3. The explicit calculation of the SO(9) tensor products

In order to generate the SO(9) irreps by means of an explicit calculation from tensor
products of 9-vector and 16-spinor irreps, the following approach is effective, and can
also be used to obtain similar tensor products of more than two irreps.

3.1, Vector-vector product

The tensor product of two 9-vector irreps can be decomposed in terms of dimensions
as

I®9=4403661, (11a)
or in terms pf Dynkin labels as

3 n ¢ ¢ ¢”
{1000) ® (1000)=(2000) & (0100) & (0000} . (11d)
Firstly, one needs to consider the (2000) subspace. Acting on the top level (the
eighth level) of the highest weight in the vector-vector product, {1 = &;m, by & series
of four negative simple root generators, Ef = E;. = I ® Ej, + E ® I, the lower
levels of weight vectors are obtained:
At the seventh level:

1 1
G = EETQ =75 (El(Er-;_lnl) + (Eg_lﬁx)ﬂl)
\/— (§1m + &am), (12a)
EyG = E;G=E;G=0. (12b)
At the sixth level:
G =BG = % (€ + Eam), (12¢)
G = \/—Ex C2 = Eama, (12d)
EfG=E (2=0. (12¢€)
At the fifth level: -
G=Ef(z= % (§1ma + &am) s (12f)
1 1
6= Ei(3= ﬁE{G& =7 (&2m + Eam) (129)
EfGa=E;G=ErCG=FE;¢=E;¢=0. (12h)
At the fourth level:
G = By = ;/1—5 (€m0 + Eom), (12i)
1
G=ErG=Ej¢(= i (E2ma + Eam) (123)

G = \/—Ez 6 = &am, (124)
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EyGs=EyG=EG==FE (=0 (129

At the zero level:
1
(= ETEyETE ¢r= ¢ (5171—1 +&am_z +Eam + €M), (12m}
ng = \/—EZ El E3 E4 C’T == (627]-2 + 537?—3 + 6—37}3 + 6-27?2) ) (121’1)
(3 = \/_Ea EFETE;(z = (E;;n_g +&an-a +E_ana + £_am3), (120)
l

(24 = \/—E By By EV G = 7 (Ean—a + 26om0 + E_ama) - (12p)

The weight elements of ¢; are found by letting H¢, = I @ Hyy + He, @ I act directly
on the right hand side of ¢;.

Note that ¢7 at the fourth level is the non-degenerate dominant weight |1000>
and (21,22,23,24 at the zero level are the degenerated dominant weights [0000>. An
upper half of the action series of the negative simple root generators in the (2000)
subspace is shmmarized and shown as the upper-half weight diagram in Fig. 2.
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Figure 2. The upper-half weight diagram for the 44-dimensional irrep.

In the linear combinations of weight vectors of the vector-vector product, there
are 81 (= 92} CGCs in the (2000), {0100), and (0000) subspaces. As can be seen from
the above computation in the (2000) subspace, many of CGCs are zero and the rest
has only & few distinct non zero values. Therefore, it suffices to compute only the
dominant weights in the tensor product (3, 4, 5].

For the (0100} subspace, its highest weight {; = |0100> at the seventh level is
orthonormal to {;. Up to an overall phase, one can choose it to be

G = % (612 — Eam) . (13a)

For the remaining dominant weight vectors in the (0100) subspace, one obtains at the
fourth level:

’ - g — 1
G=EfEyE; G = 7 (&m0 = Som) - (13b)
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and at the zero level:

Gir = BT By B ErGh= 5 (611 +&anz —€cam — €1m), (13)
(s = %E{EfEEEICé = %(Ezﬂ—z + & — €-ams — E-ame), (13d)
Gio = 55 By BT B G = 5 (6013 + &ors = E-ak — E-5m), (139
o= Bi B Ey Ei G = s (6m-s = E-an4). (139

Note that £ = [1000> in the (0100) subspace is orthonormal to ¢z = [1000> in the
(2000) subspace. By removing {1, {4, ¢s and {16 from Fig. 2 and relabeling its weight
vectors, one obtains the upper-half weight diagram of (0100} subspace.

For the (0000) subspace, its highest weight ¢” = |0000> at the zero level is
orthonormal to (21,22.2324 8nd to {j751920- UPp to an overall phase, the weight
vector g”

H

\/_ (€111 — Ean_2 + Ean—3 — Ean—a + Eomo — E—ama + E_3m3 — E_ane + 1) (14)

Note that the weights in ¢ and (" are symmetric under the interchange between £ and
7, whereas the weights in ¢’ are antisymmetric.

3.2. Vector-spinor product
The 9 ® 16 can be decomposed as
9% 16 =128 ¢ 16, (15a)

or in terms of Dynkin label

£ N ¢ ¢
(1000) ® (0001)=(1001) & (0001) . (158)

Acting on the top level (the ninth level) of the highest weight {; = £19)(¢) by a series of
those four simple root generators, one gets tl.e four-fold degenerate dominant weights
|0001> at the fifth level,

Q2= \/—El E;EyE G = \/- (E1%_a(0) + E2¥3(0)) » (16a)
G = —}E;ErE; EiG = 7 (Eavs + Ea¥20) (16%)
Cu= \/—Es EyE E G = \/— (€av2(0) + Ea¥1(0)) » (16¢)
G5 = \/—5'4 EfEFETQ = \/5 (Eatbrio) + Eo¥r(ey) - (16d)

These are the only dominant weights in the (1001) subspace.
For the (0001) subspace, its highest weight ¢] at the fifth level is orthonormal to
12,13,14,15. Up to an overall phase, it is

; 1
¢ = N (€14 —a(0) — E2¥3(0) + E3tb2(0) — a0 + EoV1(e)) - (17)
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3.3. Spinor-spinor product
The 16 ® 16 can be decomposed as
16@16=1260p8423659D1, (18a)

or in terms of Dynkin labels as

(06”01) ® (0001)=(0002) & (0310) @ (0560) @ (1000) @ (0000) . (18b)

The dominant weights in the spinor-spinor product can be computed explicitly as
above. Their results for the top level in each subspace are as follow:
For the (0002) subspace:

1 = Ye)Xi(e)- (19)
For the (0010) subspace:

1 .
G = ﬁ(wl(e)XI(o) = Y1{0)X1(e))- (20)
For the (0100) subspace:

1
G = 51 X210 — Ya(aXite) + V2r0)X1t0) ~ ¥1{0)X2(0) )+ (@)
For the (1000} subspace: '

1
G = 2—ﬁ(¢1(eJX4(o) + Ya(0)X1(e) T ¥'200) X3(e) + W3(e) X2(0)

(22)
~ Y1(0) Xd(e) — Vate} X1(0) — V2(e)X3(0) = ¥3{0) X2(e))-
For the (0000) subspace:
1
G = Z(d)](e)X—l(e) + Y_1(e)X1e) T V2(e) X—2(e) T ¥—2(e) X2(e)
= Y3(e)X=3(e) — Y=3(e}X3(e) = Vi(e) Xdle) — VW—1{e) Xa(e) (23)

= Yi(a)X=1(0) — ¥—1(0)X1{0) F ¥2(0) X—2(0) + ¥—2(0)X2(0)
— W30) X=~3(0) — ¥=3(c)X3(0) + Vi(0) X4(0) T ¥—4(0)X~4(0))-

Notice that the (0002), (1000) and (0000) subspaces are symmetric in the interchange
between 1y and x whereas the (0010) and (0100) subspaces are antisymmetric.





