ผลงานวิจัยที่เกี่ยวกับงานวิจัยนี้ที่ได้รับการตีพิมพ์

On Quasi-gamma-ideals in Gamma-semigroups

Ronnason Chinram^{*}

Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thalland.

* Corresponding author, E-mail: ronnason.c@psu.ac.th

Received 18 Jan 2006 Accepted 10 May 2006

ABSTRACT: The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld. The class of quasi-ideals in semigroups is a generalization of one-sided ideals in semigroups. It is well-known that the intersection of a left ideal and a right ideal of a semigroup S is a quasi-ideal of S and every quasi-ideal of S can be obtain in this way. In 1981, M. K. Sen have introduced the concept of Γ -semigroups. One can see that Γ -semigroups are a generalization of semigroups. In this research, quasi- Γ -ideals in Γ -semigroups are introduced and some properties of quasi- Γ -ideals in Γ -semigroups are provided.

Kerworos: Γ -semigroups, quasi- Γ -ideals, minimal quasi- Γ -ideals, quasi-simple Γ -semigroups.

INTRODUCTION

Let S be a semigroup. A nonempty subset Q of S is called a quasi-ideal of S if $SQ \cap QS \subseteq Q$. Let Q be a quasi-ideal of S. Then $Q^2 \subseteq SQ \cap QS \subseteq Q$. Hence Q is a subsemigroup of S. The concept of quasi-ideals in semigroups was introduced in 1956 by O. Steinfeld (see [1]). The author has studied some properties of quasi-ideals in semigroups (See [2] and [3]).

Example 1.1. Let $S = \{0, 1\}$. Then S is a semigroup under usual multiplication. Let $Q = \{0, \frac{1}{2}\}$. Thus $SQ \cap QS = \{0, \frac{1}{2}\} \subseteq Q$. Therefore, Q is a quasi-ideal of S.

A nonempty subset L of S is called a *left ideal* of S if $SL \subseteq L$ and a nonempty subset R of S is called a *right ideal* of S if $RS \subseteq R$. Clearly, every left ideal and every right ideal of a semigroup S is a subsemigroup of S. Next, let L and R be a left ideal and a right ideal of a semigroup S. By the definition of quasi-ideals of semigroups, it is easy to prove that $L \cap R$ is a quasi-ideal of S (See [4]). Let Q be a quasi-ideal of a semigroup. Then $Q = (Q \cup SQ) \cap (Q \cup QS)$. It is easy to show that $(Q \cup SQ)$ is a left ideal of S and $Q \cup QS$ is a right ideal of S. Then every quasi-ideal Q of S can be written as the intersection of a left ideal and a right ideal of S.

Example 1.2. Let Z be the set of all integers and $M_2(Z)$, the set of all 2×2 matrices over Z. We have known that $M_2(Z)$ is a semigroup under the usual multiplication. Let

$$L = \left\{ \begin{bmatrix} x & 0 \\ y & 0 \end{bmatrix} \middle| x, y \in Z \right\}$$

and

$$R = \{ \begin{bmatrix} x & y \\ 0 & 0 \end{bmatrix} | x, y \in \mathbb{Z} \}.$$

Then L is a left ideal of $M_2(\mathbb{Z})$, R is a right ideal of $M_2(\mathbb{Z})$ and $L \cap R = \{ \begin{bmatrix} x & 0 \\ 0 & 0 \end{bmatrix} | x \in \mathbb{Z} \}$ is a quasi-ideal of $M_2(\mathbb{Z})$.

In 1981, the notion of Γ -semigroups was introduced by M. K. Sen (See [5], [6] and [7]). Let M and Γ be any two nonempty sets. If there exists a mapping $M \times \Gamma \times$ $M \rightarrow M$, written (a, γ, b) by $a\gamma b$, M is called a Γ -semigroup if M satisfies the identities $(a\gamma b)\mu c = a\gamma(b\mu c)$ for all a, b, $c \in M$ and $\gamma, \mu \in \Gamma$. Let K be a nonempty subset of M. Then K is called a sub Γ -semigroup of M if $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$.

Example 1.3. Let S be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. Then S is a Γ —semigroup.

