Chapter 3

Results

1. Characterization of purified vitellin

In this study, Vt from the ovaries of vitellogenic P. merguiensis females was
purified and characterized for its chemical properties. Vt was purified by DEAE-Sephacel column
and Sephadex G-200 column, respectively. The electrophoretic patterns of fractions from
purification process were run on 4-10% nondenaturing PAGE as shown in Fig. 20. Subunits of
purified Vt were characterized by 5-15% SDS-PAGE as shown in Fig. 21. The N-terminal amino
acid sequences of the 78, 87 and 104 kDa subunits were determined by Edman degradation. The
N-terminal amino acid sequence of the 78 kDa and 87 kDa subunits were found to be identical and
have sequence APWGADVPR whereas that of 104 kDa subunit is SIDSSVIADF.

The isoelectric point of purified Vt is 5.3, determined by isoelectro focusing, Fig.
22, indicating that P. merguiensis Vt is an acidic protein. The elution profile of purified standard
and Vt when determining the amino acid composition by using an amino acid analyzer is shown in
Fig. 23. The amino acid composition of the purified P. merguiensis Vt is similar to Vt from other
penaeid shrimps and M. rosenbergii (Table 8). In addition, the amino acid composition of the
primary structure of P. merguiensis Vt obtained from Vg cDNA was almost identical to purified
Vt with the exception of the cysteine content. There are some cysteines in the Vg primary
structure, but cysteine was undetectable in purified Vt (Table 8). Vt does not have protease

activity when tested by using skim milk as substrate (Fig. 24).
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Fig. 20 4-10% Nondenaturing PAGE of Vt at various steps of purification.
The gel was stained with Coomassie Blue. Lane 1, molecular weight markers;
lane 2, crude ovarian extract; lane 3, fractions containing Vt from DEAE-Sephacel

column; lane 4, purified Vt from Sephadex G-200 column.
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Fig. 21 5-15% SDS-PAGE of purified Vt.
The protein bands were stained with Coomassie Blue. Lane 1 and 4, molecular
weight markers. Lane 2, purified Vt in the presence of B-mercaptoethanol. Lane 3,

purified Vt in the absence of B-mercaptoethanol.
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Fig. 22 Isoelectric focusing of purified Vt.
The protein markers used were: carbonic anhydrase, pl 6.6 (lane 1), B-
galactosidase, pI 5.1 (lane 2), glucose oxidase, pI 4.2 (lane 4), and amyloglucosidase, pl
3.6 (lane 5). Lane 3 is purified Vt. The arrows represent protein bands with

corresponding pl values.
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Fig. 23 Elution profiles of standard (A) and purified Vt (B) when determining the amino

acid composition.



Table 8 Amino acid composition of purified Vt from Penaeus merguiensis and other shrimps.

Species Penaeus Penaeus | Marsupenaeus Penaeus Penaeus Litopenaeus Metapenaeus | Macrobrachium
Merguiensis chinensis Japonicus Monodon Semisulcatus Vannamei ensis rosenbergii
Amino Acid | Vi* vt' A A\ Vt* vi' Vit vi* vt Vi

Lys 6.70 5.84 6.3 7.1 6.1 6.12 5.33 6.26 8.15 7.56
Arg 5.04 491 5.2 52 5.5 471 4.8 4.65 0.96 6.35
His 2.40 2.40 2.1 2 2.4 2.52 1.89 2.5 2.08 2.67
Asx 6.72 6.50 7.3 9.2 1.7 7.28 6.67 6.24 9.03 8.26
GlIx 12.84 11.21 12.8 18.8 134 13.06 12.11 11.39 13.77 12.07
Tvr 1.93 3.13 2.7 2 2.4 2.94 333 3.16 2.01 2.54
Cys UD 1.31 0.9 0 0.6 1 ND 1.31 ND UD

Glv 6.73 6.23 6 9.7 7.2 6.04 8.3 7.05 6.62 8.38
Ala 10.99 11.76 11 9 11.7 10.83 10.62 10.78 13.21 6.99
Val 8.59 8.55 8.4 6.3 7.1 8.27 7.64 7.8 9.84 6.92
Leu 8.05 6.84 1.7 7.3 7.1 7.16 127 7.35 8.25 8.76
Ile 7.31 7.15 7 4.5 6.2 7.06 6.69 6.67 6.82 4.89
Phe 3.95 3.63 39 3.7 35 3.56 3.7 3.81 4.07 3.37
Trv ND 0.66 0 0 ND ND ND 0 ND ND

Met 1.71 2.63 2.8 3.6 1.4 2.59 2.45 2.24 2 0.76
Ser 5.89 6.03 5 6.8 6.4 5.96 71.27 7.37 5.07 8.83
Thr 6.27 6.19 5.6 5.9 6.3 6.08 5.63 6.08 0.14 6.35
Pro 4.86 5.03 53 0 5.6 4.83 6.27 5.36 7.98 5.4

‘From amino acid composition (this study); *From Vg cDNA (this study); From Chang ef al., 1996; ‘From Vazquez-Boucard
and Ceccaldi, 1986; ‘From Chang et al., 1993; From Quinitio, ef al., 1990; *From Tom et al., 1992; "From Qui et al., 1997, 'From Lee et al.,

1997b. Each value was expressed as % mole of total amino acids. ND : not determined, UD : undetectable.

