Please use this identifier to cite or link to this item: http://kb.psu.ac.th/psukb/handle/2016/17260
Title: Invariant Subspace Method for Fractional Telegraph Equations
Authors: Pisamai Kittipoom
Somavatey Meas
Faculty of Science (Mathemetics and Statistics)
คณะวิทยาศาสตร์ ภาควิชาคณิตศาสตร์และสถิติ
Keywords: Invariant subspaces Methodology;Hilbert space;Mathematical optimization
Issue Date: 2018
Publisher: Prince of Songkla University
Abstract: In this thesis, we use the invariant subspace method to find the solu- tions of three classes of fractional telegraph equations, i.e., space-, time-, and space and time-fractional telegraph equations, in which fractional derivatives are consid- ered in the Caputo sense. In this method, we first classify all possible invariant subspaces with respect to the differential operator. By assuming the solution to be a linear combination of functions in the appropriate invariant subspace, the fractional telegraph equation is reduced to a system of fractional ordinary differential equa- tions. Finally, solving the system of fractional ordinary differential equations yields the solution of fractional telegraph equation.
Description: Thesis (M.Sc., Mathematics)--Prince of Songkla University, 2018
URI: http://kb.psu.ac.th/psukb/handle/2016/17260
Appears in Collections:322 Thesis

Files in This Item:
File Description SizeFormat 
426584.pdf389.4 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons