CONTENTS | | | Page | |-----------------|--|------| | CONTENTS | | xi | | LIST OF TABLES | | xii | | LIST OF ILLUSTR | ATIONS | XV | | LIST OF ABBREV | IATIONS AND SYMBOLS | xix | | CHAPTER 1 INTR | ODUCTION | 1 | | 1.1 Introduct | tion | 1 | | 1.2 Review of | of literatures | 2 | | 1.3 Objective | e | 11 | | CHAPTER 2 EXPE | RIMENTAL | 12 | | 2.1 Instrume | nts and chemicals | 12 | | 2.2 Plant ma | terial | 13 | | 2.3 Extraction | on and isolation | 13 | | 2.4 Isolation | and Chemical Investigation | 14 | | 2.4.1 | Investigation of the crude hexane extract | 14 | | | from the bark of <i>H. littoralis</i> | | | 2.4.2 | Investigation of the crude dichloromethane | 18 | | | extract from the bark of <i>H. littoralis</i> | | | 2.4.3 | Investigation of the crude acetone extract | 21 | | | from the bark of <i>H. littoralis</i> | | | 2.5 Anti-alle | rgic activity assay | 23 | | 2.5.1 | Inhibitory effects on the release of | 23 | | | β-hexosaminidase from RBL-2H3 cells | | | 2.5.2 | β-Hexosaminidase inhibitory activity | 24 | | 2.5.3 | Statistics | 24 | | CHAPTER 3 RESU | LTS AND DISCUSSION | 25 | | 3.1 Structure | e elucidation of compounds from the bark of <i>H. littoralis</i> | 25 | | 3.1.1 | Compound CD1 | 26 | | 3.1.2 | Compound CD2 | 29 | # **CONTENTS** (Continued) | | Page | |--|------| | 3.1.3 Compound CD3 | 32 | | 3.1.4 Compound CD4 | 35 | | 3.1.5 Compound CD5 | 38 | | 3.1.6 Compound CD6 | 41 | | 3.1.7 Compounds CD7 and CD8 | 45 | | 3.1.8 Compound CD9 | 46 | | 3.1.9 Compound CD10 | 49 | | 3.1.10 Compound CD11 | 52 | | 3.1.11 Compound CD12 | 55 | | 3.1.12 Compound CD13 | 59 | | 3.1.13 Compound CD14 | 62 | | 3.1.14 Compound CD15 | 64 | | 3.1.15 Compound CD16 | 66 | | 3.1.16 Compound CD17 | 69 | | 3.1.17 Compound CD18 | 71 | | 3.2 Biological activities of the pure compounds from H. littoralis | 74 | | REFERENCES | 77 | | APPENDIX | 82 | | VITAE | 130 | #### LIST OF TABLES | Гable | | Page | |-------|---|------| | 1 | Compounds from plant of Heritiera genus. | 3 | | 2 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD1 | 27 | | | (CDCl ₃) and friedelin (R , CDCl ₃) | | | 3 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD2 , | 30 | | | CD1 (CDCl ₃) and 3α -hydroxy friedelan-2-one (R , CDCl ₃) | | | 4 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD3 | 33 | | | (CDCl ₃ + CD ₃ OD), CD2 (CDCl ₃) and Cerin (CDCl ₃) | | | 5 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD4 , | 36 | | | CD1 (CDCl ₃) and friedelan-3-one-29-ol (R , CDCl ₃) | | | 6 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD5 | 39 | | | (CDCl ₃ +CD ₃ OD) and betulinic acid (\mathbf{R} , pyridine- d_5) | | | 7 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD6 | 43 | | | (CDCl ₃) and 3β -O-E-feruloyl oleanolic acid (R , CDCl ₃) | | | 8 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD9 | 47 | | | (CDCl ₃) and stigmast-4-en-3-one (R , CDCl ₃) | | | 9 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD10 , | 50 | | | CD9 (CDCl ₃) and 6β -hydroxystigmast-4-en-3-one (R , CDCl ₃) | | | 10 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD11 , | 53 | | | CD10 (CDCl ₃) and 6α -hydroxystigmast-4-en-3-one (R , CDCl ₃) | | | 11 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD12 | 57 | | | (CDCl ₃ +CD ₃ OD) and atroside (R , CDCl ₃) | | | 12 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD13 | 60 | | | (CDCl ₃) and ergosterol peroxide (R , CDCl ₃) | | | 13 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD14 | 63 | | | (CDCl ₃) and physcion (R , DMSO+CDCl ₃) | | | 14 | ¹ H, ¹³ C NMR and HMBC spectral data of compound CD15 | 65 | | | (CDCl ₃) and methyl β -orcinolcarboxylate (R , CDCl ₃) | | # LIST OF TABLES (Continued) | Table | Page | |---|------| | 15 ¹ H, ¹³ C NMR and HMBC spectral data of compound CD16 | 68 | | (CDCl ₃) and vallapin (R , CDCl ₃) | | | 16 ¹ H, ¹³ C NMR and HMBC spectral data of compound CD17 | 70 | | (CDCl ₃) and 5-propylresorcinol (R , CDCl ₃) | | | 17 ¹ H, ¹³ C NMR and HMBC spectral data of compound CD18 | 73 | | (acetone- d_6) and (-) epicatechin (R , CDCl ₃ +DMSO- d_6) | | | 18 Anti-allergic activity of the crude extracts from the bark of <i>H. littoralis</i> | 74 | | 19 Anti-allergic activity of compounds from the bark of <i>H. littoralis</i> | 75 | #### LIST OF ILLUSTATIONS | Figure | Page | |--|------| | 1 Parts of Heritiera littoralis. | 2 | | 2 Extraction of the bark of <i>H. littoralis</i> | 13 | | 3 Isolation of compounds CD1, CD2, CD5, CD7, CD8, | 14 | | CD9, CD10, CD11, CD14, and CD15 | | | from the crude hexane extract | | | 4 Isolation of compounds CD1, CD2, CD3, CD4, | 18 | | CD6, CD7, CD8, CD13 and CD16 from | | | the crude dichloromethane extract | | | 5 Isolation of compounds CD3, CD4, CD12, CD17 | 21 | | and CD18 from the crude acetone extract | | | 6 The structure of atroside | 58 | | 7 The structure of 3-methoxy-5-propylphenol | 70 | | 8 IR (KBr) spectrum of compound CD1 | 83 | | 9 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD1 | 83 | | 10 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD1 | 84 | | 11 DEPT 135° (CDCl ₃) spectrum of compound CD1 | 84 | | 12 DEPT 90° (CDCl ₃) spectrum of compound CD1 | 85 | | 13 2D COSY (CDCl ₃) spectrum of compound CD1 | 85 | | 14 2D HMQC (CDCl ₃) spectrum of compound CD1 | 86 | | 15 2D HMBC (CDCl ₃) spectrum of compound CD1 | 86 | | 16 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD2 | 87 | | 17 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD2 | 87 | | 18 ¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound CD3 | 88 | | 19 ¹³ C NMR (75 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound CD3 | 88 | | 20 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD4 | 89 | | 21 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD4 | 89 | | 22 IR (KBr) spectrum of compound CD5 | 90 | | 23 ¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum of compound CD5 | 90 | | 24 ¹³ C NMR (75 MHz) (CDCl ₂ +CD ₂ OD) spectrum of compound CD5 | 91 | # LIST OF ILLUSTATIONS (Continued) | Figure | Page | |--|------| | 25 DEPT 135° (CDCl ₃ +CD ₃ OD) spectrum of compound CD5 | 91 | | 26 DEPT 90° (CDCl ₃ +CD ₃ OD) spectrum of compound CD5 | 92 | | 27 2D COSY (CDCl ₃ +CD ₃ OD) spectrum of compound CD5 | 92 | | 28 2D HMQC (CDCl ₃ +CD ₃ OD) spectrum of compound CD5 | 93 | | 29 2D HMBC (CDCl ₃ +CD ₃ OD) spectrum of compound CD5 | 93 | | 30 UV (MeOH) spectrum of compound CD6 | 94 | | 31 IR (neat) spectrum of compound CD6 | 94 | | 32 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD6 | 95 | | 33 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD6 | 95 | | 34 DEPT 135° (CDCl ₃) spectrum of compound CD6 | 96 | | 35 DEPT 90° (CDCl ₃) spectrum of compound CD6 | 96 | | 36 2D COSY (CDCl ₃) spectrum of compound CD6 | 97 | | 37 2D HMQC (CDCl ₃) spectrum of compound CD6 | 97 | | 38 2D HMBC (CDCl ₃) spectrum of compound CD6 | 98 | | 39 2D NOESY (CDCl ₃) spectrum of compound CD6 | 98 | | 40 1 H NMR (300 MHz) (CDCl ₃) spectrum of compounds CD7 and CD8 | 99 | | 41 UV (MeOH) spectrum of compound CD9 | 99 | | 42 IR (neat) spectrum of compound CD9 | 100 | | 43 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD9 | 100 | | 44 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD9 | 101 | | 45 DEPT 135° (CDCl ₃) spectrum of compound CD9 | 101 | | 46 DEPT 90° (CDCl ₃) spectrum of compound CD9 | 102 | | 47 2D COSY (CDCl ₃) spectrum of compound CD9 | 102 | | 48 2D HMQC (CDCl ₃) spectrum of compound CD9 | 103 | | 49 2D HMBC (CDCl ₃) spectrum of compound CD9 | 103 | | 50 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD10 | 104 | | 51 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD10 | 104 | | 52 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD11 | 105 | # LIST OF ILLUSTATIONS (Continued) | Figure | Page | |--|------| | 53 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD11 | 105 | | 54 ¹ H NMR (300 MHz) (CDCl ₃ +CD ₃ OD) spectrum | 106 | | of compound CD12 | | | 55 ¹³ C NMR (75 MHz) (CDCl ₃ +CD ₃ OD) spectrum | 106 | | of compound CD12 | | | 56 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD13 | 107 | | 57 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD13 | 107 | | 