Contents

			Pages
ΑŁ	ostra	act	(2)
Αc	kno	wledgment	(7)
C	onte	nts	(8)
Lis	st of	Tables	(12)
Lis	st of	Figures	(14)
CI	napt	er	
1.	Int	roduction	1
	Lit	erature Review	3
	1.	Myofibrillar proteins composition	3
	2.	Functional properties of fish proteins	7
		2.1 Water holding capacity	8
		2.2 Solubility	9
		2.3 Gel-forming ability	9
	3.	Denaturation of surimi proteins during freezing	11
		3.1 Effect of freezing and frozen storage on muscle proteins	11
		3.2 Effect of freezing and frozen storage on gel-forming ability	13
		3.3 Effect of freeze-thawing on muscle proteins	13
	4.	Cryoprotectants for surimi	14
		4.1 Sugar and polyhydric alcohol	14
		4.2 Mechanisms of protein cryoprotectant	17
		4.3 Application of cryoprotecants	21
0	biec	tive	30

Contents (continued)

		Pages
2.	Materials and methods	31
	1. Fish preparation	31
	2. Chemicals	31
	3. Instrument	32
	4. Natural actomyosin and surimi preparation	32
	5. Cryoprotective study in NAM	35
	6. Effect of cryoprotectant on the aggregation of NAM	35
	7. Cryoprotective study in surimi	36
	8. Statistical analysis	39
3.	Result and Discussion	40
	1. Cryoprotective effect of trehalose, sucrose and sorbitol	40
	alone at defferent concentration in NAM with 1 and 2	
	freeze-thaw cycles	
	1.1 Changes in Ca ²⁺ -ATPase activity	40
	1.2 Changes in sulfhydryl content	42
	1.3 Changes in disulfide bonds content	44
	1.4 Changes in surface hydrophobicity	47
	1.5 Changes in solubility in 0.6 M KCl	48
	2. Cryoprotective effect of different formula of cryoprotectants	51
	in NAM with 1 and 2 freeze-thaw cycles.	
	2.1 Changes in Ca ²⁺ -ATPase activity	51
	2.2 Changes in sulfhydryl content and disulfide bonds	52
	content	
	2.3 Changes in surface hydrophobicity	55

Contents (continued)

	Pages
2.4 Changes in solubility in 0.6 M KCl	57
3. Characterization of NAM aggregate with and without	60
cryoprotectants after multiple freeze-thaw cycles	
1. Solubility of NAM aggregate in various denaturating	60
solutions	
2. SDS-PAGE of NAM aggregate in various denaturating	63
solutions	
4. Changes in physicochemical and gelling properties surimi	66
with and without cryoprotectants during frozen storage	
1. Changes in pH during frozen storage	66
2. Changes in ATPase activity during frozen storage	67
3. Changes in Ca ²⁺ -sensitivity during frozen storage	70
4. Changes in total sulfhydryl content during frozen storage	71
5. Changes in disulfide bonds content during frozen storage	73
6. Changes in surface hydrophobicity during frozen storage	74
7. Changes in solubility in 0.6 M KCl during frozen storage	76
8. Changes in protein patterns during frozen storage	77
9. Changes in breaking force and deformation during	80
frozen storage	
10. Change in expressible moisture during frozen storage	82
11. Changes in microstructure of surimi gel during frozen storage	84
12. Changes in whiteness during frozen storage	87

Contents (continued)

	Pages
5. Change in physicochemical and gelling properties of	89
surimi with and without cryoprotectants subjected to	
multiple freeze-thaw cycles	
1. Changes in pH of surimi added with different	89
cryoprotectants subjected to multiple freeze-thaw cycles	
2. Changes in ATPase activity	89
3. Changes in Ca ²⁺ -sensitivity	91
4. Changes in total sulfhydryl contents and disulfide bonds	93
content	
5. Changes in surface hydrophobicity	96
6. Changes in solubility in 0.6 M KCI	97
7. SDS-PAGE of surimi	98
8. Changes in breaking force and deformation	101
9. Changes in expressible moisture of surimi gel	103
10. Changes in whiteness of surimi	105
4. Conclusion	107
References	108
Appendices	
Vitae	142