S8



86

Fig. 24 Determination of protease activity of purified Vt.
Well 1, positive control (proteinase K, 100 pg); well 2, purified Vt (130 pg); well

3, purified Vt (260 ug); well 4, negative control (distilled water).
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2. Characterization of cDNA encoding Vg from the ovary

2.1 Isolation of a cDNA fragment encoding the N-terminal region and full length of
P. merguiensis Vg

A degenerate primer (FVg97) was designed on the basis of the N-terminal amino
acid sequence of purified Vt found earlier by Edman degradation. The reverse primer (RVg1201)
was constructed based on the conserved sequences of Vt reported for other shrimps. By using RT-
PCR and this pair of primers (FVg97 and RVgl201), a PCR product of about 1,100 bp was
obtained from the ovary of vitellogenic P. merguiensis females. The cDNA was cloned and
sequenced. Sequence analysis showed that the product encoded the 9 N-terminal amino acids that
matched exactly the experimentally determined 9 N-terminal amino acid sequence
(APWGADVPR) of the 78 and 87 kDa subunits of purified Vt, and included a peptide sequence
that was not encoded by any of the PCR primers. These initial data indicated that cDNA from a
Vg gene encoding the N-terminal region had been cloned. The 5' and 3' fragments of Vg cDNA
were cloned using the RACE technique. A full-length ¢cDNA of P. merguiensis Vg was
reconstructed by overlapping nucleotide sequences from the results of walking RT-PCR and
RACE methods (Fig. 25, 26 and 27). To eliminate errors in cDNA reconstruction and to confirm
that all cDNA fragments obtained from previous experiments were amplified from the same full-
length Vg ¢cDNA, one pair of specific primers (FVg24 and RVg 7786) was designed to amplify a
large RT-PCR fragment. Its PCR product was 7.7 kb and contained ORF sequence (Fig. 28). Its

nucleotide sequence was 99% identical to that of the full-length Vg cDNA previously determined.
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Fig. 25 RT-PCR cloning strategy and schematic view of Vg cDNA.
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An initial PCR amplification was obtained by using a primer encoding the N-

terminal sequence of Vt 78 kDa subunit. Contiguous sequence data with individual

clones were obtained by primer-walking. Both 5' and 3' RACE were used to clone the 5'

and 3' ends of the cDNA. Overlapping sequences were used for reconstruction of a full-

length Vg cDNA.
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Fig. 26 Amplification of cDNA encoding the Vg cDNA fragments.
The PCR product was analyzed on 1% agarose gel electrophoresis. Lane 1, 1 kb
DNA ladder marker; lane 2, 100 bp DNA ladder markers; lane 3-9, OneStep RT-PCR

product amplified of cDNA encoding Vg of P. merguiensis.
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A (B)
Fig. 27 Vg cDNA electrophoresis patterns of 5' RACE and 3' RACE fragments.

The PCR product was analyzed on 1% agarose gel electrophoresis. Lane 1, 1 kb
DNA ladder markers; lane 2, 100 bp DNA ladder markers; lane 3 (A), DNA fragments of

3' RACE; lane 3 (B), DNA fragments of 5' RACE.
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Fig. 28 Vg cDNA electrophoresis pattern of Vg open reading frame.
The PCR product was analyzed on 1% agarose gel electrophoresis. Lane 1, 1 kb
DNA ladder markers; lane 2, PCR producted of a large fragment of Vg open reading

frame.
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2.2 Characterization of cDNA and deduced amino acid sequence of P. merguiensis
Vg

The full-length cDNA of P. merguiensis Vg, obtained from walking RT-PCR

cloning, RACE and confirmed by amplification of the entire Vg cDNA sequence was deposited in
GenBank with accession number AY499620 and consists of 7,961 nucleotides (Fig. 29). Sequence
analysis revealed the presence of a single large open reading frame of 7,758 bp, a 5' untranslated
region (33 bp), a stop codon (TAA), a polyadenylation signal AATAAA 14 nucleotides upstream
of the site of poly (A) addition and a 3' untranslated region (167 bp) (Fig. 30). The open reading
frame encodes a peptide that comprises 2,586 amino acids. A signal peptide containing 18
contiguous highly hydrophobic amino acid residues was predicted by the eukaryotic signal peptide
prediction program SignalP 3.0 (Bendtsen et al., 2004). This indicates that the protein is cleaved
between amino acid residues 18 and 19 and exported from the cell. The mature protein has a
molecular mass of 283,029 Da and its theoretical pl value is 6.36 as estimated by ProtParam
(Gasteiger et al. 2005). Based on the N-terminal sequence of the 78 and 87 kDa subunits of
purified Vt and the predicted signal peptide sequence, the molecular mass of the pro-Vg in P.

merguiensis was predicted to be 281,235 Da.
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29 Full length Vg cDNA nucleotide sequence from Penaeus merguiensis was deposited

in GenBank with accession number AY499620.

Nucleotide position is shown on left and right hand sides. Start codon (ATG),

stop codon (TAA) and polyadenylation signal (AATAAA) are underlined.
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Fig. 29 (Continued)
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Fig. 30 5' Ends (A) and 3' ends (B) of nucleotide sequence of Penaeus merguiensis Vg

cDNA.

