ผลงานวิจัยที่เกี่ยวกับงานวิจัยนี้ที่ได้รับการตีพิมพ์ # On Quasi-gamma-ideals in Gamma-semigroups #### Ronnason Chinram^{*} Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thalland. * Corresponding author, E-mail: ronnason.c@psu.ac.th Received 18 Jan 2006 Accepted 10 May 2006 **ABSTRACT:** The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld. The class of quasi-ideals in semigroups is a generalization of one-sided ideals in semigroups. It is well-known that the intersection of a left ideal and a right ideal of a semigroup S is a quasi-ideal of S and every quasi-ideal of S can be obtain in this way. In 1981, M. K. Sen have introduced the concept of Γ -semigroups. One can see that Γ -semigroups are a generalization of semigroups. In this research, quasi- Γ -ideals in Γ -semigroups are introduced and some properties of quasi- Γ -ideals in Γ -semigroups are provided. **Kerworos:** Γ -semigroups, quasi- Γ -ideals, minimal quasi- Γ -ideals, quasi-simple Γ -semigroups. ### INTRODUCTION Let S be a semigroup. A nonempty subset Q of S is called a quasi-ideal of S if $SQ \cap QS \subseteq Q$. Let Q be a quasi-ideal of S. Then $Q^2 \subseteq SQ \cap QS \subseteq Q$. Hence Q is a subsemigroup of S. The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld (see [1]). The author has studied some properties of quasi-ideals in semigroups (See [2] and [3]). **Example 1.1.** Let $S = \{0, 1\}$. Then S is a semigroup under usual multiplication. Let $Q = \{0, \frac{1}{2}\}$. Thus $SQ \cap QS = \{0, \frac{1}{2}\} \subseteq Q$. Therefore, Q is a quasi-ideal of S. A nonempty subset L of S is called a *left ideal* of S if $SL \subseteq L$ and a nonempty subset R of S is called a *right ideal* of S if $RS \subseteq R$. Clearly, every left ideal and every right ideal of a semigroup S is a subsemigroup of S. Next, let L and R be a left ideal and a right ideal of a semigroup S. By the definition of quasi-ideals of semigroups, it is easy to prove that $L \cap R$ is a quasi-ideal of S (See [4]). Let Q be a quasi-ideal of a semigroup. Then $Q = (Q \cup SQ) \cap (Q \cup QS)$. It is easy to show that $(Q \cup SQ)$ is a left ideal of S and $Q \cup QS$ is a right ideal of S. Then every quasi-ideal Q of S can be written as the intersection of a left ideal and a right ideal of S. **Example 1.2.** Let Z be the set of all integers and $M_2(Z)$, the set of all 2×2 matrices over Z. We have known that $M_2(Z)$ is a semigroup under the usual multiplication. Let $$L = \left\{ \begin{bmatrix} x & 0 \\ y & 0 \end{bmatrix} \middle| x, y \in Z \right\}$$ and $$R = \{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} | x, y \in \mathbb{Z} \}.$$ Then L is a left ideal of $M_2(\mathbb{Z})$, R is a right ideal of $M_2(\mathbb{Z})$ and $L \cap R = \{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} | x \in \mathbb{Z} \}$ is a quasi-ideal of $M_2(\mathbb{Z})$. In 1981, the notion of Γ -semigroups was introduced by M. K. Sen (See [5], [6] and [7]). Let M and Γ be any two nonempty sets. If there exists a mapping $M \times \Gamma \times$ $M \rightarrow M$, written (a, γ, b) by $a\gamma b$, M is called a Γ -semigroup if M satisfies the identities $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all a, b, $c \in M$ and $\gamma, \mu \in \Gamma$. Let K be a nonempty subset of M. Then K is called a sub Γ -semigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. **Example 1.3.** Let S be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. Then S is a Γ —semigroup. **Example 1.4.** Let $$M = [0,1]$$ and $$\Gamma = \{\frac{1}{n} \mid n \text{ is a positive integer } \}.$$ Then M is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that K is a nonempty subset of M and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ -semigroup of M. From example 1.3, we have that every semigroup is a Γ -semigroup. Therefore, Γ -semigroups are a generalization of semigroups. In this research, we generalize some properties of quasi-ideals of semigroups to some properties of quasi- Γ -ideals in Γ -semigroups. 352 ScienceAsia 32 (2006) ### MAIN RESULTS Let M be a Γ —semigroup. A nonempty subset Q of M is called a quasi— Γ —ideal of M if $M\Gamma Q \cap Q\Gamma M \subseteq Q$. Let Q be a quasi— Γ —ideal of M. Then $Q\Gamma Q \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. This implies that Q is a sub Γ —semigroup of M. **Example 2.1.** Let S be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. From example 1.3, S is a Γ —semigroup. Let Q be a quasi-ideal of S. Thus $SQ \cap QS \subseteq Q$. We have that $S\Gamma Q \cap Q\Gamma S = SQ \cap QS \subseteq Q$. Hence, Q is a quasi- Γ -ideal of S. Example 2.1 implies that the class of quasi- Γ -ideals in Γ -semigroups is a Generalization of quasi-ideals in semigroups. Theorem 2.1. Let M be a Γ -semigroup and Q_i a quasi- Γ -ideal of M for each $i \in I$. If $\bigcap_{i \in I} Q_i$ is a nonempty set, then $\bigcap_{i \in I} Q_i$ is a quasi- Γ -ideal of M. Proof. Let M be a Γ -semigroup and \mathcal{Q}_i a quasi- Γ -ideal of M for each $i \in I$. Assume that $\bigcap_{i \in I} \mathcal{Q}_i$ is a nonempty set. Take any $a, b \in \bigcap_{i \in I} \mathcal{Q}_i$, $m_1, m_2 \in M$ and $\gamma, \mu \in \Gamma$ such that $m_1 \mu b = a \gamma m_2$. Then $a, b \in \mathcal{Q}_i$ for all $i \in I$. Since \mathcal{Q}_i is a quasi- Γ -ideal of M for all $i \in I$, $m_1 \mu b = a \gamma m_2 \in M \Gamma \mathcal{Q}_i$ $\cap \mathcal{Q}_i \Gamma M \in \mathcal{Q}_i$ for all $i \in I$. Therefore $m_1 \mu b = a \gamma m_2 \in \bigcap_{i \in I} \mathcal{Q}_i$. Thus $M \Gamma \bigcap_{i \in I} \mathcal{Q}_i \cap \bigcap_{i \in I} \mathcal{Q}_i$ $\Gamma M \in \bigcap_{i \in I} \mathcal{Q}_i$. Hence, $\bigcap_{i \in I} \mathcal{Q}_i$ is a quasi- Γ -ideal of M. In Theorem 2.1, the condition $\bigcap_{i \in I} Q_i$ is a nonempty set is necessary. For example, let \mathbf{N} be the set of all positive integers and $\Gamma = \{1\}$. Then M is a Γ —semigroup. For $n \in \mathbb{N}$, let $Q_n = \{n+1, n+2, n+3, \ldots\}$. It is easy to show that each Q_n is a quasi- Γ -ideal of M for all $n \in \mathbb{N}$ but $\bigcap_{n \in \mathbb{N}} Q_n$ is a empty set. Let A be a nonempty subset of a Γ -semigroup M and $\mathfrak{F} = \{Q \mid Q \text{ is a quasi}-\Gamma$ -ideal of M containing $A\}$. Then \mathfrak{F} is a nonempty set because $M \in \mathfrak{F}$. Let $(A)_q = \bigcap_{Q \in \mathfrak{F}} Q$. It is clear to see that $A \subseteq (A)_q$. By Theorem 2.1, $(A)_q$ is a quasi- Γ -ideal of M. Moreover, $(A)_q$ is the smallest quasi- Γ -ideal of M containing A. $(A)_q$ is called the quasi- Γ -ideal of M Generated by A. Theorem 2.2. Let A be a nonempty subset of a Γ -semigroup M. Then $(A)_{d} = A \cup (M\Gamma A \cap A\Gamma M).$ **Proof.** Let A be a nonempty subset of a Γ —semigroup M. Let $Q = A \cup (M\Gamma A \cap A\Gamma M)$. It is easy to see that $A \subseteq Q$. We have that $M\Gamma Q \cap Q\Gamma M = M\Gamma [A \cup (M\Gamma A \cap A\Gamma M)] \cap [A \cup (M\Gamma A \cap A\Gamma M)] \Gamma M \subseteq M\Gamma (A \cup M\Gamma A) \cap [A \cup (A\Gamma M)] \Gamma M \subseteq M\Gamma A \cap A\Gamma M \subseteq Q$. Therefore, Q is a quasi— Γ —ideal of M. Let C be any quasi- Γ -ideal of M containing A. Since C is a quasi- Γ -ideal of M and $A \subseteq C$, $M\Gamma A \cap A\Gamma M \subseteq C$. Therefore, $Q = A \cup (M\Gamma A \cap A\Gamma M) \subseteq C$. Hence, Q is the smallest quasi- Γ -ideal of M containing A. Therefore, $(A)_{d} = A \cup (M\Gamma A \cap A\Gamma M)$, as required. **Example 2.2.** Let **N** be the set of natural integers and $\Gamma = \{5\}$. Then **N** is a Γ -semigroup under usual addition. (i) Let $A = \{2\}$. We have that $(A)_a = \{2\} \cup \{8, 9, 10, \ldots\}.$ (ii) Let $A = \{3, 4\}$. We have that $(A)_a = \{3, 4\} \cup \{9, 10, 11, \ldots\}.$ Let M be a Γ -semigroup. A sub Γ -semigroup L of M is called a *left* Γ -ideal of M if $M\Gamma L \subseteq L$ and a sub Γ -semigroup R of M is called a *right* Γ -ideal of M if $R\Gamma M \subseteq R$. The following theorem is true. **Theorem 2.3**. Let M be a Γ -semigroup. Let L and R be a left Γ -ideal and a right Γ -ideal of M, respectively. Then $L \cap R$ is a quasi- Γ -ideal of M. **Proof.** Let L and R be any left Γ —ideal and any right Γ —ideal of a Γ —semigroup M, respectively. By properties of L and R, we have $R\Gamma L \subseteq L \cap R$. This implies that $L \cap R$ is a nonempty set. We have that $M\Gamma(L \cap R) \cap (L \cap R) \Gamma M \subseteq M\Gamma L \cap R\Gamma M \subseteq L \cap R$. Hence, $L \cap R$ is a quasi- Γ -ideal of M. Theorem 2.4. Every quasi- Γ -ideal Q of a Γ -semigroup M is the intersection of a left Γ -ideal and a right Γ -ideal of M. **Proof.** Let Q be any quasi— Γ —ideal of a Γ —semigroup M. Let $L = Q \cup M\Gamma Q$ and $R = Q \cup Q\Gamma M$. Then $M\Gamma L = M\Gamma(Q \cup M\Gamma Q) = M\Gamma Q \cup M\Gamma M\Gamma Q \subseteq M\Gamma Q \subseteq L$ and $R\Gamma M = (Q \cup Q\Gamma M)\Gamma M = Q\Gamma M \cup Q\Gamma M\Gamma M \subseteq Q\Gamma M \subseteq R$. Then L and R is a left Γ —ideal and a right Γ —ideal of M, respectively. Next, we claim that $Q = L \cap R$. It is easy to see that $Q \subseteq (Q \cup M\Gamma Q) \cap (Q \cup Q\Gamma M) \subseteq L \cap R$. Conversely, $L \cap R = Q \cup M\Gamma Q) \cap (Q \cup Q\Gamma M) \subseteq Q \cup (M\Gamma Q \cap Q\Gamma M) \subseteq Q$. Hence, $Q = L \cap R$. Let M be a Γ -semigroup. M is called a quasi-simple Γ —semigroup if M is a unique quasi— Γ —ideal of M. A quasi— Γ —ideal Q of M is called a minimal quasi— Γ —ideal of M if Q does not properly contain any quasi— Γ —ideals of M. **Example 2.3.** Let G be a group and $\Gamma = \{e_G\}$. It is easy to see that Γ is a unique quasi- Γ -ideal of Γ under the usual binary operation. Then G is a quasi-simple Γ -semigroup. Theorem 2.5. Let M be a Γ —semigroup. Then M is a quasi-simple Γ —semigroup if and only if $M\Gamma m \cap m\Gamma M$ = M for all $m \in M$. **Proof.** Let M be a Γ -semigroup. The proof of (\rightarrow) : Assume that M is a quasi-simple Γ —semigroup. Take any $m \in M$. First, we claim that $M\Gamma m \cap m\Gamma M$ is a quasi-ideal of M. We have that $m\Gamma m \in M\Gamma m \cap m\Gamma M$, this implies $M\Gamma m \cap m\Gamma M$ is a quaempty set. Moreover, $M\Gamma (M\Gamma m \cap m\Gamma M) \cap (M\Gamma m \cap m\Gamma M) \Gamma M \subseteq M\Gamma (M\Gamma m) \cap (m\Gamma M) \Gamma M = (M\Gamma M) \Gamma m \cap m\Gamma (M\Gamma M) \subseteq M\Gamma m \cap m\Gamma M$. Therefore, $M\Gamma m \cap m\Gamma M$ is a quasi- Γ —ideal of M. Since M is a quasi-simple Γ —semigroup, $M\Gamma m \cap m\Gamma M = M$. The proof of (\leftarrow) : Assume that $M\Gamma m \cap m\Gamma M = M$ for all $m \in M$. Let Q be a quasi— Γ —ideal of M and $q \in Q$. By assumption, $M = M\Gamma q \cap q\Gamma M$. Since Q is a quasi— Γ —ideal of M, $M = M\Gamma q \cap q\Gamma M \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. Therefore Q = M. Hence, M is a quasi-simple Γ —semigroup. Theorem 2.6. Let M be a Γ -semigroup and Q a quasi- Γ -ideal of M. If Q is a quasi-simple Γ -semigroup, then Q is a minimal quasi- Γ -ideal of M. **Proof.** Suppose M be a Γ —semigroup and Q a quasi— Γ —ideal of M. Assume that Q is a quasi-simple Γ —semigroup. Let C be a quasi— Γ —ideal of M such that $C \subseteq Q$. Then $Q\Gamma C \cap C\Gamma Q \subseteq M\Gamma C \cap C\Gamma M \subseteq C$. Therefore, C be a quasi— Γ —ideal of Q. Since Q is a quasi-simple Γ —semigroup, C = Q. Then Q is a minimal quasi— Γ —ideal of M. ### **ACKNOWLEDGEMENT** The author would like to thank the referees for their useful and helpful suggestions. ### REFERENCES - Steinfeld O (1956) Uber die quasiideale von halpergruppen. Pulb. Math. Debrecen 4, 262-75 - 2. Chinram R (2005) Generalized transformation semigroups - whose sets of quasi-ideals and bi-ideals coincide. Kyungpook Math. Journal 45, 161 6. - Kemprasit Y and Chinram R (2003) 0-minimal quasi-ideals of generalized linear transformation semigroups. Comm. in Alg. 31, 4765 -74. - Steinfeld O (1978) Quasi-ideals in rings and semigroups. Akademiai kiado, Budapest. - Sen MK (1981) On Γ-semigroups. Proceeding of International Conference on Algebra and it's Applications. Decker Publication, New York 301. - Sen MK and Saha NK (1986) On Γ-semigroup I. Bull. Cal. Math. Soc. 78, 180-6. - Saha, NK (1987) On Γ-semigroup II. Bull. Cal. Math. Soc. 79, 331-5. ORIGINAL ARTICLE # On bi-Γ-ideals in Γ-semigroups Ronnason Chinram¹ and Chutiporn Jirojkul² ### Abstract Chinram, R. and Jirojkul, C. On bi- Γ -ideals in Γ -semigroups Songklanakarin J. Sci. Technol., 2007, 29(1): In 1952, R. A. Good and D. R. Hughes introduced the notion of bi-ideals of semigroups and in 1981, the concept of Γ -semigroups was introduced by M. K. Sen. We have known that Γ -semigroups are a generalization of semigroups. In this research, the notion of bi- Γ -ideals in Γ -semigroups is introduced. We show that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups and we give some properties for bi- Γ -ideals in Γ -semigroups. We give the two definitions as follows: A Γ -semigroup M is called a bi-simple Γ -semigroup if M is the unique bi- Γ -ideal of M and a bi- Γ -ideal B of A is called a minimal bi-A-ideal of A if A does not properly contain any bi-A-ideal of A. We show that a bi-A-ideal A of A-semigroup A is a minimal bi-A-ideal of A if and only if A is a bi-simple A-semigroup. Key words: bi- Γ -ideals, Γ -semigroups, bi-simple Γ -semigroups, minimal bi- Γ -ideals ¹Ph.D.(Mathematics) ²M.Sc.(Mathematics), Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Corresponding e-mail: ronnason.c@psu.ac.th Recieved, 15 August 2005 Accepted, 1 August 2006 On bi- Γ -ideals in Γ -semigroups Chinram, R. and Jiroikul, C ## าเหด็ดย่อ รณสรรพ์ ชินรัมย์ และ ชดิพร จิโรจน์กล บน **Г-อดมคติไบใน Г**-กึ่งกลุ่ม ว. สงขลานครินทร์ วทท. 2550 29(1) : ในปี 1952 อาร์ เอ ก็ด และ ดี อาร์ ฮิวส์ ได้นำเสนอแนวคิดเรื่องอุดมลดีใบของกึ่งกลุ่มและในปี 1981 แนว ความคิดเรื่อง โ-กึ่งกลุ่มถูกน้ำเสนอโดยเอ็ม เค เซน เรารู้ว่า โ-กึ่งกลุ่มเป็นนัยทั่วไปของกึ่งกลุ่ม ในการวิจัยนี้ โ-อุดมคติไบใน Γ -กึ่งกลุ่มได้รับการแนะนำ เราได้แสดงว่า Γ -อุดมคติไบใน Γ -กึ่งกลุ่มเป็นนัยทั่วไปของอุดมคติไบในกึ่ง-กลุ่มและเราให้สมบัติบางอย่างของ Γ -อดมคดีไปใน Γ -กึ่งกลุ่ม เราให้บทนิยามสองบทดังค่อไปนี้ เราเรียก Γ -กึ่ง กลุ่ม M ว่า Γ -กึ่งกลุ่มเชิงเคียวไบ ถ้า M เป็น Γ -อุดมลติไบเพียงหนึ่งเคียวเท่านั้นของ M และ เราเรียก Γ -อุดมลติ ไบ B ของ M ว่า Γ -อุดมลติไบเล็กสุดเฉพาะกลุ่ม ถ้า B ไม่บรรจุ Γ -อุดมลดีไบ C ของ M ซึ่ง B eq C เราแสดงว่า Γ -อดมคติไบใน Γ -กึ่งกลุ่มเป็น Γ -อดมคติไบเล็กสดเฉพาะกลุ่ม ก็ต่อเมื่อ B ว่า Γ -กึ่งกลุ่มเชิงเดียวไบ ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112 ### **Preliminaries** In 1952, R. A. Good and D. R. Hughes have introduced the notion of bi-ideals of semigroups (Good and Hughes, 1952). The first author has studied some properties of bi-ideals in semigroups (Chinram, 2005). Let S be a semigroup. A subsemigroup B of S is called a bi-ideal of S if BSB $\subset B$. Example 1.1. Let S = [0,1]. Then S is a semigroup under the usual multiplication. Let $B = [0, \frac{1}{2}]$. Then B is a subsemigroup of S. We have that $\stackrel{\sim}{BSB}$ = $[0, \frac{1}{4}] \subseteq B$. Therefore B is a bi-ideal of S. **Example 1.2.** Let N be the set of all posi- tive integers. Then N is a semigroup under the usual multiplication. Let B = 2N. Thus $BNB = 4N \subseteq 2N$ = B. Hence B is a bi-ideal of N. In 1981, the concept of Γ -semigroups was introduced by M. K. Sen. Let M and Γ be any two nonempty sets. If there exists a mapping $M \times$ $\Gamma \times M \longrightarrow M$, written the image of (a, γ, b) by $a \gamma b$, M is called a Γ -semigroup if M satisfies the identities $(a \gamma b)\mu c = a \gamma (b\mu c)$ for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma(Sen, 1981, Sen and Saha, 1986, Saha,$ 1987). Let K be a nonempty subset of M. K is called a sub Γ - semigroup of M if $a \gamma b \in K$ for all $a, b \in K$ K and $\gamma \in \Gamma$. Example 1.3. Let M = [0,1] and $\Gamma =$ $\{\frac{1}{n}|n \text{ is a positive integer}\}$. Then M is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that K is a nonempty subset of M and $a \tilde{\gamma} b$ $\in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ semigroup of M. **Example 1.4.** Let S be a semigroup and Γ = {1}. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by a1b= ab for all $a, b \in S$. Then S is a Γ -semigroup. From Example 1.4, we have seen that every semigroup is a Γ -semigroup where $\Gamma = \{1\}$. Then Γ -semigroups are a generalization of semigroups. In this research, we generalize bi-ideals of semigroups to bi- Γ -ideals in Γ -semigroups. ### Main results Let M be a Γ -semigroup. A sub Γ -semigroup B of M is called a bi- Γ -ideal of M if $B\Gamma M \Gamma B \subset B$. Example 2.1. Let S be a semigroup, and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by a1b= ab for all $a, b \in S$. From Example 1.4, we have known that S is a Γ -semigroup. Let B be a bi-ideal of a semigroup S. Thus $BSB \subseteq B$. Since $\Gamma = \{1\}$, $B\Gamma S\Gamma B = BSB \subset B$. Hence B is a bi- Γ -ideal of S. Example 2.1 implies that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups (for a suitable Γ). **Theorem 2.1.** Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. If $\bigcap_{i \in I} B_i \neq \emptyset$, then $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M. **Proof.** Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. Assume that $\bigcap_{i \in I} B_i \neq \emptyset$. Let $a, b \in \bigcap_{i \in I} B_i$, $m \in M$ and $\gamma, \mu \in \Gamma$. Then $a, b \in B_i$ for all $i \in I$. Since B_i is a bi- Γ -ideal of M for all $i \in I$, a $\gamma b \in B_i$ and a $\gamma m \mu b \in B_i \Gamma M \Gamma B_i \subseteq B_i$ for all $i \in I$. Therefore a $\gamma b \in \bigcap_{i \in I} B_i$ and a $\gamma m \mu b \in \bigcap_{i \in I} B_i$. Hence $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M. In Theorem 2.1, $\bigcap_{i \in I} B_i \neq \emptyset$ is a necessary condition. Let M = (0, 1) and $\Gamma = \{1\}$. Then M is a Γ -semigroup under the usual multiplication. Let \mathbb{N} be the set of all positive integers. For $n \in \mathbb{N}$, let $\mathbb{B}_n = (0, \frac{1}{n})$. It is easy to prove that \mathbb{B}_n is a bi- Γ -ideal of M for all $n \in \mathbb{N}$ but $= \bigcap_{i \in I} B_i = \emptyset$. Let A be a nonempty subset of a Γ -semigroup M. Let $\Im = \{B \mid B \text{ is a bi-}\Gamma\text{-ideal of }M \text{ containing }A\}$. Then $\Im \neq \varnothing$ because $M \in \Im$. Let $(A)_b = \bigcap_{b \in \Im} B$. It is clearly seen that $A \subseteq (A)_b$. By Theorem 2.1, $(A)_b$ is a bi- Γ -ideal of M. Moreover, $(A)_b$ is the smallest bi- Γ -ideal of M containing A. $(A)_b$ is called the bi- Γ -ideal of M generated by A. **Theorem 2.2.** Let A be a nonempty subset of a Γ -semigroup M. Then $(A)_{\downarrow} = A \cup A \Gamma A \cup A \Gamma M \Gamma A.$ **Proof.** Let A be a nonempty subset of a Γ -semigroup M. Let $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$. Clearly, $A \subseteq B$. We have that $B\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A)\Gamma(A \cup A\Gamma A \cup A\Gamma M\Gamma A) \subseteq A\Gamma A \cup A\Gamma M\Gamma A \subseteq B$. Hence B is a sub Γ -semigroup of M. Since M is a Γ -semigroup, all elements in $B\Gamma M\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A) \Gamma M\Gamma (A \cup A\Gamma A \cup A\Gamma M\Gamma A)$ are in the form of $a_1\gamma m\mu a_2$ for some $a_1, a_2 \in A, \gamma, \mu \in \Gamma$ and $m \in M$. Thus $B\Gamma M\Gamma B \subseteq$ $A\Gamma M\Gamma A \subseteq B$. Therefore B is a bi- Γ -ideal of M. Let C be any bi- Γ -ideal of M containing A. Since C is a sub- Γ -semigroup of M and $A \subseteq C$, $A\Gamma A \subseteq C$. Since C is a bi- Γ -ideal of M and $A \subseteq C$, $A\Gamma M\Gamma A \subseteq C$. Therefore $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A \subseteq C$. Hence B is the smallest bi- Γ -ideal of M containing A. Therefore $(A)_b = B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$, as required. **Example 2.2.** Let N be the set of all positive integers and $\Gamma = \{5\}$. Then N is a Γ -semigroup under usual addition. - (i) Let $A = \{2\}$. We have that $(A)_b = \{2\} \cup \{9\} \cup \{15, 16, 17, \dots\}$. - (ii) Let $A = \{3, 4\}$. We have that $(A)_b = \{3, 4\} \cup \{11, 12, 13\} \cup \{17, 18, 19, \dots\}$. **Theorem 2.3.** Let M be a Γ -semigroup. Let B be a bi- Γ -ideal of M and A a nonempty subset of M. Then the following statements are true. - (i) $B\Gamma A$ is a bi- Γ -ideal of M. - (ii) $A\Gamma B$ is a bi- Γ -ideal of M. **Proof.** (i) We have that $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A$ and $(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A$. Since B is a bi- Γ -ideal of M, $(B\Gamma A)\Gamma B\Gamma A$ (BFA) = $(B\Gamma A\Gamma B)\Gamma A \subseteq B\Gamma A$ and $(B\Gamma A)\Gamma A\Gamma B\Gamma A$ (BFA) = $(B\Gamma A\Gamma M\Gamma B)\Gamma A \subseteq (B\Gamma M\Gamma B)\Gamma A \subseteq B\Gamma A$. Therefore $B\Gamma A$ is a bi- Γ -ideal of M. The proof of (ii) is similar to the proof of (i). Corollary 2.4. Let M be a Γ -semigroup. For a positive integer n, let $B_1, B_2, ..., B_n$ be bi- Γ -ideals of M. Then $B_1\Gamma B_2\Gamma ...\Gamma B_n$ is a bi- Γ -ideal of M. **Proof.