Example 1.4. Let
$$M = [0,1]$$
 and

$$\Gamma = \{\frac{1}{n} \mid n \text{ is a positive integer } \}.$$

Then M is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that K is a nonempty subset of M and $a\gamma b \in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ -semigroup of M.

From example 1.3, we have that every semigroup is a Γ -semigroup. Therefore, Γ -semigroups are a generalization of semigroups.

In this research, we generalize some properties of quasi-ideals of semigroups to some properties of quasi- Γ -ideals in Γ -semigroups.

352 ScienceAsia 32 (2006)

MAIN RESULTS

Let M be a Γ —semigroup. A nonempty subset Q of M is called a quasi— Γ —ideal of M if $M\Gamma Q \cap Q\Gamma M \subseteq Q$. Let Q be a quasi— Γ —ideal of M. Then $Q\Gamma Q \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. This implies that Q is a sub Γ —semigroup of M.

Example 2.1. Let S be a semigroup and Γ be any nonempty set. Define a mapping $S \times \Gamma \times S \to S$ by $a\gamma b = ab$ for all $a, b \in S$ and $\gamma \in \Gamma$. From example 1.3, S is a Γ —semigroup. Let Q be a quasi-ideal of S. Thus $SQ \cap QS \subseteq Q$. We have that $S\Gamma Q \cap Q\Gamma S = SQ \cap QS \subseteq Q$. Hence, Q is a quasi- Γ -ideal of S.

Example 2.1 implies that the class of quasi- Γ -ideals in Γ -semigroups is a Generalization of quasi-ideals in semigroups.

Theorem 2.1. Let M be a Γ -semigroup and Q_i a quasi- Γ -ideal of M for each $i \in I$. If $\bigcap_{i \in I} Q_i$ is a nonempty set, then $\bigcap_{i \in I} Q_i$ is a quasi- Γ -ideal of M.

Proof. Let M be a Γ -semigroup and \mathcal{Q}_i a quasi- Γ -ideal of M for each $i \in I$. Assume that $\bigcap_{i \in I} \mathcal{Q}_i$ is a nonempty set. Take any $a, b \in \bigcap_{i \in I} \mathcal{Q}_i$, $m_1, m_2 \in M$ and $\gamma, \mu \in \Gamma$ such that $m_1 \mu b = a \gamma m_2$. Then $a, b \in \mathcal{Q}_i$ for all $i \in I$. Since \mathcal{Q}_i is a quasi- Γ -ideal of M for all $i \in I$, $m_1 \mu b = a \gamma m_2 \in M \Gamma \mathcal{Q}_i$ $\cap \mathcal{Q}_i \Gamma M \in \mathcal{Q}_i$ for all $i \in I$. Therefore $m_1 \mu b = a \gamma m_2 \in \bigcap_{i \in I} \mathcal{Q}_i$. Thus $M \Gamma \bigcap_{i \in I} \mathcal{Q}_i \cap \bigcap_{i \in I} \mathcal{Q}_i$ $\Gamma M \in \bigcap_{i \in I} \mathcal{Q}_i$. Hence, $\bigcap_{i \in I} \mathcal{Q}_i$ is a quasi- Γ -ideal of M.

In Theorem 2.1, the condition $\bigcap_{i \in I} Q_i$ is a nonempty set is necessary. For example, let \mathbf{N} be the set of all positive integers and $\Gamma = \{1\}$. Then M is a Γ —semigroup. For $n \in \mathbb{N}$, let $Q_n = \{n+1, n+2, n+3, \ldots\}$. It is easy to show that each Q_n is a quasi- Γ -ideal of M for all $n \in \mathbb{N}$ but $\bigcap_{n \in \mathbb{N}} Q_n$ is a empty set.

Let A be a nonempty subset of a Γ -semigroup M and $\mathfrak{F} = \{Q \mid Q \text{ is a quasi}-\Gamma$ -ideal of M containing $A\}$. Then \mathfrak{F} is a nonempty set because $M \in \mathfrak{F}$. Let $(A)_q = \bigcap_{Q \in \mathfrak{F}} Q$. It is clear to see that $A \subseteq (A)_q$. By Theorem 2.1, $(A)_q$ is a quasi- Γ -ideal of M. Moreover, $(A)_q$ is the smallest quasi- Γ -ideal of M containing A. $(A)_q$ is called the quasi- Γ -ideal of M Generated by A.