This shows the untranslated regions and includes amino acid translation of the

translated regions. The start codon (ATG) and stop codon (TAA) are in bold. A

consensus polyadenylation signal (AATAAA) is shown in bold italics. Nucleotide or

amino acid position is shown on left and right hand sides.
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The deduced amino acid sequence of P. merguiensis Vg contains multiple copies
of a consensus dibasic cleavage site, R-X-(K/R)-R (Arg724 to Arg727) or R-X-X-R (Arg613 to
Arg616, Arg724 to Arg727, Arg942 to Arg945, Arg945 to Arg948, Argl731 to Argl734,
Arg2194 to Arg2197 and Arg2372 to Arg2375) potentially cut by the subtilisin family of serine
endoproteases (Barr 1991; Chen et al., 1997) as shown in Fig. 31. Cleavage at the RTRR site that
starts at amino acid 724 would produce two subunits of molecular weights 78 and 203 kDa. The
N-terminal amino acid sequence of 78 and 87 kDa subunits are identical as APWGADVPR
sequence and located at residue 19 onwards of the Vg deduced amino acid sequence just after
signal peptide processing. The N-terminal amino acid sequence of the 104 kDa subunit of Vt is
SIDSSVIADF which corresponds to amino acid position 728 onwards, and is just after a
consensus cleavage site from endoproteases of the subtilisin family.

In contrast to the known Vgs of insects and vertebrates, the P. merguiensis Vg
possessed neither a polyserine domain nor a potential N-linked glycosylation site and this is also
the case for other shrimps. The DictyOGlyc 1.1 server, producing neural network predictions for
GlcNAc O-glycosylation sites, identified 3 possible glycosylation sites in the Vg primary structure
at positions Ser37, Thr1750 and Ser1891 (Gupta et al., 1999). Possible phosphorylation and
sulfated tyrosine sites were predicted by NetPhos 2.0 (Blom et al., 1999) and Sulfinator (Monigatti
et al., 2002), respectively. The deduced Vg sequence has 75, 43 and 28 possible phosphorylation
sites for serine, threonine and tyrosine, respectively, while five sites of sulfated tyrosines were
predicted. Secondary structure was predicted by Porter software (Pollastri and McLysaght, 2005).
Primary sequence, secondary structure and post-translation sites are shown in Fig. 32. Fig. 33

shows topology of deduced Vg of P. merguiensis.
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AA613 AAT724 AA942/945 AAl1731 AA2194 AA2372
AR19 RDFR RTRR RDVRIQR RFTR RIVR RAPR
APWGADVPR SIDSSVIADF
(78, 87 kbDa) (104 kDa)

Fig.31 Schematic view of Peneaus merguiensis Vg cleavage sites and N-terminal amino acid
sequence positions of Vt subunits.

The first arrow shows signal peptide cleavage site. The downward vertical arrows

indicate the location of the predicted cleavage sites that have the RXXR consensus motif

for subtilisin endoprotease. The upward vertical arrows represent the N-terminal amino

acid sequence of Vt subunits.
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Fig. 32 Deduced amino acid sequence of the Penaeus merguiensis Vg with secondary structure and possible post-translation sites.
The N-terminal amino acids determined in this study are underlined. Amino acid sequences for a possible cleavage site with a consensus
R-X-X-R are in white letters on a black background. Possible O-Linked GIcNAc glycosylation sites are in red letters. Possible phosphorylation
sites are in blue letters and possible sulfated tyrosine sites have yellow background. For secondary structure, arrows (blue) indicate p-strands, and
cylinders (pink) depict a-helices. The position of the observed signal peptide cleavage site and observed endoprotease cleavage sites are indicated

by spark shape (red). This sequence was deposited in GenBank with protein ID number AAR88442.
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Fig. 33 Topology of deduced Vg in Penaeus merguiensis shows the secondary structure
from N-terminal to C-terminal end.
Arrows (blue) indicate B-strands and direction from N- to C-terminal end.

Cylinders (pink) depict a-helices.
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3. Bioinformatics and computer analysis

3.1 BLAST analysis of deduced Vg from P. merguiensis

PSI and PHI-BLAST (position-specific iterated and pattern-hit initiated BLAST)
(Altschul et al., 1997) network server from NCBI was used to search for similar sequences and
conserved domains that have homology with the primary structure of the deduced amino acid
sequence of Vg from P. merguiensis (Protein ID; AAR88442). Sequence analysis using BLAST
revealed three putative conserved domains in the Vg sequence of P. merguiensis. The amino acid
sequence could be divided into three segments; positions 1-1090 contain the lipoprotein N-
terminal domain and DUF1081; positions 1091-2328 do not contain any conserved domains; and
the C-terminal segment from residue 2329 to the end contains a von Willebrand factor (vWF) type
D domain as shown in Fig. 34A. The N-terminal region of the Vg in this shrimp thus has
similarities with other serum lipid binding proteins such as mammalian apolipoprotein B (ApoB),
apolipophorin (Apo), retinoid-fatty acid binding glycoprotein (Retin) in insects, microsomal
triglyceride transfer protein (MTP) and also Vg in other species. Sequences that showed similarity
to banana shrimp Vg were separated into 3 analyses depending on similarity and the extent of the
region of similarity to deduced Vg from banana shrimp as shown in Fig.34B. The entire length of
deduced Vg sequence of P. merguiensis and all known other decapod crustacean full-length
sequences which were available at NCBI on 1 May 2006 were used to constructed one
phylogenetic tree. The N-terminal amino acid region and C-terminal amino acid region were
analyzed separately. The middle part of Vg from banana shrimp does not show conservation to

other proteins outside decapod crustaceans, and may have diverged rapidly.
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Fig. 34 BLAST analysis of deduced Vg.
The BLAST results showing (A) the three putative conserved domains of Vg
sequences and (B) sequences with some similarity at the N- or C-terminal region. The
arrows and blocks indicate the selected regions which were used in further analysis that

each phylogenetic tree presented is based on.
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3.2 Comparison of the primary structure of P. merguiensis Vg to Vgs of other
decapod crustaceans

The deduced amino acid sequence including the signal peptide of P. merguiensis

Vg and other 10 identified decapod crustaceans were multiple-aligned using the Clustal W
computer program (Thompson et al., 1994). The alignment of the deduced amino acid sequences
of these Vgs revealed a similarity among these 11 species (13 sequences) along the full sequence,
including the signal peptide and N-terminal region (Fig. 35A) as well as for the C-terminal region
(Fig. 35C). The structure of the consensus cleavage site for the subtilisin family of endoproteases,
R-X-(K/R)-R, was observed in all Vgs, and their amino acid positions were nearly identical (Fig.
35B). Table 15 shows the overall amino acid identity ratios (%) in pairwise comparisons as
calculated by BioEdit version 7.0.1 (Hall, 1999). The primary sequence had the highest similarity
(91.4%) to the corresponding Vg sequence from P. semisulcatus (Genbank AY051318) and 86.9%
similarity to that of L. vannamei (Genbank AY321153). It also has high similarity (above 63.5%)
to the Vg from P. monodon (Genbank DQ288843), M. japonicus (Genbank AB033719) and Vgl
and Vg2 from M. ensis (Genbank AY 103478 and AF548364, respectively). There was a weaker
similarity to Vg3 from M. ensis (GenBank AY530205) (50.3%). The percentages of identical
residues for nonpenaeid Vg are low, ranging 42.6%-34.9% for other decapod crustaceans. These
include C. quadricarinatus (Genbank AF306784), P. hypsinotus (Genbank AB117524), M.
rosenbergii (Genbank AB056458) and P. trituberculatus (GenBank DQ000638), while still
retaining sequence similarity (34.6%) along the entire length of Vg in C. feriatus (GenBank
AY724676). A phylogenetic tree of decapod crustacean Vgs was generated using the neighbor-
joining method (Fig. 36). This unrooted tree shows that the currently known decapod Vgs group
into four distinct lineages, which agree with taxonomic classification. The results from the
phylogenetic tree and BLAST also show that Vg from P. merguiensis is most closely related to the
Vg from P. semisulcatus, followed by the Vg of L. vannamei, P. monodon, M. japonicus and M.
ensis, respectively in Penaeidea. The results from the phylogenetic tree and % identity ratio

correspond well.



A

P.merguiensis
P.monodon

M. japonicus
L.vannamei
P.semisulcatus
VglM.ensis
Vg2M.ensis
Vg3M.ensis
.hypsinotus
.rosenbergii
.gquadricarinatus
.feriatus
.trituberculatus
Clustal Consensus

(B)

.mercuiensis
.monodon

. jJaponicus
.vannamei
.semisulcatus
VglM.ensis
Vg2M.ensis
Vg3M.ensis
.hypsinotus
.rosenbergii
.quadricarinatus
.feriatus

.trituberculatus
Clustal Consensus

©

.mergquiensis
.monodon
.japonicus

. vannamei
.semisulcatus
VglM.ensis
Vg2M.ensis
Vg3M.ensis
P.hypsinotus
M.rosenbergii
C.quadricarinatus
C

P

"Moo i< IR, L haoaa

HHE®™Hd

.feriatus
.trituberculatus
Clustal Consensus

109

Signal peptide ----------- >

20 30 40 50 60 70
MTTSTLLFVILAFVAGCLAAPWCADVPRCSTECPVTGSPRIAYQPDKTYAYAYSCKSTVQLECVONGDTET
MTTSTLLFILAFVTGGLAAPWCADLPRCSTECPITCSPKIAYOPDKTYAFPPYSCKSRVHLKCVONCGDSET
MTTSSLLFVIALVAGGLAAPWCADLPRCSTECPISGSPRIAYQPERTY TYQYSCKSRVQLECVDDCVSET
MTTSTLLFVLAFVAGCLAAPWGADVPRCSTECPITGSPKLAYPDKTYAY Q¥ SCKSKVQLKCGVONGDSET
MTTSNILFVLAFVAGCLAAPWCADLPRCSTECPITGSPRIAYQPDEKTYAYAYSCKSTVOQLECVNNGDAET
MNSSSLVLVILALVAGGLAAPREDEAPRCSTECPVTGSPRIAYEPGEKTY TYAYSCKSKVQLECVQDGDSDT
MAPLGLVLVIWIAAGGLAAPREDEAPRCSTECPVTGSPKLAYEPGKTY TY AYSGKSKVQLKCGVODGDSD T
MNSSSLVLVILALVAGGCLAAPWCAEVPRCSTECPVTGSPRILAYEPCGEKTY TYAYSCKSEVOQLECVODCVTDL
MTSSTALFVLCGFIAAASARAPWPSNLPRCSTECPIAGSPRKIDYAPEKTYIVYAYSCKSRIQMKCVEGGNADM
M-TSSVLIAFVIIATASAAPWPSGINLCSKECPVAGSPKLFYAPEKTY VY SYTGKSRTHLROVEGATAEM
MTTSAALIVLPIVAGCAGCAPPFGCNTEVCSTECPIAGSPRLFYQPGRKTYTYEYSCKSRIQLECVEGGLTET
MTTHTVLLL-ALRAAARRAPYGSTIQLCSTECPVAAA-KIAFTPGKTYSYTYTCKSQVQLEKCVDGCVVDT

MTTHTVLLLIALTAAAVAAPYGGTTOLCSTECPTI AAA-KLSFIPGKTYSYTYSCKSTVOQLKECVDGGIVET
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Fig. 35 Partial alignment of the deduced amino acid sequences of Penaeus merguiensis Vg
with other decapod crustaceans.

(A) Sequences for the signal peptide and N-terminal region of Vg. (B)

Consensus cleavage sequences (R-X-K/R-R) for processing by subtilisin-like

endoproteases are shown in the black bordered box. (C) C-terminal region of Vg.

Identical amino acid residues are highlighted in gray. The numbers above the amino acid

sequences indicate the position in the alignment of the amino acid residue. The (-)

indicates a gap introduced into the amino acid sequence to allow for the maximum degree

of identity in the alignment. Identical, conserved and semi-conserved amino acid residue

positions are indicated by asterisks, double dots and single dots, respectively.



Table 9 The percentage ratios of the overall amino acid identity between the full-length Vg amino acid sequences including signal peptide

sequences of 11 decapod crustacean species (13 sequences).

Species Penaeus | Penaeus | Marsup. Litop. Penaeus | M. ensis | M.ensis | M.ensis | Pandalus | Macrobra. Cherax Charybdis | Portunus
merguien | monodon | japonicus | vannamei |semisulcatus| Vgl Vg2 Vg3 hypsinotus | rosenbergii | quadricarina | feriatus |tritubercula
P. merguiensis 0.841 0.791 0.869 0.914 0.635 0.645 0.503 0.400 0.365 0.426 0.346 0.349
P. monodon 0.764 0.812 0.837 0.626 0.636 0.497 0.396 0.362 0.419 0.337 0.342
M. japonicus 0.789 0.799 0.646 0.651 0.515 0.412 0.374 0.439 0.342 0.346
L. vannamei 0.869 0.628 0.639 0.507 0.399 0.362 0.431 0.342 0.346
P. semisulcatus 0.632 0.643 0.498 0.398 0.362 0.427 0.344 0.346
VgIM. ensis 0.966 0.530 0.387 0.353 0.407 0.329 0.337
Vg2M. ensis 0.538 0.393 0.359 0413 0.332 0.340
Vg3 M. ensis 0.371 0.350 0.401 0.318 0.327
P. hypsinotus 0.605 0.409 0.347 0.354
M. rosenbergii 0.387 0.316 0.325
C. quadricarinatus 0.381 0.378
C. feriatus 0.782

P. trituberculatus
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Fig. 36 Phylogenetic tree analysis of Vg from different crustacean.

The unrooted tree was constructed with MEGA (Kumar et al., 2004) using the

neighbor-joining method (Saito and Nei, 1987) based on the alignment of amino acid

sequences of ten crustacean Vgs using Clustal W (Thomson et al., 1994). The distance

method used was the JTT Matrix (Jones et al., 1992)

; otherwise default parameters were

used. Bootstrap values (%) based on 1000 replicate analyses are shown at branch points

which indicated how reliable of that branch tree. The standard bar at the bottom shows

the branch length corresponding to 0.1 amino acid changes per residue. The illustrations

in the tree were obtain from De-Bruin (1995).
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3.3 Phylogenetic tree of N-terminal regions of vitellogenins

Phylogenetic trees analysis based on sequences obtained from BLAST gave low
bootstrap value, since the amino acid sequence is quite non-conserved even though they are from
the same protein family. Instead I searched the Pfam (Protein Families) database using P.
merguiensis Vg as query. The results showed significance at the N-terminal region. This
lipoprotein amino terminal region family contains Vg from various species, apolipophorins (Apo),
apolipoprotein B (ApoB), retinoid- and fatty acid-binding glycoprotein (Retin), a clottable protein
(Clot) and the microsomal triglyceride transfer protein (MTP). These proteins are all involved in
lipid transport except the clottable protein, which functions in coagulation systems. A
phylogenetic tree based on the alignment of amino acid sequences from the lipoprotein N-terminal
region family using Clustal W (Thomson et al., 1994) was reconstructed by MEGA version 3.1
using the neighbor-joining method. The distance method used was JTT Matrix (Jones et al., 1992);
default parameters were used otherwise. The phylogenetic tree of the N-terminal region is shown
in the Fig. 37A. MTP was chosen as the out group. Phylogenetic analysis of the N-terminal region
showed high bootstrap values for the branch of Vgs from vertebrates, separated from Vgs and
clottable proteins from invertebrates. In addition, this tree indicated that Vgs from insects are
grouped with clottable proteins from crustaceans.

