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Abstract

The exploration of geophysics with seismic refraction
technique is the method for determining underlying
geological structure by velocity contrast of different rock
type. The geological structure under the earth surface
such as depth and dip angle is shown. The interpretation
techniques such as intercept time methods were used for
interpret seismic refraction data. The accuracy of this
technique depends on skill and experience of interpreter.
The Genetic Algorithm was applied for determining
seismic refraction data. This paper addresses a possibility
of a simple method of using Genetic Algorithms (GA) by
using different of objective functions i.e. RMS Error and
Percent Error. The studied subsurface structures are 2-
layer and 3-layer earth models with horizontal and
dipping planar interfaces. The results showed that there is
statistically no difference between both objective
functions.

Keywords: Genetic Algorithms, Seismic Refraction,
Velocity Inversion, Travel Time Inversion.

1. Introduction

Seismic refraction technique is a method for
determining underlying geological rock structure, such as
thickness of layer, faults and anomalous velocity zone
under the earth. The analyzed seismic data sets are
composed of the travel times of the first arriving seismic
waves from source, which can be explosive or manmade
source, to an array of receivers i.e. geophones, on the
surface. The waves from seismic source propagate pass
the layer of earth to receivers (geophone). From travel
time data, we can determent earth parameters such as
velocity thickness and dip of geological structure.
Presently, there are many interpretation methods to
determine geological structure from travel time data
(Palmer, 2001), e.g. intercept time method, wavefront
reconstructure  method, matrix inversion, and
homographic inversion. These problems are usually

highly-dimensional, = multi-modal and non-linear.
However, these methods require experienced geologists
or geophysicists.

Genetic Algorithms (GA) were designed to work
on non-linear, multi-modal and sometimes poorly
understood problems. (Holland, 1975). It is based on
natural selection and evolution. The GA is started by
random initial population and keeping good individuals
to the next generation. After that, other individuals will
be operated by three operators, i.e. selection, crossover
and mutation. In each generation, every individual in the
population is assigned a fitness value according to its
performance. Fitted individuals have more chances to
produce offspring in subsequent generations. Genetic
algorithm is normally to solve traveling-salesman
problem, faults matching and etc.

In this paper, we will apply genetic algorithm to
interpret seismic data of simple model, 2-layer earth
models and 3-layer earth models with horizontal and
dipping planar interface. Travel time of seismic wave was
considered as a search problem. From the observed data,
we can generate model consisting of velocity, depth and
dip angle. Afterward a model form the observed data is
found by comparing travel time between observed model
and generated model. The results from the comparison
are so-called errors and will be determined by an
objective function. The performances between two
objective functions will be statistically tested. The
difference in both functions is the method to calculate the
erTors.

2. Methodology

2.1 Seismic refraction design

In this paper, we would like to determine
geological structure from seismic refraction data with
Genetic Algorithms. The confinement in this paper is
interpreting 2-3-layer planar dipping interfaces by using
different of objective functions. The unknown parameters
in our problem are velocities depths and dip angle of



layers. In 2-layer case, 4 parameters (V,,V,,/,,@,) will
be used to explain geological structure and in 3-layer
case, 7 parameters (V,,V,, Vs, h, h,, @, #,) will be used

to explain. Five models from synthetic data were
synthesized as shown in Figure 1. The models have
different parameters. The travel time data of each model
was calculated from 3-shot location to an array of 24
receivers.

(b)

(d)
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Figure 1: Five models from synthesis data. (a) and (b) 2-
layer model without and with dipping, respectively (c)
and (d) 3-layer model without dipping and with parallel
dipping, respectively.

(e)
Figure 1 (cont): Five models from synthesis data. (e) 3-
layer model with non-parallel dipping.