Theorem 2.2. Let A be a nonempty subset of a Γ -semigroup M. Then

 $(A)_{d} = A \cup (M\Gamma A \cap A\Gamma M).$

Proof. Let A be a nonempty subset of a Γ —semigroup M. Let $Q = A \cup (M\Gamma A \cap A\Gamma M)$. It is easy to see that $A \subseteq Q$. We have that $M\Gamma Q \cap Q\Gamma M = M\Gamma [A \cup (M\Gamma A \cap A\Gamma M)] \cap [A \cup (M\Gamma A \cap A\Gamma M)] \Gamma M \subseteq M\Gamma (A \cup M\Gamma A) \cap [A \cup (A\Gamma M)] \Gamma M \subseteq M\Gamma A \cap A\Gamma M \subseteq Q$. Therefore, Q is a quasi— Γ —ideal of M.

Let C be any quasi- Γ -ideal of M containing A. Since C is a quasi- Γ -ideal of M and $A \subseteq C$, $M\Gamma A \cap A\Gamma M \subseteq C$. Therefore, $Q = A \cup (M\Gamma A \cap A\Gamma M) \subseteq C$.

Hence, Q is the smallest quasi- Γ -ideal of M containing A. Therefore,

 $(A)_{d} = A \cup (M\Gamma A \cap A\Gamma M)$, as required.

Example 2.2. Let **N** be the set of natural integers and $\Gamma = \{5\}$. Then **N** is a Γ -semigroup under usual addition.

(i) Let $A = \{2\}$. We have that

 $(A)_a = \{2\} \cup \{8, 9, 10, \ldots\}.$

(ii) Let $A = \{3, 4\}$. We have that

 $(A)_a = \{3, 4\} \cup \{9, 10, 11, \ldots\}.$

Let M be a Γ -semigroup. A sub Γ -semigroup L of M is called a *left* Γ -ideal of M if $M\Gamma L \subseteq L$ and a sub Γ -semigroup R of M is called a *right* Γ -ideal of M if $R\Gamma M \subseteq R$. The following theorem is true.

Theorem 2.3. Let M be a Γ -semigroup. Let L and R be a left Γ -ideal and a right Γ -ideal of M, respectively. Then $L \cap R$ is a quasi- Γ -ideal of M.

Proof. Let L and R be any left Γ —ideal and any right Γ —ideal of a Γ —semigroup M, respectively. By properties of L and R, we have $R\Gamma L \subseteq L \cap R$. This implies that $L \cap R$ is a nonempty set. We have that

 $M\Gamma(L \cap R) \cap (L \cap R) \Gamma M \subseteq M\Gamma L \cap R\Gamma M \subseteq L \cap R$. Hence, $L \cap R$ is a quasi- Γ -ideal of M.

Theorem 2.4. Every quasi- Γ -ideal Q of a Γ -semigroup M is the intersection of a left Γ -ideal and a right Γ -ideal of M.

Proof. Let Q be any quasi— Γ —ideal of a Γ —semigroup M. Let $L = Q \cup M\Gamma Q$ and $R = Q \cup Q\Gamma M$.

Then $M\Gamma L = M\Gamma(Q \cup M\Gamma Q) = M\Gamma Q \cup M\Gamma M\Gamma Q \subseteq M\Gamma Q \subseteq L$ and $R\Gamma M = (Q \cup Q\Gamma M)\Gamma M = Q\Gamma M \cup Q\Gamma M\Gamma M \subseteq Q\Gamma M \subseteq R$. Then L and R is a left Γ —ideal and a right Γ —ideal of M, respectively.

Next, we claim that $Q = L \cap R$. It is easy to see that $Q \subseteq (Q \cup M\Gamma Q) \cap (Q \cup Q\Gamma M) \subseteq L \cap R$. Conversely, $L \cap R = Q \cup M\Gamma Q) \cap (Q \cup Q\Gamma M) \subseteq Q \cup (M\Gamma Q \cap Q\Gamma M) \subseteq Q$. Hence, $Q = L \cap R$.

