Please use this identifier to cite or link to this item:
http://kb.psu.ac.th/psukb/handle/2010/9192
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ratanawilai, Thanate | - |
dc.contributor.author | Thongruang, Wiriya | - |
dc.contributor.author | Homkhiew, Chatree | - |
dc.date.accessioned | 2014-06-19T09:32:01Z | - |
dc.date.available | 2014-06-19T09:32:01Z | - |
dc.date.issued | 2014-01 | - |
dc.identifier.issn | 1359-8368 | - |
dc.identifier.uri | http://kb.psu.ac.th/psukb/handle/2010/9192 | - |
dc.description.abstract | A mixture design was used in experiments, to determine the optimal mixture for composites of rubberwood flour (RWF) and reinforced recycled polypropylene (rPP). The mixed materials were extruded into panels. Effects were determined of the mixture components rPP, RWF, maleic anhydride-grafted polypropylene (MAPP), and ultraviolet (UV) stabilizer, on the mechanical properties. The overall composition significantly affected flexural, compressive, and tensile properties. The fractions of recycled polypropylene and rubberwood flour increased all the mechanical material properties; however, increasing one fraction must be balanced by decreasing the other, and the rubberwood flour fraction had a higher effect size. The fraction of MAPP was best kept in mid-range of the fractions tested, while the UV stabilizer fraction overall degraded the mechanical properties. Our results suggest that the fraction of UV stabilizer should be as small as possible to minimize its negative influences. The models fitted were used for optimization of a desirability score, substituting for the multiple objectives modeled. The optimal formulation found was 50.3 wt% rPP, 44.5 wt% RWF, 3.9 wt% MAPP, 0.2 wt% UV stabilizer, and 1.0 wt% lubricant; the composite made with this formulation had good mechanical properties that closely matched the model predictions. | en_US |
dc.description.sponsorship | Prince of Songkla Graduate Studies Grant, the Government budget Fund (Research Grant Code: 2555A11502062)and Rubberwood Technology and Management Research Group (ENG-54-27-11-0137-S) of Faculty of Engineering,Prince of Songkla University | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Composites: Part B Engineering | en_US |
dc.subject | Polymer–matrix composites (PMCs) | en_US |
dc.subject | Mechanical properties | en_US |
dc.subject | Statistical properties/methods | en_US |
dc.subject | Extrusion | en_US |
dc.title | The optimal formulation of recycled polypropylene/rubberwood flour composites from experiments with mixture design | en_US |
dc.type | Article | en_US |
Appears in Collections: | 228 Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
J2014 The optimal formulation of recycled polypropylene_rubberwood flour composites from experiments with mixture design.pdf | 1.67 MB | Adobe PDF | View/Open |
Items in PSU Knowledge Bank are protected by copyright, with all rights reserved, unless otherwise indicated.