บทที่ 1 # แกมมา-กึ่งกรุป ### (Gamma-semigroups) In 1981, the notion of Γ -semigroups was introduced by M. K. Sen (See [5], [6] and [7]). Let M and Γ be any two nonempty sets. If there exists a mapping $M \times \Gamma \times M \to M$, written (a, γ, b) by $a\gamma b$, M is called a Γ -semigroup if M satisfies the identities $(a\gamma b)\mu c = a\gamma (b\mu c)$ for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma$. Let K be a nonempty subset of M. Then K is called a $Sub\Gamma$ -semigroup of M if $A\gamma b \in K$ for all A, A is A and A if A if A is called a A if **Example 1.1.** Let S be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a \gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. Then S is a Γ -semigroup. **Example 1.2.** Let M = [0,1] and $$\Gamma = \{ \frac{1}{n} | n \text{ is a positive integer } \}.$$ Then M is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that K is a nonempty subset of M and $a \gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ -semigroup. From example 1.1, we have that every semigroup is a Γ -semigroup. Therefore, Γ -semigroups are generalizations of semigroups. ## 1.1 Quasi-gamma-ideals Let S be a semigroup. A nonempty subset Q of S is called a *quasi-ideal* of S if $SQ \cap QS \subseteq Q$. Let Q be a quasi-ideal of S. Then $Q^2 \subseteq SQ \cap QS \subseteq Q$. Hence Q is a subsemigroup of S. The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld (see [1]). The author have studied some properties of quasi-ideals in semigroups (See [2] and [3]). **Example 1.3.** Let S = [0, 1]. Then S is a semigroup under usual multiplication. Let $Q = [0, \frac{1}{2}]$. Thus $SQ \cap QS = [0, \frac{1}{2}] \subseteq Q$. Therefore, Q is a quasi-ideal of S. A nonempty subset L of S is called a *left ideal* of S if $SL \subseteq L$ and a nonempty subset R of S is called a *right ideal* of S if $RS \subseteq R$. Clearly, every left ideal and every right ideal of a semigroup S is a subsemigroup of S. Next, let L and R be a left ideal and a right ideal of a semigroup S. By the definition of quasi-ideals of semigroups, it is easy to prove that $L \cap R$ is a quasi-ideal of S (See [4]). Let Q be a quasi-ideal of a semigroup. Then $Q = (Q \cup SQ) \cap (Q \cup QS)$. It is easy to show that $(Q \cup SQ)$ is a left ideal of S and $Q \cup QS$ is a right ideal of S. Then every quasi-ideal Q of S can be written as the intersection of a left ideal and a right ideal of S. **Example 1.4.** Let **Z** be the set of all integers and $M_2(\mathbf{Z})$, the set of all 2×2 matrices over **Z**. We have known that $M_2(\mathbf{Z})$ is a semigroup under the usual multiplication. Let $$L = \{ \begin{bmatrix} \mathbf{x} & 0 \\ \mathbf{y} & 0 \end{bmatrix} | x, y \in \mathbf{Z} \}$$ and $$R = \{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} | x, y \in \mathbf{Z} \}.$$ Then L is a left ideal of $M_2(\mathbf{Z})$, R is a right ideal of $M_2(\mathbf{Z})$ and $$L \cap R = \left\{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} | x \in \mathbf{Z} \right\}$$ is a quasi-ideal of $M_2(\mathbf{Z})$. In this section, we generalize some properties of quasi-ideals of semigroups to some properties of quasi- Γ -ideals in Γ -semigroups. Let M be a Γ -semigroup. A nonempty subset Q of M is called a *quasi-* Γ -*ideal* of M if $M\Gamma Q \cap Q\Gamma M \subseteq Q$. Let Q be a quasi- Γ -ideal of M. Then $Q\Gamma Q \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. This implies that Q is a sub Γ -semigroup of M. **Example 1.5.** Let S be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a \gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. From example 1.3, S is a Γ -semigroup. Let Q be a quasi-ideal of S. Thus $SQ \cap QS \subseteq Q$. We have that $S\Gamma Q \cap Q\Gamma S = SQ \cap QS \subseteq Q$. Hence, Q is a quasi- Γ -ideal of S. Example 1.5 implies that the class of quasi- Γ -ideals in Γ -semigroups is a generalization of quasi-ideals in semigroups. **Theorem 1.1.** Let M be a Γ -semigroup and Q_i a quasi- Γ -ideal of M for each $i \in I$. If $\bigcap_{i \in I} Q_i$ is a nonempty set, then $\bigcap_{i \in I} Q_i$ is a quasi- Γ -ideal of M. **Proof.** Let M be a Γ -semigroup and Q_i a quasi- Γ -ideal of M for each $i \in I$. Assume that $\bigcap_{i \in I} Q_i$ is a nonempty set. Take any $a, b \in \bigcap_{i \in I} Q_i$, $m_1, m_2 \in M$ and $\gamma, \mu \in \Gamma$ such that $m_1 \mu b = a \gamma m_2$. Then $a, b \in Q_i$ for all $i \in I$. Since Q_i is a quasi- Γ -ideal of M for all $i \in I$, $m_1 \mu b = a \gamma m_2 \in M \Gamma Q_i \cap Q_i \Gamma M \subseteq Q_i$ for all $i \in I$. Therefore $m_1 \mu b = a \gamma m_2 \in \bigcap_{i \in I} Q_i$. Thus $$M\Gamma \bigcap_{i \in I} Q_i \cap \bigcap_{i \in I} Q_i \Gamma M \subseteq \bigcap_{i \in I} Q_i$$. Hence, $\bigcap_{i \in I} Q_i$ is a quasi- Γ -ideal of M . In Theorem 1.1, the condition $\bigcap Q_i$ is a nonempty set is necessary. For example, let N be the set of all positive integers and $\Gamma = \{1\}$. Then M is a Γ -semigroup. For $n \in \mathbb{N}$, let $Q_n = \{1\}$ $\{n+1, n+2, n+3, ...\}$. It is easy to show that each Q_n is a quasi- Γ -ideal of M for all $n \in \mathbb{N}$ but $\bigcap_{n\in\mathbb{N}}Q_n$ is a empty set. Let A be a nonempty subset of a Γ -semigroup M and $\Im = \{Q \mid Q \text{ is a quasi-} \Gamma \text{-ideal of } M$ containing A). Then \Im is a nonempty set because $M \in \Im$. Let $(A)_q = \bigcap Q$. It is clear to see that $A \subseteq (A)_q$. By Theorem 2.1, $(A)_q$ is a quasi- Γ -ideal of M. Moreover, $(A)_q$ is the smallest quasi- Γ -ideal of M containing A. (A)_q is called the quasi- Γ -ideal of M generated by A. **Theorem 1.2.** Let A be a nonempty subset of a Γ -semigroup M. Then $$(A)_q = A \cup (M\Gamma A \cap A\Gamma M).$$ **Proof.** Let A be a nonempty subset of a Γ -semigroup M. Let $Q=A \cup (M\Gamma A \cap A\Gamma M)$. It is easy to see that $A \subseteq Q$. We have that $$M\Gamma Q \cap Q\Gamma M = M\Gamma [A \cup (M\Gamma A \cap A\Gamma M)] \cap [A \cup (M\Gamma A \cap A\Gamma M)]\Gamma M \subseteq M\Gamma (A \cup M\Gamma A) \cap [A \cup (A\Gamma M)]\Gamma M \subseteq M\Gamma A \cap A\Gamma M \subseteq Q.$$ Therefore, Q is a quasi- Γ -ideal of M. Let C be any quasi- Γ -ideal of M containing A. Since C is a quasi- Γ -ideal of M and $A \subseteq$ C, $M\Gamma A \cap A\Gamma M \subseteq C$. Therefore, $Q = A \cup (M\Gamma A \cap A\Gamma M) \subseteq C$. Hence, Q is the smallest quasi- Γ -ideal of M containing A. Therefore, $$(A)_q = A \cup (M\Gamma A \cap A\Gamma M),$$ as required. **Example 1.6.** Let N be the set of natural integers and $\Gamma = \{5\}$. Then N is a Γ -semigroup under usual addition. (ii) Let $A = \{3, 4\}$. We have that (i) Let $A = \{2\}$. We have that $$A)_a = \{2\} \cup \{8, 9, 10, \ldots\}.$$ $$(A)_a = \{3, 4\} \cup \{9, 10, 11, \ldots\}.$$ Let M be a Γ -semigroup. A sub Γ -semigroup L of M is called a left Γ -ideal of M if $M\Gamma L$ $\subseteq L$ and a sub Γ -semigroup R of M is called a right Γ -ideal of M if $R\Gamma M \subseteq R$. The following theorem is true. **Theorem 1.3.** Let M be a Γ -semigroup. Let L and R be a left Γ -ideal and a right Γ -ideal of M, respectively. Then $L \cap R$ is a quasi- Γ -ideal of M. **Proof.** Let L and R be any left Γ -ideal and any right Γ -ideal of a Γ -semigroup M, respectively. By properties of L and R, we have $RL \subseteq L \cap R$. This implies that $L \cap R$ is a nonempty set. We have that $$M\Gamma(L\cap R)\cap (L\cap R)\Gamma M\subseteq M\Gamma L\cap R\Gamma M\subseteq L\cap R.$$ Hence, $L \cap R$ is a quasi- Γ -ideal of M. **Theorem 1.4.** Every quasi- Γ -ideal Q of a Γ -semigroup M is the intersection of a left Γ -ideal and a right Γ -ideal of M. **Proof.** Let Q be any quasi- Γ -ideal of a Γ -semigroup M. Let $L = Q \cup M \Gamma Q$ and $R = Q \cup Q \Gamma M$. Then $M\Gamma L = M\Gamma(Q \cup M\Gamma Q) = M\Gamma Q \cup M\Gamma M\Gamma Q \subseteq M\Gamma Q \subseteq L$ and $R\Gamma M = (Q \cup Q\Gamma M)$ $\Gamma M = Q \Gamma M \cup Q\Gamma M\Gamma M \subseteq Q\Gamma M \subseteq R$. Then L and R is a left Γ -ideal and a right Γ -ideal of M, respectively. Next, we claim that $Q = L \cap R$. It is easy to see that $Q \subseteq (Q \cup M \Gamma Q) \cap (Q \cup Q \Gamma M)$ $\subseteq L \cap R$. Conversely, $L \cap R = Q \cup M \Gamma Q \cap (Q \cup Q \Gamma M) \subseteq Q \cup (M \Gamma Q \cap Q \Gamma M) \subseteq Q$. Hence, $Q = L \cap R$. Let M be a Γ -semigroup. M is called a *quasi-simple* Γ -semigroup if M is a unique quasi- Γ -ideal of M. A quasi- Γ -ideal Q of M is called a *minimal quasi-* Γ -ideal of M if Q does not properly contain any quasi- Γ -ideals of M. **Example 1.7.** Let G be a group and $\Gamma = \{e_G\}$. It is easy to see that G is a unique quasi- Γ -ideal of G under the usual binary operation. Then G is a quasi-simple Γ -semigroup. **Theorem 1.5.** Let M be a Γ -semigroup. Then M is a quasi-simple Γ -semigroup if and only if $M\Gamma m \cap m\Gamma M = M$ for all $m \in M$. #### **Proof.** Let M be a Γ -semigroup. The proof of (\rightarrow) : Assume that M is a quasi-simple Γ -semigroup. Take any $m \in M$. First, we claim that $M\Gamma m \cap m\Gamma M$ is a quasi-ideal of M. We have that $m\Gamma m \in M\Gamma m \cap m\Gamma M$, this implies $M\Gamma m \cap m\Gamma M$ is a nonempty set. Moreover, $M\Gamma(M\Gamma m \cap m\Gamma M) \cap (M\Gamma m \cap m\Gamma M)\Gamma M \subseteq M\Gamma(M\Gamma m) \cap (m\Gamma M)\Gamma M = (M\Gamma M)\Gamma m \cap m\Gamma(M\Gamma M) \subseteq M\Gamma m \cap m\Gamma M$. Therefore, $M\Gamma m \cap m\Gamma M$ is a quasi- Γ -ideal of M. Since M is a quasi-simple Γ -semigroup, $M\Gamma m \cap m\Gamma M = M$. The proof of (\leftarrow) : Assume that $M\Gamma m \cap m\Gamma M = M$ for all $m \in M$. Let Q be a quasi- Γ -ideal of M and $q \in Q$. By assumption, $M = M\Gamma q \cap q\Gamma M$. Since Q is a quasi- Γ -ideal of M, $M = M\Gamma q \cap q\Gamma M \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. Therefore Q = M. Hence, M is a quasi-simple Γ -semigroup. **Theorem 1.6.** Let M be a Γ -semigroup and Q a quasi- Γ -ideal of M. If Q is a quasi-simple Γ -semigroup, then Q is a minimal quasi- Γ -ideal of M. **Proof.** Suppose M be a Γ -semigroup and Q a quasi- Γ -ideal of M. Assume that Q is a quasi-simple Γ -semigroup. Let C be a quasi- Γ -ideal of M such that $C \subseteq Q$. Then $Q\Gamma C \cap C\Gamma Q \subseteq M\Gamma C \cap C\Gamma M \subseteq C$. Therefore, C be a quasi- Γ -ideal of Q. Since Q is a quasi-simple Γ -semigroup, C = Q. Then Q is a minimal quasi- Γ -ideal of M. ### 1.2 Bi-gamma-ideals Let M be a Γ -semigroup. A sub Γ -semigroup B of M is called a bi- Γ -ideal of M if $B\Gamma M\Gamma B \subseteq B$. **Example 1.8.** Let S be a semigroup, and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \to S$ by a1b = ab for all $a, b \in S$. From Example 1.4, we have known that S is a Γ -semigroup. Let B be a bi-ideal of a semigroup S. Thus $BSB \subseteq B$. Since $\Gamma = \{1\}$, $B\Gamma S\Gamma B = BSB \subseteq B$. Hence B is a bi- Γ -ideal of S. Example 1.8 implies that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups (for a suitable Γ). **Theorem 1.7.** Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. If $\bigcap_{i \in I} B_i \neq \emptyset$, then $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M. **Proof.** Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. Assume that $\bigcap_{i \in I} B_i \neq \emptyset$. Let $a, b \in \bigcap_{i \in I} B_i$, $m \in M$ and $\gamma, \mu \in \Gamma$. Then $a, b \in B_i$ for all $i \in I$. Since B_i is a bi- Γ -ideal of M for all $i \in I$, $\alpha \gamma b \in B_i$ and $\alpha \gamma m \mu b \in B_i \Gamma M \Gamma B_i \subseteq B_i$ for all $i \in I$. Therefore $\alpha \gamma b \in \bigcap_{i \in I} B_i$ and $\alpha \gamma m \mu b \in \bigcap_{i \in I} B_i$. Hence $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M. In Theorem 1.7, $\bigcap_{i\in I} B_i \neq \emptyset$ is a necessary condition. Let M=(0,1) and $\Gamma=\{1\}$. Then M is a Γ -semigroup under the usual multiplication. Let \mathbb{N} be the set of all positive integers. For $n\in\mathbb{N}$, let $B_n=(0,\frac{1}{n})$. It is easy to prove that B_n is a bi- Γ -ideal of M for all $n\in\mathbb{N}$ but $\bigcap_{n\in\mathbb{N}} B_n=\emptyset$. Let A be a nonempty subset of a Γ -semigroup M. Let $\mathfrak{I} = \{B \mid B \text{ is a bi-}\Gamma\text{-ideal of }M \text{ containing }A\}$. Then $\mathfrak{I} \neq \emptyset$ because $M \in \mathfrak{I}$. Let $(A)_b = \bigcap_{B \in \mathfrak{I}} B$. It is clearly seen that $A \subseteq (A)_b$. By Theorem 1.7, $(A)_b$ is a bi- Γ -ideal of M. Moreover, $(A)_b$ is the smallest bi- Γ -ideal of M containing A. $(A)_b$ is called the bi- Γ -ideal of M generated by A. **Theorem 1.8.** Let A be a nonempty subset of a Γ -semigroup M. Then $$(A)_b = A \cup A\Gamma A \cup A\Gamma M\Gamma A.$$ **Proof.** Let A be a nonempty subset of a Γ -semigroup M. Let $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$. Clearly, $A \subseteq B$. We have that $B\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A)\Gamma(A \cup A\Gamma A \cup A\Gamma M\Gamma A) \subseteq A\Gamma A \cup A\Gamma M\Gamma A \subset B$. Hence B is a sub Γ -semigroup of M. Since M is a Γ -semigroup, all elements in $B\Gamma M\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A)\Gamma M\Gamma (A \cup A\Gamma A \cup A\Gamma M\Gamma A)$ are in the form of $a_1\gamma m\mu a_2$ for some $a_1, a_2 \in A, \gamma, \mu \in \Gamma$ and $m \in M$. Thus $B\Gamma M\Gamma B \subseteq A\Gamma M\Gamma A \subseteq B$. Therefore B is a bi- Γ -ideal of M. Let C be any bi- Γ -ideal of M containing A. Since C is a sub- Γ -semigroup of M and $A \subseteq C$, $A\Gamma A \subseteq C$. Since C is a bi- Γ -ideal of M and $A \subseteq C$, $A\Gamma M\Gamma A \subseteq C$. Therefore $B = A \cup A\Gamma M \cap A \subseteq C$. Hence B is the smallest bi- Γ -ideal of M containing A. Therefore $(A)_b = B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$, as required. **Example 1.9.** Let N be the set of all positive integers and $\Gamma = \{5\}$. Then N is a Γ -semigroup under usual addition. - (i) Let $A = \{2\}$. We have that $(A)_b = \{2\} \cup \{9\} \cup \{15, 16, 17, \ldots\}$. - (ii) Let $A = \{3, 4\}$. We have that $(A)_b = \{3, 4\} \cup \{11, 12, 13\} \cup \{17, 18, 19, \ldots\}$. **Theorem 1.9.** Let M be a Γ -semigroup. Let B be a bi- Γ -ideal of M and A a nonempty subset of M. Then the following statements are true. - (i) $B\Gamma A$ is a bi- Γ -ideal of M. - (ii) $A\Gamma B$ is a bi- Γ -ideal of M. **Proof.** (i) We have that $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A$ and $(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A$. Since B is a bi- Γ -ideal of M, $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A \subseteq B\Gamma A$ and $(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A \subseteq (B\Gamma M\Gamma B)\Gamma A \subseteq B\Gamma A$. Therefore $B\Gamma A$ is a bi- Γ -ideal of M. The proof of (ii) is similar to the proof of (i). Corollary 1.10. Let M be a Γ -semigroup. For a positive integer n, let $B_1, B_2, ..., B_n$ be bi- Γ -ideals of M. Then $B_1\Gamma B_2\Gamma ...\Gamma B_n$ is a bi- Γ -ideal of M. **Proof.** We will prove the corollary by mathematical induction. By Theorem 1.8, $B_1\Gamma B_2$ is a bi- Γ -ideal of M. Next, let n be any positive integer such that k < n and assume $B_1\Gamma B_2\Gamma \dots \Gamma B_k$ is a bi- Γ -ideal of M. We have that $B_1\Gamma B_2\Gamma \dots \Gamma B_k\Gamma B_{k+1} = (B_1\Gamma B_2\Gamma \dots \Gamma B_k)\Gamma B_{k+1}$ is a bi- Γ -ideal of M by Theorem 1.8. Let M be a Γ -semigroup. M is called a *bi-simple* Γ -semigroup if M is the unique bi- Γ -ideal of M. A bi- Γ -ideal B of M is called a *minimal bi-\Gamma-ideal* of M if B does not properly contain any bi- Γ -ideal of M. **Example 1.10.** Let G be a group and $\Gamma = G$. Then $G^n = G$ and gG = G = Gg for all $g \in G$. Then G is a Γ -semigroup under the usual binary operation. It is easy to see that G is the unique bi- Γ -ideal of G. Then G is a bi-simple Γ -semigroup. **Theorem 1.11.** Let M be a Γ -semigroup. Then M is a bi-simple Γ -semigroup if and only if $M = m\Gamma M\Gamma m$ for all $m \in M$, where $m\Gamma M\Gamma m$ means $\{m\}\Gamma M\Gamma \{m\}$. **Proof.** Let M be a Γ -semigroup. Assume that M is a bi-simple Γ -semigroup. Let $m \in M$. By Theorem 2.3, $m\Gamma M\Gamma m$ is a bi- Γ -ideal of M. Then $M = m\Gamma M\Gamma m$. Assume that $M = m\Gamma M\Gamma m$ for all $m \in M$. Let B be a bi- Γ -ideal of M. Let $b \in B$. By assumption, $M = b\Gamma M\Gamma b \subseteq B\Gamma M\Gamma B \subseteq B$. Hence M = B. Therefore M is a bi-simple Γ -semigroup. **Theorem 1.12.** Let M be a Γ -semigroup and B a bi- Γ -ideal of M. Then B is a minimal bi- Γ -ideal of M if and only if B is a bi-simple Γ -semigroup. **Proof.** Let M be a Γ -semigroup and B a bi- Γ -ideal of M. Assume that B is a minimal bi- Γ -ideal of M. Let C be a bi- Γ -ideal of B. Then $C\Gamma B\Gamma C \subseteq C$. Since B is a bi- Γ -ideal of M, by Theorem 2.3, $C\Gamma B\Gamma C$ is a bi- Γ -ideal of M. Since B is a minimal bi- Γ -ideal of M and $C\Gamma B\Gamma C \subseteq B$, $C\Gamma B\Gamma C = B$. Hence $B = C\Gamma B\Gamma C \subseteq C$, this implies B = C. Then B is a bi-simple Γ -semigroup. Assume that B is a bi-simple Γ -semigroup. Let C be a bi- Γ -ideal of M such that $C \subseteq B$. Then $C\Gamma B\Gamma C \subseteq C\Gamma M\Gamma C \subseteq C$. Therefore C is a bi- Γ -ideal of B. Since B is a bi-simple Γ -semigroup, C = B. Hence B is a minimal bi- Γ -ideal of M, as required.