151840530188H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(18A)	7001	2901	9007	82		
H(21A)533018494710114H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(20A)	6815	1840	5301	88		
H(22A)482024644093117H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(21A)	5330	1849	4710	114		
H(23A)580630674031129H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(22A)	4820	2464	4093	117		
H(24A)73403059456799H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(23A)	5806	3067	4031	129		
H(26A)973127754381107H(27A)1046734564218127H(28A)1013240414948105	H(24A)	7340	3059	4567	99		
H(27A)1046734564218127H(28A)1013240414948105	H(26A)	9731	2775	4381	107		
H(28A) 10132 4041 4948 105	H(27A)	10467	3456	4218	127		
	H(28A)	10132	4041	4948	105		

ตารางที่ 5 พิกัคของอะตอมไฮโครเจนในโมเลกุล [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN

ตารางที่ 5 (ต่อ)

อะตอม	Х	у	Z	U(eq)A**2
H(29A)	9171	3935	5940	104
H(30A)	8475	3253	6146	84
H(32A)	8151	1858	4180	99
H(33A)	9094	1329	3600	126
H(34A)	10608	1163	4044	111
H(35A)	11211	1522	5038	99
H(36A)	10258	2027	5640	82
H(38D)	12062	2125	7072	136
H(38E)	12660	1857	7657	136
H(38F)	11899	2214	7900	136
H(39A)	10525	818	7369	102
H(39B)	9433	751	7575	102
H(39C)	10166	959	8140	102
	โมเล	ลกุล B		
H(1BB)	6460(30)	10968(8)	7190(20)	72
H(2BB)	4301(18)	10976(13)	7892(19)	73
H(2B)	1085	10779	5674	84
H(3B)	-581	10724	5530	105
H(4B)	-1401	10129	5985	89
H(5B)	-576	9599	6651	78
H(6B)	1086	9655	6827	63
H(8B)	4446	9937	6059	91
H(9B)	5115	9416	5296	111
H(10B)	4118	8951	4617	99
H(11B)	2463	9014	4701	88

ตารางที่ 5 (ต่อ)

อะตอม	x	у	Z	U(eq)A**2
H(12B)	1800	9544	5433	73
H(14B)	3179	11118	6783	94
H(15B)	3627	11756	6175	121
H(16B)	3598	11777	4938	109
H(17B)	3184	11155	4299	104
H(18B)	2768	10509	4888	81
H(20B)	1035	10208	8618	73
H(21B)	-631	10178	8717	94
H(22B)	-1438	9529	8468	101
H(23B)	-595	8898	8186	100
H(24B)	1095	8917	8112	74
H(26B)	2784	9211	6979	70
H(27B)	3191	8521	6548	83
H(28B)	3673	7968	7336	84
H(29B)	3736	8106	8556	88
H(30B)	3281	8790	9008	71
H(32B)	1835	9250	9662	69
H(33B)	2225	9320	10877	83
H(34B)	3439	9799	11251	82
H(35B)	4279	10203	10404	77
H(36B)	3925	10121	9182	63
H(38A)	6986	10150	7379	123
H(38B)	7414	10461	6781	123
H(38C)	6481	10177	6611	123
H(39D)	5827	11511	7805	131
H(39E)	4746	11675	7766	131

อะตอม	U11	U22	U33	U23	U 13	U12
		Ĩ	มเลกุล A			
Cu(1A)	38(1)	36(1)	45(1)	1(1)	4(1)	2(1)
Cl(1A)	47(1)	42(1)	66(1)	-2(1)	1(1)	-13(1)
S(1A)	39(1)	34(1)	80(1)	3(1)	-10(1)	1(1)
N(1A)	40(2)	40(2)	104(3)	5(2)	-10(2)	7(2)
N(2A)	47(2)	36(2)	73(2)	4(2)	-9(2)	1(2)
P(1A)	35(1)	36(1)	43(1)	-1(1)	3(1)	3(1)
P(2A)	41(1)	41(1)	43(1)	2(1)	4(1)	2(1)
C(1A)	36(2)	39(2)	54(2)	-10(2)	1(2)	1(2)
C(2A)	43(2)	94(3)	80(3)	9(3)	9(2)	-6(2)
C(3A)	43(3)	118(4)	116(4)	-3(4)	16(3)	-6(3)
C(4A)	41(3)	94(4)	122(4)	-28(3)	-16(3)	9(2)
C(5A)	65(3)	202(7)	74(3)	-23(4)	-17(3)	40(4)
C(6A)	45(3)	169(5)	62(3)	-14(3)	0(2)	31(3)
C(7A)	39(2)	38(2)	43(2)	-2(2)	0(2)	5(2)
C(8A)	44(2)	48(2)	125(4)	-29(2)	2(2)	5(2)
C(9A)	45(2)	66(3)	144(5)	-37(3)	18(3)	-10(2)
C(10A)	77(3)	41(2)	108(4)	-2(2)	16(3)	-10(2)
C(11A)	72(3)	38(2)	148(5)	0(3)	-16(3)	8(2)
C(12A)	53(2)	42(2)	110(3)	-2(2)	-10(2)	4(2)
C(13A)	44(2)	39(2)	45(2)	3(2)	3(2)	-4(2)
C(14A)	82(3)	53(2)	51(2)	4(2)	6(2)	8(2)
C(15A)	108(4)	63(3)	70(3)	22(2)	5(3)	9(3)
C(16A)	114(4)	78(3)	52(3)	18(2)	-4(3)	-22(3)
C(17A)	125(4)	79(3)	48(3)	-11(2)	20(3)	-17(3)
C(18A)	99(3)	51(2)	54(2)	-3(2)	10(2)	-1(2)

ตารางที่ 6 เทอร์มอลพารามิเตอร์ของอะตอมใน โมเลกุล [Cu(PPh₃)₂(dmtu)Cl]• 0.5CH₃CN

อะตอม	Un	U22	U33	U23	U 13	U12
C(19A)	51(2)	55(2)	44(2)	-2(2)	-2(2)	7(2)
C(20A)	49(2)	75(3)	96(3)	9(3)	-11(2)	0(2)
C(21A)	57(3)	108(4)	119(4)	-2(4)	-20(3)	-8(3)
C(22A)	66(3)	130(5)	95(4)	-14(4)	-35(3)	17(3)
C(23A)	106(4)	111(5)	104(4)	19(4)	-49(4)	22(4)
C(24A)	85(3)	79(3)	83(3)	19(3)	-29(3)	1(3)
C(25A)	52(2)	41(2)	48(2)	7(2)	3(2)	-2(2)
C(26A)	128(4)	57(3)	84(3)	4(2)	49(3)	-17(3)
C(27A)	130(5)	84(4)	105(4)	14(3)	56(4)	-27(3)
C(28A)	93(4)	59(3)	112(4)	25(3)	5(3)	-24(3)
C(29A)	112(4)	53(3)	96(4)	-6(3)	12(3)	-19(3)
C(30A)	85(3)	54(3)	71(3)	-1(2)	16(2)	-11(2)
C(31A)	52(2)	43(2)	52(2)	2(2)	15(2)	-3(2)
C(32A)	62(3)	94(4)	91(3)	-38(3)	14(2)	-6(3)
C(33A)	99(4)	105(4)	112(4)	-63(3)	31(4)	-18(4)
C(34A)	94(4)	56(3)	129(5)	-6(3)	62(4)	5(3)
C(35A)	79(3)	72(3)	96(4)	15(3)	29(3)	25(3)
C(36A)	64(3)	72(3)	68(3)	0(2)	15(2)	23(2)
C(37A)	40(2)	38(2)	52(2)	-7(2)	-1(2)	5(2)
C(38A)	40(2)	59(3)	172(5)	10(3)	-16(3)	1(2)
C(39A)	74(3)	38(2)	91(3)	10(2)	-10(2)	3(2)
		្តិ៍	มเถกุล B			
Cu(1B)	35(1)	38(1)	45(1)	5(1)	-1(1)	-2(1)
Cl(1B)	45(1)	44(1)	59(1)	0(1)	5(1)	9(1)
S(1B)	31(1)	41(1)	70(1)	8(1)	1(1)	-2(1)

อะตอม	U 11	U22	U33	U23	U 13	U12
N(1B)	43(2)	43(2)	95(2)	2(2)	21(2)	-6(2)
N(2B)	42(2)	44(2)	96(3)	-4(2)	18(2)	-3(2)
P(1B)	33(1)	44(1)	40(1)	3(1)	-1(1)	3(1)
P(2B)	34(1)	35(1)	45(1)	5(1)	-2(1)	-2(1)
C(1B)	33(2)	53(2)	37(2)	0(2)	0(1)	4(2)
C(2B)	42(2)	86(3)	83(3)	27(2)	-3(2)	10(2)
C(3B)	43(3)	121(4)	99(4)	32(3)	-9(2)	12(3)
C(4B)	34(2)	116(4)	73(3)	-4(3)	-6(2)	4(3)
C(5B)	46(2)	84(3)	65(3)	-6(2)	9(2)	-19(2)
C(6B)	44(2)	62(2)	51(2)	2(2)	0(2)	2(2)
C(7B)	43(2)	50(2)	43(2)	1(2)	1(2)	4(2)
C(8B)	44(2)	88(3)	95(3)	-29(3)	4(2)	7(2)
C(9B)	57(3)	99(4)	123(4)	-25(3)	21(3)	21(3)
C(10B)	95(4)	78(3)	76(3)	-21(3)	18(3)	27(3)
C(11B)	75(3)	75(3)	69(3)	-25(2)	-3(2)	9(2)
C(12B)	54(2)	73(3)	55(2)	-14(2)	-2(2)	8(2)
C(13B)	37(2)	53(2)	49(2)	13(2)	2(2)	6(2)
C(14B)	104(4)	61(3)	69(3)	19(2)	-9(3)	-17(3)
C(15B)	123(5)	66(3)	113(4)	27(3)	-12(4)	-24(3)
C(16B)	68(3)	87(4)	118(5)	57(4)	16(3)	5(3)
C(17B)	77(3)	115(4)	70(3)	49(3)	30(3)	30(3)
C(18B)	67(3)	81(3)	54(2)	13(2)	8(2)	14(2)
C(19B)	35(2)	49(2)	48(2)	11(2)	-6(2)	-3(2)
C(20B)	42(2)	59(2)	82(3)	12(2)	8(2)	1(2)
C(21B)	46(3)	84(3)	106(4)	23(3)	15(2)	13(2)
C(22B)	39(2)	117(4)	98(4)	31(3)	6(2)	-5(3)