Surprisingly, the phylogenetic tree showed that Vgs from decapod crustaceans are
located in the same cluster as Apo, ApoB and Retin; not in the same group as Vg from other
species (vertebrates and invertebrates). This means that Vg in decapod crustaceans are paralogous
to Vg of other species. In other words, Vg gene duplication occur before species
speciation/separation in decapod crustacean. It is assumed in the literature that all Vgs are
orthologous: that a single gene duplication of the ancestral lipoprotein gene give rise to Vg, and
that this Vg gene has been inherited with the same function in all vitellogenic species. Instead, it
appears decapod crustacean Vg is paralogous to other Vg, being descended from a different gene
family member and having its function change to Vg after decapod crustaceans separated from
other species. The event can be confined to decapod crustaceans, since Daphnia magnia, a non-
decapod crustacean, has Vg that groups with insects and other species, not with decapod
crustacean Vg. Because the branches that separated Vgs from vertebrate, invertebrate, insect,

nematode into one group and Vg from decapod crustacean, Apo, ApoB and Retin into another
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group did not have significant bootstrap support, 55 and 50, respectively, we wanted to confirm
this surprising result. Dr. Robert G. Beiko (Genomics and Computational Biology, Institute for
Molecular Bioscience, University of Queensland and ARC Centre in Bioinformatics) helped me to
establish confidence in this scenario by constructing phylogenetic tree using the MrBayes
(Huelsenbeck and Ronquist, 2001; Huelsenbeck et al., 2001; Holder and Lewis, 2003) program
based on a MUSCLE (Edgar, 2004) alignment of the lipoprotein N-terminal region family.
MrBayes was run for 2.5 million generations, and the first 500,000 generations were discarded as
burn-in (Fig. 37B). The phylogenetic tree reconstructed by MrBayes showed significant values, 92
and 99 at the branch that separated Vgs of decapod crustacean from Vgs of other species. We thus

have more confidence that Vg in decapod is indeed paralogous with Vgs of other species.
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Fig. 37A Phylogenetic tree analysis of lipoprotein N-terminal region family.

(A) The tree was constructed with MEGA (Kumar ef al., 2004) using the
neighbor-joining method (Saito and Nei, 1987) based on the alignment of amino acid
sequences of lipoprotein N-terminal region family using Clustal W (Thomson et al.,
1994). The distance method used was the JTT Matrix (Jones et al., 1992); otherwise
default parameters were used. Percentage bootstrap values based on 1000 replicate
analyses are shown at branch points which indicated how reliable of that branch tree.
The standard bar at the bottom shows the branch length corresponding to 0.5 changes

per residue.
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Fig. 37B Phylogenetic tree analysis of lipoprotein N-terminal region family.
(B) The tree was constructed with MrBayes (Huelsenbeck and Ronquist, 2001;
Huelsenbeck et al., 2001; Holder and Lewis, 2003) by Dr. Robert G. Beiko
(Genomics and Computational Biology, Institute for Molecular Bioscience, University
of Queensland) based on the alignment of amino acid sequences of lipoprotein N-
terminal region family using MUSCLE (Edgar, 2004). MrBayes consensus values

(percentage) are shown at branch points.
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3.4 Phylogenetic tree of C-terminal regions of vitellogenin

The von Willebrand factor (vWF) type D domain at the C-terminal region was
analysed by searching the Pfam (Protein Families) database using P. merguiensis Vg as query.
The vWF type D domain is found in Vg of other species and in Apo, Retin, Clot, vWF and mucin
but not in ApoB. The phylogenetic tree based on the alignment of amino acid sequences of vVWF
type D domain using Clustal W (Thomson ef al., 1994) was reconstructed by MEGA version 3.1
using the neighbor-joining method and the tree is shown in Fig. 38. The distance method used was
JTT Matrix (Jones et al., 1992); default parameters were used. Clusters consisting of Apo, Retin,
vWF and mucin grouped together, and were clearly separated from Vgs group as expected. The
Clot of P. monodon was located in the same branch as Vgs from insect and this group has a closer
relationship with the cluster of Vgs from invertebrates and nematodes than the group of Vgs from
decapod crustacean. When comparing only Vg sequences, the vWF type D domain at the C-
terminal region were more conserved than the lipoprotein N-terminal domain. The vWF domain
may be more highly conserved due to its function in protein-protein interaction which limits

allowable amino acid variation.
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Fig. 38 Phylogenetic tree analysis of the von Willebrand factor (vWD) type D domain at the
C-terminal region of Vg and other corresponding region in other related proteins.

