121

VITNYNIN

[1] N. Nuansri, 8. Singh, T. S. Dillon ,“A Process State-Transition Analysis and its Application
to Intrusion Detection”, Dept. Computer Science and Computer Engineering,
and Applied Computing Research Institue (ACRI), Latrobe University,
Bundoora VIC 3083 Melbourne, Australia, 1999,

[2] C. Dowell and P. Ramstedt, “The COMPUTER WATCH data reduction tool,” in Proceedings
of the 13th National Computer Security Conference, 1990.

[3]1 W.T. Tener, “Discovery: an expert system in the commercial data security environment,” in
Proceedings of the 4th IFIP TCI1 International Conference on Computer

Security, 1986.3.

(4] S. E. Smaha, “Haystack: An Intrusion Detection Systemn,” in Proceedings of the 4" Aerospace
Computer Security Applications Conference, florida (December 12-16, 1998)
pp- 37-44,

{5] D. Anderson, T. Lunt, and H. Javitz, “A. Tamaru, and A. Valdes, Next-generation Intrusion
Detection Expert System (NIDES),” A Summary, SRI-CSL-95-07, SRI
International, 1995.

[6]J. R. Winkler and J. C. Landry, “Intrusion and Anomaly Detection: ISOA Update,” in
Proceedings. 15" National Computer Security Conf., Baltimore, MD, October
1992, pp. 272-281.

[7] Sebring, M. M.; Sellhouse, E.; Hanna, M. E.; Whitehurst, R. A.: “Expert system in intrusion
detection: A case study,” in Proceedings of the 1ith National Computer
Security Conference, Baltimore, MD, Oct. 1988, pp. 74 — 81.

[8] Vaccarro, H. S. and Liepins, G. E. "Detection of Anomalous Computer Session Activity," in
Procedding of the IEEE Symposium on Research in Security and Privacy, pp.
208-209, Oakland, California, May 1-3, 1989. Washington, DC: IEEE
Computer Society Press, 1989.

[9] T. Escamilla, “Intrusion Detection Network Security Beyond the Firewall,” USA: John Wiley
& Sons, Inc, 1998.



122

[10] CERT and CERT Coordination Center are registered U.S. Patent and Trademgrk Office.

2004, CERT/CC Advisor. http://www.cert.org/advisors/.
[11]5.0. 33@ (5098, 2544. Basic Intrusion Detection FAQ.

http://www thaicert.nectec.or.th/paper/ids/idsfaq1.php.

[12] Paul Festa. 1999. Study says "buffer overflow" is most common security bug
http://community.core-sdi.com/~juliano/0-1003-200-1462855.html.

[13] B. Hatch, J. Lee, G. Kurtz, “Hacking Linux Exposed: Linux Security Secrets & Solutions,”
2001.

[14] J.P., Anderson, “Computer Security Threat Monitoring and Surveillance,” Technical Report
James P. Anderson Company, Fort Washington, Pennsylvania (February
1980).

[15] T.F. Lunt et al., “A Real-Time Intrusion Detection Expert System(IDES),” Interim Progress
Report, Project 6784, SRI International, May 1990.

[16] M. Crosbie and G. Spafford, “Active Defense of a Computer System using Autonomous
Agents,” technical Report, Purdue University, Department of Computer
Sciences, February 1995.

{171 G. Viga and R. A. Kermmerer, Netstat, “A Network-based intrusion detection approach,” In
Proceeding of the 1998 Annual Computer Security Applications Conference
(ACSAC98), pages 25-34, Los Alamitos, CA, December 1998, IEEE Computer
Society, IEEE Computer Society Press. Scottsdale, AZ.

[18] P. Porras and R. Kemmerer, “Penetration State Transition Analysis: A Ruled based Intrusion
Detection Approach,” Eighth Annual Computer Security Application
Conference, 1992.

[19] S. Kumar and E. Spafford, “A Pattern-Matching Model for Intrusion Detection,” Nat’!
Computer Security Conference, 1994,

{20] S.T. Eckmann, G. Vigna, and R.A. Kemmerer, “STATL: An Attack Language for State-
based Intrusion Detection,” Journal of Computer Security, 10(1/2):71-104,
2002.



123

[21] U. Lindgvist and P.A. Porras, “Detecting Computer and Network Misuse with the
production Based Expert System Toolset (P-BEST),” in IEEE Symposium on
Security and Privacy, pages 146-161, Oakland, California, May 1999,

[22] V. Paxon. Bro, “A system for Detecting Network Intruders in Real-time,” in Proceedings of
the 7" USENIX Security Symposium, San Antonio, TX, january 1998.

[23] M. Christodorescu & S. Jha, “Static Analysis of Executables to Detect Malicious Pattems,”
USENLX Security Symp., 2003

[24] A. Habib, M. Hefeeda & B. Bhargava, “Detecting Service Violations and DoS Attacks,”
NDSS, 2003.

[25] V. Paxson, “An Analysis of Using Reflectors for Distributed Denial-of-Service Attacks,”
Computer Communication Review 31(3), 2001.

[26] S. Forrest, S.A. Horfmeyr and A. Somayaji, “Intrusion Detection using Sequences of System
Calls,” Journal of Computer Security Col.6 (1998) pages 151-180.

[27] A. Kosoresow and S. Hofmeyr, “Intrusion Detection via system call traces,” IEEE Software
,1997.

[28] 19 W. Lee and S. Stolfo, Data Mining Approaches for Intrusion detection, USENIX Security
Symposium, 1998.

[29] S. Snap, J. Bretano, G. Dias, T. Goan, L.Heberlein, C. Ho, K. Levitt, B. Mukherjee, S.
Smaha, T. Grance, D. Teal, D. Mansur, “DIDS : Motivation, Architecture and
an Early Prototype,” in Proceedings of the 14 * National Computer Security
Conferencem, 1991.

[30] L. Heberlein, G. Dias, K. Levit, B. Mukherjee, J. Wood, D. Wolber, “A Network Security
Monitor,” Proceedings of the IEEE Computer Society Symposium, Research
in Security and Privacy, pp. 296-303, May 1990,

[31] M.M. Sebring, E. Shellhouse, M. Hanna and R. Whitehurst, “Expert Systems in Intrusion
Detection: A Case Study,” in Proceedings of the 11 * National Computer
Security Conference, October 1988,

(32] 8. Freeman, A. Bivens, J. Branch, B. Szymanski, “Host-Based Intrusion Detection Using

User Signatures”.



124

[33] Hochberg, et al., “NADIR: An Automated System for Detecting Network Intrusion and
Misuse,” Computers & Security, Elsevier Science Publishers, pp. 235-248,
1993.

[34] W.Richard Stevens, “Advanced Programming in the UNIX Environment,” March 1996

[35] Allan Cruse. 2004. The System Call Interface.
http://www.cs.usfca.edu/~crouse/cs326/lesson02.ppt.

[36] N. Nuansri, “Activity Tracing Techniques for Fault and Security Intrusion Detection in
Computer Systems,” A Thesis submitted in total fulfillment of the
requirements for the degree of Doctor of Philosophy, Department of
Computer Science and Computer Engineering, Faculty of Science, Technology
and Engineering, Latrobe University, La Trobe University, Australia May
1999

[37] CERT Coordination Center, Carnegie Mellon University. 2003. CERT/CC Overview
Incident and Vulnerability Trends. http://iwww.cert.org/present/cert-

overview-trends/module-4.pdf/



HANMARNW RSN D10 INE 1T INUE



126

Intrusion Detection System : System Call Tracing Technique

Pattanawadee Siwatintuko, Nittida Nuansri'
Computer System Design Lab, Dept. of Computer Engineering,
Faculty of Engineering, Prince of Songkla University,

Had Yai, Songkla 90112 Thailand
Email: spattana@unicorn.eng.psu.ac.th

Abstract

This paper presents a result of an intrusion
detection system implemented using a system
call tracing and a state transition analysis
technique. The system consists of three
modules, a process monitoring, a state
transition analysis, and a detecting module.
The process monitoring todule monitors
system call usage and user credentials of a
process. The state transition technique takes its
input from the monitoring module to analyze
and define process state at a particular time. If
the underlying process changes its state into a
forbidden state, then it is flagged as a
suspicious activity and the detection module is
called. This technique yields a satisfactory
result.

