Contents

	Page
Abstract	(3)
Acknowledgment	(7)
List of Tables	(12)
List of Figures	(13)
Chapter	
1 Introduction	1
Literature Review	3
1. Surimi and surimi production	3
2. Proteolysis in fish muscle	6
3. Softening (Modori) of surimi-based products	9
4. Classification of proteinases	12
4.1 Endopeptidase	12
4.2 Exopeptidase	13
5. Muscle proteinases	13
5.1 Cathepsins	14
a) Cathepsin A	16
b) Cathepsin B	17
c) Cathepsin C	17
d) Cathepsin D	18
e) Cathepsin L	18
5.2 Calpains	19
5.3 Alkaline proteinases	20
5.4 Multicatalytic proteinases	21

Contents (continuted)

	Page
6. Tissue degradation by proteinases	22
a) Tissue degradation by cathepsins	22
b) Tissue degradation by calpains	23
c) Tissue degradation by alkaline proteinases	24
d) Tissue degradation by multicatalytic proteinases	25
7. Purification and characterization of proteinases from fish	26
muscle	
a) Purification and characterization of calpains	26
b) Purification and characterization of cysteine	26
proteinases	
c) Purification and characterization of serine	28
proteinases	
d) Purification and characterization of multicatalytic	30
proteinases	
Objectives	31
2 Materials and Methods	32
1. Chemicals	32
2. Instruments	33
3. Fish sample preparation	34
4. Study on autolysis of mince and washed mince from bigeye	35
snapper	
4.1 Preparation of washed mince	35
4.2 Autolysis of mince and washed mince	35
4.3 Sodium dodecyl sulfate-gel electrophoresis (SDS-	36
PAGE)	

Contents (continued)

	Page
5. Characterization of sarcoplasmic proteinase from bigeye	36
snapper	
5.1 Preparation of sarcoplasmic fluid	36
5.2 Enzyme assay	36
5.3 pH and temperature profile	37
5.4 Inhibitor study	37
6. Purification of sarcoplasmic proteinase of <i>P. macracanthus</i>	38
6.1 Preparation of crude enzyme	38
6.2 Heat treatment	38
6.3 Phenyl-Sepharose 6 Fast Flow Chromatography	38
6.4 First Source 15Q Chromatography	39
6.5 Second Source 15Q Chromatography	39
6.6 Size Exclusion Chromatography	40
7. Characterization of purified sarcoplasmic proteinase from	40
P. macracanthus	
7.1 Determination of molecular weight	40
7.2 Optimum pH and temperature	41
7.3 Effect of inhibitors on proteinase activity	41
7.4 Activity staining	41
7.5 Substrate specificity	42
8. Hydrolysis of natural actomyosin by purified proteinase	42
9. Protein determination	43
10. Statistical analysis	43

Contents (continued)

	Page
3 Results and Discussion	44
1. Autolytic degradation of bigeye snapper muscle	44
2. Temperature and pH profile of sarcoplasmic proteinase from	50
bigeye snapper	
3. Effect of inhibitors on activity of sarcoplasmic proteinase from	54
bigeye snapper	
4. Purification of sarcoplasmic proteinase of P. macracanthus	55
5. Protein pattern and activty staining of proteinase	60
6. Characterization of purified proteinase	72
6.1 Optimum pH	72
6.2 Optimum temperature	73
6.3 Effect of inhibitors	76
6.4 Substrate specificity	77
7. Hydrolysis of natural actomyosin by purified proteinase	78
4 Conclusions	81
References	82
Appendices	99
Vitae	116

List of Tables

Table	Page
1 Importance of endogenous proteinases to quality deterioration of	8
fishery products	
2 Distribution of four types of modori-inducing proteinase (MIP) among	11
fish species	
3 Neutral and alkaline proteinases of fish muscles	15
4 Proteolytic enzymes associated with muscle lysosomes	16
5 Effect of inhibitors on the sarcoplasmic proteinase activity	56
6 Purification of sarcoplasmic proteinase from P. macracanthus	60
7 Effect of inhibitors on the purified proteinase activity from P.	77
macracanthus muscle	
8 Specificity for hydrolysis of peptide methylcoumarylamide substrates	78

List of Figures

Figure	Page
1 Productions of surimi and surimi-based product	4
2 Changes in the rheological properties of actomyosin and myosin	6
during heating	
3 Proposed model of the gelation and disintegration of surimi gels	10
4 Action of endopeptidases and exopeptidases on protein structure	12
5 Priacanthus macracanthus	34
6 Priacanthus tayenus	34
7 Autolytic degradation products in mince and washed mince of P.	45
macracanthus incubated at 50 and 60°C for different times	
8 Autolytic degradation products in mince and washed mince of P.	46
tayenus incubated at 50 and 60°C for different times	
9 Autolytic pattern of mince and washed mince of P. macracanthus at	48
50°C and 60°C	
10 Autolytic pattern of mince and washed mince of P. tayenus at 50°	49
C and 60 ^o C	
11 Temperature profiles of sarcoplasmic proteinase from P.	51
macracanthus	
12 Temperature profiles of sarcoplasmic proteinase from P.	52
tayenus	
13 pH profile of sarcoplasmic proteinase from P. macracanthus and	53
P. tayenus	
14 SDS-PAGE pattern of washed mince of P. macracanthus	57
and P. tayenus in absence or presence of various	
proteinase inhibitors	

List of Figures (continued)

Figure	Page
15 Elution profile of heat-treated P. macracanthus sarcoplasmic	61
Proteinase on phenyl-Sepharose column	
16 Elution profile of proteinase on the 1st Source 15Q column	62
17 Elution profile of proteinase on the 2nd Source 15Q column	63
18 Elution profile of proteinase on Superose 12 HR 10/30 column	64
19 SDS-PAGE pattern (with reducing agent) of purified	66
sarcoplasmic proteinase from P. macracanthus muscle	
20 Activity staining (without reducing agent) of purified	67
sarcoplasmic proteinase from P. macracanthus muscle	
21 Effect of proteinase inhibitors on purified sarcoplasmic	68
proteinase from P. macracanthus muscle on native	
discontinuous gel electrophoresis followed by staining for	
proteolytic activity at pH 8.5, 60°C	
22 Calibration curve for the molecular weight determination of the	70
purified proteinase on Superose 12 HR 10/30	
chromatography	
23 Calibration curve for determination of molecular weight (using	71
non-reducing SDS-PAGE)	
24 pH profile of purified sarcoplasmic proteinase from P.	74
macracanthus muscle	
25 Temperature profiles of purified sarcoplasmic proteinase from	75
P. macracanthus muscle	
26 Hydrolysis of natural actomyosin (NAM) by purified proteinase	80
from P. macracanthus muscle at 60°C for various times	