กรุณาใช้ตัวระบุนี้เพื่ออ้างอิงหรือเชื่อมต่อรายการนี้: http://kb.psu.ac.th/psukb/handle/2016/19144
ชื่อเรื่อง: Applying Deep Learning for Phase-Array Antenna Design
ผู้แต่ง/ผู้ร่วมงาน: Mitchai Chongcheawchamnan
Zhang, Peng Jr
Faculty of Engineering Electrical Engineering
คณะวิศวกรรมศาสตร์ ภาควิชาวิศวกรรมไฟฟ้า
คำสำคัญ: Deep learning;Hybrid beamforming;massive MIMO;Unsupervised Deep Learning
วันที่เผยแพร่: 2022
สำนักพิมพ์: Prince of Songkla University
บทคัดย่อ: Hybrid beamforming (HBF) can provide rapid data transmission rates while reducing the complexity and cost of massive multiple-input multiple-output (MIMO) systems. However, channel state information (CSI) is imperfect in realistic downlink channels, introducing challenges to hybrid beamforming (HBF) design. For HBF designs, we had a hard time finding the proper labels. If we use the optimized output based on the traditional algorithm as the label, the neural network can only be trained to approximate the traditional algorithm, but not better than the traditional algorithm. This thesis proposes a hybrid beamforming neural network based on unsupervised deep learning (USDNN) to prevent the labeling overhead of supervised learning and improve the achievable sum rate based on imperfect CSI. Compared with the traditional HBF method, the unsupervised learning-based method can avoid the labeling overhead as well as obtain better performance than the traditional algorithm. The network consists of 5 dense layers, 4 batch normalization (BN) layers and 5 activation functions. After training, the optimized beamformer can be obtained, and the optimized beamforming vector can be directly output. The simulation results show that our proposed method is 74% better than manifold optimization (MO) and 120% better than orthogonal match pursuit (OMP) systems. Furthermore, our proposed USDNN can achieve near-optimal performance.
รายละเอียด: Master of Engineering (Electrical Engineering), 2021
URI: http://kb.psu.ac.th/psukb/handle/2016/19144
ปรากฏในกลุ่มข้อมูล:210 Thesis

แฟ้มในรายการข้อมูลนี้:
แฟ้ม รายละเอียด ขนาดรูปแบบ 
6310120035.pdf2.81 MBAdobe PDFดู/เปิด


รายการนี้ได้รับอนุญาตภายใต้ Creative Commons License Creative Commons