TABLE OF CONTENTS

Executive Summary	i
Publications Derived from Results of the Project	iv
Acknowledgements	v
List of Tables	ix
List of Figures	х
CHAPTER ONE	
INTRODUCTION	1
1.1 Overview of the Project	1
1.2 Overview of Natural Rubber	1
1.3 Natural Rubber in Thailand	3
1.3.1 Planting area	3
1.3.2 Rubber production	3
1.4 Trend of Rubber Industry in Thailand	7
1.5 Planning of Project.	7
1.5.1 Surveying of rubber smoking factories to	
acquire basic data	8
1.5.2 Energy auditing of rubber smoking process	. 8
1.5.3 Study on factors affecting rubber drying	8
1.5.4 Theoretical work and field trial of air drier	
to accelerate rubber smoking process	8
CHAPTER TWO	-
SURVEYING OF RUBBER SMOKING FACTORIES	9
2.1 Introduction	9
2.2 Planning of Survey	9
2.3 Rubber Smoking Technique	10
2.3.1 Making of rubber sheets	10
2.3.2 Making of smoked sheets	13
2.3.3 Source of energy	13
2.3.4 Smoking rooms and furnaces	14

2.4 Energy	Used in the Process	18
2.5 Discuss	ion	24
2.6 Conclus	ion	25
CHAPTER THREE		
MONITORING	OF RUBBER SMOKING PROCESS	26
3.1 Introdu	ction	26
3.2 Materia	ls and Methods	26
3.3 Energy	Aspect of Smoking Process	27
3.4 Moisture	e Aspect of Smoking Process	33
3.5 General	Discussion	41
3.6 Conclus	ion	43
CHAPTER FOUR		
FACTORS AFF	SCTING RUBBER DRYING PROCESS	45
4.1 Introduc	etion	45
4.2 Factors	Affecting Rubber Sheet Drying Process	46
4.2.1 Ma	terials and methods	46
4.2.2 Re	esults and discussion	50
4.2.3 G€	meral discussion	55
4.3 Trial Te	est with Green and Dry Firewood	57
4.3.1 Th	e experiment	57
4.3.2 Re	sults and discussion	58
4.4 Conclusi	on	61
CHAPTER FIVE		
DEVELOPMENT	OF HEAT PUMP AIR DRIER (HPAD)	64
5.1 Introduc	tion	64
5.2 Principl	e of HPAD	65
5.3 Laborato	ry-scale HPAD	69
5.3.1 Co	nstruction	69
5.3.2 Th	eoretical background of refrigeration cycle	69
5.3.3 Ex	perimentation with simple air drier	75

5.3.4 Enhancing dehumidification by bypass technique	75
5.3.5 Experimentation with bypass technique	77
5.4 Design and Construction of Full-Scale HPAD	80
5.4.1 Determination of cooling capacity	80
5.4.2 Modification of conventional air conditioner	. 81
5.5 HPAD-Assisted Rubber Smoking	82
5.5.1 Installation and experimentation procedure	82
5.5.2 Results and discussion	82
5.6 Conclusion	92
CHAPTER SIX	
CONCLUSION AND RECOMMENDATION	93
6.1 Conclusion	93
6.2 Recommendation	94
APPENDIX A EQUATIONS FOR ENERGY ANALYSIS	95
APPENDIX B ECONOMIC ANALYSIS OF INSTALLATION OF INSULATION	99
APPENDIX C PHOTO COLLECTION OF PROJECT ACTIVITIES	101
APPENDIX D REFERENCES	100

LIST OF TABLES

Table 1.1	Rubber planting area by province	4
Table 1.2	Projection of Thailand's rubber production	
·	during 1992-1996	6
Table 1.3	Current and forecasted of world rubber production	6
Table 2.1	Number of factories visited by provinces	11
Table 2.2	Survey data of double layer rooms	19
Table 2.3	Survey data of single layer rooms	20
Table 2.4	Analysed data	21
Table 3.1	Basic data of experiments	29
Table 3.2	Energy analysis for the smoking process	30
Table 3.3	Water in the process	38
Table 4.1	Programme of experiments	49
Table 4.2	Results of experiments	51
Table 4.3	Firewood used: green and dry conditions	59
Table 5.1	Results of experiment on 1-ton air drier	76
Table 5.2	Results of trial test of HPAD	84
Table 5.3	Results of HPAD-assisted smoking	86
Table 5.4	Analysed result of HPAD-assisted smoking	87
Table 5.5	Effects of HPAD on rubber smoking	91

LIST OF FIGURES

Figure	1.1	Rubber planting area in Thailand	<i>[</i> .
Figure		Geographical locations of factories visited	12
Figure		Double layer room	15
Figure	2.3	Single layer room (outside furnace)	16
Figure		Single layer room (furnace beneath)	17
Figure		Effect of loading density on specific wood	_,
_		consumption of double layer rooms	22
Figure	3.1	Description of the smoking room and parameters	
		to be measured	28
Figure	3.2	Typical smoking room temperature	31
Figure	3.3	Typical heat loss rate through walls	32
Figure	3.4	Typical accumulative heat loss through walls	34
Figure	3.5	Typical exhaust loss calculated with	
		reference to surroundings	35
Figure	3.6	Typical accumulative heat loss via the exhaust	36
Figure	3.7	Typical exhaust and inlet humidity ratios	39
Figure	3.8	Typical accumulative mass of water emitted by firewood,	
		extracted from rubber and admitted with inlet air	40
Figure :	3.9	Flow of water in the rubber smoking process	42
Figure 4	4.1	Environmentally controlled chamber	47
Figure	4.2	Effects of inlet air relative humidity on drying time	52
Figure 4	4.3	Effects of air flow rate on drying time (40% RH)	54
Figure 4	4.4	Result of actual loading density (63.73 kg/m ³)	56
Figure 4	4.5	Firewood consumptin of room #3 (green wood)	
		and #4 (dry wood)	60
Figure 4	4.6	Accumulative firewood consumption	62
Figure	4.7	Humidity ratio of gas exhausted from rooms #3 and #4	63
Figure :	5.1	Rotary sorption wheel air drier	66
Figure 9	5.2	Principle of refrigeration cycle modified for air drier	67
Figure S	5.3	Close cycle heat pump air drier	68
Figure 3	5.4	Laboratory-scale HPAD	70

Figure	5.5	Covering hood for laboratory-scale HPAD and	
		parameters measured	71
Figure	5.6	Vapor compression refrigeration cycle	72
Figure	5.7	First law analysis of mixture cooled by an evaporator	r 74
Figure	5.8	First law analysis of mixture heated by a condenser	74
Figure	5.9	Enhancing air dehumidification by bypass technique	78
Figure	5.10	Air dehumidification with recuperators	79
Figure	5.11	Air drier constructed for field trial	83
Figure	5.12	Connection of HPAD to furnace	85
Figure	5.13	Humidity ratios of inlet and exhaust	88-89