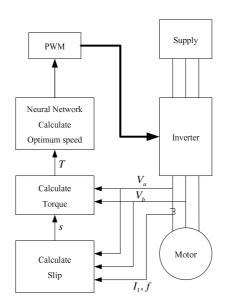

บทที่ 1

บทน้ำ

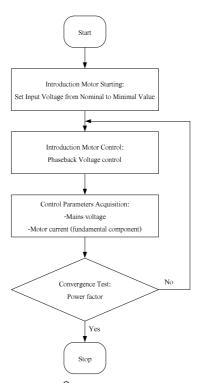
1.1 ความสำคัญและที่มาของการวิจัย


การใช้งานมอเตอร์เหนี่ยวนำเป็นต้นกำลังสำหรับเครื่องเลื่อยไม้ซึ่งเป็นเครื่องจักรหลักใน อุตสาหกรรมแปรรูปไม้และเฟอร์นิเจอร์มักจะเป็นการใช้งานที่ได้ประสิทธิภาพการทำงานต่ำ เนื่องจากการทำงานไม่เต็มพิกัดกำลังของมอเตอร์เหนี่ยวนำจากการออกแบบให้มอเตอร์ต้นกำลังมี พิกัดเผื่อไว้สำหรับโหลดภาระสูงสุด การทำงานในลักษณะนี้เป็นการทำงานที่ทำให้ประสิทธิภาพ เฉลี่ยตลอดช่วงการทำงานต่ำ ถ้าหากสามารถควบคุมให้มอเตอร์เหนี่ยวนำสำหรับเครื่องเลื่อยไม้ใช้ พลังงานไฟฟ้าเท่าที่จำเป็นในการทำงานจริงได้ ก็จะทำให้โรงงานมีประสิทธิภาพการทำงานสูงขึ้น และสามารถลดการใช้พลังงานไฟฟ้าลงได้

ที่ผ่านมาได้มีการเสนอแนวทางในการปรับลดกำลังไฟฟ้าสูญเสียของมอเตอร์จากการ ทำงานไม่เต็มพิกัดกำลังโดยวิธีการปรับลดแรงคันไฟฟ้าที่จ่ายให้กับขดลดเสเตเตอร์ของมอเตอร์ ซึ่งเรียกอุปกรณ์ชนิดนี้ว่า อุปกรณ์ควบคุมภาระการใช้งานของมอเตอร์ (Motor Load Control) โดย ค่าแรงคันไฟฟ้าที่จ่ายให้กับมอเตอร์จะแปรเปลี่ยนตามสภาวะโหลด ข้อเสียของการควบคุมแบบนี้ คือมีผลให้เกิดการสูญเสียแรงบิด ค่ากระแสไฟฟ้าต่อหนึ่งหน่วยแรงบิดมีค่าสูงเมื่อปรับลดแรงคัน ลงเพราะฟลักซ์แม่เหล็กลดลง จึงมีผลให้การสูญเสียในขดลวดเพิ่มขึ้น ทำให้มอเตอร์มีอุณหภูมิ สูงขึ้นด้วย

ภาพประกอบ 1-1 การทำงานของ Motor Load Control

งานวิจัยนี้จะใช้วิธีการของโครงข่ายประสาทเทียม (Artificial Neural Network) มาจำแนก สภาวะโหลดภาระและควบคุมการทำงานของเครื่องเลื่อยไม้ เพื่อปรับลดความเร็วของเครื่องเลื่อย ไม้ตามสภาวะของโหลดภาระ โดยจะนำหลักการของอินเวอร์เตอร์มาใช้ออกแบบระบบควบคุมให้ มีผลตอบสนองเร็วทันตามการเปลี่ยนแปลงสภาวะโหลดของเครื่องเลื่อยไม้ เป็นการลดการใช้ พลังงานไฟฟ้าของมอเตอร์เครื่องเลื่อยไม้ ทำให้ประสิทธิภาพเฉลี่ยตลอดช่วงการทำงานมีค่าสูงขึ้น


ภาพประกอบ 1-2 ระบบควบคุมที่นำเสนอใช้ในงานวิจัยนี้

ระบบควบคุมทำหน้าที่รับรู้ปริมาณโหลดภาระและควบคุมให้อินเวอร์เตอร์ทำงานในจุด ทำงานที่เหมาะสมที่สุดที่ทำให้มอเตอร์ใช้พลังงานไฟฟ้าน้อยที่สุดในการเลื่อยไม้ โดยโครงข่าย ประสาทเทียม (Artificial Neural Network) จะใช้สัญญาณแรงดัน กระแส และความถี่ ในการ ประมาณโหลดและควบคุมการทำงานของอินเวอร์เตอร์

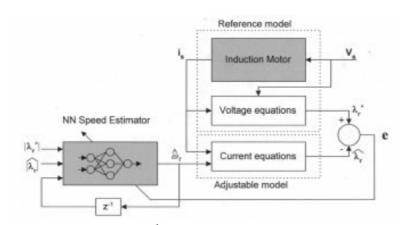
1.2 การตรวจเอกสาร

1.2.1 Energy Optimized Control Strategy for a Variable Input Voltage Three-phase Induction Motor. ของ MEH Benbouzid และคณะ ได้นำเสนองานวิจัยเพื่อปรับปรุงประสิทธิภาพ การทำงานของมอเตอร์เหนี่ยวนำ โดยการปรับแรงคันอินพุทเพื่อให้ได้ค่าตัวประกอบกำลัง (Power factor, P.F.) ที่ดีที่สุด ซึ่งจะทำให้มอเตอร์เหนี่ยวนำมีประสิทธิภาพในการทำงานสูงสุด เนื่องจาก ค่าตัวประกอบกำลังจะมีค่าต่ำเมื่อมอเตอร์มีโหลดน้อยๆและสามารถปรับให้มีค่าสูงขึ้นโดยการปรับ ลดแรงคันที่ป้อนให้กับมอเตอร์เหนี่ยวนำ จึงทำให้เกิดการประหยัดพลังงานไฟฟ้าในกรณีที่โหลด ของมอเตอร์เหนี่ยวนำมีค่าน้อยๆ การควบคุมทั้งหมดทำได้โดยการใช้ไมโครโปรเซสเซอร์ 8754

ของอินเทล ปัญหาที่พบจากการใช้ระบบนี้คือ การตรวจรู้ค่าตัวประกอบกำลังอาจจะผิดพลาดหาก มอเตอร์เหนี่ยวนำมีฮาร์ โมนิกของกระแสมาก

ภาพประกอบ 1-3 แผนภูมิสายงานของ MEH Benbouzid และคณะ

(ที่มา: M.E.H. Benbouzid and R. Beguenane M. Dessoude W. Hubbi, Energy <u>Optimized</u>


<u>Control Strategy for a Variable Input Voltage Three-phase Induction Motor,</u>

IEEE, 1997.)

- 1.2.2 A Simple Speed Sensorless Control for Variable Frequency Induction Motor Drives. ของ B.I. Jeftenic และคณะ นำเสนอการควบคุมความเร็วของระบบขับกระแสสลับโดย การใช้ PWM อินเวอร์เตอร์ที่ไม่มีเซนเซอร์ความเร็วมาเกี่ยวข้อง การควบคุมความเร็วจะเป็นฟังก์ชัน ของแรงบิดภาระ สามารถประเมินแรงบิดภาระจากกระแสในภาคกระแสตรง (DC link) ของ อินเวอร์เตอร์ แต่เนื่องจากมีความไม่ต่อเนื่องของระบบจึงแก้ปัญหาโดยการการใช้ตาราง ความสัมพันธ์ ที่จะได้ความถึ่ของสเตเตอร์เป็นฟังก์ชันของความเร็วตั้งต้นและภาระโหลด
- 1.2.3 Speed Sensorless Torque Control of Induction Motor for EV's. ของ Karel Jezernik นำเสนองานวิจัยที่กล่าวถึงวิธีการควบคุมความเร็วของมอเตอร์เหนี่ยวนำ ที่ให้ผลที่ดีทั้ง ผลตอบสนองต่อแรงบิดและประสิทธิภาพสูง วิธีการสังเกต rotor flux ของมอเตอร์เหนี่ยวนำที่

ความเร็วต่ำๆจะใช้วิธีการของ Speed Sensorless การหาค่า Stator flux และ Rotor flux จะใช้วิธีการ ของ Lyapunov theory ซึ่งระบบควบคุมจะใช้วิธีการปรับลดสนามแม่เหล็กที่จะส่งผลต่อค่ากระแส และแรงคันในอินเวอร์เตอร์ วิธีการนี้สามารถทำให้เกิดอัตราเร่งในการลดความเร็วของมอเตอร์

