CONTENTS

			Page
Contents			viii
List of tabl	les		XV
List of figu	ires		xvii
Chapter			
1. Introduc	etion		1
Literatu	re review		2
1.	Chemical composit	tion of fish and shell fish	2
	1.1 Myofibrill	ar protein	3
	- M	yosin and paramyosin	4
	- A	ctin	5
	- Tı	ropomyosin	6
	- Tı	roponin	6
	1.2 Sarcoplasm	nic protein	7
	1.3 Stroma pro	otein	8
2.	Post mortem chang	ges of fish	8
	2.1 Changes o	f proteins	8
	2.1.1	Degradation of proteins	8
	2.1.2	Denaturation of proteins	9
	2.1.3	Cross-linking of proteins	11
3.	Functional properti	es of fish protein	12
	3.1 Water hold	ling capacity	12
	3.2 Solubility		13
	3.3 Gel-forming	ng ability	13
	3.3.1	Protein denaturation	14
	3.3.2	Aggregation	15
4.	Suwari (setting)		18
5.	Transglutaminase (TGase)	20

		Page
6.	Microbial transglutaminase	22
Objecti	ves	27
2. Material	s and Methods	28
1.	Materials	28
	1.1 Fish samples	28
	1.2 Chemicals	28
2.	Instruments	29
3.	Methods	29
	3.1 Determination of chemical composition and property of	29
	white shrimp, bigeye snapper and lizardfish mince	
	3.1.1 Proximate analysis	29
	3.1.2 Determination of nitrogenous constituent	29
	3.1.3 Thermal denaturation	30
	3.2 Study on the effect of setting condition and MTGase on	30
	gel forming ability of some marine fish and shrimp meats	
	3.2.1 Determination of MTGase activity	30
	3.2.2 Effect of setting condition and MTGase on	30
	gel forming ability	
	3.2.2.1 Determination of breaking force and deformation	32
	3.2.2.2 Determination of whiteness	32
	3.2.2.3 Determination of protein patterns	32
	3.2.2.4 Determination of expressible moisture content	33
	3.2.2.5 Determination of microstructure	33
	3.3 Effect of post-mortem storage on crossing and gel enhancing	33
	ability MTGase on mince from some marine fish and shrimp	
	3.3.1 Preparation of ice-stored some marine fish and shrimp	33
	3 3 2 Analyses	34

	Page
3.3.2.1 Determination of TCA-soluble peptide content	34
3.3.2.2 Determination of Thiobarbituric acid reactive	34
substances (TBARS)	
3.3.2.3 Determination of pH	34
3.3.2.4 Determination of total volatide bases (TVB)	34
and trimethylamine (TMA) contents	
3.3.2.5 Determination of formaldehyde content	35
3.3.2.6 Determination of protein patterns	35
3.3.2.7 ATPase activity	35
3.3.3 Effect of MTGase on gel-forming ability of some marine	36
fish and shrimp stored in ice for different times	
3.4 Effect of protein substrate denaturatuion on cross-linking activity of	36
MTGase	
3.4.1 Preparation of natural actomyosin (NAM)	36
3.4.2 Thermal stability of NAM	36
3.4.3 Effect of MTGase on cross-linking and physico-chemical	37
properties of natural actomyosin with different degrees of	
denaturation	
3.4.3.1 Determination of protein solubility	37
3.4.3.2 Determination of Surface hydrophobicity	37
3.4.3.3 Determination of Total sulfhydryl group content	37
3.4.3.4 Determination of Disulfide bond content	38
3.4.3.5 Determination of protein patterns	38
3.4.3.6 Determination of free amino group content	38
3.5 Effect of MTGase on cross-linking and physicochemical properties	38
of natural actomyosin added with different levels of formaldehyde	

	Page
3.6 Effect of MTGase on cross-linking and physicochemical properties	39
of natural actomyosin with different degrees of hydrolysis	
3.6.1 Preparation of NAM with different degrees of hydrolysis	39
3.6.1.1 Determination of free amino group content	39
3.6.1.2 Determination of protein patterns	39
3.6.1.3 Determination of Surface hydrophobicity	39
3.6.2 Effect of MTGase on cross-linking and physico-chemical	39
properties of natural actomyosin with different degrees of	
hydrolysis	
4. Statistic analytical	40
3. Results and Discussion	41
3.1 Chemical composition and property of white shrimp, bigeye snapper	41
and lizardfish mince	
3.1.1 Proximate composition	41
3.1.2 Proteins and non-protein nitrogenous compounds	41
3.1.3 Thermal denaturation	44
3.2 Effect of setting condition and MTGase on gel forming ability of some	45
marine fish and shrimp meats	
3.2.1 Breaking force and deformation	45
3.2.2 Color and whiteness	48
3.2.3 Expressible moisture content	52
3.2.4 Protein patterns	53
3.2.5 Microstructure	56
3.3 Effect of post-mortem storage on protein cross-linking and gel enhancing	58
ability of MTGase on mince from some marine fish and shrimp	
3.3.1 Chemical changes during iced storage	58
3.3.1.1 Changes in nH	58