Keywords

Intrusion Detection System (IDS), System
Calls, State Transition Analysis.

1. Introduction

Many intrusion detection reports have stated
that Unix is one of the favorite target operating
system for intruders because of its
characteristics that there is a privileged user
called “root” who has the control of all jobs
and resources in a system. Thus, gaining the
root privileged access is the main objective of
most intruders. Literature survey also revealed
that almost successful break-ins targeted to,
and later used, a set of Unix special
commands called “setuid/setgid” programs.
These commands, as designed, are mostly
executed with root privileged in order to
perform their jobs. Thus if they are any flaws,

! Lecture: Dept of Computer Science, Faculty of Science,
Prince of Songkla University

either implementation or programming ones,
they are vulnerable to being attacked.

According to the study of [1], setuid/sefgid
commands were investigated into more details
and reported that most intrusive activities can
be detected at the instance of the success
attempt by monitoring the ownership changing
states of any suspicious processes. From this
study, a state transition analysis was used to
model all possible states of Unix processes
according to the changing of their user
credential values. Supporting rules for
intrusive activity detection were also proposed.
Based on this study as well as our further
investigations, we have designed and
implemented an intrusion detection system
using system call tracing method which is
capable of detecting suspicious intrusive
activities. Essential information related to the
implementation of our IDS is also provided in
the section 2. The details of this intrusion
detecion system (IDS) is given in section 3.
Then section 4 shows the result of this system
followed by conclusion in section 5.

2. Related information used in detecting
intrusive activities

In this section, we provide basic information
used to detect intrusive activities on a Unix-
based operating system. These are, user
credentials and their characteristics in Unix
processes which are described in section 2.1,
and system call tracing technique used to trace
processes activities is then given in section 2.2.
Moreover, the state transition analysis model
used to determine process states, especially the
suspicious state, is given in section 2.3.



2.1 Identifiers and Credentials in Unix

In a Unix system, each user is identified by set
of identifier numbers called a “user-identifier”
or “wid” and a “group-identifier” or “gid”.
These identifiers are represented by integer
values, fixed for each user, obtained when a
user is created and are used every time a user
invokes or creates a process. In fact, the user
and group identifiers consist of sub-identifiers
called a “real” and an “effective” user/group
ids. Each process associated with real user-id
and real group-id for in order to know who
invoked the process, the effective user-id and
the effective group-id are used to determine
whether the process can access a resource.
Normally the effective user and group ids will
be the same as the real user and group ids,
except in the setuid/setgid command when the
process run these commands the effective user-
id will be set to the same value of the owner of
the command. In setgid commands, the
effective group-id will be set to the command
owner group as well. Almost every
setuid/setgid commands are root seruid/setgid
that is while the process related to these
commands are eXecuting, they hold the
privilege of roor at one instance of time.

2.2 System c¢all tracing analysis

Every Unix user process interfaces with the
kernel in order to perform its tasks via system
calls provided by the operating system [2]. In
addition to this fact, process information such
as process user identifiers, process identifiers,
and many other information related to the
current state of each process while executing is
kept in a process table [3] which can be
extracted (with the right permission) for
investigation. Thus, if we can trace all system
calls used by a process and obtain process
information required to reveal the process
activity at the time, we should be able to
determine the process intention easily. In
order to monitor this information we used the
system call named Atruss(), more details in
section 3, to trace process system calls
accessing and process information which is
used in the detecting section.

2.3 State Transition Analysis
Information obtained from the tracing method

stated in the previous section is then used to
study the various states of a process during its

127

process life time. According to the study of
[1], it is stated that processes can be
categorized into several states while
performing its jobs. These states is described
by a 4-tuple instance which is (real user ID,
effective user ID, real group ID, effective
group 1D} or (UID, EUID, GID, EGID}. Each
of these components of the tuple are described
below.

Real user ID and effective user ID

At a particular time, when a process is
running., the value of UID and EUID can be
denoted by one of the follwing values:

uid — (user’s id) the user identifier number
assigned by the system administrator during
the user creation process to the user whose
process is being traced.

sid — (special id) a user identifier number of
high privileged user.

oid — (other’s id) a user identifier number that
does not to be into uid or sid.