The tree was constructed with MEGA (Kumar et al., 2004) using the neighbor-

joining method (Saito and Nei, 1987) based on the alignment of amino acid sequences of

vWF type D domain using Clustal W (Thomson et al., 1994). The distance method used

was JTT Matrix (Jones et al., 1992); otherwise default parameters were used. Percentage

bootstrap values based on 1000 replicate analyses are shown at branch points which

indicated how reliable of that branch tree. The standard bar at the bottom shows the

branch length corresponding to 0.5 changes per residue.
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3.5 Tertiary structure modelling of N-terminal region vitellogenin

The three-dimensional structure has been solved for only one member of the
large lipoprotein family, lamprey lipovitellin (LV) (Anderson et al., 1998; Thompson and
Banaszak, 2002). LV was purified from lamprey eggs, crystallized and X-ray diffraction used to
solve the structure. X-ray crystallography data are not available from Protein Data Bank (PDB),
only the finally determined three-dimensional (3-D) locations of atoms. The lamprey data, entry
1LSH were retrieved from Protein Data Bank (PDB). This consists of the deduced amino acid
sequence, N-terminal sequence information and 3-D co-ordinates of each atom in the structure.
LV from lamprey comprises A and B polypeptide chains and consists of a number of folding
domains as shown in Fig. 39A. A tertiary structure model of N-terminal Vg from banana shrimp
was built using the 3-D structure from lamprey LV chain A (PDB entry 1ILSH_A) as template
(Fig. 39B). 3D-Jigsaw (Bates et al., 2001), EasyPred (Lambert et al., 2002) and Modeller (Sali et
al., 1995) servers returned comparable models, which is expected, since the 1LSH_A template
shares approximately 19.4% identity with the N-terminal region of Vg sequence from P.
merguiensis. For 3-D structure 20% identity is pretty good, we expect same 3-D structure. Each
model was named according to the server used for modelling; 3D-Jigsaw_Vg, EasyPred Vg and
Modeller Vg. Models are shown in different orientations in Fig. 40 and Fig. 41. Overall, all
structure models shared similarity, with a main domain structure very similar to the LV template,
except that the Vg model from EasyPred has a different orientation between the N-sheet and other
domains. All models have predominantly antiparallel B-sheet domains including the N-sheet, C-
sheet, A-sheet, and also a large helical domain. Our models are missing some parts of the A-sheet
because the underlying sequence is located on chain B of lamprey LV which can not be aligned to
the remaining Vg sequence from banana shrimp. Thus tertiary structure could be predicted only
for the N-terminal region of Vg. Currently, von Willebrand factor (vWF) type D domain structure
is not available from the PDB databank, and so there is no template for modeling this region. We
conclude from the similarity between all models that A- and C-sheets form a lipid cavity and seem
to be a boundary between the a-helix domain and the lipid cavity. The a-helix domain appeared as
2 layers of 18 helical structures that form an arch and then this arch forms a clasp around the f-
sheet structure of A- and C-sheets in the middle of the models. The N-sheet domain forms a

barrel-like conformation and includes 11 large B-strands wrapped around a helix of 13 residues.
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The C-Sheet consists of mainly 7 B-strands and the A-sheet in Vg models comprise 8 large f-
strands.

The relative prediction performance among the three programs was compared.
The loops and some small secondary structure features are different between the different
prediction models. Superimposition shown in Fig. 42 reveals that the model of Vg from the 3D-
Jigsaw server gave the most similar structure prediction to the template LV. However, it could not
be concluded that 3D-Jigsaw built the best model for the N-terminal region of Vg due to the low

identity between the LV template and N-terminal region of Vg from P. merguiensis.



120

Chain A

Chain B

N-sheet

A-sheet

Helical

C-sheet

Fig. 39 Stereoview ribbon or cartoon diagrams of lamprey LV (Protein Data Bank entry
1LSH).

Chain A is colored blue whereas chain B is colored green (A). The main domains

of LV are shown in (B), B-sheets are colored blue, a-helix structures are colored pink,

loops and turns are colored gray.
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EasyPred_Vg : Modeller Vg

Fig. 40 Side views of three models of Vg and the 1ILSH_A template.
The cartoon diagrams in the same orientation are shown as ILSH_A (A), 3D-
Jigsaw Vg (B), EasyPred Vg (C) and Modeller Vg (D). The shading from blue to red

shows the direction from N-terminal to C-terminal.
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EasyPred Vg Modeller Vg

Fig. 41 Down views of three models of Vg and the 1ILSH_A template.
The cartoon diagrams in the same orientation are shown as ILSH_A (A), 3D-
Jigsaw Vg (B), EasyPred Vg (C) and Modeller Vg (D). The shading from blue to red

shows the direction from N-terminal to C-terminal.
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3D-Jigsaw_Vg & 1LSH A EasyPred Ve & 1LSH A

Fig. 42 Superimposition of all presented models.
(A) Superimposition of models from Modeller Vg (pink), 3D-Jigsaw Vg (red),
EasyPred Vg (yellow) and lamprey lipovitellin template (1ILSH_A) (blue). (B)
Superimposition of Modeller Vg (pink) and 1LSH (blue). (C) Superimposition of 3D-
Jigsaw Vg (red) and 1ILSH_A (blue). (D) Superimposition of EasyPred Vg (yellow) and
ILSH_A (blue).
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4. Expression of Vg gene in different tissues.

