CONTENT

Acknowledgement	page
Abstract (Thei)	, 11
Abstract (Chai)	
Abstract (English)	III
Content	IV
List of figure	V
List of table •	VI
Abbreviation	VIII
CHAPTER 1 Introduction	
1.1 Background and rationale	1
1.2 Review of literature	2
1.2.1 The biosynthetic pathways of terpenoids	2
1.2.1.1 The classical mevalonate (MVA) pathway	2
1.2.1.2 The deoxyxylulose phosphate (DXP) pathway	4
1.2.1.3 Cross-talk between two independent IPP generating pathways in pl	ants 6
1.2.2 1-Deoxy-D-xylulose 5-phosphate reductoisomerase (Dxr)	6
1.2.3 Croton stellatopilosus Ohba	9
1.2.4 Plaunotol: structure and chemical properties	9
1.2.5 Plaunotol: quantitative analysis	10
1.2.6 Plaunotol biosynthesis	11
CHAPTER 2 Materials and Mehtods	
2.1 Plant materials	12
2.2 Equipments and materials	
2.2.1 Equipments	12
2.2.2 Chemicals	13
2.2.3 Kits	14
2.2.4 Enzymes	14
2.2.5 Escherichia coli strains	14
2.2.6 vector	14
2.2.7 Media preparation and solutions	15
2.2.8 Primers	16
2.3 Methods	18
2.3.1 Total RNA extraction	18
2.3.1.1 Conventional method	18
2.3.1.2 RNeasy Plant Mini kit	18
2.3.2 Synthesis of the first-strand cDNA	19
2.3.3 Polymerase chain reaction (PCR)	20

	2.3.3.1 Amplification of the core fragment	20
	2.3.3.2 Amplification of 5'- and 3'-ends	21
	2.3.3.3 Amplification of the full-length dxr gene .	22
	2.3.3.4 Amplification of fragments for mRNA expression	23
	2.3.4 DNA cloning	24
	2.3.4.1 Preparation of ultra-competent cells	24
	2.3.4.2 Purification of DNA fragments	25
	2.3.4.3 Ligation	25
	2.3.4.4 Transformation	25
	2.3.5 Extraction of the recombinant DNA	26
	2.3.6 Agarose gel electrophoresis	26
	2.3.7 DNA sequencing and sequencing analysis	27
	2.3.8 Gel documentation	27
	2.3.9 Extraction and quantitative analysis of plaunotol	28
CHAPTER 3		
3.1 Clc	oning and DNA sequencing of a full-length cDNA encoding for dxr gene	30
	3.1.1 Degenerated primers design	30
	3.1.2 Total RNA from C. stellatopilosus young leaves	30
	3.1.3 Cloning of core fragment, 5'- and 3'-ends	31
	3.1.4 Cloning of a full-length cDNA for dxr gene (Csdxr)	33
3.2 Co	mparison of the amino acid sequences of Dxr from higher plants and analysis of con-	served
residue	es •	34
3.3 Ph	ylogenetic analysis	39
3.4 Ex	pression of the dxr gene in organs of C. stellatopilosus	41
	3.4.1 Determination of cycling parameter for RT-PCR	41
	3.4.2 Semiquantitative RT-PCR	41
3.5 Qu	antitative determination of plaunotol	42
	3.5.1 Calibration curve of plaunotol	42
	3.5.2 Determination of plaunotol content in organs of C. stellatopilosus	43
3.6 Co	rrelation of dxr transcript levels and plaunotol biosynthesis	45
CHAP	TER 4 Discussions	46
4.1 1-0	Deoxy-D-xylulose 5-phosphate reductoisomerase from C. stellatopilosus Ohba	46
4.2 1-0	Deoxy-D-xylulose 5-phosphate reductoisomerase in C. stellatopilosus is not rate-limiting	ıg step
enzym	e in plaunotol biosynthesis	47