2.2 Genetic Algorithm design

We used Genetic Algorithms to reconstruct the
models and determine the travel-time data of seismic
wave from a source to each geophone. Initially, the layers
of rock are divided randomly into two or three layers. A
population consisting of velocities of rock (100 to
8000m/s), depths layers (0 to 20m) and dip angle (-15 to
15degree) was randomly generated by Genetic
Algorithms. Each parameter is encoded in one
dimensional array of binary string called chromosome.
For velocity data 13-bit binary string was used, this can
handle velocity range from 100 to 8000 m/sec, two 5-bit
binary strings were used for depth and dip angle
parameters which represent depth from 0 to 20 meters
and dip angle from -15 to +15 degree. The total number
of possible models is more than two billions. On each
model, travel-time data was estimated and compared with
the actual travel time data of the model. This process was
use to find the error. The error between the calculated
travel times and the observed travel times is given by 2
functions. Figure 2 shows the diagram of calculated error
section using error differences function.

RMSError = /l > -ty (1)
noiz

1 cal _ 4obs
PercentErr0r=—z l absl x100 (2)
noio i
where
n is the number of observations (receivers e.g.
geophones).

i is each observation.
£ and £ is the observed and calculated travel
times, respectively.

The objective function is a main source to
provide the mechanism for evaluating the status of each



chromosome. This is an important link between the
Genetic Algorithm and the problem. We will test these
objective functions for comparing the result. If the
estimated travel-time data approach the travel-time data
of model, it will be kept for the next generation, i.e. this
individual has the highest fitness value. Individuals that
are not selected will be passed to the crossover and
mutation processes for the next generation.

t-x data from Input
V3
t-z data from G4

E24S Error

% Error v

L A

1.t zimi_z;x)s 1.2 " 52
E=-3 %100 Brror = =5 (% -4
no| & e

A4 l

r
Error

Figure 2: Diagram of calculated error section using
error differences function.

3. Results

We divided the test of the different error
functions into two parts. The first part is for testing the
two-layer structure models and another one is for testing
the three-layer structure models. In each case, we
converted the RMS Error into Percent Error and vice
versa in order to compare the result in the same mode. A
statistical method, i.e. t-test, was used to compare the
results from two graphs. In the case of testing two-layer
structure models, 10,000 generations was run for each
objective function. To determine a better function, results
using fewer generations is better. The results were shown
in Figure 3 and 4.

4000 - Generation Found

3500 4
3000 1
2500 1 w -
2000 4
1500
1000 1

500 4

3
#Run

Figure 3: Generation found versus Run Number of
Model 1
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3000 -

2000

1000

Figure 4: Generation found versus Run Number of
Model 2

From Figure 3 and 4, using statistical method,
we determine « = 0.05 and df = 4for testing the
difference of two graphs. The t-test has critical points at
+2.776 and its values in Figure 3 and 4 are 0.312 and
0.137, respectively. These values were located in the
critical point range. This indicates that the results from
the objective functions are not significantly different.

In the three layer structure models, we cannot
find the optimum results within 10,000 generations.
Therefore, we stopped running the model at 10,000
generations and used the errors of each objective function
for comparing the results. The better objective function is
determined by the magnitude of errors within 10,000
generations. The result was shown in Figure 5-7

351 Ermror

3

25 .

1.5 1 Error

#Run

Figure 6: Error versus Run Number of Model 4



From Figure5 and 6, we have two pairs of
graphs for comparing the differences of objective
functions. One graph was converted from the RMS Error
into Percent Error and vice versa in another graph. Using
statistical method, we determined « = 0.05 and df'= 6 for
testing the differences of two graphs. The t-test has
critical points at £2.447. The t-test values of Figure 5 are
0.024 and 2.244, respectively and for Figure 6, they are
0.709 and 1.492, respectively. These values were located
in the critical point range. This, agrees with the previous
results in Figure 3 and 4, means that the results from the
objective functions are not significantly different.
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Figure 7: Error versus Run Number of Model 5

From Figure 7, we have two pairs of graphs for
comparing the differences of objective functions. Errors
from different graphs were converted into the same unit,
i.e. converted into RMS Errors and Percent Errors
depending on the base results. We determined o = 0.05
and df'= 6 for testing the differences in two graphs. The t-
test has critical points at +2.306. Its values in Figure 7 are
0.675 and 1.168, respectively. Again, the data showed
that there is not significantly different in using two
different objective functions.

For the last test, the comparison between two
objective functions in Genetic Algorithm calculation is
discussed. Both results from different objective functions
look in the same fashion and are shown in Figure 8. The
final results are indistinguishable.

8 -
Error
Tr' -
6 -
5 T r o
— Percent Error
4 — RMS Error
3 =
24\
1 -
1] T T T T T
0 20000 40000 60000 80000 100000

Generations

Figure 8: Error versus generations for each objective
function. (200 pop, Pc=0.2, Pm=0.01)
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4. Conclusions

The results indicated that with both objective
functions, Genetic Algorithms can be used for
interpretation of seismic refraction data. The statistical
results showed that there is insignificantly different in
using these two different objective functions, i.e. RMS
Error and Percent Error.
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Abstract

Seismic refraction technique is one of conventional geophysical method in
determining underlying geological structure by making used velocity contrast
between rock types. The geological structure such as depth and dip of earth layers will
be determined. This paper will address a possibility of using Genetic Algorithm (GA)
for interpretation of seismic refraction data. The studied subsurface structures are 2-
layer and 3-layer earth models with horizontal and dipping planar interface. Given a
set of observed data, initial population consisting of 200 earth model will be randomly
generated by GA. Corresponding arrival time data will be calculated and compared
with observed data. Two best fitted structures will be kept and the remaining will be
fed into genetic operator to produce new offspring. The procedure will be repeated
until the convergence criterion is met.

The present result showed that it is possibility to apply GA for interpretation
of seismic refraction data.

Keywords: Genetic Algorithms, Seismic Refraction, Velocity Inversion, Travel Time
Inversion.
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1. Introduction

Seismic refraction technique is a method for determining underlying
geological rock structure, such as thickness of layer, faults and anomalous velocity
zone under the earth. The analyzed seismic data sets are composed of the travel times
of the first arriving seismic waves from source, which can be explosive or manmade
source, to an array of receivers i.e. geophones, on the surface. The waves from
seismic source propagate pass the layer of earth to receivers (geophone). From travel
time data, we can determent earth parameters such as velocity thickness and dip of
geological structure. Presently, there are many interpretation methods to determine
geological structure from travel time data (Palmer, 2001), e.g. intercept time method,
wavefront reconstructure method, matrix inversion, and homographic inversion.
These problems are usually highly-dimensional, multi-modal and non-linear.
However, these methods require experienced geologists or geophysicists.

Genetic Algorithms (GA) were designed to work on non-linear, multi-modal
and sometimes poorly understood problems. (Holland, 1975). It is based on natural
selection and evolution. The GA is started by random initial population and keeping
good individuals to the next generation. After that, other individuals will be operated
by three operators, i.e. selection, crossover and mutation. In each generation, every
individual in the population is assigned a fitness value according to its performance.
Fitted individuals have more chances to produce offspring in subsequent generations.
Genetic algorithm, is normally to solve traveling-sellman problem, faults matching
and etc.

In this paper, we will apply genetic algorithm to interpret seismic data of
simple model, 2-layer earths model and 3-layer earth models with horizontal and
dipping planar interface. Travel time of seismic wave was considered as a search
problem. From the observed data, we can generate model consisting of velocity,
depth and dip angle. Afterward a model form the observed data is found by
comparing travel time between observed model and generated model.

2. Seismic Refraction Data

In seismic refraction survey geological structure can be approximated as layers
of constant velocity separated by planar dipping interfaces. The travel time of seismic
wave from a source to a geophone is given below (Stephen, 1976).
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Figure 1: Model for calculating layers of rock

- Direct wave

Direct wave is the waves which propagate in layer 1 to geophones. The travel
time data of direct wave can determine from equation 1. The direction of direct wave
was shown in Figure 1.

X
(k) == (1)

1
- Refracted wave
Refracted wave is the wave which incident at interface with critical angle and
propagate a long interface with velocity of the underlying layer. The travel time data
from refracted wave can determine from equation 2 and 3. The direction of direct
wave was shown in Figure 1.