List of Tables

Tables	
1. Characteristics of sugars and polyalcohols	15
2. Relative sweetness of sweeteners	23
3. Cryoprotectant formulae used in bigeye snapper NAM	35
4. Effect of individual cryoprotectant and cryoprotectant	52
blends on Ca ²⁺ ATPase activity in NAM subjected to 1 and 2	
freeze-thaw cycles.	
5. Effect of individual cryoprotectant and cryoprotectant	54
blends on total sulfhydryl content in NAM subjected to 1 and 2	
freeze-thaw cycles.	
6. Effect of individual cryoprotectant and cryoprotectant	55
blends on disulfide bonds content in NAM subjected to 1 and 2	
freeze-thaw cycles.	
7. Effect of individual cryoprotectant and cryoprotectant	57
blends on surface hydrophobicity in NAM subjected to 1 and 2	
freeze-thaw cycles	
8. Effect of individual cryoprotectant and cryoprotectant	58
blends on solubility in 0.6 M KCl in NAM subjected to 1 and 2	
freeze-thaw cycles	
9. Changes in pH of surimi added with different cryoprotectants	66
during frozen storage at -18 °C for 12 weeks.	
10. Changes in whiteness of surimi added with different	88
cryoprotectants during frozen storage at −18 ⁰ C for 12 weeks.	

List of Tables (continued)

Tables	Pages
11. Changes in pH of surimi added with different cryoprotectants	89
and subjected to multiple freeze-thaw cycles	
12. Changes in whiteness of surimi added with different	106
cryoprotectants and subjected to multiple freeze-thaw cycles	

Figures		Pages
1.	Structure of myosin	4
2.	Structure of actin, troponin and tropomyosin	6
3.	Conversion of protein native state (N) to the denaturaed	18
	state (D) in water or sucrose solution	
4.	Hydrophobic interaction in an aqueous environment	20
5.	Effect on the mobility of water, and consequently on the	21
	entropy of the system, when two hydrophobic groups are	
	separated in solution (top) as opposed to being in	
	association (bottom)	
6.	Structure of sucrose	22
7.	Structure of sobitol	24
8.	Structure of trehalose	26
9.	Structure of trehalose-water complex	28
10.	Scheme for surimi preparation	33
11.	Scheme for surimi gel preparation	37
12.	Effect of different cryoprotectants at various concentrations	42
	on changes of Ca ²⁺ -ATPase activity in NAM (2.5 mg/ml,	
	pH 7.0, 0.6 M KCl) subjected to 1(a) and	
	2(b) freeze-thaw cycles.	
- 13.	Effect of different cryoprotectants at various concentrations	45
	on changes of total sulfhydryl content in NAM (2.5 mg/ml,	
	pH 7.0, 0.6 M KCl) subjected to 1(a) and	
	2(b) freeze-thaw cycles.	

Figures	Pages
14. Effect of different cryoprotectants at various concentrations	46
on changes of disulfide bonds content in NAM (2.5 mg/ml,	
pH 7.0, 0.6 M KCl) subjected to 1(a) and	
2(b) freeze-thaw cycles.	
15. Effect of different cryoprotectants at various concentrations	48
on changes of surface hydrophobicity in NAM (2.5 mg/ml,	
pH 7.0, 0.6 M KCI) subjected to 1(a) and	
2(b) freeze-thaw cycles.	
16. Effect of different cryoprotectants at various concentrations	50
on changes of %slolubility in 0.6 M KCl in NAM (2.5 mg/ml,	
pH 7.0, 0.6 M KCl) subjected to 1(a) and	
2(b) freeze-thaw cycles.	
17. Extractability of protein aggregate from NAM with and	62
without different cryoprotectants in tree solutions after	
freeze-thawing for 2 (a) and 4(b) cycles.	
18. SDS-PAGE pattern of NAM aggregate with and without	64
cryoprotectants after 2 (a) and 4 (b)freeze-thaw cycles,	
dissolved in tree denaturing solution, N: non-reducing;	
R: reducing; S ₁ : 1%SDS; S ₂ : 1%SDS+8Murea;	
S_1 : 1%SDS+8Murea+2% β ME	