Let M be a Γ -semigroup. M is called a quasi-simple

 Γ —semigroup if M is a unique quasi— Γ —ideal of M. A quasi— Γ —ideal Q of M is called a minimal quasi— Γ —ideal of M if Q does not properly contain any quasi— Γ —ideals of M.

Example 2.3. Let G be a group and $\Gamma = \{e_G\}$. It is easy to see that Γ is a unique quasi- Γ -ideal of Γ under the usual binary operation. Then G is a quasi-simple Γ -semigroup.

Theorem 2.5. Let M be a Γ —semigroup. Then M is a quasi-simple Γ —semigroup if and only if $M\Gamma m \cap m\Gamma M$ = M for all $m \in M$.

Proof. Let M be a Γ -semigroup.

The proof of (\rightarrow) : Assume that M is a quasi-simple Γ —semigroup. Take any $m \in M$. First, we claim that $M\Gamma m \cap m\Gamma M$ is a quasi-ideal of M. We have that $m\Gamma m \in M\Gamma m \cap m\Gamma M$, this implies $M\Gamma m \cap m\Gamma M$ is a quaempty set. Moreover, $M\Gamma (M\Gamma m \cap m\Gamma M) \cap (M\Gamma m \cap m\Gamma M) \Gamma M \subseteq M\Gamma (M\Gamma m) \cap (m\Gamma M) \Gamma M = (M\Gamma M) \Gamma m \cap m\Gamma (M\Gamma M) \subseteq M\Gamma m \cap m\Gamma M$. Therefore, $M\Gamma m \cap m\Gamma M$ is a quasi- Γ —ideal of M. Since M is a quasi-simple Γ —semigroup, $M\Gamma m \cap m\Gamma M = M$.

The proof of (\leftarrow) : Assume that $M\Gamma m \cap m\Gamma M = M$ for all $m \in M$. Let Q be a quasi— Γ —ideal of M and $q \in Q$. By assumption, $M = M\Gamma q \cap q\Gamma M$. Since Q is a quasi— Γ —ideal of M, $M = M\Gamma q \cap q\Gamma M \subseteq M\Gamma Q \cap Q\Gamma M \subseteq Q$. Therefore Q = M. Hence, M is a quasi-simple Γ —semigroup.

Theorem 2.6. Let M be a Γ -semigroup and Q a quasi- Γ -ideal of M. If Q is a quasi-simple Γ -semigroup, then Q is a minimal quasi- Γ -ideal of M.

Proof. Suppose M be a Γ —semigroup and Q a quasi— Γ —ideal of M. Assume that Q is a quasi-simple Γ —semigroup. Let C be a quasi— Γ —ideal of M such that $C \subseteq Q$. Then $Q\Gamma C \cap C\Gamma Q \subseteq M\Gamma C \cap C\Gamma M \subseteq C$. Therefore, C be a quasi— Γ —ideal of Q. Since Q is a quasi-simple Γ —semigroup, C = Q. Then Q is a minimal quasi— Γ —ideal of M.

ACKNOWLEDGEMENT

The author would like to thank the referees for their useful and helpful suggestions.

REFERENCES

- Steinfeld O (1956) Uber die quasiideale von halpergruppen. Pulb. Math. Debrecen 4, 262-75
- 2. Chinram R (2005) Generalized transformation semigroups

- whose sets of quasi-ideals and bi-ideals coincide. Kyungpook Math. Journal 45, 161 6.
- Kemprasit Y and Chinram R (2003) 0-minimal quasi-ideals of generalized linear transformation semigroups. Comm. in Alg. 31, 4765 -74.
- Steinfeld O (1978) Quasi-ideals in rings and semigroups. Akademiai kiado, Budapest.
- Sen MK (1981) On Γ-semigroups. Proceeding of International Conference on Algebra and it's Applications. Decker Publication, New York 301.
- Sen MK and Saha NK (1986) On Γ-semigroup I. Bull. Cal. Math. Soc. 78, 180-6.
- Saha, NK (1987) On Γ-semigroup II. Bull. Cal. Math. Soc. 79, 331-5.