: k-l
t,(k) =M+Zi(cosa[ +cos f3,) (2)
4 - Vi
: k-l
£ =230 S veos ) 3)
1 i=1 Vz
a =a+¢ 4)
B.=b-9¢ (5)

where
k designates the interface along which wave is refracted
H, is the vertical thickness of the i th layer below the source

V. is the velocity of the i th layer
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a, and S, is the angle with respect to the vertical made by the downgoing and
upgoing ray in the Ith layer, respectively.

¢ is the dip angle of each layer

and b, are the angle of downgoing and upgoing ray in the i th layer,

respectively with respect to the normal line.
x is distance

3. Genetic Algorithms

The Genetic Algorithm is a searching process based on the laws of natural
selection and genetics (Coley, 1999). The mechanisms of a genetic algorithm have
their roots in theory of evolution. Genetic Algorithm is typically black-box methods
that use fitness information. They do not require gradient information or other internal
knowledge of the problem. Genetic Algorithm is population-based search techniques
that maintain populations of potential solution during searches.

To apply a genetic algorithm to a given problem, solutions of this problem
must be encoded to chromosomes. The population is composed of a group of
chromosomes from which candidates can be selected for the solution of the problem.
Each chromosome is comprise of a number of subcomponents called genes. In order
to evaluate each potential solution, Genetic Algorithm needs an objective function
that assigns a fitness value to a particular solution. A particular group of
chromosomes is selected from the population to generate offspring by defined genetic
operations. The fitness of the offspring is evaluated in a similar fashion to their
parents. The chromosomes in the current population are then replaced by their
offspring.

A simple Genetic Algorithm usually consists of three operations: selection or
reproduction, genetic operation and replacement (Coley, 1999).

3.1 Selection

A Genetic Algorithms works by promoting the propagation of fit individuals
from one generation to the next generation. An individual with high fitness will take a
large proportion of the desired new population while an individual with low fitness
will be given a small proportion of the same new population. Two techniques for
selection are Roulette Wheel Sampling Selection and Stochastic Universal Sampling
Selection (Hartmut, 2004). In this paper, we used Stochastic Universal Sampling
Selection in Genetic Algorithms for calculation.

3.2 Crossover

The crossover operator randomly chooses a point in the chromosome, then
flips a coin to do crossover. There are many techniques of crossover such as 1D n-
point crossover and 2D n-point crossover (Li et al., 1995), uniform crossover and real
value crossover. However in this paper, 1D n-point crossover for will be used Genetic
Algorithms.

3.3 Mutation
The mutation operator makes random changes on individuals of a new
generation. It allows the new generation to jump outside a local minimum. Two
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common types of mutation are binary mutation and decimal mutation. In this paper,
binary mutation will be used for calculation in Genetic Algorithms.

A Genetic Algorithm cycle is repeated for a fixed number of generations or
until no more improvement is observed. The best chromosome is generated during the
search is the final result of the Genetic Algorithm.

4. Methodology

4.1 Genetic Algorithm design

In this paper, we would like to determine geological structure from seismic
refraction data with Genetic Algorithm. The confinement in this paper is interpreting
2-3 layer planar dipping interface. The unknown parameters in our problem are
velocities depths and dip angle of layers. In 2-layer case, 4 parameters (v,,v,,4,,4,)

will be used to explain geological structure and in 3-layer case, 7 parameter
(v, vy, vy, 0y, by, @, ¢,) will be used to explain.

Each parameter is encoded in one dimensional array of binary string called
chromosome. For velocity data 13 bit binary string was used, this can handle velocity
range from 100 to 8000 m/sec, two 5 bit binary strings were used for depth and dip
angle parameters which represent depth from 0 to 20 meters and dip angle from -15 to
+15 degrees.