Real group ID and effective group ID

Similar to the real and effective user ID, the
value of GID and EGID can be one of the
following values:

gid - (group’s id) a normal group identifier
number for the user who run the process.

sgid — (special group id) a group identifier
number for special system or high privileged
group.

ogid — (other group id) a group identifier
number that does not to be into gid or sgid.

States

When the process running at a particular time,
a process will be in one and only one state
depending of the 4-tuple at that time. We
differentiate four types of states: normal,
special privileged, superuser and system
group, and another user. To provide the
definition of each state, UID EUID GID and
EGID which are denoted by the meaning of
uid, suid, oid, gid, sgid and ogid are used.

Definition 1: Normal State

A process will be in the normal state if and
only if the process 4-tuple values are:

(uid, uid, gid, gid)



Definition 2: Special Privileged State

This special privileged state consists of several
states corresponding to system call which
cause the state transition. This includes

- setuid: a state induced by the
setuid(} system call. Its 4-tuple
representation is

(uid, sid, gid, gid).

- setreuid: a state induced by the
setreuid() system call. Its 4-tuple
value is

(sid, uid, gid, gid).

- setgid: a state induced by the
setgid(} system call. Its 4-tuple
value is

(uid, uid, sgid, gid).

- setregid: a state induced by the
setregid() system call. Its 4-tuple
value is

(uid, wid, gid, sgid).

Definition 3: Superuser and System group
States

Superuser state

- A real user ID and an effective
user ID are both of privileged
user I1Ds ; (sid, sid, gid, gid)

System Group State

- A group ID and an effective
group ID are both to be in
privileged group IDs: (uid wuid
sgid, sgid)

Definition 4: Another User State

A process is said to be in another user state
when a process user ID or group 1D attributes
have their values changed in one or a
combination of the following :

- A real user ID and an effective
user ID are both changed to the
other user ids: (oid, oid, gid gid)

- A group ID and an effective
group ID are both changed to
other user group ids: (uid wid,
ogid, ogid}

Fig. 1 show some of important states and their
transitions according to the definition above.
The another user state is not shown.

128

normal state I Setoid state

(1000,1060,100,100) <+ {1000,0,100,100)

sctreuid state

{0,1000,100,100)

setgid] state setregid stare
{1000.1000.100.00 {1000.1000.0,100)

F

Systemgroup state

(1000.1000.0.0}

Figure 1. State transition diagram for some
system states. The heavy arrows represent
“forbidden” or intrusion activities.

From the Figl. The intrusion activities are the
process in superuser state and systemgroup
state which transited from the special
privileged state: setuid, setreuid, seigid and
setregid state. These can be a system call,
program, or other activities that cause the state
transition. Next we will describe the
supporting rules used to detect those activities.

3. Design and implementation details

The system consists of 3 modules as shown in
figure 2. There are a process monitoring, a
state transition analysis, and a detecting
module.

Monitoring

State Transition

Analysis

Detecting
Module

Figure 2. The system modules

The monitoring process monitors process
activities by tracing all system calls used by
that process. Then the selected process
information such as user credentials, system
call names, opened file names, are obtained

Supecruser state

{0.0.100.100)




and sent to the state transition analysis which
will analyze the process state all the time. If
an underlying process has changed its state
from normal states into a special privileged
state, it will be closely monitor. Normal
processes are allowed to switch to privileged
process in order to complete its task, ¢.g. when
it uses a setuid/setgid command, but it will
always swap back to a normal state once it has
finished the special privilege. However, if the
process has gone further into a superuser state,
which is forbidden for normal user processes,
then the process is flagged as a suspicious state
and is sent to the detecting module which
investigates into more details of the process
activities. This module makes a decision
whether the suspicious process is an intrusive
process and stops the process if it is confirmed
to be an intrusion. In order to make a correct
decision, the module uses all of the traced
information, including resources, such as files
opened by the process.