อะดอท	U11	U22	U33	U23	U13	U 12
C(23B)	49(3)	95(4)	106(4)	11(3)	-11(3)	-27(3)
C(24B)	48(2)	61(3)	77(3)	2(2)	-4(2)	-12(2)
C(25B)	35(2)	39(2)	54(2)	6(2)	-2(2)	-2(2)
C(26B)	60(2)	46(2)	68(3)	-2(2)	-10(2)	11(2)
C(27B)	66(3)	59(3)	81(3)	-21(2)	-13(2)	7(2)
C(28B)	53(3)	42(2)	116(4)	-12(3)	8(3)	-1(2)
C(29B)	66(3)	47(2)	105(4)	25(3)	7(3)	14(2)
C(30B)	61(3)	47(2)	68(3)	13(2)	2(2)	7(2)
C(31B)	38(2)	44(2)	43(2)	2(2)	-3(2)	3(2)
C(32B)	56(2)	66(3)	51(2)	6(2)	-1(2)	-13(2)
C(33B)	73(3)	81(3)	53(3)	10(2)	11(2)	-8(2)
C(34B)	69(3)	92(3)	43(2)	-3(2)	-9(2)	12(3)
C(35B)	53(2)	77(3)	62(3)	-7(2)	-16(2)	-7(2)
C(36B)	40(2)	62(2)	56(2)	5(2)	-4(2)	-2(2)
C(37B)	35(2)	46(2)	50(2)	5(2)	0(2)	-1(2)
C(38B)	56(3)	65(3)	127(4)	5(3)	41(3)	4(2)
C(39B)	69(3)	44(2)	149(5)	-11(3)	22(3)	-7(2)
C(1)	101(5)	227(8)	89(4)	15(5)	22(4)	17(5)
C(2)	110(5)	123(5)	82(4)	9(3)	16(4)	17(4)
N(3)	110(4)	152(5)	148(5)	28(4)	2(4)	18(4)

พันธะ	ความยาวพันธะ (Å)
Cu(1)-P(1)	2.2746(5)
Cu(1)-P(2)	2.2923(6)
Cu(1)-S(1)	2.3611(6)
Cu(1)-Br(1)	2.5423(3)
P(1)-C(11)	1.822(2)
P(1)-C(21)	1.827(2)
P(1)-C(31)	1.8306(19)
P(2)-C(51)	1.830(2)
P(2)-C(41)	1.832(2)
P(2)-C(61)	1.834(2)
S(1)-C(1)	1.711(2)
N(1)-C(1)	1.328(3)
N(1)-C(2)	1.457(4)
N(1)-H(1)	0.861(17)
N(2)-C(1)	1.322(3)
N(2)-C(3)	1.452(3)
N(2)-H(2)	0.899(17)
C(2)-H(2A)	0.9600
C(2)-H(2B)	0.9600
C(2)-H(2C)	0.9600
C(3)-H(3A)	0.9600
C(3)-H(3B)	0.9600
C(3)-H(3C)	0.9600
C(11)-C(16)	1.379(3)
C(11)-C(12)	1.385(3)
C(12)-C(13)	1.383(3)

ตารางที่ 7 ความยาวพันธะระหว่าง โมเลกุล [Cu(PPh₃)₂(dmtu)Br]

พันธะ	ความยาวพันธะ (Å)
С(12)-H(12)	0.9300
C(12) - C(14)	1 373(4)
C(13) - H(13)	0.9300
C(14)-C(15)	1 362(4)
C(14)-H(14)	0.9300
C(15)-C(16)	1 388(3)
C(15)-H(15)	0.9300
C(16)-H(16)	0.9300
C(21)-C(22)	1 383(3)
C(21) - C(26)	1.389(3)
C(22) - C(23)	1 379(3)
C(22) = H(22)	0.9300
C(23)-C(24)	1 369(4)
C(23)-H(23)	0.9300
C(24)- $C(25)$	1 363(4)
C(24)-H(24)	0.9300
C(25)-C(26)	1 380(3)
C(25) - H(25)	0.9300
C(26)-H(26)	0.9300
C(31)-C(32)	1 372(3)
C(31) - C(36)	1 382(3)
C(31) C(30)	1.387(4)
C(32) - H(32)	0.0300
$C(32)^{-11}(32)$	1 250(5)
C(33)-U(34)	0.0200
$C(33)^{-}\Pi(33)$	0.7300
U(34)-U(33)	1.338(4)

พันธะ	ความยาวพันธะ (Å)
С(34)-Н(34)	0.9300
C(35)-C(36)	1.385(3)
C(35)-H(35)	0.9300
C(36)-H(36)	0.9300
C(41)-C(42)	1.383(3)
C(41)-C(46)	1.385(3)
C(42)- $C(43)$	1.382(4)
C(42)-H(42)	0.9300
C(43)-C(44)	1.364(4)
C(43)-H(43)	0.9300
C(44)-C(45)	1.344(5)
C(44)-H(44)	0.9300
C(45)-C(46)	1.390(4)
C(45)-H(45)	0.9300
C(46)-H(46)	0.9300
C(51)-C(52)	1.376(4)
C(51)-C(56)	1.393(4)
C(52)-C(53)	1.391(4)
C(52)-H(52)	0.9300
C(53)-C(54)	1.353(5)
C(53)-H(53)	0.9300
C(54)-C(55)	1.367(5)
C(54)-H(54)	0.9300
C(55)-C(56)	1.388(4)
C(55)-H(55)	0.9300
C(56)-H(56)	0.9300

พันธะ	ความยาวพันธะ (Å)
C(61)-C(62)	1.384(3)
C(61)-C(66)	1.388(3)
C(62)-C(63)	1.386(3)
С(62)-Н(62)	0.9300
C(63)-C(64)	1.370(5)
С(63)-Н(63)	0.9300
C(64)-C(65)	1.359(5)
C(64)-H(64)	0.9300
C(65)-C(66)	1.388(4)
C(65)-H(65)	0.9300
C(66)-H(66)	0.9300

พันธะ	มุมพันธะ (°)
P(1)-Cu(1)-P(2)	122.90(2)
P(1)-Cu(1)-S(1)	99.98(2)
P(2)-Cu(1)-S(1)	114.16(2)
P(1)-Cu(1)-Br(1)	104.351(16)
P(2)-Cu(1)-Br(1)	105.901(17)
S(1)-Cu(1)-Br(1)	108.650(19)
C(11)-P(1)-C(21)	103.93(9)
C(11)-P(1)-C(31)	102.50(9)
C(21)-P(1)-C(31)	103.91(9)
C(11)-P(1)-Cu(1)	116.38(7)
C(21)-P(1)-Cu(1)	115.61(6)
C(31)-P(1)-Cu(1)	112.90(6)
C(51)-P(2)-C(41)	104.23(11)
C(51)-P(2)-C(61)	101.82(10)
C(41)-P(2)-C(61)	100.79(10)
C(51)-P(2)-Cu(1)	113.08(7)
C(41)-P(2)-Cu(1)	116.68(7)
C(61)-P(2)-Cu(1)	118.12(7)
C(1)-S(1)-Cu(1)	110.11(9)
C(1)-N(1)-C(2)	125.3(2)
C(1)-N(1)-H(1)	114(2)
C(2)-N(1)-H(1)	120(2)
C(1)-N(2)-C(3)	125.1(2)
C(1)-N(2)-H(2)	114.6(19)
C(3)-N(2)-H(2)	120.3(19)

ตารางที่ 8 มุมพันธะระหว่างอะตอมในโมเลกุล[Cu(PPh₃)₂(dmtu)Br]
พันธะ	มุมพันธะ (°)
N(2)-C(1)-N(1)	118.6(2)
N(2)-C(1)-S(1)	120.29(18)
N(1)-C(1)-S(1)	121.1(2)
N(1)-C(2)-H(2A)	109.5
N(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
N(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
N(2)-C(3)-H(3A)	109.5
N(2)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
N(2)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
C(16)-C(11)-C(12)	119.0(2)
C(16)-C(11)-P(1)	117.22(16)
C(12)-C(11)-P(1)	123.78(16)
C(13)-C(12)-C(11)	119.7(2)
С(13)-С(12)-Н(12)	120.1
С(11)-С(12)-Н(12)	120.1
C(14)-C(13)-C(12)	120.7(2)
С(14)-С(13)-Н(13)	119.6
С(12)-С(13)-Н(13)	119.6
C(15)-C(14)-C(13)	119.9(2)

พันธะ	มุมพันธะ (°)
C(15)-C(14)-H(14)	120.1
С(13)-С(14)-Н(14)	120.1
C(14)-C(15)-C(16)	120.0(2)
С(14)-С(15)-Н(15)	120.0
С(16)-С(15)-Н(15)	120.0
C(11)-C(16)-C(15)	120.7(2)
С(11)-С(16)-Н(16)	119.7
С(15)-С(16)-Н(16)	119.7
C(22)-C(21)-C(26)	117.49(19)
C(22)-C(21)-P(1)	118.50(16)
C(26)-C(21)-P(1)	123.90(16)
C(23)-C(22)-C(21)	121.2(2)
С(23)-С(22)-Н(22)	119.4
С(21)-С(22)-Н(22)	119.4
C(24)-C(23)-C(22)	120.5(3)
С(24)-С(23)-Н(23)	119.8
С(22)-С(23)-Н(23)	119.8
C(25)-C(24)-C(23)	119.2(2)
С(25)-С(24)-Н(24)	120.4
C(23)-C(24)-H(24)	120.4
C(24)-C(25)-C(26)	120.8(2)
С(24)-С(25)-Н(25)	119.6
С(26)-С(25)-Н(25)	119.6
C(25)-C(26)-C(21)	120.8(2)
С(25)-С(26)-Н(26)	119.6
С(21)-С(26)-Н(26)	119.6