** We will prove the corollary by mathematical induction. By Theorem 2.3, $B_1 \Gamma B_2$ is a bi Γ -ideal of M. Next, let n be any positive integer such that k < n and assume $B_1 \Gamma B_2 \Gamma ... \Gamma B_k$ is a bi- Γ -ideal of M. We have that $B_1 \Gamma B_2 \Gamma ... \Gamma B_k \Gamma B_{k+1} = (B_1 \Gamma B_2 \Gamma ... \Gamma B_k) \Gamma B_{k+1}$ is a bi- Γ -ideal of M by Theorem 2.3. Let M be a Γ -semigroup. M is called a bi-simple Γ -semigroup if M is the unique bi- Γ -ideal of M. A bi- Γ -ideal B of M is called a *minimal bi-\Gamma-ideal* of M if B does not properly contain any bi- Γ -ideal of M. **Example 2.3.** Let G be a group and $\Gamma = G$. Then G'' = G and gG = G = Gg for all $g \in G$. Then G is a Γ -semigroup under the usual binary operation. It is easy to see that G is the unique bi- Γ -ideal of G. Then G is a bi-simple Γ -semigroup. Theorem 2.5. Let M be a Γ -semigroup. Then M is a bi-simple Γ -semigroup if and only if $M = m\Gamma M\Gamma m$ for all $m \in M$, where $m\Gamma M\Gamma m$ means $\{m\}\Gamma M\Gamma \{m\}$. **Proof.** Let M be a Γ -semigroup. Assume that M is a bi-simple Γ -semigroup. Let $m \in M$. By Theorem 2.3, $m\Gamma M\Gamma m$ is a bi- Γ -ideal of M. Then $M = m\Gamma M\Gamma m$. Assume that $M = m\Gamma M\Gamma m$ for all $m \in M$. Let B be a bi- Γ -ideal of M. Let $b \in B$. By assumption, $M = b\Gamma M\Gamma b \subseteq B\Gamma M\Gamma B \subseteq B$. Hence M = B. Therefore M is a bi-simple Γ -semigroup. **Theorem 2.6.** Let M be a Γ -semigroup and B a bi- Γ -ideal of M. Then B is a minimal bi- Γ -ideal of M if and only if B is a bi-simple Γ -semigroup. **Proof.** Let M be a Γ -semigroup and B a bi- Γ -ideal of M. Assume that B is a minimal bi- Γ -ideal of M. Let C be a bi- Γ -ideal of B. Then $C\Gamma B\Gamma C \subseteq C$. Since B is a bi- Γ -ideal of M, by Theorem 2.3, $C\Gamma B\Gamma C$ is a bi- Γ -ideal of M. Since B is a minimal bi- Γ -ideal of M and $C\Gamma B\Gamma C \subseteq B$, $C\Gamma B\Gamma C = B$. Hence $B = C\Gamma B\Gamma C \subseteq C$, this implies B = C. Then B is a bi-simple Γ -semigroup. Assume that B is a bi-simple Γ -semigroup. Let C be a bi- Γ -ideal of M such that $C \subseteq B$. Then $C\Gamma B\Gamma C \subseteq C\Gamma M\Gamma C \subseteq C$. Therefore C is a bi- Γ -ideal of B. Since B is a bi-simple Γ -semigroup, C = B. Hence B is a minimal bi- Γ -ideal of M, as required. ### Acknowledgments. The authors would like to thank the referees for the useful and helpful suggestions. #### References Chinram, R. 2005. Generalized Transformation Semigroups Whose Sets of Quasi-ideals and Bi-ideals Coincide, Kyungpook Math.J.,45:161-166. Good, R. A. and Hughes, D. R. 1952. Associated for a semigroup, Bull. Amer. Math. Soc.58:624-625. Saha, N. K. 1987. On Γ -semigroup II, Bull.Cal. Math. Soc., 79: 331-335. Sen, M. K. 1981.On Γ-semigroups. Proc. of International Conference on Algebra and it's Applications. Decker Publication, New York 301. Sen, M. K. and Saha, N. K. 1986. On Γ-semigroup I. Bull. Cal. Math. Soc., 78: 180-186.