An optimal velocity, depth and dip angle model to fit synthetic seismic data
sets are to be found. The error (in Genetic Algorithm call objective function) between
the calculated travel times and the observed travel times is given by the function:

E’/ror — \/lZ(thdl _tiObS )2 (6)
1

where
n is the number of observations (receivers e.g. geophone).
i 1s each observation.

t*”and ¢t is the observed and calculated travel times, respectively.
The objective function is a main source to provide the mechanism for
evaluating the status of each chromosome. This is an important link between the
Genetic Algorithm and the problem. The diagram of Genetic Algorithm process was
shown in Figure 2-8.

Input Process Unit Output
t-x data > Genetic »| Expected ground
Algorithm layer model

Figure.2 Processing data input by Genetic Algorithm
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4.2 Genetic Algorithm tested

We tested Genetic Algorithms by two synthetic model data sets shown in
Figure 2. The travel time data of each structure model was calculated from 3 shot
location to an array of 12 or 24 receivers. Finally, Genetic Algorithms was tested with
one real field data and the result was compared with the Seismic Interpretation
Program (SIP). We used Genetic Algorithms to reconstruct the structure models and
determined the travel-time data of seismic wave from a source to each geophone.
Initially, the layers of rock are divided randomly into two or three layers. A
population consisting of velocities of rock (100-8000 m/s), depths layers (0-20 m) and
dip angle (-15 -15 degree) was randomly generated by Genetic Algorithms. The total
number of possible models is more than two billions. On each model, travel-time data
was estimated and compared with the actual travel time data of the model. If the
estimated travel-time data approach the travel-time data of model, it will be kept for
the next generation, i.e. this individual has the highest fitness value. Individuals that
are not selected will be passed to the crossover and mutation processes for the next
generation.

S. Results

5.1 Synthesis data model

For test Genetic Algorithm, two synthesis data models, of 3-layer dipping
interface were generated. For the First model, the parameter were v,=810, v,=1840,
v3=4500, h;=8, h,=13, ¢= 1 and ¢, =4 (Figure9 a). In the second model, its

parameter were v = 610, vo= 1904, v3=5500, h;=6, h,=17, ¢= -3 and ¢, = -5
(Figure9 b).

Different probabilities of crossover and mutation and different population
sizes were tested on this synthetic data set. The best model is found when using
crossover probability (Pc), mutation probability (Pm) and a population size were 0.8,
0.01 and 200 respectively. With these conditions the first and the second models of
100% fit were obtained at 81,394 and 103,147 generation Figure 10.

(@) (b)

Figure 9: The two synthetic models :
(a) Model 1 (v; =810, v,=1840, v3=4500, h;=8, h,=13, =1, ¢, =-4)

(b) Model 2 (v; =610, v,=1904, v3=5500, h;=6, h,=17, ¢ =-3, 4, = -5)
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Figure 10: Error versus generations for 200 population of each model
(Pc=0.2,Pm=0.01)

5.2 Real data model

The field data was obtained from a field work in Prince of Songkla University,
with 12 receivers and 3 shot points, as shown in Figure 11(a). Seismic Interpretation
Program (SIP) was used for interpreting the field data and its resulted model was
shown in Figure 11(b). The error and best model obtained from the Genetic
Algorithms are shown in Figures 12 and 13, respectively. From the SIP model the
velocities of layer 1 and layer 2 at 499 and 1645 m/s, respectively. The depth to the
interface at shot point A and C are 4.0 and 4.5 m, respectively. The model estimated
from Genetic Algorithms method gave velocities of layer 1 and layer 2 of 473 and
1733 m/s, respectively and depth below shot point A and C of 4.0 and 4.6 m,
respectively.

From this result, the Genetic Algorithm can use for interpretation the seismic
data such as SIP. But SIP can determine the depth below each geophone.
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Figure 12: Error versus generations for 200 population of real model
(Pc=0.2, Pm=0.01)
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Figure 13: (a) Show travel time data form GA calculating
(b) Interpreted Model from GA program calculating.

6. Conclusions

The results indicate that Genetic Algorithms can be used for interpretation of
seismic refraction data. Although the model used for testing Genetic Algorithm in this
paper is a basic model comparing with SIP model but we can modify Genetic
Algorithm to handle irregular interface such as an idea of wave front reconstructure
instead of travel time equation which is used in this paper.
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