พันธะ	มุมพันธะ (°)
C(32)-C(31)-C(36)	118.8(2)
C(32)-C(31)-P(1)	123.51(17)
C(36)-C(31)-P(1)	117.68(16)
C(31)-C(32)-C(33)	120.2(3)
С(31)-С(32)-Н(32)	119.9
С(33)-С(32)-Н(32)	119.9
C(34)-C(33)-C(32)	120.1(3)
С(34)-С(33)-Н(33)	119.9
С(32)-С(33)-Н(33)	119.9
C(35)-C(34)-C(33)	120.7(3)
С(35)-С(34)-Н(34)	119.7
С(33)-С(34)-Н(34)	119.7
C(34)-C(35)-C(36)	119.5(3)
С(34)-С(35)-Н(35)	120.2
С(36)-С(35)-Н(35)	120.2
C(31)-C(36)-C(35)	120.6(2)
С(31)-С(36)-Н(36)	119.7
С(35)-С(36)-Н(36)	119.7
C(42)-C(41)-C(46)	117.5(2)
C(42)-C(41)-P(2)	119.14(18)
C(46)-C(41)-P(2)	123.31(19)
C(43)-C(42)-C(41)	120.6(3)
C(43)-C(42)-H(42)	119.7
C(41)-C(42)-H(42)	119.7
C(44)-C(43)-C(42)	120.9(3)
C(44)-C(43)-H(43)	119.6

พันธะ	มุมพันธะ (°)
C(42)-C(43)-H(43)	119.6
C(45)-C(44)-C(43)	119.5(3)
C(45)-C(44)-H(44)	120.3
C(43)-C(44)-H(44)	120.3
C(44)-C(45)-C(46)	120.8(3)
C(44)-C(45)-H(45)	119.6
C(46)-C(45)-H(45)	119.6
C(41)-C(46)-C(45)	120.7(3)
C(41)-C(46)-H(46)	119.6
C(45)-C(46)-H(46)	119.6
C(52)-C(51)-C(56)	118.8(2)
C(52)-C(51)-P(2)	124.4(2)
C(56)-C(51)-P(2)	116.76(19)
C(51)-C(52)-C(53)	119.9(3)
C(51)-C(52)-H(52)	120.0
C(53)-C(52)-H(52)	120.0
C(54)-C(53)-C(52)	120.8(3)
C(54)-C(53)-H(53)	119.6
C(52)-C(53)-H(53)	119.6
C(53)-C(54)-C(55)	120.4(3)
C(53)-C(54)-H(54)	119.8
C(55)-C(54)-H(54)	119.8
C(54)-C(55)-C(56)	119.8(3)
C(54)-C(55)-H(55)	120.1
C(56)-C(55)-H(55)	120.1

พันธะ	มุมพันธะ (°)
C(55)-C(56)-C(51)	120.2(3)
С(55)-С(56)-Н(56)	119.9
C(51)-C(56)-H(56)	119.9
C(62)-C(61)-C(66)	118.7(2)
C(62)-C(61)-P(2)	123.35(18)
C(66)-C(61)-P(2)	117.84(18)
C(61)-C(62)-C(63)	120.4(3)
C(61)-C(62)-H(62)	119.8
C(63)-C(62)-H(62)	119.8
C(64)-C(63)-C(62)	120.3(3)
C(64)-C(63)-H(63)	119.9
C(62)-C(63)-H(63)	119.9
C(65)-C(64)-C(63)	119.9(3)
C(65)-C(64)-H(64)	120.0
C(63)-C(64)-H(64)	120.0
C(64)-C(65)-C(66)	120.6(3)
C(64)-C(65)-H(65)	119.7
C(66)-C(65)-H(65)	119.7
C(61)-C(66)-C(65)	120.1(3)
С(61)-С(66)-Н(66)	120.0
С(65)-С(66)-Н(66)	120.0

พันธะ	มุมพันธะ (°)
P(2)-Cu(1)-P(1)-C(11)	69.43(8)
S(1)-Cu(1)-P(1)-C(11)	-163.07(7)
Br(1)-Cu(1)-P(1)-C(11)	-50.72(7)
P(2)-Cu(1)-P(1)-C(21)	-52.97(8)
S(1)-Cu(1)-P(1)-C(21)	74.53(7)
Br(1)-Cu(1)-P(1)-C(21)	-173.12(7)
P(2)-Cu(1)-P(1)-C(31)	-172.43(7)
S(1)-Cu(1)-P(1)-C(31)	-44.92(7)
Br(1)-Cu(1)-P(1)-C(31)	67.42(7)
P(1)-Cu(1)-P(2)-C(51)	172.21(9)
S(1)-Cu(1)-P(2)-C(51)	51.12(9)
Br(1)-Cu(1)-P(2)-C(51)	-68.37(9)
P(1)-Cu(1)-P(2)-C(41)	-66.92(8)
S(1)-Cu(1)-P(2)-C(41)	171.99(8)
Br(1)-Cu(1)-P(2)-C(41)	52.51(8)
P(1)-Cu(1)-P(2)-C(61)	53.50(9)
S(1)-Cu(1)-P(2)-C(61)	-67.59(9)
Br(1)-Cu(1)-P(2)-C(61)	172.92(8)
P(1)-Cu(1)-S(1)-C(1)	150.91(9)
P(2)-Cu(1)-S(1)-C(1)	-75.99(9)
Br(1)-Cu(1)-S(1)-C(1)	41.94(9)
C(3)-N(2)-C(1)-N(1)	-6.2(4)
C(3)-N(2)-C(1)-S(1)	173.0(2)
C(2)-N(1)-C(1)-N(2)	177.2(3)
C(2)-N(1)-C(1)-S(1)	-2.0(4)
Cu(1)-S(1)-C(1)-N(2)	-18.9(2)

ตารางที่ 9 มุม Torsion ใน โมเลกุล [Cu(PPh₃)₂(dmtu)Br]

พันธะ	มุมพันธะ (°)		
Cu(1)-S(1)-C(1)-N(1)	160.26(19)		
C(21)-P(1)-C(11)-C(16)	100.70(18)		
C(31)-P(1)-C(11)-C(16)	-151.32(17)		
Cu(1)-P(1)-C(11)-C(16)	-27.62(19)		
C(21)-P(1)-C(11)-C(12)	-78.2(2)		
C(31)-P(1)-C(11)-C(12)	29.8(2)		
Cu(1)-P(1)-C(11)-C(12)	153.48(17)		
C(16)-C(11)-C(12)-C(13)	-0.6(4)		
P(1)-C(11)-C(12)-C(13)	178.3(2)		
C(11)-C(12)-C(13)-C(14)	0.0(4)		
C(12)-C(13)-C(14)-C(15)	0.8(5)		
C(13)-C(14)-C(15)-C(16)	-1.0(4)		
C(12)-C(11)-C(16)-C(15)	0.4(4)		
P(1)-C(11)-C(16)-C(15)	-178.6(2)		
C(14)-C(15)-C(16)-C(11)	0.4(4)		
C(11)-P(1)-C(21)-C(22)	-173.50(19)		
C(31)-P(1)-C(21)-C(22)	79.6(2)		
Cu(1)-P(1)-C(21)-C(22)	-44.7(2)		
C(11)-P(1)-C(21)-C(26)	2.7(2)		
C(31)-P(1)-C(21)-C(26)	-104.26(18)		
Cu(1)-P(1)-C(21)-C(26)	131.47(16)		
C(26)-C(21)-C(22)-C(23)	-0.1(4)		
P(1)-C(21)-C(22)-C(23)	176.3(2)		
C(21)-C(22)-C(23)-C(24)	-0.7(5)		
C(22)-C(23)-C(24)-C(25)	0.9(5)		
C(23)-C(24)-C(25)-C(26)	-0.3(4)		

พันธะ	มุมพันธะ (°)
C(24)-C(25)-C(26)-C(21)	-0.5(4)
C(22)-C(21)-C(26)-C(25)	0.7(3)
P(1)-C(21)-C(26)-C(25)	-175.51(18)
C(11)-P(1)-C(31)-C(32)	-112.4(2)
C(21)-P(1)-C(31)-C(32)	-4.4(2)
Cu(1)-P(1)-C(31)-C(32)	121.57(19)
C(11)-P(1)-C(31)-C(36)	68.73(18)
C(21)-P(1)-C(31)-C(36)	176.73(17)
Cu(1)-P(1)-C(31)-C(36)	-57.26(18)
C(36)-C(31)-C(32)-C(33)	-0.1(4)
P(1)-C(31)-C(32)-C(33)	-179.0(3)
C(31)-C(32)-C(33)-C(34)	-1.3(5)
C(32)-C(33)-C(34)-C(35)	0.7(6)
C(33)-C(34)-C(35)-C(36)	1.2(5)
C(32)-C(31)-C(36)-C(35)	2.1(4)
P(1)-C(31)-C(36)-C(35)	-179.1(2)
C(34)-C(35)-C(36)-C(31)	-2.6(4)
C(51)-P(2)-C(41)-C(42)	90.9(2)
C(61)-P(2)-C(41)-C(42)	-163.8(2)
Cu(1)-P(2)-C(41)-C(42)	-34.5(2)
C(51)-P(2)-C(41)-C(46)	-91.5(2)
C(61)-P(2)-C(41)-C(46)	13.8(2)
Cu(1)-P(2)-C(41)-C(46)	143.05(19)
C(46)-C(41)-C(42)-C(43)	-1.2(4)
P(2)-C(41)-C(42)-C(43)	176.5(2)
C(41)-C(42)-C(43)-C(44)	0.9(5)