ORIGINAL ARTICLE

On bi-Γ-ideals in Γ-semigroups

Ronnason Chinram¹ and Chutiporn Jirojkul²

Abstract

Chinram, R. and Jirojkul, C.
On bi- Γ -ideals in Γ -semigroups
Songklanakarin J. Sci. Technol., 2007, 29(1):

In 1952, R. A. Good and D. R. Hughes introduced the notion of bi-ideals of semigroups and in 1981, the concept of Γ -semigroups was introduced by M. K. Sen. We have known that Γ -semigroups are a generalization of semigroups. In this research, the notion of bi- Γ -ideals in Γ -semigroups is introduced. We show that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups and we give some properties for bi- Γ -ideals in Γ -semigroups. We give the two definitions as follows: A Γ -semigroup M is called a bi-simple Γ -semigroup if M is the unique bi- Γ -ideal of M and a bi- Γ -ideal B of A is called a minimal bi-A-ideal of A if A does not properly contain any bi-A-ideal of A. We show that a bi-A-ideal A of A-semigroup A is a minimal bi-A-ideal of A if and only if A is a bi-simple A-semigroup.

Key words: bi- Γ -ideals, Γ -semigroups, bi-simple Γ -semigroups, minimal bi- Γ -ideals

¹Ph.D.(Mathematics) ²M.Sc.(Mathematics), Department of Mathematics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, 90112 Corresponding e-mail: ronnason.c@psu.ac.th

Recieved, 15 August 2005 Accepted, 1 August 2006

On bi- Γ -ideals in Γ -semigroups

Chinram, R. and Jiroikul, C

าเหด็ดย่อ

รณสรรพ์ ชินรัมย์ และ ชดิพร จิโรจน์กล บน **Г-อดมคติไบใน Г**-กึ่งกลุ่ม ว. สงขลานครินทร์ วทท. 2550 29(1) :

ในปี 1952 อาร์ เอ ก็ด และ ดี อาร์ ฮิวส์ ได้นำเสนอแนวคิดเรื่องอุดมลดีใบของกึ่งกลุ่มและในปี 1981 แนว ความคิดเรื่อง โ-กึ่งกลุ่มถูกน้ำเสนอโดยเอ็ม เค เซน เรารู้ว่า โ-กึ่งกลุ่มเป็นนัยทั่วไปของกึ่งกลุ่ม ในการวิจัยนี้ โ-อุดมคติไบใน Γ -กึ่งกลุ่มได้รับการแนะนำ เราได้แสดงว่า Γ -อุดมคติไบใน Γ -กึ่งกลุ่มเป็นนัยทั่วไปของอุดมคติไบในกึ่ง-กลุ่มและเราให้สมบัติบางอย่างของ Γ -อดมคดีไปใน Γ -กึ่งกลุ่ม เราให้บทนิยามสองบทดังค่อไปนี้ เราเรียก Γ -กึ่ง กลุ่ม M ว่า Γ -กึ่งกลุ่มเชิงเคียวไบ ถ้า M เป็น Γ -อุดมลติไบเพียงหนึ่งเคียวเท่านั้นของ M และ เราเรียก Γ -อุดมลติ ไบ B ของ M ว่า Γ -อุดมลติไบเล็กสุดเฉพาะกลุ่ม ถ้า B ไม่บรรจุ Γ -อุดมลดีไบ C ของ M ซึ่ง B
eq C เราแสดงว่า Γ -อดมคติไบใน Γ -กึ่งกลุ่มเป็น Γ -อดมคติไบเล็กสดเฉพาะกลุ่ม ก็ต่อเมื่อ B ว่า Γ -กึ่งกลุ่มเชิงเดียวไบ

ภาควิชาคณิตศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อำเภอหาดใหญ่ จังหวัดสงขลา 90112

Preliminaries

In 1952, R. A. Good and D. R. Hughes have introduced the notion of bi-ideals of semigroups (Good and Hughes, 1952). The first author has studied some properties of bi-ideals in semigroups (Chinram, 2005). Let S be a semigroup. A subsemigroup B of S is called a bi-ideal of S if BSB $\subset B$.

Example 1.1. Let S = [0,1]. Then S is a semigroup under the usual multiplication. Let $B = [0, \frac{1}{2}]$. Then B is a subsemigroup of S. We have that $\stackrel{\sim}{BSB}$ = $[0, \frac{1}{4}] \subseteq B$. Therefore B is a bi-ideal of S. **Example 1.2.** Let N be the set of all posi-

tive integers. Then N is a semigroup under the usual multiplication. Let B = 2N. Thus $BNB = 4N \subseteq 2N$ = B. Hence B is a bi-ideal of N.