The implementation is based on a NetBSD
operating system which provides two system
calls called kfrace(}) and ktruss() capable of
tracing process activities. These system calls
provide information kept in a process table of
every process including process credentials
which are the essential information required
for our detection technique. With a small
modification of these system calls, all
information necessary for process activity are
obtained to be used as an input of the state
transition analysis module. The Atruss(), a
modified version of the original ktrace(}
supported by the NetBSD system was selected
in the implementation. It is used to trace a
target process and report process credentials
and other information required for the analysis
module. In order to determine suspicious
activities for the detection module, several
supporting rules detailed below were required.

Supporting Rules for Intrusion Detection
and implementations,

Six rules have been stated and are used to
support the state transition analysis described
above. Each rule is used to detect different
method of intrusive activities. From the study
of [1] reported that most of intrusive activities
can be grouped in to several groups and a
particular rule set is applied to detect each of
these activities. These rules and detection
algorithms were implemented in our detection
system. The proposed algorithms were tested

129

against simulated activities according to each
rule which yielded a positive result.

Rule 0: Only the special system calls setreuid
() and the setregid() are permitted to change
the (real} UID or GID respectively.

If any system call or program other than these
changes the real UID or GID of the process, it
is flagged as an intrusive activity.

From Rule ¢ we can describe that when the
process in special privileged that is the
effective uid or the effective gid belong to
privileged user or privileged group which
almost means “root” what we do is when we
monitor the event that the real #id or real gid
change to 0 (swap between uid and euid or gid
and egid) the program will check the system
call usage. If it makes change of process wid or
gid an the system call is not the setreunid() nor
the setregid() we flag that activity.

Rule 1: No execvey) call is allowed in a special
privileged state.

When a process in the special privileged state,
it is not allowed to execve another program or
command, whenever a privileged command
requires to execute other commands, it must
release the current privileges in the child
process before executing a new program. If the
new program also requires a system privileges
to do its task, it can be as a setwid program.
Implementation of this rule is done by
monitoring a call of the system call execve() in
the special privileged state of a process. That is
if a process is in a special privileged state and
tries to run another program by issuing the
execve(), we then flag the process.

Rule 2: A process in a special privileged state
is not allowed to create a setuid/setgid
program.

It is not common that general users need to
create a setuid program, we have to assume
that users do know what they are doing, if they
try to do this we detect that they’re intruder.

For implementation this rule, firstly we check
if the system call open() or system call chmod
() is called when a process is in a special
privileged state. The mode parameter of these
system calls are checked whether they are an
S _ISUID or an §_ISGID (the S_ISUID flag is
defined by 0400 while the S_ISGID flag is



0200). To test this rule, a simple program
which tries to create a setuid file is created,
then the intrusion detection programm is used
to detect this activity.

Rule 3: A process is not allowed to modify
system programs.

In special privileged state we not allowed the
process modify the system program. Generally,
all system commands, once installed, do not
require modifications by any normal process.
If it have to, general “root”, the real user 1D 0
will do. For implementation the detection first
we check if target opened file is one of the the
system files [4] then a flag value of the system
call open() are checked. Those flags are :

O_RDONLY Ox0000
O _WRONLY 0001
O_RDWR 0x0002
O _APPEND Ox0008

The following text box demonstrates part of
results and its test for this rule. We test its
detection capability by feeding the IDS with a
simple program which tries to create a file in
one of the system directories
(/usr/sre/sys/keny/..).

system call open() is called
path_value in ktrsyscall fusr/lib/libe.so. 12
arg{0] —--> Ox14 arg{l] ———> 0x8060000

/* following process try 1o open file in system
directory with flag write only so no
permission for this activity*/

system call open() is called

path_value in ktrsyscall
Jusr/src/sysikernwkern_exit.c

argf0] --—-> OxI arg [1]-----> (x8049b84

path value /usr/src/sys/kern/kern_exit.c
open with flag write only
No permission

Rule 4; For intrusion detection, we consider
any process creating new user accounts as
suspicious unless it has superuser credentials.

Again, only the superuser should be allowed to
create new accounts.