พันธะ	มุมพันธะ (°)		
C(42)-C(43)-C(44)-C(45)	0.1(5)		
C(43)-C(44)-C(45)-C(46)	-0.8(5)		
C(42)-C(41)-C(46)-C(45)	0.6(4)		
P(2)-C(41)-C(46)-C(45)	-177.0(2)		
C(44)-C(45)-C(46)-C(41)	0.4(5)		
C(41)-P(2)-C(51)-C(52)	4.9(2)		
C(61)-P(2)-C(51)-C(52)	-99.6(2)		
Cu(1)-P(2)-C(51)-C(52)	132.6(2)		
C(41)-P(2)-C(51)-C(56)	-175.82(19)		
C(61)-P(2)-C(51)-C(56)	79.7(2)		
Cu(1)-P(2)-C(51)-C(56)	-48.1(2)		
C(56)-C(51)-C(52)-C(53)	0.4(4)		
P(2)-C(51)-C(52)-C(53)	179.6(2)		
C(51)-C(52)-C(53)-C(54)	0.6(5)		
C(52)-C(53)-C(54)-C(55)	-1.4(6)		
C(53)-C(54)-C(55)-C(56)	1.2(6)		
C(54)-C(55)-C(56)-C(51)	-0.2(5)		
C(52)-C(51)-C(56)-C(55)	-0.6(4)		
P(2)-C(51)-C(56)-C(55)	-179.9(2)		
C(51)-P(2)-C(61)-C(62)	6.0(2)		
C(41)-P(2)-C(61)-C(62)	-101.1(2)		
Cu(1)-P(2)-C(61)-C(62)	130.52(18)		
C(51)-P(2)-C(61)-C(66)	-178.4(2)		
C(41)-P(2)-C(61)-C(66)	74.5(2)		
Cu(1)-P(2)-C(61)-C(66)	-53.9(2)		

พันธะ	มุมพันธะ (°)		
C(66)-C(61)-C(62)-C(63)	-1.1(4)		
P(2)-C(61)-C(62)-C(63)	174.4(2)		
C(61)-C(62)-C(63)-C(64)	-0.5(4)		
C(62)-C(63)-C(64)-C(65)	1.7(5)		
C(63)-C(64)-C(65)-C(66)	-1.3(5)		
C(62)-C(61)-C(66)-C(65)	1.5(4)		
P(2)-C(61)-C(66)-C(65)	-174.3(2)		
C(64)-C(65)-C(66)-C(61)	-0.3(5)		

อะตอม	x	У	Z	U(eq)A**2
Cu(1)	2485(1)	8162(1)	1008(1)	38(1)
Br(1)	3639(1)	8468(1)	78(1)	55(1)
P(1)	3936(1)	8667(1)	1850(1)	32(1)
P(2)	1950(1)	6895(1)	926(1)	39(1)
S(1)	539(1)	8964(1)	971(1)	54(1)
N(1)	-1666(2)	9268(2)	94(1)	70(1)
N(2)	260(2)	8862(1)	-261(1)	65(1)
C(1)	-351(2)	9040(1)	215(1)	52(1)
C(2)	-2502(3)	9452(2)	565(2)	84(1)
C(3)	-430(4)	8825(2)	-914(1)	85(1)
C(11)	5767(2)	8415(1)	1936(1)	38(1)
C(12)	6843(2)	8867(1)	2241(1)	53(1)
C(13)	8202(3)	8620(2)	2299(2)	69(1)
C(14)	8498(3)	7931(2)	2057(2)	69(1)
C(15)	7447(3)	7489(1)	1750(2)	65(1)
C(16)	6079(2)	7728(1)	1691(1)	51(1)
C(21)	3510(2)	8449(1)	2617(1)	36(1)
C(22)	2139(2)	8505(2)	2689(1)	62(1)
C(23)	1741(3)	8307(2)	3246(1)	78(1)
C(24)	2698(3)	8042(2)	3741(1)	66(1)
C(25)	4056(3)	7984(2)	3680(1)	59(1)
C(26)	4469(2)	8187(1)	3127(1)	47(1)
C(31)	3985(2)	9705(1)	1832(1)	37(1)
C(32)	3649(3)	10156(1)	2298(1)	64(1)
C(33)	3689(4)	10939(2)	2247(2)	92(1)
C(34)	4087(4)	11265(2)	1739(2)	84(1)

ตารางที่ 10 พิกัดของอะตอม(ยกเว้นไฮโครเจน)ในโมเลกุล [Cu(PPh₃)₂(dmtu)Br]

ตารางที่ 10 (ต่อ)

อะตอม	X	у	Z	U(eq)A**2
C(35)	4436(3)	10830(2)	1274(1)	69(1)
C(36)	4359(3)	10047(1)	1313(1)	52(1)
C(41)	3368(2)	6246(1)	844(1)	44(1)
C(42)	4370(3)	6481(1)	511(1)	62(1)
C(43)	5494(3)	6022(2)	468(2)	80(1)
C(44)	5631(3)	5325(2)	746(2)	80(1)
C(45)	4657(4)	5081(2)	1063(2)	82(1)
C(46)	3524(3)	5534(2)	1118(1)	68(1)
C(51)	582(2)	6674(1)	253(1)	48(1)
C(52)	652(3)	6094(2)	-166(1)	69(1)
C(53)	-450(4)	5970(2)	-662(2)	94(1)
C(54)	-1592(4)	6418(2)	-742(2)	101(1)
C(55)	-1692(3)	6992(2)	-327(2)	91(1)
C(56)	-607(3)	7124(2)	172(1)	68(1)
C(61)	1282(2)	6443(1)	1574(1)	45(1)
C(62)	100(3)	5997(1)	1486(1)	57(1)
C(63)	-281(3)	5620(2)	1990(2)	75(1)
C(64)	515(4)	5681(2)	2579(2)	86(1)
C(65)	1665(4)	6129(2)	2673(1)	86(1)
C(66)	2059(3)	6515(2)	2175(1)	67(1)

อะตอม	Х	У	Z	U(eq)A**2
H(1)	-2000(30)	9328(18)	-300(9)	84
H(2)	1178(19)	8774(17)	-155(13)	78
H(2A)	-2542	9020	831	126
H(2B)	-3426	9586	360	126
H(2C)	-2090	9872	814	126
H(3A)	-1208	8485	-954	128
H(3B)	212	8643	-1166	128
H(3C)	-750	9322	-1055	128
H(12)	6652	9334	2406	63
H(13)	8922	8923	2504	83
H(14)	9414	7768	2103	82
H(15)	7647	7026	1580	78
H(16)	5365	7423	1483	61
H(22)	1474	8680	2356	75
H(23)	815	8355	3286	93
H(24)	2426	7902	4114	79
H(25)	4712	7806	4015	71
H(26)	5401	8148	3095	56
H(32)	3393	9935	2650	77
H(33)	3443	11243	2560	110
H(34)	4122	11791	1710	101
H(35)	4724	11057	932	82
H(36)	4560	9749	987	63
H(42)	4286	6952	314	74
H(43)	6165	6191	248	95
H(44)	6391	5020	715	96

ตารางที่ 11 พิกัดของอะตอมไฮโครเจนในโมเลกุล [Cu(PPh₃)₂(dmtu)Br]

อะตอม	X	у	Z	U(eq)A**2
H(45)	4743	4603	1248	98
H(46)	2864	5358	1342	81
H(52)	1435	5785	-118	82
H(53)	-402	5575	-941	112
H(54)	-2312	6336	-1080	121
H(55)	-2486	7293	-379	109
H(56)	-674	7515	453	82
H(62)	-442	5949	1088	68
H(63)	-1082	5323	1928	90
H(64)	270	5416	2913	103
H(65)	2192	6178	3075	103
H(66)	2845	6823	2245	81

ตารางที่ 11 พิกัดของอะตอมไฮโครเจนในโมเลกุล [Cu(PPh₃)₂(dmtu)Br]

อะตอม	U11	U22	U 33	U23	U 13	U12
Cu(1)	38(1)	38(1)	36(1)	0(1)	4(1)	-3(1)
Br(1)	63(1)	61(1)	46(1)	4(1)	23(1)	-5(1)
P(1)	30(1)	33(1)	33(1)	-1(1)	6(1)	0(1)
P(2)	41(1)	36(1)	39(1)	0(1)	6(1)	-5(1)
S(1)	48(1)	63(1)	47(1)	0(1)	1(1)	16(1)
N(1)	50(1)	92(2)	65(1)	23(1)	-1(1)	11(1)
N(2)	56(1)	87(2)	49(1)	14(1)	5(1)	2(1)
C(1)	47(1)	53(1)	53(1)	14(1)	2(1)	-1(1)
C(2)	53(2)	103(2)	95(2)	19(2)	13(2)	22(2)
C(3)	92(2)	111(3)	48(2)	19(2)	2(2)	4(2)
C(11)	32(1)	42(1)	40(1)	4(1)	8(1)	1(1)
C(12)	38(1)	52(1)	65(2)	-6(1)	3(1)	-3(1)
C(13)	34(1)	75(2)	94(2)	2(2)	-2(1)	-4(1)
C(14)	36(1)	72(2)	100(2)	19(2)	16(1)	13(1)
C(15)	53(2)	51(1)	97(2)	3(1)	28(1)	14(1)
C(16)	41(1)	45(1)	69(2)	-5(1)	14(1)	1(1)
C(21)	39(1)	37(1)	33(1)	-2(1)	6(1)	-1(1)
C(22)	40(1)	103(2)	44(1)	16(1)	9(1)	6(1)
C(23)	48(2)	136(3)	54(2)	16(2)	22(1)	8(2)
C(24)	76(2)	84(2)	42(1)	12(1)	22(1)	5(2)
C(25)	68(2)	69(2)	39(1)	11(1)	7(1)	15(1)
C(26)	46(1)	52(1)	43(1)	6(1)	7(1)	9(1)
C(31)	33(1)	34(1)	42(1)	-2(1)	4(1)	0(1)
C(32)	90(2)	45(1)	64(2)	-9(1)	30(1)	-2(1)
C(33)	134(3)	47(2)	106(3)	-25(2)	50(2)	-2(2)
C(34)	97(2)	35(1)	120(3)	1(2)	22(2)	-10(1)

ตารางที่ 12 เทอร์มอลพารามิเตอร์ของอะตอมใน โมเลกุล [Cu(PPh₃)₂(dmtu)Br]

ตารางที่ 12 (ต่อ)

อะตอม	Un	U22	U33	U23	U13	U12
C(35)	73(2)	50(1)	84(2)	15(1)	17(2)	-13(1)
C(36)	57(1)	45(1)	57(1)	3(1)	16(1)	-3(1)
C(41)	48(1)	40(1)	43(1)	-7(1)	5(1)	-1(1)
C(42)	73(2)	51(1)	69(2)	-6(1)	31(1)	1(1)
C(43)	71(2)	80(2)	96(2)	-21(2)	40(2)	2(2)
C(44)	71(2)	77(2)	90(2)	-25(2)	8(2)	24(2)
C(45)	96(2)	60(2)	89(2)	11(2)	16(2)	28(2)
C(46)	75(2)	51(1)	80(2)	10(1)	23(2)	9(1)
C(51)	49(1)	47(1)	45(1)	3(1)	3(1)	-16(1)
C(52)	66(2)	79(2)	58(2)	-18(1)	7(1)	-14(1)
C(53)	98(3)	112(3)	65(2)	-29(2)	-1(2)	-33(2)
C(54)	91(3)	118(3)	77(2)	8(2)	-28(2)	-43(2)
C(55)	68(2)	77(2)	111(3)	21(2)	-28(2)	-17(2)
C(56)	56(2)	55(1)	84(2)	5(1)	-11(1)	-12(1)
C(61)	54(1)	37(1)	46(1)	2(1)	15(1)	0(1)
C(62)	59(2)	54(1)	63(2)	3(1)	24(1)	-5(1)
C(63)	87(2)	66(2)	84(2)	3(2)	49(2)	-15(2)
C(64)	138(3)	65(2)	70(2)	10(2)	62(2)	-4(2)
C(65)	131(3)	83(2)	46(2)	8(1)	20(2)	-7(2)
C(66)	86(2)	63(2)	52(1)	6(1)	12(1)	-13(1)

u(1)-P(2) 2.2951(6) u(1)-P(1) 2.3121(6) u(1)-S(1) 2.3704(6) u(1)-I(1) 2.7093(3) (1)-C(1) 1.702(2) (1)-C(1) 1.702(2) (1)-C(1) 1.828(2) (1)-C(1) 1.822(2) (1)-C(1) 1.832(2) (2)-C(41) 1.823(2) (2)-C(51) 1.835(2) (2)-C(51) 1.842(2) (1)-C(1) 1.333(3) (1)-C(2) 1.439(4) (1)-C(2) 1.439(4) (1)-C(2) 1.439(4) (1)-C(2) 1.439(4) (2)-C(3) 1.454(3) (2)-C(1) 1.323(3) (2)-C(3) 1.454(3) (2)-H(2) 0.8600 (2)-H(2A) 0.9600 (2)-H(2B) 0.9600 (3)-H(3A) 0.9600 (3)-H(3A) 0.9600 (3)-H(3B) 0.9600 (1)-C(16) 1.375(3) (11)-C(16) 1.382(3) (12)-C(13) 1.382(4)	พันธะ	ความยาวพันธะ (Å)
au(1)-P(1)2.3121(6)au(1)-S(1)2.3704(6)au(1)-I(1)2.7093(3)(1)-C(1)1.702(2)(1)-C(3)1.828(2)(1)-C(1)1.832(2)(1)-C(1)1.832(2)(1)-C(1)1.832(2)(2)-C(41)1.832(2)(2)-C(51)1.835(2)(2)-C(61)1.842(2)(1)-C(1)1.842(2)(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-C(2)1.439(4)(1)-C(2)1.439(4)(2)-C(3)1.454(3)(2)-C(3)1.454(3)(2)-H(2A)0.9600(2)-H(2A)0.9600(2)-H(2B)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3B)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	Cu(1)-P(2)	2.2951(6)
u(1)-S(1) 2.3704(6) u(1)-I(1) 2.7093(3) (1)-C(1) 1.702(2) (1)-C(31) 1.828(2) (1)-C(11) 1.832(2) (1)-C(11) 1.832(2) (1)-C(11) 1.832(2) (1)-C(21) 1.832(2) (2)-C(41) 1.823(2) (2)-C(41) 1.823(2) (2)-C(51) 1.842(2) (1)-C(1) 1.333(3) (1)-C(1) 1.333(3) (1)-C(2) 1.439(4) (1)-C(2) 1.439(4) (1)-C(1) 1.323(3) (2)-C(1) 1.323(3) (2)-C(1) 1.323(3) (2)-C(1) 1.323(3) (2)-C(1) 1.323(3) (2)-C(1) 1.323(3) (2)-C(1) 1.323(3) (2)-P(2) 0.8600 (2)-H(2A) 0.9600 (2)-H(2B) 0.9600 (3)-H(3A) 0.9600 (3)-H(3B) 0.9600 (3)-H(3C) 0.9600 (1)-C(16) 1.375(3) (1)-C(12) 1.382(3) <td>Cu(1)-P(1)</td> <td>2.3121(6)</td>	Cu(1)-P(1)	2.3121(6)
u(1)-I(1)2.7093(3)(1)-C(1)1.702(2)(1)-C(31)1.828(2)(1)-C(11)1.832(2)(1)-C(21)1.823(2)(2)-C(41)1.823(2)(2)-C(51)1.823(2)(2)-C(51)1.835(2)(2)-C(61)1.842(2)(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-C(1)1.323(3)(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(3)1.454(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2)0.9600(2)-H(2A)0.9600(2)-H(2B)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)	Cu(1)-S(1)	2.3704(6)
(1)-C(1) 1.702(2) (1)-C(31) 1.828(2) (1)-C(11) 1.832(2) (1)-C(21) 1.832(2) (2)-C(41) 1.823(2) (2)-C(51) 1.835(2) (2)-C(51) 1.835(2) (2)-C(61) 1.842(2) (1)-C(1) 1.333(3) (1)-C(2) 1.439(4) (1)-C(2) 1.439(4) (1)-H(1) 0.8600 (2)-C(3) 1.454(3) (2)-C(3) 1.454(3) (2)-H(2) 0.8600 (2)-H(2) 0.9600 (2)-H(2A) 0.9600 (2)-H(2B) 0.9600 (3)-H(3A) 0.9600 (3)-H(3B) 0.9600 (3)-H(3C) 0.9600 (1)-C(16) 1.375(3) (11)-C(16) 1.382(3) (11)-C(12) 1.382(3)	Cu(1)-I(1)	2.7093(3)
(1)-C(31)1.828(2)(1)-C(11)1.832(2)(1)-C(21)1.832(2)(2)-C(41)1.823(2)(2)-C(51)1.835(2)(2)-C(61)1.835(2)(1)-C(1)1.833(3)(1)-C(2)1.439(4)(1)-C(2)1.439(4)(1)-C(2)1.323(3)(2)-C(3)1.454(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2)0.9600(2)-H(2R)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(1)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	S(1)-C(1)	1.702(2)
(1)-C(11) 1.832(2) (1)-C(21) 1.832(2) (2)-C(41) 1.823(2) (2)-C(51) 1.825(2) (2)-C(61) 1.842(2) (1)-C(1) 1.333(3) (1)-C(2) 1.439(4) (1)-H(1) 0.8600 (2)-C(1) 1.323(3) (2)-C(3) 1.454(3) (2)-H(2) 0.8600 (2)-H(2A) 0.9600 (2)-H(2B) 0.9600 (3)-H(3A) 0.9600 (3)-H(3B) 0.9600 (3)-H(3C) 0.9600 (1)-C(16) 1.375(3) (11)-C(12) 1.382(3) (12)-C(13) 1.382(4)	P(1)-C(31)	1.828(2)
(1)-C(21)1.832(2)(2)-C(41)1.823(2)(2)-C(51)1.835(2)(2)-C(61)1.842(2)(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3B)0.9600(3)-H(3C)1.375(3)(11)-C(12)1.382(3)(11)-C(12)1.382(4)	P(1)-C(11)	1.832(2)
(2)-C(41)1.823(2)(2)-C(51)1.835(2)(2)-C(61)1.842(2)(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2B)0.9600(3)-H(3A)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	P(1)-C(21)	1.832(2)
(2)-C(51)1.835(2)(2)-C(61)1.842(2)(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3B)0.9600(1)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	P(2)-C(41)	1.823(2)
(2)-C(61)1.842(2)(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(1)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	P(2)-C(51)	1.835(2)
(1)-C(1)1.333(3)(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	P(2)-C(61)	1.842(2)
(1)-C(2)1.439(4)(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	N(1)-C(1)	1.333(3)
(1)-H(1)0.8600(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	N(1)-C(2)	1.439(4)
(2)-C(1)1.323(3)(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	N(1)-H(1)	0.8600
(2)-C(3)1.454(3)(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	N(2)-C(1)	1.323(3)
(2)-H(2)0.8600(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	N(2)-C(3)	1.454(3)
(2)-H(2A)0.9600(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	N(2)-H(2)	0.8600
(2)-H(2B)0.9600(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	C(2)-H(2A)	0.9600
(2)-H(2C)0.9600(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	C(2)-H(2B)	0.9600
(3)-H(3A)0.9600(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	C(2)-H(2C)	0.9600
(3)-H(3B)0.9600(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	C(3)-H(3A)	0.9600
(3)-H(3C)0.9600(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	С(3)-Н(3В)	0.9600
(11)-C(16)1.375(3)(11)-C(12)1.382(3)(12)-C(13)1.382(4)	С(3)-Н(3С)	0.9600
(11)-C(12) 1.382(3) (12)-C(13) 1.382(4)	C(11)-C(16)	1.375(3)
(12)-C(13) 1.382(4)	C(11)-C(12)	1.382(3)
	C(12)-C(13)	1.382(4)