In 1981, the concept of Γ -semigroups was introduced by M. K. Sen. Let M and Γ be any two nonempty sets. If there exists a mapping $M \times$ $\Gamma \times M \longrightarrow M$, written the image of (a, γ, b) by $a \gamma b$, M is called a Γ -semigroup if M satisfies the identities $(a \gamma b)\mu c = a \gamma (b\mu c)$ for all $a, b, c \in M$ and $\gamma, \mu \in \Gamma(Sen, 1981, Sen and Saha, 1986, Saha,$ 1987). Let K be a nonempty subset of M. K is called a sub Γ - semigroup of M if $a \gamma b \in K$ for all $a, b \in K$ K and $\gamma \in \Gamma$.

Example 1.3. Let M = [0,1] and $\Gamma =$ $\{\frac{1}{n}|n \text{ is a positive integer}\}$. Then M is a Γ -semigroup under the usual multiplication. Next, let $K = [0, \frac{1}{2}]$. We have that K is a nonempty subset of M and $a \tilde{\gamma} b$ $\in K$ for all $a, b \in K$ and $\gamma \in \Gamma$. Then K is a sub Γ semigroup of M.

Example 1.4. Let S be a semigroup and Γ = {1}. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by a1b= ab for all $a, b \in S$. Then S is a Γ -semigroup.

From Example 1.4, we have seen that every semigroup is a Γ -semigroup where $\Gamma = \{1\}$. Then Γ -semigroups are a generalization of semigroups.

In this research, we generalize bi-ideals of semigroups to bi- Γ -ideals in Γ -semigroups.

Main results

Let M be a Γ -semigroup. A sub Γ -semigroup B of M is called a bi- Γ -ideal of M if $B\Gamma M \Gamma B \subset B$.

Example 2.1. Let S be a semigroup, and $\Gamma = \{1\}$. Define a mapping $S \times \Gamma \times S \longrightarrow S$ by a1b= ab for all $a, b \in S$. From Example 1.4, we have known that S is a Γ -semigroup. Let B be a bi-ideal of a semigroup S. Thus $BSB \subseteq B$. Since $\Gamma = \{1\}$, $B\Gamma S\Gamma B = BSB \subset B$. Hence B is a bi- Γ -ideal of S. Example 2.1 implies that bi- Γ -ideals in Γ -semigroups are a generalization of bi-ideals in semigroups (for a suitable Γ).

Theorem 2.1. Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. If $\bigcap_{i \in I} B_i \neq \emptyset$, then $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M.

Proof. Let M be a Γ -semigroup and B_i a bi- Γ -ideal of M for all $i \in I$. Assume that $\bigcap_{i \in I} B_i \neq \emptyset$. Let $a, b \in \bigcap_{i \in I} B_i$, $m \in M$ and $\gamma, \mu \in \Gamma$. Then $a, b \in B_i$ for all $i \in I$. Since B_i is a bi- Γ -ideal of M for all $i \in I$, a $\gamma b \in B_i$ and a $\gamma m \mu b \in B_i \Gamma M \Gamma B_i \subseteq B_i$ for all $i \in I$. Therefore a $\gamma b \in \bigcap_{i \in I} B_i$ and a $\gamma m \mu b \in \bigcap_{i \in I} B_i$. Hence $\bigcap_{i \in I} B_i$ is a bi- Γ -ideal of M.

In Theorem 2.1, $\bigcap_{i \in I} B_i \neq \emptyset$ is a necessary condition. Let M = (0, 1) and $\Gamma = \{1\}$. Then M is a Γ -semigroup under the usual multiplication. Let \mathbb{N} be the set of all positive integers. For $n \in \mathbb{N}$, let $\mathbb{B}_n = (0, \frac{1}{n})$. It is easy to prove that \mathbb{B}_n is a bi- Γ -ideal of M for all $n \in \mathbb{N}$ but $= \bigcap_{i \in I} B_i = \emptyset$.

