ชื่อวิทยานิพนธ์

ปรากฏการณ์มอเตอร์ของเซรามิกเลคเซอร์โคเนทไทเทเนท

ผู้เขียน

นายเจษฎา ค้าของ

สาขาวิชา

ฟิสิกส์

ปีการศึกษา

2545

บทคัดย่อ

ในงานวิจัยนี้เตรียม เซรามิกเลดเซอร์โคเนทไทเทเนท (พีแซดที) โคยใช้คือผง เลดออกไซด์ เซอร์โคเนียมไดออกไซด์ และไทเทเนียมไดออกไซด์ เป็นสารตั้งต้นในการทำปฏิกิริยาตรง เริ่มจาก ผสมสารตั้งต้นตามอัตราส่วนที่ต้องการ นำมาบดจนเป็นเนื้อเดียวกัน และเผาแคลไซน์ที่อุณหภูมิ 750 องศาเซลเซียส เป็นเวลา 4 ชั่วโมง ขึ้นรูปด้วยแรงกดอัด 1 ตันต่อตารางเซนติเมตร แบ่งเซรามิก เป็น 3 กลุ่ม นำไปอบผนึกที่อุณหภูมิ 1200 1250 และ 1285 องศาเซลเซียส เป็นเวลา 1 ชั่วโมง

จากการวิเคราะห์ขนาดอนุภาคด้วยเลเซอร์พบว่าผงพี่แซดที่ที่ผ่านการเผาแคล ไซน์มีขนาด อนุภาคเฉลี่ย 13.2 ไมโครเมตร จากการตรวจสอบด้วยเทคนิคเลี้ยวเบนรังสีเอกซ์ พบว่าพี่แซดที ที่ ผ่านการอบผนึกแล้วมีสูตรโครงสร้างทางเคมีคือ Pb(Zr_{0.52}Ti_{0.48})O₃ มีโครงสร้างผลึกแบบเตตระ-โกนอล จากการทดสอบความหนาแน่นพบว่ามีค่าเพิ่มขึ้นตามอุณหภูมิอบผนึก และมีค่าสูงสุดเท่า กับ 6.8 กรัมต่อลูกบาศก์เซนติเมตร เมื่ออุณหภูมิอบผนึกเท่ากับ 1285 องศาเซลเซียส ในขณะที่ความ พรุนตัวมีค่าต่ำสุดเท่ากับ 1.55 เปอร์เซ็นต์อาศัยภาพถ่ายจากกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราดสำหรับหาขนาดเกรนของพี่แซดที่ที่อบผนึกที่ 1200 และ 1250 องศาเซลเซียส มีขนาดเฉลี่ยเท่า กันคือ 0.23 ไมโครเมตรและเท่ากับ 0.35 ไมโครเมตรเมื่ออบผนึกที่ 1285 องศาเซลเซียส

นำพีแซคที่ที่อบผนึกแล้ว มาผ่านกระบวนการ โพลิงด้วยสนามไฟฟ้ากระแสตรงขนาด 3 กิโลโวลต์ต่อมิลลิเมตร เป็นเวลา 15 นาที ตรวจสอบสมบัติทางไฟฟ้า พบว่ามี ค่าคงที่ไดอิเล็กทริก ที่ 1 กิโลเฮิร์ต อยู่ในช่วง 750-822 ศึกษาค่าคงที่ไดอิเล็กทริกเป็นฟังก์ชันกับอุณหภูมิสังเกตได้ว่าพีแซค ที่มีอุณหภูมิคูรีเฉลี่ย 381 องศาเซลเซียส และค่าคงที่ไดอิเล็กทริก มีค่าสม่ำเสมอในช่วงอุณหภูมิต่ำ กว่าอุณหภูมิคูรี โดยอาศัยปรากฏการณ์มอเตอร์ทดสอบวัสดุด้วยวิธีการเรโซแนนซ์พบว่าพีแซคที่ที่ อบผนึกที่ 1285 องศาเซลเซียส มีค่าคัปปลิงแฟกเตอร์ k_p และ k_{31} เท่ากับ 0.34 และ 0.2 ตามลำคับ จากค่าคัปปลิงแฟกเตอร์นำไป ค่าคงที่ไพอิโซอิเล็กทริกความเครียค d_{33} และ d_{31} ได้ค่าสูงสุด เท่า กับ 120 และ 60 พิโคเมตรต่อโวลต์ ตามลำดับ จากค่าคงที่ไดอิเล็กทริกและค่าคงที่ไพอิโซอิเล็กทริก ความเครียคพบว่าค่าคงที่ไพอิโซอิเล็กทริกความเค้นมีค่าค่อนข้างสูงและไม่ขึ้นกับอุณหภูมิของวัสดุ ในช่วงต่ำกว่าอุณหภูมิคูรี

เมื่อนำพีแซดทีมาประคิษฐ์เป็นชิ้นงานคือเป็นตัวกำเนิดเสียง พบว่าเมื่อให้สัญญาณไฟฟ้าใน ช่วงความถี่ 1-12 กิโลเฮิร์ต ชิ้นงานเกิดการยืดหดเกิดเสียงที่หูมนุษย์สามารถได้ยินซึ่งเหมาะสำหรับ เป็นตัวกำเนิดเสียงในเครื่องส่งเสียงเตือน เป็นต้น Thesis Title

Motor Effect of Lead Zirconate Titanate Ceramic

Author

Mr. Jessada Khakong

Major Program

Physics

Academic Year

2002

Abstract

This work prepared the PZT ceramics using the direct reaction and the following powders of raw materials: lead oxide, zirconium dioxide and titanium dioxide. The procedure began from taking the powder with a desired composition and mixing the powder homogeneously before the calcination at 750 °C for 4 h. Pressing the mixed powders with a pressure of 1 ton per square centimeter and separating the them into 3 groups to sinter at temperatures: 1200 1250 and 1285 °C for an hour.

From the laser particle analysis, an average size of the calcined PZT powder was 13.2 micrometer. From X-ray diffraction pattern, the chemical formula of the sintered PZT was Pb($Zr_{0.52}Ti_{0.48}$)O₃, having tetragonal crystal structure. From the density measurement, this value increased with sintering temperature and reached its maximum value (at 1285 °C) of 6.8 g/cm^3 while the porosity was minimum (1.55%). From the scaning electron micrographs, the grain size was averaged to be 0.23 μm for 1200 and 1250 °C and 0.35 μm for 1285 °C PZT.

The sintered PZT samples were at a DC field of 3 kV/mm for 15 min. From the electrical characterization, the dielectric constant at 1 kHz was in 750-822 range. From the dielectric constant vs temperature measurement, it was observed to be uniform at temperature range below the Curie temperature of about 381 $^{\circ}C$. Using the motor effect via a resonance method, 1285 $^{\circ}C$ PZT possessed the coupling factor k_p and k_{31} of 0.34 and 0.2, respectively. From the calculation, the piezoelectric strain coefficient d_{33} and d_{31} were 120 and -60 pm/V, respectively. From the measured dielectric constant and calculated piezoelectric strain coefficient, the piezoelectric stress coefficient was obtained and found to be relatively high and uniform at temperature below the Curie temperature.

A workpiece made from the sintered PZT, i.e., buzzer was tested in an AC circuit and found that for a frequency range of 1-12 kHz, the buzzer vibrated and produced an audible sound which was suitble for applications in an alarm etc.