130

Before implementing this rule, we had studied
several system utilities and commands used to
manipulate user accounts, in order not to break
the normal system services, such as the ability
for a user to change their own password. It has
been observed that there is a difference
between normal password changing process
(by the legitimated user) and a process to
create a new user. The significant difference is
that the process of a user creation will not be
completed unless a new entry of the password
file is added. In addition, a user home
directory is also created. However, the process
of changing password does not require these
entries.

Thus, the implementation of this rule also
monitor on the occurrence of a new entry of
the password file if the open() system call is
used to open the system password file. Further
more, we have to monitor whether the related
process tries to create a home directory of that
newly entry.

Rule §5: Some system call functions are strictly
limited to superuser (root).

These system calls are mount(}), umount(),
nfssve(), quotacti(), reboot(), settimeofday(),
swapon().

Generally, novice users might want to try or
learn how several commands or system calls
work. For example, a user tries on a mount (1),
command or a reboot(l) command. However,
these commands are already protected by the
system itself that in order to perform some of
the system commands, only the super user
(root) can invoke the commands. Thus,
normal users can only try the commands (as
well as the related system calls) without any
significant effect. However, if a user illegally
obtained a system privileged then invoked
these commands or system calls, then the
whole system is said to be in a unsafe state,
thus we can flag the activity as a suspicious or
forbidden one.

4. Results

As mentioned in each the implementation
section, especially in each rule section, an
appropriate bad intention programs were
written to simulate varieties of activities
known to be suspicious or attacking ones.



These simulated programs were then tested on
the system running our intrusion detection
modules. All of the suspicious simulated
activities were detected by the IDS. However,
the detection system has not been tested with a
real intrusion programs yet, since it is not casy
to find the right intrusive program as a test
tool. An operating system, especially the
current NetBSD version, has been patched for
all known vulnerabilities, thus previous
attacking programs exploiting them do not
work any more.

However, since our method does not rely on
known attacking patterns, rather it is based on
the idea that attacking activities always aim for
root privilege and the information of the
underlying activity is obtainable while a
process is running, Since we created a module
to extract this information from a process as a
real time program, we are able to detect the
attacking instance just only after the
instruction is executed and the activity can be
stopped even before its next instruction is
proceeded. Once the detection system is truly
tested, it will be implemented as a daemon
process on a real environment,

5. Conclusions

We have described another intrusion detection
system implemented on a NetBSD version 1.6
N. It is based on a state transition analysis of
system call tracing activities and six
suppotting rules to protect an underlying
system and to detect intrusive activities. The
IDS has been tested using simulated intrusive
activities and provided a satisfactory result.
The intrusion system is currently being fine
tuning so that it can be installed as a Unix

131

daemon process for intrusion detection
purpose. It will also be ported to other Unix-
liked operating systems such as a FreeBSD
unix, or Linux systems in the near future.

References

[1] Nuansri, N., Singh, S., Dillon, T.S. “A
Process State-Transition Analysis and its
Application to Intrusion”, Department of
Computer Science and Computer Engineering,
and Applied Computing Research Institue
(ACRI), Latrobe University, Bundoora VIC
3083 Melbourne, Australia, 1999.

[2] Leffler, Samuel J., Mckvsich, Marshall
kirk, Karels, Michael J., Quarterman, John S,
“The Design and Implementation of The 4.3
BSD UNIX Operating System,”, Addsion-
Wesley 1988,

{3] Bach, Maurice J., “The Sesign of the UNIX
Operating System”, Prentice-Hall 1986.

[4] R. A. Kemmerer, “NSTAT: A Model-based
Real-time Network Intrusion Detection
System”, Technical Report TRCS97-18,
Department of Computer Science, University
of California, Santa Barbara (1997),
http://www.cs.uscsb.edw/.

[5] Nuansri, N. “Activity tracing Technique for
Fault and Security Intrusion Detection in
Computer Systems”, Thesis, Department of
Computer Science and Computer Engineering,
Faculty of Science, Technology and
Engineering, La Trobe University Bundoora,
Victoria 3083 Australia, May 1999.

[6] , Keith Haviland and Dina Gray, “Unix
System Programming, A programmer’s guide
to software development”, Second
editionAddison-Wesley 1998.

(7] 5.A. Hofmeryr,