Let A be a nonempty subset of a Γ -semigroup M. Let $\Im = \{B \mid B \text{ is a bi-}\Gamma\text{-ideal of }M \text{ containing }A\}$. Then $\Im \neq \varnothing$ because $M \in \Im$. Let $(A)_b = \bigcap_{b \in \Im} B$. It is clearly seen that $A \subseteq (A)_b$. By Theorem 2.1, $(A)_b$ is a bi- Γ -ideal of M. Moreover, $(A)_b$ is the smallest bi- Γ -ideal of M containing A. $(A)_b$ is called the bi- Γ -ideal of M generated by A.

Theorem 2.2. Let A be a nonempty subset of a Γ -semigroup M. Then

 $(A)_{\downarrow} = A \cup A \Gamma A \cup A \Gamma M \Gamma A.$

Proof. Let A be a nonempty subset of a Γ -semigroup M. Let $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$. Clearly, $A \subseteq B$. We have that $B\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A)\Gamma(A \cup A\Gamma A \cup A\Gamma M\Gamma A) \subseteq A\Gamma A \cup A\Gamma M\Gamma A \subseteq B$. Hence B is a sub Γ -semigroup of M.

Since M is a Γ -semigroup, all elements in $B\Gamma M\Gamma B = (A \cup A\Gamma A \cup A\Gamma M\Gamma A) \Gamma M\Gamma (A \cup A\Gamma A \cup A\Gamma M\Gamma A)$ are in the form of $a_1\gamma m\mu a_2$ for some $a_1, a_2 \in A, \gamma, \mu \in \Gamma$ and $m \in M$. Thus $B\Gamma M\Gamma B \subseteq$

 $A\Gamma M\Gamma A \subseteq B$. Therefore B is a bi- Γ -ideal of M. Let C be any bi- Γ -ideal of M containing A.

Since C is a sub- Γ -semigroup of M and $A \subseteq C$, $A\Gamma A \subseteq C$. Since C is a bi- Γ -ideal of M and $A \subseteq C$, $A\Gamma M\Gamma A \subseteq C$. Therefore $B = A \cup A\Gamma A \cup A\Gamma M\Gamma A \subseteq C$.

Hence B is the smallest bi- Γ -ideal of M containing A. Therefore $(A)_b = B = A \cup A\Gamma A \cup A\Gamma M\Gamma A$, as required.

Example 2.2. Let N be the set of all positive integers and $\Gamma = \{5\}$. Then N is a Γ -semigroup under usual addition.

- (i) Let $A = \{2\}$. We have that $(A)_b = \{2\} \cup \{9\} \cup \{15, 16, 17, \dots\}$.
- (ii) Let $A = \{3, 4\}$. We have that $(A)_b = \{3, 4\} \cup \{11, 12, 13\} \cup \{17, 18, 19, \dots\}$.

Theorem 2.3. Let M be a Γ -semigroup. Let B be a bi- Γ -ideal of M and A a nonempty subset of M. Then the following statements are true.

- (i) $B\Gamma A$ is a bi- Γ -ideal of M.
- (ii) $A\Gamma B$ is a bi- Γ -ideal of M.

Proof. (i) We have that $(B\Gamma A)\Gamma(B\Gamma A) = (B\Gamma A\Gamma B)\Gamma A$ and $(B\Gamma A)\Gamma M\Gamma(B\Gamma A) = (B\Gamma A\Gamma M\Gamma B)\Gamma A$. Since B is a bi- Γ -ideal of M, $(B\Gamma A)\Gamma B\Gamma A$ (BFA) = $(B\Gamma A\Gamma B)\Gamma A \subseteq B\Gamma A$ and $(B\Gamma A)\Gamma A\Gamma B\Gamma A$ (BFA) = $(B\Gamma A\Gamma M\Gamma B)\Gamma A \subseteq (B\Gamma M\Gamma B)\Gamma A \subseteq B\Gamma A$. Therefore $B\Gamma A$ is a bi- Γ -ideal of M.

The proof of (ii) is similar to the proof of (i). Corollary 2.4. Let M be a Γ -semigroup. For a positive integer n, let $B_1, B_2, ..., B_n$ be bi- Γ -ideals of M. Then $B_1\Gamma B_2\Gamma ...\Gamma B_n$ is a bi- Γ -ideal of M.