- 1.2.4 Speed Sensorless AC Drive Fed by a 3-Level Inverter with Improved Low-Speed Torque and Speed Control. ของ J. (Jay) Zhang นำเสนอการควบคุมความเร็วแบบไร้ เซนเซอร์ของระบบขับเคลื่อนมอเตอร์เหนี่ยวนำ ได้ข้อสรุปว่าความแม่นยำในการประมาณค่า Motor flux และความเร็วจะน้อยลงที่ค่าความเร็วต่ำๆซึ่งเกิดจากค่าความต้านทานของสเตเตอร์ที่ เปลี่ยนแปลง ทำให้การประมาณค่าของ Field orientation angle ผิดพลาดเกิดความคลาดเคลื่อน สะสม ที่ความถี่ต่ำๆค่าความผิดพลาดทำให้เกิดการเปลี่ยนแปลงของ Reference frames และการ กำเนิดแรงบิดของมอเตอร์ ทำให้เกิดการผิดพลาดขึ้นในวงปิดของการควบคุม ระบบควบคุมที่ได้ พัฒนาขึ้นจะปรับปรุงการควบคุมกระแสของมอเตอร์ แรงบิด และความเร็วที่ความถี่ต่ำ โดยให้ ความสำคัญกับแหล่งกำเนิดความผิดพลาดและความผิดพลาดในวงปิด ในการควบคุมจะใช้ DSP ในการขับเคลื่อน 3 Level IGBT PWM Inverter ผลการทดลองเบื้องต้นสามารถควบคุมได้ ครอบคลุมถึงระดับ 0.5 Hz
- 1.2.5 Sensorless Vector Control of Induction Motor Using Artificial Neural Network. ของ Hung-Ching และคณะ นำเสนอการขับเคลื่อนมอเตอร์เหนี่ยวนำด้วยวิธี Sensorless vector control โดยการสังเกต Flux ที่เปลี่ยนแปลงใน Rotor-speed reference flame ซึ่งจะใช้ Neural network มาประยุกต์ในการประมาณ Rotor flux เพื่อการประมาณค่าความเร็ว โครงสร้างของ neural network จะเป็นแบบไปข้างหน้า และใช้การเรียนรู้แบบแพร่กลับเพื่อปรับค่าน้ำหนักของ Neural network การเรียนรู้ได้จากผลการ Simulation และการทดลองของระบบ Vector control การ ประมาณค่า Rotor flux ที่ได้จะนำมาประมาณค่าความเร็วที่จะป้อนกลับในระบบ Vector control
- 1.2.6 Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation. ของ Seong-Hwan และคณะ นำเสนอการประมาณค่าความเร็วของ มอเตอร์เหนี่ยวนำโดยการใช้ Neural network การเรียนรู้จะเป็นแบบ Online โดยวิธีการแพร่กลับ ของค่าความผิดพลาด การเรียนรู้เริ่มต้นพร้อมกับการทำงานของมอเตอร์เหนี่ยวนำ ผลของการ ประมาณค่าความเร็วจะถูกนำไปใช้ในระบบควบคุมความเร็วแบบ Speed-sensorless vector drive การประมาณค่าความเร็วด้วย Neural network มีคุณสมบัติที่ดีทั้งในสภาวะชั่วขณะและสถานะอยู่ ตัว หรือในขณะที่โหลดมีการเปลี่ยนแปลง

ภาพประกอบ 1-4 การประมาณค่าความเร็วด้วยโครงข่ายประสาทเทียมของ Seong-Hwan และคณะ (ที่มา: Seong-Hwan, Tae-Sik Park, Gwi-Tae Park, Speed-Sensorless Vector Control of an Induction Motor Using Neural Network Speed Estimation. IEEE Transactions on Industrial Electronics, Vol.48, No.3, June, 2001)

1.2.7 Direct Self Control of Induction Motor Based on Neural Network. 203 K.L.

Shi และ T.F. Chan นำเสนอวิธีการของ Neural Network ในการควบคุมมอเตอร์เหนี่ยวนำ 3 เฟส เพื่อแก้ปัญหาการคำนวณที่ซับซ้อน การ simulation สามารถใช้ neural Network Toolbox ใน โปรแกรม Matlab/Simulink ในบทความได้นำค่าของแรงคันและกระแสฟ้าในมอเตอร์มาเป็น อินพุตให้กับโครงข่ายประสาทเพื่อที่จะสร้างสัญญาณไปควบคุมการสวิตช์ของอินเวอร์เตอร์ ซึ่ง จากผลการทดลองพบว่าการใช้โครงข่ายประสาทในการควบคุมสามารถลดเวลาที่ใช้ในการคำนวณ ค่าต่างๆ ทำให้ได้ผลตอสนองที่ดี และมีความผิดพลาดน้อยด้วย