58 UV (MeOH) spectrum of compound CD14 | 108 | | 59 IR (KBr) spectrum of compound CD14 | 108 | | 60 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD14 | 109 | | 61 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD14 | 109 | | 62 DEPT 135° (CDCl ₃) spectrum of compound CD14 | 110 | | 63 DEPT 90° (CDCl ₃) spectrum of compound CD14 | 110 | | 64 2D COSY (CDCl ₃) spectrum of compound CD14 | 111 | | 65 2D HMQC (CDCl ₃) spectrum of compound CD14 | 111 | | 66 2D HMBC (CDCl ₃) spectrum of compound CD14 | 112 | | 67 UV (MeOH) spectrum of compound CD15 | 112 | | 68 IR (neat) spectrum of compound CD15 | 113 | | 69 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD15 | 113 | | 70 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD15 | 114 | | 71 DEPT 135° (CDCl ₃) spectrum of compound CD15 | 114 | | 72 DEPT 90° (CDCl ₃) spectrum of compound CD15 | 114 | | 73 2D COSY (CDCl ₃) spectrum of compound CD15 | 115 | | 74 2D HMQC (CDCl ₃) spectrum of compound CD15 | 115 | | 75 2D HMBC (CDCl ₃) spectrum of compound CD15 | 116 | | 76 UV (MeOH) spectrum of compound CD16 | 116 | | 77 IR (neat) spectrum of compound CD16 | 117 | | 78 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD16 | 117 | # LIST OF ILLUSTATIONS (Continued) | Figure | Page | |--|------| | 79 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD16 | 118 | | 80 DEPT 135° (CDCl ₃) spectrum of compound CD16 | 118 | | 81 DEPT 90° (CDCl ₃) spectrum of compound CD16 | 118 | | 82 2D COSY (CDCl ₃) spectrum of compound CD16 | 119 | | 83 2D HMQC (CDCl ₃) spectrum of compound CD16 | 119 | | 84 2D HMBC (CDCl ₃) spectrum of compound CD16 | 120 | | 85 2D NOESY (CDCl ₃) spectrum of compound CD16 | 120 | | 86 UV (MeOH) spectrum of compound CD17 | 121 | | 87 IR (neat) spectrum of compound CD17 | 121 | | 88 ¹ H NMR (300 MHz) (CDCl ₃) spectrum of compound CD17 | 122 | | 89 ¹³ C NMR (75 MHz) (CDCl ₃) spectrum of compound CD17 | 122 | | 90 DEPT 135° (CDCl ₃) spectrum of compound CD17 | 123 | | 91 DEPT 90° (CDCl ₃) spectrum of compound CD17 | 123 | | 92 2D COSY (CDCl ₃) spectrum of compound CD17 | 124 | | 93 2D HMQC (CDCl ₃) spectrum of compound CD17 | 124 | | 94 2D HMBC (CDCl ₃) spectrum of compound CD17 | 125 | | 95 UV (MeOH) spectrum of compound CD18 | 125 | | 96 IR (KBr) spectrum of compound CD18 | 126 | | 97 1 H NMR (300 MHz) (acetone- d_{6}) spectrum of compound CD18 | 126 | | 98 13 C NMR (75 MHz) (acetone- d_6) spectrum of compound CD18 | 127 | | 99 DEPT 135° (acetone- d_6) spectrum of compound CD18 | 127 | | 100 DEPT 90° (acetone- d_6) spectrum of compound CD18 | 127 | | 101 2D COSY (acetone- d_6) spectrum of compound CD18 | 128 | | 102 2D HMQC (acetone- d_6) spectrum of compound CD18 | 128 | | 103 2D HMBC (acetone- d_6) spectrum of compound CD18 | 129 | | 104 2D NOESY (acetone- <i>d</i> ₆) spectrum of compound CD18 | 129 | #### LIST OF ABBREVIATIONS AND SYMBOLS singlet S d doublet = t triplet quartet q= multiplet mdoublet of doublet dddt doublet of triplet broad singlet br s br d broad doublet gram g = nanometer nm mp melting point cm^{-1} reciprocol centimeter (wave number) δ chemical shift relative to TMS = \boldsymbol{J} coupling constant $[\alpha]_{\rm D}$ specific rotation = λ_{max} maximum wavelength absorption frequencies ν molar extinction coefficient ε a value of mass divided by charge m/z°C degree celcius MHz Megahertz = ppm part per million concentration cIR Infrared UV Ultraviolet MS Mass Spectroscopy **EIMS Electron Impact Mass Spectroscopy** = Nuclear Magnetic Resonance **NMR** #### ABBREVIATIONS AND SYMBOLS (Continued) 1D NMR = One Dimensional Nuclear Magnetic Resonance 2D NMR = Two Dimensional Nuclear Magnetic Resonance COSY = Correlation Spectroscopy DEPT = Distortionless Enhancement by Polarization Transfer HMBC = Heteronuclear Multiple Bond Correlation HMQC = Heteronuclear Multiple Quantum Coherence NOESY = Nuclear Overhauser Effect Spectroscopy CC = Column Chromatography QCC = Quick Column Chromatography PLC = Preparative Thin Layer Chromatography TMS = tetramethylsilane CDCl₃ = deuterochloroform CD_3OD = deuteromethanol