CONTENTS

		Page
Co	ontents	(x)
Li	st of tables	(xiii)
Li	st of figures	(xiv)
Cł	napter	
1.	Introduction	1
	Literature review	3
	1. Muscle protein composition	3
	2. Gelation of muscle protein	7
	3. Proteolytic enzyme	11
	4. Proteinase inhibitor	13
	5. Phosphate compound	17
	6. Improvement of gel quality	21
	7. Transglutaminase	22
	8. Hydrocolloids or gums	29
Oł	pjectives	37
2.	Materials and methods	
	1. Materials	38
	2. Instruments	39
	3. Methods	39
	3.1. Study on the gel properties of Pacific white shrimp meat	
	3.1.1 Effect of sodium chloride concentrations on gel properties of	39
	Pacific white shrimp meat	
	3.1.2 Effect of pyrophosphate in combination with magnesium chloride	42
	and/or calcium chloride on gel properties of Pacific white shrimp	
	meat	
	3.2. The effect of some protein additives on gel properties of Pacific white	43
	shrimp meat	

CONTENTS (Continued)

	Page
3.3. Study on autolysis of Pacific white shrimp meat	
3.3.1 Effect of temperature on autolysis of Pacific white shrimp mince	44
3.3.2 Effect of pH on autolysis of Pacific white shrimp mince	44
3.3.3 Effect of inhibitors on autolytic activity of Pacific white shrimp	45
mince	
3.3.4 Effect of some protein additives on autolysis of Pacific white shrimp	45
mince	
3.4. The effect of setting condition on gel properties of Pacific white	
shrimp meat	
3.4.1 Characterization of endogenous TGase	45
3.4.2 Effect of setting condition on gel properties	46
3.4.3 Effect of CaCl ₂ concentrations on gel properties	46
3.5. The effect of MTGase on gel properties of Pacific white shrimp meat	47
3.6 The effect of hydrocolloids on freeze-thaw stability of Pacific white	47
shrimp gel	
4. Statistical analysis	48
3. Results and discussion	
1. Gel properties of Pacific white shrimp meat	49
1.1 Effect of sodium chloride concentrations on gel properties of Pacific white	49
shrimp meat	
1.2 Effect of pyrophosphate in combination with magnesium chloride and/or	56
calcium chloride on gel properties of Pacific white shrimp meat	
2. Effect of some protein additives on gel properties of Pacific white shrimp meat	65

CONTENTS (Continued)

	Page
3. Autolysis of Pacific white shrimp meat	
3.1 Effect of temperature on autolysis of Pacific white shrimp mince	78
3.2 Effect of pH on autolysis of Pacific white shrimp mince	81
3.3 Effect of inhibitors on autolytic activity of Pacific white shrimp mince	82
3.4 Effect of protein additives on autolysis of Pacific white shrimp mince	85
4. Effect of setting condition on gel properties of Pacific white shrimp meat	
4.1 Characterization of endogenous TGase	90
4.2 Effect of setting condition on gel properties	92
4.3 Effect of CaCl ₂ concentrations on gel properties	100
5. Effect of MTGase on gel properties of Pacific white shrimp meat	109
6. Effect of hydrocolloids on freeze-thaw stability of Pacific white shrimp gel	115
4. Conclusion	124
Future researches	126
References	127
Appendix	155
Vitae	162

LIST OF TABLES

Ta	Table	
1.	Contractile proteins in food myosystems	4
2.	Conformation changes occurring during the thermal denaturation of natural	8
	actomyosin	
3.	Selected source of protease inhibitors	14
4.	Sources and characteristics of some TGase	24
5.	TGase activity level in the various fish muscles and surimi	29
6.	Expressible moisture content and color of gels from Pacific white shrimp meat	52
	containing different NaCl levels (2-4%)	
7.	Expressible moisture content and color of gels from Pacific white shrimp meat at	61
	different concentrations of PP in combination with MgCl ₂ and/or CaCl ₂	
8.	Expressible moisture content of one-step heated gels from Pacific white shrimp	71
	meat added with different types and concentrations of protein additives	
9.	Expressible moisture content of two-step heated gels from Pacific white shrimp	72
	meat added with different types and concentrations of protein additives	
10	. Effect of various protease inhibitors on Pacific white shrimp meat autolysis	84
	in the presence and in the absence of 2.5%NaCl	
11	Expressible moisture content and color of gels from Pacific white shrimp meat	95
	added with CaCl ₂ with and without PP/MgCl ₂ during setting at 55°C for different	
	times	
12	Expressible moisture content and color of Pacific white shrimp gels (2.5% NaCl+	104
	5mmolePP/kg+5mmoleMgCl ₂ /kg) in the presence of different CaCl ₂	
	concentrations	
13	Expressible moisture content of gels from Pacific white shrimp meat (5mmolePP/	111
	kg + 5 mmoleMgCl ₂ /kg + 50 mmoleCaCl ₂ /kg) in the presence of MTGase at	
	different levels	

LIST OF FIGURES

Fig	Sigure Sigure	
1.	Model of myosin molecule	5
2.	Thin filament of muscle formed by the filament of tropomyosin molecules wound	7
	in each of the two grooves of the actin helix and proposed model for configuration	
	of actin, tropomysin and troponin (Tn) subunits	
3.	Formation of a gel network structure	9
4.	A schematic representation of the thermal aggregation of fish myosin	10
5.	Action of endopeptidase and exopeptidase on protein structure	12
6.	Reaction catalyzed by TGase	23
7.	Primary structure of microbial transglutaminase (MTGase): all amino acids are	26
	denoted by the letter codes; *, indicates the possible active cysteine residue	
8.	The structure of starch (a) amylose (b) amylopectin	30
9.	The gel formation of starch	31
10.	Formation of hydroxypropyl starch	31
11.	A proposed mechanism of the freeze-thaw stabilizing effect of unretrogradable	33
	modified starch	
12.	Structures of kappa-, iota-, and lambda-type carrageenans	34
13.	Gelation of kappa and iota carrageenan	35
14.	Cross-linking helical kappa carrageenan; (A) by binding of 'smooth' regions of	35
	locust bean gum; (B) the parts of the galactomannan which carry grouped galactose	
	substituents and which we term 'hairy' region; (C) form flexible connections	
	between helices	
15.	Scheme for shrimp gel preparation	40
16.	Breaking force and deformation of gels from Pacific white shrimp meat containing	51
	different NaCl levels (2-4%)	
17.	TCA-soluble peptide content of gel from Pacific white shrimp meat containing	54
	different NaCl levels (2-4%)	

Figure	Page
18. SDS-PAGE patterns of gel from Pacific white shrimp of meat containing	55
different NaCl levels (2-4%)	
19. Microstructures of gels from Pacific white shrimp meat containing different NaCl	56
levels (%)	
20. Breaking force and deformation of gels from Pacific white shrimp meat at different	59
concentrations of PP in combination with MgCl ₂ and/or CaCl ₂	
21. TCA-soluble peptide content of gels from Pacific white shrimp meat at different	63
concentrations of PP in combination with MgCl ₂ and/or CaCl ₂	
22. Protein patterns of gels from Pacific white shrimp meat at different concentrations	64
of PP in combination with MgCl ₂ and/or CaCl ₂	
23. Microstructures of gels from Pacific white shrimp meat containing 2.5% NaCl	65
added with 150mmoleCaCl ₂ /kg (a) 150 mmoleCaCl ₂ /kg + 5 mmolePP/kg (b)	
and 150 mmoleCaCl ₂ /kg + 5 mmolePP/kg + 5 mmoleMgCl ₂ /kg (c)	
24. Breaking force and deformation of one-step heated gels from Pacific white shrimp	66
meat added with different types and concentrations of protein additives	
25. Breaking force and deformation of two-step heated gels from Pacific white shrimp	67
meat added with different types and concentrations of protein additives	
26. TCA-soluble peptide content of one-step and two-step heated gels from Pacific	74
white shrimp meat added with different types and concentrations of protein	
additives	
27. Protein patterns of one-step and two-step heated gels from Pacific white shrimp	76
meat added with different types and concentrations of protein additives	
28. Microstructures of gels from Pacific white shrimp meat added with different types	77
and concentrations of protein additives	
29. TCA-soluble peptide content of gel from Pacific white shrimp mince incubated at	79
different temperatures for 30 and 60 min in the presence and in the absence of 2.5%	
NaCl	