	Page
3.3.1.2 Changes in TVB-N and TMA-N contents	59
3.3.1.3 Changes in TBARS	61
3.3.1.4 Changes in formaldehyde content	63
3.3.1.5 Changes in TCA-soluble peptide content	64
3.3.1.6 Changes in protein patterns	65
3.3.1.7 Changes in ATPase activitiy	66
3.3.2 Effect of MTGase on gel-forming ability of some marine fish	70
and shrimp stored in ice for different times	
3.3.2.1 Breaking force and deformation	70
3.3.2.2 Color and whiteness	74
3.3.2.3 Expressible moisture content	78
3.3.2.4 Protein patterns	81
3.3.2.5 Microstructure	83
3.4 Effect of protein substrate denaturatuion on cross-linking activity	85
of MTGase	
3.4.1 Thermal stability	85
3.4.2 Effect of MTGase on cross-linking and physico-chemical	86
properties of NAM with different degrees of denaturation	
3.4.2.1 Changes in free amino group content	86
3.4.2.2 Changes in solubility	89
3.4.2.3 Changes in protein patterns	92
3.4.2.4 Changes in sulfhydryl group content	95
3.4.2.5 Changes in disulfide bond content	98
3.4.2.4 Changes in surface hydrophobicity	100
3.5 Effect of MTGase on cross-linking and physicochemical properties	102
of NAM added with different levels of formaldehyde	
3.5.1 Changes in free amino group content	102

		Page
3.5.2 Changes in solubility		104
3.5.3 Changes in protein patterns		106
3.5.4 Changes in sulfhydryl group content		108
3.5.5 Changes in disulfide bond content		110
3.5.6 Changes in surface hydrophobicity		112
3.6 Effect of MTGase on cross-linking and physicochemical properties		114
of NAM with different degrees of hydrolysis		
3.6.1 Changes in physicochemical properties of NAM with different		114
degrees of hydrolysis		
3.6.1.1 Changes in surface hydrophobicity		114
3.6.1.2 Changes in free amino group content		115
3.6.1.3 Changes in protein patterns	116	
3.6.2 Effect of MTGase on cross-linking and physico-chemical		117
properties of NAM with different degrees of hydrolysis		
3.6.2.1 Changes in free amino group content		117
3.6.2.2 Changes in solubility		119
3.6.2.3 Changes in protein patterns		121
3.6.2.4 Changes in sulfhydryl group content		122
3.6.2.5 Changes in disulfide bond content		125
3.6.2.6 Changes in surface hydrophobicity		127
4. Conclusion		129
References		130
Appendix		154
Vitae		160

LIST OF TABLES

Tab	Table	
1.	Composition of fish and shellfish meat	2
2.	Contractile proteins in food myosystems	3
3.	Conformational changes which may occurring during the thermal	14
	denaturation of natural actomyosin	
4.	Suwari forming capacity of different fish species	19
5.	Source and characteristics of some TGases	21
6.	Proximate composition of mince from some marine fish and shrimp muscles	41
7.	Nitrogenous constituents in the mince from some marine fish and shrimp muscles	42
8.	T_{max} and enthalpy (ΔH) of mince from some marine fish and shrimp muscles	44
9.	L*, a*, b*-values and whiteness of gels from white shrimp mince added with	49
	various levels of MTGase and different setting conditions	
10.	L*, a*, b*-values and whiteness of gels from bigeye snapper mince added with	50
	various levels of MTGase and different setting conditions	
11.	L*, a*, b*-values and whiteness of gels from lizardfish mince added with	51
	various levels of MTGase and different setting conditions	
12.	Expressible moisture content of mince gels from some marine fish and shrimp	53
	added with various levels of MTGase and different setting conditions	
13.	L*, a*, b*-values and whiteness of mince gels from white shrimp stored in ice	75
	for different times without and with MTGase addition (0.6 units/g) and set under	
	different conditions	
14.	L*, a*, b*-values and whiteness of mince gels from bigeye snapper stored in ice	76
	for different times without and with MTGase addition (0.6 units/g) and set under	
	different conditions	
15.	L*, a*, b*-values and whiteness of mince gels from lizardfish stored in ice	77
	for different times without and with MTGase addition (0.6 units/g) and set under	
	different conditions	

LIST OF TABLES (Continued)