ตารางที่ 13 ความยาวพันธะระหว่างอะตอมในโมเลกุล[Cu(PPh₃)₂(dmtu)I]

พันธะ	ความยาวพันธะ (Å)
С(12)-Н(12)	0.9300
C(13)-C(14)	1.377(5)
С(13)-Н(13)	0.9300
C(14)-C(15)	1.364(5)
С(14)-Н(14)	0.9300
C(15)-C(16)	1.380(4)
С(15)-Н(15)	0.9300
С(16)-Н(16)	0.9300
C(21)-C(26)	1.387(3)
C(21)-C(22)	1.394(3)
C(22)-C(23)	1.385(4)
С(22)-Н(22)	0.9300
C(23)-C(24)	1.374(4)
С(23)-Н(23)	0.9300
C(24)-C(25)	1.369(4)
C(24)-H(24)	0.9300
C(25)-C(26)	1.387(3)
С(25)-Н(25)	0.9300
С(26)-Н(26)	0.9300
C(31)-C(36)	1.380(3)
C(31)-C(32)	1.382(3)
C(32)-C(33)	1.385(4)
С(32)-Н(32)	0.9300
C(33)-C(34)	1.360(5)
С(33)-Н(33)	0.9300
C(34)-C(35)	1.355(5)

พันธะ	ความยาวพันธะ (Å)		
С(34)-Н(34)	0.9300		
C(35)-C(36)	1.379(4)		
C(35)-H(35)	0.9300		
C(36)-H(36)	0.9300		
C(41)-C(42)	1.385(3)		
C(41)-C(46)	1.386(3)		
C(42)-C(43)	1.390(4)		
C(42)-H(42)	0.9300		
C(43)-C(44)	1.360(5)		
C(43)-H(43)	0.9300		
C(44)-C(45)	1.373(5)		
C(44)-H(44)	0.9300		
C(45)-C(46)	1.383(4)		
C(45)-H(45)	0.9300		
C(46)-H(46)	0.9300		
C(51)-C(56)	1.384(3)		
C(51)-C(52)	1.389(3)		
C(52)-C(53)	1.391(4)		
C(52)-H(52)	0.9300		
C(53)-C(54)	1.375(4)		
C(53)-H(53)	0.9300		
C(54)-C(55)	1.369(4)		
C(54)-H(54)	0.9300		
C(55)-C(56)	1.387(4)		
C(55)-H(55)	0.9300		
C(56)-H(56)	0.9300		

พันธะ	ความยาวพันธะ (Å)
C(61)-C(66)	1.375(4)
C(61)-C(62)	1.385(4)
C(62)-C(63)	1.380(4)
C(62)-H(62)	0.9300
C(63)-C(64)	1.357(5)
C(63)-H(63)	0.9300
C(64)-C(65)	1.355(5)
C(64)-H(64)	0.9300
C(65)-C(66)	1.393(4)
C(65)-H(65)	0.9300
C(66)-H(66)	0.9300

พันธะ	มุมพันธะ (°)
P(2)-Cu(1)-P(1)	115.74(2)
P(2)-Cu(1)-S(1)	119.31(2)
P(1)-Cu(1)-S(1)	101.67(2)
P(2)-Cu(1)-I(1)	107.645(17)
P(1)-Cu(1)-I(1)	103.010(17)
S(1)-Cu(1)-I(1)	108.118(19)
C(1)-S(1)-Cu(1)	110.40(9)
C(31)-P(1)-C(11)	103.44(10)
C(31)-P(1)-C(21)	103.87(10)
C(11)-P(1)-C(21)	100.45(10)
C(31)-P(1)-Cu(1)	115.52(8)
C(11)-P(1)-Cu(1)	112.39(7)
C(21)-P(1)-Cu(1)	119.05(7)
C(41)-P(2)-C(51)	103.11(10)
C(41)-P(2)-C(61)	101.72(10)
C(51)-P(2)-C(61)	103.72(10)
C(41)-P(2)-Cu(1)	109.10(7)
C(51)-P(2)-Cu(1)	115.20(8)
C(61)-P(2)-Cu(1)	121.73(8)
C(1)-N(1)-C(2)	125.3(2)
C(1)-N(1)-H(1)	117.4
C(2)-N(1)-H(1)	117.4
C(1)-N(2)-C(3)	125.2(2)
C(1)-N(2)-H(2)	117.4
C(3)-N(2)-H(2)	117.4
N(2)-C(1)-N(1)	117.6(2)

ตารางที่ 14 มุมพันธะระหว่างอะตอมใน โมเลกุล[Cu(PPh₃)₂(dmtu)I]

พันธะ	มุมพันธะ (°)
N(2)-C(1)-S(1)	120.89(18)
N(1)-C(1)-S(1)	121.51(19)
N(1)-C(2)-H(2A)	109.5
N(1)-C(2)-H(2B)	109.5
H(2A)-C(2)-H(2B)	109.5
N(1)-C(2)-H(2C)	109.5
H(2A)-C(2)-H(2C)	109.5
H(2B)-C(2)-H(2C)	109.5
N(2)-C(3)-H(3A)	109.5
N(2)-C(3)-H(3B)	109.5
H(3A)-C(3)-H(3B)	109.5
N(2)-C(3)-H(3C)	109.5
H(3A)-C(3)-H(3C)	109.5
H(3B)-C(3)-H(3C)	109.5
C(16)-C(11)-C(12)	118.8(2)
C(16)-C(11)-P(1)	123.74(19)
C(12)-C(11)-P(1)	117.34(17)
C(11)-C(12)-C(13)	120.3(2)
С(11)-С(12)-Н(12)	119.9
С(13)-С(12)-Н(12)	119.9
C(14)-C(13)-C(12)	120.1(3)
С(14)-С(13)-Н(13)	120.0
С(12)-С(13)-Н(13)	120.0
C(15)-C(14)-C(13)	119.8(3)
C(15)-C(14)-H(14)	120.1
С(13)-С(14)-Н(14)	120.1

พันธะ	มุมพันธะ (°)
C(14)-C(15)-C(16)	120.1(3)
С(14)-С(15)-Н(15)	119.9
С(16)-С(15)-Н(15)	119.9
C(11)-C(16)-C(15)	120.8(3)
С(11)-С(16)-Н(16)	119.6
С(15)-С(16)-Н(16)	119.6
C(26)-C(21)-C(22)	118.7(2)
C(26)-C(21)-P(1)	118.52(17)
C(22)-C(21)-P(1)	122.78(18)
C(23)-C(22)-C(21)	120.4(2)
С(23)-С(22)-Н(22)	119.8
С(21)-С(22)-Н(22)	119.8
C(24)-C(23)-C(22)	120.0(3)
С(24)-С(23)-Н(23)	120.0
С(22)-С(23)-Н(23)	120.0
C(25)-C(24)-C(23)	120.1(2)
C(25)-C(24)-H(24)	119.9
C(23)-C(24)-H(24)	119.9
C(24)-C(25)-C(26)	120.4(2)
С(24)-С(25)-Н(25)	119.8
С(26)-С(25)-Н(25)	119.8
C(21)-C(26)-C(25)	120.3(2)
С(21)-С(26)-Н(26)	119.9
C(25)-C(26)-H(26)	119.9
C(36)-C(31)-C(32)	117.6(2)
C(36)-C(31)-P(1)	117.26(18)

พันธะ	มุมพันธะ (°)
C(32)-C(31)-P(1)	125.2(2)
C(31)-C(32)-C(33)	120.4(3)
C(31)-C(32)-H(32)	119.8
С(33)-С(32)-Н(32)	119.8
C(34)-C(33)-C(32)	120.9(3)
C(34)-C(33)-H(33)	119.5
C(32)-C(33)-H(33)	119.5
C(35)-C(34)-C(33)	119.4(3)
C(35)-C(34)-H(34)	120.3
C(33)-C(34)-H(34)	120.3
C(34)-C(35)-C(36)	120.5(3)
C(34)-C(35)-H(35)	119.8
C(36)-C(35)-H(35)	119.8
C(35)-C(36)-C(31)	121.3(3)
C(35)-C(36)-H(36)	119.4
C(31)-C(36)-H(36)	119.4
C(42)-C(41)-C(46)	119.0(2)
C(42)-C(41)-P(2)	120.88(19)
C(46)-C(41)-P(2)	119.68(18)
C(41)-C(42)-C(43)	119.9(3)
C(41)-C(42)-H(42)	120.1
C(43)-C(42)-H(42)	120.1
C(44)-C(43)-C(42)	120.4(3)
C(44)-C(43)-H(43)	119.8
C(42)-C(43)-H(43)	119.8
C(43)-C(44)-C(45)	120.4(3)

พันธะ	มุมพันธะ (°)		
С(43)-С(44)-Н(44)	119.8		
C(45)-C(44)-H(44)	119.8		
C(44)-C(45)-C(46)	119.9(3)		
C(44)-C(45)-H(45)	120.1		
C(46)-C(45)-H(45)	120.1		
C(45)-C(46)-C(41)	120.4(3)		
C(45)-C(46)-H(46)	119.8		
C(41)-C(46)-H(46)	119.8		
C(56)-C(51)-C(52)	118.8(2)		
C(56)-C(51)-P(2)	117.69(18)		
C(52)-C(51)-P(2)	123.52(18)		
C(51)-C(52)-C(53)	120.4(3)		
С(51)-С(52)-Н(52)	119.8		
C(53)-C(52)-H(52)	119.8		
C(54)-C(53)-C(52)	120.0(3)		
С(54)-С(53)-Н(53)	120.0		
С(52)-С(53)-Н(53)	120.0		
C(55)-C(54)-C(53)	120.0(3)		
C(55)-C(54)-H(54)	120.0		
C(53)-C(54)-H(54)	120.0		
C(54)-C(55)-C(56)	120.4(3)		
C(54)-C(55)-H(55)	119.8		
С(56)-С(55)-Н(55)	119.8		
C(51)-C(56)-C(55)	120.4(3)		
С(51)-С(56)-Н(56)	119.8		
С(55)-С(56)-Н(56)	119.8		