The site of Vg mRNA expression was determined, by RT-PCR analysis of
multiple tissues. Total RNA samples were extracted from various tissues of vitellogenic females
and hepatopancreas of mature males. Vg specific primers (FVg112 and RVg711) were used to
amplify Vg cDNA fragments. The expected size of the specific Vg PCR product is 600 bp. The
specific Vg PCR fragment was detected only in the ovary and hepatopancreas of vitellogenic
females. Heart, muscle and intestine of vitellogenic females, and hepatopancreas of male shrimps
did not have detectable levels of product (Fig. 43). 18s rRNA was used as an internal control for
each tissue sample to confirm that the same amount of total RNAs was used. The expected size of
the 18s rRNA PCR product is 298 bp. The specific band of 18s rRNA indicated that roughly the

same amount of total RNAs were loaded in the RT-PCR reactions for each tissue sample.

100 bp H I M £HP 0 mHP

Fig. 43 RT-PCR analysis of the expression of Vg mRNA in different Penaeus merguiensis
tissues.

Total RNA was extracted from hepatopancreas (fHP), ovary (O), muscle (M),

heart (H) and intestine (I) of vitellogenic females and the hepatopancreas (mHP) from a

mature male. The RT-PCR of 18s rRNA transcript was an internal control.
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5. Relative quantification of Vg mRNA expression during ovarian development by real-
time PCR

Changes in Vg mRNA levels in the hepatopancreas and ovary at 4 stages of
ovarian development were examined by real-time PCR. To ensure equal amounts of total RNA in
samples, levels of 18s rRNA in the samples were also measured for standardization. Quantities of
mRNA in samples were calculated from a standard curve derived from known amounts of the
target gene (Vg mRNA or 18s rRNA). The standard curves for quantification of Vg gene and 18s
rRNA were linear over six and five, respectively, orders of magnitude with the linear correlation
(r), between threshold cycles (Ct) and the copy number of the target gene, being over 0.99 in each
case. A representative amplification plot of standards and the corresponding standard curves are
shown in Fig. 44 and Fig. 45.

Relative Vg mRNA levels are normalized by dividing copy number of Vg by
copy number of 18s rRNA from the same sample. The changes in the relative levels of Vg mRNA
expression in both tissues are shown in Fig. 46 and Table 10. Sixteen ovaries were divided equally
into four groups based on GSI and developmental stages (1-4). GSI increased as vitellogenesis
progressed. In contrast, the relative level (X10_3) of Vg mRNA expression in the ovary increased
from 0.69 + 0.18 for shrimps in stage 1 to reach its maximum at 9.27 + 0.62 in stage 2 and rapidly
decreased in stage 3 (4.14 = 0.31) and 4 (1.40 + 0.22). In the hepatopancreas, the relative level
(x10_3) of Vg mRNA increased from 0.004 + 0 to 0.57 + 0.15 for shrimps in stage 1 and 2,
respectively. The highest level was observed at stage 3 (1.08 + 0.08) and thereafter declined in
stage 4 (0.48 +0.06).

Relative values of Vg from stage 1 of ovarian development in each tissue were
arbitrarily designated as the calibrator. In the ovarian tissue after calibration, the relative value of
Vg at stage 2 of ovarian development is significantly increases relative to stage 1, 3, and 4 as 13.5,
6.0 and 2.0-fold, respectively (P < 0.01). In the hepatopancreas tissue after calibration, the relative
value of Vg is significantly increased in the hepatopancreas at stage 3 as 270-fold (P < 0.05).
Furthermore, the relative Vg mRNA expression in the ovary is greater than that in the
hepatopancreas at all stages of ovarian development indicating that ovary is the major source of
Vg synthesis. These results from real-time PCR show Vg gene expression in the ovary and

hepatopancreas, which confirm the RT-PCR results that determined the sites of Vg synthesis.
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Fig. 44 Real-time PCR standard curve of Penaeus merguiensis Vg.

Amplification plot (A) and standard curve (B) for Vg standards were performed
in ranging from 1.2x10°-1.2x10° copy number of target sequence. The standards are
amplified for 40 cycles, and the standard curve is made by plotting the log of input
amount (copy number) against the first cycle (Ct) that showed significant increase in

fluorescence (Delta Rn).
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Fig. 45 Real-time PCR standard curve of 18s rRNA.

Amplification plot (A) and standard curve (B) for 18srRNA standards were

monitered in ranging from 7.4x10°-7.4x10’ copy number of target sequence. The

standards are amplified for 40 cycles, and the standard curve is made by plotting the log

of input amount (copy number) against the first cycle (Ct) that showed significant

increase in fluorescence (Delta Rn).
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Fig. 46 Real-time PCR analysis of Vg cDNA.

Changes in the gonadosomatic index (GSI) and expression levels of Vg mRNA
in the ovary and hepatopancreas of naturally maturing shrimps. Female shrimps were
divided into four groups based on the developmental stages of the ovaries. Open
columns, Vg mRNA level in the ovary relative to an 18s rRNA standard; shaded
columns, Vg mRNA level in the hepatopancreas relative to an 18s rRNA standard; solid
columns, GSI. Results are represented as the mean =+ standard error of the mean of four
shrimps in each stage. Significant differences between stages, P < 0.05 and P < 0.01, are

indicated with * and **, respectively. Data were analyzed by ANOVA.