1.3 วัตถุประสงค์

- 1.3.1 เพื่อออกแบบโครงข่ายประสาทให้สามารถจำแนกสภาวะของโหลดภาระของเครื่อง เลื่อยไม้
- 1.3.2 เพื่อออกแบบและพัฒนาระบบควบคุมความเร็วมอเตอร์เหนี่ยวนำตามสภาวะโหลด ให้สามารถตอบสนองต่อภาระโหลดที่มีการเปลี่ยนแปลงอย่างรวดเร็ว
- 1.3.3 เพื่อออกแบบระบบขับเคลื่อนของมอเตอร์เหนี่ยวนำให้สามารถลดการสูญเสียและลด การใช้พลังงานไฟฟ้าในมอเตอร์เหนี่ยวนำ

1.4 ขอบเขตงานวิจัย

- 1.4.1 ศึกษาพฤติกรรมการใช้พลังงานไฟฟ้าของเครื่องเลื่อยไม้ เพื่อนำมาวินิจฉัย คุณลักษณะของโหลดเครื่องเลื่อยไม้ที่มีมอเตอร์เป็นต้นกำลัง
 - 1.4.2 ออกแบบและพัฒนาโครงข่ายประสาทเพื่อจำแนกสภาวะโหลดของเครื่องเลื่อยไม้
- 1.4.3 สร้างแบบจำลองทางคณิตศาสตร์ของระบบควบกุมแรงบิดของมอเตอร์เหนี่ยวนำให้ ได้ผลการตอบสนองเร็วสอดคล้องกับโหลดเครื่องเลื่อยไม้
- 1.4.4 ออกแบบและพัฒนาระบบควบคุมความเร็วของมอเตอร์เหนี่ยวนำให้มีความเร็วตาม สภาวะ โหลดและ ได้ผลตอบสนองต่อความเร็วที่สอดคล้องกับพฤติกรรมของ โหลด เพื่อให้เกิดการ ประหยัดพลังงานในเครื่องเลื่อยไม้

1.5 วิธีการดำเนินการวิจัย

- 1.5.1 ศึกษา ค้นคว้าและเก็บข้อมูลเกี่ยวกับการใช้พลังงานไฟฟ้าของเครื่องเลื่อยไม้ รวมไป ถึงพฤติกรรมที่เกิดขึ้นกับเครื่องเลื่อยไม้
- 1.5.2 ศึกษาและเก็บข้อมูลการทำงานของอินเวอร์เตอร์ในรูปแบบต่างๆเพื่อศึกษาแนวทาง ในการพัฒนามาใช้กับเครื่องเลื่อยไม้
 - 1.5.3 ศึกษาโครงสร้างของระบบควบคุมความเร็วที่เหมาะสมเพื่อนำมาใช้กับเครื่องเลื่อยไม้
- 1.5.4 ออกแบบระบบควบกุมความเร็วรอบของมอเตอร์เหนี่ยวนำเพื่อใช้สำหรับเครื่องเลื่อย ไม้
- 1.5.5 สร้างแบบจำลองระบบควบคุมจากข้อ 1.5.4 และทำการทดลองให้สามารถทำงานได้ ตามพฤติกรรมที่ได้ศึกษาจากข้อ 1.5.1
- 1.5.6 สร้างระบบควบคุมความเร็วรอบของมอเตอร์เหนี่ยวนำเพื่อใช้สำหรับเครื่องเลื่อยไม้ ยางพารา และปรับปรุงแก้ไขข้อบกพร่องของระบบ
 - 1.5.7 สรุปผลการวิจัย ข้อเสนอแนะและจัดทำรูปเล่มวิทยานิพนธ์

1.6 ประโยชน์ที่คาดว่าจะได้รับ

- 1.6.1 สามารถเรียนรู้และเข้าใจถึงการใช้พลังงานไฟฟ้าของอุปกรณ์ที่มีภาระโหลด เปลี่ยนแปลงอย่างรวดเร็ว
- 1.6.2 สามารถเรียนรู้และเข้าใจวงจรขับเคลื่อนมอเตอร์เหนี่ยวนำที่จะพัฒนามาใช้กับ อุปกรณ์ที่มีภาระโหลดเปลี่ยนแปลงอย่างรวดเร็ว

- 1.6.3 สามารถเรียนรู้และเข้าใจการทำงานและการควบคุมการทำงานของวงจร อินเวอร์เตอร์
- 1.6.4 สามารถเรียนรู้และเข้าใจการจำแนกสภาวะโหลดภาระด้วยวิธีการของ Neural Network
- 1.6.5 สามารถออกแบบระบบควบคุมความเร็วตามสภาวะ โหลดของมอเตอร์เหนี่ยวนำเพื่อ ลดการใช้พลังงานไฟฟ้าของเครื่องเลื่อยไม้
 - 1.6.6 สามารถนำมาใช้งานได้จริงในอุตสาหกรรมแปรรูปไม้และเฟอร์นิเจอร์