2 MATERIALS AND METHODS

2.1 Materials

2.1.1 Chemical substances

Materials from Fluka

2-Aminopyrazine, C₄H₇N₃, A.R. grade

Nitrosobenzene, C₆H₅NO, A.R. grade

Tetrabutylammonuim hexafluorophosphate, [NBu₄]PF₆, A.R. grade

Materials from Merck

Silica gel 60 (0.040-0.063 nm) GF₂₅₄

Sodium hydroxide, NaOH, A.R. grade

Materials from Aldrich

Ruthenium(III) chloride hydrate, C1₂H₈N₂.H₂O, A.R. grade

2,2,2 Solvents

Solvent from Analyzed' Reagent

1-Propanol, CH₃CH₂CH₂OH, A.R. grade

Solvents from Lab. Scan analytical science

Acetonitrile, CH₃CN, A.R. grade

Chloroform, CH, Cl, A.R. grade

Dichloromethane, CH2Cl2, A.R. grade

Dimethyl sulfoxide, DMSO, A.R. grade

Hexane, C₆H₁₄, A.R. grade

Solvent from Merck

Hydrochloric acid, HCl, A.R. grade

Solvent from M&B Laboratory Chemical

Dimethylformamide, HCON(CH₃)₂, A.R. grade

The solvents, dichloromethane, hexane, and ethylacetate, for column chromatography were purified by distillation prior to use.

2.2 Instruments

2.2.1 Melting Point Apparatus

Melting points of all compounds were measured on an Electrothermal melting point apparatus (Electrothermal 9100).

2.2.2 Elemental Analysis

Elemental analysis data were obtained by using Carlo Erbra EA 1108 Elemental Analyser (University of Bristol, U.K.).

2.2.3 Fast-atom bombardment (FAB) Mass spectrometry

Fast-atom bombardment (FAB) mass spectra were recorded on a VG Autospec instrument (university of Bristol, U.K.).

2.2.4 Infrared Spectroscopy

Infrared spectra were collected by using KBr pellets on a Perkin Elmer Spectrum GX FT-IR Spectrophotometer from 370 - 4,000 cm⁻¹.

2.2.5 UV-Visible Absorption Spectroscopy

A Hewlett Peckard 8425A diode array spectrophotometer was used to record the electronic spectra in the range 200-800 nm.

2.2.6 Nuclear Magnetic Resonance Spectroscopy

1D and 2D NMR spectra were recorded in CDCl₃ solution with a Varian UNITY SNOVA 500-MHz FT-NMR spectrometer and Bruker AVANCE 300-MHz. Tetramethylsilane (Si(CH₃)₄) was used as an internal standard.

2.2.7 Cyclic Voltammetry

Electrochemical experiments were carried out using cyclic voltammetry technique. The program was Echem1.5.1. Cyclic voltammograms were obtained using a glassy carbon working electrode, a platinum wire auxiliary electrode and a platinum disc reference electrode. All potentials were quoted vs the ferrocene/ferrocenium ion in acetonitrile. The electrolyte was tetrabutylammonuim hexafluorophosphate (TBAH). The argon was bubbled through the solution prior to each measurement.

2.2.8 X-ray Diffractometer

The structures of the ctc-[Ru(azine) $_2$ Cl $_2$] and the tcc-[Ru(azine) $_2$ Cl $_2$] complexes were determined by Smart APEX CCD diffractometer with the SHELXTL NT (version 6.12) programs.

2.3 Synthesis of ligand

The 2-(phenylazo)pyrazine (azine) ligand was prepared by modified literature method (Krause and Krause, 1980).

2-Aminopyrazine (283 mg, 2.97 mmol) reacted with nitrosobenzene (324 mg, 3.02 mmol) in the mixture of 20 M NaOH and 10 mL of benzene solution. The reaction mixture was heated in the water bath at 50-60 °C with stirring for 3 h. The mixture was extracted with benzene. The brown reaction mixture was evaporated to one fifth of the original volume and transferred to silica gel column packed with hexane. The red-orange band was eluted with hexane-ethylacetate (9:1) mixture, which was collected and evaporated to dryness. The yield is 52 % (283 mg).

2.4 Syntheses of complexes

2.4.1 ctc and ccc - [Ru(azine)₂Cl₂] (The Blue complexes)

The ctc and ccc-[Ru(azine)₂Cl₂] complexes were prepared by mixing of RuCl₃.3H₂O (10 mg, 0.05 mmol) and 2-(phenylazo)pyrazine ligand (30 mg, 0.15 mmol) in dimethylformamide (50 mL) at reflux for 6 h. The solvent was removed. The residue was purified by column chromatography. The dichloromethane was used as an eluent. The first and the last blue bands were eluted with dichloromethane-ethylacetate (9:1) mixture. The isolated product consisted two isomers (ctc and ccc-[Ru(azine)₂Cl₂]). The yield of ctc isomer is 50 % (13 mg) and that of the ccc isomer is 20 % yield (5 mg).

2.4.2 tcc -[Ru(azine),Cl₂] (The green complex)

The tcc-[Ru(azine)₂Cl₂] complex was synthesized by using the same procedure described for the ctc and the ccc-[Ru(azine)₂Cl₂] complexes. The dimethylformamide was replaced by 1-propanol. The yield of the tcc isomer (green color) is 22 % (8 mg).