Figures		Pages
19. Ch	nanges in Ca ²⁺ -ATPase (a), Mg ²⁺ -ATPase (b),	69
М	lg ²⁺ -Ca ²⁺ -ATPase (c), Mg ²⁺ -EGTA-ATPase (d) activity	
of	f surimi added with different cryoprotectants during	
fro	ozen storage at –18 ⁰ C for 12 weeks.	
20. Ct	nanges in Ca ²⁺ -sensitivity in surimi added with different	71
CI	ryoprotectants during frozen storage at -18 ⁰ C for 12 weeks.	
21. Ch	nanges in total sulfhydryl content in surimi added with	72
dit	fferent cryoprotectants during frozen storage at –18 °C	
for	r 12 weeks.	
22. Cł	hanges in disulfide bonds content in surimi added with	73
dit	fferent cryoprotectants during frozen storage at –18 °C	
for	r 12 weeks.	
23. Ch	nanges in surface hydrophobicity in surimi added with	75
dit	fferent cryoprotectants during frozen storage at −18 °C	
fo	or 12 weeks.	
24. Cł	nanges in solubility in 0.6 M KCl in surimi added with	77
dit	fferent cryoprotectants during frozen storage at –18 °C	
fo	or 12 weeks.	
25. SC	DS-PAGE of surimi added with different cryoprotectants	79
du	uring frozen storage t –18 °C for 12 weeks, 1: control;	
2:	8%trehalose; 3: the blend including 5.34%trehalose+	
1.3	33%sucrose+1.33%sorbitol; and 4: commercial	
cr	yoprotectants; R: reducing condition; N: non-reducing conditi	on.

Figures		Pages
26.	Changes in breaking force (a) and deformation (b) in	82
	surimi added with different cryoprotectants during frozen	
	storage at –18 °C for 12 weeks.	
27.	Changes in expressible moisture in surimi added with	84
	different cryoprotectants during frozen storage at -18 °C	
	for 12 weeks.	
28.	Scanning electron micrographs of bigeye snapper surimi	86
	gels with and without cryoprotectants after frozen storage	
	for week 0 and 12, at -18 °C	
29.	Changes in Ca ²⁺ -ATPase (a), Mg ²⁺ -ATPase (b),	92
	Mg ²⁺ -Ca ²⁺ -ATPase (c), Mg ²⁺ -EGTA-ATPase (d) activity	
	of surimi added with and without different cryoprotectants	
	and subjected to multiple freeze-thaw cycles.	
30.	Changes in Ca ²⁺ -sensitivity in surimi added with different	93
	cryoprotectants and subjected to multiple freeze-thaw cycles.	
31.	Changes in sulfhydryl content in surimi added with different	95
	cryoprotectants and subjected to multiple freeze-thaw cycles.	
32.	Changes in disulfide bonds content in surimi added with	95
	different cryoprotectants and subjected to multiple	
	freeze-thaw cycles.	•
33.	Changes in surface hydrophobicity in surimi added with	97
	different cryoprotectants and subjected to multiple	
	freeze-thaw cycles.	

Figures	Pages
34. Changes in solubility in 0.6 M KCl in surimi added with	98
different cryoprotectants and subjected to multiple	
freeze-thaw cycles.	
35. SDS-PAGE of surimi added with and without different	100
cryoprotectants and subjected multiple freeze-thaw cycles	•
1: control; 2: 8%trehalose;3: the blends inculding	
5.34%trehalose+1.33%sucrose+1.33%sorbitol; and	
4: commercial cryoprotectants; R: reducing condition;	
N: non-reducing condition.	
36. Changes in breaking force (a) and deformation in (b)	103
surimi added with different cryoprotectants and subjected	
to multiple freeze-thaw cycles.	
37. Changes in expressible moisture in surimi added with	105
different cryoprotectants and subjected to multiple	
freeze-thaw cycles.	