พันธะ	มุมพันธะ (°)
C(66)-C(61)-C(62)	118.0(2)
C(66)-C(61)-P(2)	119.79(19)
C(62)-C(61)-P(2)	122.2(2)
C(63)-C(62)-C(61)	121.0(3)
C(63)-C(62)-H(62)	119.5
C(61)-C(62)-H(62)	119.5
C(64)-C(63)-C(62)	120.3(3)
С(64)-С(63)-Н(63)	119.9
C(62)-C(63)-H(63)	119.9
C(65)-C(64)-C(63)	119.8(3)
C(65)-C(64)-H(64)	120.1
C(63)-C(64)-H(64)	120.1
C(64)-C(65)-C(66)	120.7(3)
C(64)-C(65)-H(65)	119.7
C(66)-C(65)-H(65)	119.7
C(61)-C(66)-C(65)	120.3(3)
C(61)-C(66)-H(66)	119.9
C(65)-C(66)-H(66)	119.9

พันธะ	มุมพันธะ (°)
P(2)-Cu(1)-S(1)-C(1)	-43.27(9)
P(1)-Cu(1)-S(1)-C(1)	-171.91(8)
I(1)-Cu(1)-S(1)-C(1)	80.06(9)
P(2)-Cu(1)-P(1)-C(31)	-47.33(8)
S(1)-Cu(1)-P(1)-C(31)	83.56(8)
I(1)-Cu(1)-P(1)-C(31)	-164.50(8)
P(2)-Cu(1)-P(1)-C(11)	-165.70(8)
S(1)-Cu(1)-P(1)-C(11)	-34.82(8)
I(1)-Cu(1)-P(1)-C(11)	77.12(8)
P(2)-Cu(1)-P(1)-C(21)	77.35(8)
S(1)-Cu(1)-P(1)-C(21)	-151.76(8)
I(1)-Cu(1)-P(1)-C(21)	-39.82(8)
P(1)-Cu(1)-P(2)-C(41)	-41.18(8)
S(1)-Cu(1)-P(2)-C(41)	-163.06(8)
I(1)-Cu(1)-P(2)-C(41)	73.37(8)
P(1)-Cu(1)-P(2)-C(51)	74.17(8)
S(1)-Cu(1)-P(2)-C(51)	-47.71(8)
I(1)-Cu(1)-P(2)-C(51)	-171.27(8)
P(1)-Cu(1)-P(2)-C(61)	-159.02(8)
S(1)-Cu(1)-P(2)-C(61)	79.10(9)
I(1)-Cu(1)-P(2)-C(61)	-44.46(9)
C(3)-N(2)-C(1)-N(1)	3.6(4)
C(3)-N(2)-C(1)-S(1)	-176.5(2)
C(2)-N(1)-C(1)-N(2)	-177.0(3)
C(2)-N(1)-C(1)-S(1)	3.1(4)
Cu(1)-S(1)-C(1)-N(2)	0.6(2)

ตารางที่ 15 มุม Torsion ในโมเลกุล [Cu(PPh₃)₂(dmtu)I]

พันธะ	มุมพันธะ (°)
$C_{1}(1) S(1) C(1) Y(1)$	170 51(17)
Cu(1)-S(1)-C(1)-N(1)	-1/9.51(17)
C(31)-P(1)- $C(11)$ - $C(16)$	12.2(3)
C(21)-P(1)-C(11)-C(16)	-94.9(2)
Cu(1)-P(1)-C(11)-C(16)	137.5(2)
C(31)-P(1)-C(11)-C(12)	-171.58(19)
C(21)-P(1)-C(11)-C(12)	81.3(2)
Cu(1)-P(1)-C(11)-C(12)	-46.3(2)
C(16)-C(11)-C(12)-C(13)	3.1(4)
P(1)-C(11)-C(12)-C(13)	-173.3(2)
C(11)-C(12)-C(13)-C(14)	-1.1(4)
C(12)-C(13)-C(14)-C(15)	-1.7(5)
C(13)-C(14)-C(15)-C(16)	2.5(5)
C(12)-C(11)-C(16)-C(15)	-2.4(4)
P(1)-C(11)-C(16)-C(15)	173.8(3)
C(14)-C(15)-C(16)-C(11)	-0.4(5)
C(31)-P(1)-C(21)-C(26)	105.72(18)
C(11)-P(1)-C(21)-C(26)	-147.48(18)
Cu(1)-P(1)-C(21)-C(26)	-24.4(2)
C(31)-P(1)-C(21)-C(22)	-75.7(2)
C(11)-P(1)-C(21)-C(22)	31.1(2)
Cu(1)-P(1)-C(21)-C(22)	154.13(18)
C(26)-C(21)-C(22)-C(23)	-0.2(4)
P(1)-C(21)-C(22)-C(23)	-178.8(2)
C(21)-C(22)-C(23)-C(24)	0.2(4)
C(22)-C(23)-C(24)-C(25)	-0.4(4)
C(23)-C(24)-C(25)-C(26)	0.5(4)

พันธะ	มุมพันธะ (°)
C(22)-C(21)-C(26)-C(25)	0.4(3)
P(1)-C(21)-C(26)-C(25)	178.98(18)
C(24)-C(25)-C(26)-C(21)	-0.5(4)
C(11)-P(1)-C(31)-C(36)	93.6(2)
C(21)-P(1)-C(31)-C(36)	-161.9(2)
Cu(1)-P(1)-C(31)-C(36)	-29.6(2)
C(11)-P(1)-C(31)-C(32)	-86.3(3)
C(21)-P(1)-C(31)-C(32)	18.3(3)
Cu(1)-P(1)-C(31)-C(32)	150.5(2)
C(36)-C(31)-C(32)-C(33)	-1.2(5)
P(1)-C(31)-C(32)-C(33)	178.7(3)
C(31)-C(32)-C(33)-C(34)	0.2(6)
C(32)-C(33)-C(34)-C(35)	0.9(6)
C(33)-C(34)-C(35)-C(36)	-1.1(6)
C(34)-C(35)-C(36)-C(31)	0.1(5)
C(32)-C(31)-C(36)-C(35)	1.0(4)
P(1)-C(31)-C(36)-C(35)	-178.9(2)
C(51)-P(2)-C(41)-C(42)	138.5(2)
C(61)-P(2)-C(41)-C(42)	31.2(2)
Cu(1)-P(2)-C(41)-C(42)	-98.6(2)
C(51)-P(2)-C(41)-C(46)	-48.8(2)
C(61)-P(2)-C(41)-C(46)	-156.08(19)
Cu(1)-P(2)-C(41)-C(46)	74.11(19)
C(46)-C(41)-C(42)-C(43)	-0.3(4)
P(2)-C(41)-C(42)-C(43)	172.4(2)
C(41)-C(42)-C(43)-C(44)	1.0(5)

พันธะ	มุมพันธะ (°)
C(A2) $C(A2)$ $C(A4)$ $C(A5)$	0.5(5)
C(42) - C(43) - C(44) - C(45)	-0.5(5)
C(43)-C(44)-C(45)-C(46)	-0.8(5)
C(44)-C(45)-C(46)-C(41)	1.4(4)
C(42)-C(41)-C(46)-C(45)	-0.9(4)
P(2)-C(41)-C(46)-C(45)	-173.73(19)
C(41)-P(2)-C(51)-C(56)	151.19(18)
C(61)-P(2)-C(51)-C(56)	-103.05(19)
Cu(1)-P(2)-C(51)-C(56)	32.4(2)
C(41)-P(2)-C(51)-C(52)	-28.1(2)
C(61)-P(2)-C(51)-C(52)	77.7(2)
Cu(1)-P(2)-C(51)-C(52)	-146.81(18)
C(56)-C(51)-C(52)-C(53)	0.4(4)
P(2)-C(51)-C(52)-C(53)	179.7(2)
C(51)-C(52)-C(53)-C(54)	0.0(4)
C(52)-C(53)-C(54)-C(55)	-0.4(4)
C(53)-C(54)-C(55)-C(56)	0.3(4)
C(52)-C(51)-C(56)-C(55)	-0.5(4)
P(2)-C(51)-C(56)-C(55)	-179.8(2)
C(54)-C(55)-C(56)-C(51)	0.2(4)
C(41)-P(2)-C(61)-C(66)	-109.1(2)
C(51)-P(2)-C(61)-C(66)	144.1(2)
Cu(1)-P(2)-C(61)-C(66)	12.3(2)
C(41)-P(2)-C(61)-C(62)	68.0(2)
C(51)-P(2)-C(61)-C(62)	-38.8(2)
Cu(1)-P(2)-C(61)-C(62)	-170.6(2)
C(66)-C(61)-C(62)-C(63)	-0.4(4)

พันธะ	มุมพันธะ (°)
P(2)-C(61)-C(62)-C(63)	-177.6(2)
C(61)-C(62)-C(63)-C(64)	0.0(5)
C(62)-C(63)-C(64)-C(65)	0.0(5)
C(63)-C(64)-C(65)-C(66)	0.3(6)
C(62)-C(61)-C(66)-C(65)	0.8(4)
P(2)-C(61)-C(66)-C(65)	178.0(2)
C(64)-C(65)-C(66)-C(61)	-0.8(5)