Proof. We will prove the corollary by mathematical induction. By Theorem 2.3, $B_1 \Gamma B_2$ is a bi Γ -ideal of M. Next, let n be any positive integer such that k < n and assume $B_1 \Gamma B_2 \Gamma ... \Gamma B_k$ is a bi- Γ -ideal of M. We have that $B_1 \Gamma B_2 \Gamma ... \Gamma B_k \Gamma B_{k+1} = (B_1 \Gamma B_2 \Gamma ... \Gamma B_k) \Gamma B_{k+1}$ is a bi- Γ -ideal of M by Theorem 2.3.

Let M be a Γ -semigroup. M is called a bi-simple Γ -semigroup if M is the unique bi- Γ -ideal

of M. A bi- Γ -ideal B of M is called a *minimal bi-\Gamma-ideal* of M if B does not properly contain any bi- Γ -ideal of M.

Example 2.3. Let G be a group and $\Gamma = G$. Then G'' = G and gG = G = Gg for all $g \in G$. Then G is a Γ -semigroup under the usual binary operation. It is easy to see that G is the unique bi- Γ -ideal of G. Then G is a bi-simple Γ -semigroup.

Theorem 2.5. Let M be a Γ -semigroup. Then M is a bi-simple Γ -semigroup if and only if $M = m\Gamma M\Gamma m$ for all $m \in M$, where $m\Gamma M\Gamma m$ means $\{m\}\Gamma M\Gamma \{m\}$.

Proof. Let M be a Γ -semigroup.

Assume that M is a bi-simple Γ -semigroup. Let $m \in M$. By Theorem 2.3, $m\Gamma M\Gamma m$ is a bi- Γ -ideal of M. Then $M = m\Gamma M\Gamma m$.

Assume that $M = m\Gamma M\Gamma m$ for all $m \in M$. Let B be a bi- Γ -ideal of M. Let $b \in B$. By assumption, $M = b\Gamma M\Gamma b \subseteq B\Gamma M\Gamma B \subseteq B$. Hence M = B. Therefore M is a bi-simple Γ -semigroup.

Theorem 2.6. Let M be a Γ -semigroup and B a bi- Γ -ideal of M. Then B is a minimal bi- Γ -ideal of M if and only if B is a bi-simple Γ -semigroup.

Proof. Let M be a Γ -semigroup and B a bi- Γ -ideal of M.

Assume that B is a minimal bi- Γ -ideal of M. Let C be a bi- Γ -ideal of B. Then $C\Gamma B\Gamma C \subseteq C$. Since B is a bi- Γ -ideal of M, by Theorem 2.3, $C\Gamma B\Gamma C$ is a bi- Γ -ideal of M. Since B is a minimal bi- Γ -ideal of M and $C\Gamma B\Gamma C \subseteq B$, $C\Gamma B\Gamma C = B$. Hence $B = C\Gamma B\Gamma C \subseteq C$, this implies B = C. Then B is a bi-simple Γ -semigroup.

Assume that B is a bi-simple Γ -semigroup. Let C be a bi- Γ -ideal of M such that $C \subseteq B$. Then $C\Gamma B\Gamma C \subseteq C\Gamma M\Gamma C \subseteq C$. Therefore C is a bi- Γ -ideal of B. Since B is a bi-simple Γ -semigroup, C = B. Hence B is a minimal bi- Γ -ideal of M, as required.

Acknowledgments.

The authors would like to thank the referees for the useful and helpful suggestions.

References

Chinram, R. 2005. Generalized Transformation Semigroups Whose Sets of Quasi-ideals and Bi-ideals Coincide, Kyungpook Math.J.,45:161-166.

Good, R. A. and Hughes, D. R. 1952. Associated for a semigroup, Bull. Amer. Math. Soc.58:624-625.

Saha, N. K. 1987. On Γ -semigroup II, Bull.Cal. Math. Soc., 79: 331-335.

Sen, M. K. 1981.On Γ-semigroups. Proc. of International Conference on Algebra and it's Applications.

Decker Publication, New York 301.

Sen, M. K. and Saha, N. K. 1986. On Γ-semigroup I. Bull. Cal. Math. Soc., 78: 180-186.