49

REFERENCES

List of figure

		page
Figure 1.1	The classical mevalonate pathway	3
Figure 1.2	The deoxyxylulose phosphate pathway	5
Figure 1.3	The catalytic action of Dxr	7
Figure 1.4	Croton stellatopilosus Ohba (Euphorbiaceae)	9
Figure 1.5	The chemical structure of plaunotol	9
Figure 1.6	Biosynthesis pathway of plaunotol	11
Figure 2.1	Representation of the linearization pDrive Cloning Vector with U-overhang	15
Figure 2.2	The core fragment amplification	20
Figure 2.3	The 5'- and 3'-ends amplification	13
Figure 2.4	The full-length dxr gene amplification	22
Figure 2.5	The partial DNA and 18S rRNA amplification	23
Figure 3.1	Multi-alignment of amino acid sequences of higher plants Dxrs	31
Figure 3.2	PCR product of core fragment	32
Figure 3.3	1.2% agarose gel electrophoresis of the PCR products of 5'- and 3'-ends	33
Figure 3.4	1.2% agarose gel electrophoresis of the PCR product of CsDxr	34
Figure 3.5	Nucleotide and amino acid sequences of CsDxr	35
Figure 3,6	Alignment of deduced amino acids sequences of CSDXR and other plants	36
	DXRs	
Figure 3.7	A molecular phylogenetic tree of the deduced amino acid sequences of the	40
	plant Dxrs	
Figure 3.8	Various parts of C. stellatopilosus	41
Figure 3.9	Calibration curve of plaunotol	43
Figure 3.10	Example GC chromatograms of authentic plaunotol and at 2 nd position leaf	44
Figure 3.11	Semiquantitative RT-PCR analysis of CSdxr expression in various tissues of	45
	Croton stellatopilosus	

List of table

		page
Table 2.1	E. coli strains used in this study	14
Table 2.2	Primers used in this study	17
Table 3.1	List of Dxr from plants, bacteria and malaria parasite	37
Table 3.2	Percent identity of amino acid sequences of CsDxr and other plant	38
	Dxrs, bacteria and malaria parasite	
Table 3.3	The mRNA expression of dxr gene in various parts of C. stellatopilosus	42
Table 3.4	Plaunotol content from various parts of C. stellatopilosus	44

Abbreviation

AcCoA = Acetyl coenzyme A

bp = Base pair

BSU = Bioservice Unit

°C = Degree Celsius

DEPC = Diethyl pyrocarbonate

DMAPP = Dimethylallyl diphosphate

DX = 1-deoxy-D-xylulose

DXP = Deoxyxylulose phosphate

dxr = 1-deoxy-D-xylulose 5-phosphate reductoisomerase gene

DNA = Deoxyribonucleic acid

Dxr = 1-deoxy-D-xylulose 5-phosphate reductoisomerase

Dxs = 1-deoxy-D-xylulose-5-phosphate synthase

dNTP = Deoxynucleoside triphosphate

ER = Endoplasmic reticulum

FID = Flame ionization detector

GAP = D-glyceraldehyde 3-phosphate

GC = Gas chromatography

GGOH = Geranylgeraniol

GGPP = Geranylgeranyl diphosphate

HMG-CoA = 3-hydroxy-3-methylglutaryl-CoA

HMGR = 3-hydroxy-3-methylglutaryl-CoA reductase

IPTG = Isopropyl- β -D-thiogalactopyranoside

IPP = Isopentenyl diphosphate

kb = Kilobase kDa = Kilodalton

LB = Luria Bertaini

M = Molar

ME = 2-C-methyl-erythritol

MEOP = 2-C-methylerythrose 4-phosphate

MEP = 2-C-methyl-D-erythritol 4-phosphate

mg = Milligram
ml = Milliliter
mM = Millimolar

mRNA = Messenger ribonucleic acid

MVA = Mevalonate

μg = Microgram

μl = Microliter

nm = nanometer

OD = Optical density

pH = -log hydrogen ion concentration

pmol = Picomole Pro (P) = Proline

RT-PCR = Reverse Transcriptase Polymerase Chain Reaction

RNA = Ribonucleic acid RNase A = Ribonuclease A

rpm = Revolutions per minute

Ser (S) = Serine

TAE = Tris acetate EDTA

TLC = Thin-layer chromatography

UV = Ultra violet

UV-VIS = Ultra violet visible

V = VoltVal (V) = Valine

v/v = Volume by volume w/v = Weight by volume w/w = Weight by weight

X-GAL = 5-Bromo-4-chloro-3-indolyl- β -D-galactoside