อะตอม	x	у	Z	U(eq)A**2
Cu(1)	6061(1)	8461(1)	3119(1)	34(1)
I(1)	7097(1)	7991(1)	2046(1)	43(1)
S(1)	7358(1)	9433(1)	3704(1)	44(1)
P(1)	6451(1)	7439(1)	3869(1)	31(1)
P(2)	3989(1)	8724(1)	2721(1)	33(1)
N(1)	7698(2)	10928(1)	3530(1)	51(1)
N(2)	6220(2)	10355(1)	2740(1)	54(1)
C(1)	7074(2)	10294(1)	3299(1)	41(1)
C(2)	8694(3)	10962(2)	4109(2)	75(1)
C(3)	5954(3)	11051(2)	2336(2)	67(1)
C(11)	8074(2)	7421(1)	4318(1)	37(1)
C(12)	9004(2)	7527(2)	3933(1)	49(1)
C(13)	10248(3)	7442(2)	4226(2)	64(1)
C(14)	10568(3)	7262(2)	4907(2)	69(1)
C(15)	9656(3)	7190(2)	5295(2)	75(1)
C(16)	8412(3)	7266(2)	5001(1)	61(1)
C(21)	6297(2)	6455(1)	3534(1)	36(1)
C(22)	6947(3)	5833(1)	3868(1)	50(1)
C(23)	6814(3)	5102(2)	3586(2)	59(1)
C(24)	6042(3)	4987(2)	2971(2)	57(1)
C(25)	5396(2)	5592(2)	2638(1)	51(1)
C(26)	5522(2)	6327(1)	2914(1)	39(1)
C(31)	5539(2)	7430(1)	4558(1)	38(1)
C(32)	5187(3)	6776(2)	4872(2)	65(1)
C(33)	4516(3)	6837(2)	5400(2)	80(1)
C(34)	4186(3)	7537(2)	5618(2)	71(1)

ตารางที่ 16 พิกัดของอะตอม(ยกเว้นไฮโครเจน)ในโมเลกุล [Cu(PPh₃)₂(dmtu)I]

ตารางที่ 16 (ต่อ)

อะตอม	x	у	Z	U(eq)A**2
C(35)	4504(3)	8182(2)	5307(2)	73(1)
C(36)	5176(3)	8132(2)	4782(1)	54(1)
C(41)	3143(2)	7821(1)	2532(1)	38(1)
C(42)	2875(3)	7540(2)	1873(1)	57(1)
C(43)	2362(3)	6810(2)	1751(2)	76(1)
C(44)	2104(3)	6372(2)	2275(2)	73(1)
C(45)	2354(3)	6645(2)	2931(2)	61(1)
C(46)	2887(2)	7365(1)	3062(1)	45(1)
C(51)	3152(2)	9190(1)	3335(1)	38(1)
C(52)	1895(2)	9064(2)	3355(1)	49(1)
C(53)	1322(3)	9434(2)	3838(2)	60(1)
C(54)	2001(3)	9929(2)	4299(1)	62(1)
C(55)	3243(3)	10053(2)	4286(1)	60(1)
C(56)	3823(2)	9685(1)	3807(1)	46(1)
C(61)	3484(2)	9271(1)	1929(1)	40(1)
C(62)	2265(3)	9528(2)	1735(2)	64(1)
C(63)	1901(3)	9912(2)	1127(2)	75(1)
C(64)	2736(4)	10044(2)	707(2)	78(1)
C(65)	3934(4)	9798(2)	886(2)	82(1)
C(66)	4317(3)	9406(2)	1496(1)	60(1)

อะตอม	X	у	Z	U(eq)A**2
H(1)	7487	11351	3316	62
H(2)	5787	9952	2606	65
H(2A)	8347	11018	4517	112
H(2B)	9224	11395	4062	112
H(2C)	9177	10497	4134	112
H(3A)	5652	11444	2606	101
H(3B)	5328	10944	1944	101
H(3C)	6705	11227	2191	101
H(12)	8792	7657	3475	59
H(13)	10870	7505	3964	77
H(14)	11403	7191	5102	83
H(15)	9872	7088	5759	90
H(16)	7796	7212	5269	73
H(22)	7473	5909	4284	60
H(23)	7248	4690	3813	70
H(24)	5958	4496	2781	68
H(25)	4869	5509	2223	61
H(26)	5084	6735	2682	47
H(32)	5403	6293	4728	78
H(33)	4287	6393	5609	96
H(34)	3746	7572	5977	85
H(35)	4269	8662	5448	88
H(36)	5389	8581	4574	65
H(42)	3038	7841	1512	68
H(43)	2195	6619	1309	91
H(44)	1755	5885	2188	87

ตารางที่ 17 พิกัดของอะตอมไฮโครเจนในโมเลกุล [Cu(PPh₃)₂(dmtu)I]

ตารางที่ 17 (ต่อ)

อะตอม	X	у	Z	U(eq)A**2
H(45)	2167	6346	3287	74
H(46)	3073	7544	3507	54
H(52)	1433	8730	3043	58
H(53)	479	9348	3848	72
H(54)	1617	10179	4620	75
H(55)	3701	10386	4600	72
H(56)	4668	9772	3803	55
H(62)	1684	9441	2019	76
H(63)	1078	10081	1004	89
H(64)	2488	10303	297	93
H(65)	4507	9891	598	98
H(66)	5139	9234	1610	71

อะตอม	U 11	U22	U33	U23	U 13	U12
Cu(1)	39(1)	30(1)	35(1)	1(1)	8(1)	-1(1)
I(1)	54(1)	40(1)	38(1)	-2(1)	17(1)	3(1)
S(1)	54(1)	32(1)	45(1)	0(1)	2(1)	-7(1)
P(1)	37(1)	28(1)	30(1)	1(1)	7(1)	-2(1)
P(2)	37(1)	29(1)	32(1)	-1(1)	7(1)	2(1)
N(1)	64(1)	31(1)	61(1)	-2(1)	17(1)	-6(1)
N(2)	52(1)	43(1)	65(1)	14(1)	6(1)	-8(1)
C(1)	42(1)	35(1)	50(1)	-2(1)	19(1)	-2(1)
C(2)	95(2)	50(2)	75(2)	-8(2)	1(2)	-21(2)
C(3)	61(2)	55(2)	84(2)	26(2)	10(2)	2(1)
C(11)	41(1)	32(1)	37(1)	0(1)	3(1)	-3(1)
C(12)	44(1)	60(2)	45(1)	-2(1)	9(1)	-3(1)
C(13)	45(2)	73(2)	76(2)	-8(2)	14(1)	-4(1)
C(14)	44(2)	67(2)	87(2)	0(2)	-12(2)	-4(1)
C(15)	63(2)	98(2)	55(2)	17(2)	-17(2)	-15(2)
C(16)	51(2)	85(2)	44(1)	12(1)	1(1)	-14(1)
C(21)	38(1)	29(1)	40(1)	0(1)	11(1)	-2(1)
C(22)	60(2)	36(1)	52(1)	4(1)	6(1)	3(1)
C(23)	69(2)	33(1)	76(2)	6(1)	17(2)	7(1)
C(24)	62(2)	35(1)	79(2)	-13(1)	25(2)	-7(1)
C(25)	50(1)	46(1)	58(2)	-17(1)	12(1)	-9(1)
C(26)	38(1)	37(1)	44(1)	-5(1)	9(1)	0(1)
C(31)	40(1)	42(1)	33(1)	1(1)	8(1)	-4(1)
C(32)	82(2)	50(2)	74(2)	7(1)	40(2)	-8(2)
C(33)	94(2)	79(2)	78(2)	17(2)	47(2)	-21(2)
C(34)	62(2)	101(3)	58(2)	-3(2)	31(1)	-9(2)

ตารางที่ 18 เทอร์มอลพารามิเตอร์ของอะตอมใน โมเลกุล [Cu(PPh₃)₂(dmtu)I]
ตารางที่ 18 (ต่อ)

อะตอม	U 11	U22	U33	U23	U 13	U12
Cu(1)	39(1)	30(1)	35(1)	1(1)	8(1)	-1(1)
C(35)	88(2)	76(2)	65(2)	-8(2)	41(2)	9(2)
C(36)	71(2)	48(1)	50(2)	0(1)	28(1)	1(1)
C(41)	36(1)	30(1)	47(1)	-2(1)	5(1)	1(1)
C(42)	76(2)	44(1)	48(1)	-7(1)	3(1)	-8(1)
C(43)	97(2)	54(2)	69(2)	-21(2)	-5(2)	-15(2)
C(44)	70(2)	45(2)	102(3)	-17(2)	13(2)	-17(1)
C(45)	58(2)	44(2)	87(2)	7(1)	26(2)	-7(1)
C(46)	43(1)	39(1)	55(1)	0(1)	13(1)	0(1)
C(51)	45(1)	32(1)	37(1)	3(1)	11(1)	7(1)
C(52)	49(1)	44(1)	54(2)	1(1)	13(1)	8(1)
C(53)	58(2)	60(2)	69(2)	9(2)	30(1)	17(1)
C(54)	86(2)	56(2)	52(2)	-1(1)	31(2)	20(2)
C(55)	86(2)	49(2)	47(2)	-10(1)	14(1)	6(1)
C(56)	57(2)	40(1)	42(1)	-3(1)	11(1)	2(1)
C(61)	52(1)	31(1)	34(1)	0(1)	2(1)	3(1)
C(62)	60(2)	67(2)	62(2)	17(2)	5(1)	11(1)
C(63)	79(2)	75(2)	61(2)	12(2)	-13(2)	18(2)
C(64)	122(3)	63(2)	42(2)	9(1)	-6(2)	26(2)
C(65)	113(3)	88(2)	50(2)	20(2)	33(2)	20(2)
C(66)	72(2)	63(2)	46(1)	13(1)	18(1)	15(1)

ประวัติผู้เขียน

ชื่อ สกุล รหัสประจำตัวนักศึกษา วุฒิการศึกษา วุฒิ วิทยาศาสตรบัณฑิต (ศึกษาศาสตร์)

นางสาวลาตีป๊ะ ลาโอะ

4910220123

ชื่อสถาบัน มหาวิทยาลัยสงขลานครินทร์ ปีที่สำเร็จการศึกษา

2549

ทุนการศึกษา (ที่ได้รับในระหว่างการศึกษา)

ทุนผู้ช่วยนักวิจัยคณะวิทยาศาสตร์ (RA)