Table

Page

16. Thermal inactivation rate constant (K_D x 10⁻⁵ S⁻¹) of NAM from some marine fish and shrimp meats

LIST OF FIGURES

Figu	ire	Page
1.	Model of myosin molecule	5
2.	(a) A thin filament of muscle formed by the filament of tropomyosin molecules	7
	wound in each of the two grooves of the actin helix. (b) Proposed model	
	for configuration of actin, tropomyosin and troponin (Tn) subunits	
3.	Formation of a gel network structure	16
4.	Reaction catalyzed by TGase	20
5.	Primary structure of microbial transglutaminase (MTGase).	23
6.	Scheme for gel preparation	31
7.	Electrophoretic pattern of various protein fractions of mince from some marine	43
	fish and shrimp	
8.	Breaking force and deformation of mince gels from some marine fish and shrimp	47
	added with various levels of MTGase and set under different conditions	
9.	SDS-PAGE pattern of mince gels from some marine fish and shrimp added	55
	with various levels of MTGase and set under different conditions	
10.	Microstructure of gels from some marine fish and shrimp added without	57
	and with MTGase (0.6 units/g) and set under different conditions	
11.	Changes in pH of some marine fish and shrimp during the iced storage	59
12.	Changes in TVB-N (A) and TMA-N (B) contents of some marine fish	61
	and shrimp during the iced storage	
13.	Changes in TBARS of some marine fish and shellfish during the ice storage	62
14.	Changes in formaldehyde content of some marine fish and shellfish during	64
	the iced storage	
15.	Changes in TCA-soluble peptide content of some marine fish and shellfish	65
	during the iced storage	
16.	SDS-PAGE pattern of muscle proteins from some marine fish and shrimp during	66
	the iced storage	

LIST OF FIGURES (Continued)

Figure Pa		Page
17.	ATPase activities of natural actomyosin of some marine fish amd shrimp during	68
	the iced storage	
18.	Ca ²⁺ -sensitivity of natural actomyosin extracted from some marine fish and	69
	shrimp during the iced storage	
19.	Breaking force and deformation of mince gels from some marine fish and shrimp	73
	stored in ice for different times without and with MTGase addition	
	(0.6 units/g) and set under different conditions	
20.	Expressible moisture content of mince gels from some marine fish and shrimp	80
	stored in ice for different times without and with MTGase addition	
	(0.6 units/g) and set under different conditions	
21.	SDS-PAGE patterns of mince gels from some marine fish and shrimp	81
	stored in ice for different times without and with MTGase addition	
	(0.6 units/g) and set under different conditions	
22.	Microstructure of mince gels from some marine fish and shrimp	84
	stored in ice for 10 days without and with MTGase addition	
	(0.6 units/g) and set under different conditions	
23.	Changes in free amino group content of some marine fish and shrimp NAM	88
	with pre-heating at 50°C for different times as influenced by MTGase addition	
	at different levels	
24.	Changes in solubility of some marine fish and shrimp NAM with pre-heating	91
	at 50°C for different times as influenced by MTGase addition at different	
	levels	
25.	Changes in protein patterns of some marine fish and shrimp NAM with pre-heating	94
	at 50°C for different times as influenced by MTGase addition	
26.	Changes in sulfhydryl group content of some marine fish and shrimp NAM with	97
	pre-heating at 50°C for different times as influenced by MTGase addition at	
	different levels	

LIST OF FIGURES (Continued)

Figu	ire	Page
27.	Changes in disulfide bond content of some marine fish and shrimp NAM with	99
	pre-heating at 50°C for different times as influenced by MTGase addition at	
	different levels	
28.	Changes in surface hydrophobicity of some marine fish and shrimp NAM with	101
	pre-heating at 50°C for different times as influenced by MTGase addition at	
	different levels	
29.	Changes in free amino group content of some marine fish and shrimp NAM	103
	added with different levels of formaldehyde as influenced by MTGase addition	
	at different levels	
30.	Changes in solubility of some marine fish and shrimp NAM added with	105
	different levels of formaldehyde as influenced by MTGase addition	
	at different levels	
31.	Protein patterns of some marine fish and shrimp NAM added with different	107
	levels of formaldehyde as influenced by MTGase addition	
32.	Changes in sulfhydryl group content of some marine fish and shrimp NAM	109
	added with different levels of formaldehyde as influenced by MTGase addition	
	at different levels	
33.	Changes in disulfide bond content of some marine fish and shrimp NAM	111
	added with different levels of formaldehyde as influenced by MTGase addition	
	at different levels	
34.	Changes in surface hydrophobicity of some marine fish and shrimp NAM	113
	added with different levels of formaldehyde as influenced by MTGase addition	
	at different levels	
35.	Surface hydrophobicity of NAM from some marine fish and shrimp with	114
	different degrees of hydrolysis	
36.	Free amino group content of NAM from some marine fish and shrimp with	115
	different degrees of hydrolysis	

LIST OF FIGURES (Continued)

Figu	Figure	
37.	SDS-PAGE of NAM from some marine fish and shrimp with different	116
	degrees of hydrolysis	
38.	Changes in free amino group content of NAM from some marine fish and shrimp	118
	as influenced by different degrees of hydrolysis	
39.	Changes in solubility of NAM from some marine fish and shrimp	120
	as influenced by different degrees of hydrolysis	
40.	Protein patterns of NAM hydrolysate from some marine fish and shrimp with	122
	different degrees of hydrolysis added without and with MTGase at different	
	levels and incubated at 40°C for 30 min	
41.	Changes in sulfhydryl group content of NAM from some marine fish and shrimp	124
	as influenced by different degrees of hydrolysis	
42.	Changes in disulfide bond content of NAM from some marine fish and shrimp	126
	as influenced by different degrees of hydrolysis	
43.	Changes in surface hydrophobicity of NAM from some marine fish and shrimp	128
	as influenced by different degrees of hydrolysis	