Figure	Page
30. Protein patterns of Pacific white shrimp mince incubated at different temperatures	80
for 30 and 60 min in the presence and absence of 2.5% NaCl	
31. TCA-soluble peptide content of Pacific white shrimp mince incubated at differents	82
pH values (2-10) at 40°C for 60 min in the presence of 2.5% NaCl and 35°C for	
60 min in the absence of 2.5% NaCl	
32. Protein patterns of Pacific white shrimp mince incubated at different pH values at	83
40°C for 60 min in the presence of 2.5% NaCl (a) and 35°C for 60 min in the	
absence of 2.5% NaCl	
33. Protein patterns of Pacific shrimp mince incubated at 40 °C for 60 min in the	86
presence of 2.5% NaCl without and with proteinase inhibitors	
34. Protein patterns of Pacific shrimp mince incubated at 35°C for 60 min in the	87
absence of 2.5% NaCl without and with proteinase inhibitors	
35. TCA-soluble peptide content of Pacific white shrimp mince incubated at 40 °C for	88
60 min in the presence of 2.5% NaCl and added with various protein additives at	
different concentrations	
36. Protein patterns of Pacific white shrimp mince incubated at 40°C for 60 min in	89
the presence of 2.5% NaCl and added with various protein additives at different	
concentrations	
37. Effect of temperature on TGase activity of crude extract from Pacific white shrimp	91
muscle	
38. Effect of CaCl ₂ concentrations on TGase activity of crude extract from Pacific	91
white shrimp muscle	
39. Breaking force and deformation of gels from Pacific white shrimp meat added with	94
CaCl ₂ with and without PP/MgCl ₂ during setting at 55 °C for different times	
40. TCA-soluble peptide content of gels from Pacific white shrimp meat added with	98
CaCl ₂ with and without PP/MgCl ₂ during setting at 55°C for different times.	

Fig	ure	Page
41.	Solubility of Pacific white shrimp gels added with CaCl ₂ with and without	98
	PP/MgCl ₂ during setting at 55°C for different times	
42.	Protein patterns of gels from Pacific white shrimp meat added with CaCl ₂ with and	100
	without PP/MgCl ₂ during setting at 55°C for different times	
43.	Breaking force and deformation of Pacific white shrimp gels (2.5%NaCl +5 mmole	101
	PP/kg + 5 mmoleMgCl ₂ /kg) in the presence of different CaCl ₂ concentrations	
44.	TCA soluble peptide content of Pacific white shrimp gels (2.5%NaCl + 5mmolePP/	105
	kg + 5mmoleMgCl ₂ /kg) in the presence of different CaCl ₂ concentrations	
45.	Solubility of Pacific white shrimp gels (2.5%NaCl+5mmolePP/kg+ 5mmoleMgCl ₂ /	107
	kg) in the presence of different CaCl ₂ concentrations	
46.	Protein patterns of Pacific white shrimp gels (2.5%NaCl + 5mmolePP/kg +	108
	5mmole MgCl ₂ /kg) in the presence of different CaCl ₂ concentrations	
47.	Breaking force and deformation of gels from Pacific white shrimp meat (5mmole	110
	PP/kg + 5 mmoleMgCl ₂ /kg + 50 mmoleCaCl ₂ /kg) in the presence of MTGase at	
	different levels.	
48.	TCA-soluble peptide content of gels from Pacific white shrimp meat (5mmolePP/kg	112
	+ 5 mmoleMgCl ₂ /kg + 50 mmoleCaCl ₂ /kg) in the presence of MTGase at different	
	levels.	
49.	Solubility of gels from Pacific white shrimp meat (5mmolePP/kg + 5 mmoleMgCl ₂	112
	/kg+ 50 mmoleCaCl ₂ /kg) in the presence of MTGase at different levels.	
50.	Protein patterns of gels from Pacific white shrimp meat (5mmolePP/kg + 5 mmole	113
	$MgCl_2/kg + 50 \text{ mmoleCaCl}_2/kg$) in the presence of MTGase at different levels.	
51.	Breaking force and deformation of gels from Pacific white shrimp meat added with	117
	modified starch at different levels and subjected to different freeze-thaw cycles	
52.	Breaking force and deformation of gels from Pacific white shrimp meat added with	118
	<i>l</i> -carrageenan at different levels and subjected to different freeze-thaw cycles	

Figure		Page
53.	Expressible moisture content of gels form Pacific white shrimp meat added with	121
	modified starch or l -carrageenan at different levels and subjected to different	
	freeze-thaw cycles	
54.	Microstructures of Pacific white shrimp gels added without and with 2% modified	123
	starch and subjected to different freeze-thaw cycles.	